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Abstract: This paper is concerned with the statistical analysis of closed loop data
for diagnosing the causes of poor control loop performance. Higher Order Statistical
(HOS) techniques have been developed over the last two decades, but until now have
not been applied to the area of process monitoring. The main contribution of this work
is to utilize the higher order statistical tools such as cumulants and their frequency
domain counterparts (bispectrum, bicoherence, trispectrum) to detect and quantify
the non-Gaussianity and nonlinearity of regulated processes or control error variables
which are sometimes the main contributors to the poor performance of many of the
control loops. The bicoherence index together with the process and manipulated
variable plots are used to diagnose the sources of system nonlinearities. Successful
application of the proposed method is demonstrated on simulated as well as industrial
data.
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1. INTRODUCTION

The field of controller performance monitoring
has received much attention in the engineering
research literature. However, the diagnosis of poor
performance remains an open area. Performance
diagnosis requires identification of the causes of
poor performance, as for example due to pro-
cess problems, poor controller tunings, presence
of disturbances, process and/or actuator non-
linearities. If there are some non-linearities in
the control loop, the controller may not perform
at the desired level. Non-linearities degrade the
performance of the controller in several ways, for
example, they may produce oscillations in process
variables, decrease the life of the control valve,
may upset process stability, and in most cases
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lead to inferior quality end-products thus causing
larger rejection rates and reduced profitability.
The non-linearities may be present in the process
itself or in the actuators or control valves. This
study is concerned with both types of nonlineari-
ties, which are defined here as, “system nonlineari-
ties”. Process nonlinearity means that the process
can not be modelled by a linear transfer function.
Actuator or valve non-linearities are typically due
to stiction, backlash, saturation, deadzone, rup-
tured diaphragm, corroded or eroded valve seats.

Classical signal processing tools utilize only the
first and second order moments, i.e., the mean
and variance. Such tools are mainly useful for
analyzing signals from linear processes. The im-
plicit assumption in using these tools is that the
distribution of the data is normal. In case of
non-linear signals, one needs to look at other
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methods of characterizing their statistical prop-
erties. This necessitates the use of higher order
statistical tools. The third and fourth order mo-
ments or cumulants and their frequency domain
counterparts are found to be useful in analyz-
ing non-linearities in communication signals and
mechanical machine condition monitoring (Nikias
and Petropulu, 1993), (W. B. Collis and Ham-
mond, 1998), (Rivola and White, 1999). In this
work, these higher order statistical techniques are
used to detect and diagnose actuator or valve non-
linearities. The method uses only routine oper-
ating data such as process variables (pv), con-
troller outputs (op), and set points (sp). Since the
method is based on regulatory control, it does not
require any additional process excitation.

2. HIGHER ORDER STATISTICS

The first and second order statistics (e.g., mean,
variance, autocorrelation, power spectrum) are
popular signal processing tools and have been
used extensively for analysis of process data. But
such second order statistics are only sufficient for
describing linear and Gaussian processes. In prac-
tice, there are many situations when the process
deviates from Gaussianity and linearity, e.g., when
it exhibits nonlinear behavior. These type of pro-
cesses can conveniently be studied using Higher
Order Statistics (HOS). There are three main
reasons for using HOS: to extract information due
to deviations from Gaussianity, to recover the true
phase character of the signals, and to detect and
quantify nonlinearities in time series (Nikias and
Petropulu, 1993). The following sections briefly
describe some of the HOS terms.

2.1 Cumulants

For any random variable x, the moment generat-
ing function can be defined as the expectation of
the transformation, etx, where t ∈ R, i.e.,

Mx(t) = E[etx] (1)

Moments can be obtained from the coefficients of
the Taylor’s series expansion of the moment gener-
ating function about the origin. In a similar fash-
ion, cumulants can be derived from the coefficients
of the Taylor’s series expansion of the cumulant
generating function, Cx(t), which is defined as the
logarithmic of the moment generating function:

Cx(t) � ln(Mx(t)) (2)

Cumulants are another set of statistical measures
which can be used instead of moments because of
their excellent noise suppressing properties. Mo-
ments and cumulants are very closely related to
each other. For example, the following relation-
ships hold:

c1 = m1

c2 = m2 − m2
1

c3 = m3 − 3m2m1 + 2m3
1

c4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1 (3)

where, mi is the ith order moment defined as
mi=E[xi] and ci is the ith order cumulant. A
detailed description of this derivation is given in
(Choudhury, 2001).

2.2 Bispectrum and Bicoherence

Not all the information content of a signal may
be easily obtained from statistical analysis of the
data in the time domain. Transforming the signal
from time to frequency domain can expose the
periodicities of the signal and can also aid in
understanding the signal generating process.

Just as the power spectrum is the frequency do-
main representation of the second order moment,
the bispectrum is the frequency domain counter-
part of the third order cumulants. The bispectrum
is defined as

B(f1, f2) � DDFT [c3(τ1, τ2)]

≡E[X(f1)X(f2)X∗(f1 + f2)] (4)

where, X(f) is the Fourier transformation of the
data series x(t) and DDFT stands for double
discrete Fourier transformation. Equation 4 shows
that it is a complex quantity having both magni-
tude and phase. The bispectrum can be plotted
against two independent frequency variables, f1

and f2 in a three dimensional plot. Each point in
the plot represents the bispectral content of the
signal at the bifrequency, (f1, f2). In fact, the bis-
pectrum at point (B(f1, f2), f1, f2) measures the
interaction between frequencies f1 and f2. This
interaction between frequencies can be related to
the non-linearities present in the signal generating
systems and therein lies the core of its usefulness
in the detection and diagnosis of non-linearities.

It can be shown that the bispectral estimates are
asymptotically unbiased and the variance of the
estimator depends on the second order spectral
properties (Hinich, 1982). That is,

var(B̂(f1, f2)) ∝ P (f1)P (f2)P (f1 + f2) (5)

where, P (f) is the power of the signal at fre-
quency, f . Since the estimate depends directly on
the bifrequency, the variance of the estimate will
be higher at a bifrequency where the signal energy
is high and will be lower where the energy is low.
This causes serious problems in its estimation.
In this work, the bispectrum is normalized in a
such way that it gives a measure whose variance
is independent of the signal energy. This is termed



as bicoherence and is defined by the following
equation :

bic2(f1, f2) � |E[B(f1, f2)]|2
E[|X(f1)X(f2)|2]E[|X(f1 + f2)|2]

(6)
where ‘bic’ is known as the bicoherence function.
It has been shown by (Kim and Powers, 1979) that
the variance of the bicoherence estimator satisfies
the following expression:

var[b̂ic
2
(f1, f2)] ≈ 1

M
[1 − bic2(f1, f2)] (7)

where M is defined as the number of segments used
in the estimation. A useful feature of bicoherence
function is that it is bounded between 0 and 1.
There are also other normalization methods but
they are not popular because their properties have
not been extensively studied (Fackrell, 1996).

2.3 Test of Linearity Based on the Bispectrum

Let x(k) be a discrete stationary time series. We
call it linear, if it can be represented by

x(k) =
∑

n

h(n)e(k − n) (8)

where, e(k) is a sequence of independent identi-
cally distributed random variables with E[e(k)] =
0, σ2

e = E[e2(k)], and µ3 = E[e3(k)]. For this case,
the following frequency domain relationships can
be obtained: the power spectrum,

P (f) =
σ2

e

2π
| H(f) |2 (9)

and the bispectrum,

B(f1, f2) =
µ3

(2π)2
H(f1)H(f2)H∗(f1 + f2) (10)

where, H(f) =
∑

n

h(n)e−inf . Equation 6 can be

rewritten as

bic2(f1, f2) � |E[B(f1, f2)]|2
E[|X(f1)X∗(f1)||X(f2)X∗(f2)|]
E[|X(f1 + f2)X∗(f1 + f2)|]

≡ |E[B(f1, f2)]|2
E[|P (f1)||P (f2)|]E[|P (f1 + f2)|]

(11)

Now substituting the expressions from equation 9
and 10, it can be shown that

bic2(f1, f2) =
µ2

3

2πσ6
e

(12)

From this equation, it can be seen that the
squared bicoherence is constant for a linear pro-
cess. It is also independent of the frequency. So,
if the bicoherence is not a non-zero constant in
the principal domain of the bispectrum, it is con-
cluded that the process is nonlinear. If µ3 is zero,
then the squared bicoherence is also zero. In that
case, the signal is Gaussian.
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Fig. 1. Block diagram of mixed signal system

3. ILLUSTRATIVE EXAMPLES

3.1 Bicoherence of a mixed signal

A mixed signal was generated using the simulink
block diagram shown in figure 1. The input signal
was white noise with zero mean and unit vari-
ance. The amplified signal was passed through a
bandpass filter with the frequency band [0.195 to
0.205]. The filtered signal was squared in order to
introduce a small nonlinearity. Only 1/10 of it was
added to the filtered signal to produce a mixed
signal. White noise with variance 0.001 was added
to the mixed signal to produce the final signal of
interest.

This analysis is based on 4096 samples with FFT
segment length of 128. The objective in this exam-
ple is to demonstrate the power of the bicoherence
in the detection of nonlinearity. First, a linear
signal, ylinear, was generated without introducing
any nonlinearity in figure 1, i.e., the squaring
block was absent. Thereafter a non-linear signal,
ynonlinear, was generated using figure 1. By merely
looking at the time trend of the signals (figures
2a and 2b), it is not possible to distinguish the
two signals. Also, the power spectrums (figures 2c
and 2d) or the second order moments look alike
and are unable to detect the non-linearity present
in the second signal. Figures 2e and 2f show the
three dimensional bicoherence plot. For ylinear,
the maximum bicoherence value is 0.08 while for
ynonlinear it is 0.54. A large bicoherence value
is an indication of significant nonlinearity. From
the bicoherence plot, the peak position in the
nonlinear case is at (0.1,0.1) Hz bifrequency. This
means that the nonlinearity in the signal is due to
interaction of these two frequencies. Going back to
the signal generating system shows that the band
pass filtered signal has the frequency range [0.195
to 0.205]. This signal was squared to introduce a
nonlinearity. This is due to the multiplication of
two signals, each of them having a frequency of
approximately 0.2 Hz. In the bicoherence contour
plot the frequencies identified are 0.1 and 0.1 Hz.
This is because in this case the frequency is nor-
malized with the Nyquist frequency scale which
is one-half of the sampled frequency. Therefore, it
correctly identifies the nonlinear frequency inter-
actions. The frequency interactions are the result
of nonlinearity present in the signal due to the
system or the process.



Fig. 2. Results for ylinear (left) and ynonlinear

(right)

3.2 Bicoherence of a nonlinear sinusoid signal
with noise

For this example, an input signal was constructed
adding two sinusoids, each of them having a
different frequency and phase. That is,

x
′
(k) = sin(2πf1k + π/3) + sin(2πf2k + π/8)

x(k) = x
′
(k) + d(k) (13)

y(k) = x
′
(k) + 0.05x

′
(k)2 + d(k) (14)

where, f1 = 0.12, f2 = 0.30, k = 1 to 4096 and
d(k) is a white noise sequence with a standard
deviation of 0.2 .

Figures 3a and 3b show the time series while
figures 3c and 3d show the power spectrum of the
signal x and y, respectively. Neither of these plots
helps in distinguishing the two signals. However,
the use of higher order statistics can successfully
detect the nonlinearities present in y. Figures 3e
and 3f show the three dimensional bicoherence
plot of x and y respectively. For the linear x
signal, the maximum bicoherence value is 0.05
and there are no sharp peaks in the bicoherence
plots. On the other hand, the bicoherence plot of
y shows two large peaks and three small peaks
with a maximum bicoherence value of 0.47. These
values are not constant at all bifrequencies. This
clearly identifies the nonlinearities present in this
signal. This example illustrates that the bicoher-
ence index is very sensitive to even a very small
amount of nonlinearity (only 5% of the quadratic
nonlinearity in y). The interpretation of the peaks
in the bifrequency plane can be understood by
rewriting the expression for y using some trigono-
metric identities:

Fig. 3. Diagnostic plots of the nonlinear sinusoid
signal with noise
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Fig. 4. Block diagram of a simple SISO process
with stiction nonlinearity in the valve

y(k) = sin(2πf1k + π/3) + sin(2πf2k + π/8)

+0.05(1 − cos(2(2πf1k + π/3)) −
cos(2(2πf2k + π/8))) + 0.05 cos(2π(f1

−f2)k + π/3 − π/8) − 0.05 cos(2π(f1

+f2)k + π/3 + π/8) + d(k) (15)

The nonlinearities may be caused by the in-
teractions of any two of the signals with fre-
quencies f1, f2, 2f1, 2f2, f1 − f2, and f1 + f2.
For the output signal y, the bicoherence plots
show peaks at (0.12,0.12), (0.18,0.12), (0.30,0.30),
(0.30,0.12), and (0.4,0.3) Hz bifrequencies. These
frequencies correspond to (f1, f1),(f1 − f2, f1),
(f2, f2),(f1, f2), and (2f2, f2), respectively. The
bicoherence plot correctly identifies frequency in-
teractions which result in nonlinearities in this
signal.

4. EXAMPLES TO ILLUSTRATE THE
DETECTION OF VALVE NONLINEARITIES

4.1 Simulation results

The simple single input single output (SISO) sys-
tem given in figure 4 has been used for gener-
ating simulated data. The second order process
with time delay is given by the following transfer
function:
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(3s + 1)(10s + 1)

e−3s (16)

The controller is a PI with Kc = 0.5 and τi = 12.3.
Random noise with variance 0.01% was filtered
with a low pass filter and added to the process
variable. The simulation was performed for 10000
seconds using varying amount of stiction in the
model. For a detailed description of the stiction
model please refer to (Choudhury, 2001). The raw
data was filtered with a low pass filter to give the
filtered pv

′
(n):

pv
′
(n) =

pv(n) + pv(n + 1)
2

(17)

Then, every other sample was discarded to yield
the subsampled pv

′′
(n). Finally, in order to avoid

the effect of transients the last 4096 steady state
data points were used for analysis. The resulting
process variable (pv′′) was analyzed to detect the
nonlinearity present in system.

4.1.1. Without stiction For this case, the non-
linear ‘stiction model’ block was removed from
the simulation block diagram. Figure 5 shows the
time trend of the process variable (pv) and the
corresponding bicoherence plot. The maximum
bicoherence value for this case was 0.06, which is
very small, confirming the absence of nonlineari-
ties in the system.

4.1.2. Presence of stiction Figure 6 shows the
time series of pv

′′
(n), the bicoherence plot and

the pv-op plot. The presence of 3% stiction pro-
duces very distinct limit cycles in the process
variables. The maximum value of the bicoherence,
0.19, for this case clearly detects the presence of
nonlinearity in the process signal. For real cases,
this maximum bicoherence value is expected to
be higher. For symmetric distributions, the bico-

herence value is usually low because it takes into
account the skewness of the distribution. In addi-
tion to the bicoherence index, the process variable
versus controller output plot, i.e., pv - op plot
is useful in identifying the type of nonlinearity.
Figure 6(c) shows this characteristic plot. The
presence of distinct loops with sharp turn around
points is an indication of stiction in the valve.

4.2 Case Study of Industrial Data

The higher order statistical techniques have been
successfully applied in detection and isolation of
process/actuator faults for some of the control
loops of an industrial unit of a chemical complex
in Edmonton, Canada. Data was collected with a
sampling interval of 1 min over two time periods:
from April 10 to 17, 2001 and following the annual
maintenance shutdown of the plant, from July 1
to 15, 2001. Results of the analysis of two loops
are discussed below:

Flow loop 1: The first one is a recycle flow control
loop. The detailed diagnostic plots are shown
in figure 7. Time series of the data collected
in April and July are shown in figures 7a and
7b. The op trend in figure 7c shows that the
valve movement was very slow and insignificant
compared to the change in the error signal, (pv-
sp). The bicoherence plot in figure 7e has a
maximum bicoherence value of 0.17 and it has
three peaks in the non-redundant region. This
indicates the presence of nonlinearity in the error
signal. The op and pv time trend in figure 7a
and 7c show that a little change in op caused a
big change in pv value (note the range of y-axis
for op, 49.4 to 50). Therefore it was suggested
that this valve had nonlinearities and it was most
likely due to an oversized valve. This 6 inch
valve was replaced by a 3 inch valve during the
annual maintenance shutdown of the plant (in
May, 2001). In order to confirm the result of the
analysis, additional data was collected in July and
the results of the ‘post-maintenance’ data analysis
are shown in the right half part of the figure 7. The
maximum bicoherence value is reduced to 0.06
indicating linear system characteristics.

Flow loop 2: The second loop is also a flow
control loop at the outlet of a pump located
at the bottom of a distillation column. Analysis
of the April, 2001 data of this loop revealed
that this loop had severe nonlinearity problems
with a maximum bicoherence value of 0.772. The
diagnostic plots are shown in the left side of
the figure 8. The 3D bicoherence plot correctly
detected the presence of a significant nonlinearity.
The pv - op characteristic plot indicated a type
of nonlinear characteristic in the process or the
valve that had not been observed before. During



Fig. 7. Results for flow loop 1, April (left) and July
(right)

Fig. 8. Results for flow loop 2, April (left) and July
(right)

the annual maintenance, the plant instrument
personnel noticed that the valve seat was severely
corroded. This valve was also replaced. The results
of the ‘post-maintenance’ analysis are shown in
the right side of figure 8. The bicoherence index
now is 0.17, still indicating the presence of some
nonlinearities, but reduced substantially from the
previous value of 0.772. The pv - op plot still shows
some unfamiliar patterns for unknown sources of
process nonlinearities.

5. CONCLUDING REMARKS

Higher order statistical measures such as cumu-
lants and bicoherence are used in this paper to
quantify the nonlinearities present in the regu-
lated control error signals, and thus indicate the
presence or absence of system nonlinearity. The

bicoherence magnitude threshold limit for nonlin-
earity detection is chosen as 0.1, which is an ad
hoc value and is based on the experience of using
this tool in process performance diagnosis. How-
ever, the choice of the appropriate threshold limits
(statistical based) to detect and raise the alarm for
process or actuator nonlinearities is an area that is
currently under investigation. Additional diagno-
sis tools such as pv - op plots are combined with
the bicoherence index to diagnose the potential
source of the nonlinearity.The method is evaluated
by successful application to two industrial data
sets in which the presence of valve problems were
confirmed and resolved during the annual plant
maintenance shutdown.
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