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ABSTRACT 
While structural optimisation is usually handled by iterative 
methods requiring repeated samples of a physics-based model, 
this process can be computationally demanding. Given a set of 
previously optimised structures of the same topology, this paper 
uses inductive learning to replace this optimisation process 
entirely by deriving a function that directly maps any given load 
to an optimal geometry. A support vector machine is trained to 
determine the optimal geometry of individual modules of a 
space frame structure given a specified load condition. 
Structures produced by learning are compared against those 
found by a standard gradient descent optimisation, both as 
individual modules and then as a composite structure. The 
primary motivation for this is speed, and results show the 
process is highly efficient for cases in which similar 
optimisations must be performed repeatedly. The function 
learned by the algorithm can approximate the result of 
optimisation very closely after sufficient training, and has also 
been found effective at generalising the underlying optima to 
produce structures that perform better than those found by 
standard iterative methods. 

Keywords 
Machine learning; support vector machines; structures; 
optimisation 

1.0 INTRODUCTION 
Nature builds by trial and error, via the very effective but slow 
and costly process of evolution. Similarly, models of iterative 
analysis and trial form the basis of structural optimisation 
methods in which many solutions are evaluated in a 
computational loop. Many large or complex problems present a 
problem, however, due to long computation times of many 
members or difficulty in modelling fine details explicitly. This 
paper presents an alternative strategy. Although for several 
centuries the mathematical tools for explicit analysis have been 
dominant, the vast majority of design decisions throughout 
history have been based on experience of precedents: a practiced 
builder would know what would stand or fall without having to 
test it. Just as this intuitive knowledge is essential for design, the 
strategy can also aid in optimisation. This work uses inductive 
learning to approximate a model that is as good an estimate of 
the structure’s behaviour, but far more efficient than precisely 
computing the structure’s behaviour. It demonstrates that nearly 
optimal solutions to a well defined structural design problem can 

be found by training a machine learning algorithm on examples 
of other solutions found by a traditional optimisation procedure. 

Once trained, the advantage of such a machine is the same 
advantage that the human builder’s training and experience 
provide: the ability to build quickly and without failed attempts. 
A structural problem is chosen that involves the repeated 
optimisation of many interconnected modules, and thus takes 
full advantage of this increase in speed. It is also a problem of 
sufficient complexity that the solution can not be calculated 
directly, but must be found by iterative simulation and testing. 
An algorithm capable of arriving at a general solution by 
inductive learning on presented examples is thus highly 
beneficial. 

Optimisation algorithms including gradient descent (GD) and 
genetic algorithms (GA) make repeated evaluations of the 
strength or stiffness of different structures to design an effective 
shape to counter the given load. This process is time consuming, 
however, requiring repeated iteration for each new design, and 
in the case of GD is subject to inferior solutions due to local 
optima in the search space. This paper uses inductive learning to 
eliminate the need for this iterative step once sufficient 
examples have been generated to save processing time and 
achieve more constant fitness of solutions. If the optimisation is 
repeated many times for many sets of loading conditions, the 
optimal shape of the structure can be imputed as a function of 
the load. This paper investigates the use of a support vector 
machine to learn this function of optimal structures given the 
tensile or compressive loads in each axis, replacing the iterative 
analysis and optimisation entirely (Figure 1). 

In addition to speed, learning offers another, perhaps greater 
benefit: the model may incorporate a complexity beyond what 
can be modelled explicitly. Analysis by the finite element 
method (FEM) is an approximation of a structure’s actual 
behaviour: material properties such as elasticity are set for each 
element as though the material is homogeneous even though 
these may actually represent the effect of finer scale 
microstructure geometry. Nevertheless, such finite element 
approximations can be made to simulate such complex 
microstructures as those of wood (Astley et al., 1997) and bone. 
Digital fabrication methods too may introduce added complexity 
into a structure that does not exist in the initial model – a slight 
thickening of members at the nodes due to material viscosity or 
raster surface irregularities for example. Modelling the geometry 
of these irregularities would normally require a drastic increase 



Figure 1. The iterative optimisation process (left) is replaced entirely by the function learned by the support vector machine (right). 

in mesh resolution and corresponding computation time. This 
paper proposes that these complexities caused by the 
manufacturing process can in fact be incorporated into a model 
not by explicit simulation, but by inductive learning based on 
the behaviour of samples. In this manner the changes of 
behaviour can be taken into account even when the precise 
geometrical or material cause is not known explicitly. In the 
work presented all experiments are entirely virtual, using a finite 
element simulation altered based on preliminary material 
testing, but the method is amenable to the use of data derived 
from the performance of real sample structures. 

1.1 The Structural Problem 
Space frame structures, a set of linear members oriented in any 
direction in 3-dimensional space, and connected at nodal points 
either by rigid or flexible connections, are investigated in this 
work. The specific problem addressed is that of small scale 
space frames, an example of which is shown in Figure 2. The 
overall dimensions of this object as fabricated are 1cm × 1cm × 
2cm, and the individual struts within it are less than 1mm in 
length.  

To define a particular space frame one must specify both 
the topology, or connections between members, and the 
geometry, or locations of the nodes in 3-dimensional space that 
determine the length and orientation of each member. Figure 3 
illustrates this schematically, where the centre diagram (b) 
displays a change in geometry from the left (a) by altering the 

positions of the nodes, and the right diagram (c) displays a 
change in topology, with struts connecting the same nodes 
differently.  

 

Figure 2. A modular structure fabricated by stereolithography. 



The overall structure is based on a modular topology, so that it 
can be scaled to volumes of any size. Its volume is subdivided 
into a grid of cubes, which will be referred to as ‘unit cubes’, 
each containing a portion of structure with identical topology 
such that each is connected to its neighbours to form a 
continuous structure, (Figure 4). In the related problem of 
optimisation with freely parameterised materials (Bendsøe and 
Sigmund, 2003) the result is a vector field of principle stresses 
that varies continuously at each point in the volume. Although 
intended primarily as an exercise for attaining upper bounds on 
performance with real materials or as a framework for 
composite design, by optimising the geometry of each unit cube 
to best resist the local stress of such a field, such optimal 
continuous structures can be designed. Bendsøe and Sigmund 
split the problem into the two coupled sub-problems of local 
anisotropy, and material distribution, which can be addressed in 
the problem representation used here by altering the direction 
and thickness of the struts respectively. 

Previous work by the author (Hanna and Haroun Mahdavi, 
2004) has resulted in a method for rapid optimisation of large 
and complex structures using this modular ‘unit cube’ approach. 
By confining optimisation to local unit areas, this prior method 
finds fit structures with a member count too high to manage 
using a standard global optimisation, at greatly improved speed. 
An object under a complex loading condition exhibits differing 
stresses at various points in its volume. The vector of stresses in 
the three axes (x, y and z) is sampled at the location of one of 
the unit cubes, and used to optimize the local module of 
structure at that location. Although the estimation of stresses is 
based on a simple FEM loading of an isotropic material, the free 
parameterisation of Bendsøe and Sigmund could also be used as 
an initial starting point. 

The ideal result is a modular structure as displayed in Figure 4 
(bottom), with gradual changes in the geometry of the structure 
as the stresses change continuously across the volume of the 
object. With material concentrated in high stress zones and 
internal struts aligned to counter the changing direction of the 
stress vectors, these can achieve a stiffness of approximately 70 
times that of a uniform structure. Geometry is optimised 
separately from topology, so that the repeated use of a single 
topology allows gradual geometrical changes to occur without 
weak points at the connection between differing units. 

1.2 Manufacturing 

The structures considered are designed to be fabricated by a 
digitally controlled process, the main advantage of which is the 
low cost of complexity. Such techniques are increasingly used in 
such large scale manufacturing as automobiles and architecture 
(Sischka et al., 2004), but the development of smaller scale rapid 

prototyping technology allows manufacture at scales less than 1 
millimetre and the fabrication of intricate internal structures. 
This has not yet become commercially viable for mass 
production, but several manufacturers of small-run and 
customised items such as lampshades and hearing aids use the 
technology. Researchers are preparing for the increasing 
accuracy and decreasing cost of the technology in the future.  

 
 

Figure 4. A modular space frame forming a cantilever beam. 
Both have the same overall mass and topology, but identical 

modules (top) deflect far more under loading than do the 
individually optimised ones (bottom). 

 

Figure 3. An illustration of a change in the geometry and 
topology of a structure. 

Stereolithography is the method considered here. 
Stereolithography begins with a tank of liquid photopolymer 
which is sensitive to ultraviolet light. An ultraviolet laser 
‘paints’ the object as a series of horizontal layers, exposing the 
liquid in the tank and hardening it. Once completed, the object is 
rinsed with a solvent and then exposed in an ultraviolet oven 
that thoroughly cures the result. Current machines are capable of 
creating very fine structures, and build to a resolution of 
0.05mm. 

The horizontal stratification inherent in the process adds a 
degree of complexity to the problem of optimisation, as 
members built at different angles to this horizontal plane have 
varying degrees of stiffness (Haroun Mahdavi and Hanna, 
2004). These were measured (Figure 5; also Haroun Mahdavi 
and Hanna, 2003) and factored into the optimisation of 
examples presented to the machine for learning by modifying 
the stiffness of each element as calculated in the finite element 
model by a function of its angle. 



This step incorporates into the function to be learned a level of 
detail beyond the FEM model. The actual cause of this change 
in stiffness occurs between individual layers of resin, at a 
resolution far less than a single element, and is taken not from a 
simulation but from empirical observation. Similarly, the result 
of resin pooling at nodes and other fine details may be measured 
without ever being explicitly modelled. The effects of varying 
build resolutions and other manufacturing methods have not yet 
been investigated, but these could be incorporated in the same 
way. In each case, any additional factors affecting the training 
data become integrated into the function that replaces the FEM  
and optimisation model. 

2.0 RELATED RESEARCH 

2.1 Optimisation of structures 
Initial data to be used in training any learning algorithm can 
typically come from several sources, including experts, 
previously published historical or experimental data, and 
simulation (Reich, 1997). Because of the repetitive nature of the 
problem and the well defined behaviour of structures, simulation 
by the Finite Element Method (FEM) is both the most efficient 
and accurate. In the design task under consideration here it is a 
set of optimal solutions that is required. 

Several techniques have been devised for generating the 
topology of continuous solids analysed by the FEM. Many 
deterministic approaches stem from an iterative process of 
material distribution first proposed by Bendsøe and Kikuchi 
(1988) including the shifting of nodal points in the FEM 
representation toward high stress zones (Chen, 2002). 
Alternatively, stochastic approaches such as GAs have been 
used to specify a configuration of holes and solid using Voronoï 
diagrams or a list of hole shapes (Schoenhauer, 1996).   

Discrete element structures (e.g. trusses, space-frames) of the 
kind considered here involve both the design of the topology of 
connections as well as their position and size. Much early 
research in this area (e.g. Adeli and Cheng, 1993) has been in 
refining only the shape or member sizes, rather than the 
topology (in terms of members connecting the nodal points of 
the structure) to optimise the weight of space trusses by 
determining the width of each member in a given structure. 
More recent research has concentrated on topological 
optimisation, or both topology and shape together. Steel space 
frames and bracing topologies for tall buildings have been 

designed by GA (Pezeshk and Camp 2002), either by encoding 
the possible member connections within each structural bay in 
the genome (Murawski et al., 2000; Kicinger et al., 2005,) or by 
beginning with an acceptable unoptimised solution and refining 
the topology by removing connections (Ping, 1996). These 
typically begin with set node positions, but generative, rule 
based systems including shape annealing (Shea and Cagan, 
1998) in which transformations are selected depending on 
design criteria, and those evolved by GA (Kicinger et al., 2005), 
provide more open ended approaches.  

Figure 5. Relative stiffness of members constructed at varying 
angles from the horizontal plane. 

The problems of topology and geometry can also be separated 
and solved by nesting one within the other. In von Buelow 
(2002), a two stage algorithm was used in which an outer GA 
evolved a topology for a space frame structure while another 
GA found the geometry for each member of the population. The 
present work adopts a similar approach. Previous work by the 
author (Haroun Mahdavi and Hanna, 2003) has also used GA for 
topology, but it has been found that gradient descent is more 
efficient for shape optimisation (Haroun Mahdavi and Hanna, 
2004). This method, extended here, uses a single topology 
previously found by a nested GA/gradient descent process for 
each unit of the overall structure, but is concerned specifically 
with the process of geometry optimisation.  

Versions of the above geometry and topology optimisations 
have been applied to modular structures, particularly to realise 
desired properties in material microstructures (Bendsøe and 
Sigmund, 1999). These are typically arrayed as identical 
modules to form an isotropic structure. Material distribution 
methods have also been extended to find solutions requiring 
materials of free density and elasticity parameters (Bendsøe and 
Sigmund, 2003, pp. 190-204), usually approximated by 
composites of discrete materials in fabrication. It is for such 
situations that the present method is proposed to allow 
parameters to change continuously between modules. 

2.2 Machine learning for behaviour and 
structure 
Machine learning has long been applied to structures and in the 
domain of civil engineering, most commonly as an enhancement 
of the optimisation process. A recurring bottleneck in 
optimisation is the simulation of a design’s behaviour, which 
can either be time consuming due to the complexity of the 
model, or simply incorrect due to incomplete knowledge. This 
can be addressed by ‘shallow modelling’ a system’s observed 
behaviour with inductive learning (Arciszewski and Ziarko, 
1990). Discrete, symbolic learning methods have been used to 
construct rule-based systems which draw relationships between 
design parameters that predict the performance of systems from 
individual beams (Arciszewski and Ziarko, 1990) to the steel 
skeletons of entire buildings (Szczepanik et al., 1996). Sub-
symbolic inductive methods such as artificial neural networks 
have been used also to predict structural and material 
performance (Reich and Barai, 1999) and the behaviour of 
mechanical systems such as propeller blades (Neocleous and 
Schizas, 1995; Reich and Barai, 1999). 

Some of the most recent and complex problems involve 
structural prediction in the field of bioinformatics, in which the 
molecular composition of proteins can too computationally 



expensive to simulate fully. One stream of research is in the 
prediction of the secondary and tertiary structure of proteins by 
machine learning, where the inputs are the actual DNA string 
and the outputs are the predicted three-dimensional structure of 
the protein. Various learning algorithms have been used, 
including artificial neural networks (Meiler and Baker, 2003) 
and support vector machines (Wang et al., 2004).  

Regardless of the method used in simulation, the repeated 
iteration of generating and evaluating solutions is the other 
major hurdle in optimisation. Inductive learning has been found 
useful to improve the speed and quality of this loop by reusing 
knowledge of previous designs or iterations. Murdoch and Ball 
(1996) have used a Kohonen feature map to cluster bridge 
designs in an evaluation space, and Schwabacher et al. (1998) 
have used a symbolic learning algorithm, C4.5 (Quinlan, 1993), 
to select appropriate starting prototypes and search space 
formulations for a parametric optimisation of yacht hull and 
aircraft designs. Both allow a rapid re-evaluation of previous 
work which improves the optimisation when run again to new 
specifications or fitness criteria.  

It is the aim of the present work to use a learning algorithm to 
replace the optimisation process entirely – both the simulation 
and evaluation loops (Figure 1). While much previous research 
has concentrated on inferring rules to guide a design 
(Arciszewski and Ziarko, 1990; Neocleous and Schizas 1995; 
Szczepanik et al., 1996; Reich and Barai, 1999), or on 
suggesting a starting point on which to improve (Murdoch and 
Ball, 1996; Schwabacher et al., 1998), we use induction to 
derive a function that directly maps a given load condition to an 
optimal solution. 

2.2.1 Algorithm selection 
The choice of algorithm is dependent on the learning problem at 
hand, including the form and availability of data, and the goal of 
learning (Reich 1997). The goal, in this case, is induction: to 
derive a generalisation based on previous evidence of optimal 
structural solutions. Duffy (1997) lists six major machine 
learning techniques, of which three potentially apply.  

• Analogical or case-based reasoning techniques explicitly 
represent past examples in such a way that they can be 
retrieved and adapted to suit new problems. 

• What Duffy terms induction – specifically symbolic 
induction – allows a general rule or pattern to be generated 
to fit the data. Symbolic algorithms with discrete output 
such as rough sets (Arciszewski and Ziarko, 1990) and 
C4.5 (Quinlan, 1993), yield explicit classification or 
parameter ranges, and have therefore been used to estimate 
behaviour or recommend design decisions in symbolic or 
labelled form. 

• Artificial neural networks are part of a class of sub-
symbolic algorithms (including, more recently, support 
vector machines) that can result in a continuous output, and 
therefore interpolate exact output values to a finer degree 
than is specified by the input set. These also perform 
induction in the form of a continuous function. 

The data form of this structural optimisation problem is most 
suited to the third category. The solution to the structural shape 

is naturally a continuous function, and it has been noted that 
discretisation is detrimental to optimisation performance (in 
tests by the authors), or can lead to large learning error rates 
(Reich, 1997). As the problem is real valued overall and output 
is of higher dimensionality than input, it is this sub-symbolic 
class of algorithms that is appropriate. 

3. LEARNING METHODOLOGY 

3.1 The optimisation model 
The proposed method builds upon the optimisation procedure 
introduced in Section 1.1, which uses a FEM analysis at two 
stages: first to estimate the global distribution of stress across 
the entire loaded object, and then to guide the incremental 
optimisation of each single module.  

This paper addresses primarily the second analysis, in the 
optimisation of the individual structural modules. In the final 
object, each of these will be connected to a number of slightly 
varying neighbouring modules through which the loads will be 
distributed, but for the sake of efficiency and because the final 
structure is not known, the optimisation deals with each unit in 
isolation. The struts internal to one unit of structure and all struts 
that connect it to its adjoining neighbours are used in the model, 
which due to the grid arrangement entails a duplication of each 
of the struts shared by one unit and its neighbours. These pairs 
of struts determine the boundary conditions: each component of 
the applied load (in the x, y, or z axis) is divided equally 
between all struts that connect to neighbouring modules in the 
positive direction of that axis, while the corresponding degree of 
freedom is constrained in the negative direction. If three struts 
connect to units above a module (positive z axis), for example, 
there will be three corresponding struts connecting to units 
below. For a total applied load of -0.6 units in the z axis, -0.2 
would be applied to each of the upper struts at their extreme 
node, while the lower nodes of the lower struts are constrained 
to the x-y plane. The same is true of the other axes. The extreme 
node of a single unloaded strut is fixed in all three axes to 
restrain the whole system. Each strut is modelled by a 12 degree 
of freedom beam element with one node at each end. All joints 
between struts are fixed in both bending and rotation.  

All optima are tested relative only to each other; therefore, 
where possible, no real-world units are used for dimension, 
force, etc. Actual material properties vary between resins used 
in stereolithography, but are kept at constant default values to 
simulate a standard isotropic solid with Young’s modulus of E = 
7000 kPa, a Poisson’s ratio of ν = 0.3 and density ρ = 2500 
kg/m3. Adjustments made to simulate the effect of the 
manufacturing process on struts of varying angles (Section 1.2) 
were made after FEM analysis by dividing the calculated 
deflections by the measurements taken in physical testing. The 
member sections are treated as cylindrical with identical 
moments of inertia in each axis and torsional stiffness assumed 
from the polar moment of inertia for a cylinder J = I1+I2. 

3.1.1  Optimisation by gradient descent 
The optimisation addressed here with inductive learning is 
gradient descent (GD) on node positions to minimise the total 
deflection in a structure under the specified load, as applied to a 
unit cube. While gradient descent is known to provide only local 



optima, previous investigations of this type of structure (Haroun 
Mahdavi and Hanna, 2004) have demonstrated that the search 
space is predominantly convex, and thus appropriate for GD 
search. Irregularities are introduced when the effects of the 
manufacturing process on materials (Section 1.2) are simulated, 
but these do not substantially affect the quality of the solutions 
found. In particular, the performance of deterministic GD has 
been shown superior to a stochastic genetic algorithm both in 
computation time and in fitness of solutions found. Dependence 
on initial starting solutions is low so the optimisation is only run 
once for each unit of structure, but all runs are begun from the 
same initial solution taken from a prior optimisation for an equal 
tensile load in all three axes. 

 
Figure 6. Different force inputs result in ideal geometry outputs. 

Simultaneous optimisation of member section diameters and 
nodes was found to be more difficult for gradient methods. 
Instead the nodes are first determined by optimisation as above 
with a constant member section, and final member sections 
chosen with an area proportional to the stress in the member. 
Simulation of stress and deflection is performed using the finite 
element method, using OpenFEM, an open-source finite element 
toolbox accessed via MATLAB. 

3.1.2 Approximations in the model 
While it is clear that several approximations are made in the 
above model, particularly in the abstraction of a single unit of 
structure in isolation, these approximations have been shown 
effective in practice. Refining these is the focus of further 
research beyond the scope of this paper. The work presented 
here will focus specifically on the ability of the machine 
learning algorithm to approximate the output of any 
optimisation model, and as such is concerned more with internal 
consistency. The SVM can be trained to learn several slightly 
different versions of the above description, and it is assumed 
that its output would only improve if the optimisation model can 
be made more accurate.  

3.2 The learning algorithm 
Support vector machines (SVM) (Vapnik, 1995) are chosen to 
perform the learning described in this paper. They can be 
described generally as a type of linear classifier that uses a non-
linear kernel function to map input data to a sufficiently high 
dimension such that it can be separated by a hyperplane (Duda 
et al., 2001). The transform resulting from this kernel function 
ensures this hyperplane is non-linear in the original input space. 
Thus, the SVM can just as easily be used in regression to a non-
linear function as in classification. They will be used in this 
capacity to learn the function of optimal structures. 

Given a data set D, consisting of an input vector x and a 
response vector y, the function to be learned: 

 y = f(x)     (1) 

 
is approximated by the SVM by building a model f’(x) based on 
D, that enables the estimation: 

 y’ = f’(x).    (2) 
 
The type of SVM used by the authors is a Least Squares Support 
Vector Machine (LS-SVM) in which the solution follows from 
solving a set of linear equations instead of quadratic 
programming for classical SVMs (Suykens et al. 2002). The 
kernel is the Gaussian radial basis function. 

3.2.1 Learning objective 
The design objective to be learned is to find the best structural 
geometry for a single modular unit given the input of its external 
load. The task is: for each set of loads, find the set of nodal 
points that represent the optimal structure (Figure 6). The input 
x is the three-dimensional vector of external loads 
corresponding to the stress (in either tension or compression) in 
the three axes of a given unit cube. This is represented by the 
components in the directions of the x, y and z axes: 

 x = (x(x), x(y), x(z)).    (3) 
 

The output structure y consists of the nodal point positions for 
the optimal structure as found by prior optimisation. This is the 
set of (x, y, z) coordinates for each of the nodal points yi: 

y = (y1(x), y1(y), y1(z), y2(x), y2(y), y2(z), …, yn(x), yn(y), yn(z)), 
     (4) 
 

The nodes are also located in three-dimensional space, so for a 
topology of n points the output y is a 3n-dimensional vector. 
The inclusion of section sizes and other optimisation parameters 
such as material properties would be a simple extension of the 
dimensionality of y, but in this paper only the nodes are used. 

3.2.2 Output complexities 
The output vector y to be learned is found by gradient descent 
(Section 3.1.1), and takes into account not just the behaviour of 
an ideal, homogeneous space frame, but also the complexities 
caused by the fabrication process (Section 1.2). The function of 
node positions to resulting stiffness of a standard finite element 
space frame model: 

 s = g(y)     (5) 

is illustrated in part in Figure 7 (left) where the horizontal plane 
represents a two-dimensional slice through the 3n-dimensional 
space of nodal points y and the vertical axis represents the 
stiffness s. When changes in member strength due to fabrication 
angle are simulated, a revised stiffness function: 

 s’ = g’(y)     (6) 

reveals the more complex behaviour illustrated in Figure 7 
(right). It is this function on which gradient descent is performed 
to optimise stiffness. Although the function g’(·) used here is 
derived from iterative gradient on the modified finite element 
model, it is this function that could also incorporate samples 
taken from physical testing. 



3.3 THE DATA SETS 
Learning results of two different structural models based on the 
same unit module were compared. Model A is more constrained, 
having all unloaded boundary nodes fixed with pin joints and 
identical material properties for all elements. In model B, 
boundary nodes are fixed only in the axes in which they connect 
to surrounding unit cubes (Section 3.1) but are free to slide in 
the corresponding plane to more accurately simulate the flexing 

of the surrounding structure. This results in the behaviour of 
model B more closely resembling reality, but makes the search 
space more complex. For practical reasons, optimisation of 
model B was terminated after 110 iterations regardless of 
whether an optimum was found. While GD optimisation of 
model A always resulted in a near global optimum, the variance 
of solutions found for model B was greater, amounting to 
considerable increased noise in the function to be learned. 

A single topology was used consisting of four nodes per unit 
cube, resulting in a 12-dimensional output y. For each of models 
A and B, the data set D was created not to uniformly sample the 
entire space of possible solutions, but for a normally distributed 
range of forces and the associated optimal solutions. 

Each training sample is created by generating a random input 
vector x from the normal distribution with mean µ = 0 and 

standard deviation σ = 1, resulting in a range of approximately 
[–3:3] units of force in each of the three axes. The actual 
distributions of each of the components of x are plotted in 
Figure 8. The nodal point outputs y are found by the gradient 
descent method described in Section 3.1.1 and result in 
asymmetrical distributions of nodal positions throughout the 
space of the unit cube. The distributions of each of the four 
nodal points in the three axes of space are shown in Figure 9. 
Although the positions of nodes are not constrained by the 
optimisation algorithm, the repeated nature of the structural 
modules implies a maximum bound on the search space of one 
unit for each of the components of y. The variance in the data 
set for each of the points is 0.72, 0.49, 0.53 and 0.56 units in this 
space respectively, indicating a large portion of the space was 
sampled in D. 

 
Figure 7. Samples of the stiffness function of a given topology 
for homogeneous struts (left) and for struts that vary in stiffness 
as a function of angle (right). In these plots increased stiffness is 

upward: the gradient is ascended in optimisation. 

 
Figure 8. Probability distributions of the x-axis, y-axis and z-
axis components of input force vector x are based on a normal 

distribution with mean zero. 
 

 
Figure 9. Probability distributions of the x-axis, y-axis and z-

axis components of the nodal points y are asymmetrical in 
physical space, the result of optimisation. Model A is shown 

above, model B below. 



3.4 Training 
The learning objective set for the SVM is to predict the optimal 
geometries of a structure y given different load conditions x. 
Each training example is an optimal solution found by the 
iterated gradient descent algorithm in which each sample is a 
finite element analysis of the structure. The greatest 
computational cost is therefore in generating this training data, 
and so the proposed learning method is online, with a gradually 
increasing data set rather than as a batch process.  

Training of the SVM was performed with the gradually 
increasing set of stress vectors x and nodal points y until the 
accuracy of the learned function no longer increased. A radial 
basis function kernel with variance σ² = 0.2 was used to map all 
dimensions in the SVM. 

3.4.1 Error estimation 
Methods of error estimation have been systematically evaluated 
in (Reich and Barai 1999). The method used, hold-out, is the 
most conservative, in that it maintains a pessimistic bias toward 
the results.  

The data D is divided at random into two sets: a training set T 
and a separate validation set V. The SVM is trained on T, and 
then evaluated on V, the errors in V indicating the generalisation 
error. For D of size n, the size of T is ideally 0.6n to 0.8n and V 
is the remaining 0.2n to 0.4n. While there are no general bounds 
for regression, the data D of size n > 1000 produces results with 
confidence more than 0.95 in classification problems (Reich and 
Barai 1999). 

The following tests conform to these recommendations for 
accuracy. The performance of the SVM was evaluated for 
training sets of varying size, to a maximum size n = 1300. For 
all tests, the validation set V was a randomly selected set of size 
300. The size of D for which the SVM will be considered in the 
tests to be fully trained occurs at n = 1000, which is the 
recommended size for 0.95 confidence, and errors for even 
smaller training sets have the most pessimistic bias of any 
estimation method. The results therefore display the worst case 
estimation of errors, and the true accuracy of the algorithm is 
likely to be no less than is reported in the following sections.  

4. THE TRAINED ALGORITHM: 
RESULTS AND ANALYSIS 
The structures produced by the SVM are compared in this 
section to those found by a standard benchmark of gradient 
descent for the same problem definition. The stiffness and stress 
of individual modules is examined first, followed by the 
performance of a composite structure of many units. The two 
optimisation methods are also compared in terms of speed.  

To evaluate the results of learning, a SVM was trained on an 
increasing set T of samples (from 1 to 1000) while being tested 
against a separate validation set V of 300 samples. In the 
following plots, this performance is evaluated both in terms of 
how similar the solutions given by the SVM are to the ideal 
solutions on which it was trained, and how well those solutions 
actually perform when tested under given loads. Under both 
criteria learning was seen to improve steadily with an increasing 
training set until performance plateaued at a very high level. 

4.1 Accuracy of the learned function 
The performance, or error θ, of the algorithm trained with output 
y consisting of a single component y is often measured as a 
square loss function 

 θ = 1/n [ Σi = 1:n  (yi – f’(xi))2 ]  (7) 
 

where n is the number of samples in the validation set V (Reich 
and Barai 1999). As the output vector y is 12-dimensional, this 
can be generalized to  

 θ = 1/n [ Σi = 1:n  ( Σj = 1:d  | yij – f’(xi) |k )1/k ] (8) 
 

where d is the dimensionality of the output vector y and k is the 
exponent of the metric. The choice of k=2 (squared Euclidian 
distance) is appropriate for measurement of error in physical 
space, or k=1 (the Manhattan or city block metric) is suited to 
independent parameters. As the data in y is a combination of 
both – independent points in physical 3-space – the Euclidian 
metric of k=2 has been used.  

This error θ then is simply the mean distance between the nodes 
in each of the ideal samples y and the nodes in the 

 
Figure 10. Accuracy of learning increases with increased 

training 



corresponding solution y’= f’(x) output by the SVM. Distance 
here is measured as the sum of squared differences in each 
dimension of the 12-dimensional output vectors. The graphs in 
Figure 10 display the accuracy of the predicted nodes during 
training with an increasing set T of examples and a separate 
validation set V of 300 examples from model A and model B. 
Both indicate a steadily decreasing error for training sets T up to 
a point (indicated by ‘○’), after which point there is little further 
perceptible change.  

The number of training examples required (650 and 275) appear 
to be a result of the particular data sets, rather than inherent in 
the algorithm, and it is likely the required size of training set T 
would vary for different structural topologies. There is 
negligible variance in the resulting error θ when a different 
randomly selected set T is used in the SVM, or in the order of 
samples presented in training. While the observed plateau 
beginning after this point in training does not coincide with an 

error θ of zero, it should be noted that both the generalisation of 
the model f’(x) and the pessimistic bias of hold-out estimation 
will ensure a lower limit on the error. Training set sizes of 650 
and 275 are likely simply to be the limits of learning for this 
problem.  

The average accuracy of the functions at this point is 
approximately 0.025 units to the validation set, equal to the 
smallest possible manufacturing tolerance for a unit cube of 
2mm. At this stage the function of optimal geometries as 
provided by gradient descent can be considered, for all practical 
purposes, sufficiently learned. 

4.2 Performance of the predicted geometries 
compared to GD 
While the previous plots indicate the standard method of 
evaluating the accuracy of the function in terms of node 
distances, it is more relevant to our purposes to know how well 
the structures perform under their respective stresses. This can 
be determined for a given structure in the validation set by 
performing a finite element analysis on both the geometry y 
found by GD and the predicted geometry y’= f’(x) as found by 
the SVM. Both are loaded with the same input vector of stresses, 

and their stiffness under this load condition is measured as a 
total displacement of nodes when the load is applied. 

 
Figure 11. Performance δ and learned improvements over the 

training set. 

 
Figure 12. Performance δ and learned improvements over the 

training set. Deflection is shown as a solid line; principal stress is 
shown dotted. 

This displacement between the original nodal points y and the 
resulting positions ŷ under simulated load is thus given by: 



disp(y, ŷ) = Σi = 1:m[(yi(x) – ŷ i(x))2 + (yi(y) – ŷ i(y))2 + (yi(z) – ŷ 

i(z))2)]1/2      (9) 

where m is the number of nodal points, and the performance of 
the predicted structures y’ is estimated as the average ratio of 

displacements:  
 

 δ = 1/n [ Σi = 1:n ( disp(y, ŷ) / disp(y’, ŷ’) ) ] (10) 

where n is the number of samples in the validation set V. 

Figures 11 and 12 (top) plot this performance δ of the predicted 
structures y’ against the same validation set as in Figure 10. A 
ratio of 1.0 would indicate the predicted structures perform (on 
average) as well as those found by GD. As learning progressed, 
some predicted structures actually performed better than their 
equivalents as found by GD, and the ratio of number of 
structures of greater stiffness found by learning is shown in the 
lower plots of figures 11 and 12. 

In model A, improvement with an increasing training set is 
evident over the same range of 1-650 samples, with a mean 
stiffness ratio of nearly 1.0 (equal to the GD validation set) 
when the function is fully learned. At this point the percentage 
difference between the resulting displacement of the original 
samples and the predicted geometries had dropped to 1.51%. 
The number of structures with lower deflection than their GD 
counterparts also increased steadily over this range. Where 50% 
would represent the maximum expected value of a perfectly 
learned function on data with noise, the SVM approaches this 
value at a training set size of 650 with 42% of structures having 
greater stiffness than the supposed ideal set. 

The fact that many, or indeed any, structures can outperform the 
optimal structures in the data from which the SVM was trained 
can be explained by the method in which the data were 
generated. Gradient descent as a search method is itself prone to 
error due to local optima in the fitness landscape, and is thus not 
guaranteed to find the globally optimal solution. Although it has 
been shown to be an appropriate method for solving the 
structural shape optimisation problem, it can only do so within 
an acceptable variance in node positions (Haroun Mahdavi and 
Hanna, 2004). It is this variance that causes some of the 
optimized geometries in the training and validation sets T and V 
to fall slightly below the true optimal solution. It can be 
considered equivalent to noise in a set of examples collected 
from real-world measurements. In avoiding overfitting, the 
regression process performed by the SVM effectively ‘smoothes 
out’ the function learned so that some of these optimized 
structures lie either side of the function f’(x). Thus, while the 
learned function may not be accurate enough to predict the exact 
node positions in the validation set, in these cases this actually is 
an advantage, providing an even stronger, more optimal 
structure.  

This is even more evident in the results of learning in model B 
(Figure 12), in which the noise introduced by local optima is 
greater. Again the mean stiffness of learned structures is 
approximately equal to those found by GD after the function is 
fully learned at 275 samples, but, for the range of training set 
sizes below this and beginning at approximately 15 samples, the 
overall stiffness of the predicted structures is actually greater 

than those in the set on which the SVM was trained. The same is 
true when principal stress rather than deflection is taken as the 
measurement of performance, plotted in the dotted lines of 
Figure 12.  

As learning progresses in a noisy data set, the closest 
approximation to the function generally occurs before 
overfitting, at which point the error θ of an independent 
validation set increases. Unusually, this did not happen for the 
validation error θ (Figure 10) but appears to be evident in the 
performance curves, which peak at about 50 training samples for 
stiffness and 120 samples for stress. At this point the learned 
function is roughly 10-15% better than GD optimisation before 
declining to equal that of GD. This would appear to be a result 
of the fact that the noise in the data is not random and 
uncorrelated, but a result of local attractors in the fitness 
landscape found by a deterministic GD search. Because the 
entire data set was generated by starting this search at the same 
point in the search space these same local attractors would recur 
many times in the data, rather than cancelling one another out as 
would random noise, and would be learned by the SVM as part 
of the function. This occurs at 275 samples where performance 
is seen to equal GD, but it is evident that the optimal 
performance is found by earlier generalisation with a much 
smaller data set. Two practical observations can be drawn from 
this: that models with more noise due to GD are likely to be 
approximated more effectively by using fewer samples, and the 
performance of learning should be evaluated by testing the 
structures rather than measuring error directly on the function.  

4.3 Assembling a modular structure 
In addition to the ability of the learned function to outperform 
some of the structures optimized by GD, there is a secondary 
benefit offered by this smoothing that effects a composite 
structure formed of many unit cubes. The ideal situation for a 
complex arrayed structure (as described in Section 1.1) is that 
stress conditions change gradually and continuously over its 
volume, and adjacent unit cubes under similar stresses will have 
a similarly shaped structure. With any optimisation process 
applied to individual unit cubes the variance in accuracy, or 
noise, will cause changes in node position or strut width to be 
more abrupt between some adjacent cubes. The repeated 
optimisation of many separate structures amplifies the 
discretisation caused by the initial sampling of the unit stresses, 
and these abrupt transitions result in weak points in the overall 
structure. By using the learned, continuous function to derive 
the structural geometry, the transitions between adjacent cubes 
are smoother, and the composite structure benefits in overall 
stiffness. As shown in the plots in Figures 11 and 12, some 
predicted structures perform better than what would be found by 
GD in instances where GD results in sub-optimal local optima. 
This section tests the overall performance of an array of these 
against a benchmark solution found by gradient descent. 

The design problem is a simple cantilever like the examples 
shown in Figure 4, for which modular gradient descent has been 
found effective in increasing stiffness (Hanna and Haroun 
Mahdavi, 2004). The overall distribution of loads throughout the 
object was first determined using FEM on a regular grid of 8-
node isoparametric volumes to estimate the local relative 
displacements in each axis for a homogeneous material, and 



these then taken as the local loads x with which to optimise the 
structure of each unit cube. The positions of the nodes y were 
found by gradient descent, and also using the function y’= f’(x) 
estimated by the SVM using training set derived from model B. 
A training set of 50 samples was used, as this was seen (Section 
4.2) to result in the best performance of individual structures. 
These units were reassembled into the original cantilever and 
analysed by FEM under the original applied load. 

As only the node positions are learned, the base solution for 
comparison has been optimised by GD for these, but member 
section sizes within a cantilever structure are constant. The force 
applied to the end nodes has been scaled so that the mean 
displacement of nodes in this structure is one unit. Also for 
comparison, another structure was assembled such that the strut 
section sizes in a given unit are scaled in proportion to the 
magnitude of the local vector x, an approximation to distribute 
more mass where stresses are higher resulting in a stiffer overall 
structure. All structures have the same overall mass.  

The overall assemblies found by the SVM outperformed the GD 
optimised versions in each case, as shown in the list of mean and 
maximum deflections in Table 1. For structures of uniform strut 
thickness, SVM learning provides a slight improvement of 5% 
in mean deflection and 16% in maximum deflection, but this is 
far greater (approximately 80%) when the section sizes are 
scaled. A greater improvement can be made by changing the 
data set D on which the SVM is trained. Rather than using the 
generic normal distribution of input vectors x as in Section 3.3, 
the final row of Table 1 shows the results of training the SVM 
with samples taken from the same distribution as the local force 
vectors within the cantilever, which covers a more restricted 
range. The resulting learned function was thereby tuned to the 
particular problem and deflections were reduced over 90%.  

These are far greater than the small improvements in individual 

structures in Section 4.2. The greatest benefit to the overall 
combined structure appears to be the continuity of the learned 
function as compared to the noise introduced by GD. The 
structure benefits by a continuous functional estimation by 
producing a more gradual transition between adjacent unit 
cubes, avoiding potential weak points caused by recombining 
individually optimized structures. 

4.4 Computational efficiency of learning 
compared to GD 
Although gradient descent is not a computationally demanding 
method of optimisation in comparison with simulated annealing 
or genetic algorithms, the iterative sampling of gradient does 
require a large number of FEM analyses. The use of the learned 
function provides greater efficiency. The typical GD 
optimisation implemented in MATLAB and using OpenFEM for 
analysis (Section 3.1.1) required approximately 1000 such 
analyses and 58 seconds of computation time for each unit of 
structure. Training and evaluation time of the LS-SVM increases 
with the square of the number of training samples, but thereafter 
evaluation time increases only linearly with the number of 
evaluations. For a training set of 50, as used in the previous 
sections, total training time is 0.062 seconds and evaluation time 
is 0.0012 seconds for each structural unit, for a total time of far 
less than even one unit optimisation by GD. For a structure of 51 
units in which 50 runs of GD are required for training there is 
already some saving of computation time, but this method is 
intended specifically for much larger structures. In the time 
required to optimise the next unit for a total number of 51, over 
48,000 units can be computed using the SVM. 

Improved methods of optimisation may be more efficient or 
more accurate, with improved accuracy resulting in less noise in 
the function to be learned and requiring a larger training set for 
optimal performance. Even with a training set of 650 samples, 
total training time is 16.5 seconds and evaluation time is 0.0037 
seconds for each unit of structure, still negligible in comparison 
to optimisation by GD.  

4.5 Summary 
This work aimed principally to investigate whether machine 
learning algorithms, in particular SVMs, could accurately 
predict the optimal geometries of structures, and thus be used as 
a substitute for a traditional optimisation algorithm. An SVM 
was trained on example structures that had been optimized for 
stiffness, and used to predict structures that were compared 
against an independent validation set. Gradient descent was 
chosen as a benchmark optimisation method for comparison 
because it is well understood and has been previously shown to 
be effective in similar problems. Several conclusions can be 
drawn from the observations: 

 
Table 1. Performance of modular cantilever beams produced by 

gradient descent (GD) and support vector machine (SVM). 

 Uniform strut sections Sections scaled to |x| 
 Mean def. Max. def. Mean def. Max. def. 

GD 1.000 2.186 0.500 1.080 

SVM 50 ex. 0.949 1.833 0.111 0.215 

SVM 50 ex. in 
cantilever 
distribution  

0.216 0.443 0.039 0.079 

• The accuracy of the learned function approaches that of the 
GD optimisation. Although the learned function is not as 
accurate as GD for optimisation, it does come close, with 
minimal error θ after several hundred training samples 
(Section 4.1). At this point the function error was within 
the manufacturing tolerances of the structure and can 
thereby substitute as equivalent to gradient descent. 



• The learned function is quicker for optimising larger 
structures. While essentially equivalent in output, the SVM 
is thousands of times more efficient in terms of speed 
(Section 4.4). Finding an optimal structure based on the 
learned function is far quicker than performing a full 
optimisation via gradient descent, as each sample of the 
latter requires a full finite element analysis, and one sample 
must be made for each dimension to calculate the gradient 
at each step. The production of the data set for learning is 
time consuming, but only in that a set of optimisations must 
be carried out in advance. In the example cases, from 50 to 
650 fully optimized examples were required to learn the 
function at the outset. Many structural problems require the 
optimisation to be performed only once, but for those in 
which a similar structural optimisation is needed 
repeatedly, as in the case of an object composed of many 
modular units, the initial investment in learning the 
function of optimal geometries is justified. As this method 
of optimisation is meant to be scalable to objects of 
thousands of modules, the learned function represents a 
substantial advantage in speed. 

• The learned function results in a smoother and stiffer 
overall structure. The discontinuities in an array of 
modules caused by separate optimisations are a 
disadvantage to the performance to the structure as a 
whole. The continuous function learned by the SVM 
ensures that the changes in the field of stress vectors are 
met with a similarly continuous change in structure. 
Overall performance is therefore improved by a greater 
degree than performance of individual modules in isolation 
(section S.3). 

The two structural models A and B differed in terms of 
complexity and constraints. The smooth search space of the first 
resulted in a function that, once learned, appeared to predict the 
same optimal structures as GD. More unexpected of the findings 
was that in generalising from the examples presented of model 
B, the learning algorithm was often able to outperform the 
original optimisations on which it was trained. The characteristic 
peak in the performance curve indicates overfitting with 
increased training that is expected in noisy data, but the fact that 
it appeared only in structural performance measured by stiffness 
or strain suggests that the noise is not random, but inherent in 
the function that generated the data in the first place: the space 
searched by GD. The fact that structures outperformed those 
optimised by GD at this point indicates that the learned function 
was better able to approximate the true underlying optimal 
function even with noisy data. 

It should not be assumed, however, that this function is truly 
optimal. The low numbers of training samples used to achieve it 
(50-120 as opposed to 650 for model A) indicate that it may still 
be a rather rough approximation, and could be improved by a 
more thoroughly optimised data set. Beginning the search at 
random start points, running GD for longer (it was terminated at 
110 iterations), or using other optimisation methods entirely 
would be likely to improve it. It can be supposed from the 
number of training samples required for model A that such 
improved data sets would take longer for SVM training, but a 
closer approximation to the true optimal would be worth the 
small computational cost. 

5. CONCLUSION 
For well defined structural problems in which the environment 
and topology are constant and the loads quantified by a 
continuous valued vector, it has been possible to learn the 
function mapping local vector to optimal structure. The results 
compared favourably to traditional optimisation both in quality 
of solutions and speed. Rather than optimisation by repeated 
sampling and evaluation of a physics-based model, it is thus 
possible to make design decisions for this structural problem 
based entirely on learning from previous examples. The 
principle motivation of such a process is greatly increased 
computation speed, but two secondary benefits also appear 
evident: that empirically measured performance can be easily 
incorporated without explicit analysis, and that the 
approximation made in learning can improve the performance of 
the structure by generalising a continuous function of geometry 
change. 

The adjustment of material properties due to strut angle stands 
in for real world noise and complexities, and could be extended 
to incorporate physical manufacturing inconsistencies, geometry 
changes due to resin pooling, and other details not normally 
included in the finite element model. These are not associated 
element properties at the resolution of the strut model, but may 
still be a function of relative point positions. They can therefore 
still be learned and improvements made over the GD. 
Importantly, these can be incorporated directly into the same 
function whether they are derived from analytical methods or 
empirical measurement. 

This dual nature of data sources indicates the two directions for 
future work. The first is the improvement of the analytical 
optimisation model itself. More variables can be introduced to 
the output vector, including the diameter of struts but possibly 
extending to other section shapes or material properties. The 
FEM representation of the single module can be further refined, 
and homogenisation optimisation models (Bendsøe and 
Sigmund, 2003) for the whole structure may be applied to 
improve the current assumption on the primary distribution of 
stresses. The data sets themselves may be improved by 
beginning optimisation at varying points or using stochastic 
search to improve the distribution of local optima in learned 
function. The second direction requires more empirical testing. 
In principle, the model learned can take on any degree of 
material or geometrical complexity due to microstructure or 
manufacturing, even when the details are not known explicitly. 
In practice, the degree to which these can be expressed as a 
function of points and other input variables deserves further 
research. 

These refinements would serve to reinforce the benefits to speed 
and performance that appear evident in the initial models 
presented here. Once trained on successful precedents, the 
machine, in a sense, knows intuitively what works based on its 
prior experience, and can then predict optimal structures that 
rival or even exceed the initial training set in stiffness. This is a 
result not of strict analysis however, but of inductive learning.  
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