
Inductive machine learning of optimal modular structures:
Estimating solutions using support vector machines

Sean Hanna
Bartlett School of Graduate Studies

University College London
1-19 Torrington Place
London WC1E 7HB
+44 (0)20 7679 1661

s.hanna@ucl.ac.uk

ABSTRACT
While structural optimisation is usually handled by iterative
methods requiring repeated samples of a physics-based model,
this process can be computationally demanding. Given a set of
previously optimised structures of the same topology, this paper
uses inductive learning to replace this optimisation process
entirely by deriving a function that directly maps any given load
to an optimal geometry. A support vector machine is trained to
determine the optimal geometry of individual modules of a
space frame structure given a specified load condition.
Structures produced by learning are compared against those
found by a standard gradient descent optimisation, both as
individual modules and then as a composite structure. The
primary motivation for this is speed, and results show the
process is highly efficient for cases in which similar
optimisations must be performed repeatedly. The function
learned by the algorithm can approximate the result of
optimisation very closely after sufficient training, and has also
been found effective at generalising the underlying optima to
produce structures that perform better than those found by
standard iterative methods.

Keywords
Machine learning; support vector machines; structures;
optimisation

1.0 INTRODUCTION
Nature builds by trial and error, via the very effective but slow
and costly process of evolution. Similarly, models of iterative
analysis and trial form the basis of structural optimisation
methods in which many solutions are evaluated in a
computational loop. Many large or complex problems present a
problem, however, due to long computation times of many
members or difficulty in modelling fine details explicitly. This
paper presents an alternative strategy. Although for several
centuries the mathematical tools for explicit analysis have been
dominant, the vast majority of design decisions throughout
history have been based on experience of precedents: a practiced
builder would know what would stand or fall without having to
test it. Just as this intuitive knowledge is essential for design, the
strategy can also aid in optimisation. This work uses inductive
learning to approximate a model that is as good an estimate of
the structure’s behaviour, but far more efficient than precisely
computing the structure’s behaviour. It demonstrates that nearly
optimal solutions to a well defined structural design problem can

be found by training a machine learning algorithm on examples
of other solutions found by a traditional optimisation procedure.

Once trained, the advantage of such a machine is the same
advantage that the human builder’s training and experience
provide: the ability to build quickly and without failed attempts.
A structural problem is chosen that involves the repeated
optimisation of many interconnected modules, and thus takes
full advantage of this increase in speed. It is also a problem of
sufficient complexity that the solution can not be calculated
directly, but must be found by iterative simulation and testing.
An algorithm capable of arriving at a general solution by
inductive learning on presented examples is thus highly
beneficial.

Optimisation algorithms including gradient descent (GD) and
genetic algorithms (GA) make repeated evaluations of the
strength or stiffness of different structures to design an effective
shape to counter the given load. This process is time consuming,
however, requiring repeated iteration for each new design, and
in the case of GD is subject to inferior solutions due to local
optima in the search space. This paper uses inductive learning to
eliminate the need for this iterative step once sufficient
examples have been generated to save processing time and
achieve more constant fitness of solutions. If the optimisation is
repeated many times for many sets of loading conditions, the
optimal shape of the structure can be imputed as a function of
the load. This paper investigates the use of a support vector
machine to learn this function of optimal structures given the
tensile or compressive loads in each axis, replacing the iterative
analysis and optimisation entirely (Figure 1).

In addition to speed, learning offers another, perhaps greater
benefit: the model may incorporate a complexity beyond what
can be modelled explicitly. Analysis by the finite element
method (FEM) is an approximation of a structure’s actual
behaviour: material properties such as elasticity are set for each
element as though the material is homogeneous even though
these may actually represent the effect of finer scale
microstructure geometry. Nevertheless, such finite element
approximations can be made to simulate such complex
microstructures as those of wood (Astley et al., 1997) and bone.
Digital fabrication methods too may introduce added complexity
into a structure that does not exist in the initial model – a slight
thickening of members at the nodes due to material viscosity or
raster surface irregularities for example. Modelling the geometry
of these irregularities would normally require a drastic increase

Figure 1. The iterative optimisation process (left) is replaced entirely by the function learned by the support vector machine (right).

in mesh resolution and corresponding computation time. This
paper proposes that these complexities caused by the
manufacturing process can in fact be incorporated into a model
not by explicit simulation, but by inductive learning based on
the behaviour of samples. In this manner the changes of
behaviour can be taken into account even when the precise
geometrical or material cause is not known explicitly. In the
work presented all experiments are entirely virtual, using a finite
element simulation altered based on preliminary material
testing, but the method is amenable to the use of data derived
from the performance of real sample structures.

1.1 The Structural Problem
Space frame structures, a set of linear members oriented in any
direction in 3-dimensional space, and connected at nodal points
either by rigid or flexible connections, are investigated in this
work. The specific problem addressed is that of small scale
space frames, an example of which is shown in Figure 2. The
overall dimensions of this object as fabricated are 1cm × 1cm ×
2cm, and the individual struts within it are less than 1mm in
length.

To define a particular space frame one must specify both
the topology, or connections between members, and the
geometry, or locations of the nodes in 3-dimensional space that
determine the length and orientation of each member. Figure 3
illustrates this schematically, where the centre diagram (b)
displays a change in geometry from the left (a) by altering the

positions of the nodes, and the right diagram (c) displays a
change in topology, with struts connecting the same nodes
differently.

Figure 2. A modular structure fabricated by stereolithography.

The overall structure is based on a modular topology, so that it
can be scaled to volumes of any size. Its volume is subdivided
into a grid of cubes, which will be referred to as ‘unit cubes’,
each containing a portion of structure with identical topology
such that each is connected to its neighbours to form a
continuous structure, (Figure 4). In the related problem of
optimisation with freely parameterised materials (Bendsøe and
Sigmund, 2003) the result is a vector field of principle stresses
that varies continuously at each point in the volume. Although
intended primarily as an exercise for attaining upper bounds on
performance with real materials or as a framework for
composite design, by optimising the geometry of each unit cube
to best resist the local stress of such a field, such optimal
continuous structures can be designed. Bendsøe and Sigmund
split the problem into the two coupled sub-problems of local
anisotropy, and material distribution, which can be addressed in
the problem representation used here by altering the direction
and thickness of the struts respectively.

Previous work by the author (Hanna and Haroun Mahdavi,
2004) has resulted in a method for rapid optimisation of large
and complex structures using this modular ‘unit cube’ approach.
By confining optimisation to local unit areas, this prior method
finds fit structures with a member count too high to manage
using a standard global optimisation, at greatly improved speed.
An object under a complex loading condition exhibits differing
stresses at various points in its volume. The vector of stresses in
the three axes (x, y and z) is sampled at the location of one of
the unit cubes, and used to optimize the local module of
structure at that location. Although the estimation of stresses is
based on a simple FEM loading of an isotropic material, the free
parameterisation of Bendsøe and Sigmund could also be used as
an initial starting point.

The ideal result is a modular structure as displayed in Figure 4
(bottom), with gradual changes in the geometry of the structure
as the stresses change continuously across the volume of the
object. With material concentrated in high stress zones and
internal struts aligned to counter the changing direction of the
stress vectors, these can achieve a stiffness of approximately 70
times that of a uniform structure. Geometry is optimised
separately from topology, so that the repeated use of a single
topology allows gradual geometrical changes to occur without
weak points at the connection between differing units.

1.2 Manufacturing

The structures considered are designed to be fabricated by a
digitally controlled process, the main advantage of which is the
low cost of complexity. Such techniques are increasingly used in
such large scale manufacturing as automobiles and architecture
(Sischka et al., 2004), but the development of smaller scale rapid

prototyping technology allows manufacture at scales less than 1
millimetre and the fabrication of intricate internal structures.
This has not yet become commercially viable for mass
production, but several manufacturers of small-run and
customised items such as lampshades and hearing aids use the
technology. Researchers are preparing for the increasing
accuracy and decreasing cost of the technology in the future.

Figure 4. A modular space frame forming a cantilever beam.
Both have the same overall mass and topology, but identical

modules (top) deflect far more under loading than do the
individually optimised ones (bottom).

Figure 3. An illustration of a change in the geometry and
topology of a structure.

Stereolithography is the method considered here.
Stereolithography begins with a tank of liquid photopolymer
which is sensitive to ultraviolet light. An ultraviolet laser
‘paints’ the object as a series of horizontal layers, exposing the
liquid in the tank and hardening it. Once completed, the object is
rinsed with a solvent and then exposed in an ultraviolet oven
that thoroughly cures the result. Current machines are capable of
creating very fine structures, and build to a resolution of
0.05mm.

The horizontal stratification inherent in the process adds a
degree of complexity to the problem of optimisation, as
members built at different angles to this horizontal plane have
varying degrees of stiffness (Haroun Mahdavi and Hanna,
2004). These were measured (Figure 5; also Haroun Mahdavi
and Hanna, 2003) and factored into the optimisation of
examples presented to the machine for learning by modifying
the stiffness of each element as calculated in the finite element
model by a function of its angle.

This step incorporates into the function to be learned a level of
detail beyond the FEM model. The actual cause of this change
in stiffness occurs between individual layers of resin, at a
resolution far less than a single element, and is taken not from a
simulation but from empirical observation. Similarly, the result
of resin pooling at nodes and other fine details may be measured
without ever being explicitly modelled. The effects of varying
build resolutions and other manufacturing methods have not yet
been investigated, but these could be incorporated in the same
way. In each case, any additional factors affecting the training
data become integrated into the function that replaces the FEM
and optimisation model.

2.0 RELATED RESEARCH

2.1 Optimisation of structures
Initial data to be used in training any learning algorithm can
typically come from several sources, including experts,
previously published historical or experimental data, and
simulation (Reich, 1997). Because of the repetitive nature of the
problem and the well defined behaviour of structures, simulation
by the Finite Element Method (FEM) is both the most efficient
and accurate. In the design task under consideration here it is a
set of optimal solutions that is required.

Several techniques have been devised for generating the
topology of continuous solids analysed by the FEM. Many
deterministic approaches stem from an iterative process of
material distribution first proposed by Bendsøe and Kikuchi
(1988) including the shifting of nodal points in the FEM
representation toward high stress zones (Chen, 2002).
Alternatively, stochastic approaches such as GAs have been
used to specify a configuration of holes and solid using Voronoï
diagrams or a list of hole shapes (Schoenhauer, 1996).

Discrete element structures (e.g. trusses, space-frames) of the
kind considered here involve both the design of the topology of
connections as well as their position and size. Much early
research in this area (e.g. Adeli and Cheng, 1993) has been in
refining only the shape or member sizes, rather than the
topology (in terms of members connecting the nodal points of
the structure) to optimise the weight of space trusses by
determining the width of each member in a given structure.
More recent research has concentrated on topological
optimisation, or both topology and shape together. Steel space
frames and bracing topologies for tall buildings have been

designed by GA (Pezeshk and Camp 2002), either by encoding
the possible member connections within each structural bay in
the genome (Murawski et al., 2000; Kicinger et al., 2005,) or by
beginning with an acceptable unoptimised solution and refining
the topology by removing connections (Ping, 1996). These
typically begin with set node positions, but generative, rule
based systems including shape annealing (Shea and Cagan,
1998) in which transformations are selected depending on
design criteria, and those evolved by GA (Kicinger et al., 2005),
provide more open ended approaches.

Figure 5. Relative stiffness of members constructed at varying
angles from the horizontal plane.

The problems of topology and geometry can also be separated
and solved by nesting one within the other. In von Buelow
(2002), a two stage algorithm was used in which an outer GA
evolved a topology for a space frame structure while another
GA found the geometry for each member of the population. The
present work adopts a similar approach. Previous work by the
author (Haroun Mahdavi and Hanna, 2003) has also used GA for
topology, but it has been found that gradient descent is more
efficient for shape optimisation (Haroun Mahdavi and Hanna,
2004). This method, extended here, uses a single topology
previously found by a nested GA/gradient descent process for
each unit of the overall structure, but is concerned specifically
with the process of geometry optimisation.

Versions of the above geometry and topology optimisations
have been applied to modular structures, particularly to realise
desired properties in material microstructures (Bendsøe and
Sigmund, 1999). These are typically arrayed as identical
modules to form an isotropic structure. Material distribution
methods have also been extended to find solutions requiring
materials of free density and elasticity parameters (Bendsøe and
Sigmund, 2003, pp. 190-204), usually approximated by
composites of discrete materials in fabrication. It is for such
situations that the present method is proposed to allow
parameters to change continuously between modules.

2.2 Machine learning for behaviour and
structure
Machine learning has long been applied to structures and in the
domain of civil engineering, most commonly as an enhancement
of the optimisation process. A recurring bottleneck in
optimisation is the simulation of a design’s behaviour, which
can either be time consuming due to the complexity of the
model, or simply incorrect due to incomplete knowledge. This
can be addressed by ‘shallow modelling’ a system’s observed
behaviour with inductive learning (Arciszewski and Ziarko,
1990). Discrete, symbolic learning methods have been used to
construct rule-based systems which draw relationships between
design parameters that predict the performance of systems from
individual beams (Arciszewski and Ziarko, 1990) to the steel
skeletons of entire buildings (Szczepanik et al., 1996). Sub-
symbolic inductive methods such as artificial neural networks
have been used also to predict structural and material
performance (Reich and Barai, 1999) and the behaviour of
mechanical systems such as propeller blades (Neocleous and
Schizas, 1995; Reich and Barai, 1999).

Some of the most recent and complex problems involve
structural prediction in the field of bioinformatics, in which the
molecular composition of proteins can too computationally

expensive to simulate fully. One stream of research is in the
prediction of the secondary and tertiary structure of proteins by
machine learning, where the inputs are the actual DNA string
and the outputs are the predicted three-dimensional structure of
the protein. Various learning algorithms have been used,
including artificial neural networks (Meiler and Baker, 2003)
and support vector machines (Wang et al., 2004).

Regardless of the method used in simulation, the repeated
iteration of generating and evaluating solutions is the other
major hurdle in optimisation. Inductive learning has been found
useful to improve the speed and quality of this loop by reusing
knowledge of previous designs or iterations. Murdoch and Ball
(1996) have used a Kohonen feature map to cluster bridge
designs in an evaluation space, and Schwabacher et al. (1998)
have used a symbolic learning algorithm, C4.5 (Quinlan, 1993),
to select appropriate starting prototypes and search space
formulations for a parametric optimisation of yacht hull and
aircraft designs. Both allow a rapid re-evaluation of previous
work which improves the optimisation when run again to new
specifications or fitness criteria.

It is the aim of the present work to use a learning algorithm to
replace the optimisation process entirely – both the simulation
and evaluation loops (Figure 1). While much previous research
has concentrated on inferring rules to guide a design
(Arciszewski and Ziarko, 1990; Neocleous and Schizas 1995;
Szczepanik et al., 1996; Reich and Barai, 1999), or on
suggesting a starting point on which to improve (Murdoch and
Ball, 1996; Schwabacher et al., 1998), we use induction to
derive a function that directly maps a given load condition to an
optimal solution.

2.2.1 Algorithm selection
The choice of algorithm is dependent on the learning problem at
hand, including the form and availability of data, and the goal of
learning (Reich 1997). The goal, in this case, is induction: to
derive a generalisation based on previous evidence of optimal
structural solutions. Duffy (1997) lists six major machine
learning techniques, of which three potentially apply.

• Analogical or case-based reasoning techniques explicitly
represent past examples in such a way that they can be
retrieved and adapted to suit new problems.

• What Duffy terms induction – specifically symbolic
induction – allows a general rule or pattern to be generated
to fit the data. Symbolic algorithms with discrete output
such as rough sets (Arciszewski and Ziarko, 1990) and
C4.5 (Quinlan, 1993), yield explicit classification or
parameter ranges, and have therefore been used to estimate
behaviour or recommend design decisions in symbolic or
labelled form.

• Artificial neural networks are part of a class of sub-
symbolic algorithms (including, more recently, support
vector machines) that can result in a continuous output, and
therefore interpolate exact output values to a finer degree
than is specified by the input set. These also perform
induction in the form of a continuous function.

The data form of this structural optimisation problem is most
suited to the third category. The solution to the structural shape

is naturally a continuous function, and it has been noted that
discretisation is detrimental to optimisation performance (in
tests by the authors), or can lead to large learning error rates
(Reich, 1997). As the problem is real valued overall and output
is of higher dimensionality than input, it is this sub-symbolic
class of algorithms that is appropriate.

3. LEARNING METHODOLOGY

3.1 The optimisation model
The proposed method builds upon the optimisation procedure
introduced in Section 1.1, which uses a FEM analysis at two
stages: first to estimate the global distribution of stress across
the entire loaded object, and then to guide the incremental
optimisation of each single module.

This paper addresses primarily the second analysis, in the
optimisation of the individual structural modules. In the final
object, each of these will be connected to a number of slightly
varying neighbouring modules through which the loads will be
distributed, but for the sake of efficiency and because the final
structure is not known, the optimisation deals with each unit in
isolation. The struts internal to one unit of structure and all struts
that connect it to its adjoining neighbours are used in the model,
which due to the grid arrangement entails a duplication of each
of the struts shared by one unit and its neighbours. These pairs
of struts determine the boundary conditions: each component of
the applied load (in the x, y, or z axis) is divided equally
between all struts that connect to neighbouring modules in the
positive direction of that axis, while the corresponding degree of
freedom is constrained in the negative direction. If three struts
connect to units above a module (positive z axis), for example,
there will be three corresponding struts connecting to units
below. For a total applied load of -0.6 units in the z axis, -0.2
would be applied to each of the upper struts at their extreme
node, while the lower nodes of the lower struts are constrained
to the x-y plane. The same is true of the other axes. The extreme
node of a single unloaded strut is fixed in all three axes to
restrain the whole system. Each strut is modelled by a 12 degree
of freedom beam element with one node at each end. All joints
between struts are fixed in both bending and rotation.

All optima are tested relative only to each other; therefore,
where possible, no real-world units are used for dimension,
force, etc. Actual material properties vary between resins used
in stereolithography, but are kept at constant default values to
simulate a standard isotropic solid with Young’s modulus of E =
7000 kPa, a Poisson’s ratio of ν = 0.3 and density ρ = 2500
kg/m3. Adjustments made to simulate the effect of the
manufacturing process on struts of varying angles (Section 1.2)
were made after FEM analysis by dividing the calculated
deflections by the measurements taken in physical testing. The
member sections are treated as cylindrical with identical
moments of inertia in each axis and torsional stiffness assumed
from the polar moment of inertia for a cylinder J = I1+I2.

3.1.1 Optimisation by gradient descent
The optimisation addressed here with inductive learning is
gradient descent (GD) on node positions to minimise the total
deflection in a structure under the specified load, as applied to a
unit cube. While gradient descent is known to provide only local

optima, previous investigations of this type of structure (Haroun
Mahdavi and Hanna, 2004) have demonstrated that the search
space is predominantly convex, and thus appropriate for GD
search. Irregularities are introduced when the effects of the
manufacturing process on materials (Section 1.2) are simulated,
but these do not substantially affect the quality of the solutions
found. In particular, the performance of deterministic GD has
been shown superior to a stochastic genetic algorithm both in
computation time and in fitness of solutions found. Dependence
on initial starting solutions is low so the optimisation is only run
once for each unit of structure, but all runs are begun from the
same initial solution taken from a prior optimisation for an equal
tensile load in all three axes.

Figure 6. Different force inputs result in ideal geometry outputs.

Simultaneous optimisation of member section diameters and
nodes was found to be more difficult for gradient methods.
Instead the nodes are first determined by optimisation as above
with a constant member section, and final member sections
chosen with an area proportional to the stress in the member.
Simulation of stress and deflection is performed using the finite
element method, using OpenFEM, an open-source finite element
toolbox accessed via MATLAB.

3.1.2 Approximations in the model
While it is clear that several approximations are made in the
above model, particularly in the abstraction of a single unit of
structure in isolation, these approximations have been shown
effective in practice. Refining these is the focus of further
research beyond the scope of this paper. The work presented
here will focus specifically on the ability of the machine
learning algorithm to approximate the output of any
optimisation model, and as such is concerned more with internal
consistency. The SVM can be trained to learn several slightly
different versions of the above description, and it is assumed
that its output would only improve if the optimisation model can
be made more accurate.

3.2 The learning algorithm
Support vector machines (SVM) (Vapnik, 1995) are chosen to
perform the learning described in this paper. They can be
described generally as a type of linear classifier that uses a non-
linear kernel function to map input data to a sufficiently high
dimension such that it can be separated by a hyperplane (Duda
et al., 2001). The transform resulting from this kernel function
ensures this hyperplane is non-linear in the original input space.
Thus, the SVM can just as easily be used in regression to a non-
linear function as in classification. They will be used in this
capacity to learn the function of optimal structures.

Given a data set D, consisting of an input vector x and a
response vector y, the function to be learned:

 y = f(x) (1)

is approximated by the SVM by building a model f’(x) based on
D, that enables the estimation:

 y’ = f’(x). (2)

The type of SVM used by the authors is a Least Squares Support
Vector Machine (LS-SVM) in which the solution follows from
solving a set of linear equations instead of quadratic
programming for classical SVMs (Suykens et al. 2002). The
kernel is the Gaussian radial basis function.

3.2.1 Learning objective
The design objective to be learned is to find the best structural
geometry for a single modular unit given the input of its external
load. The task is: for each set of loads, find the set of nodal
points that represent the optimal structure (Figure 6). The input
x is the three-dimensional vector of external loads
corresponding to the stress (in either tension or compression) in
the three axes of a given unit cube. This is represented by the
components in the directions of the x, y and z axes:

 x = (x(x), x(y), x(z)). (3)

The output structure y consists of the nodal point positions for
the optimal structure as found by prior optimisation. This is the
set of (x, y, z) coordinates for each of the nodal points yi:

y = (y1(x), y1(y), y1(z), y2(x), y2(y), y2(z), …, yn(x), yn(y), yn(z)),
 (4)

The nodes are also located in three-dimensional space, so for a
topology of n points the output y is a 3n-dimensional vector.
The inclusion of section sizes and other optimisation parameters
such as material properties would be a simple extension of the
dimensionality of y, but in this paper only the nodes are used.

3.2.2 Output complexities
The output vector y to be learned is found by gradient descent
(Section 3.1.1), and takes into account not just the behaviour of
an ideal, homogeneous space frame, but also the complexities
caused by the fabrication process (Section 1.2). The function of
node positions to resulting stiffness of a standard finite element
space frame model:

 s = g(y) (5)

is illustrated in part in Figure 7 (left) where the horizontal plane
represents a two-dimensional slice through the 3n-dimensional
space of nodal points y and the vertical axis represents the
stiffness s. When changes in member strength due to fabrication
angle are simulated, a revised stiffness function:

 s’ = g’(y) (6)

reveals the more complex behaviour illustrated in Figure 7
(right). It is this function on which gradient descent is performed
to optimise stiffness. Although the function g’(·) used here is
derived from iterative gradient on the modified finite element
model, it is this function that could also incorporate samples
taken from physical testing.

3.3 THE DATA SETS
Learning results of two different structural models based on the
same unit module were compared. Model A is more constrained,
having all unloaded boundary nodes fixed with pin joints and
identical material properties for all elements. In model B,
boundary nodes are fixed only in the axes in which they connect
to surrounding unit cubes (Section 3.1) but are free to slide in
the corresponding plane to more accurately simulate the flexing

of the surrounding structure. This results in the behaviour of
model B more closely resembling reality, but makes the search
space more complex. For practical reasons, optimisation of
model B was terminated after 110 iterations regardless of
whether an optimum was found. While GD optimisation of
model A always resulted in a near global optimum, the variance
of solutions found for model B was greater, amounting to
considerable increased noise in the function to be learned.

A single topology was used consisting of four nodes per unit
cube, resulting in a 12-dimensional output y. For each of models
A and B, the data set D was created not to uniformly sample the
entire space of possible solutions, but for a normally distributed
range of forces and the associated optimal solutions.

Each training sample is created by generating a random input
vector x from the normal distribution with mean µ = 0 and

standard deviation σ = 1, resulting in a range of approximately
[–3:3] units of force in each of the three axes. The actual
distributions of each of the components of x are plotted in
Figure 8. The nodal point outputs y are found by the gradient
descent method described in Section 3.1.1 and result in
asymmetrical distributions of nodal positions throughout the
space of the unit cube. The distributions of each of the four
nodal points in the three axes of space are shown in Figure 9.
Although the positions of nodes are not constrained by the
optimisation algorithm, the repeated nature of the structural
modules implies a maximum bound on the search space of one
unit for each of the components of y. The variance in the data
set for each of the points is 0.72, 0.49, 0.53 and 0.56 units in this
space respectively, indicating a large portion of the space was
sampled in D.

Figure 7. Samples of the stiffness function of a given topology
for homogeneous struts (left) and for struts that vary in stiffness
as a function of angle (right). In these plots increased stiffness is

upward: the gradient is ascended in optimisation.

Figure 8. Probability distributions of the x-axis, y-axis and z-
axis components of input force vector x are based on a normal

distribution with mean zero.

Figure 9. Probability distributions of the x-axis, y-axis and z-

axis components of the nodal points y are asymmetrical in
physical space, the result of optimisation. Model A is shown

above, model B below.

3.4 Training
The learning objective set for the SVM is to predict the optimal
geometries of a structure y given different load conditions x.
Each training example is an optimal solution found by the
iterated gradient descent algorithm in which each sample is a
finite element analysis of the structure. The greatest
computational cost is therefore in generating this training data,
and so the proposed learning method is online, with a gradually
increasing data set rather than as a batch process.

Training of the SVM was performed with the gradually
increasing set of stress vectors x and nodal points y until the
accuracy of the learned function no longer increased. A radial
basis function kernel with variance σ² = 0.2 was used to map all
dimensions in the SVM.

3.4.1 Error estimation
Methods of error estimation have been systematically evaluated
in (Reich and Barai 1999). The method used, hold-out, is the
most conservative, in that it maintains a pessimistic bias toward
the results.

The data D is divided at random into two sets: a training set T
and a separate validation set V. The SVM is trained on T, and
then evaluated on V, the errors in V indicating the generalisation
error. For D of size n, the size of T is ideally 0.6n to 0.8n and V
is the remaining 0.2n to 0.4n. While there are no general bounds
for regression, the data D of size n > 1000 produces results with
confidence more than 0.95 in classification problems (Reich and
Barai 1999).

The following tests conform to these recommendations for
accuracy. The performance of the SVM was evaluated for
training sets of varying size, to a maximum size n = 1300. For
all tests, the validation set V was a randomly selected set of size
300. The size of D for which the SVM will be considered in the
tests to be fully trained occurs at n = 1000, which is the
recommended size for 0.95 confidence, and errors for even
smaller training sets have the most pessimistic bias of any
estimation method. The results therefore display the worst case
estimation of errors, and the true accuracy of the algorithm is
likely to be no less than is reported in the following sections.

4. THE TRAINED ALGORITHM:
RESULTS AND ANALYSIS
The structures produced by the SVM are compared in this
section to those found by a standard benchmark of gradient
descent for the same problem definition. The stiffness and stress
of individual modules is examined first, followed by the
performance of a composite structure of many units. The two
optimisation methods are also compared in terms of speed.

To evaluate the results of learning, a SVM was trained on an
increasing set T of samples (from 1 to 1000) while being tested
against a separate validation set V of 300 samples. In the
following plots, this performance is evaluated both in terms of
how similar the solutions given by the SVM are to the ideal
solutions on which it was trained, and how well those solutions
actually perform when tested under given loads. Under both
criteria learning was seen to improve steadily with an increasing
training set until performance plateaued at a very high level.

4.1 Accuracy of the learned function
The performance, or error θ, of the algorithm trained with output
y consisting of a single component y is often measured as a
square loss function

 θ = 1/n [Σi = 1:n (yi – f’(xi))2] (7)

where n is the number of samples in the validation set V (Reich
and Barai 1999). As the output vector y is 12-dimensional, this
can be generalized to

 θ = 1/n [Σi = 1:n (Σj = 1:d | yij – f’(xi) |k)1/k] (8)

where d is the dimensionality of the output vector y and k is the
exponent of the metric. The choice of k=2 (squared Euclidian
distance) is appropriate for measurement of error in physical
space, or k=1 (the Manhattan or city block metric) is suited to
independent parameters. As the data in y is a combination of
both – independent points in physical 3-space – the Euclidian
metric of k=2 has been used.

This error θ then is simply the mean distance between the nodes
in each of the ideal samples y and the nodes in the

Figure 10. Accuracy of learning increases with increased

training

corresponding solution y’= f’(x) output by the SVM. Distance
here is measured as the sum of squared differences in each
dimension of the 12-dimensional output vectors. The graphs in
Figure 10 display the accuracy of the predicted nodes during
training with an increasing set T of examples and a separate
validation set V of 300 examples from model A and model B.
Both indicate a steadily decreasing error for training sets T up to
a point (indicated by ‘○’), after which point there is little further
perceptible change.

The number of training examples required (650 and 275) appear
to be a result of the particular data sets, rather than inherent in
the algorithm, and it is likely the required size of training set T
would vary for different structural topologies. There is
negligible variance in the resulting error θ when a different
randomly selected set T is used in the SVM, or in the order of
samples presented in training. While the observed plateau
beginning after this point in training does not coincide with an

error θ of zero, it should be noted that both the generalisation of
the model f’(x) and the pessimistic bias of hold-out estimation
will ensure a lower limit on the error. Training set sizes of 650
and 275 are likely simply to be the limits of learning for this
problem.

The average accuracy of the functions at this point is
approximately 0.025 units to the validation set, equal to the
smallest possible manufacturing tolerance for a unit cube of
2mm. At this stage the function of optimal geometries as
provided by gradient descent can be considered, for all practical
purposes, sufficiently learned.

4.2 Performance of the predicted geometries
compared to GD
While the previous plots indicate the standard method of
evaluating the accuracy of the function in terms of node
distances, it is more relevant to our purposes to know how well
the structures perform under their respective stresses. This can
be determined for a given structure in the validation set by
performing a finite element analysis on both the geometry y
found by GD and the predicted geometry y’= f’(x) as found by
the SVM. Both are loaded with the same input vector of stresses,

and their stiffness under this load condition is measured as a
total displacement of nodes when the load is applied.

Figure 11. Performance δ and learned improvements over the

training set.

Figure 12. Performance δ and learned improvements over the

training set. Deflection is shown as a solid line; principal stress is
shown dotted.

This displacement between the original nodal points y and the
resulting positions ŷ under simulated load is thus given by:

disp(y, ŷ) = Σi = 1:m[(yi(x) – ŷ i(x))2 + (yi(y) – ŷ i(y))2 + (yi(z) – ŷ

i(z))2)]1/2 (9)

where m is the number of nodal points, and the performance of
the predicted structures y’ is estimated as the average ratio of

displacements:

 δ = 1/n [Σi = 1:n (disp(y, ŷ) / disp(y’, ŷ’))] (10)

where n is the number of samples in the validation set V.

Figures 11 and 12 (top) plot this performance δ of the predicted
structures y’ against the same validation set as in Figure 10. A
ratio of 1.0 would indicate the predicted structures perform (on
average) as well as those found by GD. As learning progressed,
some predicted structures actually performed better than their
equivalents as found by GD, and the ratio of number of
structures of greater stiffness found by learning is shown in the
lower plots of figures 11 and 12.

In model A, improvement with an increasing training set is
evident over the same range of 1-650 samples, with a mean
stiffness ratio of nearly 1.0 (equal to the GD validation set)
when the function is fully learned. At this point the percentage
difference between the resulting displacement of the original
samples and the predicted geometries had dropped to 1.51%.
The number of structures with lower deflection than their GD
counterparts also increased steadily over this range. Where 50%
would represent the maximum expected value of a perfectly
learned function on data with noise, the SVM approaches this
value at a training set size of 650 with 42% of structures having
greater stiffness than the supposed ideal set.

The fact that many, or indeed any, structures can outperform the
optimal structures in the data from which the SVM was trained
can be explained by the method in which the data were
generated. Gradient descent as a search method is itself prone to
error due to local optima in the fitness landscape, and is thus not
guaranteed to find the globally optimal solution. Although it has
been shown to be an appropriate method for solving the
structural shape optimisation problem, it can only do so within
an acceptable variance in node positions (Haroun Mahdavi and
Hanna, 2004). It is this variance that causes some of the
optimized geometries in the training and validation sets T and V
to fall slightly below the true optimal solution. It can be
considered equivalent to noise in a set of examples collected
from real-world measurements. In avoiding overfitting, the
regression process performed by the SVM effectively ‘smoothes
out’ the function learned so that some of these optimized
structures lie either side of the function f’(x). Thus, while the
learned function may not be accurate enough to predict the exact
node positions in the validation set, in these cases this actually is
an advantage, providing an even stronger, more optimal
structure.

This is even more evident in the results of learning in model B
(Figure 12), in which the noise introduced by local optima is
greater. Again the mean stiffness of learned structures is
approximately equal to those found by GD after the function is
fully learned at 275 samples, but, for the range of training set
sizes below this and beginning at approximately 15 samples, the
overall stiffness of the predicted structures is actually greater

than those in the set on which the SVM was trained. The same is
true when principal stress rather than deflection is taken as the
measurement of performance, plotted in the dotted lines of
Figure 12.

As learning progresses in a noisy data set, the closest
approximation to the function generally occurs before
overfitting, at which point the error θ of an independent
validation set increases. Unusually, this did not happen for the
validation error θ (Figure 10) but appears to be evident in the
performance curves, which peak at about 50 training samples for
stiffness and 120 samples for stress. At this point the learned
function is roughly 10-15% better than GD optimisation before
declining to equal that of GD. This would appear to be a result
of the fact that the noise in the data is not random and
uncorrelated, but a result of local attractors in the fitness
landscape found by a deterministic GD search. Because the
entire data set was generated by starting this search at the same
point in the search space these same local attractors would recur
many times in the data, rather than cancelling one another out as
would random noise, and would be learned by the SVM as part
of the function. This occurs at 275 samples where performance
is seen to equal GD, but it is evident that the optimal
performance is found by earlier generalisation with a much
smaller data set. Two practical observations can be drawn from
this: that models with more noise due to GD are likely to be
approximated more effectively by using fewer samples, and the
performance of learning should be evaluated by testing the
structures rather than measuring error directly on the function.

4.3 Assembling a modular structure
In addition to the ability of the learned function to outperform
some of the structures optimized by GD, there is a secondary
benefit offered by this smoothing that effects a composite
structure formed of many unit cubes. The ideal situation for a
complex arrayed structure (as described in Section 1.1) is that
stress conditions change gradually and continuously over its
volume, and adjacent unit cubes under similar stresses will have
a similarly shaped structure. With any optimisation process
applied to individual unit cubes the variance in accuracy, or
noise, will cause changes in node position or strut width to be
more abrupt between some adjacent cubes. The repeated
optimisation of many separate structures amplifies the
discretisation caused by the initial sampling of the unit stresses,
and these abrupt transitions result in weak points in the overall
structure. By using the learned, continuous function to derive
the structural geometry, the transitions between adjacent cubes
are smoother, and the composite structure benefits in overall
stiffness. As shown in the plots in Figures 11 and 12, some
predicted structures perform better than what would be found by
GD in instances where GD results in sub-optimal local optima.
This section tests the overall performance of an array of these
against a benchmark solution found by gradient descent.

The design problem is a simple cantilever like the examples
shown in Figure 4, for which modular gradient descent has been
found effective in increasing stiffness (Hanna and Haroun
Mahdavi, 2004). The overall distribution of loads throughout the
object was first determined using FEM on a regular grid of 8-
node isoparametric volumes to estimate the local relative
displacements in each axis for a homogeneous material, and

these then taken as the local loads x with which to optimise the
structure of each unit cube. The positions of the nodes y were
found by gradient descent, and also using the function y’= f’(x)
estimated by the SVM using training set derived from model B.
A training set of 50 samples was used, as this was seen (Section
4.2) to result in the best performance of individual structures.
These units were reassembled into the original cantilever and
analysed by FEM under the original applied load.

As only the node positions are learned, the base solution for
comparison has been optimised by GD for these, but member
section sizes within a cantilever structure are constant. The force
applied to the end nodes has been scaled so that the mean
displacement of nodes in this structure is one unit. Also for
comparison, another structure was assembled such that the strut
section sizes in a given unit are scaled in proportion to the
magnitude of the local vector x, an approximation to distribute
more mass where stresses are higher resulting in a stiffer overall
structure. All structures have the same overall mass.

The overall assemblies found by the SVM outperformed the GD
optimised versions in each case, as shown in the list of mean and
maximum deflections in Table 1. For structures of uniform strut
thickness, SVM learning provides a slight improvement of 5%
in mean deflection and 16% in maximum deflection, but this is
far greater (approximately 80%) when the section sizes are
scaled. A greater improvement can be made by changing the
data set D on which the SVM is trained. Rather than using the
generic normal distribution of input vectors x as in Section 3.3,
the final row of Table 1 shows the results of training the SVM
with samples taken from the same distribution as the local force
vectors within the cantilever, which covers a more restricted
range. The resulting learned function was thereby tuned to the
particular problem and deflections were reduced over 90%.

These are far greater than the small improvements in individual

structures in Section 4.2. The greatest benefit to the overall
combined structure appears to be the continuity of the learned
function as compared to the noise introduced by GD. The
structure benefits by a continuous functional estimation by
producing a more gradual transition between adjacent unit
cubes, avoiding potential weak points caused by recombining
individually optimized structures.

4.4 Computational efficiency of learning
compared to GD
Although gradient descent is not a computationally demanding
method of optimisation in comparison with simulated annealing
or genetic algorithms, the iterative sampling of gradient does
require a large number of FEM analyses. The use of the learned
function provides greater efficiency. The typical GD
optimisation implemented in MATLAB and using OpenFEM for
analysis (Section 3.1.1) required approximately 1000 such
analyses and 58 seconds of computation time for each unit of
structure. Training and evaluation time of the LS-SVM increases
with the square of the number of training samples, but thereafter
evaluation time increases only linearly with the number of
evaluations. For a training set of 50, as used in the previous
sections, total training time is 0.062 seconds and evaluation time
is 0.0012 seconds for each structural unit, for a total time of far
less than even one unit optimisation by GD. For a structure of 51
units in which 50 runs of GD are required for training there is
already some saving of computation time, but this method is
intended specifically for much larger structures. In the time
required to optimise the next unit for a total number of 51, over
48,000 units can be computed using the SVM.

Improved methods of optimisation may be more efficient or
more accurate, with improved accuracy resulting in less noise in
the function to be learned and requiring a larger training set for
optimal performance. Even with a training set of 650 samples,
total training time is 16.5 seconds and evaluation time is 0.0037
seconds for each unit of structure, still negligible in comparison
to optimisation by GD.

4.5 Summary
This work aimed principally to investigate whether machine
learning algorithms, in particular SVMs, could accurately
predict the optimal geometries of structures, and thus be used as
a substitute for a traditional optimisation algorithm. An SVM
was trained on example structures that had been optimized for
stiffness, and used to predict structures that were compared
against an independent validation set. Gradient descent was
chosen as a benchmark optimisation method for comparison
because it is well understood and has been previously shown to
be effective in similar problems. Several conclusions can be
drawn from the observations:

Table 1. Performance of modular cantilever beams produced by

gradient descent (GD) and support vector machine (SVM).

 Uniform strut sections Sections scaled to |x|
 Mean def. Max. def. Mean def. Max. def.

GD 1.000 2.186 0.500 1.080

SVM 50 ex. 0.949 1.833 0.111 0.215

SVM 50 ex. in
cantilever
distribution

0.216 0.443 0.039 0.079

• The accuracy of the learned function approaches that of the
GD optimisation. Although the learned function is not as
accurate as GD for optimisation, it does come close, with
minimal error θ after several hundred training samples
(Section 4.1). At this point the function error was within
the manufacturing tolerances of the structure and can
thereby substitute as equivalent to gradient descent.

• The learned function is quicker for optimising larger
structures. While essentially equivalent in output, the SVM
is thousands of times more efficient in terms of speed
(Section 4.4). Finding an optimal structure based on the
learned function is far quicker than performing a full
optimisation via gradient descent, as each sample of the
latter requires a full finite element analysis, and one sample
must be made for each dimension to calculate the gradient
at each step. The production of the data set for learning is
time consuming, but only in that a set of optimisations must
be carried out in advance. In the example cases, from 50 to
650 fully optimized examples were required to learn the
function at the outset. Many structural problems require the
optimisation to be performed only once, but for those in
which a similar structural optimisation is needed
repeatedly, as in the case of an object composed of many
modular units, the initial investment in learning the
function of optimal geometries is justified. As this method
of optimisation is meant to be scalable to objects of
thousands of modules, the learned function represents a
substantial advantage in speed.

• The learned function results in a smoother and stiffer
overall structure. The discontinuities in an array of
modules caused by separate optimisations are a
disadvantage to the performance to the structure as a
whole. The continuous function learned by the SVM
ensures that the changes in the field of stress vectors are
met with a similarly continuous change in structure.
Overall performance is therefore improved by a greater
degree than performance of individual modules in isolation
(section S.3).

The two structural models A and B differed in terms of
complexity and constraints. The smooth search space of the first
resulted in a function that, once learned, appeared to predict the
same optimal structures as GD. More unexpected of the findings
was that in generalising from the examples presented of model
B, the learning algorithm was often able to outperform the
original optimisations on which it was trained. The characteristic
peak in the performance curve indicates overfitting with
increased training that is expected in noisy data, but the fact that
it appeared only in structural performance measured by stiffness
or strain suggests that the noise is not random, but inherent in
the function that generated the data in the first place: the space
searched by GD. The fact that structures outperformed those
optimised by GD at this point indicates that the learned function
was better able to approximate the true underlying optimal
function even with noisy data.

It should not be assumed, however, that this function is truly
optimal. The low numbers of training samples used to achieve it
(50-120 as opposed to 650 for model A) indicate that it may still
be a rather rough approximation, and could be improved by a
more thoroughly optimised data set. Beginning the search at
random start points, running GD for longer (it was terminated at
110 iterations), or using other optimisation methods entirely
would be likely to improve it. It can be supposed from the
number of training samples required for model A that such
improved data sets would take longer for SVM training, but a
closer approximation to the true optimal would be worth the
small computational cost.

5. CONCLUSION
For well defined structural problems in which the environment
and topology are constant and the loads quantified by a
continuous valued vector, it has been possible to learn the
function mapping local vector to optimal structure. The results
compared favourably to traditional optimisation both in quality
of solutions and speed. Rather than optimisation by repeated
sampling and evaluation of a physics-based model, it is thus
possible to make design decisions for this structural problem
based entirely on learning from previous examples. The
principle motivation of such a process is greatly increased
computation speed, but two secondary benefits also appear
evident: that empirically measured performance can be easily
incorporated without explicit analysis, and that the
approximation made in learning can improve the performance of
the structure by generalising a continuous function of geometry
change.

The adjustment of material properties due to strut angle stands
in for real world noise and complexities, and could be extended
to incorporate physical manufacturing inconsistencies, geometry
changes due to resin pooling, and other details not normally
included in the finite element model. These are not associated
element properties at the resolution of the strut model, but may
still be a function of relative point positions. They can therefore
still be learned and improvements made over the GD.
Importantly, these can be incorporated directly into the same
function whether they are derived from analytical methods or
empirical measurement.

This dual nature of data sources indicates the two directions for
future work. The first is the improvement of the analytical
optimisation model itself. More variables can be introduced to
the output vector, including the diameter of struts but possibly
extending to other section shapes or material properties. The
FEM representation of the single module can be further refined,
and homogenisation optimisation models (Bendsøe and
Sigmund, 2003) for the whole structure may be applied to
improve the current assumption on the primary distribution of
stresses. The data sets themselves may be improved by
beginning optimisation at varying points or using stochastic
search to improve the distribution of local optima in learned
function. The second direction requires more empirical testing.
In principle, the model learned can take on any degree of
material or geometrical complexity due to microstructure or
manufacturing, even when the details are not known explicitly.
In practice, the degree to which these can be expressed as a
function of points and other input variables deserves further
research.

These refinements would serve to reinforce the benefits to speed
and performance that appear evident in the initial models
presented here. Once trained on successful precedents, the
machine, in a sense, knows intuitively what works based on its
prior experience, and can then predict optimal structures that
rival or even exceed the initial training set in stiffness. This is a
result not of strict analysis however, but of inductive learning.

ACKNOWLEDGEMENTS
Initial experiments using structural model A discussed in this
paper were performed in collaboration with Dr. Siavash Haroun
Mahdavi, and their results reported in (Hanna and Haroun
Mahdavi 2006). Dr. Joel Ratsaby, Prof. Bernard Buxton and
Prof. Alan Penn have also provided guidance and helpful
suggestions in this work. This research has been sponsored in
part by the Engineering and Physical Sciences Research
Council, UK.

REFERENCES
Adeli, H., & Cheng, N. (1993). Integrated Genetic Algorithm for

Optimisation of Space Structures, Journal of Aerospace
Engineering, 6(4), pp. 315-328.

Arciszewski, T., & Ziarko, W. (1990). Inductive Learning in
Civil Engineering: Rough Sets Approach, Microcomputers
in Civil Engineering, 5(1), pp. 19-28.

Astley, R.J., Harrington, J.J., & Stol, K.A. (1997). Mechanical
modelling of wood microstructure, an engineering
approach, IPENZ Transactions, 24(1), pp. 21-29.

Bendsøe, M.P., & Kikuchi, N. (1988). Generating optimal
topologies in structural design using a homogenization
method, Computer Methods in Applied Mechanics and
Engineering, 71(2), pp. 197-224.

Bendsøe, M.P., & Sigmund, O. (1999). Material interpolation
schemes in topology optimisation, Archives of Applied
Mechanics, 69, pp. 635-654.

Bendsøe, M.P., & Sigmund, O. (2003). Topology Optimisation:
Theory, Methods and Applications. Berlin: Springer.

Chen, Y.M. (2002). Nodal Based Evolutionary Structural
Optimisation Methods, PhD Thesis, University of
Southhampton.

Duda, R.O., Hart, P.E., & Stork D.G. (2001). Pattern
classification. NY: John Wiley & Sons.

Duffy, A.H.B. (1997). The “What” and “How” of Learning in
Design, IEEE Expert: Intelligent Systems and Their
Applications, 12(3), pp. 71-76.

Hanna, S., & Haroun Mahdavi, S. (2006). Inductive machine
learning of microstructures: Estimating a finite element
optimisation using support vector machines. In Design
Computing and Cognition '06 (Gero, J.S., Ed.), pp. 563-
582. Dordrecht: Springer.

Hanna, S., & Haroun Mahdavi, S. (2004). Modularity and
Flexibility at the Small Scale: Evolving Continuous
Material Variation with Stereolithography. In Fabrication:
examining the digital practice of architecture (Beesley, P.,
Cheng, W., & Williamson, R., Eds.), pp. 76-87. Toronto:
University of Waterloo School of Architecture Press.

Haroun Mahdavi, S., & Hanna, S. (2003). An Evolutionary
approach to microstructure optimisation of
stereolithographic models, Proceedings of CEC2003, The
Congress on Evolutionary Computation, Canberra,
Australia, pp. 723-730.

Haroun Mahdavi, S., & Hanna, S. (2004). Optimising
Continuous Microstructures: A Comparison of Gradient-

Based and Stochastic Methods, Proceedings of SCIS & ISIS
2004, The Joint 2nd International Conference on Soft
Computing and Intelligent Systems and 5th International
Symposium on Advanced Intelligent Systems, Yokohama,
Japan, p.WE-7-5.

Kicinger, R., Arciszewski, T., & De Jong, K. (2005).
Parameterized versus Generative Representations in
Structural Design: An Empirical Comparison, Proceedings
of GECCO ’05, pp. 2007-2014.

Meiler, J., & Baker, D. (2003). Coupled prediction of protein
secondary and tertiary structure, Proceedings of the
National Academy of Sciences of the United States of
America, 100(21), pp. 12105-12110.

Molecular Geodesics, Inc. (1999). Rapid prototyping helps
duplicate the structure of life, April 99 Rapid Prototyping
Report.

Murawski, K., Arciszewski, T., & De Jong, K. (2000).
Evolutionary Computation in Structural Design,
Engineering with Computers, 16(3-4), pp. 275-286.

Murdoch, T., & Ball, N. (1996). Machine learning in
configuration design, Artificial intelligence for engineering
design, analysis and manufacturing, 10(2), pp. 101-113.

Neocleous, C.C., & Schizas, C.N. (1995). Artificial neural
networks in marine propeller design. Proceedings of
ICNN’95-International Conference on Neural Networks,
Vol. 2 pp. 1098-1102. New York: IEEE Computer Society
Press.

Pezeshk, S., & Camp, C.V. (2002). State of the Art on the Use
of Genetic Algorithms in Design of Steel Structures. Recent
Advances in Optimal Structural Design. New York: ASCE.

Ping, Y. (1996). Development of Genetic Algorithm Based
Approach for Structural Optimisation, PhD Thesis.
Singapore: Nanyang Technological University.

Quinlan, J.R. (1993). C4.5: Programs for machine learning. San
Mateo, CA: Morgan Kaufmann.

Reich, Y. (1997). Machine Learning Techniques for Civil
Engineering Problems, Computer-Aided Civil and
Infrastructure Engineering, 12(4), pp. 295-310.

Reich, Y., & Barai, S.V. (1999). Evaluating machine learning
models for engineering problems. Artificial Intelligence in
Engineering 13 (1999) pp. 257-272.

Schoenhauer, M. (1996). Shape Representations and Evolution
Schemes, Proceedings of the 5th Annual Conference on
Evolutionary Programming, pp. 121-129.

Schwabacher, M., Ellman, T., & Hirsh, H. (1998). Learning to
Set Up Numerical Optimisations of Engineering Designs,
Artificial intelligence for engineering design, analysis and
manufacturing, 12(2), pp. 173-192.

Shea, K., & Cagan, J. (1998). Topology design of truss
structures by shape annealing, in Proceedings of DETC98:
1998 ASME Design Engineering Technical Conferences,
pp. 1-11. New York: ASME.

Sischka, J., Hensel, M., Menges, A., & Weinstock, M. (2004).
Manufacturing complexity. Architectural design, 74(3), pp.
72-79.

Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
& Vandewalle, J., (2002). Least Squares Support Vector
Machines, Singapore: World Scientific.

Szczepanik, W., Arciszewski, T., & Wnek, J. (1996). Emperical
Performance Comparison of Selective and Constructive
Induction, Engineering Applications of Artificial
Intelligence 9(6), pp. 627-637.

Vapnik, V. (1995). The Nature of Statistical Learning Theory.
New York: Springer-Verlag.

Von Buelow, P. (2002). Using Evolutionary Algorithms to Aid
Designers of Archictural Structures, In Creative
Evolutionary Systems (Bentley, P.J., & Corne D.W., Eds.),
San Francisco, CA: Morgan Kaufmann.

Wang, L.H., Liu, J., Li, Y.F. & Zhou, H.B. (2004). Predicting
Protein Secondary Structure by a Support Vector Machine
Based on a New Coding Scheme, Genome Informatics,
15(2), pp. 181-190.

Sean Hanna is a RCUK Academic Fellow at University College
London, and currently directs the Bartlett Graduate School’s
MSc in Adaptive Architecture and Computation. His
background is initially in architecture, and his application of
design algorithms has included major projects with architects
Foster and Partners and sculptor Antony Gormley. Current
research covers structural optimisation and rapid prototyping,
and computational methods for dealing with complex systems in
architecture, and he is on the advisory boards of two UCL spin-
out companies developing these technologies. His publications
address the fields of artificial intelligence, collaborative
creativity, robotics and the optimisation of structures and
materials.

