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Abstract

A lot of time and energy are expended assembling national databases containing information 

about health care processes and outcomes. Unfortunately, given the complexity of the data 

gathering procedures involved, errors occur. This inevitably leads to problems when it comes 

to the analysis of data from such sources. Indeed, sometimes it is very much a matter of faith 

that summary statistics represent a true reflection of the facts. On the assumption that one 

knows the rates at which different forms of errors occur, mathematical modelling methods 

can be used to obtain estimates of the effects of such errors on the estimates that would be 

derived for summary statistics associated with an erroneous data base. 
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1. Introduction

A major problem faced by those who rely on database systems is that data quality is often 

questionable. It is relatively common that data are missing or miscoded; indeed, unless large 

amounts  of  time and resources  are  expended,  such  errors  are  almost  inevitable.  Various 

measures can be taken to try to promote data quality, however it is very difficult to ensure 

that databases are completely accurate. Often all that can be achieved is a belief that most of 

the data are correct,  but with relatively little hard evidence about the exact proportion of 

records that are erroneous. This is clearly less than satisfactory.

It is worth giving an example of the extent of this problem. Various authors have reported 

error rates in the miscoding of patient factors affecting diagnosis and hence risk estimators 

(e.g. [1,2,3,4,5]), with one study on a carefully audited Californian database reporting at least 

one diagnostically relevant error in 63% of patient records [1]. Evidence presented to the 

Bristol Royal Infirmary Inquiry, a major inquiry into mortality rates at a leading UK hospital 

[6], showed considerable differences between mortality rates calculated from two national 

databases. Depending on the class of operation concerned, the ratio of mortality rates from 

the two sources varied between 0.46 and 1.76. This is a major issue since it is difficult to 

determine acceptable mortality standards given such a hazy notion of what outcomes actually 

are.  Such  large  scale  divergence  between  national  data  sources  also  makes  the  task  of 

statistical inference unrealistic, given the need to correct for case mix [1,7].  

In view of the errors that may exist within databases, analyses that make use of such data are 

often conducted with a degree of optimism that the results being derived are sound (see for 

example [8]). Whether such optimism is warranted is debatable since it is far from clear what 

effect data errors have. Also, given an acceptance that there are possibly major errors, what 

analysis methods are appropriate? Clearly the standard methods of statistics are not, since 

they are based on the assumption that the underlying data are correct. The publication of risk-

adjusted  mortality  rates  for  individual  hospital  units  is  already  widespread,  and  the 

introduction of the outcomes for an individual surgeon is expected soon [9]. In a recent paper 

discussing the benefits and disadvantages to publishing outcome data, Mason and Street [9] 

give the effect of miscoding errors only small consideration and assume that large enough 
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databases will  mitigate their effect.  We consider it  timely to explore the validity of such 

assumptions in this paper. 

In  a  study  of  2x2  contingency  tables,  Bross  [10]  set  up  the  standard  framework  for 

misclassification studies by considering binary misclassification of data. Valuable later work 

has focused on the interpretation of estimates derived from databases in the presence of such 

errors using Bayesian techniques (e.g. [11,12]) or direct comparison (e.g. [1]). Here, the focus 

is  on  a  complementary  problem suggested  to  the  authors  by  Jaroslav  Stark,  an  eminent 

paediatric cardiothoracic surgeon with particular interest in the topic of clinical data bases. 

He suggested an investigation whereby one would take an existing clinical data base, known 

to be accurate, and then deliberately seed it with errors of different sorts, using simulation 

methods,  to  examine  the  consequences  in  terms  of  consequent  errors  in  the  resulting 

statistics.  Sutherland and Botz  [2]  have reported such a  simulation study where they set 

probabilities for misclassifying the case complexity of a patient and considered the resulting 

impact from a health economic point of view on the cost weightings given to hospitals. 

The purpose of the present paper is to describe a mathematical model that can be used to 

examine the effect of such miscoding of errors, including data omission, on estimates of 

mortality but without using a specific database or simulation. Relatively simple probability 

theory suffices, albeit resulting in quite complex formulae. 

Before  describing  specific  analysis  related  to  errors,  it  is  useful  to  establish  a  general 

mathematical result related to the stochastic properties of certain set transformations. 

2. Analysis of a general set transformation process

Suppose there are two collections of K sets indexed  S0 ,⋯, S K and  S0 ,⋯, S K .  Suppose 

further  that  initially  that  there  are  N i  elements  in  set   S i , 1≤i≤K  and that  the  sets 

S0 ,⋯, S K   are empty.

Consider transitions that occur whereby elements from the sets  S0 ,⋯, S K  transfer to the 

sets S0 ,⋯, S K ,  as illustrated in Figure 1.
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The transfers are assumed to occur at random, αi , j  denoting the probability that an element 

in  set  S i  transfers  to  set   S j , 0≤i≤K , 0≤ j≤K .  We assume that  elements  transfer 

independently of one another. Further, since the  αi , j  denote probabilities, it is implicitly 

assumed that 

∑
j=0

K

αi , j= 1      0≤i≤K .  (1) 

- - - - - - -  - - - - - - - - - - - - - - - - - -

- INSERT FIGURE 1 NEAR HERE

- - - - - - - - - - - - - - - - - - - - - - - - - 

Let  N j  denote the random variable corresponding to the number of elements in set  S j  

once transfers have been made, 0≤ j≤K .

It  is of interest to know the mean and variance of  N j  and also the variance-covariance 

matrix for pairs  N j , M t .  Let  W  be a  K×K  matrix with elements  { w i , j} which are 

random  variables  where,  for  0≤i≤K and 0≤ j≤K , w i , j  denotes  the  number  of 

elements from the i-th set that are transferred to the j-th set. Then

P  w i , j=r =N i

r α
i , jr

1−αi , j 
N i−r 

 (2)

Given that the random variables  { w i , j}  are all  binomially distributed,  the following are 

standard results for such variables:

E  w i , j =N i αi , j (3)

Var  w i , j =N i αi , j1−αi , j  (4)

Cov  wi , j , w s , t =0,   i≠s (5)

4



Cov  wi , j , wi , t =−N i αi , j αi , t ,   j≠t . (6)

Note  that  equation  (5)  follows  from  the  transfer  of  elements  from  different  sets  being 

independent processes. 

The total number of elements N j  in set  S j  is simply the sum of the number of elements 

transferred to S j  from each S i .

N j=∑
i=0

K

w i , j (7)

Since the transfer of elements from sets  Si and  Sj is independent for  i≠ j we can use the 

following standard results:

E  N j=∑
i=0

K

E  w i , j (8)

Var  N j =∑
i=0

K

Var  w i , j (9)

Cov  N j , M t=∑
i=0

K

Cov  w i , j , w i , t ,  j≠t (10)

The simple form of equation (10) is a result of equation (5) above. Substituting equations (3), 

(4) and (6) into equations (8), (9) and (10) gives:

E  N j=∑
i=0

K

N i αi , j (11)

Var  N j =∑
i=0

K

N i αi , j1−αi , j  (12)

Cov  N j , M t=−∑
i=0

K

N i αi , j αi , t ,   j≠t (13)
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This result is useful, since these statistics allow one to approximate the distribution of  N  

using a multivariate normal distribution. However, in the context of clinical data base errors, 

we are rather more concerned with obtaining distributions for the ratio of the relative sizes of 

two sets. To calculate such quantities, one needs to make use of the following lemma:

Lemma 1

If X and Y are two random variables and if Z= Y
X  then

E [ Z ]≈ E [Y ]
E [ X ]

 1
E3 [ X ]

 E [Y ] Var [ X ]−E [ X ] Cov [ X , Y ] 

and

Var [ Z ]≈ 1
E [ X ] 4

E 2 [Y ] Var [ X ] −2 E [ X ] E [Y ] Cov [ X , Y ]E 2 [ X ] Var [Y ] 

Proof

This is a standard result obtained by using a Taylor series expansion of  Z about the values 

E [Y ] and E [ X ]  (For example, see Rice, p153 [13]).

Deriving approximate formulae for the proportional split between two sets involves a little 

more algebraic manipulation, however it is not too difficult to establish the following: 

Lemma 2
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If X and Y are two random variables and if W= Y
X Y   then

E [W ]≈ E [Y ]
 E [ X ]E [Y ]

 1
 E [ X ]E [Y ] 3

Cov [ X , Y ] E [Y ]−E [ X ] Var [ X ] E [Y ]−Var [Y ] E [ X ] 

and

Var [W ]≈ 1
 E [ X ]E [Y ] 4

E 2 [Y ] Var [ X ]−2 E [ X ] E [Y ]Cov [ X , Y ]E 2 [ X ] Var [Y ] 

Proof

Define the random variable  V =X Y   then it can easily be verified that

Var [V ]=Var [ X ]Var [Y ]2 Cov [ X , Y ]

(14)

and

Cov [V , Y ]=Var [Y ]Cov [ X , Y ] .

(15)

Substituting these expressions into the expressions from Lemma 1 gives the required result.

Although  rather  complex  as  formulae,  the  expressions  in  Lemma 2  are  computationally 

simple.

3. Applying set transformation findings to the analysis of errors in surgical data bases 

The expressions derived in Section 2 are generic in nature. In order to apply them in the 

specific case of clinical database errors, there is a need to introduce additional notation and 

assumptions related to errors likely to occur in practice. 
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The motivation underlying this is that there is some method for classifying clinical events 

into  K disjoint  categories  and  that  initially  the  sets  S1 ,⋯, S K  correspond to  the  actual 

occurrences of each category of event. For example, one set might correspond to a collection 

of 15 occurrences of an operation to repair an atrial  septal defect which resulted in peri-

operative death (irrespective of whether records of these procedures subsequently got lost or 

miscoded). The set S0  serves a special function discussed below.

The processes involved in recording clinical information and transferring this to a database 

may  lead  to  errors  whereby  clinical  facts  are  misinterpreted  or  miscoded,  or  indeed 

information may simply be lost. These errors may be thought of as transforming the sets 

S1 ,⋯, S K  into sets  S0 ,⋯, S K  the latter corresponding to information that is recorded in 

the database. The set S0  corresponds to information lost from the system, the set S0  being 

the empty set. 

The consequences of data errors may thus be considered in terms of transformations of the 

sets and analysed using the results from Section 2.

In order to be able to apply the generic results concerning set transformation to a specific 

analysis of clinical database errors, it is necessary to introduce notation.

3.1 Notation relating to errors in a clinical database

Suppose that the data of interest concern the occurrence and mortality outcome of a number 

of different types of surgical procedure during a particular audit period.   

Suppose we have Q different operation types indexed 1,⋯, Q . Suppose that during the audit 

period being considered,  there  have  been  Lq  operations  of  type  q  that  have  resulted in 

survival, 1≤q≤Q .  Also, suppose that there have been Dq  deaths following operations of 

type q , 1≤q≤Q .  

Let δ  denote the probability that a death is miscoded as a survivor.

8



Let ε  denote the probability that a survivor is miscoded as a death.

Let  ζ  denote the probability that the during the data collection process, an operation that 

results in a death is omitted from the database.

Let  η  denote the probability that the during the data collection process, an operation that 

results in survival is omitted from the database.

We assume that these miscoding and data omission probabilities are independent.

3.2  Estimation of errors associated with the overall mortality rate

Overall,  L,  the  number  of  operations  performed  during  the  audit  period  which  result  in 

survival is given by

L=∑
q=1

Q

Lq (16)

Also, D, the total number of deaths is given by:

D=∑
q=1

Q

Dq (17)

Thus the true mortality rate π  during the audit period is given by

π = D
DL

=
∑
q=1

Q

D q

∑
q=1

Q

DqLq
(18)
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However, due to miscoding and data omission errors, both the numerator and denominator of 

this expression might be erroneously estimated. 

In this case, to use the set transformation analysis from Section 2, we need only consider sets 

S0 , S1 , S2 , S0 , S1 and S 2  where S0  is empty, S1  corresponds to operations of all types 

that  result  in  survival  and  S2  corresponds to  operations of  all  types that  result  in  peri-

operative  death.  The  sets S1 and S 2  correspond  to  information  recorded  in  a  database 

concerning the number of survivals and deaths and the set  S0 corresponds to information 

lost to the system.

In  modelling  the  errors  introduced  in  the  data  compilation  process,  the  probabilities  of 

transfers between these sets, {αij} , are given by 

α00=1
α01=0
α02=0
α10=η
α11=1−ε 1−η 
α12=ε 1−η 
α20=ζ
α21=δ 1−ε 
α22=1−δ 1−ζ 

          (19)

If  L  and D  are random variables corresponding to the number of operations resulting in 

survival and peri-operative death respectively, then by Theorem 1,

E [ L ]=1−ε  1−η Lδ 1−ζ  D  (20)

E [ D ]=ε 1−η L1−δ  1−ζ  D  (21)

Var [ L ]=1−ε 1−η 1−1−ε  1−η Lδ 1−ζ  1−δ 1−ζ  D (22)

Var [ D ]=ε 1−η 1−ε 1−η  L1−δ 1−ζ  1−1−δ 1−ζ  D (23)

Cov [ L , D ]=−ε 1−ε 1−η 2 Lδ 1−δ 1−ζ 2 D  (24)
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4. Computation of statistical consequences of errors in data bases

The estimates (20), . . ., (24)  can be substituted into the expressions given in Lemma 2 to 

give an approximation for  the mean and variance of the overall  mortality  that  would be 

estimated from the database. In addition the formulae above can be adapted to incorporate 

errors  resulting  from  the  miscoding  of  operations.  These  formulae  are  complex,  yet 

computationally straightforward to evaluate. A simple Excel spreadsheet has been devised to 

carry out these calculations and this can be downloaded, free of charge, from our website at 

http://www.ucl.ac.uk/operational-research/downloads. 

This spreadsheet model has been used to provide estimates for the following hypothetical 

worked example, deliberately chosen to be simple for illustration purposes. Suppose we have 

a small database concerning four types of operation: A,B,C and D and that a primary question 

of interest is to estimate the mortality rate for operation “A”. Table 1 summarises data that a 

user of the spreadsheet model would supply when investigating the potential effects of  

errors in the recording of data concerning these operations on the estimated mortality rate for 

operation “A”. Table 2 shows the data summaries as calculated by the spreadsheet model.

The formats of these table are similar to that used in the spreadsheet, although the spreadsheet 

would  allow  data  for  many  more  operations  to  be  included  that  might  be  miscoded  as 

operation “A”.  

Although the data used in Table 1 is hypothetical, it has been chosen as comparable to what 

might be found in a data base concerning outcomes for complex paediatric cardiac surgery. 

The assumed data error rates are not outlandish, indeed for those used to dealing with real 

clinical  data,  the  choice  of  such  error  rates  might  seem somewhat  conservative.  As this 

example shows, the effects of such errors on the estimates of the mortality rate for operation 

“A” have been substantial. It is worth noting that the ‘protective’ effect of a relatively large 

number of operations for “A” assumed by [8] is not apparent. 

- - - - - - - - - - - - - - - - - - - - - - - - - - -

- INSERT TABLES 1 & 2 NEAR HERE
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- - - - - - - - - - - - - - - - - - - - - - - - - - - 

5. Conclusion

This study shows that if we have estimates for the rates at which different types of error occur 

in clinical data gathering and coding processes, then these can be used to predict the scale of 

errors  likely  to  occur  in  the  summary  statistics  that  are  derived  from  a  database.  The 

requirement to estimate such summaries is of course one of the principal reasons that national 

databases are established in the first place. 

Although this establishes the applicability of mathematical modelling to this problem, this is 

very much a  first  step.   While  we have proposed plausible  ways in  which data  may be 

corrupted  and  examined  the  consequences  of  these,  we  should  stress  that  we  have  not 

considered other potential sources of error. For example our analysis does not include the 

possibility of deliberate falsification of data, of deliberate systematic data loss nor systematic 

non-compliance. This is a clear limitation in this analysis.

Another limitation is that, while we have addressed the question “given there are errors, how 

does this effect the accuracy of  mortality rate estimation?”, what we have not done is to 

address the question: “what is the best estimate of mortality rate given there are errors?”. The 

latter seems a more difficult issue. A referee has kindly suggested that statistical methods for 

modelling measurement error may have relevance here [14, 15] and this may be a promising 

line for further inquiry, although not an area where the authors would claim to have expertise. 

It is possible that techniques such as maximum likelihood estimation might be applicable to 

this (for instance see [11, 12]), although a full discussion is beyond the scope of the present 

paper.  Another referee suggested that data mining techniques might be applicable. Again, we 

have insufficient experience to add to this suggestion. 

An important topic concerns how one might  derive estimates for different error rates.  In 

practice, data cleaning exercises shed some light here. In an earlier career, the first author had 

experience of analysing number plate surveys used to track the journeys that vehicles made 

through an urban area. Here, observers would be sited at junctions throughout the city and 

noted the time and registration number of vehicles as they passed. Although observation and 
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recording errors  were common, it  was found that error rates could be estimated and due 

allowance made. 

An additional limitation of the work is that it is rather theoretical in nature thus it is important 

to indicate potential areas of practical application. This is research very much intended to 

underpin other more practical  research investigations.  An immediately important research 

question  is  to  assess  the  extent  to  which  data  errors  affect  mortality  rate  estimation  in 

practice. This has been investigated by the authors using this analytical framework and the 

results are disturbing. There is also scope to use such methods to investigate the knock-on 

effects of data errors on risk modelling and mortality audit which is an area of considerable 

interest to the clinical community as a whole and to the authors in particular [16, 17, 18]. 

The results also have potential application to the analysis of a problem faced by those who 

manage databases, which is how to decide how much time and effort to devote to improving 

data quality. In principle, an indefinite amount of resources could be devoted to this, but what 

are the benefits? How accurate does the database have to be? Here the model discussed has 

considerable relevance since it gives a rationale for considering the pay-off between reducing 

error rates and improving the accuracy of summary statistics. 
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Legends

Figure 1.  Illustration of a general set transformation process.

Table  1.  Hypothetical  data  used  to  illustrate  input  required  to  spreadsheet  model  for 

forecasting the effects on estimates of known error rates in data recording.

Table 2.  Summary information calculated by spreadsheet model concerning distribution of 

mortality  rates  that  would  be  estimated  dependent  on  the  occurrence  of  data 

recording errors  
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Figure 1 - Illustration of a general set transformation process.



User supplied data related to operation A
Op. True No.

survivors

True No.

deaths

% deaths coded

as survivors

% survivors

coded as deaths

% cases lost 

from database
A 300 9 2.00% 2.00% 3.00%

User supplied data related to other operations.
Op. True No.

survivors

True No.

deaths

% deaths coded

as survivors

% survivors

coded as deaths

% cases  coded 

as operation A
B 850 7 3.00% 4.00% 1.00%
C 1250 40 1.00% 1.00% 1.00%
D 500 90 2.00% 4.00% 0.50%

Table 1.       Hypothetical data used to illustrate input required to spreadsheet model for 

forecasting the effects on estimates of known error rates in data recording.
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Calculated information concerning operation: “A”
True mortality 

rate

Estimated mortality 

rate

Standard deviation of estimated mortality 

rate
2.91% 4.89% 0.84%

Table  2.  Summary  information  calculated  by  spreadsheet  model  concerning 

distribution of mortality rates that would be estimated dependent on the 

occurrence of data recording errors  

19


