
Mathematika 56 (2010) 339–356 University College London

doi:10.1112/S002557931000063X

STABILITY OF THE PRÉKOPA–LEINDLER INEQUALITY

KEITH M. BALL AND KÁROLY J. BÖRÖCZKY

Abstract. We prove a stability version of the Prékopa–Leindler inequality.

§1. The problem. The main theme of this paper is the Prékopa–Leindler
inequality, due to Prékopa [16] and Leindler [14]. Soon after its proof, the
inequality was generalized by Prékopa [17, 18], Borell [7] and Brascamp and
Lieb [8]. Various applications were provided and surveyed in the works of
Ball [1], Barthe [5] and Gardner [13]. The following version from [1] is often
more useful and is more convenient for our purposes.

THEOREM 1.1 (Prékopa–Leindler). If m, f and g are non-negative
integrable functions on R satisfying m((r + s)/2)≥

√
f (r)g(s) for r, s ∈R,

then ∫
R

m ≥

√∫
R

f ·
∫
R

g.

Dubuc [9] characterized the equality case under the restriction that the
integrals of f, g and m above be positive. To explain this characterization, we
need to recall that a non-negative real function h on R is log-concave if for any
x, y ∈R and λ ∈ (0, 1) we have

h((1− λ)x + λy)≥ h(x)1−λh(y)λ,

that is, if the support of h is an interval and log h is concave on the support. Now,
in [9], it was proved that equality holds in the Prékopa–Leindler inequality if and
only if there exist a > 0, b ∈R and a log-concave h with positive integral on R
such that for almost every t ∈R we have

m(t)= h(t),

f (t)= a · h(t + b),

g(t)= a−1
· h(t − b).

In addition, for all t ∈R, we have m(t)≥ h(t), f (t)≤ a · h(t + b) and g(t)≤
a−1
· h(t − b).

Our goal is to prove the following stability version of the Prékopa–Leindler
inequality.
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THEOREM 1.2. There exists an absolute positive constant c with the
following property. If m, f and g are non-negative integrable functions with
positive integrals on R such that m is log-concave, m((r + s)/2)≥

√
f (r)g(s)

for r, s ∈R and ∫
R

m ≤ (1+ ε)

√∫
R

f ·
∫
R

g for ε > 0,

then there exist a > 0 and b ∈R such that∫
R
| f (t)− am(t + b)| dt ≤ c · 3

√
ε |ln ε|4/3 · a ·

∫
R

m(t) dt,∫
R
|g(t)− a−1m(t − b)| dt ≤ c · 3

√
ε |ln ε|4/3 · a−1

·

∫
R

m(t) dt.

Remark 1.3. The statement also holds if the condition of m being log-
concave is replaced by the condition that both f and g be log-concave. The
reason is that the function

m̃(t)= sup
{√

f (r)g(s) : t =
r + s

2

}
will be log-concave in this case.

Remark 1.4. Most probably, the optimal error estimate in Theorem 1.2 is
of order ε. However, this cannot be proved using the method of this note, i.e. by
proving first an estimate on the quadratic transportation distance.

The paper is organized as follows. In §2 we establish the main properties
of log-concave functions that we need, and we introduce the transportation

map in §3. After translating the hypothesis
∫
R m ≤ (1+ ε)

√∫
R f ·

∫
R g into

an estimate for the transportation map, we estimate the quadratic transportation
distance between our two functions in §4. Based on this, we estimate the L1
distance between f and g in §5, which leads to the proof of Theorem 1.2 in §6.
We note that the upper bound in §5 for the L1 distance between two log-concave
probability distributions in terms of their quadratic transportation distance is
close to being optimal.

Another way to prove the Prékopa–Leindler inequality on R is by
using the “one-dimensional Brunn–Minkowski inequality”, namely, that the
outer Lebesgue measure of X + Y is at least the sum of the measures of the
two Lebesgue-measurable X, Y ⊂R. For this proof, one assumes that the two
functions on R have the same bounded supremum; the one-dimensional Brunn–
Minkowski inequality is then applied to the level sets. Unlike the transportation
argument (see §3), this proof works for any pair of bounded functions, but we see
no way that it could lead to a stability version of the Prékopa–Leindler inequality
on R.

Remark 1.5. It is not clear whether the condition in Theorem 1.2 that m be
log-concave is necessary for there to be a stability estimate.
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Remark 1.6. Given α, β ∈ (0, 1) with α + β = 1, we also have the
following version of the Prékopa–Leindler inequality: if m, f and g are non-
negative integrable functions on R satisfying m(αr + βs)≥ f (r)αg(s)β for
r, s ∈R, then ∫

R
m ≥

(∫
R

f

)α(∫
R

g

)β
.

The method of this note also yields the corresponding stability estimate, except
that the c in the new version of Theorem 1.2 would depend on α. For this
statement, the formula

1+ T ′(x)

2
√

T ′(x)
= 1+

(1− T ′(x))2

2
√

T ′(x)(1+
√

T ′(x))2

used widely in this note should be replaced by Koebe’s estimate

α + βT ′(x)

T ′(x)β
≥ 1+

min{α, β}(1− T ′(x))2

T ′(x)β(1+
√

T ′(x))2

as long as T ′(x) is “not too large” or, if T ′(x) is “large”, by the estimate
(α + βT ′(x))/T ′(x)β > βT ′(x)α .

Remark 1.7. The Prékopa–Leindler inequality also holds in Rn for n ≥ 2.
One possible approach to finding a higher-dimensional analogue of the stability
statement is to use Theorem 1.2 and a suitable stability version of the injectivity
of the Radon transform on log-concave functions; here the difficulty is caused
by the fact that the Radon transform is notoriously unstable even on the space of
smooth functions. Another possible approach is to combine Theorem 1.2 with
the recent stability version of the Brunn–Minkowski inequality due to Figalli
et al [11, 12], which improves on the result of Esposito et al [10]. This approach
has been successfully applied by the authors in [4], at least for even functions.
Actually, the Brunn–Minkowski inequality is equivalent to the Prékopa–Leindler
inequality (see, for example, Ball [3] or Barthe [5]). A third possible approach
to obtaining a stability version of the Prékopa–Leindler inequality in Rn is to use
mass transportation as in Figalli et al [11, 12]. Unfortunately, the fact that the
corresponding functions are not constant on their supports makes the problem
much more complicated for a transportation argument than when the Brunn–
Minkowski inequality is used.

§2. Some elementary properties of log-concave probability distributions
on R. Let h be a log-concave probability distribution on R. In this section
we discuss some useful elementary properties of h. Many of these properties are
explicitly or implicitly used in various parts of the paper.

First, assuming that h(t0)= a · bt0 for a, b > 0 and t1 < t0 < t2, we have:

if h(t1)≥ a · bt1 , then h(t2)≤ a · bt2 ;
if h(t2)≥ a · bt2 , then h(t1)≤ a · bt1 .

(1)
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Next, we write wh and µh for the median and mean of h, respectively; that is,∫ wh

−∞

h =
∫
∞

wh

h =
1
2

and µh =

∫
R

xh(x) dx .

Our first goal is to describe how a log-concave probability distribution is
concentrated around its median; this is done in Proposition 2.2 below.

PROPOSITION 2.1. Suppose that f and g are positive, θ is an increasing
function on (a, b) and there exists c ∈ (a, b) such that f (t)≤ g(t) if t ∈ (a, c)
while f (t)≥ g(t) if t ∈ (c, b). If

∫ b
a g(t) dt =

∫ b
a f (t) dt, then∫ b

a
θ(t)g(t) dt ≤

∫ b

a
θ(t) f (t) dt.

Proof. Since both factors of (θ(t)− θ(c))( f (t)− g(t)) change sign at c, the
product is non-negative. Therefore

∫ b
a g(t) dt =

∫ b
a f (t) dt yields∫ b

a
θ(t) f (t) dt −

∫ b

a
θ(t)g(t) dt =

∫ b

a
(θ(t)− θ(c))( f (t)− g(t)) dt ≥ 0. 2

PROPOSITION 2.2. If h is a log-concave probability distribution on R, then
for w = wh and µ= µh we have:

(i) h(w) · |w − µ| ≤ ln
√

e/2 ;
(ii) h(w) · e−2h(w)|x−w|

≤ h(x)≤ h(w) · e2h(w)|x−w| if |x − w| ≤ ln 2/(2h(w));
(iii) h(x)≤ 2h(w) for x ∈R;
(iv) if x >w, then

∫
∞

x h ≤ h(x)/(2h(w));
(v) if x >w and

∫
∞

x h = ν > 0, then∫
∞

x
(t − w)h(t) dt ≤

ν

4h(w)
· (1− ln 2ν),∫

∞

x
(t − w)2h(t) dt ≤

ν

8h(w)2
· [(ln 2ν)2 − 2 ln 2ν + 2].

Remark. All the above estimates are optimal.

Proof. After replacing h by a · h(a(t − w)) for a = 1/2h(w), we may
assume that w = 0 and h(w)= 1/2. It is natural to compare h near 0 to the
probability distribution

ϕ(x)=

{
1
2 · e
−x if x ≥−ln 2,

0 if x <−ln 2,

which satisfies wϕ = 0 and ϕ(0)= h(0). We observe that log ϕ is linear and h is
a log-concave function on [−ln 2,∞], hence the set of all x ∈ [−ln 2,∞] with
h(x) > ϕ(x) is an interval (possibly empty). Since ϕ(0)= h(0) and

∫
∞

0 h =∫
∞

0 ϕ, there exists some v > 0 such that

h(x) ≥ ϕ(x) provided x ∈ [0, v];
h(x) ≤ ϕ(x) provided x ≥ v or x ∈ [−ln 2, 0].

(2)
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In particular, the equalities
∫ 0
−∞

h =
∫ 0
−∞

ϕ and
∫
∞

0 h =
∫
∞

0 ϕ together with
Proposition 2.1 yield

−ln
e
2
=

∫ 0

−∞

xϕ(x) dx +
∫
∞

0
xϕ(x) dx

≤

∫ 0

−∞

xh(x) dx +
∫
∞

0
xh(x) dx = µ.

Comparing h with ϕ(−x) shows that µ≤ ln(e/2), and, in turn, we deduce (i).
Turning to (ii), the upper bound follows directly from (2) and its consequence

h(x)≤ ϕ(−x) for x ∈ [0, ln 2] by symmetry. To prove the lower bound, we
may assume that x > 0. According to h(0)= 1

2 and the log-concavity of h, it is
enough to check the case where x = ln 2. Therefore, we suppose that

h(ln 2) < 1/4

and seek a contradiction. Since h is log-concave, there exists some a ∈R such
that

h(x) < 1
4 e−a(x−ln 2) for x ∈R.

Here, h(0)= 1
2 gives a > 1.

We observe that 1
4 e−a(x0−ln 2)

=
1
2 ex0 for x0 = ((a − 1)/(a + 1)) ln 2, and

upon applying the analogue of (2) to ϕ(−x) we obtain that h(x)≤ 1
2 ex for

x ∈ [0, x0]. In particular,∫
∞

0
h <

∫ x0

0

1
2

ex dx +
∫
∞

x0

1
4

e−a(x−ln 2) dx =

(
1
a
+ 1

)
2−2/(a+1)

−
1
2
.

Differentiation shows that the last expression is first strictly decreasing and then
strictly increasing in a ≥ 1. Since the value of this last expression is 1

2 both at
a = 1 and at a =∞, we deduce that

∫
∞

0 h < 1
2 . But this is absurd, and therefore

we have proved (ii).
To prove (iii), we may assume that x > 0 and h(x)≥ 1; hence (ii) yields that

x ≥ ln 2. Since h(t)≥ 1
2 e(t/x) ln 2h(x) for t ∈ [0, x] by the log-concavity of h and

the fact that h(0)= 1/2, we have

1
2
≥

∫ x

0
h ≥

∫ x

0

1
2

e(t/x) ln 2h(x) dt =
x(2h(x)− 1)

2 ln 2h(x)
.

As (s − 1)/ln s > 1/ln 2 for s > 2, we conclude that h(x)≤ 1.
For (iv), recall that 2h(w)= 1. In particular, (iv) holds if h(x)≥ 1

2 , as∫ x
0 h < 1

2 . Thus we assume that h(x) < 1
2 , and hence h(x)= 1

2 e−x0 for some
x0 > 0. If x ≥ x0, then the log-concavity of h and the fact that h(0)= 1

2 yield∫ x

0
h(t) dt ≥

∫ x

0

1
2

e−t x0/x dt =
x

x0

∫ x0

0

1
2

e−t dt ≥
∫ x0

0

1
2

e−t dt,

and therefore ∫
∞

x
h(t) dt ≤

∫
∞

x0

1
2

e−t dt = h(x).
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On the other hand, if x < x0, then h(x)= 1
2 e−ax for a = x0/x > 1. It follows

from the log-concavity of h and h(0)= 1
2 that h(t)≤ 1

2 e−at for t > x . Therefore∫
∞

x
h(t) dt ≤

∫
∞

x

1
2

e−at dt = h(x)/a < h(x).

Finally, we prove (v). Let x1 =−ln 2ν; then x1 satisfies
∫
∞

x h(t) dt =∫
∞

x1

1
2 e−t dt . It follows from (2) that x1 ≥ x . We define two functions f and g

on [x,∞): let f (t)= 1
2 e−t if t ≥ x1 and f (t)= 0 if t ∈ [x, x1); let g = h|[x,∞).

These two functions satisfy the conditions in Proposition 2.1; therefore, for α ≥ 0
we have∫

∞

x
tαh(t) dt =

∫
∞

x
tαg(t) dt ≤

∫
∞

x
tα f (t) dt =

∫
∞

x1

tαe−t

2
dt.

Evaluating the last integral for α = 1 and α = 2 yields (v). 2

Next, we discuss various consequences of Proposition 2.2.

COROLLARY 2.3. Let h be a log-concave probability density function on
R, and let

∫
∞

x h = ν ∈ (0, 1
2 ]. Then:

(i) h(x) · e−h(x)|t−x |/ν
≤ h(t)≤ h(x) · eh(x)|t−x |/ν if |t − x | ≤ ν ln 2/h(x);

(ii) if ν ∈ (0, 1
6 ), w = wh and µ= µh , then∫

∞

x
|t − µ|h(t) dt ≤

ν

2h(w)
· |ln ν|∫

∞

x
|t − µ|2h(t) dt ≤

5ν

4h(w)2
· (ln ν)2.

Remark. The order of all estimates is optimal, as shown by the example of
h(t)= e−|t |/2.

Proof. To prove (i), let |t − x | ≤ ν ln 2/h(x). There exists a unique λ ∈R
such that for the function

h̃(t)=

{
h(t) if t ≥ x ,
min{h(t), h(x) · eλ(t−x)

} if t ≤ x ,

we have
∫ x
−∞

h̃ = ν. We note that h̃ is log-concave and that λ≥−h(x)/ν. In

particular, h̃/(2ν) is a log-concave probability distribution whose median is x ,
and hence Proposition 2.2(ii) yields h(t)≥ h̃(t)≥ h(x) · e−h(x)|t−x |/ν . Since for
s = 2x − t we have h(s)≥ h(x) · e−h(x)|s−x |/ν , we conclude (i) from (1).

For (ii), we may assume that h(w)= 1
2 ; hence Proposition 2.2(i) yields

|w − µ| ≤ ln(e/2). Since ln 2ν ≤−1, we deduce from Proposition 2.2(v) that∫
∞

x
|t − µ|h(t) dt ≤

∫
∞

x
[|t − w| + |w − µ|]h(t) dt

≤ ν · (−ln 2ν)+ ν · ln
e
2
< ν · |ln ν|.
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In addition,∫
∞

x
(t − µ)2h(t) dt ≤

∫
∞

x
2[(t − w)2 + (w − µ)2]h(t) dt

≤ ν · 5(ln 2ν)2 + ν · 2
(

ln
e
2

)2

< 5ν · (ln ν)2. 2

§3. The transportation map for log-concave probability distributions and
the Prékopa–Leindler inequality. Let f and g be log-concave probability
distributions on R, and let I f and Ig denote the open intervals that are the
supports of f and g, respectively. We define the transportation map T : I f → Ig
by the identity ∫ x

−∞

f (t) dt =
∫ T (x)

−∞

g(t) dt. (3)

Among other things, T is monotone increasing, bijective and differentiable on
I f , and for any x ∈ I f we have

f (x)= g(T (x))T ′(x). (4)

Remark. Using (3), the transportation map T :R→R can be defined
for any two probability distributions f and g, and T is naturally monotone
increasing. In addition, (4) holds for almost all x provided that the product of
two numbers of which one is zero and the other is undefined is understood to
be zero.

For log-concave probability distributions f and g and an integrable
function m on R satisfying m((r + s)/2)≥

√
f (r)g(s) for r, s ∈R, one proof

of the Prékopa–Leindler inequality runs as follows:

1 =
∫
R

f =
∫

I f

√
f (x) ·

√
g(T (x))T ′(x) dx

≤

∫
I f

m

(
x + T (x)

2

)√
T ′(x) dx

≤

∫
I f

m

(
x + T (x)

2

)
·

1+ T ′(x)

2
dx

=

∫
(I f+Ig)/2

m(x) dx ≤
∫
R

m.

The basic fact that we will exploit is the following. If we know that∫
R m ≤ 1+ ε, then, using (4) in the last inequality, we have

ε ≥

∫
I f

m

(
x + T (x)

2

)
·

(
1+ T ′(x)

2
−

√
T ′(x)

)
dx

≥

∫
I f

√
f (x) ·

√
g(T (x))T ′(x)

(
1+ T ′(x)

2
√

T ′(x)
− 1

)
dx

=

∫
I f

f (x) ·
(1−
√

T ′(x) )2

2
√

T ′(x)
dx . (5)
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As long as T ′ is not too large, the integrand is at least about f (x)(1− T ′(x))2

and, using a Poincaré inequality for the density f , we can bound the integral of
this expression from below by the transportation cost

∫
f (x)(x − T (x))2. The

main technical issue is to handle the places where T ′ is large.

§4. The quadratic transportation distance. Let f and g be log-concave
probability distributions on R with zero mean, that is,

0=
∫
R

xf (x) dx =
∫
R

yg(y) dy.

In this section, we show that (5) yields an upper bound for the quadratic
transportation distance ∫

I f

f (x)(T (x)− x)2 dx

between f and g.

LEMMA 4.1. If f and g are log-concave probability distributions on R with
zero mean and (5) holds for ε ∈ (0, 1

48 ), then∫
I f

f (x)(T (x)− x)2 dx ≤ 220 f (w f )
−2
· ε|ln ε|2,

where w f is the median as mentioned earlier.

Remark. The optimal power of ε in Lemma 4.1 is most likely to be ε2

(cf. Example 7.1). To improve the estimate, we should improve on inequality
(6) with R(x)= T (x)− x where T is the transportation map for another log-
concave probability distribution. One could use the fact that T (x)− x is of at
most logarithmic order.

Proof. The main tool in the proof of Lemma 4.1 is the Poincaré inequality
for log-concave measures, which can be found in Bobkov [6, (1.3) and (4.2)].
This guarantees that if h is a log-concave probability distribution on R and the
function R on R is locally Lipschitz with expectation µ=

∫
R h(x)R(x) dx , then∫

R
h(x)(R(x)− µ)2 dx =

∫
R

h(x)R(x)2 dx − µ2

≤ h(wh)
−2
·

∫
R

h(x)R′(x)2 dx . (6)

By symmetry we may assume that g(wg)≤ f (w f ), and by scaling that
f (w f )=

1
2 . Let T be the transportation map from f to g, and let S be its inverse;

then, for x ∈ I f and y ∈ Ig , we have

f (x)= g(T (x))T ′(x) and g(y)= f (S(y))S′(y). (7)

Suppose that for some x ∈R with
∫
∞

x f = ν ∈ (0, 1
2 ], we have g(T (x))≤

f (x)/16. If x ≤ t ≤ x + ν ln 2/ f (x), then Corollary 2.3(i) yields f (t)≥
f (x) · e− f (x)(t−x)/ν

≥ f (x)/2. On the other hand, the log-concavity of g and
Proposition 2.2(iii) yield that if x ≤ t < x + ν ln 2/ f (x), then g(t) < 2g(x)≤
f (t)/4. In particular, T ′(t) > 4 by (7), and hence (cf. (5)) we have
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ε ≥

∫
R

(1−
√

T ′(t) )2

2
√

T ′(t)
f (t) dt >

∫ x+ν ln 2/ f (x)

x

f (x)

4
· e− f (x)(t−x)/ν dt =

ν

8
.

A similar argument for f (−x) and g(−x) shows that if
∫ x
−∞

f = ν and
g(T (x))≤ f (x)/16, then ν < 8ε.

We define x1, x2, y1 and y2 by∫ x1

−∞

f =
∫
∞

x2

f =
∫ y1

−∞

g =
∫
∞

y2

g = 8ε <
1
6
.

The argument above yields that if x ∈ (x1, x2), then T ′(x)≤ 16 and g(T (x))≥
f (x)/16, and hence g(wg)≥

1
32 . As the means of f and g are zero, we deduce

from Corollary 2.3(ii) and (7) that∫
R\[x1,x2]

|x | f (x) dx ≤ 24ε |ln ε|, (8)∫
R\[x1,x2]

|T (x)| f (x) dx =
∫
R\[y1,y2]

|y|g(y) dy ≤ 28ε |ln ε|, (9)∫
R\[x1,x2]

x2 f (x) dx ≤ 27ε(ln ε)2, (10)∫
R\[x1,x2]

T (x)2 f (x) dx =
∫
R\[y1,y2]

y2g(y) dy ≤ 215ε(ln ε)2. (11)

Since (T (x)− x)2 ≤ 2[T (x)2 + x2
], we have∫

R\[x1,x2]

(T (x)− x)2 f (x) dx ≤ 217ε(ln ε)2. (12)

Next, we consider the log-concave probability distribution

f̃ (t)=

{
(1− 16ε)−1 f (t) if t ∈ [x1, x2],

0 if t ∈R\[x1, x2].

To estimate f̃ (w f̃ ), we define z1 = w f − ln 2 and z2 = w f + ln 2. Since

f (w f )=
1
2 , Proposition 2.2(ii) applied to f yields∫

R\[z1,z2]

f̃ (x) dx ≤ (1− 16ε)−1
(

1− 16ε −
∫ z2

z1

e−|x−w f |

2
dx

)
<

1
2
.

It follows that |w f̃ − w f |< ln 2, and hence we deduce again by using
Proposition 2.2(ii) that

f̃ (w f̃ ) >
1
4 .

For the expectation

µ=

∫
R
(T (x)− x) f̃ (x) dx,
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we have the estimate

|µ| = (1− 16ε)−1
∣∣∣∣∫
R\[x1,x2]

(T (x)− x) f (x) dx

∣∣∣∣≤ 210ε |ln ε|.

If x ∈ (x1, x2), then T ′(x)≤ 16, and thus the expression in (5) satisfies

(1−
√

T ′(x) )2

2
√

T ′(x)
=

(T ′(x)− 1)2

2(1+
√

T ′(x) )2
√

T ′(x)

≥
(T ′(x)− 1)2

200
> 2−8(T ′(x)− 1)2.

We deduce, using (6) and (5), that∫
[x1,x2]

(T (x)− x)2 f (x) dx ≤
∫
R
(T (x)− x)2 f̃ (x) dx

≤ µ2
+ f̃ (w f̃ )

−2
∫
R
(T ′(x)− 1)2 f̃ (x) dx

≤ 220ε2
|ln ε|2 + 213

∫ x2

x1

(1−
√

T ′(x) )2

2
√

T ′(x)
f (x) dx

≤ 220ε2
|ln ε|2 + 213ε. (13)

Therefore, combining (12) and (13) completes the proof of Lemma 4.1. 2

§5. The L1 and quadratic transportation distances. Our goal is to estimate
the L1 distance between two log-concave probability distributions f and g in
terms of their quadratic transportation distance. In this section, T will always
denote the transportation map T : I f → Ig satisfying∫ x

−∞

f (t) dt =
∫ T (x)

−∞

g(t) dt.

We prepare for the proof of Theorem 5.3 by establishing Propositions 5.1
and 5.2. While the ideas for Propositions 5.1 and 5.2 are rather simple, they
still lead to the essentially optimal (up to a logarithmic factor) estimate in
Theorem 5.3.

For expressions A and B, when we write A� B we shall mean that |A| ≤
c · B where c > 0 is an absolute constant that is independent of all the quantities
occurring in A and in B. In addition, A ≈ B means that A� B and B� A.

PROPOSITION 5.1. Let f and g be log-concave probability distributions
on R satisfying

∫ z
−∞

f ≥ ν and
∫
∞

z f ≥ ν for ν ∈ (0, 1
2 ] and z ∈R. If either∫ z

−∞
g ≤ ν/2 or

∫
∞

z g ≤ ν/2, then∫ z+ν/ f (z)

z−ν/ f (z)
(T (x)− x)2 f (x) dx �

ν3

f (z)2
.
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Proof. We may assume that
∫
∞

z g ≤ ν/2. It follows from Corollary 2.3(i)
that if z < x ≤ z + ν ln(3/2)/ f (z), then∫ x

z
f ≤

∫ z+ν ln(3/2)/ f (z)

z
f (z)e f (z)|t−z|/ν dt = ν/2

and hence T (x)≤ z. Therefore∫ z+ν ln(3/2)/ f (z)

z+ν ln(5/4)/ f (z)
(T (x)− x)2 f (x) dx �

∫ z+ν ln(3/2)/ f (z)

z+ν ln(5/4)/ f (z)

(
ν ln 5

4

f (z)

)2 f (z)

2
dx

�
ν3

f (z)2
. 2

PROPOSITION 5.2. Let f and g be log-concave probability distributions
on R satisfying

∫ z
−∞

f ≥ ν,
∫
∞

z f ≥ ν and
∫ z
−∞

g ≥ ν/2,
∫
∞

z g ≥ ν/2 for ν > 0
and z ∈R. If g(z) 6= f (z) and1= ν ln 2/3 f (z) ·min{|ln(g(z)/ f (z))|, 3}, then∫ z+1

z−1
(T (x)− x)2 f (x) dx �

ν3

f (z)2
·min

{∣∣∣∣ln g(z)

f (z)

∣∣∣∣, 3
}4

.

Remark. If, in addition, e−3 f (z)≤ g(z)≤ e3 f (z), then the arguments in
cases 2 and 3 below show that the interval [z −1, z +1] of integration can
be replaced by [z −1/150, z +1/150], and if x ∈ [z −1/150, z +1/150],
then

1
3

∣∣∣∣ln g(z)

f (z)

∣∣∣∣≤ ∣∣∣∣ln g(x)

f (x)

∣∣∣∣≤ 5
3

∣∣∣∣ln g(z)

f (z)

∣∣∣∣.
Proof. According to Corollary 2.3(i), if z −1≤ x ≤ z +1, then

f (z)/2≤ f (z) · e− f (z)|x−z|/ν
≤ f (x)≤ f (z) · e f (z)|x−z|/ν

≤ 2 f (z). (14)

Similarly, if z − ν ln 2/2g(z)≤ x ≤ z + ν ln 2/2g(z), then

g(z)/2≤ g(z) · e−2g(z)|x−z|/ν
≤ g(x)≤ g(z) · e2g(z)|x−z|/ν

≤ 2g(z). (15)

We may assume
T (z)≤ z.

For the rest of the argument, we distinguish four cases.

Case 1. g(z)≥ e3 f (z).

In this case, 1= ν ln 2/ f (z). We note that

ln 2

2 · e3 <
ln 2
10

<
3 ln 2

10
< ln

5
4
. (16)

Since ν ln 2/(2g(z)) < 1/10, (15) yields that if x ≥ z +1/10, then∫ x

z
g >

ν

4
. (17)
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However, (14) and (16) imply that if z < x ≤ z + 31/10, then∫ x

z
f <

ν

4
. (18)

Since T (z)≤ z, (17) and (18) yield that if z + 21/10≤ x ≤ z + 31/10, then
T (x)≤ z +1/10. In particular,∫ z+31/10

z+21/10
(T (x)− x)2 f (x) dx ≥

∫ z+31/10

z+21/10

(
1

10

)2 f (z)

2
dx �13 f (z).

Case 2. f (z) < g(z)≤ e3 f (z).

Let λ= ( f (z)/g(z))1/3 ≥ 1/e. Since 2g(z)≤ 2e3 f (z) < 50 f (z) and 1=
(ν ln 2/(3 f (z))) ln(g(z)/ f (z)), if z ≤ x ≤ z +1/50, then (14) and (15) yield

λ · f (z)≤ f (x)≤ λ−1
· f (z) and λ · g(z)≤ g(x)≤ λ−1

· g(z).

In particular, if z ≤ s, t ≤ z +1/50, then f (s)/g(t)≤ λ. We deduce that if
z < x ≤ z +1/150, then ∫ x

z
f ≤

∫ z+λ(x−z)

z
g.

Thus T (x)≤ z + λ(x − z) by T (z)≤ z, and hence

x − T (x)≥ (1− λ)(x − z)= λ

(
1
λ
− 1

)
(x − z)≥

x − z

3e
· ln

g(z)

f (z)
.

It follows that∫ z+1/150

z+1/300
(T (x)− x)2 f (x) dx �13 f (z) ln

g(z)

f (z)
.

Case 3. e−3 f (z)≤ g(z) < f (z).

Let λ= ( f (z)/g(z))1/3 ≤ e. Since 1= (ν ln 2/(3 f (z))) ln( f (z)/g(z)), if
z −1/2≤ x ≤ z, then (14) and (15) yield

λ−1
· f (z)≤ f (x)≤ λ · f (z) and λ−1

· g(z)≤ g(x)≤ λ · g(z).

In particular, if z −1/2≤ s, t ≤ z, then f (s)/g(t)≥ λ. We deduce that if
z −1/(2e) < x ≤ z, then ∫ z

x
f ≥

∫ z

z−λ(z−x)
g.

Thus T (x)≤ z − λ(z − x) by T (z)≤ z, and hence

x − T (x)≥ (λ− 1)(z − x)≥
z − x

3
· ln

f (z)

g(z)
.

It follows that∫ z−1/300

z−1/150
(T (x)− x)2 f (x) dx �13 f (z) ln

f (z)

g(z)
.
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Case 4. g(z)≤ e−3 f (z).

Since 1= ν ln 2/ f (z), if z −1≤ x ≤ z, then (14) and (15) yield f (x)≥
f (z)/2 and g(x)≤ 2g(z). In particular, if z −1≤ s, t ≤ z, then f (s)≥ 2g(t).
We deduce that if z −1/2< x ≤ z, then∫ z

x
f ≥

∫ z

z−2(z−x)
g.

Thus T (x)≤ z − 2(z − x) by T (z)≤ z, and hence x − T (x)≥ z − x . It follows
that ∫ z−1/4

z−1/2
(T (x)− x)2 f (x) dx �13 f (z). 2

THEOREM 5.3. If f and g are log-concave probability distributions on R
and

∫
I f

f (x)(T (x)− x)2 dx = ε · f (w f )
−2 for ε ∈ (0, 1), then∫

R
| f (x)− g(x)| dx � 3

√
ε |ln ε|2/3.

Remark. According to Example 7.2, the exponent 1
3 of ε in Theorem 5.3 is

optimal.

Proof. It is enough to prove the statement for ε < ε0, where ε0 ∈ (0, 1
2 ) is an

absolute constant to be specified later. We may assume that f (w f )= 1; then
f (x)≤ 2 for any x ∈R by Proposition 2.2(iii), and for the inverse S of T we
have that ∫

I f

f (x)(T (x)− x)2 dx =
∫

Ig

g(y)(S(y)− y)2 dy ≤ ε.

For x ∈R, we define

ν(x) = min
{∫ x

−∞

f,
∫
∞

x
f

}
,

ν̃(x) = min
{∫ x

−∞

g,
∫
∞

x
g

}
.

First we estimate g. Since ν(w f )=
1
2 , if ε0 is small enough, then

Propositions 5.1 and 5.2 yield ν̃(w f ) >
1
4 and g(w f )≤ 2, respectively. We

conclude from Proposition 2.2(ii) that g(wg)≤ 4, and hence g(x)≤ 8 for any
x ∈R by Proposition 2.2(iii).

It follows from f (x)≤ 2 and Proposition 5.1 that there exists a positive
constant c1 such that if ν(x)≥ c1

3
√
ε, then ν̃(x)≥ ν(x)/2. Now, upon applying

Proposition 5.1 to g and possibly increasing c1, we have that if ν(x)≥ c1
3
√
ε,

then ν̃(x)≤ 2ν(x). Finally, possibly after increasing c1 further, we obtain that
if ν(x)≥ c1

3
√
ε, then |ln(g(x)/ f (x))| ≤ ln 2 by Proposition 5.2. We choose ε0

small enough to satisfy 2c1 3
√
ε0 <

1
2 .
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For z ∈R, we define 1(z)= (ν ln 2/(450 f (z))) · |ln(g(z)/ f (z))|. We
assume that ν(z)≥ c1

3
√
ε, and hence 1/2≤ g(z)/ f (z)≤ 2. It follows from

Corollary 2.3(i) that f (x)≥ f (z)/2 and ν(x)≤ 2ν(z) if x ∈ [z −1(z), z +
1(z)]. We deduce, by using Proposition 5.2 and its remark, that there exists
an absolute constant c2 such that, assuming g(z) 6= f (z), we have∫ z+1(z)

z−1(z)

ν(x)2

f (x)
·

∣∣∣∣ln g(x)

f (x)

∣∣∣∣3 dx ≤ c2

∫ z+1(z)

z−1(z)
(T (x)− x)2 f (x) dx . (19)

We define z1 < z2 by the properties ν(z1)= ν(z2)= 2c1
3
√
ε. We observe that

if g(z) 6= f (z) and some x ∈ [z −1(z), z +1(z)] satisfies ν(x)≥ 2c1
3
√
ε, then

ν(z)≥ c1
3
√
ε. It is not hard to show, based on (19), that∫ z2

z1

ν(x)2

f (x)
·

∣∣∣∣ln g(x)

f (x)

∣∣∣∣3 dx ≤ c2

∫
R
(T (x)− x)2 f (x) dx .

Since f (x)≤ 2 and | f (x)− g(x)|/ f (x)≤ 4|ln(g(x)/ f (x))| for x ∈ [z1, z2], we
deduce that∫ z2

z1

ν(x)2| f (x)− g(x)|3

f (x)2
dx = 4

∫ z2

z1

ν(x)2

f (x)

(
| f (x)− g(x)|

f (x)

)3

dx

≤ 44
∫ z2

z1

ν(x)2

f (x)

∣∣∣∣ln g(x)

f (x)

∣∣∣∣3 dx ≤ 44c2ε.

It follows from the Hölder inequality that∫ z2

z1

| f (x)− g(x)| dx =
∫ z2

z1

ν(x)2/3| f (x)− g(x)|

f (x)2/3
·

f (x)2/3

ν(x)2/3
dx

≤

[∫ z2

z1

ν(x)2| f (x)− g(x)|3

f (x)2
dx

]1/3

×

[∫ z2

z1

f (x)

ν(x)
dx

]2/3

.

Here f (x)= |ν′(x)|, and therefore∫ z2

z1

| f (x)− g(x)| dx ≤ (44c2ε)
1/3
[∫ w f

z1

ν′(x)

ν(x)
dx +

∫ z2

w f

−ν′(x)

ν(x)
dx

]2/3

= (44c2ε)
1/3
[

2 · ln
1
2
− 2 · ln(2c1

3
√
ε)

]2/3

�
3
√
ε|ln ε|2/3.

On the other hand, the fact that ν̃(xi )≤ 2ν(xi )= 4c1
3
√
ε for i = 1, 2 yields∫ z1

−∞

| f (x)− g(x)| dx ≤ 6c1
3
√
ε and

∫
∞

z2

| f (x)− g(x)| dx ≤ 6c1
3
√
ε,

and, in turn, we conclude Theorem 5.3. 2
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§6. The proof of Theorem 1.2. For a non-negative, bounded, not identically
zero function h on R, its log-concave hull is

h̃(x)= inf{p(x) : p is a log-concave function with h(t)≤ p(t) for t ∈R}.

This function h̃ is log-concave, and h(t)≤ h̃(t) for all t ∈R; therefore we may
take the minimum in the definition. Next, we present a definition of h̃ in terms
of ln h. Let Jh be the set of all x ∈R with h(x) > 0, and let

Ch = {(x, y) ∈R2
: x ∈ Jh and y ≤ ln h(x)}.

This set Ch is convex if and only if h is log-concave. Moreover, Jh̃ is the convex
hull of Jh , and the interior of Ch̃ is the interior of the convex hull of Ch . We also
observe that for any unit vector u ∈R2,

sup{〈u, v〉 : v ∈ Ch} = sup{〈u, v〉 : v ∈ Ch̃}. (20)

Let f , g and m be the functions in Theorem 1.2. The condition of the
Prékopa–Leindler inequality is equivalent to

1
2 (C f + Cg)⊂ Cm, (21)

where C f + Cg is the Minkowski sum of the two sets. Choose x0, y0 ∈R
such that f (x0) > 0 and g(y0) > 0. For any x ∈R, we have m((x + x0)/2)≥√

f (x0)g(x) and m((x + y0)/2)≥
√

f (x)g(y0), and hence

f (x)≤
m((x + y0)/2)2

g(y0)
and g(x)≤

m((x0 + x)/2)2

f (x0)
.

Since m is a log-concave function with finite integral, it is bounded; thus f and
g are bounded as well. Therefore we may define the log-concave hulls f̃ and g̃
of f and g, respectively. It follows that f̃ (x)≥ f (x) and g̃(y)≥ g(y). Since

m is log-concave, (20) and (21) yield m((x + y)/2)≥
√

f̃ (x)g̃(y) for x, y ∈R.

We may assume that f̃ and g̃ are probability distributions with zero mean, and
that f̃ (w f̃ )= 1. It follows that∫

R
f ≥ 1− ε,

∫
R

g ≥ 1− ε,
∫
R

m ≤ 1+ ε. (22)

Next, upon applying (5), Lemma 4.1 and Theorem 5.3 to f̃ and g̃, we
conclude that ∫

R
| f̃ (t)− g̃(t)| dt � 3

√
ε |ln ε|4/3. (23)

In addition, (22) yields∫
R
| f̃ (t)− f (t)| dt ≤ ε and

∫
R
|g̃(t)− g(t)| dt ≤ ε. (24)
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Therefore, to complete the proof of Theorem 1.2, all we have to do is
estimate

∫
R |m(t)− g̃(t)| dt . For this, let T : I f̃ → Ig̃ be the transportation map

satisfying ∫ x

−∞

f̃ (t) dt =
∫ T (x)

−∞

g̃(t) dt.

We note that R(x)= (x + T (x))/2 is an increasing and bijective map from
I f̃ into 1

2 (I f̃ + Ig̃). We define the function h :R→R as follows. If x 6∈
1
2 (I f̃ + Ig̃), then h(x)= 0, and if x ∈ I f̃ , then

h

(
x + T (x)

2

)
=

√
f̃ (x)g̃(T (x)).

We have h(x)≤ m(x), and the proof in §3 of the Prékopa–Leindler inequality
using the transportation map shows that

∫
R h ≥ 1. We deduce from (22) that∫

R
|m(t)− h(t)| dt ≤ ε. (25)

To compare h with g̃, we note that
∫
R h ≤ 1+ ε implies∫

R
h(t)− g̃(t) dt ≤ ε. (26)

Let B ⊂R be the set of all t ∈R for which g̃(t) < h(t); then B ⊂ 1
2 (I f̃ + Ig̃).

In addition, let A = R−1 B ⊂ I f̃ . If t = (x + T (x))/2 ∈ B for x ∈ A, then, as g̃

is log-concave and f̃ (x)= g̃(T (x))T ′(x), we have

[h(R(x))− g̃(R(x))] · R′(x)

≤

[√
f̃ (x)g̃(T (x))−

√
g̃(x)g̃(T (x))

]
·

1+ T ′(x)

2

≤ ( f̃ (x)− g̃(x)) ·

√
g̃(T (x))√

f̃ (x)
·

1+ T ′(x)

2

= ( f̃ (x)− g̃(x)) ·

(
1+

(1−
√

T ′(x) )2

2
√

T ′(x)

)
.

In particular, g̃(x) < f̃ (x) for x ∈ A. It follows from (5) and (23) that∫
B

h(t)− g̃(t) dt =
∫

A
[h(R(x))− g̃(R(x))] · R′(x) dx

≤

∫
I f̃ (x)

| f̃ (x)− g̃(x)| + f̃ (x) ·
(1−
√

T ′(x) )2

2
√

T ′(x)
dx

�
3
√
ε |ln ε|4/3.

It follows from (26) that
∫
R |h(t)− g̃(t)| dt � 3

√
ε |ln ε|4/3. Therefore,

combining this estimate with (24) and (25) leads to
∫
R |m(t)− g(t)| dt �

3
√
ε |ln ε|4/3. In turn, we deduce that

∫
R |m(t)− f (t)| dt � 3

√
ε |ln ε|4/3 by (23)

and (24). 2
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Remark 6.1. A careful check of the argument shows that the estimate for∫
R |m(t)− f (t)| dt and

∫
R |m(t)− g(t)| dt is of the same order as the estimate

for
∫
R | f̃ (t)− g̃(t)| dt . Therefore, to improve on the estimate in Theorem 1.2,

all one needs to improve is (23).

§7. Examples.

Example 7.1. If f is an even log-concave probability distribution, g(x)=
(1+ ε) · f ((1+ ε)x) and m(x)= (1+ ε) · f (x), then we have (5), and∫

I f

f (x)(T (x)− x)2 dx =
ε2

(1+ ε)2

∫
R

x2 f (x) dx .

Example 7.2. Let f be the constant 1 on [− 1
2 ,

1
2 ], and let g be a

modification such that if |x | ≥ 1
2 − ε, then

g(x)= e−(|x |−1/2+ε)/ε.

In addition, let

m(x)=

{
1 if x ∈ [− 1

2 ,
1
2 ],

e−(|x |−1/2)/ε otherwise.

In this case,
∫
R m = 1+ ε,∫

R
f (x) ·

(1−
√

T ′(x) )2

2
√

T ′(x)
dx ≈ ε and

∫
R
| f (x)− g(x)| dx ≈ ε.

Moreover,∫
R

f (x)(T ′(x)− 1)2 dx =∞ and
∫
R

f (x)(T (x)− x)2 dx ≈ ε3.
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