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Abstract. A method for introducing correlations between electrons and ions
that is computationally affordable is described. The central assumption is that
the ionic wave functions are narrow, which makes possible a moment expansion for
the full density matrix. To make the problem tractable we reduce the remaining
many-electron problem to a single-electron problem by performing a trace over
all electronic degrees of freedom except one. This introduces both one- and two-
electron quantities into the equations of motion. Quantities depending on more
than one electron are removed by making a Hartree-Fock approximation. Using
the first moment approximation, we perform a number of tight binding simulations
of the effect of an electric current on a mobile atom. The classical contribution
to the ionic kinetic energy exhibits cooling and is independent of the bias. The
quantum contribution exhibits strong heating, with the heating rate proportional
to the bias. However, increased scattering of electrons with increasing ionic kinetic
energy is not observed. This effect requires the introduction of the second moment.

Submitted to: J. Phys.: Condens. Matter

1. Introduction

A widely used description of systems of interacting electrons and ions is the
Born-Oppenheimer, or adiabatic, approximation (BOA). The BOA is a scheme for
decoupling the dynamics of the heavy and slow ions from the dynamics of the light and
fast electrons. In the BOA one assumes that as ions move, the electronic subsystem
remains in the thermodynamic state which minimises its free energy, for the given
instantaneous ionic positions.

Let us consider, in physical terms, two possible reasons for the failure of the BOA.
First, if the ions move sufficiently fast, then the electronic subsystem will not have time
to minimise its free energy before the ions undergo substantial further displacement.
Put differently, the ionic motion, if it is sufficiently energetic, promotes excitations in
the electron gas. The result is dissipation of energy by energetic ions into the electron
gas. This mechanism for departures from the BOA is taken into account by Ehrenfest
dynamics, at least in the limit of high ionic energies [1]. In Ehrenfest dynamics [2, 3]
electrons and ions are allowed to evolve according to dynamical equations of motion,
but, in these equations, the two sets of particles experience each other as external
time-evolving classical mean fields. The ions are treated as classical particles, while
the electrons are treated quantum mechanically.

There is a second, more subtle, mechanism for failure of the BOA which persists
even in the limit of small ionic energy. Ions, however heavy by comparison with
electrons, have a finite mass. Hence, as electrons jostle them, ions recoil, however
slightly, and small amounts of energy are exchanged in these collisions. In other
words, even classically, there is no such thing as an ionic position that remains
unchanged throughout electronic equilibration, as is assumed in the BOA: ions
constantly dance around in response to the electron gas as it attempts to find the state
of thermodynamic equilibrium. The energy exchanged in these correlated electron-
ion fluctuations causes the BOA to fail even in the limit of zero ionic temperature.
This failure manifests itself as spontaneous phonon emission by excited electrons into
the phonon vacuum [4, 5]. The correlation between electronic and ionic fluctuations,
and the resultant dissipation of energy by excited electrons into cold vibrations, lies
altogether beyond the scope of the Ehrenfest approximation.



Beyond Ehrenfest 3

In many problems it is possible to neglect these correlations. For example, the
adiabatic approximation has been used extensively to model electronic conduction
in nanoscale systems [6–12]. However, both the BOA and Ehrenfest dynamics are
inadequate for describing Joule heating. This is a problem in which excited electrons
dissipate energy into ionic vibrations, and for this problem the microscopic electron-ion
correlations are essential [3, 13].

Despite the limitations just given, the Ehrenfest approximation has two virtues
that we would like to retain:

(i) The classical description of the heavy ions provides an intuitive way to understand
their motion and is readily handled using molecular dynamics.

(ii) The electrons can be treated accurately using a single-particle approach, such as
time-dependent density functional theory.

Our task is to build on this foundation so as to introduce microscopic correlations as
corrections to the dynamical equations. We achieve this by introducing a hierarchy
of electron-ion correlation functions developed systematically as a moment expansion.
We then make a Hartree-Fock approximation to the two-electron density matrix to
allow the electrons to be treated within a single-particle picture that still respects their
fermionic nature. Truncating the moment expansion after the first moment produces
a closed and tractable set of equations that conserves total energy and takes account of
electron-ion correlations. We apply the scheme to a current-carrying atomic wire and
find that the ionic heating is recovered. However, the scheme lacks terms needed to
accurately determine the reverse effect: the influence of ionic heating on the electronic
current. The introduction of these terms from appropriate higher-order expansions is
the subject of ongoing research.

This approach has a much wider range of applications than just heating of wires.
In the first moment approximation (treated explicitly below) this method could be
applied to short time scale problems involving electron relaxation through phonon
emission. This might include the early stages of the non-radiative decay of an excited
electronic state in a molecule. Once the second (or higher) moment approximation is
made, the range of problems increases dramatically.

2. The small amplitude equations

In the Ehrenfest approximation the ions are treated as classical particles. Thus
they are localised in space and their dynamics are completely characterised by their
positions as a function of time. The Ehrenfest equations [14] (which are exact, but also
give the name to the approximation) allow us to map the quantum expectation values
of position (R̄ν), momentum (P̄ν) and force (F̄ν) onto the corresponding classical
quantities, yielding the following equations of motion:

dR̄ν

dt
=

P̄ν

Mν
,

dP̄ν

dt
= F̄ν , F̄ν = −Tr

{
ρ̂

∂Ĥ

∂R̂ν

}
(1)

Here, ρ̂, with Tr{ρ̂} = 1, is the full density matrix for the system of electrons and
ions in the Schrödinger representation, Ĥ is its Hamiltonian, and R̄ν = Tr{ρ̂R̂ν} and
P̄ν = Tr{ρ̂P̂ν}, where R̂ν and P̂ν are the operators for a given ionic coordinate and
the corresponding conjugate momentum, respectively. The index ν combines both the
ion index and the component of its position (x, y, z). The mass of an ion is Mν . The



Beyond Ehrenfest 4

problem is to find ρ̂. In general this is difficult, so instead we concentrate on evaluating
certain expectation values that involve the density matrix. The equations of motion
for these expectation values are considerably easier to work with numerically as the
dimensionality of the matrices involved is greatly reduced compared to the full density
matrix.

While classical mechanics may exaggerate the degree of localisation of the
ions, it is not completely wrong. We know that in many systems ions really are
localised, as can be determined from x-ray diffraction or neutron scattering from
crystals. Thus the average coordinate R̄ν is a physically meaningful quantity. This
suggests that we might write the density matrix, using the spatial representation, as
ρ(~r1 · · ·~rn, R̄1 + ∆R1 · · · R̄N + ∆RN ;~r′1 · · ·~r′n, R̄1 + ∆R′1 · · · R̄N + ∆R′N ), where ~ri is
the position of an electron and ρ decays rapidly to zero as ∆Rν increases from zero.
Thus we only need consider the small amplitude fluctuations about the mean. This
allows us to make the following Taylor expansion for the expectation value of the force
on an ion (equation (1)):

F̄ν = − Tr

{
ρ̂

∂Ĥ

∂R̂ν

}
= −Tr

{
ρ̂

∂Ĥ(R̄ + ∆R̂)
∂R̄ν

∣∣∣∣∣
∆R̂

}

= − Tr

{
ρ̂

∂

∂R̄ν

∣∣∣∣
∆R̂

(
Ĥ(R̄) +

∑

ν′

∂Ĥ(R̄)
∂R̄ν′

∆R̂ν′ + · · ·
)}

= Tre
{

ρ̂eF̂ν

}
−

∑

ν′
Tre

{
µ̂ν′K̂ν′ν

}
+ · · · (2)

where ∆R̂ν = R̂ν − R̄ν , R̂, R̄ and ∆R̂ stand for the sets of values {R̂ν}, {R̄ν}
and {∆R̂ν} respectively, F̂ν = −∂Ĥ(R̄)/∂R̄ν , K̂νν′ = ∂2Ĥ(R̄)/∂R̄ν∂R̄ν′ = K̂ν′ν ,
ρ̂e = TrI {ρ̂}, µ̂ν = TrI

{
∆R̂ν ρ̂

}
. By Tre {· · ·} and TrI {· · ·} we mean a trace over the

electronic and ionic degrees of freedom respectively. Note that R̄ν is a number and
not an operator, so F̂ν and K̂νν′ are purely electronic operators, as are ρ̂e and µ̂ν .

To evaluate the expectation value of the ionic force we need to determine the
equations of motion of the electronic correlation functions ρ̂e, µ̂ν , etc. In general one
of these correlation functions can be represented by

q̂ = TrI
{

Q̂(∆R̂, ∆P̂ )ρ̂
}

, (3)

where q̂ is an electronic quantity, Q̂(∆R̂, ∆P̂ ) is a corresponding ionic quantity, and
∆P̂ stand for the set of values {∆P̂ν} where ∆P̂ν = P̂ν − P̄ν . The equation of motion
for q̂ is

dq̂

dt
= TrI

{∑
ν

(
P̄ν

Mν

∂Q̂

∂R̄ν
+ F̄ν

∂Q̂

∂P̄ν

)
ρ̂

}
+

1
i~
TrI

{
Q̂

[
Ĥ, ρ̂

]}

=
∑

ν

1
2Mν

TrI

{(
∆P̂ν

∂Q̂

∂∆R̂ν

+
∂Q̂

∂∆R̂ν

∆P̂ν

)
ρ̂

}
−

∑
ν

F̄νTrI

{
∂Q̂

∂∆P̂ν

ρ̂

}

+
1
i~

[
Ĥe(R̄), q̂

]
− 1

i~
∑

ν

[
F̂ν ,TrI

{
1
2

(
Q̂∆R̂ν + ∆R̂νQ̂

)
ρ̂

}]

− 1
i~

∑
ν

1
2

(
F̂νTrI

{[
Q̂, ∆R̂ν

]
ρ̂
}

+ TrI
{[

Q̂, ∆R̂ν

]
ρ̂
}

F̂ν

)
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+
1
i~

1
2

∑

νν′

[
K̂νν′ ,TrI

{
1
2

(
Q̂∆R̂ν∆R̂ν′ + ∆R̂ν∆R̂ν′Q̂

)
ρ̂

}]

+
1
i~

1
2

∑

νν′

1
2

(
K̂νν′TrI

{[
Q̂, ∆R̂ν∆R̂ν′

]
ρ̂
}

+ TrI
{[

Q̂, ∆R̂ν∆R̂ν′
]
ρ̂
}

K̂νν′
)

+ · · · (4)

where Ĥ = T̂ + Ĥe and T̂ is the total ionic kinetic energy operator, and we have
made use of the Liouville equation i~∂ρ̂/∂t = [Ĥ, ρ̂] and the Ehrenfest equations
(equation (1)). Equations (1), (2) and (4) constitute the small amplitude equations.
Our purpose here is to use the moment expansion in equations (1), (2) and (4), where
q̂ is a general moment, to reinstate the correlation between light and heavy particles.
The use of moment expansions to study quantum dynamics has a long history [15–18].
Recently it has been used to study the influence of quantum effects on the dynamics
of atoms [19–22].

The equations we have considered so far give us information about classical
trajectories. However, we also need to know the evolution of the energy of the
system, which depends on the spread of quantum trajectories about the classical
one. In particular, the kinetic energy of the ions (T̄ ) gives us a direct measure of
the amount of heating that has taken place, while the total energy (H̄) should be a
conserved quantity. The total energy is indeed conserved, even for a truncated moment
expansion, provided the truncation is carried through in a systematic manner. By
making a Taylor expansion for Ĥe about the classical (mean) trajectory, we find that
the rate of heating (w) is given by

w =
dT̄

dt
=

1
i~
Tr

{
ρ̂

[
T̂ , Ĥ

]}

=
∑

ν

1
Mν

(
P̄ν F̄ν + Tre

{
F̂ν λ̂ν −

∑

ν′
K̂νν′ χ̂νν′ + · · ·

})
(5)

where λ̂ν = TrI
{

∆P̂ν ρ̂
}

and χ̂νν′ = 1
2TrI

{
ρ̂

(
∆P̂ν∆R̂ν′ + ∆R̂ν′∆P̂ν

)}
.

3. Truncated expansions

To obtain a closed and tractable set of equations we need to truncate our series
expansions after a finite number of moments. The moments we need to consider
involve powers of the ionic operators ∆R̂ν and ∆P̂ν . We define the order of the
moments by the sum of the powers of these operators. For example, first moments
will involve ∆R̂ν and ∆P̂ν , while second moments will involve ∆P̂ν∆P̂ν′ , ∆R̂ν∆R̂ν′ ,
∆P̂ν∆R̂ν′ and ∆R̂ν′∆P̂ν .

3.1. Zeroth moment (Ehrenfest) approximation

In the zeroth moment approximation the only correlation function we retain is ρ̂e (the
electronic density matrix). Therefore, from equations (2), (4) and (5) we get

F̄ν = Tre
{

ρ̂eF̂ν

}

w =
∑

ν

1
Mν

P̄ν F̄ν
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dρ̂e

dt
=

1
i~

[
Ĥe(R̄), ρ̂e

]
(6)

These equations correspond to the Ehrenfest approximation, and because of the
absence of explicit correlation between electrons and ions they produce incorrect
heating [3]. Therefore we have to go beyond this approximation.

3.2. First moment approximation

In the first moment approximation the only correlation functions we retain are ρ̂e, µ̂ν

and λ̂ν . From equations (2), (4) and (5) we get

F̄ν = Tre
{

ρ̂eF̂ν

}
−

∑

ν′
Tre

{
µ̂ν′K̂ν′ν

}

w =
∑

ν

1
Mν

(
P̄ν F̄ν + Tre

{
F̂ν λ̂ν

})

dρ̂e

dt
=

1
i~

[
Ĥe(R̄), ρ̂e

]
− 1

i~
∑

ν

[
F̂ν , µ̂ν

]

dµ̂ν

dt
=

1
i~

[
Ĥe(R̄), µ̂ν

]
+

λ̂ν

Mν

dλ̂ν

dt
=

1
i~

[
Ĥe(R̄), λ̂ν

]
+

1
2

(
∆F̂ν ρ̂e + ρ̂e∆F̂ν

)
− 1

2

∑

ν′

(
K̂νν′ µ̂ν′ + µ̂ν′K̂νν′

)
(7)

where ∆F̂ν = F̂ν − F̄ν . As a way of verifying the internal consistency of these
equations we note the following. The three correlation functions each have a fixed
trace: Tre{ρ̂e} = 1, Tre{µ̂ν} = 0 and Tre{λ̂ν} = 0. The equations of motion need to
preserve these traces, which amounts to requiring that Tre{dρ̂e/dt} = Tre{dµ̂ν/dt} =
Tre{dλ̂ν/dt} = 0. It is straightforward to verify that these conditions are satisfied by
equation (7). Further, if we define the first moment approximation to the energy to
be E1 = T̄ + Tre

{
ρ̂eĤe(R̄)

}
−∑

ν Tre
{

µ̂νF̂ν

}
, then we find that the first moment

approximation conserves energy. Here, T̄ is found from

T̄ = T̄0 +
∫ t

0

w(s)ds

with all quantities given by equation (7). The initial kinetic energy T̄0 is never
evaluated.

Since F̄ν is a scalar and Tre{λ̂ν} = 0, we may write the power w in equation (7)
also as

w =
∑

ν

1
Mν

(
P̄νF̄ν + ∆Fν∆Pν

)
. (8)

The first term in w, in which momentum and force are averaged separately, gives
the rate of change of the classical ionic kinetic energy,

∑
ν P̄ 2

ν /2Mν . As we will see,
this contribution to the power is akin to the power in Ehrenfest dynamics and gives
predominantly ionic cooling. The second term in equation (8) gives, to first order, the
rate of change of the quantum part of the ionic kinetic energy,

∑
ν ∆P 2

ν /2Mν . This
term keeps track of the correlations between fluctuations in the force on an ion and in
its momentum. We will see that this force-momentum correlation function gives the
dissipation of energy from excited electrons into cold ions.
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These equations introduce the correlations needed to produce heating in a current
carrying wire. As discussed in an earlier paper [3], what we require is correlation
between the motion of individual electrons and individual ions. As observed in
that paper this can be introduced by the correlation function µ̂ν . We can see this
by considering the spatial representation of the diagonal elements of this electronic
operator,

µν(~r1 . . . ~rn;~r1 . . . ~rn) =
∫

dR1 . . . dRN (Rν − R̄ν)×
ρ(~r1 . . . ~rn, R1 . . . RN ;~r1 . . . ~rn, R1 . . . RN ). (9)

For a pure state these diagonal elements of the full density matrix just correspond
to the modulus squared of the wave function. Therefore, we can interpret this
correlation function as being the mean displacement of an ion from the average
trajectory given that the electrons have positions given by ~r1 . . . ~rn. That is, this
correlation function has explicit information correlating the positions of individual
ions with positions of individual electrons. Furthermore, we can see from these
equations that the correlations introduce microscopic noise which is the source of
heating. Fluctuations in the electron gas will produce microscopic fluctuations in the
atomic forces through the term −∑

ν′ Tre
{

µ̂ν′K̂ν′ν

}
, and quantum fluctuations in

the atomic motion will similarly produce fluctuating forces on the electrons through
the term −∑

ν

[
F̂ν , µ̂ν

]
/i~. The fact that the fluctuations are transmitted between

subsystems by the same correlation function is important because they are generated
by collisions between particles within the subsystems: that is, one collision event
simultaneously produces noise in both subsystems. The neglect of the second and
higher moments can only be justified if the quantum fluctuations about the mean
trajectory are small. As we shall see, higher moments are needed if the influence of
ionic heating on the current is to be described accurately.

4. The Hartree-Fock approximation

All the equations given in the previous sections are for many-electron systems. These
equations are computationally intractable in general because of the very large number
of degrees of freedom they represent. In standard Born-Oppenheimer calculations,
this problem is often managed by transforming the exact many particle equations into
approximate mean field single-particle equations (the Hartree-Fock approximation).
We take the same approach here. The first step is to define the electron-ion correlation
functions for a single electron that correspond to the many-electron ones already given.
This is achieved by carrying out traces over all the electrons except one:

ρ̂(1)
e = NTre,2...N{ρ̂e} , µ̂(1)

ν = NTre,2...N{µ̂ν} , λ̂(1)
ν = NTre,2...N{λ̂ν}. (10)

Here Tre,2...N{· · ·} is an electronic trace over electrons 2, 3, 4, . . . N . We have made
use of the indistinguishability of electrons by making electron 1 representative of all
the electrons.

Consider a pair of electron operators â(N) and b̂(n), where â(N) depends on
all N electronic degrees of freedom, while b̂(n) depends upon n ≤ N electronic
degrees of freedom. Now consider the one-electron operator ĉ(1) obtained by taking
the trace over electrons 2 . . . N of the product of the operators â(N) and b̂(n):
ĉ(1) = NTre,2...N{â(N)b̂(n)}.
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There are two seperate case to consider: when b̂(n) depends on electron 1, and
when it does not. For the former case we have (for n ≥ 1)

ĉ(1)(1) = NTre,2...N{â(N)(1 . . . N)b̂(n)(1 . . . n)}
=

(N − n)!
(N − 1)!

Tre,2...n{â(n)(1 . . . n)b̂(n)(1 . . . n)} (11)

and for the latter case (for n ≥ 0) we get
ĉ(1)(1) = NTre,2...N{â(N)(1 . . . N)b̂(n)(2 . . . n + 1)}

=
(N − n− 1)!

(N − 1)!
Tre,2...n+1{â(n+1)(1 . . . n + 1)b̂(n)(2 . . . n + 1)}

=
(N − n− 1)!

(N − 1)!
Tre,2...n+1{b̂(n)(2 . . . n + 1)â(n+1)(1 . . . n + 1)} (12)

where the n-electron operator â(n) is given by â(n) = (N !/(N −n)!)Tre,n+1...N{â(N)},
and where we have made use of the fact that operators permute under a trace
in the last line. The numerical arguments stand for the electrons on which the
operators act, and are only used below when the equations would be ambiguous
without them. Note that Tre,2...N{[â(N), b̂(n)(2 . . . n + 1)]} = 0, while in general
Tre,2...N{[â(N), b̂(n)(1 . . . n)]} 6= 0.

Both F̂ν and K̂νν′ are composed of a term that is independent of the electronic
degrees of freedom (originating from the interaction between the ions) and a single-
electron term (originating from the interaction between the electrons and the ions).
Therefore, these operators can be written as F̂ν = F̂

(0)
ν +

∑
i F̂

(1)
ν (i) and K̂νν′ =

K̂
(0)
νν′+

∑
i K̂

(1)
νν′(i), where i is an index running over all the electrons‡. The Hamiltonian

operator Ĥe also has zero- and one-electron terms (the ion-ion interaction, Ĥ
(0)
e , and

the electronic kinetic energy plus the electron-ion interaction,
∑

i Ĥ
(1)
e (i)). However,

it also has a two-electron term (the electron-electron term, 1
2

∑
ij Ĥ

(2)
e (ij)).

4.1. Zeroth moment (Ehrenfest) approximation

Consider the equation of motion for the one-particle electron density matrix in the
Ehrenfest (zeroth moment) approximation (equation (6))

dρ̂
(1)
e (1)
dt

=
N

i~
Tre,2...N

{[
Ĥe, ρ̂e(123 . . . N)

]}

=
1
i~

[
Ĥ(1)

e (1), ρ̂(1)
e (1)

]
+

1
i~
Tre,2

{[
Ĥ(2)

e (12), ρ̂(2)
e (12)

]}
. (13)

We now make the Hartree-Fock approximation for the two-particle density matrix [23].
This requires some additional notation. We define the elements of the single-particle
density matrix ρ

(1)
e (1; 1′) by ρ

(1)
e (1; 1′) = 〈1|ρ̂(1)

e |1′〉, where the set of states {|1〉}
spans the space available to electron 1. Similarly, for the two-particle matrix we have
ρ
(2)
e (12; 1′2′) = 〈12|ρ̂(1)

e |1′2′〉. The Hartree-Fock approximation is ρ
(2,HF )
e (12; 1′2′) =

ρ
(1)
e (1; 1′)ρ(1)

e (2; 2′)− ρ
(1)
e (1; 2′)ρ(1)

e (2; 1′), which allows us to write equation (13) as

dρ̂
(1)
e

dt
=

1
i~

[
Ĥ(HF )

e , ρ̂(1)
e

]
, (14)

‡ A quantity such as K̂
(0)
νν′ that does not depend on the electronic degrees of freedom may also be

viewed as a scalar, call it Kνν′ , multiplied by the identity operator in the N -electron Hilbert space:
K̂

(0)
νν′ = Kνν′

PN
i=1 1̂e(i)/N , where 1̂e(i) is the one-electron unit operator for electron i.
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where the single-particle Hamiltonian Ĥ
(HF )
e is the Fock operator whose matrix

representation is

H(HF )
e (1; 1′) = H(1)

e (1; 1′) +
∑

22′
(H(2)

e (12; 1′2′)−H(2)
e (12; 2′1′))ρ(1)

e (2′; 2). (15)

Note that these equations require the single-electron density matrix to be idempotent

ρ̂(1)
e = ρ̂(1)

e ρ̂(1)
e . (16)

The atomic force is given by F̄ν = F̂
(0)
ν +Tre,1

{
ρ̂
(1)
e F̂

(1)
ν

}
. These equations correspond

very closely to ones derived in earlier work based on a density functional theory
description of the electrons [2].

4.2. First moment approximation

If we repeat the procedure used above (using traces to eliminate all but one particle,
and making the Hartree-Fock approximation for the two-particle density matrix) we
obtain the following equations for the first moment approximation:

F̄ν = F̂ (0)
ν + Tre,1

{
ρ̂(1)

e F̂ (1)
ν

}
−

∑

ν′
Tre,1

{
µ̂

(1)
ν′ K̂

(1)
ν′ν

}

w =
∑

ν

1
Mν

(
P̄νF̄ν + Tre,1

{
F̂ (1)

ν λ̂(1)
ν

})

dρ̂
(1)
e

dt
=

1
i~

[
Ĥ(HF )

e , ρ̂(1)
e

]
− 1

i~
∑

ν

[
F̂ (1)

ν , µ̂(1)
ν

]

dµ̂
(1)
ν (1)
dt

=
1
i~

[
Ĥ(1)

e (1), µ̂(1)
ν (1)

]
+ Tre,2

{
1
i~

[
Ĥ(2)

e (12), µ̂(2)
ν (12)

]}

+
λ̂

(1)
ν (1)
Mν

dλ̂
(1)
ν (1)
dt

=
1
i~

[
Ĥ(1)

e (1), λ̂(1)
ν (1)

]
+ Tre,2

{
1
i~

[
Ĥ(2)

e (12), λ̂(2)
ν (12)

]}

+
1
2

(
F̂ (1)

ν (1)ρ̂(1)
e (1) + ρ̂(1)

e (1)F̂ (1)
ν (1)

)

− ρ̂(1)
e (1)F̂ (1)

ν (1)ρ̂(1)
e (1)

+
∑

ν′
Tre,1

{
µ̂

(1)
ν′ (1)K̂(1)

ν′ν(1)
}

ρ̂(1)
e (1)−

∑

ν′
K̂

(0)
νν′ µ̂

(1)
ν′ (1)

− 1
2

∑

ν′

(
K̂

(1)
νν′(1)µ̂(1)

ν′ (1) + µ̂
(1)
ν′ (1)K̂(1)

νν′(1)
)

−
∑

ν′
Tre,2

{
µ̂

(2)
ν′ (12)K̂(1)

ν′ν(2)
}

(17)

where µ̂
(2)
ν = N(N − 1)Tre,3...N {µ̂ν} and λ̂

(2)
ν = N(N − 1)Tre,3...N

{
λ̂ν

}
. We now

make a Hartree-Fock approximation for the two-electron correlation functions (see the
appendix for the proof). From equation (A.5) we get

µ(2,HF )
ν (12, 1′2′) = µ(1)

ν (1, 1′)ρ(1)
e (2, 2′) + ρ(1)

e (1, 1′)µ(1)
ν (2, 2′)−

µ(1)
ν (1, 2′)ρ(1)

e (2, 1′)− ρ(1)
e (1, 2′)µ(1)

ν (2, 1′)
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λ(2,HF )
ν (12, 1′2′) = λ(1)

ν (1, 1′)ρ(1)
e (2, 2′) + ρ(1)

e (1, 1′)λ(1)
ν (2, 2′)−

λ(1)
ν (1, 2′)ρ(1)

e (2, 1′)− ρ(1)
e (1, 2′)λ(1)

ν (2, 1′) (18)

with the corresponding idempotency conditions

µ̂(1)
ν = ρ̂(1)

e µ̂(1)
ν + µ̂(1)

ν ρ̂(1)
e

λ̂(1)
ν = ρ̂(1)

e λ̂(1)
ν + λ̂(1)

ν ρ̂(1)
e . (19)

To see what this means, let ρ̂
(1)
e =

∑
α |α〉fα〈α| and 〈α|µ̂(1)

ν |α′〉 = µν,αα′ . Then we
have

µν,αα′ = (fα + fα′)µν,αα′

⇒ 0 = (fα + fα′ − 1)µν,αα′ (20)

Thus µν,αα′ = 0 unless fα+fα′−1 = 0. For an idempotent density matrix, fα ∈ {0, 1},
thus µν,αα′ is zero in the occupied and empty blocks, but non-zero in the off-diagonal
blocks coupling occupied and empty states. That is, its effect in the equation of motion
for ρ̂

(1)
e (see equation (17)) is to transfer electrons from occupied to empty states.
Substituting equations (18) and (19) into equation (17) we get

dµ̂
(1)
ν

dt
=

1
i~

[
Ĥ(HF )

e , µ̂(1)
ν

]
+

1
i~

[
Î(HF )
ν , ρ̂(1)

e

]
+

λ̂
(1)
ν

Mν

dλ̂
(1)
ν

dt
=

1
i~

[
Ĥ(HF )

e , λ̂(1)
ν

]
+

1
i~

[
Ĵ (HF )

ν , ρ̂(1)
e

]
−

∑

ν′
K̄νν′ µ̂

(1)
ν′

− ρ̂(1)
e F̂ (1)

ν ρ̂(1)
e +

1
2

(
F̂ (1)

ν ρ̂(1)
e + ρ̂(1)

e F̂ (1)
ν

)

+
∑

ν′

(
µ̂

(1)
ν′ K̂

(1)
νν′ ρ̂

(1)
e + ρ̂(1)

e K̂
(1)
νν′ µ̂

(1)
ν′

)
− 1

2

∑

ν′

(
K̂

(1)
νν′ µ̂

(1)
ν′ + µ̂

(1)
ν′ K̂

(1).
νν′

)
(21)

The terms in the last two lines above keep track of the fermionic statistics of the
electrons. Note that the traces of all the equations of motion are zero provided the
idempotency conditions apply. The new Hartree-Fock operators Î

(HF )
ν and Ĵ

(HF )
ν are

given by equations (A.10) and (A.12).
To gain further insight into these equations consider the limit Mν → ∞. We

neglect the operators Î
(HF )
ν and Ĵ

(HF )
ν . In the limit of heavy ions, from equation (21)

we get dµ̂
(1)
ν /dt ≈

[
Ĥ

(HF )
e (R̄), µ̂(1)

ν

]
/i~. If µ̂

(1)
ν (0) = 0, then µ̂

(1)
ν = 0 for all time.

In this case the equations split into two uncoupled sets: the Ehrenfest approximation
plus

dλ̂
(1)
ν

dt
≈ 1

i~

[
Ĥ(HF )

e (R̄), λ̂(1)
ν

]
+

1
2

(
F̂ (1)

ν ρ̂(1)
e + ρ̂(1)

e F̂ (1)
ν

)
−ρ̂(1)

e F̂ (1)
ν ρ̂(1)

e (22)

For a steady current, the electron density matrix will commute with the Hamiltonian,
and therefore the density matrix and Hamiltonian will share eigenvectors. If the
Hamiltonian and the density matrix satisfy the equations Ĥ

(HF )
e |α〉 = εα|α〉 and

ρ̂
(1)
e |α〉 = fα|α〉 respectively, then we can express equation (22) as

dλ
(1)
ν,αβ

dt
≈ εα − εβ

i~
λ

(1)
ν,αβ +

fα(1− fβ) + fβ(1− fα)
2

F
(1)
ν,αβ
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where λ
(1)
ν,αβ = 〈α|λ̂(1)

ν |β〉 and F
(1)
ν,αβ = 〈α|F̂ (1)

ν |β〉. The solution is

λ
(1)
ν,αβ(t) =

fα(1− fβ) + fβ(1− fα)
2

F
(1)
ν,αβ

(1− e−iωαβt)
iωαβ

where ~ωαβ = εα − εβ . In the limit t → ∞, sin ωαβt/ωαβ →
πδ(ωαβ). Substituting in equation (17), for the power w we find w →
∑

ν

(
P̄νF̄ν + 2π~

∑
αβ

∣∣∣F (1)
ν,αβ

∣∣∣
2

fα(1− fβ)δ(εα − εβ)
)

/Mν , where a factor of 2 for

spin degeneracy has been included. The significance of this expression is that the
second term agrees with the heating term from quantum perturbation theory, in the
limit of large bias [24].

5. Simulations

To test the ability of these equations to reproduce current-induced heating in a wire,
we have performed a series of simulations using the program Dynamo. We have
looked at the rate of heating (increase in ionic kinetic energy) as a function of the
applied bias. The model system we have considered consists of 701 atoms in a chain.
The electronic structure of the system is modelled using time-dependent orthogonal
tight binding [1], with a single s-orbital and one electron per atom. (We actually
used 702 electrons; an even number is necessary to ensure we have an idempotent
density matrix.) This is a single-particle model so we have no contribution from the
operators Î

(HF )
ν and Ĵ

(HF )
ν . The rest of the parameters of the model are taken from

reference [25]. The positions of all the atoms are held fixed, with the exception of
the middle atom in the chain which is allowed to move in one dimension. It has a
mass of 1/30 the atomic mass of gold (about 6.6 atomic mass units). In the present
simulations, electrons are treated as non-interacting.

A current is induced (and the bias is defined) by the following scheme [2, 3, 26].
At the start of the simulation we move electrons from one side of the wire to the
other, creating an excess of electrons on one side (let us say, the left-hand side), and a
deficit on the other side (the right-hand side). We accomplish this in two steps. First
we apply a uniform external potential to the left-hand side of the wire, and find the
electronic ground state of the entire system; the size of the applied external potential
defines the magnitude of the bias. In the next step the external potential is turned off
smoothly over a short time. This causes the excess of electrons on the left-hand side
to begin to move over to the right-hand side, producing an electric current§. A steady
current continues to flow until there is no longer an electron excess on one side, after
which the electrons continue to evolve in time, oscillating backwards and forwards
between the two sides of the wire. However, the only section of the dynamics in which
we are interested is the initial part, before the current first changes direction.

During the simulation we integrate equations (1), (17), and (21) forward in time.
The velocity Verlet algorithm is used for the classical degrees of freedom (R̄ and
P̄ ), while the following simple integrator is used for the electronic: f(t + ∆t) =
f(t−∆t) + 2∆tf ′(t) [27]. A time step size of 8× 10−18s was used. The conservation
of total energy is found to be very good, the maximum error being between 10−7eV

§ We may view the initial situation as one in which the two halves of our system are made of two
different metals. Our initial density matrix is thus the ground-state density matrix for this bimetallic
junction, with a higher electron density on one side (the left-hand side in the present case) than on
the other. Lifting the applied bias is then equivalent to making the two metals the same.
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Figure 1. The current through the wire as a function of time for an applied bias
of 1V. Note that the time dependent formalism produces a steady current.

and 10−8eV. This procedure is furthermore unitary, in the sense that it identically
preserves the trace of the density matrix. In figure 1 is shown the current passing
through the wire as a function of time. Once the external potential has been reduced
to zero, the current becomes steady with small amplitude, high frequency oscillations
whose frequency is determined by the bias, and lower frequency oscillations as a result
of the motion of the mean atomic coordinate.

The main purpose of these simulations is to investigate the heating of the mobile
atom produced by the current. This heating is measured through the total kinetic
energy of the mobile atom: the kinetic energy increases when the ion heats up, and
decreases when the ion cools down. As was observed earlier, there are two components
to the ionic kinetic energy, namely the classical component (T (c)

ν = P̄ 2
ν /2Mν) and the

quantum component (T (q)
ν = Tr{ρ̂∆P̂ 2

ν }/2Mν). In practice we evaluate the change in
the quantum component of the kinetic energy by integrating the quantum component
of the power, ∆T

(q)
ν (t) =

∫ t

0
Tre

{
F̂ν(s)λ̂ν(s)

}
ds/Mν . The two contributions to the

kinetic energy for the mobile atom, as a function of the bias, are shown in figure 2.
There are five important features to note.

(i) First, the energy scale for the quantum kinetic energy is ten times that of the
classical kinetic energy. That is, once heating begins the quantum contribution
swiftly dominates.

(ii) Second, the classical contribution oscillates in time following the motion of the
average position of the mobile atom. In contrast the quantum contribution grows
linearly in time, with the slope (quantum power, w(q)) varying linearly with the
bias; we find ∆w(q)/∆Vbias ≈ 0.26µA, consistent with the quantum perturbation
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Figure 2. The classical and quantum contributions to the ionic kinetic energy as
a function of time for a range of applied biases. Note the factor of 10 difference
between the energy scales for classical and quantum contributions.

result [24].
(iii) Third, the quantum contribution increases as time increases, while the

maximum of the classical contribution decreases as time increases. The
conservation of energy is mostly achieved by a corresponding net decrease in
the terms Tre,1

{
ρ̂
(1)
e Ĥ

(HF )
e

}
+ Ĥ(0). There is very little change to the term

∑
ν Tre,1

{
µ̂

(1)
ν F̂

(1)
ν

}
.

(iv) Fourth, the rate of increase of the quantum contribution grows linearly with the
applied bias, whereas the rate of decrease of the classical contribution is almost
independent of bias.

(v) Finally, there is an increase in frequency of oscillation of the classical kinetic
energy with increasing bias. This is a consequence of the population of anti-
bonding states as the bias is increased, and would be observed in a Born-
Oppenheimer calculation as well.

As observed in our earlier work [3], there are both heating and cooling processes
taking place. The cooling processes are apparent in the classical kinetic energy (which
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is consistent with the strong tendency towards cooling in the Ehrenfest approximation
[3]), while the heating processes are apparent in the quantum kinetic energy (which is
consistent with the quantum perturbation treatment [24]). So the present treatment
captures the features of both these earlier treatments.

There is, however, a fundamental difference in philosophy between the present
treatment and the perturbation treatment. In the perturbation treatment [3, 24]
we consider a reference Born-Oppenheimer surface. We then expand the electron-
phonon interaction to lowest order in the ionic displacements from equilibrium on that
Born-Oppenheimer surface. We treat the unperturbed ionic motion as harmonic, and
compute electron-phonon scattering rates to lowest order in the linearised electron-
phonon interaction. In the present treatment, no reference Born-Oppenheimer surfaces
are invoked, and no assumption about harmonicity is made. The equations of motion
are expanded to first order in the ionic fluctuations about the mean trajectory, but
the integration of these equations beyond that point is not perturbative.

There is one feature missing from the variation of current with time shown in
figure 1. In spite of the significant amount of heating, and the consequent broadening
of the ionic wave functions, there is no obvious reduction in the current which we might
expect from increased scattering. We attribute this to the absence of the second,
and higher, moments which would introduce the width of the ionic wave functions
into the equations for the evolution of the electrons. It would also repartition the
quantum kinetic energy between quantum kinetic and quantum potential energies.
The extension of our correlated electron-ion dynamical equations to second order is
the subject of ongoing research.

To achieve the results given above we have made a number of approximations.
There is the danger that these approximations may result in the electrons no longer
being true fermions. As a check on this possibility, we have evaluated the eigenvalues of
the single particle electronic density matrix during the course of the simulations. If we
are treating the electrons as genuine fermions then the eigenvalues must be bounded
by 0 and 1. From figure 3 we see that the eigenvalues remain clumped about either
0 or 1. The deviations from these values are very small, so the system of equations
indeed preserves the fermionicity of the electrons.

6. Conclusions

The suppression of ionic heating by an excited electron gas in Ehrenfest dynamics [3]
is not due solely to the fact that ions are treated classically. Pure classical mechanics,
applied to ions and electrons, produces the ionic heating that is missing in the
Ehrenfest approximation [3] (even though, of course, classical mechanics imposes its
own limitations). The key error in Ehrenfest dynamics is the mean-field manner
in which the interaction between electrons and ions is treated. In the Ehrenfest
approximation, ions interact with the mean instantaneous electron density ρe(r, t) =
〈r|ρ̂(1)

e |r〉. The quantity ρe(r, t) is an average over the quantum ensemble implicit
in the instantaneous electron density matrix. By exposing ions to this ensemble-
averaged (though still time-evolving) electron density, Ehrenfest dynamics throws out
the microscopic noise in the force exerted by the electrons on the ions, and with it the
ionic heating. In that sense, Ehrenfest dynamics effectively replaces the electron gas,
as seen by the ions, by a structureless fluid [3]. One way forward might be to seek
to introduce correlated force-momentum fluctuations within Ehrenfest dynamics by
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Figure 3. The spectrum of eigenvalues for the single particle electronic density
matrix as a function of time. All the eigenvalues are clumped either about 0
(lower graph) or about 1 (upper graph). A bias of 1V was used for these plots.

generating ripples in the fluid. This could be done, for example, by forming electronic
wavepackets, or by exposing the electrons to a noisy external field. We have seen
in unpublished test calculations that the latter procedure does result in increased
ionic heating in current-carrying atomic wires, though not necessarily by the right
amount. However, this procedure amounts to an attempt to replace the missing
true microscopic electronic noise by macroscopic texture in the quantum probability
density that characterises the electron gas. In other words, it is an attempt to turn the
Ehrenfest electron fluid into a gas of quasi-classical lumps, so as to make its dynamical
behaviour resemble that of the classical particles. Although this procedure remains a
semi-empirical measure, it illustrates a central point: in order to recover electron-ion
correlations, one must treat electrons and ions by an internally consistent form of
dynamics.

The present paper seeks to establish this internal consistency by retaining the
quantum description of electrons while reinstating the quantum nature of ions. This
must be done, furthermore, in a way that preserves the electron-ion correlations. Thus,
it would not have been sufficient for our purposes to reinstate quantum effects in the
ionic motion, while using a mean-field description of the electron-ion interaction. Our
goal, therefore, has been to introduce tractable dynamical electron-ion correlation
functions and corresponding correlation corrections to the Ehrenfest equations of
motion.

We note that, while the formalism that we have presented for introducing
correlations between dynamical electrons and dynamical ions was originally motivated
by the problem of current-induced heating in an atomic wire, for which these
correlations had been found previously to be essential [3], it is considerably more
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general than just this one application. It is founded on a widely applicable assumption,
which is that the ionic wave functions are narrow. It is this which makes it possible
to form an expansion of the combined electron-ion density matrix in terms of powers
of fluctuations of the ionic coordinates about a mean trajectory. This expansion
significantly simplifies the problem of correlating the electronic and ionic degrees
of freedom, but we are still left with a many-body electron problem. To make the
problem tractable, we reduce the many-electron problem to a single-electron problem
by performing a trace over all the electronic degrees of freedom except one. This
introduces both one- and two-electron quantities into the equations of motion. To
remove those quantities depending on more than one electron we make a Hartree-Fock
type approximation, and end up with equations that depend solely on single-electron
quantities.

Using the first moment approximation, we performed a number of simulations on a
simple system consisting of 701 atoms in a chain of which one was allowed to move. We
found that the classical contribution to the kinetic energy exhibits cooling, while the
quantum contribution exhibits very much stronger heating. The cooling is independent
of the bias, while the heating rate is proportional to the bias. The classical contribution
to the kinetic energy behaves very much as it does in the Ehrenfest approximation,
while the quantum contribution behaves very much as it does within the quantum
perturbation formalism of heating. Thus we find that this approach unifies the two
previous approaches. However, it does not introduce increased scattering of electrons
as the ions increase their kinetic energy. This effect requires the introduction of at least
the second moment so that the electrons can respond to the broadened distribution
of the ions.

The similarity between pure classical and pure quantum mechanics in relation to
particle correlations, noise and energy dissipation [3] (which is also discernible in other
contexts [18]) is an example of corpuscular behaviour in quantum mechanics.
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Appendix

Using a real space representation for the ionic degrees of freedom, equation (3) can be
written as

q̂ =
∫

dRdR′Q(R, R′)ρI(R′, R)ρ̃e(R′, R) (A.1)

where ρ̃e(R′, R) = ρ̂(R′, R)/ρI(R′, R) , ρ̂(R′, R) = 〈R′|ρ̂|R〉, ρI(R′, R) =
Tre {ρ̂(R′, R)}, and Q(R′, R) = 〈R′|Q̂|R〉. The operator ρ̃e(R′, R) is an electronic
density matrix in the sense that it has the right symmetry properties with respect
to interchange of electrons, and satisfies Tre {ρ̃e(R′, R)} = 1. If we assume that
ρ̃e(R′, R) varies much more slowly with ionic position than does ρI(R, R′) (a weak
coupling approximation) we can make a Taylor expansion about R̄ giving

q̂ = Q̄ρ̃e(R̄, R̄) +
∑

ν

(
Q∆Rν ãe,ν + ∆RνQã†e,ν

)
+ · · ·
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Q = TrI
{

Q̂ρ̂I

}
ãe,ν =

∂ρ̃e(R̄, R̄′)
∂R̄ν

Q∆Rν = TrI
{

Q̂∆R̂ν ρ̂I

}
∆RνQ = TrI

{
∆R̂νQ̂ρ̂I

}
(A.2)

If we now take traces over electronic degrees of freedom we obtain the following
equations

q̂(1) = Q̄ρ̃(1)
e (R̄, R̄) +

∑
ν

(
Q∆Rν ã(1)

e,ν + ∆RνQã(1)†
e,ν

)
+ · · ·

q̂(2) = Q̄ρ̃(2)
e (R̄, R̄) +

∑
ν

(
Q∆Rν ã(2)

e,ν + ∆RνQã(2)†
e,ν

)
+ · · · (A.3)

We now make the Hartree-Fock approximation for the two electron density matrix
(ρ̃(2)

e (12, 1′2′) = ρ̃
(1)
e (1, 1′)ρ̃(1)

e (2, 2′)− ρ̃
(1)
e (1, 2′)ρ̃(1)

e (2, 1′)) and obtain

ã(2)
e,ν(12, 1′2′) = ã(1)

e,ν(1, 1′)ρ̃(1)
e (2, 2′) + ρ̃(1)

e (1, 1′)ã(1)
e,ν(2, 2′)−

ã(1)
e,ν(1, 2′)ρ̃(1)

e (2, 1′)− ρ̃(1)
e (1, 2′)ã(1)

e,ν(2, 1′) (A.4)

and hence

q̂(2)(12, 1′2′) = − Q̄
(
ρ̃(1)

e (1, 1′)ρ̃(1)
e (2, 2′)− ρ̃(1)

e (1, 2′)ρ̃(1)
e (2, 1′)

)
+

(
q(1)(1, 1′)ρ̃(1)

e (2, 2′) + ρ̃(1)
e (1, 1′)q(1)(2, 2′) −

q(1)(1, 2′)ρ̃(1)
e (2, 1′)− ρ̃(1)

e (1, 2′)q(1)(2, 1′)
)

+ · · · (A.5)
The final approximation is that two definitions of the density matrix for the electrons
are equal, namely

ρ̂e = TrI {ρ̂} ≈ ρ̃e(R̄, R̄) (A.6)

which is obtained from equation (A.2) with Q̂ = 1̂.
The Hartree Fock approximation requires idempotency of the single particle

density matrix, and that its trace be equal to the number of electrons (N). Using
equations (A.3) and (16) we get the following idempotency condition

ã(1)
e,ν = ã(1)

e,ν ρ̂(1)
e + ρ̂(1)

e ã(1)
e,ν (A.7)

and hence

q̂(1) = − Q̄ρ̂(1)
e + q̂(1)ρ̂(1)

e + ρ̂(1)
e q̂(1) + · · · (A.8)

Now consider the commutator of the first moment µ̂
(2)
ν with the two particle

Hamiltonian

Tr2
{

[Ĥ(2)
e , µ̂(2)

ν ]
}

=
∑

1′′2′′2

{
H(2)

e (12, 1′′2′′)µ(2)
ν (1′′2′′, 1′2)− µ(2)

ν (12, 1′′2′′)H(2)
e (1′′2′′, 1′2)

}

=
∑

1′′2′′2

{
H(2)

e (12, 1′′2′′)
(
ρ(1)

e (1′′, 1′)µ(1)
ν (2′′, 2) + µ(1)

ν (1′′, 1′)ρ(1)
e (2′′, 2) −

ρ(1)
e (1′′, 2)µ(1)

ν (2′′, 1′)− µ(1)
ν (1′′, 2)ρ(1)

e (2′′, 1′)
)
−

(
ρ(1)

e (1, 1′′)µ(1)
ν (2, 2′′) + µ(1)

ν (1, 1′′)ρ(1)
e (2, 2′′) −

ρ(1)
e (1, 2′′)µ(1)

ν (2, 1′′)− µ(1)
ν (1, 2′′)ρ(1)

e (2, 1′′)
)

H(2)
e (1′′2′′, 1′2)

}
(A.9)
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If we define the following mean field operators by their matrix elements

H(HF )(1, 1′) = H(1)
e (1, 1′) +

∑

22′

{
H(2)

e (12, 1′2′)−H(2)
e (12, 2′1′)

}
ρ(1)

e (2′, 2)

I(HF )
ν (1, 1′) =

∑

22′

{
H(2)

e (12, 1′2′)−H(2)
e (12, 2′1′)

}
µ(1)

ν (2′, 2) (A.10)

then we obtain

[Ĥ(1)
e , µ̂(1)

ν ] + Tr2
{

[Ĥ(2)
e , µ̂(2)

ν ]
}

= [Ĥ(HF ), µ̂(1)
ν ] + [Î(HF )

ν , ρ̂(1)
e ] (A.11)

For λ̂
(1)
ν we have similarly

[Ĥ(1)
e , λ̂(1)

ν ] + Tr2
{

[Ĥ(2)
e , λ̂(2)

ν ]
}

= [Ĥ(HF ), λ̂(1)
ν ] + [Ĵ (HF )

ν , ρ̂(1)
e ]

J (HF )
ν (1, 1′) =

∑

22′
{H(12, 1′2′)−H(12, 2′1′)}λ(1)

ν (2′, 2) (A.12)

The anti-commutator terms in equation (17) involving K̂
(0)
νν′ , K̂

(1)
νν′ µ̂

(1)
ν and µ̂

(2)
ν

combine to give
∑

ν′

(
−K̄νν′ µ̂

(1)
ν′ + µ̂

(1)
ν′ K̂

(1)
νν′ ρ̂

(1)
e + ρ̂(1)

e K̂
(1)
νν′ µ̂

(1)
ν′ −

1
2

(
K̂

(1)
νν′ µ̂

(1)
ν′ + µ̂

(1)
ν′ K̂

(1)
νν′

))
(A.13)

where K̄νν′ = K̂
(0)
νν′ + Tre,1

{
ρ̂
(1)
e K̂

(1)
νν′

}
.
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