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Abstract

This paper investigates the feasibility of using diffusion
MRI to measure axon-cell dimensions in the white matter
of live subjects. A simple geometric model of white-matter
tissue provides an expression that relates the axon radius
to the diffusion MRI signal. The aim is to determine the
accuracy and precision with which we can estimate this po-
tentially important new biomarker. Precision and accuracy
depend critically on the acquisition protocol. The paper
proposes a general strategy to optimize the experiment de-
sign of in-vivo diffusion MRI experiments. The applica-
bility of the design optimization extends well beyond the
current work to optimizing the acquisition for any model
of the diffusion process. Simulation experiments and results
suggest feasibility of measuring larger axon radii in vivo
on modern MRI scanners using the optimized acquisition
schemes, but that higher gradient strengths are required to
measure smaller axons.

1. Introduction

Diffusion MRI measures the displacement of particles,
usually water molecules, within a material over a fixed time
interval. The material microstructure determines the scatter
pattern of particles within. Hence, measurements of the par-
ticle displacement reveal information about the microstruc-
ture. The standard diffusion MRI technique is Diffusion
Tensor (DT) MRI [7], which assumes a Gaussian model of
the particle displacements. DT-MRI provides two unique
insights into material microstructure. First, it provides
quantitative measurements of the anisotropy of particle dis-
placements and, second, it provides an estimate of their
dominant orientation. In fibrous material, such as white
matter in the brain, the dominant orientations of particle
displacements reflect the dominant fibre directions. Trac-
tography algorithms follow these fibre-orientation estimates
from point to point to determine the connectivity of the

whole brain. Connectivity mapping through tractography
provides fundamental insights in basic neuroscience [8, 25],
reveals differences in disease [15] and assists prognoses af-
ter brain injury, stroke [23] or surgery [27].

The diffusion anisotropy depends on the density and ori-
entational coherence of axon fibers and is often used as an
indicator of white-matter integrity. Simple biomarkers de-
rived from the diffusion tensor, such as mean diffusivity
(MD) and fractional anisotropy (FA), are useful as indica-
tors of major microstructural changes, such as brain damage
through stroke [30] and also correlate with cognitive abil-
ity [9, 34]. These biomarkers also highlight diseased tissue
(eg [33, 36]) and allow monitoring of development [19] and
aging [26].

A limitation of biomarkers derived from the diffusion
tensor is that they are non-specific and do not capture more
subtle effects that might be earlier indicators of disease.
Changes in FA accompany changes in axon density, radius
distribution, orientation distribution or permeability and
cannot distinguish between them. Moreover, combinations
of changes in these features may result in no FA change at
all. Direct measurements of microstructural features would
provide much greater insight into disease mechanisms, re-
covery and development. Such measurements would also
provide basic neuroscientific insight and may predict cogni-
tive performance better than non-specific markers like FA.

Previous work [4, 12, 31, 37] shows that diffusion MRI
can provide estimates of features such as pore sizes in min-
erals and axon sizes, density and permeability in excised
biological tissue. However, all previous techniques rely on
both prior knowledge of the pore orientation and lengthy
data acquisitions (of order days) with high magnetic-field
gradient strengths. The techniques are therefore practical
only on non-live samples. Measuring these features in vivo
is broadly considered impossible. This work initiates a chal-
lenge to that belief. The work is a first step towards a long-
term goal of constructing a diffusion MRI technique that
can measure axon radii, and other direct microstructural
features, in live brain tissue. For in-vivo imaging, we are
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limited to moderate gradient strengths, the axon orientation
is unknown and the tolerable acquisition time is an order of
magnitude lower (around half an hour). This paper is a fea-
sibility study into measuring one particular feature, the axon
radius. Simulation results show that, for a simple and ideal-
ized model, we can tune a 30-minute acquisition to enable
recovery of the axon radii in the range found in the human
brain (����� ���m) with unknown axon orientation. The
result, and the methods developed to obtain it, opens doors
to a new class of in-vivo diffusion MRI technique with a
wide range of new applications.

The next section gives some background on diffusion
MRI and how we use it to infer tissue microstructure. Sec-
tion 3 introduces the simple geometric model of white mat-
ter tissue and derives the corresponding model for the diffu-
sion MRI signal. It then introduces a general method for ex-
periment design in diffusion MRI, which we can use to op-
timize the acquisition protocol for fitting the simple model.
Section 4 evaluates the precision and accuracy with which
we can estimate the axon radius using the optimized acqui-
sition schemes. Section 5 concludes.

2. Background

This section covers essential background on diffusion
MRI. In particular, the following subsections outline the
basic pulse sequence for acquiring diffusion MRI measure-
ments. We then discuss the nature of particle scattering in
white matter and review modelling techniques in the litera-
ture that relate the diffusion MRI signal to features of mate-
rial microstructure. The review leads to the development of
a simple model for testing in section 3. Finally, we review
previous methods in the literature that specifically measure
axon radii using diffusion MRI for comparison with the new
approach developed here.

2.1. The measurement

The standard pulse sequence for diffusion MRI is a
pulsed-gradient spin-echo (PGSE) sequence, which places
equal diffusion gradient pulses either side of a 180-degree
radio-frequency pulse at the centre of the sequence. Fig-
ure 1 shows a diagram of the pulse sequence. The length Æ,
strength and direction � and separation � of the gradient
pulses all control the sensitivity of the signal to particle dis-
placements. These are the three main tunable parameters of
the sequence.

If Æ � �, the normalized signal ���� approximates the
Fourier transform of the distribution of particle displace-
ments (ie the scatter pattern) � at wavenumber � � �Æ�,
where � is the gyromagnetic ratio; see [1, 10]. This Fourier
relationship is the basis of most diffusion MRI methods. For
example, in DT-MRI, � is a zero-mean Gaussian with co-
variance �D�, where D is the DT and � � � is the diffusion
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Figure 1. The pulsed-gradient spin-echo sequence.

time. From the Fourier transform, ���� � �	
�����D��,
which is the standard equation for fitting the DT to mea-
surements [7]. In practice, Æ is rarely negligible. For simple
Gaussian displacements, we can correct for finite Æ by set-
ting � � �� Æ�� [10]. However, � in tissue is not Gaussian
and finite-Æ effects are difficult to model [20].

2.2. Diffusion in tissue

Departures of � from the Gaussian model in brain tis-
sue are well documented in the literature, eg [31]. Specif-
ically, the diffusion MRI signal does not decay “mono-
exponentially” as ��� and/or � increase, as the Gaussian
model predicts. The departure is no surprise. In white
matter, for example, water molecules within axon cells ex-
hibit restricted diffusion, since the axon’s myelin sheath is
largely impermeable to water over typical diffusion times.
Other water molecules (around 20%) are in the extracellu-
lar space and exhibit hindered diffusion. The extracellular
space is normally mostly connected so water percolates and
� is approximately Gaussian [24]. Restricted intra-cellular
diffusion, however, can produce highly non-Gaussian �,
since cell dimensions limit the maximum possible displace-
ment. The literature contains analytic models for � within
simple restricting geometries, such as spheres, cylinders
and parallel planes [11, 22, 29]. These models relate simply
to the diffusion MRI signal via the standard Fourier trans-
form, but, as noted above, this fails to account for finite
Æ. Murday and Cotts [21] derive a model for the diffusion
MRI signal for particles diffusing within spheres that ac-
counts for finite pulse widths by approximating the distribu-
tion of spin phases with a Gaussian. Their approach adapts
easily to other simple geometries such as cylinders [35].
Synthetic measurements from molecular simulations agree
closely with this approximation [6].

Various researchers construct geometric models from
simple primitives, so that � has analytic form, to try to



match diffusion MRI signals more closely than the Gaus-
sian model. For example, Szafer et al [32] construct a brain-
tissue model consisting of non-abutting semi-permeable
square cylinders. Stanisz et al’s model [31] contains non-
abutting spherical glial cells and ellipsoidal axons with
semi-permeable walls embedded in a homogeneous sub-
strate. Assaf and Basser’s model [3] contains cylindrical
non-abutting axons with a gamma distribution of radii. Sen
and Basser [28] add thickness to cylinder walls (like myelin
sheaths) and show that different parameter settings reflect
the observations from brain tissue with various pathological
conditions. Other models, eg [17], use similar primitives to
construct models for � in red blood cells.

2.3. Axon Measurements

A few researchers have used the modelling techniques
from the previous section to measure axon radii. Assaf and
Basser [4] acquire 1024 measurements: 8 repeats of each
combination of � at 8 settings in the range ������ ����s and
��� at 16 settings in the range ��� ���Tm��; Æ � ������s
throughout. The acquisition takes about �� hours. They
use ex-vivo nerve-tissue samples with known fibre orienta-
tion and set� perpendicular to the fibre direction for all the
measurements. They model the distribution of axon radii
with a Gamma distribution and show that the maximum
likelihood distribution agrees closely with a histogram of
radii measured by hand on a histological image of the same
sample. Stanisz et al [31] use a similar acquisition and es-
timate axon density, radius and permeability in an excised
bovine optic nerve.

Various non-model-based techniques aim to measure
axon radii using the diffraction pattern of the diffusion MRI
signal from restricted water molecules in the long-diffusion-
time limit (� � ����	, where � is the pore radius and
	 is the diffusivity) and assuming short gradient pulses
(� � Æ). Callaghan et al [12] first noticed the diffraction
pattern and related its frequency to the sample pore size.
For example, Avram et al [5] recover the radii of cylindrical
polymer tubes with radii ���m and ��m from the diffrac-
tion pattern. Weng et al [37] show that the diffraction pat-
tern successfully determines the spacing between layers in
a phantom constructed from piled acetates immersed in wa-
ter. However, measurements from an excised rat brain fail
to identify the axon radius measured by microscope in [37].

3. Methods

This section first develops a simple model for diffusion
in white matter, then develops a general method for optimiz-
ing the experimental design of diffusion MRI acquisitions
for estimating model parameters.

3.1. Simple Model

We use a model for white matter with two compartments
between which there is no exchange of water molecules.
The model assumes parallel non-abutting cylindrical axon
cells with equal radii and impermeable walls embedded in
a homogeneous extra-cellular medium. Water in the intra-
cellular compartment exhibits restricted diffusion, but the
intracellular medium is also homogeneous with the same
diffusivity as the extracellular medium. Water in the extra-
cellular compartment exhibits hindered diffusion. The nor-
malized MRI signal is then

������ Æ� � 
������� Æ� � ��� 
�������� Æ�� (1)

where 
 � ��� � is the fraction of water molecules in the
intra-cellular compartment, �� and �� are the appropri-
ately normalized signals from the intra and extra-cellular
compartments, respectively.

We model the hindered extra-cellular diffusion as simple
(Gaussian) anisotropic diffusion so that

������� Æ� � �	
�����D���� (2)

where we take the diffusion time � � �� Æ��, D� � �	��
	����

� �	�I is the diffusion tensor, which is cylindrically
symmetric with major eigenvector � in the fibre direction
with corresponding eigenvalue 	� (the diffusivity parallel
to �) and minor eigenvalues 	� (the apparent diffusivity
perpendicular to �), and I is the identity tensor.

For the restricted component, we use Van Gelderen’s ex-
tension [35] of Murday’s model [21] for the MR signal from
water diffusing in cylinders. We omit the lengthy expres-
sion here, but it comes directly from [35]. The model pro-
vides the MR signal ��������� Æ� from water molecules
inside a cylinder of radius � for a gradient perpendicular
to the fibre with strength ��. In general, � is not per-
pendicular to �, but we can decompose � into parallel
�� � ��� ��� �, where � is the angle between � and �,
and perpendicular �� � ��� ��� � components that atten-
uate the signal independently. We assume simple diffusion
parallel to the fiber and that the intrinsic diffusion coeffi-
cient is 	�, as in the extra-cellular compartment. Thus, the
parallel component provides an additional attenuation

��������� Æ� � �	
�����Æ���
�	��� (3)

The signal accounting for both components is then

������� Æ� � ��������� Æ���������� Æ�� (4)

In summary, the parameters of the model are:

� The volume fraction of the intra-cellular compartment,

 , which is equivalent to the axon density.

� The apparent diffusion coefficients, 	� and 	�.



� The fibre direction, �.

� The axon radius, �.

This is an experimental model only and does not account
for many of the microstructural variables in real brain tis-
sue. Some other variables are straightforward to incorpo-
rate. We can include distributions of axon radii by inte-
grating Eq. 4 over a prior on �, as in [4], which assumes
a Gamma distribution of radii. Axon wall permeability al-
lows exchange of particles between the two compartments,
which we can model with a pair of coupled differential
equations [31]. White matter also contains glial cells, which
we might model as a third compartment with spherical re-
striction, as in [31]. We can allow distributions of fibre di-
rections by integrating over a prior on �. We may also be
able to reduce the number of parameters in the model by
one, by using models of tortuosity [24] to estimate 	� from
	�, 
 and �. Other effects, such as abutting cells and loss
of percolation of the extra cellular space are difficult to in-
corporate in analytic models.

3.2. Sampling

This section addresses experiment design, ie, the choice
of measurements that give the most accurate and precise es-
timates of the fitted model parameters. The tunable settings
of the PGSE pulse sequence are �, � and Æ. Each mea-
surement may use a different combination. We seek the set
of combinations that give the best parameter estimates.

3.2.1 In-vivo imaging

In-vivo imaging places three key constraints on the acqui-
sition sequence. First, we must limit the number of mea-
surements to ensure the acquisition time is tolerable for live
subjects. Here we use a limit of ��� measurements, which
modern scanners can acquire in around �� minutes. Sec-
ond, both power and safety constraints limit the maximum
gradient strength we can use to about ����T m�� for hu-
man subjects. Third, in general we have no prior knowl-
edge about the orientation of axons, so we require an ac-
quisition that allows estimation of the model parameters for
arbitrary �. In previous studies into measuring axon radii,
� is assumed known since the orientation of excised tissue
is controllable. Experiments use gradients oriented perpen-
dicular to �, which is assumed to give the most informa-
tion about the intracellular compartment. To handle arbi-
trary fibre directions, we must acquire measurements with
various gradient directions. In a similar way, DT-MRI com-
monly uses “high-angular resolution” acquisition schemes
in which ���, � and Æ are the same for each measurement,
but each has a unique gradient direction with the whole set
distributed evenly on a hemisphere [16].

The class of scheme we investigate here acquires the
same number  of measurements in each of � gradient
directions. The  combinations of ���, Æ, and � are the
same in each direction. We choose the� directions by elec-
trostatic minimization [14, 16], fix them, and optimize the
 combinations of ���, Æ, and �.

3.2.2 Objective Function

The Fisher information matrix and the Cramer-Rao lower
bound (CRLB) [18] are standard tools in experimental de-
sign. The CRLB provides a lower bound on the variance of
a fitted model parameter that often correlates closely with
the true variance.

To optimize the acquisition, we aim to minimize, with
respect to the set of ���, Æ, and � combinations, the sum of
the standard errors of each model parameter

�� �

��
���

��� ��
�

� � (5)

where ��, � � �� � � � ��, are the model parameters and ��
is the standard deviation of ��. We do not know the ��� , so
we use the CRLBs in their place. The general form of the
Fisher information matrix � has ��� ��-th element

��� � �

�
���

������

�
� (6)

where � is the log likelihood given an appropriate noise
model and � denotes expectation given that noise model.
For Gaussian noise,

��� � ���
���
���

�
��

���

��

���

�
���	�

�
	��������� Æ��� (7)

which is simple to derive from Eq. 6 [18]. The CRLB for ��
is the �-th diagonal element of ���, so we replace �� by

� �

��
���

���������
�

� � (8)

The function � provides the basis of an objective func-
tion that we can minimize with respect to the  combina-
tions of ���, Æ, and �. However, � depends on specific
choices for the parameter values ��, which take a range of
values. The full objective function therefore integrates �
over prior distributions on each ��. Here, we assume Æ-
function priors on the model parameters 
 , 	�, 	� and �.
In particular, we set 
 � ���, 	� � ���� ���� m� s��, and
	� � ���� ���� m� s�� throughout. The next section uses
a variety of settings for the axon radius �.

We cannot use a Æ-function prior for �, however, as we
require good parameter estimates for arbitrary fibre orien-
tation. For orientation independence, we average � over a



set of directions. One approach is to average � over a large
number of evenly distributed sample directions. To reduce
computation times, we instead construct a set of worst case
� and average � over only them. To construct the set, we
choose the first element at random and minimize � to ob-
tain an initial optimized scheme. We find the �, in a set ����
of ��� sample directions evenly distributed over the sphere,
that has the largest � with the optimized scheme. We add
that � to the set, repeat the optimization and iterate until the
� � ���� with the largest � is already in the set. The pro-
cess usually converges with the set containing only three or
four elements.

3.2.3 Rician CRLB

The noise on MRI measurements in not Gaussian, but Ri-
cian [13], so that

� � ��� �
��

��
��

�
� ��

��

�
�	


�
�
�� � ���

���

�
� (9)

where ��, � � �� �� �� � � � , are the modified Bessel functions
of the first kind; �� and � are the measurement and signal
(predicted by the model), respectively, and we drop the de-
pendence on the pulse-sequence parameters from the nota-
tion. The Rician noise model assumes the signal is the mod-
ulus of a complex measurement with zero-mean Gaussian
noise, with variance ��, on each component. The log like-
lihood of a set of measurements comes from taking logs of
Eq. 9 and summing over all measurements to obtain, drop-
ping constant terms,

�
 �

���
���

��� ��

�
�� ���
��

�
� � ���� �

��

� �
���

�

���
� (10)

We can derive an alternative CRLB from the general ex-
pression for the Fisher information matrix in Eq. 6 that uses
a Rician noise model. We need to compute the expectations
of the second derivatives of �
 with respect to the �� and �.
For example,

�

�
���

������

�
�

� �

�

���

������

� � ���d ��� (11)

The following expectations are straightforward to compute,
although the algebra is lengthy and we omit the details here:

�

�
���

������

�
�

���
���

�

��
���
���

���
���

��� ���

�� (12)
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� � ��� (13)
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� � ���� (14)

where

�� �

� �

�

��

��
�

�

�
�� ��

��

�
���
�

�
�� ��

��

�
� � ���d ��� (15)

The function �� does not have closed form and we have
to compute it numerically. In practice, we compute a look-
up table of sampled values and use linear interpolation to
estimate it during optimization. Andersson [2] derives the
Rician CRLB for the specific case of the diffusion tensor
model. The new expressions above are for the general case.

3.2.4 Optimization

Optimizations of this type are complicated by many local
minima in the objective function. We use a stochastic opti-
mization algorithm, SOMA (Self-Organizing Migratory Al-
gorithm) [38] with default settings, to perform the mini-
mization of � averaged over sample �. In each experiment,
we repeat the optimization five times and pick the result
with the smallest final value of the objective function.

During minimization, we enforce several constraints.
First, �� � Æ� � P180, where P180 is the length of the
���-degree pulse, which we set to �����s. Second, Æ� � �.
Third, � 	 ���� 	 ��	
, where ��	
 is the maximum
available gradient strength. We also need to account for
changes to the echo time, TE, required for the sequence,
since T� effects reduce the signal more for longer TE, which
increases the significance of the noise. To account for the
effects of varying TE, we set � � �� �	
���	���� �
Æ���T�� in the Fisher information matrix in Eqs. 6 and 12,
where �� is the actual noise level. We set T� � ���� s,
which is typical for white matter, and assume a base setting
of TE � ��� s. Thus, if �� � ����, the signal to noise ratio
(SNR) of the unweighted signal is �� when TE � ��� s.

4. Experiments and Results

This section contains some experiments and results that
test the feasibility of measuring � using experimental de-
sign procedures from the previous section. All experiments
use the simple model of section 3.1 and we use only syn-
thetic data throughout. The experiments test two settings of
��	
. One setting is ��	
 � ����Tm��, which is at the
limit of what modern human scanners can achieve on live
subjects. The other is ��	
 � ���Tm��, which is easily
achievable in small-bore animal scanners.

4.1. Optimized acquisition schemes

First, we compare qualitatively some acquisition
schemes that the optimization procedure in section 3.2 pro-
duces. For illustration, we set � � ��m, ��	
 �
���T m��, �� � ����, � � �� and  � �. Table 1
shows the optimized acquisition scheme for the objective



����T m�� ��s Æ�s �� s mm��

����� 0.025 0.020 20087
����� 0.026 0.018 18771
����� 0.029 0.016 6035
����� 0.013 0.008 1744

Table 1. Optimized combinations of ���, Æ and � from the Gaus-
sian CRLB objective function. The table includes the more famil-
iar quantity � � �����, where � � �� Æ��.

����T m�� ��s Æ�s �� s mm��

����� 0.024 0.019 17370
����� 0.027 0.016 3580
����� 0.012 0.007 1216
����� 0.012 0.007 1205

Table 2. Optimized combinations of ���, Æ and � from the Rician
CRLB objective function.

function based on the Gaussian CRLB and Table 2 shows
the optimized scheme for the Rician CRLB.

The Gaussian CRLB objective function tends to favour
higher levels of diffusion weighting that results in measure-
ments with very low signal to noise. The Rician version
penalizes high diffusion weighting more. The difference is
marked in this example where � is close to the limit of the
measurable range (see later sections). At higher �, opti-
mized schemes become similar for the two noise models.
Simulations (not shown) demonstrate clear superiority of
acquisition schemes optimized using the Rician CRLB and
we shall not consider the Gaussian CRLB further.

4.2. Choice of 

This section compares different combinations of � and
 . We optimize the acquisition separately for each � �

�� �� �� ��� ����m with each  � 
�� �� �� �� �� �� ��� ���
and � � ���� . We then compute the value of the ob-
jective function, � in (8), for each � � ����. Figure 2
plots the mean of those ��� values of � for each combi-
nation of � and  at each ��	
. The CRLB is lowest
for � � ��m, but comparable for �� and ���m and, for
��	
 � ���T m��, ��m. The objective function is much
higher (off the graph scale) for � � ��m, suggesting that
lower � is harder to estimate. Values of  � 
�� �� �� ��
give the lowest � and  � � is best most often. We use
� � ��� � � for all the remaining experiments.

4.3. Axon radius estimation

Next we use simulation experiments to check the accu-
racy with which we can recover known parameter settings
using the optimized acquisition schemes. In all the simu-
lation experiments, we set all the model parameters to the
values listed in section 3.2.2 and synthesize data from the
model using the acquisition scheme we are testing. We
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Figure 2. Plots of the mean � over ��� orientations against � at
various � for ���� of ���� (left) and ��� T m�� (right).
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Figure 3. Histograms of samples drawn from posterior distribu-
tions on �. Experiments with each setting of � use schemes opti-
mized for that specific �.

add synthetic Rician noise with �� � ����, to give an un-
weighted SNR of �� if TE � ��� s, which is achievable with
sufficiently large voxel size. We use T� � ���� s to estimate
a corrected SNR using the TE required for each specific ac-
quisition scheme.

We use a simple Markov Chain Monte Carlo (MCMC)
procedure to examine the posterior distribution of the model
parameters given the data. We use broad uniform priors for
all the scalar model parameters. The prior on � is uniform
on the sphere. The prior on the noise-level parameter � is
a broad uninformative Gamma distribution. Proposal distri-
butions are zero-mean Gaussians with standard deviations
chosen manually to give suitable acceptance rates. Samples
of the model parameters come from a Metropolis-Hastings
sampler; samples of � from Gibbs sampling. We set the
initial parameters to the known correct values to speed up
convergence. We use a burn-in period of ��� ��� itera-
tions, which ensures convergence, and a sampling interval
of ����, which gives approximately independent samples.
We gather ��� samples in each experiment.

Figure 3 plots histograms of samples of the posterior dis-
tributions on � for each of the various true � at each ��	
.
For each histogram, we run ten separate MCMC experi-
ments each with a different setting of � and independent
noise, so the total number of samples is ����. Each experi-
ment uses the acquisition scheme optimized for that specific
value of �, which should give the best possible chance of
recovering � precisely and accurately.
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Figure 4. As figure 3, but experiments schemes optimized only for
� � ��m.

The axon radius is easiest to estimate when it is in the
range ��� ���m. Variance of the posterior increases as
� increases or decreases from this range. For ��	
 �
����T m��, � � ��m and � � ��m are identifiable as
� � ��� ��m, but are indistinguishable from each other and
smaller radii. However, at ��	
 � ���T m��, the posterior
distributions when � � �� ��m separate and are centred on
the correct values. The results in figure 3 are an upper bound
on what is achievable, since they come from the acquisition
optimized individually for each�. For comparison, figure 4
shows similar results using the same acquisition sequence
(that optimized for � � ��m) throughout the experiments
with each ��	
. Histograms are slightly broader, but the
trends remain similar. Further improvements should come
from optimizing � averaged over the range of �.

5. Discussion

In summary, we have discussed models that relate the
diffusion MRI signal directly to parameters of the tissue mi-
crostructure that are potentially useful biomarkers. We have
constructed a simple geometric model of white matter that
relates parameters such as the axon radius and density to the
diffusion MRI signal. We have developed a novel method
based on the CRLB to optimize the experiment design for
fitting the model parameters in vivo where the axon orien-
tation is unknown. The experiment design technique does
not depend on the specific model and will work with any
model that relates the diffusion MRI signal to microstruc-
tural parameters of interest. In particular, it could also pro-
vide optimal acquisition schemes for DT-MRI, which are
not yet agreed. Experiments here test the feasibility of mea-
suring axon radii in vivo using the optimized acquisition
schemes. Results suggest that, on a modern human MRI
scanner, we can distinguish bundles of axons with radii of
�, �� and ���m from each other and from smaller radii,
but axons with radii of ��m or less are indistinguishable
from each other. This suggests that fitting models of axon
radius distributions, like that of [4] is feasible in vivo using
a suitable acquisition scheme. As we increase the available
gradient strength, smaller radii become distinguishable. At

��	
 � ���T m��, we can distinguish radii of � or ��m
from each other and from smaller radii, which covers the
useful range for brain tissue.

Here, we focus only on one parameter of the model,
which is the axon radius. The other model parameters are
also potentially interesting biomarkers. In particular, the
intra-cellular volume fraction, 
 , provides a measure of
axon density. Although not shown here, the precisions with
which we can estimate the other model parameters follow
similar trends to �. Future work will evaluate the depen-
dence of results on the other model parameters.

Further work is required for practical application of the
work. The model we test here is very simple and may need
to incorporate other effects, such as distributions of radii,
permeability and compartmental diffusivity and T�, to pro-
vide realistic and useful biomarkers. However, the structure
of brain tissue is so complex that any biomarker estimated
in this way will always be an approximation. Even this
simple model may provide crude in vivo measurements that
correlate with cell dimensions closely enough to be useful.
Current work focuses on implementing the optimized ac-
quisition schemes for testing on human and animal models.
Further work will also improve the optimization for exper-
iment design, for example by averaging � over appropriate
prior distributions on the parameters, and further optimiza-
tion of the MCMC fitting procedure is certainly possible.
We also intend to investigate alternative pulse sequences for
making diffusion MRI measurements, which may prove ad-
vantageous over PGSE.
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