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Abstract: 
Numerical comparison of spaces with one another is often achieved with set scalar measures such as 
global and local integration, connectivity, etc., which capture a particular quality of the space but 
therefore lose much of the detail of its overall structure. More detailed methods such as graph edit 
distance are difficult to calculate, particularly for large plans. This paper proposes the use of the graph 
spectrum, or the ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space 
as a whole. The result is a vector of high dimensionality that can be easily measured against others for 
detailed comparison. 

Several graph types are investigated, including boundary and axial representations, as are several 
methods for deriving the spectral vector. The effectiveness of these is evaluated using a genetic 
algorithm optimisation to generate plans to match a given spectrum, and evolution is seen to produce 
plans similar to the initial targets, even in very large search spaces. Results indicate that boundary 
graphs alone can capture the gross topological qualities of a space, but axial graphs are needed to 
indicate local relationships. Methods of scaling the spectra are investigated in relation to both global 
local changes to plan arrangement. For all graph types, the spectra were seen to capture local patterns 
of spatial arrangement even as global size is varied.  
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1. Introduction 
Various graph types, including adjacency, axial and boundary graphs (Hillier & Hanson 1984; Turner 
2005), have been used to effectively represent spaces, the comparison of which is then normally 
achieved by set scalar measures such as integration, control (Hillier & Hanson 1984) or clustering 
coefficient (Watts & Strogatz 1998) derived from these. These measures capture locally that particular 
quality of the space, but are not sufficient to identify the graph as a whole uniquely. For detailed 
statistical analyses, database search, and applications that may refer to the overall structure of the space 
a richer quantification of the entire space is desirable. This paper introduces the use of graph spectral 
analysis to automatically represent spaces by graphs derived from the plan. The resulting 
representation is sufficiently rich to be used not only for detailed statistical comparison, but also in an 
optimisation algorithm to generate plans with similar spatial configuration. Both axial line and 
boundary graphs are evaluated as methods of representation, to determine which is the more 
appropriate basis for measurement. 

 

Several approaches to similarity measurement have been based on small graphs of adjacency or 
connectivity of spaces in plan. Dalton and Kirsan (2005) use the edit distance between two graphs to 
measure the similarity between buildings, and have shown that these correlate with cultural similarities 



and differences. Jupp and Gero (2003) suggest an analysis based on similarity and complexity 
measures of semantic graphs. With very large graphs as generated by axial lines (Turner 2005) or 
visibility graph analysis (Turner et al. 2001), calculation of similarity becomes more difficult. Graph 
spectra have been used in image analysis and pattern recognition to effectively index, classify and 
retrieve complex, high dimensional data (Luo et al. 2003; Robles-Kelly & Hancock 2003) and are used 
here in a similar manner. 

Graphs may be initially derived from a given plan in several ways, each one encoding different 
features of spatial structure. This paper examines which graph types are necessary to capture the 
arrangement of the plan both in terms of topology and specific shape at both the local and global level. 
A definition of the graph types is given in the next section, followed by a description of the spectral 
feature vector. Section 4 examines the ways in which different spectra are affected by global and local 
variations in a set of test plans. To strictly and fully represent spaces, it is necessary that a procedure 
exists whereby any given plan can be mapped to exactly one spectrum, and also that the resulting 
spectrum can be mapped to exactly one plan. This second criterion is known not to hold true for graphs 
of small size, but it is thought that almost all graphs have unique spectra, increasingly so as the number 
of nodes increases to the level of detail in real plans (Van Dam and Haemers 2002), and in Section 5 a 
genetic algorithm (GA) is used to generate plans to match a given arrangement, thereby evaluating the 
effectiveness of the representation. The objective function is set to minimise the Euclidian distance 
between the generated population and a set target as represented by the graph spectra. Evolution is 
seen to produce plans similar to the initial targets, even in very large search spaces.  

2. Selection of Plan Features 
The plans used in this work are of office interiors, and consist of units of paired desks and chairs 
arranged orthogonally, but this overall structure is generic enough to just as well represent units of 
built/open space at an urban scale or other spaces. The situation of a desk, however, highlights the fact 
that there are two types of interaction involved at each unit: the connection of the chair to an open 
space of the floor, and the possible connection of the desk itself to other desks through which 
documents, messages and conversation might pass in the course of normal office activities. Three map 
types used by Hillier and Hanson (1984), the axial, convex and interface maps, result in graph 
representations of space, but this drawing of space alone does not capture the relationship between 
desks that face one another, so an additional graph of desk adjacencies is introduced. 

Three map types have been used, two for open space and one for desk connections. Each captures 
different features of the plan, and their use alone and together will be compared. Common to all three 
is that the basic unit if spatial division is the desk or chair grid point rather than the more generic 
notion of the convex space. This follows roughly from the terminal nodes of buildings used in the 
interface map (Hillier and Hanson 1984), which are essential in expressing connection in systems 
consisting of two types of space, and is also a standard which is economical to implement, particularly 
for the iterative optimisation in section 5. On this basis three graphs are constructed: a visibility graph 
between seats, and two versions of a modified boundary graph: one for open spaces and another for 
desk groups. 

2.1. Axial / Visibility Graph Features 
An algorithm was implemented to generate axial (visibility) maps from the cellular desk structure. This 
differs from the axial line map defined by plan vertices, and is more like Depthmap’s (Turner 2001) 
grid visibility analysis, but the use of the set modules with chair points as the only possible nodes 
greatly reduces the computation time necessary to generate a graph. Graph nodes in this representation 
are not the lines themselves, but the chair points in the plan. 

 



The algorithm simply draws links between from each chair node to every other chair node that can be 
connected by an unobstructed, direct sight line through empty space. Three examples of the resulting 
axial graphs are displayed in figure 1 (a). 

2.2. Boundary Graph Features 
The boundary graph treats as a unity all space within a given boundary, regardless of its shape, and 
therefore captures all immediate or continuous spatial connections, regardless of sight. The basic node 
is still taken as the individual chair point, but empty space is also considered and links are drawn only 
between nodes that are directly face-wise adjacent. A chair point is connected to any other 
immediately behind or to the side or to an open space onto which it backs. All adjacent void spaces are 
then grouped together into one single node, regardless of size, representing all continuous space within 
the boundaries formed by the desks. This is roughly equivalent to the interface map (Hillier and 
Hanson 1984). Boundary graphs are shown in figure 1 (b). 

 
Figure 1. Graph types displayed on three different plans 



 

2.3. Desk Graph Features 
Desk graphs capture the relationships between adjacent desks. They are generated by the same method 
as the boundary graphs, except the graph nodes are the desks rather than chairs, and these are 
connected to all other adjacent desks. The resulting graph will generally not be unified, but segmented 
into discrete sub-graphs each corresponding to a connected group of desks. The desk graphs for three 
plans are in figure 1 (c).   

3. Defining the Spectrum for Plan Representation 
The spectrum of a graph, or ordered set of eigenvalues of its connectivity matrix, is useful in that it can 
be used to represent the graph as a single feature vector. This spectrum is useful as a representation of 
the graph because it is invariant under all permutations of the original matrix, and therefore identical 
for all isomorphic graphs. (Zhu and Wilson 2005) While it is possible that two non-isomorphic graphs 
can share the same spectrum, it has been suggested that this occurs less frequently as the graph size 
increases (Zhu and Wilson 2005) and therefore almost all graphs, particularly of the sizes yielded by 
plans, may be uniquely determined by their spectrum (Van Dam and Haemers 2002).  

For any graph with a set of nodes V and a set of edges E, the most straightforward way of representing 
the graph in matrix form is to use the adjacency matrix A, a |V| × |V| matrix defined by:   

    ⎧  1 if (i,j) ∈ E 
   A(i,j) = ⎨ or 

⎩  0 otherwise.      (1) 

Alternatively, the Laplacian is often used to represent the graph. Spectra of the Laplacian or its 
derivatives have been shown to be superior to the straight adjacency matrix for graph representation 
and classification (Zhu and Wilson 2005). In particular, they have been shown to have a higher 
correlation to graph edit distance (the number of edges deleted or added to change one graph to 
another) and result in fewer cospectral graphs (graphs which have identical spectra). Where the 
elements of a diagonal matrix D = diag( deg(V1), deg(V2), … deg(V|V|) ) indicate the degree of each of 
the nodes, the Laplacian is constructed from this and the adjacency matrix 

   L = D – A.        (2) 

The spectrum of the graph is found by taking the eigendecomposition of the matrix representation. The 
eigenvalues λ and eigenvectors φ for A are given by solving for 

A = ΦΛΦT       (3) 

or 

L = ΦΛΦT,        (4) 

where the matrix Φ = ( φ1 | φ2 | … | φ|V| ) contains the eigenvectors as columns and the matrix Λ = 
diag( λ 1, λ 2, … , λ |V| ) contains the eigenvalues as diagonal elements. The spectrum is defined as the 
set of ordered eigenvalues 

   { λ1, λ2, … , λ|V| }.      (5) 

3.1. Assembling the Feature Vector 
Several approaches may be taken to assembling the spectral feature vector from the above set. It is 
essential that this be ordered consistently for all graphs, and for ease of comparison that it be a constant 
length.  



While graph nodes and eigenvalues of the adjacency matrix have no intrinsic order, the spectrum has 
to be sorted such that any isomorphic graphs will have the same order of eigenvalues. In many 
analyses (Luo et al. 2003), values (and corresponding vectors) are sorted by absolute magnitude, such 
that |λ1| > | λ2| > … > |λ|V|| and to ensure a constant length the spectrum is a vector composed of the first 
n values: 

   S = ( λ1, λ2, … , λn )T.      (6) 

This can be problematic when the set of eigenvalues contains several values that are of the same 
magnitude, either positive or negative, and the resulting sort yields a different order for identical 
graphs. Sorting by actual value, including the sign such that λ1 > λ2 > … > λ|V|, avoids this problem and 
is the method used here. 

4. Local / Global Features and Scale Changes 
In representing the plan as a whole, both global attributes such as overall plan size, and local attributes 
such as desk configuration, are relevant. This section examines the plan spectra to determine the effect 
of changes to the plan at both scales on the feature vector. 

4.1. Capturing Local and Global Features in the Spectrum 
The spectra of two plan types were compared to judge the effects of global vs. local changes to each. 
In the plots below (figure 2), the same local arrangement of desks is repeated a different number of 
times for both the straight rows and the outward facing clusters, but the global configuration is 
changed by increasing the plan area and total number of desks. The spectra of the boundary graph 
(left) and axial graph (right) are shown, with axes scaled to the same overall length for ease of 
comparison. In both cases the overall distribution of values in the spectrum and their magnitudes 
appear identical, but are spread over a wider number of values when the plans increase in size. Spectra 
have a total number of values equal to the number of nodes in the graph, thus doubling the graph 
increases this.  

Local changes to a simple pattern of desks affect both the values in the spectrum and their distribution. 
In the plans in figure 3, extra desks are added across the horizontal rows in the desk clusters, which 
increases the values of the spectrum and its overall length. Although the precise relationship is not 
immediately obvious, values appear to be roughly proportional to spatial integration – in particular the 
largest magnitude eigenvalues, which increase as the number of desks adjoining the open space grows. 

The number of positive or negative ‘steps’, or distinct values in the spectra of the boundary graphs 
shown, is always equal to the number of nodes of distinct connectivity (degree) values in the graph, 
and the number of units within each ‘step’ is equal to the number of nodes of that type. In the bottom 
plan, for example, the first step is of two values of very high magnitude, corresponding to the two main 
open spaces. This is followed by four smaller steps corresponding to the four levels of integration 
along the rows of desks. These steps decrease appropriately in the smaller plans above. 

4.2. Choices of Graph Spectra 
The full graph spectrum has |V| values, or the number of nodes in the corresponding graph, but a 
feature vector of constant dimensionality is required even when comparing different sized graphs. To 
achieve this, the feature vector length n must be predetermined, and then either truncated by discarding 
some eigenvalues as in (6) or interpolated over n new values. In the second case a feature vector of 
dimensionality n is derived by performing a cubic spline interpolation of the |V| values in (5) to a new 
vector 

S = ( l1, l 2, … , l n)T.        (7) 

 



 
Figure 2. Global changes to the plan increase the length of the spectrum, but not the distribution of values. 

 



 
Figure 3. Adding nodes locally to the plan increases the magnitude of the spectral range, and the number of 

distinct values. 

 

Luo et al. (2003) suggest truncation as in (6), however the similarity of spectra as changes are made to 
global configuration (figure 2) would suggest that interpolation is also appropriate. The two methods 
were examined with the spectra of both the adjacency matrix and the Laplacian. 

Zhu and Wilson (2005) measure the effectiveness of spectral representations by comparing sequential 
distances between spectra with known edit distances when creating the graphs themselves. A similar 
method is adopted here in a comparison of the spectra of plans that differ by a standard amount. Both 
global and local changes are considered. A new plan set, SeqPlan, was used, consisting of four groups 
of 100 plans, each of which varies monotonically in ten steps of two parameters. One of these 
parameters is local (number of desks to a group), and the other is global (overall plan size). Each of 
these four plan sets has a different general configuration of desks.  

The distances in parameter space are taken as the number of additions to an initial plan: with the linear 
addition of between one and nine extra desks along a group, or the increase in plan size in increments 
of two units from 12 x 12 to 30 x 30. Spectral feature spaces that best describe the incremental 



progression should be those in which the Euclidian distances between spectra have the same linear 
progression – i.e. the ideal output in the plots in figure 4 will be linear. 

Each plot in figure 4 displays these distances for each of the four plan types in the set for a single plan 
progression (solid line) and for the mean over ten of a similar type (dotted line). The mean relative 
deviation was measured for each. Progressions are shown for both the global and local parameters. The 
spectra are either interpolated or truncated to 100 dimensions, and spectra from both adjacency 
matrices (3) and Laplacians (4) are used. 

 

All four spectral methods display roughly linear approximations to the increasing distances in 
parameter space. The choice between the use of the adjacency matrix or the Laplacian for the spectrum 
does not appear to make a great deal of difference, although the Laplacian slightly outperforms the 
adjacency in three out of four cases. 

When global changes are made (plan sizes), the interpolated spectra perform reasonably well as 
suggested by the tests in section 4.1 (figure 2), however local changes (desk groups) are represented 
far better by truncation. Truncation yields a lower deviation than interpolation in each case. 

 

Figure 4. Incremental plan changes are plotted as distances in four spectral feature spaces. 

 

5. Optimisation toward Plan Spectra 
To investigate the use of the GA in plan generation, optimisation was initially performed toward a 
preset goal of a given plan. This plan can be considered a prototype, as it is a single, real example that 
the optimisation algorithm is set to match. Evaluation of success in this case would thus be a simple 
comparison of how similar the result was to the initial goal plan, and so the objective function is a 
distance measurement in the n-dimensional space of the spectra. More precisely, the fitness is taken to 
be inversely proportional to the distance between a given plan’s graph and that of the given prototype: 

        ___________________ 
  f(i) = 1 /  √ ∑j=1:n ( Si (j) – Sgoal (j) )2     (8) 

where S is the spectrum as given in (6) or (7). 



The genome representation chosen was the simplest known to avoid (as much as possible) building in 
bias and as a general test of the method: each possible desk position on the planning grid is equated 
with a single base-6 allele indicating the orientation or absence of a desk. As a result the search space 
involved is vast (6n² for an n × n plan or roughly 10112 for even a small plan of n=12), and seemingly 
simple changes to plans as rotation of sections, mirroring, etc., can not be expressed except by 
individual changes to desks. It is highly unlikely that a matching plan will be found using this 
representation in a reasonable length of time, but the analysis of the results can indicate what plan 
features are being captured by the graphs. Boundary graphs only are investigated in the following 
section, and the results then compared with the use of other graphs. 

5.1. Plan Matching with Boundary Graphs 
The algorithm (a GA with a population size of 35) was tested with goals of two generic plan types: an 
arrangement of simple rows, and a linked set of outward facing clusters. The diagrams below show 
first the prototype plan (left), then the result of the fitness evaluation over time counted in generations, 
and the resulting final output when the optimisation was terminated. 

 
Figure 5. Results of a GA search for a boundary graph spectrum taken from straight rows (above)  

and convex desk groups (below). 

 

The results initially appear unpromising, except for the replication of the gross topology of the second 
plan: a series of two separated spaces divided by a central row of desks. A closer inspection reveals 
that the finer details of desk adjacency have also been duplicated, however, inasmuch as they are 
captured by the boundary graph alone. The graph represents all connected open spaces as a single 
node, and each chair as a separate node, with connections between face-wise adjacent neighbouring 
squares. The graph in the second test plan consists of two unconnected sub-graphs, each of which has a 
single node (of white space) connected to 12 pairs of adjacent desks and 6 single desks. The resulting 
optimised solution has a similar structure, except the number of pairs is only 10 and the number of 
connected single desks is 5 or 7. The structure of the first test plan is less clear, but the general 
arrangement of three main open spaces joined by groups of desks (in many cases they are three, but not 



all) is captured. In both cases the number of desks or ratio of empty space is also approximately 
correct. 

5.2. Correlation between Topology and Fitness Level 
A sharp increase in fitness is evident in the evolution of the plan to match the second test. Fitness 
jumps from about 0.5 to 0.8 in just a few generations around generation 1600. Because of the 
simplicity of the genome representation used, it appears likely that this was due to a sudden arrival at a 
large feature match like the overall topological division into two sub-graphs. This is examined more 
closely by comparing the spectra and fitnesses of very similar plans that do or do not display this 
topological division. The initial prototype plan is shown in figure 6 (top), with its spectrum to the right. 
Below this are the plan produced by the genetic algorithm, and finally the same plan with several desks 
removed to connect the two separated spatial regions.  

 
Figure 6. Spectra of Topologically Similar (a & b), and Distinct Plans (c). 

 

The spectra appear very similar to one another in overall shape and magnitude, but in fact the 
numerical difference between the two lower plans is significant. The distance of the optimised plan 
(centre) from the goal is 1.2953, resulting in a fitness of 0.7780, whereas the distance of the linked 
plan below from the goal is 7.8061, resulting in a fitness of only 0.1281. This difference is largely due 



to the change in the eigenvalues of second greatest magnitude (plotted first and last on the horizontal 
axis, above), which correspond to the division of the graph into two distinct sections. 

The overall form of the plan in each case looks unlike the initial goal, in part because of the vast search 
space and relative simplicity of the genome to efficiently represent patterns. But the plan similarities 
and the degree to which the spectrum of the evolved graph resembles its goal indicate this is due to the 
inherent limit of what the boundary graph alone can represent. As a method of fitness measurement, 
the distance between spectra appears to be an appropriate indication of overall topology, and the 
optimisation appears successful in capturing the essential topological features represented by the 
boundary graph chosen. 

5.3. Using Multiple Graphs and Spectra for GA Search 
The use of the other graph types will be used to clarify the results obtained in section 5.1 above. Graph 
representations based on unobstructed lines of sight, either as axial lines or grid visibility graphs, are 
the most prevalent in space syntax analyses and the type represented in Depthmap. While the boundary 
graphs used above capture only the topology of the space, axial graphs record what can be seen from a 
given point, and therefore the shape of the space: the typical minimal line axial map produced by 
Depthmap, for example, represents each convex space by a retained axial line. The following tests 
compare the result of plan matching by GA with the use of the spectra of axial graphs as described in 
section 2.1, with those combining both axial and boundary graphs. 

A further refinement to the representation is also tested. Axial graphs do not typically have self 
connected nodes, that is diag(A) = 0 for the adjacency matrix, which effectively removes nodes which 
have no other connections from the graph entirely. Isolated desks as appear in the results of section 5.1 
are therefore invisible, and ignored in the similarity measurement that determines fitness. The results 
are compared for both versions of the axial graph: without self-connected nodes (figure 7 a, b) and 
with self-connected nodes (figure 7 c, d, e). 

The largest improvement in terms of the characterisation of the open spaces (and removal of 
unconnected nodes) came from connecting each node to itself, thus allowing unconnected nodes to 
appear on the resulting graphs and thereby providing an automatic penalty to the fitness. 

In none of the examples is the original plan duplicated exactly, but as mentioned in section 5 it seems 
unlikely that the genome representation would do so even with a graph that captures all the features of 
the plan, simply because of the vastness of the search space. In most cases the fitness measurement 
rises initially but appears eventually to plateau at an incorrect local optimum, a result of the genome 
only expressing individual desks and not larger scale patterns. The rise in fitness appears smoother 
however when two graph types are used than with one. 

The use of both graph types together also produces better evolved plans. It appears from the GA output 
that the axial method is far better at characterising the space than the boundary graphs alone, yielding 
clearer reconstructions of the initial plans. The plan in figure 7 (d, right) very closely resembles the 
convex group arrangement of its goal. If evolution is continued for several thousands of generations 
the plan improves to quite closely approximate the target plan (figure 7 e). The addition of both the 
boundary and desk graphs to the axial appears to yield marginally better results, although with a 
further increase in computation time. This similarity and correspondence of measured fitness to 
perceived plan similarity indicates that the essential features of the plan are indeed captured by the 
combination of plan spectra. 



 
Figure 7. Comparative results of a GA search for two plans using various graph types: (a) axial graphs, (b) axial 

and boundary graphs, (c) self-connected axial graphs, and (d, e) self-connected axial and boundary graphs. 

6. Conclusion 
The spectra of various graphs has been shown in this paper to be an effective representation of spaces, 
which can be used to measure similarity of both global and local spatial structure. For all graph types, 
the spectra were seen to capture local patterns of spatial arrangement even as global size is varied, and 
thus may be used in comparing plans of differing overall scale. They constitute a reliable metric of 
plans, in that similar plans have spectral vectors that fall close together in a high dimensional space, 
while very different plans fall farther apart (section 4.2). In GA search, even with a large search space 
and an intentionally restricted genome, the resulting plans resembled the goal sufficiently well to 
suggest that the spectrum encodes almost all of the spatial structure of the plan. 



Several graph types were examined, and results indicate that boundary graphs alone can capture the 
gross topological qualities of a space, but axial graphs are needed to indicate local relationships 
concerned with the actual shape of spaces and lines of sight. Using both the boundary and axial graphs 
together better represents the overall geometry of the space, and allows for a finer and more effective 
measurement of similarity. The result in a GA search appears to be that the fitness increase is smoother 
and the final plan more closely resembles the goal, as it is less likely to become trapped in a local 
optimum. 

As a high dimensional vector the spectrum represents a more detailed description of the overall 
structure of the space than any single graph measurement taken in isolation, and can therefore be used 
for more detailed statistical comparison. Unlike string edit distance (Dalton and Kirsan 2005) and 
similar measurements, it is straightforward to calculate even for large graphs and map to a universal 
space for comparison. Recent related work (Hanna 2006) has shown that axial graphs of buildings 
cluster well in PCA mapping into groups that correlate highly with building type. The use of a distance 
measurement has been used here to guide an optimisation algorithm to reproduce individual plans, but 
the technique may also be employed in comparative analyses between large sets of plans, and in any 
application for which a method of comparison is required but an appropriate single measure of a 
spatial structure is unknown. 
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