
New Algorithms for the Dual of the Convex Cost Network Flow Problem

with Application to Computer Vision

Vladimir Kolmogorov

University College London, UK

vnk@adastral.ucl.ac.uk

Akiyoshi Shioura

Tohoku University, Japan

shioura@dais.is.tohoku.ac.jp

June 4, 2007

Technical Report

Abstract

Motivated by various applications to computer vision, we consider an integer convex
optimization problem which is the dual of the convex cost network flow problem. In this
paper, we first propose a new primal algorithm for computing an optimal solution of the
problem. Our primal algorithm iteratively updates primal variables by solving associated
minimum cut problems. The main contribution in this paper is to provide a tight bound
for the number of the iterations. We show that the time complexity of the primal algorithm
is K · T (n,m) where K is the range of primal variables and T (n,m) is the time needed to
compute a minimum cut in a graph with n nodes and m edges.

We then propose a primal-dual algorithm for the dual of the convex cost network flow
problem. The primal-dual algorithm can be seen as a refined version of the primal algorithm
by maintaining dual variables (flow) in addition to primal variables. Although its time
complexity is the same as that for the primal algorithm, we can expect a better performance
practically.

We finally consider an application to a computer vision problem called the panoramic
stitching problem. We apply several implementations of our primal-dual algorithm to some
instances of the panoramic stitching problem and test their practical performance.

We also show that our primal algorithm as well as the proofs can be applied to the L\-
convex function minimization problem which is a more general problem than the dual of the
convex cost network flow problem.

1 Introduction

Let G = (V, E) be a simple undirected graph. We assume that if (u, v) ∈ E then (v, u) 6∈ E . We
consider the following optimization problem:

(DCCF): Minimize E(x) =
∑

u∈V
Du(xu) +

∑

(u,v)∈E
Vuv(xv − xu) subject to x ∈ ZV ,

1

where Du : Z→ R ∪ {+∞} (u ∈ V) and Vuv : Z→ R ∪ {+∞} ((u, v) ∈ E) are convex functions
such that domDu = {α ∈ Z | Du(α) < +∞} and domVuv = {α ∈ Z | Vuv(α) < +∞} are
finite intervals. The problem of this type is known as the dual of the convex cost network flow
problem and extensively discussed in the literature (see, e.g., [1, 19, 29, 28]). Recently, various
applications of the problem (DCCF) have been studied in the area of image processing and
computer vision (see, e.g, [7, 17, 31, 20, 24, 32, 9, 8]). In this paper, we propose new primal
and primal-dual algorithms for the problem (DCCF) and prove a tight bound for the number
of iterations required by the algorithms.

Previous Algorithms We denote n = |V|, m = |E|, and K is a positive integer such that

|α− β| ≤ K (∀α, β ∈ domDu, ∀u ∈ V). (1.1)

It is well known that the problem (DCCF) can be solved exactly by reducing it to a linear
program whose size is pseudo-polynomial in the input size of the problem. General LP solvers,
however, do not exploit the special structure of (DCCF), and therefore are not very efficient.

Ishikawa [20] and Ahuja et al. [2] reduce the problem (DCCF) to a minimum s-t cut problem
in a graph with O(nK) nodes and O(mK2) edges. In the important special case when the
functions Vuv(·) are given by piecewise linear functions with a constant number of breakpoints,
the number of edges is reduced to O(mK). A disadvantage of this approach is that it needs a
large amount of memory (either O(mK2) or O(mK)).

Algorithms in [20, 2] can be seen as primal algorithms since they directly solve the problem
(DCCF). An alternative is to solve the dual problem instead. Several dual algorithms were
proposed by Karzanov and McCormick [21] and Ahuja et al. [1]. The worst-case complexity of
the latter algorithm is O(nm log(n2/m) log(nK)), which is the best known for (DCCF).

It is known [3] that the problem (DCCF) can be reduced to a linear cost network flow
problem on a graph with O(rm) edges, where r ≤ K is the maximum number of breakpoints of
piecewise-linear convex functions Du(·) and Vuv(·). Therefore, it is possible to use any existing
method for the linear cost network flow problem. One of them, the primal-dual algorithm of Ford
and Fulkerson [11, 12], is related to the technique that we develop in this paper. In particular,
the two algorithms are equivalent in a special case when the functions Du(·) are linear and the
functions Vuv(·) have one breakpoint (r = 1). However, if r > 1 then the techniques are different;
our algorithm works with a graph with O(m) rather than O(rm) edges.

Our Contributions In this paper we propose new primal and primal-dual algorithms for the
problem (DCCF). Our primal algorithm finds an optimal solution of (DCCF) by at most 2K
computation of a minimum cut of a graph with n nodes and m edges. The algorithm is similar to
the steepest descent algorithm of Murota for the minimization of L\-convex functions [26, 27, 28].
The minimization of L\-convex functions is a more general problem than (DCCF) (see Section
2 for the definition of L\-convexity). The algorithm is also similar to that of Bioucas-Dias and
Valadão [4] which was originally applied to the following special case without the functions
Du(·):

(DCCF0): Minimize E0(x) =
∑

(u,v)∈E
Vuv(xv − xu) subject to x ∈ ZV .

2

Our major contribution is to provide a tight bound on the number of iterations, while bounds
in [4, 28] are much weaker. Our proof is based on the analysis of the L∞ distance between the
current feasible solution and an optimal solution, and it is shown that the distance decreases
monotonically in each iteration. The proof is applicable not only to the problem (DCCF), but
also to the minimization of L\-convex functions. Hence, our result also implies a better bound
on the number of iterations for Murota’s steepest descent algorithm.

One drawback of the primal algorithm is that it solves different min cut/max flow problems
independently, although these problems are strongly related. Thus, a natural idea for speeding
up computations is to use maximum flow obtained in one iteration as an initialization for the
next iteration. This is a motivation of our primal-dual method. It maintains both primal and
dual variables. It makes at most 2K calls to a maximum flow algorithm and a shortest path
procedure.

The worse-case complexity of both algorithms is O(K)·T (n,m) where T (n,m) is the running
time of one maximum flow computation on a graph with n nodes and m edges. This is worse
than the complexity of the algorithm in [1]. However, our techniques have a practical advantage:
they rely only on a maximum flow algorithm, which is more readily available. For example,
it is possible to use maximum flow algorithm that was specifically tuned to computer vision
problems [6]. Experimental results of our algorithms are shown in Section 5

Although the algorithms described above are pseudo-polynomial, it is possible to apply
proximity scaling technique of Hochbaum and Shanthikumar [18] to get an algorithm polynomial
in log K rather than K (see [2]). In particular, combining proximity scaling technique with our
algorithms yields the time complexity O(n log K · T (n,m)).

Other Related Work Hochbaum [17] gives a very efficient algorithm for a special case of
(DCCF). Namely, if the functions Vuv are given as Vuv(xv−xu) = λuv|xv−xu|, then the technique
in [17] has almost the same time complexity as that of a single maximum flow computation on
a graph with n nodes and m edges. Similar ideas appear in [31, 9, 8]. The method is applicable
to the problem of image restoration using total variation minimization [17, 31, 9, 8].

If the functions Du(·) are arbitrary and Vuv(·) are convex, then the problem can be solved
exactly in time T (nK, mK2) or T (nK, mK), depending on the structure of the functions Vuv [20,
2]. If both Du(·) and Vuv(·) are arbitrary then the problem becomes NP-hard. Boykov et al. [7],
Kleinberg and Tardos [22] and Komodakis and Tziritas [23] give constant factor approximation
algorithms in the case when the functions Vuv(·) are metrics. Veksler [30] used procedures UP

and DOWN, described below, as a heuristic tool for minimizing functions with Potts interaction
terms, i.e. Vuv(xv − xu) = λuv min{|xv − xu|, 1}.

Application to Computer Vision Problems It is known that the problem (DCCF) arises
in many applications in computer vision such as panoramic image stitching [24, 32], image
restoration [7], minimization of total variation [9], and phase unwrapping in SAR images [4]. In
such applications, the node set V of the undirected graph G = (V, E) usually corresponds to the
set of pixels in a given image, and the variable xu represents the label of the pixel u ∈ V which
must belong to a finite set of integers {0, 1, . . . , K − 1}. For motion or stereo, the labels are
disparities, while for image restoration they represent intensities. The functions Du(·) encode
unary data penalty functions, and Vuv(·) are pairwise interaction potentials. The objective

3

function of (DCCF) is often derived in the context of Markov random fields [14]: a minimum of
E corresponds to a maximum a-posteriori labeling x.

In this paper, we consider the panoramic image stitching problem which inspired our work.
Given different portions of the same scene with some overlap, the goal of panoramic image
stitching is to generate an output image which is similar to the original images and does not
have a visible seam. The approach of [24, 32] is to compute the image whose gradients match
the gradients of the two input images, which can be done by solving an instance of (DCCF).

We apply our proposed algorithms to some instances of (DCCF) arising from actual panoramic
image stitching problems, and test the empirical performance of our algorithms. In particular,
we implement several versions of our primal-dual algorithms and compare their running time
for the panoramic image stitching problems.

Outline In Section 2, we review the concept of L\-convex function. We also discuss the
equivalence between the problems (DCCF) and (DCCF0). In Section 3 we describe a primal
algorithm and prove a bound on the number of iterations. In Section 4 we review the dual
problem and present a primal-dual algorithm. In Section 5 we compare the speed of several
algorithms on the panoramic image stitching problem.

2 Preliminaries

2.1 Review of Fundamental Results on L\-convex Functions

Our problem (DCCF) is closely related to the concepts of L\-convex functions introduced by
Fujishige and Murota [13]. In this section, we review some fundamental results on L\-convex
functions.

A function E : ZV → R∪{+∞} with domE 6= ∅ is called L-convex if it satisfies the following
properties:

(LF1) E(x) + E(y) ≥ E(x ∧ y) + E(x ∨ y) (∀x,y ∈ domE),
(LF2) ∃r ∈ R such that E(x + λ1) = E(x) + λr (∀x ∈ domE, ∀λ ∈ Z),

where domE = {x ∈ ZV | E(x) < +∞}, the vectors x ∧ y, x ∨ y ∈ ZV are defined by

(x ∧ y)u = min{xu, yu}, (x ∨ y)u = max{xu, yu} (u ∈ V),

and 1 ∈ ZV is the vector with all components equal to one. Throughout the paper, we assume
that the value r in the property (LF2) is zero. Note, without this condition an L-convex function
E does not have a minimum.

A function E : ZV → R∪{+∞} with domE 6= ∅ is called L\-convex if the function Ẽ : ZṼ →
R ∪ {+∞} defined by

Ẽ(x0, x) = E(x− x01) (x0 ∈ Z, x ∈ ZV) (2.1)

is L-convex, where 0 denotes a new element not in V and Ṽ = {0} ∪ V.
L\-convex functions are conceptually equivalent to L-convex functions, but the class of L\-

convex functions contains that of L-convex functions as a proper subclass. L\-convexity is
equivalent to integral convexity by Favati–Tardella [10] (see [27] for details).

4

By the equivalence between L\-convexity and L-convexity, all properties stated for L\-convex
functions can be rephrased for L-convex functions, and vice versa. Hence, we primarily show
properties of L\-convex functions below.

The next property shows that the objective function of the problem (DCCF) is L\-convex.
That is, the problem (DCCF) is a special case of the minimization of an L\-convex function.

Proposition 2.1 (cf. [27]).
(i) The objective function E : ZV → R ∪ {+∞} of the problem (DCCF) is L\-convex.
(ii) The objective function E0 : ZV → R∪{+∞} of the problem (DCCF0) is L-convex with r = 0
in (LF2).

Due to its definition, L\-convex functions satisfy submodular inequality.

Proposition 2.2. Let E : ZV → R ∪ {+∞} be an L\-convex function. Then,

E(x) + E(y) ≥ E(x ∧ y) + E(x ∨ y) (∀x,y ∈ domE).

For any subset X of V, we define χX ∈ {0, 1}V by

(χX)u =

{
1 (u ∈ X),
0 (u ∈ V \X).

L\-convexity of a function defined over the integer lattice can be characterized by the following
properties.

Theorem 2.3 ([27]). Let E : ZV → R ∪ {+∞} be a function with domE 6= ∅.
(i) E is L\-convex if and only if for all x, y ∈ ZV with {u ∈ V | xu > yu} 6= ∅, we have

E(x) + E(y) ≥ E(x− χW) + E(y + χW),

where W = arg max{xu − yu | u ∈ V}.
(ii) E is L\-convex if and only if for all x, y ∈ ZV and λ ∈ Z+, we have

E(x) + E(y) ≥ E((x− λ1) ∨ y) + E(x ∧ (y + λ1)).

We show some properties for minimizers of an L\-convex function. Given a function E :
ZV → R ∪ {+∞}, let

arg minE = {x ∈ domE | E(x) ≤ E(y) (∀y ∈ ZV)}.
Minimizers of an L\-convex function can be characterized by local optimality.

Theorem 2.4 ([27]). Let E : ZV → R ∪ {+∞} be an L\-convex function and x ∈ domE.
Then, E(x) ≤ E(y) for all y ∈ domE if and only if E(x) ≤ E(x + χX) for all X ⊆ V and
E(x) ≤ E(x− χX) for all X ⊆ V.

Proposition 2.5 (cf. [27]). Let E : ZV → R ∪ {+∞} be an L\-convex function. For any
x, y ∈ arg minE, we have

⌈
x + y

2

⌉
∈ arg min E,

⌊
x + y

2

⌋
∈ arg minE,

where d(x+y)/2e and b(x+y)/2c denote, respectively, the integer vectors obtained from (x+y)/2
by component-wise round-up and round-down to the nearest integers.

5

Input: initial feasible solution x := x◦ ∈ domE.
Step 1: Set SuccessUp := false, SuccessDown := false.
Step 2: Do UP or DOWN in any order until SuccessUp = SuccessDown = true:

UP (do only if SuccessUp is false):
- Compute X+ ∈ arg min{E(x + χX) | X ⊆ V}.
- If E(x + χX+) = E(x), set SuccessUp := true; otherwise set x := x + χX+ .

DOWN (do only if SuccessDown is false):
- Compute X− ∈ arg min{E(x− χX) | X ⊆ V}.
- If E(x + χX−) = E(x), set SuccessDown := true; otherwise set x := x− χX− .

Step 3: Output x and stop.

Figure 1: Primal algorithm

Proposition 2.6 (cf. [27]). Let E : ZV → R ∪ {+∞} be an L\-convex function, and a, b ∈ ZV
be vectors with {x ∈ domE | au ≤ xu ≤ bu (u ∈ V)} 6= ∅. Then, arg min{E(x) | au ≤ xu ≤
bu (u ∈ V)} contains the unique minimal and maximal minimizers.

2.2 Equivalence between the Problems (DCCF) and (DCCF0)

We discuss the equivalence between the two problems (DCCF) and (DCCF0). While the problem
(DCCF0) is a special case of (DCCF), it is known that (DCCF) can be reduced to the problem
(DCCF0), as shown below. Hence, the two problems (DCCF) and (DCCF0) are essentially
equivalent to each other, and any algorithm for the one problem can be adapted to the other.

Let E : ZV → R ∪ {+∞} be an objective function of the problem (DCCF), and we define a
function Ẽ : ZṼ → R ∪ {+∞} by (2.1). Then, we have

Ẽ(x0, x) = E(x− x01)

=
∑

u∈V
Du(xu − x0) +

∑

(u,v)∈E
Vuv(xv − xu) (x0 ∈ Z, x ∈ ZV).

We put Ẽ = {(0, u) | u ∈ V} ∪ E and define a function V0u : Z→ R ∪ {+∞} (u ∈ V) by

V0u(α) = Du(α) (α ∈ Z).

Then, it holds that

Ẽ(x0, x) =
∑

(u,v)∈Ẽ

Vuv(xv − xu) (x0 ∈ Z, x ∈ ZV).

Hence, we obtain an objective function of the problem (DCCF0). This shows that the problem
(DCCF) can be reduced to (DCCF0).

3 Primal Algorithm

Our primal algorithm is described in Fig. 1. The primal algorithm can be applied to the
minimization of L\-convex function, which is a more general problem than (DCCF). We will

6

Input: initial feasible solution x := x◦ ∈ domE.
Step 1: Compute X+ ∈ arg min{E(x + χX) | X ⊆ V}.
Step 2: Compute X− ∈ arg min{E(x− χX) | X ⊆ V}.
Step 3: If E(x) = min{E(x + χX+), E(x− χX−)}, then output x and stop.
Step 4: If E(x + χX+) ≤ E(x− χX−), then set x := x + χX+ ; otherwise set x := x− χX− .
Step 5: Go to Step 1.

Figure 2: Murota’s steepest descent algorithm for the minimization of an L\-convex function

assume throughout this section that E : ZV → R∪{+∞} is an L\-convex function, and consider
the minimization of the function E. Any vector in the set domE is said to be a feasible solution
of the problem.

Our primal algorithm is very similar to the steepest descent algorithm of Murota [27, 28] for
minimizing an L\-convex function (see Fig. 2). Murota’s algorithm can be seen as a specialized
implementation of our primal algorithm. While our algorithm has a flexibility in the choice of
the procedures UP and DOWN, Murota’s algorithm computes both of X+ and X− and chooses
a better one by comparing the function values of E(x + χX+) and E(x − χX−). We note
that the algorithm described in Fig. 2 is slightly different from Murota’s original algorithm
in the choice of X̃+ and X̃−; in Murota’s original algorithm X+ is the unique minimal set in
arg min{E(x+χX) | X ⊆ V} and X− is the unique maximal set in arg min{E(x−χX) | X ⊆ V}.

Our primal algorithm is also similar to Murota’s steepest descent algorithm for minimizing
an L-convex function [26, 27, 28]. The algorithm uses only the procedure UP and therefore can
be applied only to L-convex function minimization and its special case (DCCF0). The algorithm
of Bioucas-Dias and Valadão for (DCCF0) [4] can be seen as a specialized version of Murota’s
algorithm.

3.1 Analysis of the Primal Algorithm

We prove the validity of our primal algorithm and analyze the number of iterations.
To analyze the number of iterations, we define values ρ+(x) and ρ−(x) for a vector x ∈ domE

as
ρ+(x) = ||x̂− x||∞, ρ−(x) = ||x̌− x||∞,

where x̂ denotes the unique minimal vector in arg min{E(z) | z ≥ x} and x̌ denotes the unique
maximal vector in arg min{E(z) | z ≤ x}. We note that the existence of such x̂ and x̌ is implied
by Proposition 2.6.

Proposition 3.1. For x ∈ domE, if ρ+(x) = ρ−(x) = 0 then x ∈ arg min E.

Proof. If ρ+(x) = ρ−(x) = 0, then we have E(x) ≤ E(x+εχX) for all ε ∈ {+1,−1} and X ⊆ V .
This implies that x is a minimizer of E by Theorem 2.4.

Note that ρ+(x) = 0 (resp. ρ−(x) = 0) alone implies x ∈ arg min{E(z) | z ≥ x} (resp. x ∈
arg min{E(z) | z ≤ x}), but does not imply x ∈ arg minE in general.

Each iteration of the primal algorithm increases neither of ρ+(x) nor ρ−(x) and decreases
strictly at least one of ρ+(x) and ρ−(x).

7

Proposition 3.2. In each iteration of the primal algorithm, we have the following:
(i) If ρ+(x) > 0, then ρ+(x + χX+) = ρ+(x)− 1 and ρ−(x + χX+) ≤ ρ−(x).
(ii) If ρ−(x) > 0, then ρ−(x− χX−) = ρ−(x)− 1 and ρ+(x− χX−) ≤ ρ+(x).

The proof is given at the end of this section.
Given a function E, we define

K∞ = max{||x− y||∞ | x, y ∈ domE}.

It is easy to see that ρ+(x) ≤ K∞ and ρ−(x) ≤ K∞ for any x ∈ domE. We note that if
the function E is given as the objective function of (DCCF), then the integer K given by (1.1)
satisfies K ≥ K∞.

Theorem 3.3.
(i) The output x of the primal algorithm satisfies x ∈ arg minE.
(ii) The number of iterations of the primal algorithm is bounded by ρ+(x◦) + ρ−(x◦) + 2, which
is further bounded by 2K∞ + 2.

Proof. The claim (ii) is immediate from Proposition 3.2. We then prove (i). We see from
Proposition 3.2 that once ρ+(x) (or ρ−(x)) becomes zero, then it is kept until the termination
of the algorithm. This implies that ρ+(x) = ρ−(x) = 0 holds at the end of the algorithm, and
therefore the vector x is a minimizer of the L\-convex function E by Proposition 3.1.

Clearly, this bound is tight in some cases. For example, consider the following problem:

Minimize D1(x1) + D2(x2) subject to (x1, x2) ∈ Z2,

where k is a positive integer and D1, D2 : Z→ R ∪ {+∞} are functions defined by

D1(α) =

{
α (0 ≤ α ≤ k),
+∞ (otherwise),

D2(α) =

{
−α (0 ≤ α ≤ k),
+∞ (otherwise).

This problem is a special case of (DCCF) with K∞ = K = k and (0, k) is the unique optimal
solution. If we start the primal algorithm with x◦ = (k, 0), then the algorithm requires 2k +2 =
2K∞ + 2 iterations.

We now prove Proposition 3.2. Recall that for any vector x ∈ domE, the vector x̂ denotes
the unique minimal vector in arg min{E(z) | z ≥ x} and x̌ denotes the unique maximal vector
in arg min{E(z) | z ≤ x}.

Lemma 3.4. Let x,y ∈ domE.
(i) Suppose that x ≤ y and E(y) = min{E(z) | x ≤ z ≤ y}. Then, ρ+(y) ≤ ρ+(x) and
ρ−(y) ≤ ρ−(x). In particular, we have ŷ = x̂ ∨ y.
(ii) Suppose that x ≥ y and E(y) = min{E(z) | x ≥ z ≥ y}. Then, ρ+(y) ≤ ρ+(x) and
ρ−(y) ≤ ρ−(x). In particular, we have y̌ = x̌ ∧ y.

Proof. We prove (i) only.
[Proof of “ρ+(y) ≤ ρ+(x)”] It suffices to show that ŷ = x̂ ∨ y since it implies

ρ+(y) = ||ŷ − y||∞ = ||(x̂ ∨ y)− y||∞ ≤ ||x̂− x||∞ = ρ+(x).

8

By Proposition 2.2, we have

E(x̂) + E(y) ≥ E(x̂ ∨ y) + E(x̂ ∧ y). (3.1)

Since x ≤ x̂ ∧ y ≤ y, we have E(y) ≤ E(x̂ ∧ y), which, together with (3.1), implies

E(x̂) ≥ E(x̂ ∨ y). (3.2)

Since ŷ ≥ y ≥ x and x̂ ∈ arg min{E(z) | z ≥ x}, we have

E(ŷ) ≥ E(x̂). (3.3)

Similarly, we have
E(x̂ ∨ y) ≥ E(ŷ) (3.4)

since x̂ ∨ y ≥ y and ŷ ∈ arg min{E(z) | z ≥ y}. It follows from (3.2), (3.3), and (3.4) that
E(x̂) = E(ŷ) = E(x̂ ∨ y), which implies

ŷ ∈ arg min{E(z) | z ≥ x}, x̂ ∨ y ∈ arg min{E(z) | z ≥ y}.

It follows from the choices of x̂ and ŷ that x̂ ≤ ŷ and ŷ ≤ x̂ ∨ y. These inequalities and y ≤ ŷ

imply ŷ = x̂ ∨ y.
[Proof of “ρ−(y) ≤ ρ−(x)”] We first show that x̌ ≤ y̌. By Proposition 2.2, we have

E(x̌) + E(y̌) ≥ E(x̌ ∨ y̌) + E(x̌ ∧ y̌). (3.5)

Since x̌ ∈ arg min{E(z) | z ≤ x} and x̌∧ y̌ ≤ x̌ ≤ x, we have E(x̌) ≤ E(x̌∧ y̌), which, together
with (3.5), implies E(y̌) ≥ E(x̌ ∨ y̌). Since y̌ ≤ x̌ ∨ y̌ ≤ y and y̌ is the maximal vector in
arg min{E(z) | z ≤ y}, we have y̌ = x̌ ∨ y̌, i.e., x̌ ≤ y̌.

We may assume that ρ−(y) > 0 since otherwise the inequality holds immediately. Put
λ = ρ−(y) and W = {u ∈ V | yu − y̌u = λ}. By Theorem 2.3, we have

E(y) + E(y̌) ≥ E(y − χW) + E(y̌ + χW).

We also have E(y̌) < E(y̌ + χW) by the definition of y̌ and the inequality y̌ + χW ≤ y. Hence,
it holds that E(y − χW) < E(y). Since E(y) = min{E(z) | x ≤ z ≤ y}, if y − χW ≥ x then
we have E(y−χW) ≥ E(y), a contradiction. Hence, there exists some u ∈ V such that xu = yu

and u ∈ W . This implies that xu = yu = y̌u + λ ≥ x̌u + λ. Therefore, ρ−(x) ≥ xu − x̌u ≥ λ =
ρ−(y).

Proof of Proposition 3.2. We prove (i) only; the claim (ii) can be shown in the same way.
Put y = x + χX+ . Then, we have E(y) = min{E(z) | x ≤ z ≤ y}, which implies ρ+(y) ≤

ρ+(x) and ρ−(y) ≤ ρ−(x) by Lemma 3.4. To prove ρ+(y) = ρ+(x)− 1, it suffices to show that

S ⊆ X+, where S = arg max{x̂u − xu | u ∈ V}.

Then, this and Lemma 3.4 imply

ρ+(y) = ||ŷ − y||∞ = ||(x̂ ∨ y)− y||∞ = ||x̂− x||∞ − 1 = ρ+(x)− 1.

9

Input: initial feasible solution x̃ := x̃◦ ∈ dom Ẽ.
Step 1: Compute X̃+ ∈ arg min{Ẽ(x̃ + χX̃) | X̃ ⊆ Ṽ}.
Step 2: If Ẽ(x̃) = Ẽ(x̃ + χX̃+), then output x̃ and stop.
Step 3: Set x̃ := x̃ + χX̃+ .
Step 4: Go to Step 1.

Figure 3: Murota’s steepest descent algorithm for the minimization of an L-convex function

Assume, to the contrary, that S \X+ 6= ∅. Put

S′ = arg max{x̂u − xu − (χX+)u | u ∈ V} = S \X+.

Theorem 2.3 implies

E(x̂) + E(x + χX+) ≥ E(x̂− χS′) + E(x + χX+ + χS′).

Since χX+ + χS′ = χX+∪S , we have E(x + χX+ + χS′) = E(x + χX+∪S) ≥ E(x + χX+), where
the inequality is by the choice of X+. Hence, we have E(x̂) ≥ E(x̂ − χS′), a contradiction to
the fact that x̂ is the minimal vector in arg min{E(z) | z ≥ x} since x̂− χS′ ≥ x.

3.2 Analysis of Murota’s Steepest Descent Algorithm

Since Murota’s steepest descent algorithm for L\-convex function can be seen as a specialized im-
plementation of our primal algorithm, Theorem 3.3 implies that Murota’s algorithm terminates
in O(K∞) iterations, which is much better than the bound O(K1) shown in [28], where

K1 = max{||x− y||1 | x,y ∈ domE}.

In this section, we compare our primal algorithm and Murota’s algorithm. In particular, we
show the following:

• Our primal algorithm requires the same or larger number of iterations.

• Our primal algorithm requires the same or fewer total number of calls to the minimization
procedure in UP and DOWN.

Note that one iteration of Murota’s algorithm makes two calls to the procedure for minimizing a
submodular function, so it is roughly twice as expensive as one iteration of the primal algorithm.

3.2.1 Analysis of Steepest Descent Algorithm for L-convex Functions

In [28], Murota firstly proposes a steepest descent algorithm for L-convex functions, which is
then adapted to L\-convex functions through the relation (2.1). For the simplicity of the proof,
we firstly analyze the number of iterations required by the algorithm for L-convex functions,
and then restate the result in terms of L\-convex functions.

Murota’s steepest descent algorithm for L-convex functions is described in Fig. 3, where
Ṽ = {0} ∪ V and Ẽ : ZṼ → R ∪ {+∞} is an L-convex function with dom Ẽ 6= ∅. We note

10

that the algorithm described in Fig. 3 is slightly different from Murota’s original algorithm in
the choice of X̃+ in Step 1; in Murota’s original algorithm X̃+ is the unique minimal set in
arg min{Ẽ(x̃ + χX̃) | X̃ ⊆ Ṽ}.

Given a vector x̃◦ ∈ ZṼ , we denote by x̃∗ the unique minimal vector in the set arg min{Ẽ(z̃) |
z̃ ≥ x̃◦} and define µ̃(x̃◦) = ||x̃∗ − x̃◦||∞. It should be mentioned that the definition of µ̃(x̃◦)
will not change if x̃∗ is the unique maximal vector in arg min{Ẽ(z̃) | z̃ ≤ x̃◦} rather than the
unique minimal vector in arg min{Ẽ(z̃) | z̃ ≥ x̃◦}.

The property (LF2) of L-convex functions implies that

x̃∗ ∈ arg min{Ẽ(z̃) | z̃ ≥ x̃◦} ⊆ arg min Ẽ,

i.e., the vector x̃∗ is a minimizer of the function Ẽ. On the other hand, it is easy to see that
Murota’s algorithm is the same as our primal algorithm except that the procedure DOWN is
missing. Therefore, the discussion in Section 3.1 shows that Murota’s algorithm outputs the
vector x̃∗ in µ̃(x̃◦) + 1 iterations.

Theorem 3.5. The number of iterations of Murota’s steepest descent algorithm for L-convex
function Ẽ is equal to µ̃(x̃◦) + 1.

3.2.2 Analysis of Steepest Descent Algorithm for L\-convex Functions

We now analyze the number of iterations required by the steepest descent algorithm for L\-
convex functions.

The behavior of the steepest descent algorithm for an L\-convex function E with the initial
vector x◦ is essentially the same as that of the steepest descent algorithm for the L-convex
function Ẽ defined by (2.1) with the initial vector ỹ◦ = (0, x◦) ∈ Z × ZV . The correspondence
between the two steepest descent algorithms is as follows (see [28]):

L\-convex E L-convex Ẽ

x → x + χX ⇐⇒ ỹ → ỹ + (0, χX)
x → x− χX ⇐⇒ ỹ → ỹ + (1, χV\X)

where ỹ = (x0, x + x01) and x0 is a nonnegative integer representing the number of iterations
with “x → x− χX” so far.

For a vector x ∈ ZV we define µ(x) = µ̃(0, x). As a corollary of Theorem 3.5 we obtain the
following bound for the number of iterations.

Theorem 3.6. The number of iterations of Murota’s steepest descent algorithm for L\-convex
function E is equal to µ(x◦) + 1.

We now show that our primal algorithm requires the same or larger number of iterations
than Murota’s algorithm.

Theorem 3.7. The number of iterations of our primal algorithm for L\-convex function E is
at least µ(x◦) + 1.

11

Proof. Let x be the output of our primal algorithm applied to x◦. Denote

d+ = max
[
0, max{xu − x◦u | u ∈ V, xu > x◦u}

]
,

d− = max
[
0, max{x◦u − xu | u ∈ V, xu < x◦u}

]
.

Clearly, the primal algorithm calls procedure UP (resp., DOWN) at least d+ + 1 (resp., d− + 1)
times. We will show next that d+ + d− ≥ µ(x◦), which will imply the theorem.

Consider vector ỹ = (d−,x + d−1). Since Ẽ(ỹ) = Ẽ(0, x) and (0, x) is a minimizer of Ẽ,
vector ỹ is also a minimizer. Furthermore, ỹ ≥ (0, x◦). Thus, ||ỹ − (0, x◦)||∞ ≥ µ̃(0, x◦). It
remains to notice that ||ỹ − (0, x◦)||∞ = d+ + d−.

We then show that our primal algorithm requires the same or fewer total number of calls to
the minimization procedure in UP and DOWN than Murota’s algorithm.

Theorem 3.8. For any feasible solution x ∈ domE there holds ρ+(x) ≤ µ(x), ρ−(x) ≤ µ(x).

Proof. We prove only the first inequality. Let x̃∗ be the minimal vector in arg min{Ẽ(y) | ỹ ≥
(0,x)}. Then, µ(x) = ||x̃∗ − (0,x)||∞. We will show next that (0, x̂) ≤ x̃∗. This will imply the
desired inequality since ρ+(x) = ||(0, x̂)− (0, x)||∞.

Define vectors ỹ = (y0,y) = x̃∗ ∧ (0, x̂), z̃ = x̃∗ ∨ (0, x̂). Clearly, y0 = 0. We have

E(y) = Ẽ(ỹ) ≤ Ẽ(0, x̂) + [Ẽ(x̃∗)− Ẽ(z̃)] ≤ Ẽ(0, x̂) = E(x̂),

where the first inequality follows from submodularity of Ẽ, and the second inequality follows
from the optimality of x̃∗ and the fact that z̃ ≥ (0, x). Since y ≥ x and E(y) ≤ E(x̂), we have
x̂ ≤ y. Thus, (0, x̂) ≤ ỹ ≤ x̃∗, as claimed.

We note that our algorithm makes at most ρ+(x◦) + ρ+(x◦) + 2 calls to the procedure for
minimizing a submodular function, while Murota’s algorithm makes 2µ(x◦)+2 such calls. Thus,
the theorem implies that our algorithm makes the same of fewer number of calls.

It should be mentioned that Murota’s algorithm can be implemented so that it calls the
procedure for minimizing a submodular function only once in each iteration. Instead of com-
puting both of X+ and X− and choosing a better one, we just need to compute X̃+ ∈
arg min{Ẽ(x̃+χX̃) | X̃ ⊆ Ṽ}, as in Murota’s algorithm for L-convex function, and then compute
X+ or X− by using X̃+.

4 Primal-Dual Algorithm

In order to describe our primal-dual algorithm, we need to review the dual of the problem
(DCCF), which is done in Section 4.1. Based on this, we then present our primal-dual algorithm
in Section 4.2. It can be viewed as an extension of our primal algorithm. It also uses proce-
dures UP and DOWN; however, during these procedures the algorithm updates not only primal
variables x but also dual variables, namely flow. After describing the algorithm we show the
validity of the algorithm and analyze the time complexity in Section 4.3.

12

ux

)(⋅uD

uv xx −

)(⋅uvV

ux

)(⋅uD

ux

)(⋅uD

(a) (b) (c) (d)

Figure 4: Optimality condition. Any optimal primal-dual pair (x, f) must satisfy the conditions
illustrated in (a) and (b). During the algorithm, the condition for edges shown in (b) is always
satisfied. However, this condition may be violated for some nodes (possible cases are shown in
(a), (c) and (d)).

4.1 Flow and the Dual Problem

It is well known that a convex cost network flow problem can be obtained as the dual of the
problem (DCCF) in the following way (see, e.g., [1, 19, 29]). We define A = {(u, v) | (u, v) ∈
E} ∪ {(v, u) | (u, v) ∈ E}, i.e., (V,A) is a directed graph corresponding to the undirected graph
(V, E). A flow is a vector f ∈ RV∪A satisfying

fuv = −fvu ((u, v) ∈ E) (antisymmetry),
fu =

∑
(u,v)∈E

fuv (u ∈ V) (flow conservation).

Given a flow f , we define a function Ef (x) : ZV → R ∪ {+∞} as follows:

Ef (x) =
∑

u∈V
Df

u(xu) +
∑

(u,v)∈E
V f

uv(xv − xu), (4.1)

where

Df
u(α) = Du(α)− fu · α (α ∈ Z),

V f
uv(α) = Vuv(α)− fuv · α (α ∈ Z).

It is not difficult to check that for any flow f functions Ef and E are the same, i.e., Ef (x) = E(x)
for any x ∈ ZV . Furthermore, the functions Df

u(·) and V f
uv(·) are convex.

For a flow f , let us define a function H : RV∪A → R ∪ {−∞} as

H(f) =
∑

u∈V
min
α∈Z

Df
u(α) +

∑

(u,v)∈E
min
α∈Z

V f
uv(α).

We note that minα∈ZDf
u(α) (resp., minα∈Z V f

uv(α)) is a concave function in variable fu (resp.,
in variable fuv).

We now consider the following optimization problem:

(CCF): Maximize H(f) subject to f ∈ RV∪A, f is a flow.

This is the dual of the problem (DCCF), and essentially the minimization of a convex objective
function over flows.

13

Clearly, H(f) is a lower bound of the function value Ef (x) = E(x):

H(f) ≤ E(x) for any flow f and any feasible solution x ∈ domE. (4.2)

This is a statement of weak duality. It turns out that strong duality holds as well.

Theorem 4.1 (cf. [1, 19, 29]).
(a) [strong duality] Let f∗ ∈ RV∪A and x∗ ∈ domE be optimal solutions of the problems (CCF)
and (DCCF), respectively. Then,

H(f∗) = E(x∗).

(b) [optimality condition] A flow f ∈ RV∪A and a feasible solution x ∈ domE are optimal
solutions of the problems (CCF) and (DCCF) if and only if the following conditions hold:

Df
u(xu) = min

α∈Z
Df

u(α) (∀u ∈ V), (4.3a)

V f
uv(xv − xu) = min

α∈Z
V f

uv(α) (∀(u, v) ∈ E). (4.3b)

We will prove that our algorithm finds a pair (x, f) satisfying the optimality condition (4.3).
The optimality condition (4.3) is illustrated in Fig. 4(a) and (b). Since the functions Df

u(·) and
V f

uv(·) are convex, these conditions are equivalent to

gradDf
u(xu − 0) ≤ 0, gradDf

u(xu + 0) ≥ 0,

gradV f
uv(xv − xu − 0) ≤ 0, gradV f

uv(xv − xu + 0) ≥ 0,

where we use the following notation for a function g : Z→ R ∪ {+∞}:

grad g(α− 0) = g(α)− g(α− 1), grad g(α + 0) = g(α + 1)− g(α) (α ∈ Z).

4.2 Algorithm

We are now ready to present our primal-dual algorithm. It maintains a feasible solution x ∈
domE and a flow f ∈ RV∪A. An important property of the algorithm is that the condition
(4.3b) is always satisfied, although the condition (4.3a) for nodes may not hold. Therefore, we
have the cases shown in Fig. 4 (c) and (d). It is convenient to use the following notation for sets
of nodes violating the conditions:

V+(x, f) = {u ∈ V | gradDf
u(xu + 0) < 0},

V−(x, f) = {u ∈ V | gradDf
u(xu − 0) > 0}.

To simplify notation, for zero flow we denote V+(x) = V+(x, 0) and V−(x) = V−(x, 0). Fig. 4
(c) corresponds to a node in V+(x), while Fig. 4 (d) corresponds to a node in V−(x). Note that
since the functions Df

u(·) are convex, a node cannot be in both sets simultaneously. Furthermore,
the condition (4.3a) holds if and only if sets V+(x, f) and V−(x, f) are empty.

The outline of the algorithm is shown in Fig. 5. We now give details of each procedure.
Some of them involve modifying flow f . For simplicity of notation we will make the following
convention: after every modification of f the function E is replaced with the function Ef , and

14

Input: initial feasible solution x := x◦ ∈ dom E.

1. INITIALIZE-FLOW (updates f)

2. Set SuccessUp := false, SuccessDown := false.

3. Do UP or DOWN in any order until SuccessUp = SuccessDown = true:

UP (do only if SuccessUp is false):

- MAXFLOW-UP (updates x and f)
- If V+(x, f) = ∅, set SuccessUp := true

- Optional: DIJKSTRA-UP (updates x)

DOWN (do only if SuccessDown is false):

- MAXFLOW-DOWN (updates x and f)
- If V−(x, f) = ∅, set SuccessDown := true

- Optional: DIJKSTRA-DOWN (updates x)

4. Optional: DIJKSTRA-DOWN; set xmin := x.
5. Optional: DIJKSTRA-UP; set xmax := x.

Figure 5: Our primal-dual algorithm. See text for description of procedures. Upon termination
x is a minimizer of E, xmin is the unique minimal minimizer, xmax is the unique maximal
minimizer, and f is an optimal flow.

the flow is set to zero1. This means that at the beginning of each operation the input flow is
zero.

INITIALIZE-FLOW Its goal is to set flow f so that the condition (4.3b) is satisfied for every
edge (u, v) ∈ E . Since gradV f

uv(xv − xu ± 0) = gradVuv(xv − xu ± 0) − fuv, a necessary and
sufficient condition for flow fuv is

gradVuv(xv − xu − 0) ≤ fuv ≤ gradVuv(xv − xu + 0)

After setting fuv values fu are computed from the flow conservation constraint.

MAXFLOW-UP This operation is similar to procedure UP of the primal algorithm, except that
it modifies not only feasible solution x but also flow f . We will show later that it tries to
move towards satisfying (4.3a). In particular, sets V+(x, f) and V−(x, f) will not grow. The
procedure can be summarized as follows.

First, we construct a directed graph Ĝ = (V̂, Â) such that

V̂ = V ∪ {s, t},
Â = A ∪ {(s, u), (u, s) | u ∈ V \ V+(x)} ∪ {(u, t), (t, u) | u ∈ V+(x)},

1For implementation it is also possible to keep original functions D(·), V (·) and flow f . When calling a

particular procedure, we first compute functions Df (·), V f (·) and supply them to the procedure. If the output

of the operation is flow f ′ then it is added to f , so f + f ′ becomes the new flow.

15

where s and t are called the source and the sink, respectively. We also consider a capacity ĉuv

for (u, v) ∈ Â defined by

ĉuv = grad Vuv(xv − xu + 0), ĉvu = −gradVuv(xv − xu − 0) for (u, v) ∈ E ,

ĉsu = gradDu(xu + 0), ĉus = 0 for u ∈ V \ V+(x),
ĉut = −gradDu(xu + 0), ĉtu = 0 for u ∈ V+(x).

We note that all of the capacities are nonnegative by the condition (4.3b).
We then solve the following maximum flow problem:

Maximize
∑

(s,u)∈Â
f̂su

subject to f̂uv ≤ ĉuv (∀(u, v) ∈ Â),

f̂uv = −f̂vu (∀(u, v) ∈ Â),
∑

u:(u,v)∈Â
f̂uv = 0 (∀v ∈ V̂ \ {s, t}),

f̂ ∈ RÂ.

Finally, we update the flow f by using f̂ as follows:

fuv := fuv + f̂uv for (u, v) ∈ A,

fu := fu + f̂su for (s, u) ∈ Â,

fu := fu − f̂ut for (u, t) ∈ Â.

It is easy to see that the output flow f satisfies antisymmetry and flow conservation constraints,
since the same holds for flow f̂ .

A new feasible solution y is computed from a minimum s-t cut of the graph Ĝ. An s-t cut
(S, T) of the graph Ĝ is a pair of subsets of V such that {S, T} is a partition of V and s ∈ S,
t ∈ T . We denote by cap(S, T) the capacity of an s-t cut (S, T), i.e.,

cap(S, T) =
∑

{ĉuv | (u, v) ∈ Â, u ∈ S, v ∈ T}.
A minimum s-t cut is an s-t cut (S, T) minimizing the capacity cap(S, T). If we obtain a
minimum s-t cut (S, T), then we set y = x + χX+ , where X+ = T ∩ V. As we will show later,
the output feasible solution y is the same as in the procedure UP of the primal algorithm, i.e.,
X+ ∈ arg min{E(x + χX) | X ⊆ V}.

MAXFLOW-DOWN This operation is the same as MAXFLOW-UP, except for the definition of
the arc set Â and the update of x. The arc set Â is given by

Â = A ∪ {(s, u), (u, s) | u ∈ V−(x)} ∪ {(u, t), (t, u) | u ∈ V \ V−(x)},
Capacities ĉuv are defined by

ĉuv = grad Vuv(xv − xu + 0), ĉvu = −gradVuv(xv − xu − 0) for (u, v) ∈ E ,

ĉsu = gradDu(xu − 0), ĉus = 0 for u ∈ V−(x),
ĉut = −gradDu(xu − 0), ĉtu = 0 for u ∈ V \ V−(x).

A new feasible solution y is computed from a minimum s-t cut (S, T) of the graph Ĝ by y =
x− χX− , where X− = S ∩ V.

16

DIJKSTRA-UP This operation is optional. It does not affect the worst-case complexity of the
algorithm, but may improve empirical performance. In this procedure we fix flow and compute
a maximal feasible solution y ≥ x such that functions Du(·) are non-increasing on [xu, yu] and
the condition (4.3b) holds. If we denote du = yu− xu ≥ 0, then these constraints are equivalent
to

du ≤ dmax
u = max{d ∈ Z |Du(xu + d) ≤ . . . ≤ Du(xu + 1) ≤ Du(xu)},

dv − du ≤ dmax
uv = max{d ∈ Z | Vuv(xv − xu + d) = Vuv(xv − xu)},

du − dv ≤ dmax
vu = max{d ∈ Z | Vuv(xv − xu − d) = Vuv(xv − xu)}.

It is well known (see, e.g., [3]) that finding a maximal vector d satisfying these constraints can be
reduced to a single-source shortest path problem and such a vector d can be computed efficiently
by using Dijkstra’s algorithm.

DIJKSTRA-DOWN This operation is similar to the previous one; we compute a minimal feasible
solution y ≤ x such that functions Du(·) are non-decreasing on [yu, xu] and the condition (4.3b)
holds. If we denote du = xu − yu ≥ 0, then these constraints are equivalent to

du ≤ dmax
u = max{d ∈ Z |Du(xu − d) ≤ . . . ≤ Du(xu − 1) ≤ Du(xu)},

dv − du ≤ dmax
uv = max{d ∈ Z | Vuv(xv − xu − d) = Vuv(xv − xu)},

du − dv ≤ dmax
vu = max{d ∈ Z | Vuv(xv − xu + d) = Vuv(xv − xu)}.

As before, a maximal vector d (corresponding to a minimal feasible solution y) can be computed
using Dijkstra’s algorithm.

4.3 Analysis of the algorithm

First we analyze the behavior of the algorithm without procedures DIJKSTRA-UP and DIJKSTRA-

DOWN. In the theorem below we assume that the input pair (x, 0) satisfies the condition (4.3b).

Theorem 4.2.
1. Let (y, f) be the output of MAXFLOW-UP applied to (x, 0). Then,
(a) The condition (4.3b) holds for (y, f).
(b) Any minimum s-t cut (S, T) of Ĝ satisfies T ∩ V ∈ arg min{E(x + χX) | X ⊆ V}.
(c) There holds V+(y, f) ⊆ V+(x) and V−(y, f) ⊆ V−(x).
(d) If ρ+(x) = 0, then V+(y, f) = ∅.
2. Let (y, f) be the output of MAXFLOW-DOWN applied to (x, 0). Then,
(a) The condition (4.3b) holds for (y, f).
(b) Any minimum s-t cut (S, T) of Ĝ satisfies S ∩ V ∈ arg min{E(x− χX) | X ⊆ V}.
(c) There holds V+(y, f) ⊆ V+(x) and V−(y, f) ⊆ V−(x).
(d) If ρ−(x) = 0, then V−(y, f) = ∅.

Combining Proposition 3.2 and Theorem 4.2, we can show that the algorithm terminates
in at most 2K∞ + 2 iterations and yields an optimal primal-dual pair (x, f) upon termination.
Indeed, 1 (a) and 2 (a) of Theorem 4.2 imply that the condition (4.3b) always holds. After
at most K∞ iterations of procedure UP, the quantity ρ+(x) becomes zero, and therefore after

17

at most K∞ + 1 iterations the set V+(x, f) becomes empty. At this point flag SuccessUp is
set to true, and set V+(x, f) will remain empty. Similar argumentation holds for procedure
DOWN. When the algorithm terminates, both of the sets V+(x, f) and V−(x, f) are empty, so
the optimality condition (4.3) holds for the pair (x, f).

This analysis remains valid even with procedures DIJKSTRA-UP or DIJKSTRA-DOWN, as
shown below.

Theorem 4.3. Let y be the output of DIJKSTRA-UP or DIJKSTRA-DOWN applied to (x, 0).
Then,
(a) The condition (4.3b) holds for (y, 0).
(b) There holds V+(y) ⊆ V+(x) and V−(y) ⊆ V−(x).
(c) There holds ρ+(y) ≤ ρ+(x) and ρ−(y) ≤ ρ−(x).

It can be seen that if the procedure DIJKSTRA-UP is applied to an optimal pair (x, f) then
the output y is the maximal optimal solution. Indeed, according to Theorem 4.1 a feasible
solution y is optimal if and only if it satisfies

Df
u(yu) = Df

u(xu) (∀u ∈ V),

V f
uv(yv − yu) = V f

uv(xv − xu) (∀ (u, v) ∈ E).

For feasible solutions y ≥ x this is equivalent to saying that functions Du(·) are non-
increasing on [xu, yu] and the condition (4.3b) holds. By construction, DIJKSTRA-UP finds
the maximal feasible solution satisfying these conditions. Similarly, we can show that applying
DIJKSTRA-DOWN to an optimal pair (x, f) yields the minimal optimal solution.

The following theorem allows to simplify slightly the algorithm’s implementation.

Theorem 4.4.
1. Let (y, f) be the output of MAXFLOW-UP applied to (x, 0). Then, applying DIJKSTRA-UP

to (x, f) and to (y, f) would yield the same feasible solution z.
2. Let (y, f) be the output of MAXFLOW-DOWN applied to (x, 0). Then, applying DIJKSTRA-

DOWN to (x, f) and to (y, f) would yield the same feasible solution z.

Thus, if DIJKSTRA-UP is applied immediately after MAXFLOW-UP then it is not necessary
to update variables x in MAXFLOW-UP (and similarly for DOWN); that is, MAXFLOW-UP

updates only dual variables f and then DIJKSTRA-UP updates only primal variables x in this
implementation.

We now turn to the proof of Theorems 4.2, 4.3, and 4.4. We omit proofs of part 2 of
Theorems 4.2 and 4.4 since they are very similar to those of part 1.

Proof of Theorem 4.2, part 1(a). From the capacity constraints we get fuv ≤ gradVuv(xv − xu + 0),
−fuv = fvu ≤ −gradVuv(xv − xu − 0). Therefore, we have

gradV f
uv(xv − xu + 0) = gradVuv(xv − xu + 0)− fuv ≥ 0,

gradV f
uv(xv − xu − 0) = gradVuv(xv − xu − 0)− fuv ≤ 0,

which implies that V f
uv(xv − xu) = minα∈Z V f

uv(α). Thus, if yv − yu = xv − xu, then the
condition (4.3b) holds for edge (u, v). Let us consider the case yv − yu = xv − xu + 1. This can

18

only happen when u ∈ S and v ∈ T , which means that edge (u, v) must be saturated. Therefore,
we have fuv = f̂uv = ĉuv = grad Vuv(xv − xu + 0), implying gradV f

uv(xv − xu + 0) = 0. Hence,
we have

V f
uv(yv − yu) = V f

uv(xv − xu + 1) = V f
uv(xv − xu) = min

α∈Z
V f

uv(α).

The case yv − yu = xv − xu − 1 can be considered similarly.

Proof of Theorem 4.2, part 1(b). Let (S, T) be a s-t cut of the graph Ĝ, and put y = x + χT∩V .
Then, we have

cap(S, T) =
∑

{ĉsu | u ∈ (T ∩ V) \ V+(x)}+
∑

{ĉut | u ∈ (S ∩ V) ∩ V+(x)}
+

∑
{ĉuv | (u, v) ∈ E , u ∈ S, v ∈ T}+

∑
{ĉvu | (u, v) ∈ E , u ∈ T, v ∈ S}

=
∑

{gradDu(xu + 0) | u ∈ T ∩ V} −
∑

{gradDu(xu + 0) | u ∈ V+(x)}
+

∑
{gradVuv(xv − xu + 0) | (u, v) ∈ E , u ∈ S, v ∈ T}

−
∑

{gradVuv(xv − xu − 0) | (u, v) ∈ E , u ∈ T, v ∈ S}
= E(y)−E(x)−

∑
{gradDu(xu + 0) | u ∈ V+(x)}.

This equation shows that (S, T) is a minimum s-t cut if and only if T ∩V ∈ arg min{E(x+χX) |
X ⊆ V}.

Proof of Theorem 4.2, part 1(c). We consider two possible cases.
[Case 1: u ∈ V+(x), i.e. gradDu(xu + 0) < 0] We need to show that u /∈ V−(y, f). This

holds since

gradDf
u(yu − 0) ≤ gradDf

u((xu + 1)− 0)

= gradDf
u(xu + 0) = gradDu(xu + 0)− fu ≤ 0,

where the first inequality follows from yu ≤ xu+1 and convexity of Df (·), and the last inequality
follows since −fu = f̂ut ≤ ĉut = −gradDu(xu + 0).

[Case 2: u /∈ V+(x), i.e. gradDu(xu + 0) ≥ 0] We have 0 ≤ fu = f̂su ≤ gradDu(xu + 0).
The fact that u /∈ V+(y, f) follows from

gradDf
u(yu + 0) ≥ gradDf

u(xu + 0) = gradDu(xu + 0)− fu ≥ 0.

Now suppose that u /∈ V−(x), i.e., gradDu(xu − 0) ≤ 0. We need to show that u /∈ V−(y, f). If
yu = xu, then this follows from

gradDf
u(yu − 0) = gradDu(xu − 0)− fu ≤ 0.

If yu = xu + 1, then u ∈ T , implying that the edge (s, u) must be saturated, i.e., fu = f̂su =
gradDu(xu + 0). Therefore, we have

gradDf
u(yu − 0) = gradDf

u(xu + 0) = gradDu(xu + 0)− fu = 0.

19

Proof of Theorem 4.2, part 1(d). We show that u /∈ V+(y, f) for all u ∈ V. For nodes u /∈ V+(x)
this follows from part (c). Let us consider a node u ∈ V+(x). The condition ρ+(x) = 0
means that ∅ ∈ arg min{E(x + χX) | X ⊆ V}. Therefore, according to part 1(b), the cut
(V ∪{s}, {t}) is a minimum s-t cut of the graph Ĝ. Thus, the edge (u, t) must be saturated, i.e.,
fu = −f̂ut = −ĉut = grad Du(xu + 0). This implies that

gradDf
u(yu + 0) ≥ gradDf

u(xu + 0) = gradDu(xu + 0)− fu = 0,

implying u /∈ V+(y, f), as desired.

Proof of Theorem 4.3. We consider only the procedure DIJKSTRA-UP; the proof for the pro-
cedure DIJKSTRA-DOWN is completely analogous. The statements (a) and (b) follow directly
from the definition of y. The definition of y also implies that E(y) = min{E(z) | x ≤ z ≤ y}.
Hence, we have (c) by Lemma 3.4.

Proof of Theorem 4.4, part 1. Let us show that (i) Df
u(yu) ≤ Df

u(xu) for all nodes u, and (ii)
V f

uv(yv−yu) = V f
uv(xv−xu) for all edges (u, v). The theorem will then follow from the description

of DIJKSTRA-UP.
If yu = xu for node u then the fact (i) is trivial. Suppose that yu = xu + 1; we need to show

that gradDf
u(yu − 0) = gradDf

u(xu + 0) ≤ 0. If u ∈ V+(x) then this follows since u /∈ V−(y, f)
by Theorem 4.2, part 1(c). If u /∈ V+(x), then fu = f̂su = ĉsu = gradDu(xu + 0) since u ∈ T

and edge (s, u) is saturated. Therefore, gradDf
u(xu + 0) = gradDu(xu + 0)− fu = 0.

Finally, the fact (ii) was shown earlier (see the proof of Theorem 4.2, part 1(a)).

5 Experiments on the Panoramic Image Stitching Problem

We tested the speed of several algorithms on the panoramic image stitching application. Given
two input images I1 and I2 defined on overlapping domains V1 and V2, the goal of the panoramic
image stitching is to compute an output image without a visible seam. Levin et al. [24, 32]
proposed several techniques for this problem. One of them, GIST1 algorithm under l1 norm,
was shown to outperform many other stitching methods. It involves minimizing the following
function for each color channel:

E(x) =
∑

(u,v)∈E
w1

uv|(xv − xu)− (I1
v − I1

u)|+ w2
uv|(xv − xu)− (I2

v − I2
u)|,

where (u, v) ∈ E if and only if u and v are neighboring pixels. In other words, we want
the gradient of image x to match gradients of images I1 and I2. Weights w1

uv and w2
uv were

determined as follows. For edges whose endpoints belong to V1 \ V2 we set w1
uv = 2, w2

uv = 0.
For edges in V2 \ V1 we set w1

uv = 0, w2
uv = 2. For all other edges we set w1

uv = w2
uv = 1.

It is easy to see that an optimal solution for the minimization of the function E is determined
only up to an additive constant. Similar to [24, 32], we computed this constant so that median
intensity of I1 in V1 matches that of the output image. This does not uniquely determines the
solution, however, since there may be multiple optimal solutions x satisfying this requirement.
Levin et al. do not discuss how to choose between them. We propose the following technique.
We put constraints xu ∈ [0,K − 1] on the variables, where K is sufficiently large (e.g., 512).

20

Figure 6: Results of panoramic stitching. First two columns: input images (courtesy of A.
Zomet). Rectangles show the area of overlap. Last three columns: results corresponding to
xmin, xav, and xmax, respectively (note that images are cropped). The additive constant is
chosen as described in the text.

We then compute the minimal optimal solution xmin, the maximal optimal solution xmax, and
their average xav = b(xmin + xmax)/2c which is also an optimal solution by Proposition 2.5.
Furthermore, these optimal solutions have the minimum possible range defined as maxu{xu} −
minu{xu} + 1. In our experiments it was very close to 256. Having a small range may be
advantageous since intensities must be mapped to interval [0,255]; if the range is too large then
some regions may become too dark or saturated.

Fig. 6 shows panoramas corresponding to feasible solutions xmin, xav, and xmax. It can be
seen that the solution xav looks significantly better than the other two. The overlap area is too
dark in xmin and too bright in xmax.

Algorithms tested We compared the speed of three different algorithms. The first two are
the primal-dual method without Dijkstra and with Dijkstra computations. Procedure DOWN

is applied only after SuccessUp becomes true. We used the max flow algorithm of Boykov and
Kolmogorov [6] available at http://www.cs.cornell.edu/People/vnk/software.html (version 3.0).

The third technique that we tried is as follows. We converted the original problem to the
linear cost network flow problem. (Note that we did not enforce constraints xu ∈ [0,K−1]). We
then applied an algorithm of Goldberg [15] available at http://www.avglab.com/andrew/soft.html

(version 4.0). It has one free parameter, namely scaling factor; we set it to 32 (results for other
factors were faster by at most one percent). The problem (DCCF) can be converted to the
linear cost network flow problem in many different ways. We used a transformation with the
following property: if the initial feasible solution satisfied the optimality condition, then so did
the resulting linear cost network flow problem. In all codes we used 32-bit integers.

We note that we did not test the cost scaling algorithm of Ahuja et al. [1]. It uses ideas
similar to [15], but it works with a smaller graph. Therefore, [1] could potentially be faster than

21

converting the problem to a linear cost network flow problem and then applying the algorithm
in [15]. In our application, however, graph sizes would differ only slightly, and we argue that
direct implementation of the technique in [1] is unlikely to beat the implementation in [15].
Indeed, the latter is highly optimized and includes many heuristics which significantly improve
the empirical performance.

Initialization and two-stage procedure Algorithms were initialized with the following
feasible solution x◦: x◦u = I1

u in region V1 \ V2, x◦u = I2
u in V2 \ V1, and x◦u = b(I1

u + I2
u)/2c

in V1 ∩ V2. Besides applying an algorithm directly to the original problem, we also tested the
following two-stage procedure. First we solve the problem for a subgraph induced by subset V ′
obtained by the erosion of the set V1∩V2 by one pixel. In other words, we fix nodes in V \V ′ by
adding terms C|xu− x◦u| to the objective function for nodes u ∈ V \V ′, where C is a sufficiently
large constant. (In implementation nodes which are not connected to nodes in V ′ can be safely
omitted.) Then we apply the algorithm to the whole problem using the optimal solution and
the flow obtained in the first stage as an initialization.

Experiments We used three datasets D0, D1, and D2 shown in Fig. 6. Their dimensions are
449×193 for D0 and 577×257 for D1 and D2. The percentages of overlap area are 4.9%, 10.0%
and 6.9%, respectively. We also used scaled-down datasets D0-s, D1-s and D2-s (both X and
Y dimensions are reduced by 2 times). Note that results for scaled-down images visually look
worse.

The table below shows running times in seconds (we measure the total time for 3 color
channels). The tests were performed on a machine with Intel Celeron 1.4GHz processor in
Microsoft Windows XP environment, using Microsoft Visual Studio 7.0 C++ compiler.

D0-s D1-s D2-s D0 D1 D2
primal-dual, no Dijkstra, 1 stage 14.39 28.63 32.47 68.31 164.52 178.21
primal-dual, no Dijkstra, 2 stages 4.02 16.33 17.63 25.43 111.78 127.67
primal-dual with Dijkstra, 1 stage 3.02 6.88 8.71 16.53 28.76 51.26
primal-dual with Dijkstra, 2 stages 0.58 0.81 0.93 2.20 3.57 3.61
linear cost network flow, 1 stage 2.48 3.68 2.39 9.22 21.69 21.17
linear cost network flow, 2 stages 1.01 1.50 2.16 11.39 21.17 18.23

The two-stage procedure with the primal-dual algorithm with Dijkstra computations is a
clear winner.

References

[1] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the convex cost integer dual network
flow problem. Management Science, 49:7:950–964, 2003.

[2] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. A cut based algorithm for the convex dual
of the minimum cost network flow problem. Algorithmica, 39:3:189–208, April 2004.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

22

[4] J. Bioucas-Dias and G. Valadão. Phase unwrapping via graph cuts. In Pattern Recognition
and Image Analysis: 2nd Iberian Conference (IbPRIA), LNCS. Springer, June 2005.

[5] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123(1-3):155–225, November 2002.

[6] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine
Intelligence, 26(9), September 2004.

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11), November 2001.

[8] A. Chambolle. Total variation minimization and a class of binary MRF models. In 5th
International Workshop on Energy Minimization Methods in Computer Vision and Pattern
Recognition, LNCS 3757. June 2005, 136–152.

[9] J. Darbon and M. Sigelle. A fast and exact algorithm for total variation minimization.
In Pattern Recognition and Image Analysis: 2nd Iberian Conference (IbPRIA), LNCS.
Springer, June 2005.

[10] P. Favati and F. Tardella. Convexity in nonlinear integer programming. Ricerca Operativa
53:3–44, 1990.

[11] L. R. Ford and D. R. Fulkerson. A primal-dual algorithm for the capacitated hitchcock
problem. Naval Research Logistics Quarterly, 4:47–54, 1957.

[12] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton Univ. Press, 1962.

[13] A. Fujishige and K. Murota. Notes on L-/M-convex functions and the separation theorems.
Math. Programming, 88:129–146, 2000.

[14] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence, 6:721–741,
1984.

[15] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. J.
Algorithms, 22:1–29, 1997.

[16] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. J. ACM,
35:921–940, 1988.

[17] D. S. Hochbaum. An efficient algorithm for image segmentation, Markov Random Fields
and related problems. J. ACM, 48:2:686–701, July 2001.

[18] D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not much
harder than linear optimization. J. ACM, 37:843–862, 1990.

[19] M. Iri. Network Flow, Transportation and Scheduling—Theory and Algorithms. Academic
Press, 1969.

23

[20] H. Ishikawa. Exact optimization for Markov Random Fields with convex priors. IEEE
Trans. Pattern Analysis and Machine Intelligence, 25(10):1333–1336, October 2003.

[21] A. B. Karzanov and S. T. McCormick. Polynomial methods for separable convex opti-
mization in unimodular linear spaces with applications. SIAM J. Computing, 4:1245–1275,
1997.

[22] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pair-
wise relationships: Metric labeling and Markov Random Fields. Foundations of Computer
Science, pages 14–23, 1999.

[23] N. Komodakis and G. Tziritas. A new framework for approximate labeling via graph cuts.
In Intl. Conf. on Computer Vision, October 2005.

[24] A. Levin, A. Zomet, S. Peleg, and Y. Weiss. Seamless image stitching in the gradient
domain. In European Conf. on Computer Vision, May 2004.

[25] K. Murota. Discrete convex analysis. Math. Programming 83:313–371, 1998.

[26] K. Murota. Algorithms in discrete convex analysis. IEICE Transactions on Systems and
Information, E83-D:344–352, 2000.

[27] K. Murota. Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics and
Applications, Vol. 10, 2003.

[28] K. Murota. On steepest descent algorithms for discrete convex functions. SIAM J. Opti-
mization, 14(3):699–707, 2003.

[29] R. T. Rockafellar. Convex Analysis. Princeton Univ. Press, 1970.

[30] O. Veksler. Efficient graph-based energy minimization methods in computer vision. PhD
thesis, Cornell University, Dept. of Computer Science, Ithaca, NY (1999)

[31] B. Zalesky. Network flow optimization for restoration of images. J. of Applied Mathematics,
2(4):199–218, 2002.

[32] A. Zomet, A. Levin, S. Peleg, and Y. Weiss. Seamless image stitching by minimizing false
edges. IEEE Trans. Image Processing, 15(4):969–977, 2006.

24

