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Abstract 

This paper develops a comprehensive framework for analysing and solving traffic models and 
assignments in dynamic setting. Traffic models capture the time-varying travel times and flows on a 
road network and traffic assignments represent the corresponding responses of travellers. There 
are two different kinds of traffic assignments: dynamic user equilibrium and dynamic system 
optimum. Under dynamic user equilibrium, traffic is assigned such that for each origin-destination 
pair in the network, the individual travel costs experienced by each traveller, no matter which 
combination of travel route and departure time he/she chooses, are equal and minimal. The system 
optimum assigns traffic such that the total system cost of the network system is minimized. The 
system optimal traffic pattern provides a useful benchmark for evaluating various transport policy 
measures such as implementing dynamic road tolls. This system optimal assignment is formulated 
as a state-dependent optimal control problem. The analysis developed in this paper is novel and it 
can work with general travel cost functions. Numerical examples are provided for illustration and 
discussion. Finally, some concluding remarks are given.  

1. Introduction 

Time-dependent network models have several advantages over the conventional time-independent 
ones. On representing the characteristics of the transport system, the time-dependent models 
consider traffic flows and travel times to be time-varying. On the travel demand side, the time-
dependent traffic models capture the temporal variation in travel demand over time. Such network 
models provide important insight into the dynamics of peak periods and sensitivity of travellers’ 
behaviour in response to different transport policy measures. In the network model, the temporal 
variations of traffic flows and travel times are captured by a traffic model. The corresponding 
travellers’ behaviour is then represented by a dynamic traffic assignment. The dynamic traffic 
assignment follows two principles: dynamic user equilibrium and dynamic system optimum. 
Dynamic user equilibrium assignment has been the focus in the past two decades. As a result of 
previous research (see for example, Friesz et al., 1993; Friesz et al., 2001; Heydecker and 
Addison, 2005), we have gained substantial knowledge on the formulations, properties, and 
solution methods of dynamic user equilibrium assignment. Dynamic system optimal assignment is 
an important yet relatively underdeveloped area. Dynamic system optimal assignment process 
suggests that there is a central “system manager” to distribute network traffic over time in a fixed 
study period. Consequently, the total, rather than individual, travel cost of all travellers through the 
network is minimised. Although system optimal assignment is not a realistic representation of 
network traffic, it provides a bound on how we can make the best use of the road system, and as 
such it is a useful benchmark for evaluating various transport policy measures.  

This paper presents a comprehensive framework of dynamic traffic models and traffic assignments. 
The paper is organized as follows. In Section 2, we review some fundamental requirements on 
traffic models for use in dynamic traffic assignments, Section 3 presents the formulation of dynamic 
user equilibrium assignment and the associated travel cost functions. In Section 4, we present the 
formulation and optimality conditions of dynamic system optimal assignment. Dynamic system 
optimal assignment problem is formulated as a state-dependent optimal control problem. To 
understand and solve the dynamic system optimality conditions, we also provide a detailed 
interpretation of various cost components appear at system optimality. We further develop a novel 
sensitivity analysis to derive and compute the dynamic externality. Section 5 presents the solution 
algorithms for solving the sensitivity analysis and the dynamic traffic assignments. The solution 
algorithms are developed using a dynamic programming approach. Following this, we show some 
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numerical calculations and discuss the characteristics of the results in Section 6. Finally, some 
concluding remarks are given in Section 7.  

2. Requirements on traffic models for dynamic network  

The traffic models describe the temporal variations of traffic flows and travel times on links in 
dynamic assignment models, given the link inflows. In the literature, some of the traffic models are 
more tractable or convenient to use over the others, while some of these are more realistic for 
representing dynamics of traffic. Because different traffic models produce different estimations for 
link flows, travel times, and hence solutions of traffic assignments, it is important to understand the 
properties, plausibility, and applicability of each traffic model. It is also vital to identify the minimum 
requirements on a traffic model for it to be used in dynamic traffic assignment formulations. Chow 
(2005) summarized five requirements that a traffic model should possess for plausible estimation of 
traffic flows and travel times: non-negativity, first-in-first-out (FIFO) discipline, conservation of flow, 
consistency between travel time and flow, causality. The details can be referred to Chow (2005).   

3. Travel cost and dynamic user equilibrium   

3.1 Travel cost functions    

We consider the total travel cost ( )sC p  encountered by each traveller departs at time s and 

travels along route p between an origin-destination pair in the network has three distinct 
components. The first component is the time spent on travelling along the route, which is 
determined by the travel time model that is adopted. In addition to the travel time, we add a time-
specific cost )]([ sf pτ  associated with arrival time ( )spτ  through route p at the destination. We 

consider this arrival time-specific cost to be a non-decreasing function of the associated arrival 
time. Finally, we add a time-specific cost )(sh  associated with departure from the origin at time s. 
This cost explicitly considers the value of time to travellers at the origin of a journey. We consider that 
travellers would gain continuing benefit from remaining at their origin but are drawn to their 
destination by a need to attend and hence to travel. Following this, ( )sh  is considered to be a 

monotonic non-increasing function of departure time s. Consequently, the total travel cost ( )sC p  

associated with entry time to route p at time s  is determined as a linear combination of these costs 
as  

 ( ) ( ) ( ) ( )][][ sfssshsC ppp ττ +−+= ,                                                                 (1) 

in which the term ( ) ][ ssp −τ  represents the travel time along the route which can be calculated 

from the cost of using each link on the route at the time it will be reached by following the vehicle 
trajectory (see Huang and Lam, 2002; Heydecker and Addison, 2006). In addition, following 
Daganzo (1995) and Mun (2001), we consider the travel time )(~ sca  at the time of entry s to each 

link a on a route to be a linear non-decreasing function of link traffic volume )(sxa  as  

a

a
aa Q

sx
sc

)(
)(~ += φ ,                                                                                                          (2) 

where aφ  and aQ  denote the free flow travel time and the capacity of the travel link respectively. 

The reason of adopting )(~ sca  as a linear function is that the first-in-first-out (FIFO) queue 

discipline, which is a crucial property for analytical dynamic traffic models (Carey, 1992; Nie and 
Zhang, 2005), cannot be guaranteed for non-linear version of it (Astarita, 1996; Nie and Zhang, 
2005). 

 

3.2 Dynamic user equilibrium assignment  
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In this study, travellers’ responses are represented by their choices of routes of travel and times of 
departure. It is assumed that all travellers make their travel decisions according to a common 
criterion that their individual costs associated with the travel are minimized. Under such 
mechanism, the system will reach a stable state which is called dynamic user equilibrium. This 
dynamic user equilibrium condition is used as a representation of existing network traffic, where 
each individual traveller is acting only in their own interests, but not the interest of the whole 
system. Following Hendrickson and Kocur (1981), for an assignment to be in dynamic user 
equilibrium of simultaneous choice of travel route and departure time, the total travel cost should be 
the same for all travellers between each origin-destination pair in the network, no matter what 
combinations of departure-time and route that the travellers have chosen. The dynamic user 
equilibrium assignment is stated as a complementary inequality for the inflow ( )se p  to each route 

p at the entry time s as:  

( ) ( )
( ) sPp

CsC

CsC
se od

odp

odp
p ∀∈∀ ≥⇒=

=⇒>
,

0

0
*

*

,                                                  (3) 

where odP  is the set of all routes between origin-destination pair od, *
odC  is the total travel cost 

with which travel will take place between origin-destination pair od. All travel between each origin-

destination pair is achieved at the same cost *
odC  throughout the study period. 

4. Dynamic system optimal assignment  

In contrast with dynamic user equilibrium, dynamic system optimal assignment assumes that 
travellers will cooperate in making their travel choices for the overall benefit of the whole system 
instead of their own individual benefits.  

 

4.1 Formulation and optimality conditions   

The system optimal assignment with departure time choice for fixed travel demand can be 

formulated as the following optimal control problem, which seeks an optimal inflow profile )(sea  

that minimizes the total system travel cost within the study period, T. The total travel demand with 

in the study period is fixed and given by odJ . The optimal control problem is formulated as:  ∑∫
∀

=
a

T

aa
se

dssesCZ
a 0

)(
)()(min                                                                                            (4) 

subject to: 

[ ]
asse

ds

sdG
a

aa ∀∀= ,,     )(
)(τ

                                                                                      (5) 

assgse
ds

sdx
aa

a ∀∀−= ,,     )()(
)(

                                                                                (6) 

asse
ds

sdE
a

a ∀∀= ,,      )(
)(

                                                                                           (7) 

       )( od
a

a JTE =∑
∀

                                                                                                     (8) 

assea ∀∀≥ ,,     0)(                                                                                                       (9) 
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Equation (5) ensures the proper flow propagation along each route, in which )(sGa  denotes the 

cumulative outflow by the link time )(saτ , where )(~)( scss aa +=τ  for each link a. Equation (6) is 

the state equations that govern the evolution of link traffic, )(sxa . The variables )(sga  represents 

the link outflow rate at time s. Equation (7) defines the cumulative inflow )(sEa . Equation (8) 

specifies the amount of total throughput Jod generated in the system within the time horizon T. 

Condition (9) ensures the non-negativity of the control variable. Given a positive inflow )(sea , the 

corresponding outflow )(sga  and link traffic volume )(sxa  is guaranteed to be positive (see for 

example, Astarita, 1996). Hence, we do not add explicit constraints to ensure the non-negativity of 

)(sga  and )(sxa . The traffic models considered in this paper satisfy FIFO structurally, hence we 

do not need to add any explicit constraint for this. In the present study, the formulation and analysis 
for the dynamic system optimal assignment are restricted to networks in which origin-destination 
pairs are connected with mutually distinct travel routes consisting of one single link. 

One technical difficulty is that with the traffic models above, the time lag between changes to the 

control variable, )(sea , and the corresponding responses, )(sga , is state-dependent. This state-

dependent control theoretic formulation is unorthodox. Its properties and application to dynamic 
user equilibrium were studied by Friesz et al. (2001). The necessary conditions for dynamic system 
optimal assignment are given by the following the proposition.  

Proposition 1: The necessary conditions for the optimization problem (4) – (9) can be 
derived as   ∈∀∀

=≥−+Ψ+⇒=
==−+Ψ+⇒>

],0[,,   
)()()()()(0

)()()()()(0
)( Tsa

sssssC

sssssC
se

odaaaaa

odaaaaa
a νµγλ

νµγλ
,        (10) 

Proof: 

See Appendix A in Chow (2007).  � 

In condition (10), the notation )(saγ , )(saλ , )(saµ , and odν  are the multipliers, or called the 

costate variables in optimal control terminology, associated with constraints (5), (6), (7), and (8) 
respectively. From the other stationarity conditions at optimality, we determine that 

[ ])()( ss aaa τλγ =  and oda s νµ =)( , where odν  is constant with respect to time. Hence, condition 

(10) can be rewritten as 

[ ]
[ ] ∈∀∀

≥−+Ψ+⇒=
=−+Ψ+⇒>

],0[,,   
)()()()(0

)()()()(0
)( Tsa

ssssC

ssssC
se

odaaaaa

odaaaaa
a ντλλ

ντλλ
,                   (11) 

The magnitude of odν  is dependent on the total travel demand, odJ . The detail of this can be 

referred to Chow (2007). Similar to the static counterpart (see Sheffi, 1985), proposition 1 shows 
that the system optimal assignment in dynamic setting can be reduced to an equivalent new 
dynamic user equilibrium assignment formulation in which additional components of the cost 

[ ][ ])()()( sss aaaa τλλ −+Ψ . This quantity is interpreted as the total cost or total toll that each 

traveller would have to pay in addition to the individual travel cost that they encounter in order to 
make the optimal use of the transport system at this modified equilibrium. The terms )(saΨ , 

)(saλ , and [ ])()( ss aaa τλγ =  are explained in the following sections.  

 

4.2 Costate variables   

The costate variables )(saλ  and )(saγ  in the optimal control formulation represents the sensitivity 

of the value of the objective function with respect to the changes in the state variables )(sxa  and 
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)(sga  in the corresponding constraints at the associated time (see Dorfman, 1969). In other 

words, the value of the costate variables in the system optimal control formulation equals to the 
total change in the value of the total system travel cost Z  with respect to slight changes in the 
state variables (i.e. link traffic volume )(sxa  and outflow profile )(sga ) at time s. The costate 

variables )(saλ  and [ ])()( ss aaa τλγ =  can be calculated by the following costate equation which 

is derived from the optimality conditions (see Chow, 2007) as 

[ ]( ) dttetf
Q

s
T

st

aa
a

a ∫
=

+= )()('1
1

)( τλ .                                                                              (12) 

The difference between costate variables )(saλ  and )(saγ  can be interpreted as the change in 

the value of the total system cost Z  related to the change in link traffic volume during the stay of a 
traveller who enters the system at time s and leaves the system at )(saτ . 

 

4.3 Externality   

The notation )(saΨ  in the cost components in condition (11), where dtte
u

C
s

T

a

ts

a
a ∫ ∂

∂
=Ψ

0

)()( , 

refers to the additional travel cost imposed by an additional amount of traffic, us, at time s to 
existing travellers in the system. This additional cost is termed as “dynamic externality”. In the 
notation, we define the parameters us to represent a perturbation in inflow profile for which  +∈

=
otherwise                     0

),[ if           1)( dssst

du

tde

s

a ,                                                                             (13) 

in which ds represents the incremental time step. Mathematically, the value of )(saΨ  equals to the 

total change in the value of the total system travel cost Z  with respect to this change in the inflow 
profile during a particular time interval ),[ dsss + . 

To calculate the externality, we first differentiate both sides of Equation (1) with respect to us and it 
gives  

[ ]( )
ts

a
a

ts

a

u
tf

u

C

∂
∂

+=
∂
∂ ττ )('1 .                                                                                         (14) 

As a result, calculating the externality )(saΨ  requires the sensitivity 
ts

a

u∂
∂τ

 of travel time with 

respect to perturbations in link traffic inflow. The derivation of this derivative is given in the following 
proposition.  

Proposition 2: Suppose there is a change of us in the link inflow rate at a particular time s, 

the sensitivity of the time of exit aτ  at a time t with respect to this perturbation can be 

calculated as  ∂
∂

+=
∂
∂ ∫

= )()(

)(
)(1

ts

a
a

t

t s

a

ats

a

aa
u

tgd
du

de

Qu σσκ

τκκτ
,             (15) 

in which )(taσ  is the time of entry to the link that leads to exit at time t. Indeed, )(⋅aσ  is 

defined as the inverse function of )(⋅aτ . 

Proof:  
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See Appendix B in Chow (2007).  � 

The derivative of exit time with respect to the perturbation us in inflow can then be expressed in 

terms of the dependence of the inflow profile )(sea  in which s lies between s and )(saσ , the 

current outflow )(sga , and the derivative of exit time at the time of entry, )(saσ . 

 
Discussion: In the dynamic system optimal condition (11), the cost components )(sCa  and 

)(saΨ  are generated within the system, while last two cost components (i.e. the costate variables, 

)(saλ  and )(saγ ) are external to the system. The quantity )()( ss aa γλ −  is interpreted as the 

external cost to be imposed on a traveller who enters the link at time s and leaves at time )(saτ  in 

addition to the individual travel cost )(sCa  that he/she encounters himself/herself and the 

externality )(saΨ  that he/she generates to the system.  

5. Solution algorithms 

This section presents the algorithms to solve dynamic user equilibrium and dynamic system 
optimal assignments respectively in Section 5.1 and Section 5.2.  
 
5.1 Solving dynamic user equilibrium assignment  
 
Step 0: Initialisation 

0.1 Choose an initial equilibrium cost *
odC ;  

0.2 Set the overall iteration counter 1:=n ; 

0.3 Set 0:)( =kea   for all links a and all times k, ],0[ Kk ∈ . The notation )(kea  represents the 

assigned inflow to link a between times sk∆  and sk ∆+ )1( . The total number of simulated 

time steps is denoted as sTK ∆= /  and the total number of parallel links is denoted by A;  
set time index 0:=k ; 

0.4 Set the link index 1:=a ; 
0.5 Set the time index 0:=k ;  

0.6 Set the overall iteration counter 1:=in .  
 
Step 1: Network loading 

Find )1( +kaτ  by loading the travel link using the inflow )(kea  at the current iteration. The 

network loading algorithm “Algorithm D2” described in (Nie and Zhang, 2005) was adopted for this 
purpose.  
 
Step 2: Updating the inflow 

2.1 Calculate [ ] [ ])1()1()1()1()1( +++−+++=+ kfkkkhkC aaa ττ ; 

2.2 Calculate 
s

kCkC aa

∆
−+

=Ω
)()1(

 and [ ]( )
a

a
a Q

kf
ke

1
)1('1

)(
' ++=

∂
Ω∂=Ω τ ,  

 in which  [ ] [ ] [ ]
)()1(

)()1(
)('

kk

kfkf
kf

aa

aa
a ττ

τττ
−+
−+

≈  using a finite difference approximation.  

 We note the equilibrium is achieved if and only if 0=Ω  for all positive inflow )(kea ;  

2.3 Update the inflow as ]0),)(max[(:)( dkeke aa π+=  using Newton’s method. The second-

order searching direction is denoted by 'Ω
Ω−=d   and the step size π , which is 

interpolated linearly as  
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)1()1(

)1(-
 

01

0*

+−+
+

=
kCkC

kCC

aa

aodπ ,  

  

 where )1(1 +kCa  and )1(0 +kCa  represent the corresponding values of )1( +kCa  when 

)(* kea  is being updated with π  is taken as 1 and 0 respectively. To determine π , two network 

loadings are required to calculate the values of )1(1 +kCa  and )1(0 +kCa  respectively.  

 
Step 3: Stopping criteria 

3.1. Check if  ε≤−+ *)1( oda CkC  or in  is greater than the predefined maximum number of   

inner iterations, then go to step 3.2; otherwise, set 1: += ii nn  and go to step 1;   
3.2.   If Kk = , then go to step 3.3; otherwise k:= k + 1 and go to step 1;  
3.3.   If Aa = , then go to step 3.4; otherwise 1: += aa  and go to step 0.5;  

3.4  Define 
*

*

)(

)1()(

od
Kk Aa

a

oda
Kk Aa

a

Cke

CkCke∑∑∑∑
∈ ∈

∈ ∈
−+

=ξ  as a measure of disequilibrium, which is equal to 

zero at user equilibrium. If n  is greater than the predefined maximum number of overall 
iterations or ξ  is sufficiently small, i.e. εξ ≤  where ε  is a test value, then go to step 3.5; 
otherwise set n:=n+1 and go to step 1.2; 

3.5. check if the total throughput ∑∑
∀ ∀

=
a k

aod keE )(  from the system is equal to the predefined 

total demand Jod for the o-d pair. If yes, then terminate the algorithm; otherwise update  −
+=

*

** :

dC

dE
EJ

CC
od

odod
odod , and go back to step 0.3. The derivative 

*
od

od

dC

dE
 is given by 

(Heydecker, 2002).  
 
 
5.2 Solving dynamic system optimal assignment   
 
Step 0: Initialisation  

0.1 Choose an initial equilibrium cost *
odC ;   

0.2 Set the overall iteration counter 1:=n ;  

0.3 Set 0:)( =kea   for all links a and all times k, ],0[ Kk ∈ . The notation )(kea  represents the 

assigned inflow to link a between times sk∆  and sk ∆+ )1( . The total number of simulated time 

steps is denoted as sTK ∆= /  and the total number of parallel links is denoted by A;  set time 
index 0:=k ; 

0.4 Set costates 0:)( =kaλ  for all times ],0[ Kk ∈ ; 

0.5 Set the link index 1:=a ; 
0.6 Set the time index 0:=k ; 

0.7 Set the overall iteration counter 1:=in . 
 
Step 1: Network loading 

Find )1( +kaτ  by loading the travel link using the inflow )(kea  at the current iteration. The 

network loading algorithm “Algorithm D2” described in (Nie and Zhang, 2005) was adopted for this 
purpose.  
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Step 2: Calculating externality∗ 

Calculate the externality )(kaΨ  associated with each )(kea .  

 
Step 3: Determining the auxiliary inflow 
3.1 Calculate  
      [ ] [ ] [ ])()()1()1()1()1()1()1( kkkkfkkkhkC aaaaaaa τλλττ −++Ψ++++−+++=+ ;  

3.2 Calculate 
s

kCkC
k aa

∆
−+

=Ω
)()1(

)(  and [ ]( )
a

a
a Q

kf
ke

k
k

1
)1('1

)(

)(
)(' ++=

∂
Ω∂=Ω τ ; 

3.3 Calculate the auxiliary inflow 
)(

)()( ' k
kkd

a

a
a Ω

Ω−= ; 

3.4. If Aa = , then go to step 3.5; otherwise 1: += aa  and go to step 0.7; 
3.5. If Kk = , then go to step 4; otherwise k:= k + 1 and go to step 0.6.  
 
Step 4: Determining step size 
Search for an optimal step size θ  by using golden section method and update the inflow as 

]0 ,)(max[:)( dkeke aa θ+=  for all times s such that the total system cost is minimized. 

 
Step 5: Calculating costate variables 
5.1 Set the link index 1:=a ; 

5.2 Set 0)( =Kaλ ; 

5.3 Set the time index 1: −= Kk ; 

5.4 Compute [ ]( ) s
Q

ke
kfkk

a

a
aaa ∆+++=

)(
)('1)1()( τλλ ; 

5.5 Calculate [ ])(kaa τλ  from )(kaλ  and )(kaτ  using linear interpolation as  

[ ]      ( )  ( ))()()(
)()()(

kkk aakakakaaa
aaa

ττλλλτλ τττ −−+≈ ;             

5.6. If 0=k , then go to step 6.7; otherwise k:= k - 1 and go to step 5.2;  
5.7. If Aa = , then go to step 7; otherwise 1: += aa  and go to step 5.1.  
 
Step 6: Stopping criteria 
 

6.1 Define 
*

*

)(

)1()(

od
a k

a

oda
a k

a

Cke

CkCke∑∑∑∑
∀ ∀

∀ ∀
−+

=ξ  as a measure of disequilibrium, which is equal to 

zero at system optimum. If n  is greater than the predefined maximum number of overall iterations 
or ξ  is sufficiently small, i.e. εξ ≤  where ε  is a test value, then go to Step 6.2; otherwise set 
n:=n+1 and go to step 0.5; 

6.2. Check if the total throughput ∑∑
∀ ∀

=
a k

aod keE )(  from the system is equal to the predefined 

total demand Jod for the o-d pair. If yes, then terminate the algorithm; otherwise update  −
+=

*

** :

dC

dE
EJ

CC
od

odod
odod , and go back to step 0.2. 

                                                   

∗ The detailed algorithmic procedure for calculating )(saΨ  is referred to Chow (2007).  
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6. Numerical examples 

This section calculates the dynamic traffic assignments. Figure 1 shows a network with a single 
origin-destination pair connected with two parallel travel routes consisting of one single link. Link 1 
has free flow time 3 mins and capacity 20 vehs/min, and link 2 has free flow time 4 mins and 
capacity 30 vehs/min. Furthermore, the origin-specific cost is specified to be a monotone linear 
function of time with a slope -0.4. The destination cost function is piecewise linear, with no penalty 

for arrivals before the preferred arrival time 50* =t , and increases with a rate 2 afterwards. The 
length of the planning horizon ],0[ T , where T=100, is set such that that all traffic can be cleared 

by time T. The total amount of traffic odJ  is taken as 800 vehs.  

 

 

 

 

 

Figure 1 Example network 

Figure 2 shows the corresponding profiles of link inflows and the total travel cost at dynamic user 
equilibrium. The assignment period to route 1 is from time 18 to time 49, and to route 2 is from time 
21 to 49 which is shorter due to its higher capacity and hence traffic can be cleared more 
efficiently. The link flow volumes using route 1 and route 2 are 380.25 (vehs) and 419.75 (vehs) 
respectively. Figure 3 also shows good equilibration of travel cost in which the measure of 
disequilibrium ξ  is less than 10-17.  
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  Figure 2 Dynamic user equilibrium assignment    Figure 3 Inflow and travel cost components on route 1 

 

As mentioned in Section 2.1, the total travel cost indeed consists of the travel time and the sum of 
time-specific costs. For further illustration, Figure 3 plots the cost components and the associated 
inflow and outflow profiles on route 1. The cost components on route 2 follows similar pattern and 
hence they are not included here for brevity. Figure 3 shows that the time-specific costs are 
decreasing over time until departure time 39. It is because travellers depart after time 39 will arrive 
at the destination at time 50.1 which is after the preferred arrival time 50. As a result, those 
travellers will be added a positive arrival specific cost. In addition, the figure shows that the link 
travel time increases with time when the inflow is higher than the outflow and vice versa after time 
39. Overall, the sum of all these travel cost components is constant over time.   

The total system travel cost Z  is 12,465.2 veh-min at dynamic user equilibrium and it is 
understood that it is not the minimum yet. Figure 4 shows dynamic system optimal assignment. 
With the same total demand Jod, the period of assignment to link 1 expands from times [18, 49] to 
times [4, 56], while that to link 2 expands from times [21, 49] to times [6, 50]. In general, the inflow 
profiles are more spread at system optimum in order to reduce the intensity of congestion. In the 
figure, the legend “total travel cost” refers to values of )(sCa  and the legend “total travel cost + 
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toll” refers to the value of [ ])()()()( ssssC aaaaa τλλ −+Ψ+  on each route. The associated total 

system travel cost Z  at system optimum is decreased from 12,465.2 veh-min in user equilibrium to 
11,447.3 veh-min. Contrast with dynamic user equilibrium, it is seen that the total travel cost 

)(sCa  is not equal for all departure time s which implies some travellers can be better off while 

some of them have to be worse off for the good of the whole system.  
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   Figure 4 Dynamic system optimal assignment                      Figure 5 Link traffic volumes 

Furthermore, as shown in the figure, the “total travel cost + toll” is not in good equilibration at 
system optimum in which the measure of disequilibrium can only reach 0.04. Indeed, solving the 
dynamic system optimal assignment is difficult, since the solution procedure involves solving two 
dynamic programmes simultaneously and consistently: solving the network loading forward in time 
for the state variables and solving the costate equations backward in time for the costate variables. 
Although the dynamic system optimal solution that we achieved shows a reduction of more than 
8% over the dynamic user equilibrium assignment, we are still exploring a better algorithmic 
procedure for better quality solution.  

To illustrate the cause of the decrease in total system travel cost, Figure 5 shows the link traffic 
volumes, which are directly related to congestion, at dynamic user equilibrium and dynamic system 
optimum. Interestingly, yet importantly, the results show that, with the link travel time function in 
Equation (2), the system optimal assignment has to allow congestion, which can only be managed 
and minimized, even at system optimum. This implies that the previous analyses on dynamic 
system optimum using bottleneck model (see for example Vickrey, 1969; Arnott et al., 1998) in 
which congestion can be completely eliminated do not generally apply.  

Finally, to decentralize the system optimizing flow, a total amount of time-varying toll of  
[ ][ ])()()( sss aaaa τλλ −+Ψ  has to impose on each traveller in the system according to the 

departure time s of each traveller. The time-varying tolls on each route are calculated and plotted in 
Figure 6. In general, the tolls increase for travellers whose departure time would lead to an early 
arrival at the destination; decreases for travellers who would arrive late. 
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7. Concluding remarks 

This paper developed a comprehensive framework for formulating, analysing, and solving dynamic 
network models. In particular, we investigated the dynamic system optimal assignment and 
externality, which are important yet underdeveloped topics in a general and plausible way. We also 
developed a novel sensitivity analysis of link exit time with respect to perturbations in inflow. The 
knowledge generated in this paper provides important insight into the management of peak traffic 
dynamics and travellers’ behaviour. We also presented solution algorithms for solving the dynamic 
traffic assignments. The solution algorithms were developed using a dynamic programming 
approach. We applied the algorithms to numerical calculations. The characteristics of the results 
were discussed. We showed that the system optimal assignment has to allow congestion which can 
only be managed but not eliminated even at system optimum. This implies that the previous 
analyses on dynamic system optimum using the bottleneck model do not apply generally. 
Nevertheless, further study is still required to improve the performance of the solution algorithm for 
calculating system optimal assignment.  

In the present study, the formulation and analysis of system optimal assignment were restricted to 
networks with multiple origin-destination pairs connected with mutually distinct routes consisting of 
single links. In case of networks with multiple origin-destination pairs with overlapping routes, traffic 
entering the network during the journey time of a traveller from other origins downstream can 
influence the travel time of travellers from its upstream. As a result, some special computational 
technique, for example Guass-Seidel relaxation (see Sheffi, 1985; Patriksson, 1994), is required. 
The basic idea of such relaxation scheme is to decompose the assignment problem for networks 
with overlapping routes connecting multiple origin-destination pairs into several sub-problems. In 
each sub-problem, we calculate the assignments for one origin-destination pair, and temporarily 
neglect the influences from the flows between other origin-destination pairs. When equilibrium or 
system optimum is reached for the current origin-destination pair, we proceed with calculations for 
another pair. The procedure is repeated until equilibrium or system optimum is reached in the 
whole network. The relaxation scheme is not guaranteed to converge, but if it does, the solution will 
be the final assignment pattern (see Sheffi, 1985, p217). In case of travel route with multiple links, 
difficulties brought in when we have to calculate the derivatives of route exit time (see for example 
Balijepalli and Watling, 2005). As shown earlier in proposition 2, changing the inflow to a link on the 
route during one time interval will induce perturbations in the link travel time, the link outflow, and 
hence the inflow to subsequent link(s) in several succeeding time intervals. Hence, the dimension 
of time intervals to be considered in calculating the derivatives will expand exponentially along the 
route. We are currently investigating the strategies to cope with this “curse of dimensionality”. 
Efficient computing methods for system optimal assignments in general networks are still under 
investigation, however, the work reported in the present paper provide a solid and necessary 
foundation for future research on this.  
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