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Abstract – This work compares the use of a 
deterministic gradient based search with a stochastic 
genetic algorithm to optimise the geometry of a space 
frame structure.  The goal is not necessarily to find a 
global optimum, but instead to derive a confident 
approximation of fitness to be used in a second 
optimisation of topology.  The results show that 
although the genetic algorithm searches the space more 
broadly, and this space has several global optima, 
gradient descent achieves similar fitnesses with equal 
confidence. The gradient descent algorithm is 
advantageous however, as it is deterministic and results 
in a lower computational cost.   

I INTRODUCTION 

     Optimisation techniques are used by engineers to 
design structures to satisfy many criteria, such as high 
strength or low weight. Recent advances in computer 
controlled manufacturing technology have also allowed 
the construction of such structures to be automated, so that 
the machine plays a significant role in both design and 
building processes. The work in this paper investigates 
optimisation of a microstructure suited to a rapid 
prototyping technology known as stereolithography that is 
capable of construction at a high resolution, currently 
around 0.05mm. Our technique is based on the seamless 
repetition of a tiny structural module over a large volume 
such that the overall object behaves as a continuous 
material. It is, in effect, operating at a scale between 
traditional large-scale manufacturing and nanotechnology. 
The optimisation method is analysed with the specific 
requirements of this technique in mind, but involves 
generic structural principles that are shared with many 
other optimisation problems. As such the methods 
investigated in this paper can be applicable to other types 
of structures. 
     The types of structures investigated are known as space 
frames. Space frames are made of linear members that can 
be oriented in any direction in 3-dimensional space, and 
connected at node points either by rigid or flexible 
connections. To define a particular space frame one must 
specify both the members themselves, and the locations 
and orientations of the nodes in 3-dimensional space. We 
refer to these as the topology and geometry of the structure 
respectively, and it is these two properties that are 
considered by a structural optimisation algorithm. 
 

A. The geometry 
 
     The distinction between geometry and topology can be 
described by an example 2-dimensional illustration. 
Geometry refers specifically to the positions in space of 
the node points joining the structural members. The 
following diagrams are of two structures with the same 
topology but different geometries. As can be observed, the 
connections and number of members are the same, but the 
coordinates and orientations of these members differ, see 
Fig. 1. 
 

 
Fig 1.  An illustration of a change in the geometry of a 
structure. 
 
B. The topology 
 
     Topology refers to the structural connections between 
the node points. A change in the topology of a structure is 
a change in the number, or way in which the members are 
connected.  This is illustrated in the two figures below, in 
which the two structures could not be made equivalent 
simply by moving the positions of the nodes, see Fig. 2. 
 

 
Fig. 2.  An illustration of a change in the topology of a 
structure. 
 
     Geometry and topology are very different 
characteristics to be determined by an optimisation 
algorithm. Continuous, real-valued coordinates can specify 



geometry, whereas topology is determined by discrete 
connections between points. Optimisation procedures, 
including genetic algorithms (GAs) and also gradient-
based methods such as gradient descent and simulated 
annealing, have been used for problems involving real 
valued parameters, but for discrete problems gradient-
based methods are inappropriate. As in a previous paper 
we will assume a GA is used to evolve a discrete topology 
for a structure, and compare the effectiveness of gradient 
descent (continuous) and a GA (discrete) to optimise the 
geometry. 
     Gradient-based methods are guaranteed to be effective 
in simple problems with only one local optimum; however 
there may be several such optima in the search for a 
suitable geometry. For this reason GAs are often used for 
such problems. The overall optimisation of the structures 
proposed requires a dual process: to evaluate the fitness of 
a given topology, it is necessary to first find its optimal 
geometry for that topology. It is this second process that is 
the focus of this paper. This search procedure must be 
performed for every member of a population and runs as a 
second, inner loop within the larger GA, and therefore its 
efficiency is paramount. This double loop can be 
computationally expensive, and so if found to work well, 
the speed of a non-stochastic method such as gradient 
descent would be of great benefit. The results in this paper 
indicate that even though gradient descent can fall into 
local optima, the value of fitness is near enough to the 
global that the topology can be judged by the fitness of a 
geometry that might not be the global optimum. 

II BACKGROUND 

A. Genetic Algorithms in structural optimisation 
 
     The initial and simplest application of GAs in structural 
optimisation determined member widths in a set structure. 
Adeli and Cheng used a GA to optimise the weight of 
space trusses by determining the width of each member in 
a given structure. The shape and load points were fixed in 
advanced, and the cross sectional areas of groups of 
members were encoded in the genome, then selected to 
minimize the total weight [1]. 
     Both geometry and topology have also been addressed 
in optimisation research. Yu-Ming Chen used a non-
random iterative process of shifting node points in the 
FEM representation toward high stress zones, thus 
optimising the geometry [4]. Yang Jia Ping has developed 
a GA that determines both shape and topology, which 
begins with an acceptable unoptimised solution and refines 
the topology by removing connections [7]. Most recently, 
and more closely related to the methods in this paper, 
Peter von Buelow used a two stage algorithm nesting one 
GA within another. An outer GA evolved a topology for 
the structure expressed as a matrix representing the 
structural connections. Another GA found the geometry 
for each member of the population, expressed as real 
valued node positions [2]. 
 
 

B. Stereolithography: The Process 
 
     Stereolithography is a method of creating physical 3D 
realisations of CAD models; see [3] for a fuller 
explanation.  It is one of the many types of machines 
collectively called ‘rapid prototyping machines’.  As the 
name suggests, their primary usage is with the rapid 
building of prototypes for testing by engineers and 
designers. However as the technology has been 
dramatically improving over the past several years, it has 
become evident that this process can be used for more than 
building prototypes and can be itself a method for 
constructing parts. 
     The stereolithography machine consists of a tank filled 
with liquid photopolymer which is sensitive to ultraviolet 
light. An ultraviolet laser ‘paints’ one of the layers, 
exposing the liquid in the tank and hardening it, a platform 
then drops down into the tank a fraction of a millimetre 
and the laser paints the next layer.  This process repeats 
until the model is complete. 
     Once completed, the object is rinsed with a solvent and 
then baked in an ultraviolet oven that thoroughly cures the 
plastic. 
 

C. Stereolithography and Structural Optimisation 

 
     Previous work by the authors involved the utilization of 
an evolutionary algorithm to evolve the microstructure of 
an object created by a stereolithography machine [5].  
     This structure was optimised to withstand loads applied 
to it while at the same time minimizing overall weight. A 
two part algorithm was proposed that evolved the topology 
of the structure with a genetic algorithm, while calculating 
the details of the shape with a separate, deterministic, 
iterative process derived from standard principles of 
structural engineering. The division of the method into two 
separate processes allowed both flexibility to changed 
design parameters without the need for re-evolution, and 
scalability of the microstructure to manufacture objects of 
increasing size.  
    Ten thousand generations of the GA under equilibrium 
loading conditions resulted in the structure shown in Fig. 
3. Results showed that a structure was evolved that was 
both light and stable.  The overall shape of the evolved 
lattice resembled a honeycomb structure that also satisfied 
the restrictions imposed by the stereolithography machine 
[5]. 



Fig. 3.  The stereolithographic model created by the 
genetic algorithm. 
 
     A continuous structure was efficiently designed by 
arraying a series of smaller modules, referred to as ‘unit 
cubes’.  The structures examined in this paper therefore 
will be formed of repeated units of identical topology in 
which the structural members of each are smoothly 
connected to its neighbours.  (The size of this unit cube is 
used as the unit of measurement of 3-dimensional space.)  
A space frame structure itself is defined by both the node 
positions (the geometry) and the connections between 
those nodes that form the structural members (the 
topology). In the case of the unit cube array, the 
connecting members may join two nodes within the same 
unit cube, or may join a node to another in any of the 26 
neighbouring units. This topology was represented by a 
GA as described in [5]. 
 
D. Effect of member angles on strength 
 
     The stereolithography process causes the strength of 
material to be affected by the angle at which it is 
deposited, a fact that contributes to a more complex fitness 
landscape than would be the case with other 
manufacturing techniques. Because the model is built up 
of horizontal layers of resin, a linear member oriented 
perpendicular to these layers (i.e. a vertical member) has a 
greater strength than one at a shallower angle, and this 
strength decreases continuously down to approximately 
30º from horizontal, below which the machine is unable to 
deposit material. The effect of these changes in strength 
can be seen in the two representations of fitness below, see 
[5] for more details. 
     The solution space to be searched consists of the node 
positions in 3-dimensional space for n nodes, or a 3n-
dimensional space. In the samples formed by 6 node points 
we are therefore searching in 18 dimensions. For 
visualisation purposes, these plots show the fitness of a 2-
dimensional slice through this 3n-dimensional space 
determined by two random orthogonal 3n-dimensional 
vectors and centred on an optimal solution found by 
gradient descent. While not an exhaustive mapping of the 
entire fitness landscape, they do indicate the added 
complexity introduced by adjusting the material strength 

due to angle. The first plot indicates the fitness of 
solutions in which all member angles are treated equally, 
(see Fig. 4). Adjusting strength due to angle however 
produces the characteristic valleys cutting through the 
fitness landscape of the second plot, corresponding to node 
point positions that produce weaker, more horizontal 
members, (see Fig. 5). Several local optima are clearly 
seen, and can be found in each of the 3n dimensions. The 
added complexities of this solution space indicate that the 
search for a global optimum would be more difficult when 
angle strengths are considered, particularly for gradient-
based methods. 

 
 
Fig. 4. A 2-dimensional slice through 3n-dimensional 
solution space. 

 
Fig. 5. A 2-dimensional slice through 3n-dimensional 
solution space.  Member strengths are affected by angle. 
 

III METHOD 

A. Search procedures: fitness 
 
     The goal of optimisation in this case is to find the node 
positions for a given topology, which minimise the total 
stress in the structural under a specified load condition. 
The structure is defined as a set of linear members that can 
therefore be simulated by the finite element method [6]. 
The members are rigid jointed members with identical 
cross sections and a single unit of the structure is loaded 



under compression in the z-axis at its boundary nodes to 
calculate the stresses of each member. These stresses are 
then used as the fitness of the solution for each of the two 
search techniques. 
 
B. The internal GA 
 
     A genetic algorithm can be used to determine the node 
point positions by first creating an initial population of 
random positions within the unit cube for the same number 
of points (n = 6 in our case). Crossover between two 
random parents then operates by comparing the 
corresponding node positions in each. A new point is 
drawn randomly from an elliptical normal distribution 
around the nodes of both parents such that the variance 
along the primary axis is the distance between the two 
points and the orthogonal variance is fixed at 0.01. 
Mutation is similarly accomplished by selecting a random 
point from a spherical normal distribution with a variance 
of 0.01 around the node to be mutated. These real valued 
operations are similar to those used by [2] for similar 
problems and as such serve as a useful comparison to 
gradient descent.  
 
C. Gradient descent 
 
     The shape of a solution to be found is determined by 
the positions of six nodes along the three (x, y and z) axes, 
and therefore amounts to a search in 18-dimensional 
space. Gradient descent is used to find an optimal solution 
by sampling the fitness in each dimension at every 
iteration using the finite element method mentioned above. 
This provides a non-stochastic alternative search 
procedure to the GA. 
 
D. Experiment 
 
     A randomly generated population (75) of topologies 
was created. These topologies were then optimised 
individually. For each topology gradient descent was 
performed five times from five random starting 
coordinates.  Each run of the gradient descent was allowed 
to continue for 50 iterations as each topology was seen to 
reach a plateau (i.e. finding its local optimum) within this 
time.  
    For comparison, a genetic algorithm was also used to 
evolve the geometry given the same 75 topologies. It was 
allowed five runs for 300 generations.  For our specific 
application the same experiment was performed again with 
the strengths of members due to their angles taken into 
consideration. (As in sec. II.D) 
 

IV RESULTS AND ANALYSIS 
 
     The GA was allowed to search for 300 generations with 
a population of 10, and gradient descent was run for 50 
iterations. It was found that gradient descent reached an 
optimal solution (i.e. showed no further improvement) 
after an average of 718 fitness calculations (39.9×18 
dimensions) when strength due to member angles is not 

considered, and 703 fitness calculations (39.1×18 
dimensions) when it is. The GA found similar solutions 
after approximately 3000 fitness calculations (300×10 
members in the population). The GA was therefore found 
to require an average of 4.2 times the number of fitness 
calculations compared to gradient descent for the 
examples in our set of topologies. 
     The two graphs below show examples taken from the 
same randomly generated topology. They represent a 
typical solution in that the optimal solution was found by 
the GA after 3000 fitness calculations, whereas gradient 
descent arrived at a similar solution with its optimum in 
approximately 630 fitness calculations. See Fig. 6 and 7. 
 

 
 
Fig. 6.  A graph of the average and variance of the genetic 
algorithm for 300 generations.  
 

 
 
Fig. 7.  A graph of the average and variance of the gradient 
descent for 50 iterations. 
 
     The variance in fitness over several runs of the 
algorithm can be taken as a measure of confidence in the 
accuracy of the result. A small variance in the final 
fitnesses would indicate a high level of confidence that 
these approximate the global optimum. These graphs show 
the mean and variance of total stresses over time for five 
runs of the GA and gradient descent respectively. On 
average it was seen that the variance in the solution 



decreases from 0.0351 in generation 1 to 0.0020 in 
generation 300 for the GA, and from 0.0288 in iteration 1 
to 0.0015 in iteration 50 for gradient descent. This 
decrease in variance would indicate that both the GA and 
the gradient decent algorithm are not sensitive to initial 
starting conditions, but find similarly fit solutions each 
time. 
     A clearer comparison of the GA and gradient descent 
can be achieved by plotting the average of 5 runs for each 
method of each topology against each other. It can be seen 
by the graph below that the fitness of solutions found by 
either method are nearly equivalent for all topologies 
tested. If the final total stresses found by the genetic 
algorithm and gradient descent were equal, they would lie 
on the x = y plane.  As can be observed in Fig 8 below, the 
75 points lie very close to the x = y line.  (Note that the log 
of both axes was taken to better illustrate the distribution).  
Another thing to note is that gradient descent actually 
slightly out performs the GA even though the GA was run 
for 4.2 times the number of fitness calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  A graph of the average fitness of the gradient 
descent vs. the average fitness of the GA for each 
topology. Open circles represent solutions with strengths 
adjusted due to angle. 
 
     Although the solution fitness was seen to be 
approximately equal for both the GA and gradient descent, 
it was found that the two methods behave differently in 
searching the space. The images below show the mean and 
variance of node point positions for five runs of the GA 
and gradient descent on the same topology. See Fig. 9 & 
10. 

 
Fig. 9. Mean node points found by the GA. Variance is 
indicated by the grey circles. 

 
Fig. 10. Mean node points found by gradient descent. 
Variance is indicated by the grey circles. 
 
     For the entire sample set, the average variance for node 
points in solutions evolved by GA was 0.55 units, 
compared to an average of 0.37 units for gradient descent. 
As can be expected, the optimal solutions evolved by the 
genetic algorithm vary more than those found by gradient 
descent, indicating that it searched the space more broadly. 
     If the variance in final fitness were directly correlated 
with the finding of greatly diverging geometries, this 
would indicate that only structures with one single, clear 
optimal would be amenable to this evaluation. The fact 
that this is not the case can be seen in the following graph, 
a plot of the variance in point position vs. the variance in 
final fitness, see Fig. 11. 



 
 
Fig 11.  A graph of the variance in point position vs. 
variance in final fitness. 
 
     It can be observed that there is no correlation between 
variance in point position and variance in the final fitness.  
Notice also that the variance in point position generated by 
the genetic algorithm (depicted by o) is generally greater 
than that produced by the gradient descent (depicted by ×),  
confirming what was observed in figures 9 and 10.  Little 
difference can be observed in the variance in final fitness. 
 

V CONCLUSIONS 
 
     The aim of this work was to compare a deterministic 
gradient-based method with a stochastic genetic algorithm 
in optimising the geometry of a given topology. Each 
method yields a fitness in terms of the total member 
stresses under load, and the variance in these fitnesses over 
a number of runs has been taken as a measure of 
confidence in that fitness. The results have shown that a 
topology can be judged by the fitness of a geometry that 
might not be the global optimum. 
 
The following conclusions are drawn from the 
observations: 
 

1. The GA and gradient descent were able to find 
similar solutions with similar fitnesses.  
To achieve this however, the computational cost 
of the GA was 4.2 times that of gradient descent. 

 
2. There was little observable difference between 

the two methods in the variance in the final 
fitness. 
This indicates an equal confidence in the results 
of both methods. 

 
3. The geometries found by the GA revealed more 

variation in shape, indicating that it was 
performing a broader search of the solution space. 
Although this may be desirable for certain 
problems, it did not result in a noticeable 
difference in fitnesses and is therefore not of 
significant benefit in judging the topology.  

 
4. There is no correlation between variance in 

fitness and variance in point position. 
This indicates that all topologies could be 
amenable to evaluation by these methods. 

 
     Considering the above conclusions, the choice of one 
method over another can be made on the basis of a 4.2 fold 
increase in speed, without any loss in accuracy or 
reliability.  Therefore we conclude that for this problem 
domain, gradient descent is a better method with which to 
implement a geometry search. 

VI FUTURE WORK 

     Both algorithms were stopped at the point at which they 
reached a plateau, however it was found that the initial 
iterations of gradient descent outperformed the GA even 
more rapidly than the 4.2 increase mentioned above.  It is 
therefore hypothesised that by prematurely stopping the 
gradient descent at a point before it plateaus may 
dramatically decrease the cost of computation without 
affecting the reliability of the results. 
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