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Abstract: This paper explores creative design, social interaction and 
perception. It proposes that creativity at a social level is not a result of 
many individuals trying to be creative at a personal level, but occurs 
naturally in the social interaction between comparatively simple minds 
embodied in a complex world. Particle swarm algorithms can model 
group interaction in shared spaces, but design space is not necessarily 
one pre-defined space of set parameters on which everyone can agree, 
as individual minds are very different. A computational model is 
proposed that allows a similar swarm to occur between spaces of 
different description and even dimensionality.  

1 Introduction 

Where does creativity originate? Does the push to innovate come from the 
individual, as our own point of view suggests? Or is it the group? 

It is the natural assumption that we are the instigators. Margaret Boden 
(1990) draws a distinction between the psychological ‘P-creativity’ of the 
individual, and the historical ‘H-creativity’ of ideas that are fundamentally 
novel for the whole of a culture. Referring to Alan Turing, Friedrich von 
Kekulé, Mozart, and other historical innovators, she states the capacity for P-
creative ideas means there is a good chance for H-creativity. Implied in the 
usual view is both that the creativity of the group is an accumulation of 
creative leaps of individual people, and that these individuals are varied in 
ability. H-creativity is wholly dependent on P-creativity. 

This paper proposes an alternative: that creativity at a social level is not a 
result of many individuals trying to be creative at a personal level, but 
emerges naturally from the social interaction between comparatively simple 
minds embodied in a complex world. While individuals may differ in ability, 
such differences are not necessary for variety and innovation to occur. Nor is 
group innovation based on randomness, or even an internal drive to generate 
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novelty, but a continual change in how we perceive the world around us and 
how we are affected by others. 

A computational model is proposed that takes after the coordinated social 
dynamics of bee swarms, ant colonies, schools of fish and flocks of birds, all 
of which appear in motion to have a sophisticated group mind, and the swarm 
algorithms inspired by these. The interactive creativity of large groups of 
designers can be seen as a type of swarm behaviour involving the thoughts of 
agents (Kennedy & Eberhart, 2001), but models to explain this require the 
predefinition of a single uniform problem space in which to interact. 
Designers’ minds can be vastly different, and private, so what is this space? In 
this proposed model swarming can occur, but takes place via three distinct, 
abstract spaces aligned with Czikszentmihalyi’s (1988) systems model of 
creativity, and linked in such a way that creativity happens in the process of 
mapping from one space to the next.   

The practical aims of this work are twofold. The first is to show how the 
parts of a creative system (based on Czikszentmihalyi’s model) can be 
represented as a set of three abstract spaces with a structure that allows 
swarming to occur. The second is to use these to model a social system that 
appears to exhibit creative behaviours: namely cultural innovation, 
coalescence to socially established norms, and clique differentiation. 

The overall goal is to show that the first is sufficient cause for the next: 
that is, to show that the structure of the spaces yields an emergent behaviour 
resembling creativity. In doing so, the model proposed and tested is minimal, 
and omits features often associated with a system of creative agents. The 
agents are not goal-motivated, novelty-seeking or of varied abilities. They 
have no intentionality other than the differentiation of perceptions required by 
neurons or machine classifiers. There is no objective measurement of utility to 
rate one example of creative output against the next. Also, there are no 
random processes to introduce innovation internal or external to the agents. 
This does not deny the fact that these features may exist in real, human 
designers, but it suggests that these are not strictly necessary to produce the 
creative behaviours mentioned. 

The design context is a basic architectural one, with each agent able to 
contribute to an overall building pattern in a shared world. As there is no 
objective measure of utility, novelty is measured relative to agents’ prior 
work, and innovation is simply defined as a difference between an agent’s or 
a group’s building pattern and what has come before. The overall movement 
of group activity in the model ensures that styles and cultural norms are 
always changing, and as this happens, the innovation of individuals is a result 
of trying to make sense of the new world. In trying to choose what they see as 
the norm, they create novelty unintentionally. 

The following section of the paper gives a brief background to swarm 
models and creativity in a social context. This is followed by an example 
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design situation to illustrate the process of single individual learning and 
designing to cultural norms. The model of multi-agent behaviour is next 
introduced, and the spaces in which it occurs described in detail, to outline 
how embodiment in a shared environment allows differently constructed 
minds to swarm together. Finally the behaviour of these agents over time is 
reviewed to show how the diversity of agents’ perception can result in 
cliques, interdisciplinary activity and cultural innovation. 

2 Background 

2.1 DESIGN AS EXPLORATION AND SELECTION OF AFFORDANCES 

While optimisation problems typically begin with a preset objective, design is 
acknowledged as an exploratory process, without necessarily fixed goals. 
Rosenman (1997) uses the lack of predetermination to define creative design, 
suggesting “the lesser the knowledge about existing relationships between the 
requirements and the form to satisfy those requirements, the more a design 
problem tends toward creative design”. Gero (1993) goes further to suggest 
“… exploration in design can be characterised as a process which creates new 
design state spaces”, changing the framework in which optimisation occurs. 
But optimisation methods can satisfy this creative requirement. Maher and 
Poon (1996), for example, use a genetic algorithm to co-evolve goals and 
solutions simultaneously as changing ‘problem’ and ‘solution’ spaces.  

2.1.1 Embodiment and affordances in creative systems 
The alternative to representing problem spaces is to accept the space of the 
environment as its own representation. The act of being ‘in the world’ 
described as embodiment (Quick et al. 1999, Dourish 2001) or structural 
coupling (Maturana and Varela, 1987) requires that there is two way 
perturbation between an individual and the environment. As the designer 
makes a design, the world is also affecting his or her brain.  

Design for an embodied individual consists of the creation of a product 
that will also be embodied in the environment. Realisation of the design in the 
world is not only for communication to others, but is an intrinsic necessity of 
the creative act, in that the internal representation of a concept in the mind of 
an individual is so unique to that individual, so different from the external 
world, that the concept itself can not be said to fully exist until it is embodied. 
The idea in an artist’s mind of a painting is not the same as what is actually 
painted, as this may be affected by external events during the act of painting. 

This ongoing negotiation can be seen as a process of constantly choosing 
between the perceived affordances of the work at each point in its evolution. 
Related to Heidegger’s notion of zuhanden (ready-to-hand), Gibson (1979) 
coined the term affordance to refer to the properties the environment offers an 
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animal in terms of action, such as the support afforded by a flat, horizontal 
surface. Norman (1988) discusses affordances in design, but chiefly in 
relation to how designs are used, as it is a principle of good design practice to 
be aware of the affordances that will suggest themselves to the user: a chair 
affords sitting, a handle lifting, pulling, opening, etc. Affordances can also be 
considered in terms of how we interact with the world in the process of 
making a design. Tang and Gero (2001) suggest the act of sketching, with 
constant drawing and re-evaluation is such a process, and the explicit 
representation of choices as decision trees has also been implemented in CAD 
environments (Brockman and Director 1991). At any stage of the process 
there are only certain possibilities open to the designer, and the act of design 
can be seen in this sense as a selection from the afforded alternatives. 

2.2 SWARM AND GROUP INTELLIGENCE 

2.2.1 Simple agents in abstract spaces 
Particle swarm algorithms have also been applied to the exploration of design 
problem spaces. Several varieties exist, all sharing the principle that an 
emergent intelligence arises from the interaction of groups of simple agents, 
each of which behaves according to simple rules and has no knowledge of the 
global behaviour of the group. 

Axelrod’s model of the dissemination of culture (Axelrod, 1997) allows 
agents in fixed locations to communicate with one another with a probability 
equal to their cultural similarity, resulting in a polarisation of cultures as these 
similarities are strengthened. Individuals split into stable non-communicating 
groups. The same rules applied to freely moving agents in a space result in 
swarm behaviour. Three broad types of swarm model have been proposed: 
deterministic groups resembling complex behaviour such as that in bird flocks 
(Reynolds, 1987), and optimisation algorithms either representing stochastic 
particles with a goal (Kennedy & Eberhart, 2001), or those modelled on the 
(not necessarily spatial) social communication of groups such as ant colonies 
(Dorigo, 1997). Although the methods for optimisation incorporate 
randomness into the agents’ paths, it is purposely left out of the model 
proposed here.  

The rules of the algorithms differ in their specifics, but interactions 
between agents take one of two basic forms: they either attract or repel one 
another in space. The update of an artificial bird’s velocity in (Reynolds, 
1987), for instance, would be of the form: 

vt+1  =  µvt + (1 – µ)( wavoidvavoid + wmatchvmatch + wcentrevcentre ), (1) 

where vmatch and vcentre cause the agent to imitate the others and vavoid to keep 
away from its neighbours. Attraction allows for a focused local search and 
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exchange of information with similarly inclined neighbours, and repulsion 
causes groups and individuals to explore new areas of the space.  

2.2.2 More complex Agents in the world 
Designers influence one another in the abstract space of their work, so it is 
necessary for this to be embodied in a shared world. Nehaniv and Dautenhahn 
(1999) suggest an algebraic framework for imitation in which dissimilar 
bodies can imitate one another by producing similar effects on the 
environment. Individual actions, or internal representations are not important, 
but rather the ability to meet a series of sub-goals such as covering a wall with 
paint when imitating the task of painting. This stresses embodiment in the 
environment, but requires that the goals – the real motivators of creativity – 
must be predetermined explicitly. 

Luc Steels’ Talking Heads project shows that even these goals can be 
determined, in a point and guessing game played by robots that evolve a 
language. (Steels, 2000) The two are also embodied, and must communicate 
through a shared environment consisting of coloured geometric shapes and a 
white board. Words and even syntax are generated from the need to express 
concepts the robots may hold differently in their minds, the creativity 
springing from an interruption in full communication between the two agents. 
Edwin Hutchins’ research with parallel constraint satisfaction networks 
suggests this interruption is actually beneficial (Hutchins, 1995). In highly 
connected networks of individuals, his populations reached poorer solutions 
than networks in which individuals were connected only moderately to one 
another. 

2.3 CZIKSZENTMIHALYI’S SYSTEMS MODEL OF CREATIVITY 

A widely accepted dynamic model of the process of creativity within a 
broader environment of other individuals is given by Czikszentmihalyi 
(Figure 1). This gives an account of the flow of ideas and interaction between 
a person (the creative individual), the field (the group of individuals that act 
as arbiters of creative output) and the domain (the collection of embodied 
work and symbolic representations deemed relevant by the field). 
(Czikszentmihalyi  1988) 
Czikszentmihalyi’s model is widely accepted as describing the social structure 
of the creative process, and the model proposed here will suggest that the 
activity in each section of the triangle takes place in one of three very 
different spaces, each of which can be mapped into the next as indicated by 
the arrows. As Czikszentmihalyi makes clear, the creative act is not an 
occurrence within the mind of an isolated individual, but an interaction with 
the domain and field, both of which are spaces outside the individual’s private 
perception, and both of which may be shared by other individuals. 
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Figure 1. Czikszentmihalyi’s systems model of creativity. 

3 Building by an individual 

3.1 ILLUSTRATION: A SAMPLE PROBLEM 

A sample problem will be used to explain the proposed model with a real-
world instance of collective design: that of the aggregation of buildings in 
towns built over time without a central plan. In this case the process is much 
like the swarm models introduced in Sec. 2.2.1, in that building is done by a 
number of people considering their own needs individually, yet a global order 
emerges from their effort. 

Bill Hillier’s analysis of hamlets in southern France is an exposition of this 
emergent order, in what he has termed the ‘beady ring’. (Hillier and Hanson, 
1984) As settlements reach a certain size a regularity appears in the shape of a 
ring of joined spaces around a central clump of buildings facing outward, and 
several inward facing groups of buildings around the perimeter. While this 
pattern seems to appear in every one of the hamlets studied, it need not be the 
result of any kind of central planning, as a simplified model makes clear. 

A grid is used to simplify the geometry, and two types of objects are 
represented in its squares: closed cells with an orientation defined by an 
entrance in one side, and open voids. The minimal building unit is made up 
then of two face-wise adjacent squares, with a closed cell facing on to an open 
space in front. The model allows these pairs to aggregate so that each new 
pair must join its open cell to at least one other open cell already placed, and 
the closed cell does not join another closed cell only at the vertex. Other than 
these two rules, the position and orientation of each new unit is completely 
random, but each time the model is run, the overall structure of the 
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aggregation forms that of the beady ring settlements studied, with a chain of 
open spaces onto which inner and outer groups of buildings face. 

As a basic framework for town generation this is enlightening, but creative 
design is far more than random search, and equally important are the specific 
differences between towns. In Hillier’s own study he notes the differences 
between the beady rings of France, and their counterpart villages in England 
that tend toward a more linear arrangement. These cultural differences in 
global form are also a result of the same uncoordinated local actions over 
time, yet the particular nuances that lead to a circular or a linear arrangement 
seem somehow to have been instilled into the individual members of the 
culture that make each building. The overall structure of this grid model will 
be used below to show that such cultural norms can be learned by individuals. 

3.2 DESIGN BY AFFORDANCES IN TWO CULTURES 

Design is an act of continually making and then examining from a different 
point of view. Embodiment in the world allows this. The act of design by an 
individual agent in the above context is simply the selection from a set of 
possible alternatives: “which is the most like X?” But how do we know what 
X is? 

Assuming every act of construction is selfish and uncoordinated, the 
motivation behind the decisions of building placement would be to maximise 
some particular qualities considered to be important, such as direct access to 
the public space of the town and the economy of sharing a wall with a 
neighbour in the rules above. Each of these is an affordance of particular 
vacant building sites available at any given time. Rather than predetermining 
which of these qualities are most desirable however, suppose they are relative 
and change from culture to culture. Each time a unit is built, the configuration 
of the surrounding neighbourhood relative to the cell pair gives an ideal 
example for an individual to follow, another example in the domain. 

Two artificial cultural norms were established that were easily 
distinguishable from one another, and a simple algorithm written to aggregate 
open/closed pairs of units in the manner of each (Figure 2). The first is a strict 
arrangement of straight rows rather like highly planned settlements such as 
Manhattan, and the second is a completely random arrangement of units 
joined open cell to open cell. To learn the two ideals, a classification 
algorithm can be trained on the units as they are built. Each time a new pair is 
placed in the plan, the 7×7 cell square surrounding the open half of the 
doublet is taken as its neighbourhood, and oriented such that it is always seen 
by an agent looking from the open cell toward the closed. The 49 cells, each 
containing either a closed building (indicated by a filled cell, or 1), a public 
open space (a dot, or -1) or yet unbuilt (an empty cell, or 0) are used as an 
agent’s sensory experience of that particular example in the domain. 
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Figure 2. Building patterns of two cultures: strict rows and random aggregation. 

The algorithm to build based on this is simple. The two swarm rules as 
applied to design say something like ‘try to make something like what is 
accepted by your culture or group’ (i.e. attraction toward the perceived mean) 
and ‘try to distinguish yourself as far as possible from the other culture’ (i.e. 
repulsion). Each building decision is an exercise in maximizing the qualities 
seen as desirable based on other examples in the domain. At every step a 
given number of positions and orientations are available to be built, and the 
decision is simply the act of choosing which one of these affordances best fits 
the ideal the agent has learned. 

A support vector machine (SVM) was used as the agent’s initial classifier 
due to its easily tuneable parameters. SVMs operate by finding a maximally 
separating hyperplane between the two labelled classes in a higher 
dimensional representation of the input, given in this case by a weighted sum 
of the non-linear Gaussian kernel function  

φ(x, µ) = exp[ – || x – µ ||2 / σ2 ] (2) 

with a parameter σ2 that can be adjusted – in this case the variance of the 
Gaussian. Figure 3 shows the results for σ2 = 5, 15 and 25 respectively. The 
SVM output is plotted (left column) with the vertical axis indicating the 
output values, and 450 row examples followed by 450 random aggregation 
examples positioned along the horizontal axis. The resulting agents’ 
construction over time is shown for each, with the agent’s attempt at 
replicating the rows (centre) followed by the random aggregation (right). At 
each construction step, the possible construction sites and orientations are 
evaluated by the SVM, and the one closest the mean of either culture as 
learned is selected. It is evident from the results that as σ2 increases there is 
both better separation between the two groups by the SVM, and also a clearer 
construction result – more obvious in the rows than in the random 
arrangement. But this separation is never quite enough, and the classifier can 
only be seen to produce really adequate rows with an artificially created set of 
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‘perfect’ examples of row neighbourhoods is used, all identical so that each is 
exactly perceived as the ideal mean (Figure 4.) 

Although there is a vast difference between the ability of the four agents 
above, their interaction with the environment always entails a similar kind of 
choice. It is this common environment that allows different agents to interact 
with one another, as investigated in the following section. 

 
 

 

 

 
Figure 3. Building results for agents trained with a SVM: σ2 = 5, 15 and 25. SVM 
output on 800 examples is shown at left, building patterns based on rows in centre, 

and building based on random aggregation at right. 

 
Figure 4. The same training on a set of ‘ideal’ examples. 
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Figure 5. Three spaces of the model (left) paired with Czikszentmihalyi’s (right). 

4 Building by groups: a swarm in three spaces 

4.1 STRUCTURE OF THE MODEL 

Three distinct spaces form the arena for the collective swarm. The nature of 
these spaces and the way they are connected are the basis of this model 
(Figure 5). Creativity will not occur in any one of them, but in the cycle of 
mapping from one to the next. We can refer to these via Czikszentmihalyi’s 
model, as they correspond roughly with its domain, person and field, and 
communication occurs between them in the same direction, but we will define 
the spaces somewhat more broadly in terms of what they can contain.  

 Space of the world: Beginning with our shared, physical reality, this 
contains the set of embodied artefacts or events that can be 
experienced by all. These examples are available to any agent also 
embodied in the universe, and are anything that is objective, out there 
in the world, including even sounds and instances of symbols. This 
space includes any object or communication made by an individual, 
so it will be called the world, leaving domain to refer to selected sets 
within it. 

 Perceptual space: Next, a subset of this reality is experienced by a 
given individual as subjective experience, in a second space of lower 
dimensionality we can call the perceptual space. This individual’s 
perceptual space is unique, and therefore yields a unique picture of 
objective reality. 
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 Social space: The third space is the space in which the swarm 
dynamic can be seen: the social space of a shared culture. This is not 
necessarily a metric space, but can be represented as a graph of 
distances between individuals. The group of individuals closest to an 
agent would be that agent’s field. 

 
As communication occurs from one to the next, a point in one space can be 

mapped to the next space in the model. But due to the structure of the spaces, 
this can only occur in one direction. Most importantly, for one individual to 
communicate with another they must complete a full cycle, using the 
conventions of their social space to make an example in the world that the 
second individual can see with a different perceptual framework. Design as an 
act of selection from affordances as introduced in Sec. 3.2 allows this. This 
may seem a laborious process, but as with Steels’ robots or in 
Czikszentmihalyi’s model, it provides the framework for innovation. 

4.2 SPACE OF THE WORLD 

The example units placed in the above exercise constitute the domain in the 
space of the real world for our design agents, and a subset of all possible 
dimensions is used to represent the examples. Because the sensory input of 
each agent is an identical 49 square grid, each unique example can be 
represented by a point in a 49-dimensional space, a 2-d projection of which is 
shown in Figure 6. All example neighbourhoods are projected onto the first 
two principle components of the set: neighbourhoods of the straight rows are 
indicated by ‘×’, and the random culture by ‘○’ markers in the centre. 

The choice of a 49-dimensional world for these examples is one of 
computational tractability, but in our own experience, each example from 
which a designer can be inspired can be represented as a point in a potentially 
infinite-dimensional space of physical reality. 

 
Figure 6. A projection of examples in a 49-dimensional world space. 
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The dimensionality chosen for the world is also, by necessity, higher than 
the agent’s perceptual space. While the point that represents a given example 
has a potentially limitless set of qualities that may be experienced, our senses 
limit us to only a small set. But this inexhaustibility of dimensions is the chief 
advantage of being embodied in the world – an object in the domain such as a 
painting or sculpture can be revisited again and again and always be seen as 
something new, and the same is true of intangible arts such as music and 
literature. 

The higher dimensionality of the space of the world compared to the 
structure of our perceptual space does not allow a thought to be uniquely 
mapped into reality. This might seem to pose a problem for designers, but not 
if the act of design is seen as the repeated selection from a set of affordances 
as they present themselves. The outline of design as given in section 3.2 
requires only a choice from the possibilities as they appear in the agent’s 
perceptual space. 

4.3 PERCEPTUAL SPACE 

Perceptual space, at any one time, is necessarily a lower-dimensional 
abstraction of the world space, which determines what we actually see in the 
world. In the case of the design agents in section 3.2, it is the one-dimensional 
output of the SVM. Any example in the real world can be mapped (via brain 
or learning algorithm) to a corresponding point in the space of an individual’s 
perceptual space, which is different from every other individual’s. Unlike the 
shared space if the world, this perception is completely private. 

A perceptual space is represented in us by the state of our brain when 
experiencing the example. The nature of this space is like what has been 
termed semantic space by linguists. Semantic space research has shown that 
words and concepts can be mapped in a multidimensional space such that 
words with similar meanings are located near one another. Burgess and Lund 
(1988) have built a model of such a space based on the proximity of words to 
one another in Usenet discussions in which nouns such as ‘dog’ and ‘cat’ fall 
into one cluster, ‘china’ and ‘america’ together in another in a manner that 
coincides intuitively with many people’s experience of the concept. This 
perceptual framework is the subjective counterpart to the space of external 
examples, the interior space of qualia or private meaning. A thing may exist in 
the world independently, but is actually experienced in the perceptual space of 
the mind.  

Perception is an act of differentiation. Neurons react to changes in 
stimulus. It has long been known that the intensity of sensation is proportional 
to the frequency of neural activity, and that this decreases with time after the 
change (Adrian, 1928). Thus white noise, or the hue and intensity of ambient 
light, etc. are only perceived against a contrasting other. When we see, we 
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group the continuous spectrum of visible light into distinct colours, so 
perceptions of colours closer to green are seen as green, closer to blue as blue.  

This act of perception is analogous to the two swarming rules in that 
perceptions shift closer to a perceived mean (e.g. green), and away from the 
other label (blue or yellow). This model proposes that the equivalent of agent 
movement in a traditional particle swarm occurs in this perceptual space, by 
changing the perceptual mapping. The swarm rules of attraction and repulsion 
are rooted here in the perceptual system of the individual simply to allow that 
individual to differentiate or classify effectively. In the SVM examples in 
section 3.2 it was seen that the most effective mappings present examples of 
one group closest to the ideal mean (attraction) and those of the other farther 
away (repulsion), resulting in greater differentiation between the two sets of 
examples, and a clearer reconstruction of that culture. The same was found of 
the neural networks used to map to this perceptual space. 

4.3.1 Representing the individual’s point of view 
The behaviours of attraction and repulsion were implemented in the 
perceptual space via an artificial neural network. Training of the network 
serves to usefully illustrate this movement, as the function of every neuron: 

y = wx + w0, (3)

is a simple linear function, and can be visualised as a hyperplane constantly 
moving in a high dimensional space in an attempt to separate the two classes 
of input examples. The agent’s point of view can be pictured as aligned to this 
hyperplane and moving with it. 

A three layer neural network was used to map to the agent’s perceptual 
space, with 49 input nodes corresponding to the state of the neighbourhood, 
50 nodes in the hidden layer, and a single, linear output that rates each 
example in a single dimension that represents the internal perception of the 
agent. Training was conducted by exposing the network to 450 examples from 
each of the two cultures and backpropagation of errors. 

Several classification methods were tested. The typical error function 

J = ½ || t – z ||2 (4) 

operates on the difference between the neural output z and a specified target t, 
set at 0 for the domain examples and 1 for the others. Alternatively no target 
was set for examples outside the domain, and for these either the normal 
neural weight updates were subtracted rather than added, or the reciprocal 1/z 
is used in (eq. 4), causing the error to fall as examples appear farther away. 
All three methods performed well; the results of the third are below (Figure 
7). 

Plotting the output of the trained neural network reveals how the agent 
sees the world. Each of the examples is shown as a single dot in the vertical 
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axis corresponding to the value of the network’s single node output (Figure 7, 
left). This agent was set in the culture of the straight row builders, as 
differentiated from the random aggregators, and as such has learned to see 
most of the first 450 examples along the horizontal axis (the row units) as 0, 
and most of the others (the random aggregations, to the right) as far away 
(note the extreme scale of the output axis). If this agent’s neural network is 
used to place an aggregation of open and closed cells according to the 
algorithm described (Sec. 3.2), the result is one that very closely resembles 
that of the original rows in global arrangement (Figure 7, right).  

 
Figure 7. The agent’s perceptual space (left), and its resulting building pattern.  

Not every unit is placed perfectly, and not every example is seen by the 
network as clearly in its group, but every agent is different. In fact this 
difference will be crucial to the overall swarm dynamic when groups of 
agents interact. Various structures of network can be used representing 
different artificial minds, different numbers of internal connections or 
methods of measuring error, even learning algorithms that do not rely on 
neural networks. One of the main assertions of this paper is that differently 
constructed minds can share in the same overall process of social creativity. 
They are connected in the next space. 

4.4 SOCIAL SPACE 

The group of other agents with which one is associated, and which determines 
examples in the domain, constitutes the field. It is not a single, constant group 
of judges, but a fluid, changing collection of individuals selected based on the 
similarities of their perceptual mappings. To measure these connections 
between individuals the model proposes a third, social space, actually a 
simple one dimensional measure of distance between agents. 

Its essential function is to enable communication between the otherwise 
private perceptual spaces of different agents. The similarity between two 
perceptual spaces can be measured by the degree of correspondence between 
how each sees the world. The perceptual spaces display a measure of distance 
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between what the agent judges to be the current mean of its culture (0) and 
any given sample. After normalising these to have an identical variance of 1, 
the distance between any two agents’ perceptions can be measured based on 
the mean of squared differences between each of the example points: 

D(a1, a2) = Σ 
i = 1 : numExamples [pa1(exi) – pa2(exi)]2 / numExamples (5)

All learning algorithms that result in a perceptual mapping can be 
compared in this way, regardless of their internal workings. To illustrate, 
Figure 8 shows the result of several very different learning algorithms 
exposed to the same set of examples. Although each may differ in the details, 
each individual shares with the others the ability to perceive examples in the 
world. At the top is a neural network similar to the one in Figure 7, except 
that only a fixed number of examples closest to the mean are used in training. 
Below this, a different technique is used to train the network: errors from both 
 

 

 

 

 
Figure 8. Agents trained with completely different algorithms (two three-layer neural 

networks, one Kohonen network and one SVM) have different perceptual spaces 
(left) but can make similar evaluations and similar constructions (right). 
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TABLE 1. Social space distances measured between the above perceptual spaces. 

 
 neural net 1 neural net 2 Kohonen SVM 

neural net 1 - 1.47 1.54 1.62 
neural net 2 1.47 - 0.44 1.95 

Kohonen 1.54 0.44 - 1.90 
SVM 1.62 1.95 1.90 - 

 
groups are measured from the mean, but rather than adding the weight updates 
at each step for the examples of the random aggregation, they are subtracted. 
The last two examples are different algorithms entirely: a Kohonen self-
organising feature map, and a support vector machine. All of these different 
algorithms, when trained on the same examples, result in different outputs in 
their individual perceptual spaces (which may even have different numbers of 
dimensions) but each is alike in that the resulting perceptual framework 
allows the individual to make similar decisions about examples regarding 
their distance from the mean.

The group of other agents that each considers to be its field is determined 
by the distances measured as in (eq. 5), each selecting the agents perceived to 
be the closest. Table 1 shows the distances between the perceptual spaces of 
the four agents in Figure 8. Based on these distances, the second neural 
network agent and the Kohonen agent would each select the other as a 
member of their fields, being the closest of the possible choices. The 
similarity is also evident in the visual appearance of their construction outputs 
(Figure 8, right). 

Kuhn (1962) emphasizes the role of a field’s lexicon in both facilitating 
internal communication, and isolating it from outsiders. As the boundaries of 
a field are defined by shared examples that define it, we can actually speak of 
the field itself as having a perceptual framework of its own: the perceptual 
space that would be defined by those examples (Figure 9). Suppose we take a 
set of eight examples in the world. If you and I both select a set of six or 
seven as representative of our individual ideals we might each have one or 
two unique samples, but there is a general overlap in the remaining 5 which 
will define our shared field, and its agreed perceptual space. Also, because the 
field ignores examples outside those chosen, its distance to the perceptual 
spaces of each individual could be zero, even if these individuals would differ 
in mapping examples out of the field. This field’s perceptual space therefore 
coincides to a fairly high degree with the perceptual spaces of each individual 
in the field, providing the common ground that makes communication and 
mutual understanding possible. 
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Figure 9. The field’s shared perceptual space is defined by shared examples. 

5 Completing the loop: putting agents together 

At the macroscopic level, this model is concerned with both the changes in 
design over time, and the behaviour of large communities. The behaviour of a 
group of agents would therefore be expected to exhibit certain characteristics 
associated with creative social systems: innovation, local coalescence toward 
accepted ideals, and clique formation.  

Innovation has two requirements, the most obvious being the generation of 
novelty in the world space of possibilities, a prerequisite for both P and H-
creativity (Boden 1993). Over long spans of time, this inevitably results in a 
slow shift in cultural norms, fashions or styles, as an accumulation of many 
small innovations. If one imagines a theoretical space of ‘all possible 
designs’, (illustrated schematically in Figure 10) then the artefacts thus far 
produced in the history of humanity would fill only a small cloud, leaving 
vast expanses of the space still unexplored. But that cloud is always 
expanding around its periphery, and over time the system should expand in 
the world space of possibilities, to explore it broadly. 

The second requirement of creative innovation is that the results are not 
just new, but also unexpected or surprising (Boden 1993, p.30). Many swarm 
algorithms (Dorigo 1997, Kennedy and Eberhart 2001) and cultural 
simulations (Axelrod 1997, Saunders and Gero 2001, Sosa and Gero 2002) 
incorporate randomness to generate novelty, whereas others (Reynolds 1987, 
Wolfram 1994) produce a complex or chaotic overall behaviour from the 
interactions of deterministic agents. Because this model is proposing an 
emergent creativity in the interactions between groups rather than explicitly 
novelty-seeking agents, it follows the second approach. Although no 
stochastic algorithms are used for sampling or training, viewed over time the 
system should display apparent randomness and unpredictability, both in the  
  



18 SEAN HANNA  

       
Figure 10. Examples in the space           Figure 11. Indo-European languages. 
            of all possible designs.             Image © 1990 Gamkrelidze and Ivanov 

examples chosen (or created) by each agent, and in changes of field in the 
social space.  

Like the polarisations seen in Axelrod’s and other swarming models, 
subgroups in a social system will be expected to coalesce toward some local 
consensus. This is the basic behaviour of swarm models. This swarming 
tendency among people is necessary because we are social – there is a 
biological need to coalesce and an intellectual need to understand one another. 

Finally, cliquing tendencies also split us up, often causing the bitterest of 
disagreements between seemingly close individuals. Saunders and Gero 
(2001) demonstrate the influence of groups of artificially creative agents on 
one another in the creation of fractal art, showing that agents with similar 
desires for novelty tend to form cliques. The effect is also revealed in genetic 
evidence: Bodmer and Cavalli-Sforza (1976) note that 93% of genetic 
differences occur within races, and the 7% genetic differences between them 
are weighted toward visible characteristics. These visible differences are 
explained by a sexual selection that penalizes traits identified in one’s 
neighbours outside the group, thereby accentuating the visible differences of 
adjacent groups and increasing the cultural divide. 

This divergent behaviour the creative social system should display is often 
pictured as a branching tree, such as that of languages (Figure 11) or the 
increasing specialisation of scientific disciplines from a common trunk of 
enlightenment natural philosophy, but there is also the possibility of merging 
branches. English, for instance, has had major contributions from neighbours 
on the Latin, Britannic and Northern Germanic branches as well as influence 
from many others, and there are the so called interdisciplinary fields like 
biochemistry, which combine major branches of science. Rather than the 
clearly defined branches of the diagram then, the whole is a diverging and 
converging collection of loosely connected individuals clustered around 
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individual foci, and this is how a system of agents is expected to behave over 
time. 

5.1 TESTING THE SWARM 

Agents interact by sharing examples in a common world, and indicating their 
perceptions to others with whom they are close in the social space. The 
interaction of a group of agents is tested in this section. Each agent cycles 
through the following steps, one in each of the spaces mentioned: 

1. Get a new set of nd examples from the world that determine the agent’s 
domain, and a set of no examples outside the domain. 

2. Train the neural network so that it distinguishes the chosen nd domain 
examples from the other no examples as the agent sees them. This 
adjusts the perceptual space of the agent. It can communicate its 
current position to all others by selecting an example from all available 
affordances in the world space nearest to what it perceives is its 
current ideal. 

3. The similarity in the social space determines which agents 
communicate with one another. An agent selects the new set of 
samples for step 1 from the set pointed to by this group (the field), 
including the other agents’ newest designs in its new domain. 

The above steps accomplish the mapping between the three spaces as 
described in section 4: examples in the world are mapped to a lower-
dimensional perceptual space, and distances between perceptual spaces are 
mapped to a single dimension in the social space. The cycle reiterates as 
proximity in the social space determines, or points to, high-dimensional 
examples in the world. This repeated process causes agents to constantly 
adjust their perceptual framework to accommodate new examples in the 
domain. The results of the model test indicate this motivates an overall 
cultural change, as represented by variation in the building output of a 
particular field of agents. 

5.1.1 System behaviour: innovation and cliques 
Figure 12 shows the result of a group’s interaction over time according to the 
above rules. It plots an arbitrary (one-dimensional) projection of the domain 
means for each agent in their shared world on the vertical axis against time on 
the horizontal. The details of this appear quite different depending on the axis 
of projection chosen (just as they would appear different again in each agent’s 
perceptual space), but the overall characteristics are the same. There is a 
gradual expansion from a common start, as agents’ work explores the space of 
options. 

One can see the same branching into cliques as occurs in Axelrod’s model, 
and the trees of languages or disciplines (Figure 11), but in fact each is made 
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up of many units produced by several agents. There is individual movement 
between them, and no strict definition of membership, but after 30 cycles two 
major groups appear, typified by agents 3 and 4. The building patterns 
produced by each of these agents in isolation at cycle 30 are shown in Figure 
13. All agents in the clique represented by agent 3 display a tendency to build 
in a similar (but not identical) radial network, and those in the other clique in 
rough horizontal rows. An examination of the fields chosen by agents 3 and 4 
also reveals that they are mutually exclusive, sharing no agents in common. 

 

 
Figure 12. A projection of the agents’ ideal means in the world space over time. 

 
Figure 13. Examples of building patterns from two different cliques: agents 3 (left) 

and 4 (right). 

Cultural change has occurred, in that the preferences dictated by the 
changing perceptual spaces of the agents cause them to build differently over 
time. At cycle 1 the building pattern of every agent is identical, but at cycle 
30 neither of these building patterns is exactly like the others, or like the 
initial starting point. 

5.1.2 The effect of different points of view 
The hypothesis that different perceptual spaces, different ways of seeing the 
world, are responsible for the group’s creativity was tested in the model in 
three different runs from the same initial domain. A simpler model was used, 
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with only five dimensions in the world space and the agents’ building 
affordances unrestricted (i.e. their output can be any point in this five-
dimensional space), to look purely at the dynamics of the group over time. 

Figure 14(a) shows the result of all agents locked to identical perceptual 
spaces. There is no difference to the way they see the world, and their ability 
as a society to explore a broad region of the world space is extremely low. 
(The ticks on the vertical axis in this case are actually single units rather than 
hundreds.) All agents have the same internal complexity as one another, and 
 

 
Figure 14. Agents’ ideals in the real world (vertical) over time (horizontal): 

a) (top) Identical perceptual framework in all agents, 
b) (centre) Each agent with different perceptual frameworks, 

c) (bottom) New agents added over time. 
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those in the other runs. The only difference in Figure 14(b) is the fact that the 
agents view the world differently from one another, but this produces both 
overall change and innovation of the group, and far more internal variation 
and complexity. The individual lines on the plots were found at any given 
time to contain between one and ten agents. Some can cross, particularly in 
the dense first 300 cycles. In doing so there is both a branching and merging 
of a loose collection of individuals. Even when these seem to be in clear fields 
an apparently interdisciplinary individual can be seen to cut across several 
branches by being near examples of both in its own perceptual space. 

In Figure 14(c), the complexity is seen to further increase with the addition 
of new agents to the culture over time. Every ten time steps a new agent 
designer was added to the population. To avoid direct introduction of novelty, 
it was specifically placed in an existing field by being given a perceptual 
space and a domain of examples identical to an existing agent. Even with this 
initial similarity, there is a far greater branching and innovation of work than 
seen in the previous run. Fixed parameters of nd and no ensure that a given 
field will eventually saturate when the number of examples exceeds their 
capacity to view, causing a split. This process occurs continuously, then, as 
long as the population increases. 

5.2 THE INTERDISCIPLINARY INDIVIDUAL 

An agent seen moving across fields only appears so from outside its own 
perceptual framework. It does not follow a middle line half-way between the 
two branches, because in some dimensions these two are very closely aligned. 
Such agents are found to include examples of both in a single domain, 
although they may look distinct from other agents’ points of view. 

This suggests that what we tend to call interdisciplinary work is often this 
same occurrence. Different disciplines have their own unique languages and 
customs that allow for ease of communication and rapid exchange within the 
community, but misunderstandings and general lack of exchange between 
groups. The more a discipline becomes ‘specialised’, the greater is its ability 
to make progress (movement in the swarm) on the problem at hand, but less 
its ability to communicate to outsiders. Interdisciplinary work results when 
individuals from different disciplines approach one another in dimensions that 
are not part of the general perceptual framework of either group. A 
multidisciplinary individual can bridge between the two groups not because of 
a greater breadth of understanding, but because of a different perceptual 
framework that includes the dimensions in which the two groups produce 
work of similar features. The work of a particular artist and a particular 
biologist can seem highly relevant to one another from this new point of view. 
Interdisciplinary work can itself sometimes develop into a new discipline as 
more individuals adopt similar views and form a new field.  
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5.3 SUBSTITUTES FOR RANDOMNESS, AND SOURCES OF INNOVATION 

The behaviour of individuals within the creative system modelled appears 
unpredictable over time, but is not the result of a stochastic process. The 
outcome is completely deterministic given the initial conditions of domains 
and perceptual spaces. Instead, the apparent randomness appears to arise from 
two different processes. 

The first is the act of design as a process of selection from affordances in 
the world. The details of the work are input to the agent, rather than output, 
and a constantly changing world (due to new building) affords different 
possibilities at each given point in time. Thus even an agent that maintains a 
constant state in terms of domain and perceptual space would produce 
different output at times t and t+1, and appear to be making random choices. 

Even when the possibilities in the world are unrestricted however, as in 
section 5.1.2, there is still apparently random behaviour. The other source 
appears to be the cycle of mapping between the three different spaces of 
differing dimensionality. This introduces into the overall system a complex 
non-linearity like that seen in Reynolds’ (1987) flocks or Wolfram’s (1994) 
class 3 and 4 cellular automata.  

6 Conclusion 

In this work a computational model for creative design among agents was 
presented, in which domain and field change over time. These changes, which 
appear in real societies, seem to be an important part of the process. The 
simulation yielded global cultural innovation that occurs within several 
different abstract spaces. Their structure provides several advantages over a 
typical swarm model: 

 The behaviours of attraction and repulsion that lead to swarm 
dynamics can arise out of the simple action of an agent classifying 
examples in the world with a learning algorithm. 

 While agents in swarm algorithms are normally identical, differently 
constructed agents with different ways of learning can also swarm 
together, even while each exists in a different perceptual space. The 
point of view, sensory experience and even the dimensionality of 
perception may be different for every agent, but they can still form a 
common social dynamic by taking advantage of a shared world in 
which they act by selection of affordances. 

 Even though the perceptual space of each individual is limited, the 
space in which they are able to swarm as a group is far greater in 
dimensionality. In this way it seems possible that a finite mind may 
explore any of the possibilities of an infinite-dimensional reality.  

The model has been kept simple for clarity, and to show that individual 
innovation can result from such a structure. In particular, agents’ behaviour 
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has not been motivated by goals, either for utility or novelty for its own sake. 
Nonetheless, the model does produce the kind of behaviour expected of a 
swarm, and a seemingly random exploration through a space of possibilities, 
so it is likely that goals, in the form of a fitness evaluation, could be 
incorporated. Unlike stochastic particle swarm or optimisation algorithms 
however, random input would not be required. 

Unusual for a model of creativity, this work proposes that the primary role 
of the mind is to take in, and make sense of the world, rather than stressing 
innovation for its own sake. But in making sense of what it takes in, it 
necessarily develops a new point of view that produces the innovation 
naturally. When two agents share the same examples in their domain, their 
perceptual frameworks become more aligned to one another by repeated 
exposure to those examples, but on examples outside the domain they may 
always disagree, as colleagues in work may disagree on politics or art. These 
variations in other dimensions continue to motivate the group, while the role 
of the group in this respect is to pull the individual along.  

So where does individual creativity happen? Where does group creativity 
happen? These may not be separate questions. It may also be the case that 
creativity at a global level does not always come from an intentional effort on 
the part of the individual, but that novelty is sometimes a product of the 
interaction between the different parts of a creative system. Thus it is an 
emergent phenomenon that can happen at any level, among groups, neurons, 
agents or us. 
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