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Abstract. A support vector machine is trained to produce optimal 
structures. The problem of structural optimization is typically solved 
by a search procedure that samples and repeatedly evaluates a 
physics-based model, but this process is computationally demanding. 
Instead, the use of a learning algorithm to generate new structures 
based on previously optimized examples is described that provides 
enormous computational saving. The results have shown that the 
predicted structures are accurate, and the process is highly efficient 
for cases in which similar optimizations must be performed 
repeatedly, especially as the number of such optimisations grows. 

1. Introduction 

Nature builds by trial and error, via the very effective but slow and costly 
process of evolution. As humans, our capacity to learn from experience has 
given us the ability to engineer and build based on our knowledge, and while 
our designs may not outdo nature in all her complexity, they can excel when 
the problem is simple and well defined. An engineer can design a building or 
bridge that is structurally sound without the need for failed attempts. 
Although for several centuries the mathematical tools for explicit analysis 
have been dominant, the vast majority of design decisions throughout history 
have been based on experience of precedents: a practiced builder would 
know what would stand or fall without having to test it. In a similar fashion, 
this paper demonstrates that nearly optimal solutions to a well defined 
structural design problem can be found by training a machine learning 
algorithm on examples of other solutions found by a traditional optimization 
procedure. 

Once trained, the advantage of such a machine is the same advantage that 
the human builder’s training and experience give: the ability to build quickly 
and without failed attempts. A structural problem is chosen that involves the 
repeated optimization of many interconnected modules, and thus takes full 
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advantage of this increase in speed. It is also a problem of sufficient 
complexity that the solution can not be calculated directly, but must be 
found by slow simulation and testing. An algorithm capable of arriving at a 
general solution by inductive learning on presented examples is thus highly 
beneficial. 

Given a parameterized structure and a set of loading conditions, it has 
been shown that various optimization algorithms can be used to design an 
effective shape to counter the given load. Search procedures including 
gradient descent (GD) and genetic algorithms (GA) make repeated 
evaluations of the strength of different structures to do this (Schoenhauer 
1996; Von Buelow 2002; Chen 2002; Hanna and Mahdavi 2004). If the load 
conditions change, the optimal structure will also be different and the 
optimization can be rerun to find the new shape.  

This process is time consuming however, requiring repeated iteration for 
each new design, and is subject to error due to local optima in the search 
space. This paper uses inductive learning to eliminate the need for this 
iterative step once sufficient examples have been generated to save 
processing time and achieve more constant fitness of solutions. If the 
optimisation is repeated many times for many sets of loading conditions, the 
optimal shape of the structure can be considered a function of the load. The 
work in this paper uses a support vector machine to learn this function of 
optimal structures given the tensile or compressive loads in each axis, and 
results in a very efficient and accurate alternative to iterative optimisation. 

2. Background 

The work presented here draws on previous structural optimisation research 
by the authors, but extends this by replacing the optimisation step with 
learning. Before addressing the problem, this section provides a background 
of related research. First, the particular structural problem is defined, 
followed by a review of relevant structural optimization and machine 
learning methods. 

2.1 BACKGROUND: THE STRUCTURE 

Space frame structures are investigated in this work: a set of linear members 
oriented in any direction in 3-dimensional space, and connected at node 
points either by rigid or flexible connections. The specific problem 
addressed is that of small scale microstructures, an example of which is 
shown in the photograph (Figure 1) below. The overall dimensions of this 
object as fabricated are 1cm × 1cm × 2cm, and the individual struts within it 
are less than 1mm in length. Relevant aspects of the design method will be 
briefly reviewed in this section. 
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Figure 1. A modular structure fabricated by stereolithography. 

2.1.1 Defining the structures 
To define a particular space frame one must specify both the members 
themselves, and the locations and orientations of the nodes in 3-dimensional 
space. We refer to these as the topology and geometry of the structure 
respectively. 

The distinction between geometry and topology can be described by an 
example 2-dimensional illustration. Geometry refers specifically to the 
positions in space of the node points joining the structural members. The 
following diagrams are of two structures with the same topology but 
different geometries. As can be observed, the connections and number of 
members are the same, but the coordinates and orientations of these 
members differ, (Figure 2 a & b).  Topology refers to the structural 
connections between the node points. A change in the topology of a structure 
is a change in the number, or way in which the members are connected, 
(Figure 2 a & c). 

 

 
a                                b                                c 

Figure 2. An illustration of a change in the geometry and topology of a structure. 
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2.1.2 Intended structure and fabrication 
The structural problem considered in this work is one based on a modular 
topology, so that it can be scaled to volumes of any size. A large volume of 
structure can be subdivided into a grid of cubes, to which we refer as ‘unit 
cubes’, each containing a portion of structure with identical topology such 
that each is connected to its neighbours to form a continuous structure. 
(Figure 3) 
Previous work by the authors has resulted in a method for optimising large 
and complex structures very efficiently using this modular ‘unit cube’ 
approach. (Hanna and Haroun Mahdavi, 2004) An object under a complex 
loading condition exhibits differing stresses at various points in its volume. 
If these stresses are sampled at the location of one of the unit cubes, they can 
be used to optimize the module of structure within that cube. The vector of 
stresses in the three (x, y and z) axes represents a loading condition for the 
structure in that cube, and for each stress vector there is an optimal set of 
node point positions and strut thicknesses to best resist that load. Both 
genetic algorithms and gradient descent (Haroun Mahdavi and Hanna, 2004) 
have been used to find this optimal, using the finite element method to 
simulate the effects of loading.  
The ideal result is a modular structure as displayed in Figure 3 (bottom), 
with gradual changes in the geometry of the structure as the stresses change 
continuously across the volume of the object. It is very efficient, with 
material concentrated in high stress zones and internal struts aligned to 
counter the changing direction of the stress vectors. To arrive at this, the 
optimization of structural units must be made repeatedly, once for each unit 
cube of differing stress. The structural problem is therefore similar to time 
series problems of control and dynamic systems, but static: instead of 
changing in time, the geometry morphs in space. Because a similar type of 
optimization must be performed many times, this paper proposes the method 
of learning the function of optimal structures from a training set of 
previously optimized geometries. 
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Figure 3. A modular space frame forming a cantilever beam. Both have the same 
overall mass and topology, but identical modules (top) deflect far more under 

loading than do the individually optimised ones (bottom). 
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2.2 MANUFACTURING 

The structures considered are designed to be fabricated by a digitally 
controlled process, the main advantage of which is the low cost of 
complexity. Such techniques are increasingly used in such large scale 
manufacturing as automobiles and architecture (Sischka et al. 2004), but the 
development of smaller scale rapid prototyping technology allows 
manufacture at scales less than a millimetre. 

Rapid prototyping techniques are now beginning to be investigated as an 
alternative method of construction for objects of high complexity, 
particularly with intricate internal structures. This has not yet become 
commercially viable for mass production, but several researchers are 
preparing for the increasing accuracy and decreasing cost of the technology 
in the future. Molecular Geodesisics, Inc. (1999), for example, is 
investigating structures based on a regular tensegrity space frame which 
would, at a microscopic size, be useful as biological or industrial filters. 

Stereolithography, specifically, is the method considered here. This 
begins with a tank of liquid photopolymer which is sensitive to ultraviolet 
light. An ultraviolet laser ‘paints’ the object as a series of horizontal layers, 
exposing the liquid in the tank and hardening it. Once completed, the object 
is rinsed with a solvent and then baked in an ultraviolet oven that thoroughly 
cures the result. The machines used by the authors are capable of creating 
very fine structures, and build to a resolution of 0.05mm. 

The horizontal stratification inherent in the process adds a degree of 
complexity to the problem of optimization, as members built at different 
angles to this horizontal plane have varying strengths (Haroun Mahdavi and 
Hanna, 2004). These were measured (Haroun Mahdavi and Hanna, 2003) 
and factored in to the examples presented to the machine for learning. 

2.3 OPTIMISATION OF STRUCTURES 

Initial data to be used in training any learning algorithm can typically 
come from several sources, including experts, previously published 
historical or experimental data, and simulation (Reich 1997). Because of the 
repetitive nature of the problem and the well defined behaviour of structures, 
simulation by the Finite Element Method (FEM) is both the most efficient 
and accurate. In the design task under consideration here it is a set of optimal 
solutions that is required. 

Several techniques have been devised for generating the topology of 
continuous solids analysed by FEM. Both GA and non-random iterative 
methods have been used. Marc Schoenhauer (1996) reviews a number of GA 
methods for generating topology in 2D or 3D space to optimise structural 
problems involving continuous shapes, in which the genetic representation 
can determine a configuration of holes and solid using Voronoï diagrams or 
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a list of hole shapes. Yu-Ming Chen (2002) uses a non-random iterative 
process of shifting node points in the FEM representation toward high stress 
zones to examine similar problems. These methods can determine the 
number and position of holes in a cantilevered plate, for instance, but do not 
deal with truss-like structures. 

Discrete element structures (e.g. trusses, space-frames) of the kind 
considered here involve both the design of the topology of connections, as 
well as their position and size. Much early research in this area has been in 
refining only the shape or member sizes, rather than the topology (in terms 
of members connecting the node points of the structure). Adeli and Cheng 
(1993) use a GA to optimise the weight of space trusses by determining the 
width of each member in a given structure. The shape and load points are 
fixed in advanced, and the cross sectional areas of groups of members are 
encoded in the genome, then selected to minimize the total weight. 

More recent research has concentrated on topological optimization, or 
both topology and shape together. Steel frame bracing topologies for tall 
buildings have been designed by GA, either by encoding the possible 
member connections within each structural bay in the genome (Kicinger et 
al. 2005, Murawski et al. 2000), or evolving a set of generative design rules 
(Kicinger et al. 2005). Yang Jia Ping (1996) has developed a GA that 
determines both shape and topology, which must begin with an acceptable 
unoptimised solution and refine the topology by removing connections. 
Peter von Buelow (2002) used a two stage algorithm nesting one GA within 
another. An outer GA evolved a topology for the structure expressed as a 
matrix representing the structural connections, while another GA found the 
geometry for each member of the population, expressed as real valued node 
positions. Previous work by the authors has also used GA for both topology 
(Haroun Mahdavi and Hanna 2003) and geometry, but it has been found that 
gradient descent is more efficient for shape optimization (Haroun Mahdavi 
and Hanna, 2004). 

2.3.1  Optimisation by gradient descent 
The optimisation performed is gradient descent to minimise the total 
deflection in a structure under the specified load, as applied to a unit cube. 
Simulation of this deflection is performed using the finite element method. 

2.4 MACHINE LEARNING FOR BEHAVIOUR AND STRUCTURE 

Machine learning has long been applied to structures and in the domain 
of civil engineering, most commonly as an enhancement of the optimisation 
process. A recurring bottleneck in optimisation is the simulation of a 
design’s behaviour, which can either be time consuming due to the 
complexity of the model, or simply incorrect due to incomplete knowledge. 
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This can be addressed by ‘shallow modelling’ a system’s observed 
behaviour with inductive learning (Arciszewski and Ziarko, 1990). Discrete, 
symbolic learning methods have been used to construct rule-based systems, 
which draw relationships between design parameters that predict the 
performance of systems from individual beams (Arciszewski and Ziarko, 
1990) to the steel skeletons of entire buildings (Szczepanik et al, 1996). Sub-
symbolic inductive methods such as artificial neural networks have been 
used also to predict structural and material performance (Reich and Barai, 
1999) and the behaviour of mechanical systems such as propeller blades 
(Reich and Barai, 1999; Neocleous and Schizas 1995). 

Some of the most recent and complex problems involve structural 
prediction in the field of bioinformatics, in which the molecular composition 
of proteins can too computationally expensive to simulate fully. One stream 
of research is in the prediction of the secondary and tertiary structure of 
proteins by machine learning, where the inputs are the actual DNA string 
and the outputs are the predicted three-dimensional structure of the protein. 
Various learning algorithms have been used, including artificial neural 
networks (Meiler and Baker, 2003) and support vector machines (Wang et 
al. 2004).  

Various machine learning algorithms have been used to find a function to 
predict movement in time of a dynamic system, which is in some ways 
similar to structural problems. In both cases the simulation of a physics-
based model is possible to an arbitrarily high degree of accuracy, but 
computationally demanding, and the emulation of this behaviour by a trained 
learning algorithm is more efficient. The NeuroAnimator uses a neural 
network trained on physics-based models to produce realistic animation of 
systems ranging from a pendulum to the swimming of a dolphin. 
(Grzeszczuk et al. 1998) The method also serves as a control mechanism 
given a goal (such as balancing the pendulum or swimming toward a target) 
in the environment, and in this case is similar to the problem of optimization. 

Regardless of the method used in simulation, the repeated iteration of 
generating and evaluating solutions is the other major hurdle in optimisation. 
Inductive learning has been found useful to improve the speed and quality of 
this loop by reusing knowledge of previous designs or iterations. Murdoch 
and Ball (1996) have used a Kohonen feature map to cluster bridge designs 
in an evaluation space, and Schwabacher et al. (1998) have used a symbolic 
learning algorithm, C4.5 (Quinlan, 1993), to select appropriate starting 
prototypes and search space formulations for a parametric optimisation of 
yacht hull and aircraft designs. Both allow a rapid re-evaluation of previous 
work which improves the optimisation when run again to new specifications 
or fitness criteria.  

It is the aim of the present work to use a learning algorithm to replace the 
optimisation process entirely – both the simulation and evaluation loops. 
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While much provious research has concentrated on inferring rules to guide a 
design (Arciszewski and Ziarko, 1990; Szczepanik et al, 1996; Reich and 
Barai, 1999; Neocleous and Schizas 1995), or on suggesting a starting point 
on which to improve (Murdoch and Ball 1996; Schwabacher et al. 1998), we 
use induction to derive a function that directly maps a given load condition 
to an optimal solution. 

2.4.1 Algorithm selection 
The choice of algorithm is dependent on the learning problem at hand, 
including the form and availability of data, and the goal of learning (Reich 
1997). The goal, in this case, is induction: to derive a generalisation based 
on previous evidence of optimal structural solutions. Duffy (1997) lists six 
major machine learning techniques, of which three potentially apply.  
 Analogical or case-based reasoning techniques explicitly represent past 

examples in such a way that they can be retrieved and adapted to suit 
new problems. 

 What Duffy terms induction – specifically symbolic induction – allows a 
general rule or pattern to be generated to fit the data. Symbolic 
algorithms with discrete output such as rough sets (Arciszewski and 
Ziarko, 1990) and C4.5 (Quinlan, 1993) above, yield explicit 
classification or parameter ranges, and have therefore been used to 
estimate behaviour or recommend design decisions in symbolic or 
labelled form. 

 Artificial neural networks are part of a class of sub-symbolic algorithms 
(including, more recently, support vector machines) that can result in a 
continuous output, and therefore interpolate exact output values to a 
finer degree than is specified by the input set. These also perform 
induction in the form of a continuous function. 

The data form is most suited to the third category. The solution to 
structural shape is naturally a continuous function, and it has been noted that 
discretisation is detrimental to optimisation performance (in tests by the 
authors), or can lead to large learning error rates (Reich, 1997). As the 
problem is real valued overall and output is of higher dimensionality than 
input, it is this sub-symbolic class of algorithms that is appropriate. 

3. Learning methodology 

3.1 THE ALGORITHM 

Support vector machines (SVM) (Vapnik 1995) are chosen to perform the 
learning described in this paper. They can be described generally as a type of 
linear classifier that uses a non-linear kernel function to map input data to a 
sufficiently high dimension such that it can be separated by a hyperplane 
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(Duda et al. 2001). The transform resulting from this kernel function ensures 
this hyperplane is non-linear in the original input space, and so the SVM can 
just as easily be used in regression to a non-linear function as in 
classification. They will be used in this capacity to learn the function of 
optimal structures. 

Given a data set D, consisting of an input vector x and a response vector 
y, the function to be learned 

 y = f(x) (1) 

is approximated by the SVM by building a model f’(x) based on D, that 
enables the estimation 

 y’ = f’(x). (2) 

The type of SVM used by the authors is a Least Squared SVM, in which 
the solution follows from solving a set of linear equations, instead of 
quadratic programming for classical SVMs (Suykens et al. 2002). The kernel 
is the commonly used Gaussian radial basis function. 

3.1.1 Learning objective 
The design objective to be learned is to find the best structural geometry 

for a single modular unit given the input of its external load. The task is 
simply this: for each set of loads, find the set of node points that represent 
the optimal structure (Figure 4). As a function (1), the input x is the three-
dimensional vector of external forces corresponding to the stress (in either 
tension or compression) in the three axes of a given unit cube. This is 
represented by the components in the directions of the x, y and z axes: 

 x = (x(x), x(y), x(z)). (3) 

 

 

Figure 4. Different force inputs result in ideal geometry outputs. 
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The output structure y consists of the node point positions for the optimal 
structure as found by prior optimisation: gradient descent as described in 
section 2.3. This is the set of (x, y, z) coordinates for each of the node points 
yi: 

y = (y1(x), y1(y), y1(z), y2(x), y2(y), y2(z), …, yn(x), yn(y), yn(z)), (4) 

The nodes are also located in three-dimensional space, so for a topology of n 
points the output y is a 3n-dimensional vector. 

3.2 THE DATA SET 

A single topology was used consisting of four node points per unit cube, 
resulting in a 12-dimensional output y. The data set D was created not to 
uniformly sample the entire space of possible solutions, but for a normally 
distributed range of forces and the associated optimal solutions. 

Each training sample is created by generating a random input vector x 
from the normal distribution with mean µ = 0 and standard deviation σ = 1, 
resulting in a range of approximately [-3:3] units of force in each of the three 
axes. The actual distribution of each of the components of x are plotted in 
Figure 5. The node point outputs y are found by the gradient descent method 
described in section 2.3, and result in asymmetrical distributions of node 
positions throughout the space of the unit cube. The distributions of each of 
the four node points in the three axes of space are shown in Figure 6. 
Although the positions of nodes are not constrained by the optimisation 
algorithm, the repeated nature of the structural modules implies a maximum 
bound on the search space of one unit for each of the components of y. The 
variance in the data set for each of the points is 0.72, 0.49, 0.53 and 0.56 
units in this space respectively, indicating a large portion of the space was 
sampled in D. 

 
 

 

Figure 5. Probability distributions of the x-axis, y-axis and z-axis components of 
input force vector x are based on a normal distribution with mean zero. 
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Figure 6. Probability distributions of the x-axis, y-axis and z-axis components of the 
node points y are asymmetrical in physical space, the result of optimization.  

3.3 TRAINING 

This work investigates whether the SVM can be trained to predict the 
optimal geometries of a structure y given different force conditions x. Each 
training example is an optimal solution found by the iterated gradient 
descent algorithm in which each sample is a finite element analysis of the 
structure. The greatest computational cost is therefore in generating this 
training data, and so the proposed learning method is online, with a 
gradually increasing data set rather than as a batch process.  

Training of the SVM was performed with the gradually increasing set of 
stress vectors x and node points y until the accuracy of the learned function 
no longer increased. A radial basis function kernel with variance σ2 = 0.2. 
was used to map all dimensions in the SVM. 

3.3.1 Error estimation 
Methods of error estimation have been systematically evaluated in (Reich 
and Barai 1999). We have used the most common method, hold-out, which 
is also the most conservative, in that it maintains a pessimistic bias toward 
the results.  

The data D is divided at random into two sets: a training set T and a 
separate validation set V. The SVM is trained on T, and then evaluated on V, 
the errors in V indicating the generalisation error. For D of size n, the size of 
T is ideally 0.6n to 0.8n and V is the remaining 0.2n to 0.4n. While there are 
no general bounds for regression, the data D of size n > 1000 produces 
results with confidence more than 0.95 in classification problems (Reich and 
Barai 1999). 

Our tests conform to these recommendations for accuracy. The 
performance of the SVM was evaluated for training sets of varying size, to a 
maximum size n = 1300. For all tests, the validation set V was the same, 
randomly selected set of size 300. The size of D for which the SVM will be 
considered in our tests to be fully trained occurs at n > 950, which is 
approximately equal to the recommended size for 0.95 confidence, and 
errors for even smaller training sets have the most pessimistic bias of any 
estimation method. Our results therefore display the worst case estimation of 
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errors, and the true accuracy of the algorithm is likely to be no less than is 
reported in the following sections.  

4. The trained algorithm: results and analysis 

To evaluate the results of learning, a SVM was trained on an increasing 
set T of samples (from 1 to 1000) while being tested against a separate 
validation set V of 300 samples. In the three graphs below, this performance 
is evaluated both in terms of how similar the solutions given by the SVM are 
to the ideal solutions on which it was trained, and how well those solutions 
actually perform when tested under given loads. Under both criteria learning 
was seen to improve steadily with an increasing training set until slightly 
less than 650 samples were given, at which point the performance plateaued 
at a very high level. 

4.1 ACCURACY OF THE LEARNED FUNCTION 

The performance, or error θ, of the algorithm trained with output y 
consisting of a single component y is often measured as a square loss 
function 

 θ = 1/n [ Σi = 1:n  (yi – f’(xi))2 ] (5) 

where n is the number of samples in the validation set V (Reich and Barai 
1999). As our output vector y is 12-dimensional, we generalize this to  

 θ = 1/n [ Σi = 1:n  ( Σj = 1:d  | yij – f’(xi) |k )1/k ] (6) 

where d is the dimensionality of the output vector y and k is the exponent of 
the metric. The choice of k=2 (Euclidian distance) is appropriate for 
measurement of error in physical space, or k=1 (the Manhattan or city block 
metric) is suited to independent parameters. As the data in y is a combination 
of both – independent points in physical 3-space – the Manhattan metric of 
k=1 has been used.  

This error θ then is simply the mean distance between the nodes in each 
of the ideal samples y and the nodes in the corresponding solution output by 
the SVM y’= f’(x). Distance here is measured by the Manhattan metric (or 
sum of the difference in each dimension of the 12-dimensional output 
vectors). The graph below displays the accuracy of the predicted nodes 
during training with an increasing set T of examples and a separate 
validation set V of 300 examples (Figure 7). It indicates a steadily decreasing 
error for training sets T up to approximately 650 (indicated by ‘○’), at which 
point there is little further perceptible change.  

The number of 650 training examples appears to be a result of the 
particular data set, rather than inherent in the algorithm, and it is likely the 
required size of training set T would fluctuate for different structural 
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topologies. There is negligible variance in the resulting error θ when a 
different randomly selected set T is used in the SVM, or in the order of 
samples presented in training. While the observed plateau beginning at T 
size 650 does not coincide with an error θ of zero, it should be noted that 
both the generalisation of the model f’(x) and the pessimistic bias of hold-
out estimation will ensure a lower limit on the error. Training set size 650 is 
likely simply to be the limit of learning for this problem.  

The average accuracy of the function at this point is within 0.005 units to 
the validation set, or 1/5 the manufacturing tolerance for a unit cube of 2mm. 
At this stage the function of optimal geometries as provided by gradient 
descent can be considered, for all practical purposes, sufficiently learned. 

 
 

 

Figure 7. Accuracy of learning increases with increased training 

 

4.2 PERFORMANCE OF THE PREDICTED GEOMETRIES 

While the above graph indicates the standard method of evaluating the 
accuracy of the function in terms of node distances, it is more relevant to our 
purposes to know how well the structures perform under their respective 
stresses. This can be determined for a given structure in the validation set by 
performing a finite element analysis on both the geometry y found by GD 
and the predicted geometry y’= f’(x) as found by the SVM. Both are loaded 
with the same input vector of stresses, and their strengths under this load 
condition are measured as a total displacement of nodes when the load is 
applied. 
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Figure 8. Performance of the structure increases with increased training. 
 

This displacement between the original node points y and the resulting 
positions ŷ under simulated load is thus given by 

disp(y, ŷ) = Σi = 1:m [(yi(x) – ŷ i(x))2 + (yi(y) – ŷ i(y))2 + (yi(z) – ŷ i(z))2)]1/2  (7) 

where m is the number of node points, and the performance of the predicted 
structures y’ is estimated as the average ratio of displacements 

 δ = 1/n [ Σi = 1:n ( disp(y, ŷ) / disp(y’, ŷ’) ) ] (8) 

where n is the number of samples in the validation set V. 
Figure 8 plots this performance δ of the predicted structures y’ against the 

same validation set as in Figure 7. A ratio of 1.0 would indicate the predicted 
structures perform (on average) as well as those found by GD. Again the 
improvement with an increasing training set is evident over the same range, 
with a ratio nearly approaching 1.0. The percentage difference between the 
resulting displacement of the original samples and the predicted geometries 
at a training set size of 650 had dropped to 1.51%. Again this occurred 
slightly at slightly less than 650 samples. 

4.3 LEARNED IMPROVEMENTS OVER THE TRAINING SET 

As the average performance of structures over the entire prediction set 
approaches that of the validation set, it can be seen that some predicted 
structures actually perform better than their equivalents as found by GD. 
Thus, while the learned function may not be accurate enough to predict the 
exact node positions in the validation set, in these cases this actually is an 
advantage, providing an even stronger, more optimal structure. Figure 9 
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Figure 9. Learned improvements over the training set. 
 
indicates the number of structures of greater strength found by learning for 
increasing training set sizes. Where 50% would represent the maximum 
expected value of a perfectly learned function on data with noise, we 
approach this value at the training set size of 650 with 42% of structures 
having greater strength than the supposed ideal set. 

The fact that many, or indeed any, structures can outperform the optimal 
structures in the data from which the SVM was trained can be explained by 
the method in which the data was generated. Gradient descent as a search 
method is itself prone to error due to local optima in the fitness landscape, 
and is thus not guaranteed to find the globally optimal solution. Although it 
has been shown to be an appropriate method for solving the structural shape 
optimization problem, it can only do so within an acceptable variance in 
node positions (Haroun Mahdavi and Hanna, 2004). It is this variance that 
causes some of the optimized geometries in the training and validation sets T 
and V to fall slightly below the true optimal solution. It can be considered 
equivalent to noise in a set of examples collected from real-world 
measurements. In avoiding overfitting, the regression process performed by 
the SVM effectively ‘smoothes out’ the function learned so that some of 
these optimized structures lie either side of the function f’(x). 

In addition to the ability of the learned function to outperform some of 
the structures optimized by GD, there is a secondary benefit offered by this 
smoothing that effects a composite structure formed of many unit cubes. The 
ideal situation for a complex arrayed structure (as described in section 2.1) is 
that stress conditions change gradually and continuously over its volume, 
and adjacent unit cubes under similar stresses will have similar shaped 
structure. With any optimization process applied to individual unit cubes the 
variance in accuracy, or noise, will cause changes in node position or strut 
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width to be more abrupt between some adjacent cubes. The repeated 
optimisation of many separate structures amplifies the discretisation caused 
by the initial sampling of the unit stresses, and these abrupt transitions result 
in weak points in the overall structure. By using the learned, continuous 
function to derive the structural geometry, the transitions between adjacent 
cubes are smoother, and the composite structure benefits in strength. 

5. Conclusions 

The aim of this work is principally to investigate whether machine learning 
algorithms, in particular SVMs, could accurately predict the optimal 
geometries of structures, and thus be used as a substitute for a traditional 
optimization algorithm. An SVM was trained on example structures that had 
been optimized for strength using gradient descent, and used to predict 
structures that performed almost as well as an independent validation set 
optimized by GD. Several conclusions can be drawn from the observations: 
 
 The accuracy approaches that of the GD optimization. Although the 

learned function is not as accurate as GD for optimization, it does come 
close. The function learned from the training samples is learned with a 
high level of accuracy, but this can never be perfect for any data set. 
More importantly, if the potential sub-optimal geometries in the training 
sat are treated as noise in the data, it is evident that the SVM learns a 
function that improves on some if the initial data. On average, this 
produced geometries with a deflection under stress only 1.51% greater 
than those found by GD with a training set of 650. The variance in 
performance at this point is also low, representing a high degree 
confidence in these solutions. 

 The accuracy is within tolerances dictated by the manufacturing process. 
The small shortcoming in performance of solutions predicted by the 
SVM becomes negligible when fabrication is considered. The error of 
the function measured in node point positions was found to be 1/5th the 
finest resolution of the stereolithography machine. 

 The learned function results in a smoother overall structure. The 
avoidance of overfitting by a smoother learned function is beneficial 
both at the scale of the individual unit, and the whole structure. In the 
first instance, some predicted structures can actually perform better than 
what would be found by GD in instances where GD results in sub-
optimal local optima. In the second instance, the overall combined 
structure benefits by a continuous functional estimation by producing a 
more gradual transition between adjacent unit cubes. This avoids 
potential weak points caused by recombining individually optimized 
structures. 
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 The learned function is quicker for optimising larger structures. Finding 
an optimal structural based on the learned function is far quicker than 
performing a full optimization via gradient descent, as each sample of 
the latter requires a full finite element analysis, and one sample must be 
made for each dimension to calculate the gradient at each step. Learning 
the function for optimal structures however is time consuming, as in the 
example case studied, 650 fully optimized examples were required to 
learn the function at the outset. Many structural problems require the 
optimization to be performed only once, but for those in which a similar 
structural optimization is needed repeatedly, the initial investment in 
learning the function of optimal geometries can make the overall 
optimization far more efficient. In the case of an object composed of 
many units of an arrayed topology as shown, the computation time 
becomes less for the learned function as the size of the object grows 
beyond 650 unit cubes. Larger sizes take an even greater advantage in 
time. As this method of optimization is meant to be scalable to ever-
larger objects, the learned function represents a substantial advantage in 
speed. 

 
When the problem is well defined, i.e. the environment and topology are 

constant and the loads can be quantified by a continuous valued vector, we 
have shown that it is possible to learn the function of optimal structures 
given the specified loading condition. Rather than optimization by repeated 
sampling and evaluation of a physics-based model, it is thus possible to 
make design decisions for this structural problem based entirely on learning 
from previous examples. We have shown a method that uses this technique 
to predict optimal structures based on this principle, in which the training is 
performed in advance, and a structure is then produced that rivals the initial 
training set in strength. For structures of repeated units of the type we are 
considering, this method is many times more efficient than standard 
optimization algorithms, and is thus a significant contribution to this 
problem of structural design. 

The problem has been formulated as one of microstructures, comprised of 
a very large number of units with pre-defined topology but flexible 
geometry. The units used however, have been defined only relatively, and 
there is no reason in principle why such a technique could not be applied to 
structures of a larger size. As the training requires several hundred examples, 
the practical benefit of this approach in terms of speed is only evident when 
structures contain a number of units far greater than this, as do the 
microstructures we have been considering even of several centimetres. The 
rapid prototyping technologies used, however, are only part of a class of 
manufacturing methods including CNC cutting and milling that are being 
used at much larger scales. With recent architectural projects in excess of 
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one kilometre and the enclosure of entire city neighbourhoods with space 
frame roofs becoming feasible, such an approach to optimisation may be 
valuable. 

Most unexpected of the findings was that in generalising from the 
examples presented, the learning algorithm was so often able to actually 
outperform the original optimisations on which it was trained. Once trained 
on successful precedents, the machine, in a sense, knows intuitively what 
works based on its prior experience, and can then predict optimal structures 
that rival or even exceed the initial training set in strength. This is a result 
not of strict analysis however, but of inductive learning.  
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