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Purity of Gaussian states: Measurement schemes and time evolution in noisy channels
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We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems.
We prove the connection of purity to observable quantities for these states, and show that the joint measure-
ment of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The
statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of
Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an
evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We
show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for
an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that
of the input state.
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[. INTRODUCTION guantum statep; the conjugate quantitys =(1— w)d/(d
—1), whered is the dimension of the Hilbert space of the
Nonclassical features of atomic and radiation systemsystem under investigation, is known as linear entropy or
play a relevant role in quantum information, communication,mixedness. In general, ranges from one, which is the value
and high precision measurements, as well as in many fundder a pure state, tqu=1/d, value for a completely mixed
mental experiments to test quantum mechaficg|. In par-  state. Throughout the paper, we will consider CV systems,
ticular, pure Gaussian states of continuous varigbM) sys- i.e., infinite dimensional Hilbert spaces, and therefore we
tems, such as coherent and squeezed-coherent states, arewliehave 0O<u<1. Sinceu is a nonlinear function of the
key ingredients of secure optical communicat[8+-6] and  density matrix, it cannot be connected to an observable quan-
Heisenberg limited quantum interferometfy—11. The tity if we perform repeated measurements on single copies of
characterization of several properties of Gaussian states héise state. That is, it cannot be the expectation value of a
been the subject of intense recent wfiz—19, stimulated  single-system self-adjoint operator, nor can it be related to a
by the seminal analysis on their entanglement propertiesingle-system probability distribution obtained from a posi-
[19,20. tive operator-valued measure. On the other hand, if collective
Any attempt to exploit Gaussian states for quantum infor-measurements on two copies of the state are possible, then
mation and quantum measurement schemes must, howevéie purity may be measured direcfl@1,22. For instance,
face the obvious difficulty that pure states are unavoidablyollective measurements of overlap and fidelity have been
corrupted by the interaction with the environment. Thereforeexperimentally realized for qubits encoded into polarization
CV Gaussian states that are available for experiments arstates of photong23].
usually mixed states, and it becomes crucial to establish their In general, purity can be determined by the knowledge of
degree of purityor mixednessdetermined by the environ- the quantum state of the system, which in turn can be ob-
mental noise. In the present paper, we study the purity ofained by quantum tomograptig4]. However, in this case,
Gaussian states for single-mode continuous variable systentise statistics is usually poor, since the measurement of a
focusing on two aspects: its experimental characterizatiomvhole quorum of observables is needed, unavoidably leading
and its time evolution in noisy channels. We first show thatto large fluctuation$25]. On the other hand, if we focus our
the joint detection of two conjugate quadratures is a necesattention on the class of Gaussian states, it is indeed possible
sary and sufficient measurement to determine the purity of & find an operative method to experimentally determine
Gaussian state with reliable experimental statistics; we them fact, Gaussian states are uniquely defined by their first two
derive an evolution equation for the purity of Gaussian statestatistical moments, which can be measured by the joint de-
in a noisy channel, considering the instances of a thermakction of two conjugate quadratures, say position and mo-
bath and a squeezed thermal bath, and determine the evolmentum or quadrature phases of the electromagnetic field.
tions that at any given time maximize the purity. Such a measurement corresponds to an estimate of the Hu-
Let us refer tou=Tr[@?] as to the purity of a generic simi Q function Q(a)=(ale|a), |a) being a coherent state
of the harmonic oscillator. We will show that the measure-
ment of theQ function is the optimal minimal measurement

*Electronic address: paris@unipv.it for the purity, in the sense that it is necessary and sufficient
TElectronic address: illuminati@sa.infn.it to determinex and requires the minimum number of observ-
*Electronic address: serale@sa.infn.it ables to be measured.
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ppssible for a single-mode radiation field as well as for aandf)=i(a*—a)/\/§ of the fielda, whose expectation values
single atom[26-2§. Remarkably, for these systems, the . A B )

class of Gaussian states includes almost all the states that cih =X and(p)=p are related tar by a—(x+|_p)/\/§. _

be reliably produced, and employed in communication or _1he Wigner representatio(a) of the density matrig
measurement protocols. of a quantum state is referred to as the Wigner function of the

Finally, we will show that the previous discussion allows state. The class of Gaussian states is defined as the class of

us to unravel the dynamics of purity only in terms of obsery-States with Gaussian Wigner function, namely
able quantities. Indeed, the time evolution of the purity of an

S . ! . . —12Xo T
initial Gaussian state in a noisy channel can be uniquely _ €

. 7 W(x,p)= ———, ©)
expressed as a function of the initial observable parameters m\De{ o]

of the input state and of the asymptotic observable param-
eters of the environment. This property allows us then tqyhereX is the displaced vectok= (X—Xq,p—pPo) and o is
determine and engineer optimal evolutions, i.e., evolutionshe covariance matrix
that maximize the purity at any given time.
The paper is structured as follows. In _S_ec. I, we sh(_)w Uij=%< X+ X% — (X)),
how purity is related to observable quantities for Gaussian

states, and how it can be obtained either fromQ@nieinction Where§<1=§< and§<2= f’ The density matrix of the most gen-

or by three single-quadrature detection. In Sec. Ill, we . .
X ; . ral Gaussian state can be written 36]
present the results of a systematic numerical analysis, estab.
lishing th istical reliability and the ran f licabili
shing the statistical reliability and the range of applicability 0=D(ag)S(r,)v;S'(r,9)D'(ay), (4)

of the method by means of Monte Carlo simulated experi-
mental runs. We also show that tgfunction based deter- whereay=(Xo+ipo)/ V2, vy is a thermal state with average
mination of purity is a more reliable method than the single- h —
quadrature detection. Section IV is devoted to derive andhoton numben,

solve an evolution equation for the purity of an initial Gauss- - —
ian state in a noisy channel, for both thermal and squeezed - 1 D n Ik)(K
thermal baths. We show that, even though the asymptotic " 14050\ 141, '

value of purity is not related to the initial conditions, its

behavior at finite times does depend on the initial squeezing () denotes the displacement operator, aSff,¢)
and thermal excitations, and we determine the evolutions that explre2°a2— ir 62431 is the squeezing operator. A con-

maximize the purity at any finite time. We show, in partlcu'venient parametrization of Gaussian states can be achieved

lar, that purity is maximized for an initial coherent state : B ) .
ot N by replacing ther;;’s with n, r, ¢, which have a more direct
evolving in a thermal bath, or for an initial squeezed state !

evolving in a squeezed thermal bath whose asymptoti(g hgggTeer}gffr'ﬁ:t'io'ﬂtgfrp;ebaetfz?é;gﬂ at%gyflgl?ovt/ri]ne [r)g_ase—
squeezing is orthogonal to that of the input state. Finally, i b b q e 9

. Nations are easily derived:
Sec. V, we present some concluding remarks.

n+1
[cosH2r)—sinh(2r)cog2¢)],

II. PURITY OF GAUSSIAN STATES Oyx= 3
We begin by reviewing some fundamental properties of
the Wigner phase-space representafia@] which will be 1
useful throughout the paper. The Wigner representation of an o= [cosh2r)+sinh(2r)cog2¢)]
. . . . pp 2 '
arbitrary operato© is defined as follows:
Py nt1
O(a):fl‘?ew 7*Tr OD(y)], D Tp="> sinh(2r)sin(2¢). (5)

whereD(y) = exp(ya'— ya) is the displacement operator and Exploiting Eq.(2), one can write
Tr[OD(y)] is usually referred to as the characteristic func-

tion of the operato®. Let O, andO, be operators that admit . o T
regular Wigner representatior®;(«) and O,(a), respec- p=Tre"]= Ef“ ﬁﬁdxdp\/\?(x,p), ®)
tively. Then, the trace TO;0,] can be computed as an
integral over phase space according to so that for a Gaussian state,
TI[0,0,]= ﬂ'fdzaol(at)oz(a). (2) 1 1
. Iz 7

- 2\/Det[ o] - 2\/0'XX0'pp— a')z(p.
From now on, we will move to the phase-space varialiles
and p, corresponding to quadrature phases(a+a')/\2  Interms ofn, r, ande, Eq.(7) can then be recast 32,33
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1 In the following section, we will compare the two different
n=—. (8)  experimental schemes on the basis of Monte Carlo simulated
2n+1 experiments.

Equation (8) shows that the purity of a generic Gaussian

state depends only on the average number of thermal pho-

tons, as one should expect, since displacement and squeezing

are unitary operations. Therefore, the measurement of the As we have seen, in order to evaluate thes and then

purity of a Gaussian state is equivalent to the measuremeitfie purity, we need to estimate averages oveiQtanction.

of its average number of thermal photons. These estimates can be obtained if one disposes of data dis-
As the last step in connecting to observables, we report tributed according to th€ function Q(x,p) itself. Indeed,

the expression of the;;’s in terms of theQ function Q(«). such a distribution can be experimentally reconstructed for a

This follows from the antinormally ordered expression of theSingle-mode radiation field through heterody@], eight-

IIl. MONTE CARLO SIMULATED EXPERIMENTS

second moments. We have, for instance, port homodyng 36,37, or six-port homodyne detectolr38],
and for atoms by coupling the atom with two light fields and
~sp a’+a'?+2aa’-1 measuring the corresponding phase shizg).
X= 2 ' In order to test the effectiveness of the proposed scheme,

we have performed a systematic numerical analysis by
means of Monte Carlo simulated experiments. The simula-
_1 tions are needed to show the actual independence of the
2. Therefore, we eventually get method on the squeezing and displacing parameters, in com-
1 pliance with Eq(8). Moreover, they provide a crucial test on
:j f dxdqu,p)<x2—§ , the actual possibility of getting reliabl@.e., with reduced
IR fluctuation$ determinations ofw in realistic experimental
. — ] settings and even for most unfavorable states.
where we have movgd from variablesand « to variablesx ~ The purityx and its dispersiom . have been evaluated
andp, previously defined. In much the same way, we obtainggom samples of the&) function, varying the values of the
1 parameters of the simulated Gaussian state. Besidese,
<E)2>:f fdxdp(lx,p)(pz— _), (9) and «, the experimental determination of tlg function
RJR 2 depends on the numbet, of collected data.
We find thatu andA u are essentially independent of the
complex displacement parameteg and squeezing angle.

On the other handA u does depend on andr, decreasing

with increasingn and increasing with increasing
Since first moments are naturally antinormally ordered, |n Fig. 1, we report the determination of purity for a
evaluation of first moments of quadratures is easily obtainedstrongly squeezed thermal state as a function of the number
and thea;’s can be eventually computed. of data. The error on purity is of the order of a few percent
Gaussian states may be effectively characterized as wefbr samples made dfl,=10° data.
by single-quadrature measurements obtained by balanced ho- |n order to compare the determination pf by the Q
modyne detectiori34]. Thus, a question arises whether or function with that coming from single-quadrature detection,
not one really needs to resort to joint measurement of tW@ye have simulated the measurement of three quadra{ures
conjugate quadratures to determine the purity. In particularg=0,7/2,7/4 by balanced homodyne detection. In Fig. 2, we
since Gaussian states are fully characterized by the first an@port the estimated puritjusing Eq.(12)] for the same
second moments, it suffices to measure the rotated quadratrongly squeezed thermal state of Fig. 1 as a function of the
ture x,=(a' e'’+a e '%)/\/2 for three different values of  number of data. Some features are immediately evident. First
to have a complete characterization of the state, including thef all, one can see that the determination is biased: in the
measure of its purity. This fact can be proven by remindingpresent case, the estimatgdis always larger than the true
that the probability distributiop(x, #) of a measurement of value, while the opposite case occurs by inverting the phase
Xy on a state of the forni4) is a Gaussian centered ¥y  of the squeezing. Therefore, the method is very sensitive to
=Rd age '?], with variance the choice of the phase. Moreover, the relative error is not a
smooth function of the number of data, i.e., the method is not
statistically reliable as the joint-measurement one. This is
again due to the remarkable dependence of the variances on
the phase of the squeezing, a dependence which is instead
By measuring three quadratures, we directly obtain the puritpmoothed out in the measurement of @gunction. Sum-
u by comparison of variances. By choosifg 0,7/2,7/4, ming up, for some specific statéass the example considered
we have here single-quadrature detection may be asymptotically
even more efficient than the heterodyne one. However, in
w=[40 (0ot T o= 0 ma)—(0o— 0221 Y2 (120 general, the number of data needed for the relative error to be

which, in terms of phase-space variables, corresponds to

(a+ah)?

(x3)=Tr

Y

1 .. .
> {xp+ p><>=LJRdxdpQ(x,p)xp. (10

aa=i[e‘2fcos’-( 0—¢)+e7sif(6—¢)]. (11
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FIG. 1. Effect of the number of data on ti@function based FIG. 3. Effect of squeezing on th@-function based determina-
determination of purity for Gaussian states: results from Montetion of purity for Gaussian states: results from Monte Carlo simu-
Carlo simulated experiments. In the left graph, we plot the determitated experiments. In the left graph, we plot the determination of
nation of the purityu versus the number of datd, for a squeezed  purity versus the squeezing parametéor Gaussian states with the
thermal state with parameters given by=0, ¢=0, andr=1.5,  ,her parameters fixed at=0, ¢=0, andn=0.5. Black circles
corresponding to sirfth.5~4.5 mean squeezed photons, and a mearyq the determined values of purity based on@hdistributed sta-
number of thermal photons=0.5. Black circles are the estimated tistics, vertical bars are the experimental errtasnfidence inter-
values of purity based on th@-distributed statistics, vertical bars vals). For smallr, the errors are within the black circles. The theo-
are the experimental errofsonfidence intervajsfor a large num-  retical value of purity for all the states js=0.5. In the right graph,
ber of experimental data, the errors quickly fall well within the we report the relative erross u/u versus the squeezing parameter
black circles of the estimated values. The theoretical value of puritfor the same set of experiments. The number of data in all simulated
for all the simulated experimental runsgs=0.5. In the right graph,  experiments i\, =3x 10°.
we report the relative errorA u/u versus the number of data for

the same squeezed thermal state. S ) )
of purity is illustrated in Fig. 3, where we repogt and

below the joint-measurement level is strongly state dependu/u versusr for Gaussian states with=0, ¢=0, and
dent. We conclude that the measurement of@fenctionis  n=0.5, and for a number of datd,=3x 10*. Notice that,
statistically more reliable and thus more suited for a systemin Fig. 3, the range of corresponds to quite a large number
atic analysis of the purity of Gaussian states. of mean squeezed photons8intr=15.

Let us now go back to the analysis of t@@function In the deep quantum regime, i.e., for smmallfluctuations

determination of purity. A smaller number of data is neededOf 11 become more relevant. This is not surprising, sinds

to obtain a given precision for states with smaller squeezing, highly nonlinear function of the second-order moments.

The effect of the squeezing parameter on the determmatloﬂowever, simulations show that even for highly squeezed
(up to =15 mean squeezed photorand slightly mixed

(down ton=0.1) states, realistic experimental conditions al-
low a statistically reliable determination @f that complies

] with the theoretical expectatiof®), up to an error of a few

o [ x ] percent. In Fig. 4, we plot the determination of purity for
. ] different squeezed thermal states as a function of the average

2 E [ ] number of thermal photona, for samples made oN,
=10° data.

. From the above analysis, we conclude that the joint mea-
Ny x surement of two conjugate quadratures provides a statisti-
FIG. 2. Effect of the number of data on the determination ofCally r_ellable methO(_:I t(.) determlne_the purl_ty of a generic
purity for Gaussian states by single-quadrature detection: result@ahUSSI":)‘n stat?' Tlhls dls bZ.St .aé:hle(\j/ed Wltdh expenhmental
from Monte Carlo simulated experiments of three quadratuges SP ?mes t ,at involve data distribute accor_ ing to the Hu-
X1, andX.ss. In the left graph, we plot the determination of the SIM Q function, such as heterodyne and multiport homodyne

purity x versus the number of datd, for the same squeezed ther- detection schemes.

mal state of Fig. 1. Note that, in this instance, the total number of

dataN, corresponds tdN,/3 detections for each quadrature. Black

circles are the estimated values of purity based on the balanced IV. EVOLUTION OF PURITY IN A NOISY CHANNEL
homodyne statistics, vertical bars are the experimental efcors . ) . o
fidence intervals for a large number of experimental data the er- L€t us consider the time evolution of an initial, pure or
rors quickly fall well within the black circles of the estimated val- Mixed, generic single-mode Gaussian state in the presence of
ues. The theoretical value of purity for all the simulated NOise and dampingand/or pumpingtoward a final squeezed
experimental runs ig=0.5. In the right graph, we report the rela- thermal state. I~ is the photon lifetime in the noisy chan-
tive errorsA u/ u versus the number of data for the same squeezediel, the evolution of a state is described, in the interaction
thermal state. picture, by the following master equation:

10

] 3
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- © T For a general single-mode Gaussian state of the {8jnone
has, in compact notation,
o -
o £ T (X 2N+1
13 N 1 WZE 2—Xo + > Sxo(1)
Tl - P
XM XXXX XX
%0 %WXXWVXZK&
o N +MlSX(r(A)+M2‘SXU(B))Wi 17
0 2 4 6 8 10
n n where Sx,(¥) denotes the seraliafor siralian operator, a

. ~scalar function of the matrixy given by Sx,(7)
FIG. 4. Effect of thermal photons on th@-function based de —Xo lyo XXT—Tr yo 1]. The displaced vectoX and

termination of purity for Gaussian states: results from Monte Carlo

simulated experiments. In the left graph, we plot the determinatior]fhe covariance matrixo . hgve been previously defined,
. — . . whereas|,A B form a basis in the space of<2 real sym-
of purity versus the value af for Gaussian states with the other

parameters fixed at=0, ¢=0, andr=1.0. Black circles are the metric matrices:
determined values of purity according to tQefunction statistics,

and vertical bars denote the experimental er(ocmnfidence inter- 10
valg); the latter are within the black circles essentially for all values I= )

of n. The solid line reports the theoretical valueswofin the right

0 1

graph, we report the relative erratgu/ versusn for the same set 1 0
of experiments. The number of data in all simulated experiments is
N, =10". A=lo -1/
. T r
e=5NL[a"le+ = (N+1)L[a]e 01
2 2 —
B={1 ol-

r —
- 5(MD[a]e+MD[a']e), (13 _ _ _ _
For any given real matrixy and generic Gaussian states, the
seralian operator shows the remarkable property
where the dot stands for time derivative and the Lindblad
superoperators are defined by
JRdXJRd PSxa( VIW(X,p,t)=0. (18)
L[O]e=20p0"-0"0p-00%0, (14)
It can be easily shown that this property assures that the last
D[0]p=2000-00p—00. (15  three terms of Eq(17) [corresponding to diffusion terms in
the Fokker-Planck equatiofi6)] do not enter in the time-
evolution equations for the first statistical momergsand
po. Such an evolution is governed by the drift terms and is

described by the following equation for the vech{E(”;g)

M is the correlation function of the batfwhich is usually
referred to as the squeezing of the bathis, in general, a

complex numbeM =M +iM,, andM denotes its complex
conjugate, whileN is a phenomenological parameter related,
as we shall see, to the purity of the asymptotic state. Positiv- . X r
ity of the density matrix imposes the important constraint Xo= fRdx de(p) o EXO- (19
[M|2<N(N+1). At thermal equilibrium, i.e., foM =0, N
coincides with the average number of thermal photo_ns in thesirst moments are damped through the noisy channel: this
bath. The master equatioid3) can be transformed into & gffect should be expected since it is the mathematical evi-
Fokker-Planck equation for the Wigner functit(x,p.t).  dence of the absorption of the state’s coherent photons.
Using the differential representation of the superoperators The evolution of the covariance matrix of the state can be
[31,39 in Eq. (13), the corresponding Fokker-Planck equa- gescribed by monitoring different sets of variables. A good
tion reads as follows: choice of variables is given by the;’s, in terms of which
the evolution equations decouple. The relations between the
: r 2N+1 variableso;; and the variableg, r, and¢ are given in Egs.
W(x,p,t)= 2 2+ Xyt pdpt T(axx+ Ipp) (5) and(7). Here we recall some further relations that will be
useful in the following:
+M (05— 750) +2M iy [W(X,P,1). 2nr1? 1
(16) Def o]= Oxx0pp™ O')z(p:T :4—M2 ) (20
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— cosh2r) M(Z)
Tl o]= 0yt opp=(2n+1)cosh2r) = T w()= o _2(1_e71"t)2+e721"t
(21) ”
V1+4u2|M|?cosh2r ) .
sinh(2r)coq2¢) +2u0 +2 sink(2rg)
Opp™ Oxx™ — . (22 Mo

M

As we have seen, in the Wigner phase-space picture, the X[M1COS(2(p0)—MZSIn(2<po)]>

expectation values can be computed as phase-space integrals.

—-1/2
The first-order evolution equation for the covariance matrix _ _
: . . : ) X(1—e e It (27)
o is thus obtained by a straightforward integration, and reads '
o=I'(0.~0), (23 T+ aZME(1-e T
cosh2r(t)]= u(t)
with W
_..cosh{2r)
(2N+1)+2M, te 20 (28)
—2 M, Mo
= . (24
- y eNt-2M, | Y ta2e)]
) R
2 _ M,2uo(1—e 'Y +sinh(2ry)sin(2¢g)e (29
The matrix 0., determined by the bath parameters alone, —M12u0(1—e ") +sinh2ry)cog2¢p)e
turns out to be the asymptotic covariance matrix. In fact,
integration of Eq.(23) yields wherewg, o, andeg are, respectively, the initial purity and
the initial squeezing parameters.
ot)=0.(1—e T+ a(0)e (25) Let us first consider the casé =0, for which the initial

state is damped toward a thermal state with mean photon

Equation(25) shows a simple example of a Gaussian, Com_r?umberg 529'42' In this cgser,] see qug).’ @ isfsl:_cr)]nstant in
pletely positive map40]. The Gaussian character of the evo- time an oes.not enter in the expressioruofthe corre.-
luted Wigner function can be provea, posteriori by veri-  SPonding solutions for(t) andr(t) then read as follows:

fying that a function of the form(3), with the covariance

. . . 2
matrix given by Eq(25), indeed solves Eq16). In order to | Mo 12 M0y Tt
be abona fidecovariance matrixg(t) must satisfy the usual m()= po ?(1_6 ) +2Ee (1-e)
condition encoding th&— p uncertainty relation$40,41]: o
: x cosh2ry)+e 2t | (30
o(t)+ EJZO,
1-e It cosh2ry)
with cosf[Zr(t)]=,u(t)( +e‘“—>. (31
Moo Mo
J= 0 1 (26) The quantitiesu(t) andr(t) in Egs.(30) and(31) solve the
-1 0/ following system of coupled equations:
It is promptly seen that such a condition is satisfied at any : =F( B ,uzcosr(2r)>
time by the convex combination giving(t) in Eq. (25), if " H Mo '

and only if o, is a legitimate covariance matrix. This last
requirement is assured by the necessary constis{iMN i I uw .
+1)=|M|? that guarantees positivity of the density matrix. r=-s M—SH'W(ZF), (32
By introducing ”
) / which, in turn, can be directly found by working out the
p=[(2N+1)>=4|M[*]7 12, basic evolution equatiop=2Ti{ 00] as a phase-space inte-
gral and exploiting Eqs(20)—(22). It is easy to see that, as
and exploiting Eqs(20)—(22), we can eventually expregs, t—oo, w(t)— u.=(2N+1) 1 andr(t)—0, as one expects,
r and ¢ as functions of time: since the channel damgsumps the initial state to a thermal
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1 6. In addition, u(t) is not a monotonic function for any
choice of the initial conditions. Letting =0 in Eq.(32), and

0.8 exploiting Eqs.(30) and(31), one finds the following condi-
2o.6 tion for the appearance of a zerofat finite positive times:
g cosh(2p)>max(ug/ o , o/ o). If this condition is satis-
a7}

0.4 fied, thenw(t) shows a local extremum, in fact a minimum,

0.2 since differentiating the first of Eq$32) and lettingu=0,

one obtainse>0. This behavior is shown in Fig. 6.

0 0.5 1 1.5 5 Let us now treat the more general instarde~0 of a
To squeezed thermal bath. Recalling the definitionugf and

exploiting Egs.(27)—(29), one easily finds the asymptotic

values of the physical parameteis r, and ¢:

FIG. 5. Plot of the purityw for an initially pure Gaussian state
(mo=1) in different nonsqueezed=0) noisy channels, evalu-
ated at time=I""1, as a function of the initial squeezing parameter
ro. From top to bottom, the value of the mean thermal photon o= 1
number N that characterizes the different channelsNs=0, N “ \/(2|\|+1)2—4||\/||2'

=0.5, andN=1, respectively.
_ cosh2r..)=\1+4u2[M[?, (35)
state with mean photon numbklt Therefore, the only con-

stant solution of Eq(32) is u=pu., r=0, i.e., only initial M,

nonsqueezed states are left unchanged by the evolution in the tan(2¢.)=— —. (36)
noisy channel. In fact, Eq30) shows thafu(t) is a decreas- M.

ing function of ry: in a nonsqueezed channél&0), a
squeezed state decoheres more rapidly than a non-squee
one (see Figs. 5 and)6 Let us consider, for instance, an
initially pure state in a channel witiN=1 (so that ..
=1); after a timet=T"1, the ratio of the purity of a state

(34)

These values characterize the squeezed channel. Equation
%% ) shows that ifM+#0, thenN is not simply the mean

thermal photon numbar of the asymptotic state. One has

with ro=1.5 to the purity of a state with,=0 is 53.7%. N V(2n+1)2+4|M[>—1

This dependence could therefore be relevant for practical 2 ’

purposes. The optimal evolution for the purity, obtained let-

ting r=0 in Eq. (30), reads In order to understand the dynamics of purity whin

#0, it is convenient to write again the expressi@7) for

m(t), using Egs(35 and(36) to switch from the complex
e . (33 parameterM=M;+iM, to the asymptotic values of the
Kot e (pe— to) sqgueezing parameters and ¢., ; one obtains

Moo

m(t)=

Obviously, u(t) is not necessarily a decreasing function MS
of time. If uo<p.., then the initial state will undergo a  u(t)=po| — (1—e ") +e 2"
certain amount of purification, asymptotically reaching the Moo
value u., which characterizes the channel, as shown in Fig.

+ Z%{COSHZI’OC)COSHZI’O) +sinh(2r,.)sinh(2r)

1
—112
> x[cog2¢.~2¢9)(1-e e | . (37
>
e 0.6
E 0.4 We see from Eq(37) that n(t) is a monotonically decreas-
ing function of the factor cos.—2¢g), which gives the
0.2 only dependence on the initial phagg of the squeezing.
Thus, for any givenp,, characterizing the squeezing of the
0 2 4 6 8 bath, o= ¢.,+ /2 is the most favorable value of the initial
t angle of squeezing, i.e., the one which allows the maximum

FIG. 6. The purityu for various Gaussian states evolving in a purity at a given time. For such a choige(t) reduces to

channel withN=0.5, M=0, as a function of time. Time is dimen-
sionless and measured in unitsIbf. The upper curve refers to an T2, —2rt, oM0
initial pure coherent stater §=0, uo=1), the central curve to an m(t) = po ?(1_9 )y+e +2E
initial pure squeezed vacuunry=1.5, uy=1), and the lower *

curve to an initial thermal state withh=0 and x,=0.05, i.e.,Fo -1z
=95, X cosh2r.,—2rg)(1—e e I . (39

2
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This is a decreasing function of the factor cosh(22ry), so  ated measurement schemes, thus proving the possibility of an
that the maximum value of the purity at a given time isexperimentally realizable characterization of the purity of
achieved for the choicey=r.., and the evolution of the Gaussian states. We have compared as well the scheme based
purity of a squeezed state in a squeezed channel is identicah the Q function with the one based on single-quadrature
to the evolution of the purity of a nonsqueezed state in aletection, and showed that the former provides a more reli-
nonsqueezed channel expressed by(Bg).and illustrated in  able statistics. Moreover, we have derived an evolution equa-
Fig. 6. tion for the purity of Gaussian states in noisy channels, in the
In conclusion, for the most general instance of a channetase of both a thermal and a squeezed thermal bath. Our
characterized by arbitrary.., r.., ¢, andT', the initial  analysis shows that the purity is maximized at any given
Gaussian state for which purity is best preserved in timgime for an initial coherent state evolving in a thermal bath,
must have a squeezing parametgr=r., and a squeezing or for an initial squeezed state evolving in a squeezed ther-
angle o= ¢@..+ 72, i.e., it must be antisqueezédrthogo- mal bath whose squeezing is orthogonal to that of the input
nally squeezedwith respect to the bath. The net effect for state. We have focused our attention on the purity of single-
the evolution of the purity is that the two orthogonal squeez-mode Gaussian states. The time evolution of the purity for
ings of the initial state and the bath cancel each other exactlgpecific initial non-Gaussian states of great physical rel-
thus reproducing the optimal purity evolution of an initial evance can be studied, as well as the extension to Gaussian
nonsqueezed coherent state in a nonsqueezed thermal batdtates of multimode systems, both pure and mixed. These
topics are currently being explored and will be the subject of

V. CONCLUSIONS forthcoming work.

We have shown that the purity of Gaussian states for con-
tinuous variable systems can be pperatlonally determined by ACKNOWLEDGMENTS
the joint measurement of two conjugate quadratures. In order
to perform such a measurement, the minimal, necessary, and The work of M.G.A.P. has been sponsored by INFM
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