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Purity of Gaussian states: Measurement schemes and time evolution in noisy channels
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We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems.
We prove the connection of purity to observable quantities for these states, and show that the joint measure-
ment of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The
statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of
Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an
evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We
show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for
an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that
of the input state.
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I. INTRODUCTION

Nonclassical features of atomic and radiation syste
play a relevant role in quantum information, communicatio
and high precision measurements, as well as in many fun
mental experiments to test quantum mechanics@1,2#. In par-
ticular, pure Gaussian states of continuous variable~CV! sys-
tems, such as coherent and squeezed-coherent states, a
key ingredients of secure optical communication@3–6# and
Heisenberg limited quantum interferometry@7–11#. The
characterization of several properties of Gaussian states
been the subject of intense recent work@12–18#, stimulated
by the seminal analysis on their entanglement proper
@19,20#.

Any attempt to exploit Gaussian states for quantum inf
mation and quantum measurement schemes must, how
face the obvious difficulty that pure states are unavoida
corrupted by the interaction with the environment. Therefo
CV Gaussian states that are available for experiments
usually mixed states, and it becomes crucial to establish t
degree of purity~or mixedness! determined by the environ
mental noise. In the present paper, we study the purity
Gaussian states for single-mode continuous variable sys
focusing on two aspects: its experimental characteriza
and its time evolution in noisy channels. We first show th
the joint detection of two conjugate quadratures is a nec
sary and sufficient measurement to determine the purity
Gaussian state with reliable experimental statistics; we t
derive an evolution equation for the purity of Gaussian sta
in a noisy channel, considering the instances of a ther
bath and a squeezed thermal bath, and determine the e
tions that at any given time maximize the purity.

Let us refer tom5Tr@%2# as to the purity of a generic
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quantum state%; the conjugate quantitySL5(12m)d/(d
21), whered is the dimension of the Hilbert space of th
system under investigation, is known as linear entropy
mixedness. In general,m ranges from one, which is the valu
for a pure state, tom51/d, value for a completely mixed
state. Throughout the paper, we will consider CV system
i.e., infinite dimensional Hilbert spaces, and therefore
will have 0,m<1. Sincem is a nonlinear function of the
density matrix, it cannot be connected to an observable qu
tity if we perform repeated measurements on single copie
the state. That is, it cannot be the expectation value o
single-system self-adjoint operator, nor can it be related
single-system probability distribution obtained from a po
tive operator-valued measure. On the other hand, if collec
measurements on two copies of the state are possible,
the purity may be measured directly@21,22#. For instance,
collective measurements of overlap and fidelity have b
experimentally realized for qubits encoded into polarizat
states of photons@23#.

In general, purity can be determined by the knowledge
the quantum state of the system, which in turn can be
tained by quantum tomography@24#. However, in this case
the statistics is usually poor, since the measurement o
whole quorum of observables is needed, unavoidably lead
to large fluctuations@25#. On the other hand, if we focus ou
attention on the class of Gaussian states, it is indeed pos
to find an operative method to experimentally determinem .
In fact, Gaussian states are uniquely defined by their first
statistical moments, which can be measured by the joint
tection of two conjugate quadratures, say position and m
mentum or quadrature phases of the electromagnetic fi
Such a measurement corresponds to an estimate of the
simi Q functionQ(a)5^au%ua&, ua& being a coherent stat
of the harmonic oscillator. We will show that the measu
ment of theQ function is the optimal minimal measureme
for the purity, in the sense that it is necessary and suffic
to determinem and requires the minimum number of obser
ables to be measured.

The joint measurement of two conjugate quadratures
©2003 The American Physical Society14-1
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possible for a single-mode radiation field as well as fo
single atom@26–28#. Remarkably, for these systems, th
class of Gaussian states includes almost all the states tha
be reliably produced, and employed in communication
measurement protocols.

Finally, we will show that the previous discussion allow
us to unravel the dynamics of purity only in terms of obse
able quantities. Indeed, the time evolution of the purity of
initial Gaussian state in a noisy channel can be uniqu
expressed as a function of the initial observable parame
of the input state and of the asymptotic observable par
eters of the environment. This property allows us then
determine and engineer optimal evolutions, i.e., evoluti
that maximize the purity at any given time.

The paper is structured as follows. In Sec. II, we sh
how purity is related to observable quantities for Gauss
states, and how it can be obtained either from theQ function
or by three single-quadrature detection. In Sec. III,
present the results of a systematic numerical analysis, es
lishing the statistical reliability and the range of applicabil
of the method by means of Monte Carlo simulated exp
mental runs. We also show that theQ-function based deter
mination of purity is a more reliable method than the sing
quadrature detection. Section IV is devoted to derive a
solve an evolution equation for the purity of an initial Gaus
ian state in a noisy channel, for both thermal and squee
thermal baths. We show that, even though the asympt
value of purity is not related to the initial conditions, i
behavior at finite times does depend on the initial squeez
and thermal excitations, and we determine the evolutions
maximize the purity at any finite time. We show, in partic
lar, that purity is maximized for an initial coherent sta
evolving in a thermal bath, or for an initial squeezed st
evolving in a squeezed thermal bath whose asympt
squeezing is orthogonal to that of the input state. Finally
Sec. V, we present some concluding remarks.

II. PURITY OF GAUSSIAN STATES

We begin by reviewing some fundamental properties
the Wigner phase-space representation@29# which will be
useful throughout the paper. The Wigner representation o
arbitrary operatorO is defined as follows:

O~a!5E
C

d2g

p2
eḡa2gāTr@OD~g!#, ~1!

whereD(g)5exp(ga†2ḡa) is the displacement operator an
Tr@OD(g)# is usually referred to as the characteristic fun
tion of the operatorO. Let O1 andO2 be operators that adm
regular Wigner representationsO1(a) and O2(a), respec-
tively. Then, the trace Tr@O1O2# can be computed as a
integral over phase space according to

Tr@O1O2#5pE
C
d2aO1~a!O2~a!. ~2!

From now on, we will move to the phase-space variablex

and p, corresponding to quadrature phasesx̂5(a1a†)/A2
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andp̂5 i (a†2a)/A2 of the fielda, whose expectation value

^ x̂&[x and ^ p̂&[p are related toa by a5(x1 ip)/A2.
The Wigner representationW(a) of the density matrix%

of a quantum state is referred to as the Wigner function of
state. The class of Gaussian states is defined as the cla
states with Gaussian Wigner function, namely

W~x,p!5
e21/2Xs21XT

pADet@s#
, ~3!

whereX is the displaced vectorX5(x2x0 ,p2p0) ands is
the covariance matrix

s i j 5
1
2 ^x̂i x̂ j1 x̂ j x̂i&2^x̂i&^x̂ j&,

wherex̂15 x̂ andx̂25 p̂. The density matrix of the most gen
eral Gaussian state can be written as@30#

%5D~a0!S~r ,w!n n̄S†~r ,w!D†~a0!, ~4!

wherea05(x01 ip0)/A2 , n n̄ is a thermal state with averag
photon numbern̄,

n n̄5
1

11n̄
(
k50

` S n̄

11n̄
D k

uk&^ku,

D(a0) denotes the displacement operator, andS(r ,w)

5exp(12re
2i2wa221

2r,e
i2wa†2) is the squeezing operator. A con

venient parametrization of Gaussian states can be achi
by replacing thes i j ’s with n, r, w, which have a more direc
phenomenological interpretation. By applying the pha
space representation of squeezing@29,31#, the following re-
lations are easily derived:

sxx5
2n̄11

2
@cosh~2r !2sinh~2r !cos~2w!#,

spp5
2n̄11

2
@cosh~2r !1sinh~2r !cos~2w!#,

sxp5
2n̄11

2
sinh~2r !sin~2w!. ~5!

Exploiting Eq.~2!, one can write

m5̇Tr@%2#5
p

2ER
E

R
dxdpW2~x,p!, ~6!

so that for a Gaussian state,

m5
1

2ADet @s#
5

1

2Asxxspp2sxp
2

. ~7!

In terms ofn̄, r, andw, Eq. ~7! can then be recast as@32,33#
4-2
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m5
1

2n̄11
. ~8!

Equation ~8! shows that the purity of a generic Gaussi
state depends only on the average number of thermal
tons, as one should expect, since displacement and sque
are unitary operations. Therefore, the measurement of
purity of a Gaussian state is equivalent to the measurem
of its average number of thermal photons.

As the last step in connectingm to observables, we repor
the expression of thes i j ’s in terms of theQ functionQ(a).
This follows from the antinormally ordered expression of t
second moments. We have, for instance,

x̂25
a21a†212aa†2I

2
,

which, in terms of phase-space variables, corresponds tx2

2 1
2 . Therefore, we eventually get

^x̂2&5TrF% ~a1a†!2

2 G5E
R
E

R
dxdpQ~x,p!S x22

1

2D ,

where we have moved from variablesa andā to variablesx
andp, previously defined. In much the same way, we obt

^ p̂2&5E
R
E

R
dxdpQ~x,p!S p22

1

2D , ~9!

1

2
^x̂p̂1 p̂x̂&5E

R
E

R
dxdpQ~x,p!xp. ~10!

Since first moments are naturally antinormally order
evaluation of first moments of quadratures is easily obtain
and thes i j ’s can be eventually computed.

Gaussian states may be effectively characterized as
by single-quadrature measurements obtained by balance
modyne detection@34#. Thus, a question arises whether
not one really needs to resort to joint measurement of
conjugate quadratures to determine the purity. In particu
since Gaussian states are fully characterized by the first
second moments, it suffices to measure the rotated qua
ture xu5(a† eiu1a e2 iu)/A2 for three different values ofu
to have a complete characterization of the state, including
measure of its purity. This fact can be proven by remind
that the probability distributionp(x,u) of a measurement o
xu on a state of the form~4! is a Gaussian centered inx0
5Re@a0 e2 iu#, with variance

su5
1

2m
@e22rcos2~u2w!1e2rsin2~u2w!#. ~11!

By measuring three quadratures, we directly obtain the pu
m by comparison of variances. By choosingu50,p/2,p/4,
we have

m5@4sp/4~s01sp/22sp/4!2~s02sp/2!
2#21/2. ~12!
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In the following section, we will compare the two differen
experimental schemes on the basis of Monte Carlo simula
experiments.

III. MONTE CARLO SIMULATED EXPERIMENTS

As we have seen, in order to evaluate thes i j ’s and then
the purity, we need to estimate averages over theQ function.
These estimates can be obtained if one disposes of data
tributed according to theQ function Q(x,p) itself. Indeed,
such a distribution can be experimentally reconstructed fo
single-mode radiation field through heterodyne@35#, eight-
port homodyne@36,37#, or six-port homodyne detectors@38#,
and for atoms by coupling the atom with two light fields a
measuring the corresponding phase shifts@28#.

In order to test the effectiveness of the proposed sche
we have performed a systematic numerical analysis
means of Monte Carlo simulated experiments. The simu
tions are needed to show the actual independence of
method on the squeezing and displacing parameters, in c
pliance with Eq.~8!. Moreover, they provide a crucial test o
the actual possibility of getting reliable~i.e., with reduced
fluctuations! determinations ofm in realistic experimental
settings and even for most unfavorable states.

The puritym and its dispersionDm have been evaluate
from samples of theQ function, varying the values of the
parameters of the simulated Gaussian state. Besidesn̄, r, w,
and a0, the experimental determination of theQ function
depends on the numberNx of collected data.

We find thatm andDm are essentially independent of th
complex displacement parametera0 and squeezing anglew.
On the other hand,Dm does depend onn̄ and r, decreasing
with increasingn̄ and increasing with increasingr.

In Fig. 1, we report the determination of purity for
strongly squeezed thermal state as a function of the num
of data. The error on purity is of the order of a few perce
for samples made ofNx.105 data.

In order to compare the determination ofm by the Q
function with that coming from single-quadrature detectio
we have simulated the measurement of three quadraturesxu ,
u50,p/2,p/4 by balanced homodyne detection. In Fig. 2, w
report the estimated purity@using Eq. ~12!# for the same
strongly squeezed thermal state of Fig. 1 as a function of
number of data. Some features are immediately evident. F
of all, one can see that the determination is biased: in
present case, the estimatedm is always larger than the tru
value, while the opposite case occurs by inverting the ph
of the squeezing. Therefore, the method is very sensitive
the choice of the phase. Moreover, the relative error is no
smooth function of the number of data, i.e., the method is
statistically reliable as the joint-measurement one. This
again due to the remarkable dependence of the variance
the phase of the squeezing, a dependence which is ins
smoothed out in the measurement of theQ function. Sum-
ming up, for some specific states~as the example considere
here! single-quadrature detection may be asymptotica
even more efficient than the heterodyne one. However
general, the number of data needed for the relative error t
4-3
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below the joint-measurement level is strongly state dep
dent. We conclude that the measurement of theQ function is
statistically more reliable and thus more suited for a syste
atic analysis of the purity of Gaussian states.

Let us now go back to the analysis of theQ-function
determination of purity. A smaller number of data is need
to obtain a given precision for states with smaller squeez
The effect of the squeezing parameter on the determina

FIG. 1. Effect of the number of data on theQ-function based
determination of purity for Gaussian states: results from Mo
Carlo simulated experiments. In the left graph, we plot the deter
nation of the puritym versus the number of dataNx for a squeezed
thermal state with parameters given bya050, w50, andr 51.5,
corresponding to sinh21.5.4.5 mean squeezed photons, and a m

number of thermal photonsn̄50.5. Black circles are the estimate
values of purity based on theQ-distributed statistics, vertical bar
are the experimental errors~confidence intervals!; for a large num-
ber of experimental data, the errors quickly fall well within th
black circles of the estimated values. The theoretical value of pu
for all the simulated experimental runs ism50.5. In the right graph,
we report the relative errorsDm/m versus the number of data fo
the same squeezed thermal state.

FIG. 2. Effect of the number of data on the determination
purity for Gaussian states by single-quadrature detection: re
from Monte Carlo simulated experiments of three quadraturesx0 ,
xp/2 , andxp/4 . In the left graph, we plot the determination of th
purity m versus the number of dataNx for the same squeezed the
mal state of Fig. 1. Note that, in this instance, the total numbe
dataNx corresponds toNx/3 detections for each quadrature. Bla
circles are the estimated values of purity based on the bala
homodyne statistics, vertical bars are the experimental errors~con-
fidence intervals!; for a large number of experimental data the e
rors quickly fall well within the black circles of the estimated va
ues. The theoretical value of purity for all the simulat
experimental runs ism50.5. In the right graph, we report the rela
tive errorsDm/m versus the number of data for the same squee
thermal state.
01231
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of purity is illustrated in Fig. 3, where we reportm and
Dm/m versusr for Gaussian states witha50, w50, and

n̄50.5, and for a number of dataNx533104. Notice that,
in Fig. 3, the range ofr corresponds to quite a large numb
of mean squeezed photons 0<sinh2r&15.

In the deep quantum regime, i.e., for smalln̄, fluctuations
of m become more relevant. This is not surprising, sincem is
a highly nonlinear function of the second-order momen
However, simulations show that even for highly squeez
~up to .15 mean squeezed photons! and slightly mixed

~down ton̄.0.1) states, realistic experimental conditions
low a statistically reliable determination ofm that complies
with the theoretical expectation~8!, up to an error of a few
percent. In Fig. 4, we plot the determination of purity f
different squeezed thermal states as a function of the ave
number of thermal photonsn̄, for samples made ofNx
5105 data.

From the above analysis, we conclude that the joint m
surement of two conjugate quadratures provides a stat
cally reliable method to determine the purity of a gene
Gaussian state. This is best achieved with experime
schemes that involve data distributed according to the
simi Q function, such as heterodyne and multiport homody
detection schemes.

IV. EVOLUTION OF PURITY IN A NOISY CHANNEL

Let us consider the time evolution of an initial, pure
mixed, generic single-mode Gaussian state in the presen
noise and damping~and/or pumping! toward a final squeezed
thermal state. IfG21 is the photon lifetime in the noisy chan
nel, the evolution of a state is described, in the interact
picture, by the following master equation:

e
i-

n

ty

f
lts

f

ed

d

FIG. 3. Effect of squeezing on theQ-function based determina
tion of purity for Gaussian states: results from Monte Carlo sim
lated experiments. In the left graph, we plot the determination
purity versus the squeezing parameterr for Gaussian states with th

other parameters fixed ata50, w50, and n̄50.5. Black circles
are the determined values of purity based on theQ-distributed sta-
tistics, vertical bars are the experimental errors~confidence inter-
vals!. For smallr, the errors are within the black circles. The the
retical value of purity for all the states ism50.5. In the right graph,
we report the relative errorsDm/m versus the squeezing paramet
for the same set of experiments. The number of data in all simula
experiments isNx533104.
4-4



la

d
iti
in

th
a

to
a

,

he

last

is

this
evi-

be
od

the

e

rl
tio

r

es

ts

PURITY OF GAUSSIAN STATES: MEASUREMENT . . . PHYSICAL REVIEW A 68, 012314 ~2003!
%̇5
G

2
NL@a†#%1

G

2
~N11!L@a#%

2
G

2
~M̄D@a#%1MD@a†#% !, ~13!

where the dot stands for time derivative and the Lindb
superoperators are defined by

L@O#%[2O%O†2O†O%2%O†O, ~14!

D@O#%[2O%O2OO%2%OO. ~15!

M is the correlation function of the bath~which is usually
referred to as the squeezing of the bath!; it is, in general, a
complex numberM5M11 iM 2, andM̄ denotes its complex
conjugate, whileN is a phenomenological parameter relate
as we shall see, to the purity of the asymptotic state. Pos
ity of the density matrix imposes the important constra
uM u2<N(N11). At thermal equilibrium, i.e., forM50, N
coincides with the average number of thermal photons in
bath. The master equation~13! can be transformed into
Fokker-Planck equation for the Wigner functionW(x,p,t).
Using the differential representation of the superopera
@31,39# in Eq. ~13!, the corresponding Fokker-Planck equ
tion reads as follows:

Ẇ~x,p,t !5
G

2 S 21x]x1p]p1
2N11

2
~]xx

2 1]pp
2 !

1M1~]xx
2 2]pp

2 !12M2]xpDW~x,p,t !.

~16!

FIG. 4. Effect of thermal photons on theQ-function based de-
termination of purity for Gaussian states: results from Monte Ca
simulated experiments. In the left graph, we plot the determina

of purity versus the value ofn̄ for Gaussian states with the othe
parameters fixed ata50, w50, andr 51.0. Black circles are the
determined values of purity according to theQ-function statistics,
and vertical bars denote the experimental errors~confidence inter-
vals!; the latter are within the black circles essentially for all valu

of n̄. The solid line reports the theoretical values ofm. In the right

graph, we report the relative errorsDm/m versusn̄ for the same set
of experiments. The number of data in all simulated experimen
Nx5104.
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For a general single-mode Gaussian state of the form~3!, one
has, in compact notation,

Ẇ5
G

2 S 22Xs21S x

pD 1
2N11

2
SXs~I!

1M1SXs~A!1M2SXs~B! DW, ~17!

whereSXs(g) denotes the seralian~or siralian! operator, a
scalar function of the matrix g given by SXs(g)
[Xs21gs21XT2Tr@gs21#. The displaced vectorX and
the covariance matrixs have been previously defined
whereasI,A,B form a basis in the space of 232 real sym-
metric matrices:

I5S 1 0

0 1D ,

A5S 1 0

0 21D ,

B5S 0 1

1 0D .

For any given real matrixg and generic Gaussian states, t
seralian operator shows the remarkable property

E
R
dxE

R
dpSXs~g!W~x,p,t !50. ~18!

It can be easily shown that this property assures that the
three terms of Eq.~17! @corresponding to diffusion terms in
the Fokker-Planck equation~16!# do not enter in the time-
evolution equations for the first statistical momentsx0 and
p0. Such an evolution is governed by the drift terms and
described by the following equation for the vectorX0[(p0

x0)

Ẋ05E
R
dxE

R
dpS x

pD Ẇ

2
52

G

2
X0 . ~19!

First moments are damped through the noisy channel:
effect should be expected since it is the mathematical
dence of the absorption of the state’s coherent photons.

The evolution of the covariance matrix of the state can
described by monitoring different sets of variables. A go
choice of variables is given by thes i j ’s, in terms of which
the evolution equations decouple. The relations between
variabless i j and the variablesm, r, andw are given in Eqs.
~5! and~7!. Here we recall some further relations that will b
useful in the following:

Det@s#5sxxspp2sxp
2 5

~2n̄11!2

4
5

1

4m2
, ~20!

o
n

is
4-5
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Tr@s#5sxx1spp5~2n̄11!cosh~2r !5
cosh~2r !

m
,

~21!

spp2sxx5
sinh~2r !cos~2w!

m
. ~22!

As we have seen, in the Wigner phase-space picture,
expectation values can be computed as phase-space inte
The first-order evolution equation for the covariance ma
s is thus obtained by a straightforward integration, and re

ṡ5G~s`2s!, ~23!

with

s`[S ~2N11!12M1

2
M2

M2
~2N11!22M1

2

D . ~24!

The matrix s` , determined by the bath parameters alo
turns out to be the asymptotic covariance matrix. In fa
integration of Eq.~23! yields

s~ t !5s`~12e2Gt!1s~0!e2Gt. ~25!

Equation~25! shows a simple example of a Gaussian, co
pletely positive map@40#. The Gaussian character of the ev
luted Wigner function can be proven,a posteriori, by veri-
fying that a function of the form~3!, with the covariance
matrix given by Eq.~25!, indeed solves Eq.~16!. In order to
be abona fidecovariance matrix,s(t) must satisfy the usua
condition encoding thex̂2 p̂ uncertainty relations@40,41#:

s~ t !1
i

2
J>0,

with

J5S 0 1

21 0D . ~26!

It is promptly seen that such a condition is satisfied at a
time by the convex combination givings(t) in Eq. ~25!, if
and only if s` is a legitimate covariance matrix. This la
requirement is assured by the necessary constraintN(N
11)>uM u2 that guarantees positivity of the density matri

By introducing

m`5̇@~2N11!224uM u2#21/2,

and exploiting Eqs.~20!–~22!, we can eventually expressm,
r andw as functions of time:
01231
he
als.
x
s

,
t,

-

y

m~ t !5m0F m0
2

m`
2 ~12e2Gt!21e22Gt

12m0SA114m`
2 uM u2cosh~2r 0!

m`
12 sinh~2r 0!

3@M1cos~2w0!2M2sin~2w0!# D
3~12e2Gt!e2GtG21/2

, ~27!

cosh@2r ~ t !#5m~ t !SA114m`
2 uM u2~12e2Gt!

m`

1e2Gt
cosh~2r 0!

m0
D , ~28!

tan@2w~ t !#

5
M22m0~12e2Gt!1sinh~2r 0!sin~2w0!e2Gt

2M12m0~12e2Gt!1sinh~2r 0!cos~2w0!e2Gt
, ~29!

wherem0 , r 0, andw0 are, respectively, the initial purity an
the initial squeezing parameters.

Let us first consider the caseM50, for which the initial
state is damped toward a thermal state with mean pho
numberN @29,42#. In this case, see Eq.~29!, w is constant in
time and does not enter in the expression ofm. The corre-
sponding solutions form(t) and r (t) then read as follows:

m~ t !5m0F m0
2

m`
2 ~12e2Gt!212

m0

m`
e2Gt~12e2Gt!

3cosh~2r 0!1e22GtG21/2

, ~30!

cosh@2r ~ t !#5m~ t !S 12e2Gt

m`
1e2Gt

cosh~2r 0!

m0
D . ~31!

The quantitiesm(t) andr (t) in Eqs.~30! and~31! solve the
following system of coupled equations:

ṁ5GS m2
m2cosh~2r !

m`
D ,

ṙ 52
G

2

m

m`
sinh~2r !, ~32!

which, in turn, can be directly found by working out th
basic evolution equationṁ52Tr@%̇%# as a phase-space inte
gral and exploiting Eqs.~20!–~22!. It is easy to see that, a
t→`, m(t)→m`5(2N11)21 andr (t)→0, as one expects
since the channel damps~pumps! the initial state to a therma
4-6
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state with mean photon numberN. Therefore, the only con
stant solution of Eq.~32! is m5m` , r 50, i.e., only initial
nonsqueezed states are left unchanged by the evolution i
noisy channel. In fact, Eq.~30! shows thatm(t) is a decreas-
ing function of r 0: in a nonsqueezed channel (M50), a
squeezed state decoheres more rapidly than a non-sque
one ~see Figs. 5 and 6!. Let us consider, for instance, a
initially pure state in a channel withN51 ~so that m`

5 1
3 ); after a timet5G21, the ratio of the purity of a state

with r 051.5 to the purity of a state withr 050 is 53.7%.
This dependence could therefore be relevant for pract
purposes. The optimal evolution for the purity, obtained l
ting r 50 in Eq. ~30!, reads

m~ t !5
m0m`

m01e2Gt~m`2m0!
. ~33!

Obviously,m(t) is not necessarily a decreasing functi
of time. If m0,m` , then the initial state will undergo a
certain amount of purification, asymptotically reaching t
valuem` which characterizes the channel, as shown in F

FIG. 5. Plot of the puritym for an initially pure Gaussian stat
(m051) in different nonsqueezed (M50) noisy channels, evalu
ated at timet5G21, as a function of the initial squeezing parame
r 0. From top to bottom, the value of the mean thermal pho
number N that characterizes the different channels isN50, N
50.5, andN51, respectively.

FIG. 6. The puritym for various Gaussian states evolving in
channel withN50.5, M50, as a function of time. Time is dimen
sionless and measured in units ofG21. The upper curve refers to a
initial pure coherent state (r 050, m051), the central curve to an
initial pure squeezed vacuum (r 051.5, m051), and the lower

curve to an initial thermal state withr 050 andm050.05, i.e.,n̄0

59.5.
01231
the

zed

al
-

.

6. In addition, m(t) is not a monotonic function for any
choice of the initial conditions. Lettingṁ50 in Eq.~32!, and
exploiting Eqs.~30! and~31!, one finds the following condi-
tion for the appearance of a zero ofṁ at finite positive times:
cosh(2r0).max(m0 /m` ,m` /m0). If this condition is satis-
fied, thenm(t) shows a local extremum, in fact a minimum
since differentiating the first of Eqs.~32! and lettingṁ50,
one obtainsm̈.0. This behavior is shown in Fig. 6.

Let us now treat the more general instanceMÞ0 of a
squeezed thermal bath. Recalling the definition ofm` and
exploiting Eqs.~27!–~29!, one easily finds the asymptoti
values of the physical parametersm, r, andw:

m`5
1

A~2N11!224uM u2
, ~34!

cosh~2r `!5A114m`
2 uM u2, ~35!

tan~2w`!52
M2

M1
. ~36!

These values characterize the squeezed channel. Equ
~34! shows that ifMÞ0, then N is not simply the mean
thermal photon numbern̄ of the asymptotic state. One has

N5
A~2n̄11!214uM u221

2
.

In order to understand the dynamics of purity whenM
Þ0, it is convenient to write again the expression~27! for
m(t), using Eqs.~35! and ~36! to switch from the complex
parameterM5M11 iM 2 to the asymptotic values of th
squeezing parametersr ` andw` ; one obtains

m~ t !5m0F m0
2

m`
2 ~12e2Gt!21e22Gt

12
m0

m`
$cosh~2r `!cosh~2r 0!1sinh~2r `!sinh~2r 0!

3@cos~2w`22w0!#%~12e2Gt!e2GtG21/2

. ~37!

We see from Eq.~37! that m(t) is a monotonically decreas
ing function of the factor cos(2w`22w0), which gives the
only dependence on the initial phasew0 of the squeezing.
Thus, for any givenw` characterizing the squeezing of th
bath,w05w`1p/2 is the most favorable value of the initia
angle of squeezing, i.e., the one which allows the maxim
purity at a given time. For such a choice,m(t) reduces to

m~ t !5m0F m0
2

m`
2 ~12e2Gt!21e22Gt12

m0

m`

3cosh~2r `22r 0!~12e2Gt!e2GtG21/2

. ~38!

n

4-7
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This is a decreasing function of the factor cosh(2r`22r0), so
that the maximum value of the purity at a given time
achieved for the choicer 05r ` , and the evolution of the
purity of a squeezed state in a squeezed channel is iden
to the evolution of the purity of a nonsqueezed state i
nonsqueezed channel expressed by Eq.~33! and illustrated in
Fig. 6.

In conclusion, for the most general instance of a chan
characterized by arbitrarym` , r ` , w` , and G, the initial
Gaussian state for which purity is best preserved in ti
must have a squeezing parameterr 05r ` and a squeezing
anglew05w`1p/2, i.e., it must be antisqueezed~orthogo-
nally squeezed! with respect to the bath. The net effect f
the evolution of the purity is that the two orthogonal sque
ings of the initial state and the bath cancel each other exa
thus reproducing the optimal purity evolution of an initi
nonsqueezed coherent state in a nonsqueezed thermal b

V. CONCLUSIONS

We have shown that the purity of Gaussian states for c
tinuous variable systems can be operationally determined
the joint measurement of two conjugate quadratures. In o
to perform such a measurement, the minimal, necessary,
sufficient requirement is that the measurement appar
records data distributed according to the Husimi qua
probability function. We have then verified by Monte Car
simulated experiments the statistical reliability of the asso
.
t

ur

,

y

,

01231
cal
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el

e
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ly,

th.

n-
by
er
nd
us
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i-

ated measurement schemes, thus proving the possibility o
experimentally realizable characterization of the purity
Gaussian states. We have compared as well the scheme b
on theQ function with the one based on single-quadratu
detection, and showed that the former provides a more r
able statistics. Moreover, we have derived an evolution eq
tion for the purity of Gaussian states in noisy channels, in
case of both a thermal and a squeezed thermal bath.
analysis shows that the purity is maximized at any giv
time for an initial coherent state evolving in a thermal ba
or for an initial squeezed state evolving in a squeezed th
mal bath whose squeezing is orthogonal to that of the in
state. We have focused our attention on the purity of sing
mode Gaussian states. The time evolution of the purity
specific initial non-Gaussian states of great physical
evance can be studied, as well as the extension to Gaus
states of multimode systems, both pure and mixed. Th
topics are currently being explored and will be the subjec
forthcoming work.
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