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Abstract

This paper studies the effect of human capital depreciation and duration depen-

dence on the design of an optimal unemployment insurance (UI) scheme. Our results

partially confirm those obtained in most previous studies: benefits should decrease with

unemployment duration. The optimal program also generates two main novel features,

which are not present in stationary models. First, if human capital depreciates rapidly

enough during unemployment, UI transfers are bounded below by a minimal “assis-

tance” level that arises endogenously in the efficient program. Second, we study the

optimality of imposing a history contingent wage tax after reemployment. Our nu-

merical simulations based on the Spanish and US economies show that the wage tax

should decrease with the length of worker’s previous unemployment spell, and become

a wage subsidy for long-term unemployed workers. As a by-product of our study, we de-

velop a systematic approach suitable for studying recursively a wide range of dynamic

moral-hazard problems, and other models with similar characteristics.
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1 Introduction

Unemployment insurance (UI) programs are an important ingredient of social welfare policies

in developed economies. These programs have been widely criticized because of the adverse

effects they can have on worker’s incentives to search for a new job. This criticism has

stimulated extensive research into optimal insurance schemes that take these perverse effects

into account.

A series of papers use the dynamic moral hazard model to analyze the trade-off between

(unemployment) insurance and (search) incentives. In their seminal work on UI, Shavell and

Weiss (1979) establish that, because of moral hazard, benefits must decrease throughout the

unemployment spell and approach zero in the limit. Hopenhayn and Nicolini (1997a,b) ex-

tend the analysis of Shavell and Weiss by introducing the possibility of contingent wage taxes

after reemployment, and they confirm the decreasing benefits result of Shavell and Weiss.

In addition, the analysis of Hopenhayn and Nicolini suggests that up to a 30% of overall

spending in unemployment compensations could be saved by introducing a tax on the wage

the agent receives after reemployment that increases with the length of the previous unem-

ployment spell. In Pavoni (2003), I notice that the optimal schemes based on dynamic moral

hazard such as the one proposed by Hopenhayn and Nicolini implicitly assumes that the

planner can (and will) inflict infinite punishments on workers.1 To design an implementable

scheme, I consider the possibility that the planner must respect an exogenously given lower

bound on the expected discounted utility that the agent can have ex-post, regardless of the

previous history. In this case, the optimal contract presents characteristics quite similar to

existing unemployment compensation schemes. Among other properties, the optimal wage

tax is roughly constant during unemployment.

In all these models, the key features of the environment are that the probability of finding

a new job depends only on the (unobservable) search effort exerted by the agent, and that

the available gross wages distribution is constant throughout unemployment spells.

It is well documented that job opportunities deteriorate during unemployment.2 In fact,

1The key properties of the standard stationary model are reproduced in Proposition 1.
2We will extensively revise the literature on wage depreciation, job displacement and duration dependence

below in this section. However, some of our calibrations are based on Keane and Wolpin (1997) who use

NLSY data and estimated, structurally, an annual human capital depreciation rate for white US males of

between 9.6% (for blue collars) and 36.5% (for white collars). In addition, many authors consistently find

that displaced US workers face a large and persistent earning loss upon reemployment in the order of 10−25%
compared with continuously employed workers (Jacobson el al., 1993; Ruhm, 1987; and Bartel and Borjas,

1981). Finally, Van den Berg and van Ours (1996), after controlling for unobservable heterogeneity, find that

the US white male exit probability “genuinely” decreases by 30% after 3 months of unemployment.
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many OECD countries propose and apply active labor market policies and wage subsidies for

long term unemployed people, mainly because of this adverse change in job opportunities.3

We thus believe that human capital depreciation and unemployment duration dependence

are important elements, that need to be included in the study of an optimal UI designing

problem. In this paper, we extend the basic model of unemployment insurance with moral

hazard to allow for both the gross wages and the probabilities of reemployment to depend

on the length of the worker’s unemployment spell. The focus of the present paper is on the

design of an optimal unemployment insurance scheme. In particular, we do not study how

this designing problem interacts with other welfare and/or labor market policies. However,

we do allow the planner to impose history contingent wage taxes or pay wage subsidies upon

reemployment.

Our study confirms one important result of most previous studies with stationary models:

benefits should decrease with unemployment duration. In fact, this behavior characterizes

virtually all existing UI schemes in OECD countries. Moreover, we show that very simple

schemes, defined by a low constant benefit payment b and a higher time-invariant wage

w, can never be optimal. This result holds for any reasonable range of parameters (no

restrictions on the worker’s utility function, but concavity, are required), and regardless of

the characteristics of the human capital depreciation process. In exchange, we propose a

simple necessary characteristic of any optimal unemployment insurance program. A “back

of the envelope” check of optimality.

The introduction of human capital depreciation and duration dependence also generates

two main novel features in the optimal program. First, provided that human capital depre-

ciates sufficiently rapidly during unemployment, the optimal path for unemployment benefit

payments is initially decreasing and then becomes completely flat. The idea is that, for low

levels of human capital, the planner does not find worthwhile to induce the agent to supply

the high effort level. Unemployment benefits eventually stop decreasing and remain constant

forever since the (long-term) unemployed worker is fully insured. This feature of the opti-

mal contract generates an endogenous lower bound on worker’s expected discounted utility,

which provides an alternative way of eliminating the “immiserization” result of Thomas and

Worral (1990).4 This characteristic creates an important link between the characteristics

3Although the programmes differ substantially, there are mainly eight OECD countries that have actually

introduced major welfare-to-work programmes: the United States, Canada, the United Kingdom, Ireland,

Denmark, France, the Nederlands and Sweden. In several others countries, such programmes are under

careful consideration.
4In the literature, the immiserization result is usually eliminated in stationary models by exogenously

imposing minimum bounds on expected discounted utility the worker can have ex-post, in the optimal scheme
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of the optimal unemployment insurance scheme and the speed of skills depreciation in the

economy, which can also be used for positive analysis.

Second, in our model the planner can impose history-contingent wage taxes after reem-

ployment. Although we do not find any main specific qualitative characteristic, the results

of our numerical exercises for the Spanish and the US economies show that in an optimal UI

scheme the level of wages taxes decreases with the length of worker’s previous unemployment

spell and become a wage subsidy for long-term unemployed workers. Recall that the key re-

sult of Hopenhayn and Nicolini (1997a) is that because of incentives, in a stationary model,

the wage tax should increase during unemployment. In our models this mechanism is at work

as well, but there are at least three other reasons that contrast this effect. First, since the

planner tends to insure the agent against gross wage depreciation, in absence of incentives

the wage tax would decrease during unemployment. Second, a reduction (depreciation) in

human capital reduces the effectiveness of the search activity, hence increases incentive costs.

This effect tends to widen the difference between unemployment benefits and net wage, de-

creasing both the UI transfers and the wage tax upon reemployment. These characteristics

of an optimal scheme are reinforced by a third effect, which is strictly linked with the exoge-

nous minimum bound analysis of Pavoni (2003). The (now endogenous) presence of a lower

bound on worker’s expected discounted utility shorthands the effective time-horizon of the

problem. This reduces the possibility of giving dynamic incentives, and forces the planner

to design a scheme biased toward the “static” component of the incentives. The planner

is hence induced to increase the within-period gap between the unemployment insurance

benefit and the net wage, further reducing the wage tax level after reemployment.

The optimality of a wage subsidy is a key policy implication of our non stationary search

model with moral hazard. At the end of the papers we argue that our results also suggest,

implicitly, the adoption of some additional policy measures, especially for long-term unem-

ployed workers. We will discuss how an extended version of this model can be used to study

the optimal adoption of more composed labor market programs.

The problem analyzed in this paper required to solve recursively, in a possibly non-

stationary framework, the dynamic hidden-action moral hazard problem. This is known to

be a non easy task. We find that the value function associated to this recursive problem is, in

general, non-concave and non-differentiable. In spite of these non-smoothness problems, we

show that the optimal contract can be characterized using the usual first order conditions.

To derive the properties of the associated value function we develop a new approach that

(see, for example, Pavoni, 2003; Atkeson and Lucas, 1995; Phelan, 1995). Other authors use overlapping

generation models (see, for example Phelan 1994).
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uses the generalized envelope theorem of Daskin (1967) and Milgrom and Segal (2002), and

which can be extended both to an even more general class of moral-hazard problems and to

other models with similar characteristics.

Literature on recursive contracts Our methodology follows the recursive contract lit-

erature, and the references most related to our approach are: Abreu, Pearce and Stacchetti

(1990), Fudenberg et al. (1990-1994), Spear and Srivastava (1988), Phelan and Townsend

(1991) and Atkeson and Lucas (1992). In this paper, we formally study the shape of the

value function associated with the dynamic moral hazard model. The approach we propose

partially builds on that used by Grossman and Hart (1983) to study the static problem. In

their seminal work, Spear and Srivastava (1988) discuss conditions under which the value

function of the dynamic model with a continuum of outcome realizations, is concave. Our

approach permits to study the case with a finite number of output realizations, which is

an inherent characteristic of the unemployment insurance designing problem studied in this

paper. Our non-concavity result contrasts with that of Spear and Srivastava. Finally, Phelan

and Townsend (1991) allow for lotteries over effort and payments, which imply the (weak)

concavity of the value function. As in most applied studies, we focus on the deterministic

payments case.

Literature on optimal unemployment insurance The literature on optimal UI is rel-

atively new, yet quite extended. However, most of the papers address questions and/or

use approaches that cannot be directly related to our own. The interested reader can refer

to the recent summary of Karni (1999). Atkeson and Lucas (1995) use a recursive ap-

proach to characterize the optimal contract in a stationary pure adverse-selection setup with

temporary (one-period) job offers. They are mainly interested in income distribution, and

their approach is closely related to that in Hansen and Imrohoroglu (1992) and Wang and

Williamson (2002), where the goal is to quantify the welfare effects of unemployment in-

surance in general equilibrium. Wang and Williamson (1996) provide calibrated repeated

OLG model with moral hazard associated with search effort and job retention. They as-

sume that each new labor-force entrant obtains a prespecified level of ex ante utility and

obtain a non monotone unemployment benefits behavior. Hopenhayn and Nicolini (2002)

analyze the effects of worker’s employment history on the optimal design of unemployment

insurance contracts, and Zhao (2001) introduces moral hazard also associated with job re-

tention. Finally, Usami (1983) proposes a finite-horizon model with moral hazard, where

the probability of reemployment conditional on search depends on the previous employment

history. Usami confirms the aforementioned decreasing benefits result, and finds that the
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worker compensation should be non-decreasing during the employment period. Although

our model permits employment history dependence, most of our findings are induced by

skill depreciation during unemployment. Moreover, Usami studies the problem choosing an

“inconvenient” state variable, which prevents a complete analysis. Our recursive formulation

results in a manageable value function, which allows us to characterize in detail the optimal

scheme, both qualitatively and quantitatively.

Literature on human capital depreciation, job displacement and duration depen-
dence We have already mentioned above that Keane and Wolpin (1997) find important

wage depreciation rates during unemployment. In recent years, a great deal of attention has

also been paid to the consequences of worker displacement. Displacement is usually defined

as the involuntary separation of workers from their jobs without cause (i.e. for economic

reasons) and without future recall. Research on the effects of worker displacement has grown

dramatically in recent years, especially in the in the United States (for surveys, see Hamer-

mesh, 1989; Faber, 1993, 1997; Hall, 1995; Fallick, 1996; and Kletzer, 1998). Using a variety

of methods and data sets, the findings are remarkably consistent. Displaced workers face

large and persistent earnings losses upon reemployment in the order of 10− 25% compared

with continuously employed workers (Jacobson el al., 1993; Ruhm, 1987; and Bartel and

Borjas, 1981).5 Evidence for European labor markets is contrasting and not always com-

parable. For example, recently Burda and Mertens (2001) use self-reported information on

job-displacement and estimate an average wage growth reduction of approximately 3.6%,

with a peak of 17% (for high pay jobs) for Germany. Lefranc (2002) use micro data from

labour force surveys and find wage losses upon displacement in the order of 10 − 15%. In
contrast, Bender et al. (1999) use information on plant closing to identify displacement, and

estimated near zero losses both in France and Germany.6

A number of labor economists interpret wage depreciation as reflecting the destruction

of firm-specific or industry-specific human capital associated with tenure. Other authors

pointed out that non-observable individual heterogeneity may bias estimated tenures up-

wards, so that previous tenure might have a positive effect on post-displacement wage rates

(see, for example Kletzer, 1989). Another interpretation is simply the destruction of rents

associated with good matches, with no return to tenure per se (Mincer and Jovanovic, 1981;

Altonji and Shakotko, 1987; Abraham and Faber, 1987; Ruhm, 1990; Altonji and Williams,

5In addition to earning losses, displaced workers experience more unemployment than non displaced

workers (see - for example - Hall, 1995; Ruhm, 1991; Swain and Podgursky, 1991).
6Leonard and van Audenrode (1995) find results similar to the ones of Bender et al. for Belgium, and so

does Ackum (1991) for Sweden.

5



1992).

One of the distinctive features of many current European labor markets is the high

proportion of workers that remain unemployed for a long period of time. This feature of the

European labor market is widely regarded as a serious problem and has attracted a lot of

attention both for efficiency and equity reasons. The negative duration dependence in the

exit rate from unemployment is felt as one of the major causes for long-term unemployment.

In the literature, labor economists suggest different justifications for the observed neg-

ative duration dependence in the exit probability from unemployment. A first stream of

research supports a purely statistical explanation for this phenomenon. It is argued that the

hazard rate estimations are affected by an unobservable heterogeneity effect, which induces

a fictitious negative duration dependence in the estimated hazard rates. The idea is that

aggregate hazard rates decrease since the sample characteristics are changing through un-

employment. In particular, the pool of long-term unemployed, is dominated by the share of

people whose individual hazard rates are lower than the average.

However, a number of studies document that, even after controlling for unobservable

heterogeneity, a non negligible negative duration dependence still remains. For the US, van

den Berg and van Ours (1996) use CPS data and find that white male exit probability

“genuinely” decreases by 30% after 3 months of unemployment. In Europe, van den Berg

and van Ours (1999) find that for French young workers the exit probability decreases by

30− 35% after 2.5 years of unemployment. For the UK, Nickel (1979) find a 50% decrease

after 60 weeks of unemployment. More recently, van den Berg and van Ours (1994) find that

the British male exit rate of unemployment decreases by 20% after one quarter and by more

than 30% after 6 months of unemployment (for the UK see also Lynch, 1985; for Spain see

Bover et al., 1997).7

A second stream of research attempts to give a theoretical explanation for the mentioned

“true” negative duration of the hazard rate. It is indeed empirically documented that during

unemployment there is a negative time dependence in the arrival rate of job-opportunities.

Heckman and Borjas (1980) call this phenomenon “occurrence dependence”. The analysis

of the genuine duration dependence can be divided in two categories.

On one hand, we have what we might call supply side explanations. A long-term unem-

ployed worker finds it more difficult to know the existence of vacancies, either because the

worker loses valuable social contacts,8 or because the long-term unemployed worker suffers

some sort of stigmatization by the other workers in the supply side of the market (Gregg and

7In other European countries the result are again somehow contrasting. For a summary on a number of

OECD countries, see Machin and Manning (1999).
8See, for example, Calvó-Armengol (2003) for a theoretical analysis of this aspects of the labor market.
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Wadsworth, 1996). The stock-flow approach to search of Coles and Smith (1994) and Gregg

and Petrongolo (1997) gives another supply side explanation for the negative duration de-

pendence phenomenon. The idea is that the observed occurrence dependence is in fact only

apparent. What really happens is that, at the beginning of unemployment the worker faces

and evaluates a stock of vacancies while, in latter periods of unemployment, only the newly

open vacancies are processed. Finally, a third motivation is that the hazard rate decreases

during unemployment simply because the worker reduces his search effort level. This may be

due to a sort of discouraged worker effect that may induce long term unemployed to remain

in the labor market, but actually looking almost passively for new jobs,9 or because skills

and work habits atrophy during unemployment (Sinfield, 1981).

We then have a few demand side - or firm-hiring behavior - explanations for the negative

duration dependence. Recently, a lot of attention has been devoted to study the so called

“stigma effect”. The idea behind this approach is the following. It is assumed that firms

imperfectly test workers prior to hiring them. If some firms hire only workers who pass

the test, then there is an informational externality; unemployment duration is a signal of

workers’ productivity and firms tend to avoid to even test for hiring long-term unemployed

workers (Vishwanath, 1989; Lockwood, 1991; Belzil, 1995; and Yoshiaki, 1997). Finally,

Blanchard and Diamond (1994) propose a “ranking” model, where it is simply assumed

that, independently from any payoff-relevant motivation, firms hire the workers with the

lowest unemployment duration levels.

Outline of the paper In Section 2, we present the dynamic moral-hazard model with

human capital depreciation. In Section 3, we describe our approach to characterize the

optimal contract. In Section 4, we calibrate the model with the US and Spanish economies,

and simulate the optimal scheme. Section 5 concludes and consider future extensions.

2 Model

The model is the natural extension of the framework proposed by Hopenhayn and Nicolini

(1997a,b) to study the design of and optimal UI program. Consider a risk-neutral planner

who must design an optimal unemployment compensation scheme for a risk-averse worker.

In any given period, the worker has time invariant preferences of the following separable

9Think for example of a worker who is learning about his ability to find a new job. A long period of

unemployment will obviously imply a downward biased perception of his hazard rate.

7



form

u(c)− v(a)
where c is consumption and a is search effort. We assume u (·) to be strictly increasing,
strictly concave and continuously differentiable, with inverse u−1 bounded.10

In any period, the worker can be either employed (e) or unemployed (u). If the worker

is employed, he earns a gross wage S(h) which is assumed to be an increasing and bounded

function of the worker’s human capital endowment h. Moreover, we assume that h follows

the following stochastic law of motion:

h� = mz(h), z = u, e; with mu(h) ≤ h ≤ me(h); and mz(·) continuous, (1)

where h� is the next period human capital level and z is the worker’s employment state. The

idea is that during unemployment (z = u) h depreciates, whereas during employment there

can be human capital accumulation due, for example, to on-the-job training.11

The timing of the model in the unemployment state is reported in Figure 1. While

unemployed, the worker can either search (a = 1) or non-search (a = 0) for a new job,

i.e. a ∈ A = {0, 1}. The search activity is costly, hence v(1) = v > v(0) = 0. The search
effort a affects the transition probability between employment states, according to a hazard

rate function π(a, h), with π(1, h) ≡ π(h) ≥ 0 increasing with h. When the worker does not
search, the job finding probability is zero, i.e. π(0, h) = 0 for any h. The situation where

the planner requires the agent to stop searching for a job can be interpreted as the one of

“social assistance” or “early retirement.” To simplify the analysis we assume that this state

is an absorbing one.12

The crucial assumption of the model that we keep throughout the paper is that the

planner cannot observe the worker’s search effort a. Thus, during unemployment there is

a moral-hazard problem. This means that unemployment benefits are not paid only as

insurance, but must also play the role of giving incentives for search. We assume there are

no informational problems related with h.13

10This latter assumption is merely a technical one. It allow us to simplify considerably the proof of

Proposition 3. In Pavoni and Violante (2003) we show that it can easily be relaxed.
11In order to have a simple tractable recursive formulation, we call “human capital” the aggregate variable

h, which affects both available gross wages and reemployment probabilities. However, the (state) variable h

can well be multidimensional, capturing - for example - different levels of specificity on human capital. In

fact, the nature of h should be considered more broadly than mere skill or ability.
12In the numerical exercise, we allow for a non absorbing social assistance state with π(0, h) > 0.
13Note that, since the laws mz are known, and the realized employment states z are perfectly observable,

it suffices to assume that the planner knows the initial endowment h0.
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Following the recursive contracts literature, we characterize the contract using the fol-

lowing recursive formulation. We consider first the unemployment state case. Let U and h

be the discounted utility promised to the agent in period t, and its human capital endow-

ment respectively. Given (U, h), the planner’s value function in the unemployment state V

is defined as follows:14

V (U, h) = max
a∈{0,1}

{Va(U, h)} . (2)

The function V1 describes the planner’s value in the case where the agent is required to

actively search for a job, and solves

V1(U, h) = sup
b,Uu,Ue

−b+ β [π(h)W (U e, h�) + (1− π(h))V (Uu, h�)] (3)

s.t. :

U = u (b)− v + β [(1− π(h))Uu + π(h)U e] , (4)

U ≥ u (b) + βUu, and (5)

h� = mu(h).

Equation (4) requires the contract to deliver the promised level of discounted utility to the

worker, and is called the promise keeping constraint and plays the role of law of motion for

the state variable U . Constraint (5) is the incentive compatibility constraint ensuring the

agent is willing to deliver the amount of effort called for in the contract. When the worker

is required to not search (a = 0), the planner’s value is

V0(U, h) = V0(U) = max
b,Uu

−b+ βV0(U
u) (6)

s.t. :

U = u(b) + βUu.

In the “assistance” state the planner pays the worker a constant benefit transfer equal to

b = u−1 ((1− β)U) forever. Hence V0(U) = −u−1((1−β)U)1−β .

The functionW (U, h) denotes the planner’s net return in the employment state when the

worker is required to receive a lifetime utility level of U, and is endowed with human capital

stock h. During this state, the planner satisfies the promise keeping restriction

U = u (w)− l + βU e (7)

by transferring a net wage w, after imposing the tax (or paying the subsidy) τ ≡ S(h)−w on
the gross wage. We denote l ≥ 0 the effort cost of working. In the model jobs are permanent,
14The starting value U0 will be given by the time-zero participation constraint, and may depend on the

initial level of human capital endowment h0.
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and we assume that there are no incentive problems in the employment state. It is hence

easy to see that while employed the worker is fully insured, and that - by using (7) - the

planner’s value is

W (U, h) =
Se(h)− w(U)

1− β
=
Se(h)− u−1((1− β)U + l)

1− β
, (8)

where Se(h) is the average discounted gross wage, and it is given by the gross wage sequence

induced by the wage function S (·) and the accumulation law me.15 The properties of u

and S, guarantee that W is bounded, strictly decreasing, strictly concave and continuously

differentiable in U .

2.1 The Stationary Benchmark

In a stationary model π (h) ≡ π > 0 and S (h) ≡ S > 0 do not depend on the level of human
capital h. Similarly to the general case, the value of unemployment V is defined as

V (U) = max
a∈{0,1}

+
−u

−1 ((1− β)U)

1− β
, V1(U)

,
(9)

where V1 is the stationary analogous of (3)-(5), and W (U) =
S − u−1((1−β)U)

1−β .

Proposition 1 Assume that in period t = 0 the planner decides to implement a0 = 1. Then
(i) the agent will never be required to stop searching; (ii) both Ut, bt and wt are strictly

decreasing during unemployment; and (iii) if u is unbounded below then for any initial U0
and arbitrarily low level of utility U, there exists a finite unemployment spell duration T,

such that UT < U .

All proofs are reported in Appendix A.

When U0 is very large, even compensating the agent for the search effort cost becomes

too costly, hence the planner suggests a0 = 0 (social assistance). For more moderate levels of

initial lifetime utility, in a stationary model there is no role for social assistance: the worker

is always required to search for a job, and the level and UI benefit transfers never stop de-

creasing. In addition, the reemployment wage tax τ t = S−wt increases with unemployment
duration. This is the key results of Hopenhayn and Nicolini (1997a).

15Se can be computed recursively as follows

Se(h) = (1− β)S(h) + βSe (me(h)) .
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Proposition 1 (ii) also emphasizes a typical feature of dynamic models with information

asymmetries. In order to spread out incentive costs, the planner reduces the agent’s expected

discounted utility Ut through time. This property, always true in stationary models, have

sometimes unpleasant consequences. Point (iii) shows that the optimal contract implied

by repeated moral hazard models creates a weaker form of the “immiserization result”:

efficiency requires that worker’s expected discounted utility falls, with positive probability,

below any arbitrary negative level. The infinite punishments result is questionable in some

circumstances. For example, it may be impossible for the planner to enforce, ex-post, such

punitive plans because these would imply excessive social conflict costs. Similarly, excessive

punishments may induce the worker to opt out of the insurance scheme. To design an

implementable UI scheme, one may consider the possibility that the planner must respect a

lower bound on the expected discounted utility that the agent can have ex-post. In Pavoni

(2003) I find that in the stationary case with exogenous utility bounds, UI benefits should

stop decreasing after finitely many periods, and that reemployment wage taxes are typically

constant. Below we show that when human capital depreciates rapidly enough the optimal

scheme generates an endogenous lower bound on payments, hence on lifetime utilities.

In Figure 3, we report a parametrized example of the closed form of V (U) derived in

Pavoni (2002) for the case where the worker has logarithmic utility. The value function

V (U) is represented by the (solid line) upper envelope of the two functions. The flatter

dotted line represents V0(U) : the planner’s return in case he decides to fully insures the

worker. The steeper dotted line corresponds to V1(U), the case where the planner decides

to ask the worker to always search for a job. The crossing point between the two curves is

where the planner “switches” between the two regimes. From the picture it is clear that at

the switching point the value function V (U) is neither concave nor differentiable. We will

see that this is a typical feature of the problem.

2.2 The Emergence of Endogenous Lower Bounds: A Closed Form

Example

We now take advantage of the closed form derived in Pavoni (2002) and show sufficient

conditions on the speed of human capital depreciation that guarantee the emergence of a

lower bound on worker’s lifetime utility. When the utility of the agent takes the logarithmic

form, i.e. u(c) = ln(c), it can be shown that the following solution to the functional equation

(9) is the “true” value function:

V1(U ;S) =
SK

1− β
− B exp {(1− β)U}

1− β
if U ≤M, (10)
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V0(U) = −exp {(1− β)U}
1− β

if U ≥M ; and (11)

W (U ;S) =
S

1− β
− exp {l} exp {(1− β)U}

1− β
for all U ; (12)

whereM =
ln( KSB−1)
1−β , K = βπ

1−(1−π)β and B solves
16

ln
k
B

1
β − (1− π)B

l
= lnπ +

1− β

β

v

π
+ l. (13)

During unemployment, lifetime utility decreases according to:17

Uu(U) = U − lnB
β

Since β < 1 (13) implies that 1−β
β

v
π
+ l constitutes an upper bound for U − Uu(U).

Now assume that during unemployment S in fact depreciates at a rate δ, i.e. St+1 =

(1− δ)St. For simplicity, assume that during employment St remains constant. It is easy

to see that if at = 1 for any t as it would be the case for the stationary model, the planner

would insure the agent against gross wage depreciation and the ratio between V1(Ut; St) and

V0(Ut) would satisfy

V1(Ut; St)

V0(Ut)
≤ S0K

�
1−δ
1−γ

�t −B exp {(1− β)U0}
− exp {(1− β)U0} (14)

where 1−γ = exp
q
− (1− β)

k
1−β
β

v
π
+ l

lr
. Notice that when (1− γ) ≥ (1− δ) , as t→∞ the

right hand side of (14) tends to −B < −1. As a consequence, the conjecture that at = 1 for
any t is false. The program must have an endogenous lower bound on U, since by continuity

there must exist a T <∞ such that V0(UT ) ≥ V1(UT ; ST ). Hence, we have the following:

Proposition 2 Let δ the depreciation rate of S. If (1− δ) ≤ exp
q
− (1− β)

k
1−β
β

v
π
+ l

lr
,

the scheme generates an endogenous lower bound on lifetime utilities, hence on payments.

16It can be shown that B > 1.
17We also have

Ue(U) = U +
v
π − lnB

β
.

u (b(U)) = (1− β)U + lnB

Moreover, the employment state policy is simply a constant utility for each period, guaranteed by a within-

period net wage equal to

u (w(U)) = (1− β)U + l.
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If we normalize S0 = 100, a reasonable value for the effort and work costs v and l would

be for example v = l = 1.18 Moreover, the value of 0.08 constitutes a lower bound for the

US weakly hazard rate π.19 Easy numerical computations, after setting β = 0.999, suggest

that a weakly human capital depreciation rate of 0.1% would guarantee the emergence of

lower bounds. And according to Keane and Wolpin (1997), the US weakly value for δ varies

between 0.2 and 0.8%.

3 Qualitative Analysis

It is well known that hidden-action moral-hazard models do not typically describe concave

problems (Grossman and Hart, 1983, and Phelan and Townsend, 1991). There are four main

reasons why this may prove to be problematic, especially in a dynamic environment. First

of all, non concavity might also lead to the non differentiability of the problem. Second,

even assuming differentiability, first-order conditions may not longer be sufficient for local

maxima. Third, the analysis might become more complicate since we are actually looking for

a global maximum. Finally, and more importantly, the usual envelope theorems20 cannot be

applied, and this may reduce considerably the usefulness of our recursive formulation. In this

section we develop a systematically recursive approach that allows for these complications.

First, we somehow confirm the above mentioned difficulties. We find that “in most cases”

the associated value function is neither concave nor differentiable. We however find also a

positive result: the optimal contract can still be characterized to a great extent by using the

familiar first order conditions.

The idea of our approach is as follows. The complication involved by the recursive study

of the dynamic moral-hazard problem comes from the incentive constraint. This prevents a

direct approach to the study of the concavity and differentiability of the value function V.We

thus first reformulate the problem to make it suitable for such analysis. We define a collection

of concave and continuously differentiable functions (the conditional functions), of which the

value function V is the upper envelope. We then apply the extended envelope theorem of

Daskin (1967) to this problem to show that V is almost everywhere differentiable.21

18Since lnS0 = ln 100 = 4.6, an effort cost of 1 is between one fourth and one fifth of this value.
19According to Meyer (1990) for example, π = 0.1.
20For envelope theorems we refer to theorems that describe conditions under which the value function of

a parametrized optimization problem is a differentiable function of parameter.
21In the economic literature, this result was rediscovered by Kim (1993), Sah and Zhao (1998), Milgrom

(1999), and recently extended by Milgrom and Segal (2002). However, to our best knowledge, none of these

papers mention that the Daskin’s result can be applied to solve the dynamic moral hazard problem. We
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Our successive step is to study the “switching points,” that is, the utility levels at which

the upper envelope function V switches between two different conditional functions of the

above mentioned class. Those points are indeed the only problematic ones. However, given

the characteristics of our class of functions, each switching point possesses a very nice char-

acteristic: either the V function is in fact differentiable at this point, or the point is never

reached in equilibrium. The fact that the points of non-differentiability cannot be reached

in equilibrium allows us to disregard them while characterizing the optimal contract.

3.1 The sequence of efforts formulation and the existence result

Consider the space A of all the sequences of efforts a = {a(n)}∞n=0 a(n) ∈ A, implementable
during unemployment. For any human capital endowment h ∈ H, effort sequence a ∈ A and
utility level U ∈ U ⊂ IR we can define

V (a, U, h) = sup
b,Ue,Uu

−b+ β [π(a, h)W (Ue, h�) + (1− π(a, h))V (1a, U
u, h�)] (15)

s.t. (1), and

if a = 1, (4) and (5); if a = 0, U = u(b) + βUu.

The function(al) V (a, U, h) represents the planner’s optimal payoffs conditional on a given

sequence of efforts, when the worker is unemployed. The symbol 1a = {a(n)}∞n=1 stands for
the one step ahead continuation of a.

It would be easy to show that the value function of the sequential problem satisfies (15).22

In the next Proposition we show that also the converse is true.

Proposition 3 The Bellman operator implied by (15) defines a contraction in the space of
continuous and bounded functions with the sup norm. Thus V exists and is unique, and

nV n∞ = sup
y∈Y=A×U×H

|V (y)| <∞.

In the next Proposition, we show that each conditional function V (a, U, h) has nice

properties, very similar to the ones of the employment state value function W.

Proposition 4 Consider a sequence of efforts a ∈ A and an endowment level h, together

with a law m. Let V (a, U0, h) = −b0+β [π(a0, h)W (U
e
0 , h

�) + (1− π(a0, h))V (1a, U
u
0 , h

�)] with

also show that in dynamic models the characteristics of the value function permits the use of the first order

conditions.
22The technical reader should be reassured by the fact that we do not have problems of measurability,

since we have only two outcomes.
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U0 in the interior of the effective domain of V (a, ·, h), and with b0 belongs to the interior of
the domain of the agent’s utility function u. The conditional function V (a, ·, h) is concave
and continuously differentiable in U at any such U0, and

V �(a, U0, h) ≡ ∂V (a, U0, h)

∂U
= − 1

u�(b0)
< 0 (16)

The problem (15) of implementing optimally (minimizing costs) a given sequence of

efforts a is concave, with linear constraints. The associate value function V (a, U, h) is thus

concave as well. Given concavity, differentiability can be shown by applying the Benveniste

and Scheinkman (1979) Lemma in the standard way.

We finish this subsection with an important result. The maximization with respect to

a is always well defined. Hence, the value function V (U, h) defined can be written as the

upper envelope of the collections of conditional functions V (a, U, h).

Proposition 5 The set A of sequences of efforts is compact and V (a, U, h) is continuous in
A for any (U, h). Thus, a maximum exists for any (U, h), and we can define

V (U, h) = max
a∈A

V (a, U, h). (17)

3.2 The shape of the value function

Proposition 5 defines V (U, h) as the upper envelope of the collection of the conditional func-

tions V (a, U, h). The approach we propose exploits this interpretation for V (U, h). However,

we must first eliminate the possibility of weird behaviors at the infinite, due to the non-

stationarity of the problem. We decided to make the following regularity assumption.

Assumption A1 For any endowment h, there is a time horizon T (h) <∞ such

that ∀ t ≥ T (h) both S(mt(0, h)) = S, and π(mt(0, h)) = π.

Assumption A1 can be seen as a restriction on the law m, or on the functions S(·) and
π(·), or on both. For example, the condition on S can be interpreted as a minimum wage

condition. It should be noted that, the above conditions allow T (h) to be arbitrarily large

(provided that it remains finite).23

23Proposition 6 is based on the Daskin’s envelope theorem. In order to apply this result to our problem

we need to guarantee that the derivative V 3(a, U, h) ≡ ∂V (a,U,h)
∂U is jointly continuous in (a, U). Hence, the

main task is to show that this assumption is true for our model. Our line of proof is quite simple. Notice

that any finite periods version of our model satisfies the joint continuity requirement of the partial derivative

V 3(a, U, h). The reason is simple. If the time horizon is finite, then the set of all possible paths of efforts A is
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Proposition 6 Consider a pair U, h, with U as in Proposition 4 and assume that A1 is
satisfied. Then V (U, h) possesses both right and left derivative in the first argument, with

V+(U, h) ≥ V−(U, h). Moreover, V (·, h) is almost everywhere differentiable for any h, and
where it is differentiable we have

V �(U, h) = V �(a, U, h) for any a ∈ A∗(U, h), (18)

where A∗(U, h) is the (non-empty) set of efforts solving the maximization (17) defined in
Proposition 5.

Notice that from (16) and (18), when V is differentiable, we can recover the usual envelope

theorem. This property will be used below.

3.3 Characterization of the optimal contract

Notice that the property V �+(U, h) ≥ V �−(U, h) is not a characteristic of concave functions.
In fact, when the directional derivatives differ, V (U, h) cannot be concave in any interval

containing U . This confirms the analysis of the stationary model (see Figure 3 and the

closed form (10)-(11)). However, notice that the “kink” at the switching point in Figure 3

has a particular nature: it is an “inward” one. This is a good news since a simple graphical

check should convince the reader that the optimal choice of the continuation utility Uu will

never be at the switching point. It turns out that this is true in general for our problem,

which implies that problem (3) is differentiable at all “relevant” points. But then the usual

first-order conditions, although obviously non sufficient, become necessary for optimality.

This is indeed our main finding in Proposition 8.

Let f be any continuous functions having both left and right hand derivatives at a point

U0. A necessary condition for U0 to be a maximum is f �−(U0) ≥ 0 ≥ f �+(U0) so we have the
following.24

Lemma 7 Assume that f is a continuous function that admits both right and left derivatives
in an interior point U0. If we have f �−(U0) < f

�
+(U0) then U0 cannot be a maximum.

finite. From Proposition 4 we know that V 3(a, U, h) is continuous in U alone, but finiteness of A implies joint
continuity in (a, U). We show that under assumption A1 the infinite version of our model can be reduced
to the case with a finite set of effort sequences.

Hence, a direct implication of our line of proof, guarantees that for any finite periods model, the result

holds in great generality, for a much more general class of dynamic moral hazard models.
24To see in more detail why this is the case, write for example, the incremental ratio for the left derivative

f 3−(U0). If
f(U)−f(U0)

U−U0 < 0 for U − U0 < 0, with U sufficiently closed to U0, we must have f(U) > f(U0),

which is a contradiction to U0 being a maximum. A similar argument can, of course, be used for the right

derivative.

16



Proposition 8 Assume A1 and interiority. The optimal contract necessarily satisfies

V �(U, h) = − 1

u�(b∗)
(19)

W � (U e∗, h�) = − 1

u�(b∗)
− µ µ ≥ 0 (20)

V � (Uu∗, h�) = − 1

u�(b∗)
+

π(a∗, h)
1− π(a∗, h)

µ, (21)

with µ = 0 if either a∗ = 0 or (5), and is satisfied with strict inequality. Moreover, (19) can

possibly fail only in the first period. In addition, we have

V �(U, h) = [π(a∗, h)W � (U e∗, h) + (1− π(a∗, h))V � (Uu∗, h)] . (22)

The implications for the optimal scheme are not yet transparent. By rearranging the

above derived first-order conditions and using envelope theorem we get the following:25

Corollary 9 Under the conditions of the previous proposition we have the following

1

u�(b∗t )
= π(a∗t , ht)

1

u�(w∗t+1)
+ (1− π(a∗t , ht))

1

u�(b∗t+1)
. (23)

Moreover, (i) w∗t+1 ≥ b∗t ≥ b∗t+1; and (ii) either is true that w∗t+1 > b∗t > b∗t+1, or w∗t+1 = b∗t =
b∗t+1.

Result (i) above confirms, for a general, possibly non stationary framework, one key

finding of Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997). The optimal un-

employment insurance scheme requires UI benefits to decrease with the duration of unem-

ployment. On the other hand, notice that the wage tax behavior remains indeterminate. In

Section 4, we take advantage of the recursive formulation to perform computer simulations

of the optimal contract for the US and the Spanish economy. We anticipate that in our

numerical exercises we find that an optimal scheme typically generates a plan of wage taxes

τ∗t = St − w∗t which decreases with the length of previous unemployment spell. This is of
course in contrast with the result of the stationary model of Hopenhayn and Nicolini (1997a),

where the optimal reemployment wage tax τ ∗t increases during unemployment.

The second part of Corollary 9 has another important implication. In many studies,

unemployment insurance programs are modelled in a very simple way. Only two parameters

are used to define the scheme. It is assumed to be a time invariant unemployment benefit

25Condition (23) in Corollary 9 recalls that derived by Rogerson (1985) using a variational approach.

Notice however that condition (23) alone would not typically allow us to say much about the monotonicity

of the payments for example. This would be especially true in a model with more than two outcomes.
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payment b, which - usually because of job-search incentives - is strictly lower than a time

invariant wage payment w. We can then ask the following question. Could this simple

scheme be optimal, for some combination of wage depreciation and duration dependence?

Part (ii) gives a clear negative answer to this question. Then we could ask whether there

exists a simple way of describing an optimal scheme, or at least some of its characteristics.

We believe that we can answer positively to this question.

To make our results ready to use for policy purposes, we rearrange (23) and obtain

1

u�(b∗t )
− 1

u�(b∗t+1)
= π(a∗t , ht)

%
1

u�(w∗t+1)
− 1

u�(b∗t+1)

&
,

which, for the case with logarithmic utility, reduces to

b∗t − b∗t+1 = π(a∗t , ht)
k
w∗t+1 − b∗t+1

l
. (24)

Because of its graphical representation, shown in Figure 2, we may name the above equation

as the triangle rule. According to (24), for small π(a∗t , ht) optimality suggests almost flat UI

schemes, with a relatively large difference between net wage and unemployment insurance

benefits. And vice versa for high hazard rates. This gives to (24) a quite appealing economic

interpretation. According to this condition, workers facing relatively low hazard rates should

be motivated to search for new jobs mainly through rewards: in case they find a new job, they

should receive a high net wage w∗t+1. In contrast, to those workers facing high probabilities

of reemployment, search incentives are mainly given by the use of punishments: in case of

failure in the job-search process, on those workers the planner imposes a considerable drop

in the unemployment benefit payment b∗t+1.

The triangle rule can be used as a very simple, “back of the envelope”, test for optimality

of any unemployment insurance scheme. For that consider an existing scheme. For each

period t, using today and tomorrow’s benefit payment levels and tomorrow’s net wage, it

is always possible to draw a triangle as the one in Figure 2. The test also needs a reliable

point estimate of the hazard rate π(a∗t , ht) associated with unemployment duration of length

t. Then using π(a∗t , ht) one can easily check whether the two parts that form the segment

w∗t+1 − b∗t+1 have the proportions required by (24). When this is not the case, the trade-off
between insurance and incentives is not exploited optimally, and there is room for a budget

saving reform.

Alternatively, we could consider condition (24) as a valuable tool for the optimal unem-

ployment insurance scheme designing problem. A hypothetical planner could indeed compute

the unemployment scheme restricting himself to satisfy “at least” the triangle rule derived

above.26

26Of course, this exercises requires a full knowledge of the hazard rate functions π(·, ·).
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Finally, note that the triangle rule is not satisfied if we introduce other constraints into

the designing problem, such as the exogenous lower bound on worker’s utility I imposed

in Pavoni (2003). Thus - assuming a maximizing government behavior - the triangle rule

could also be used to test for the existence of exogenous minimum bounds; which is a way to

discriminate between the unrestricted model of Hopenhayn and Nicolini (1997a,b) and the

restricted one with utility bounds of Pavoni (2003).

A further quantitative assessment would regard the degree of approximation - toward the

fully optimal scheme - that the use of the triangle rule would involve for utility functions

different from the logarithmic one. This analysis is left for future research.27

4 Quantitative Analysis

In this sections, we aim at determining some additional characteristics of the optimal UI

scheme. For that we specifically examine the effects of imposing strict monotonicity on

reemployment wages and hazard rates respectively. Human capital depreciation and duration

dependence clearly have the effects of increasing the planner’s incentive costs for any given

level of worker’s lifetime utility. However, the analysis of the stationary model shows that

there is an additional force that contrasts the one induced by the deterioration of worker’s

job opportunities. Because of dynamic incentive provision, the worker’s expected discounted

utility is decreasing during unemployment, and low lifetime utilities imply lower incentive

and effort compensation costs. As a consequence, in a stationary environment an optimal

UI program requires worker to always search actively for new jobs. Obviously, which one of

these two forces dominates - human capital depreciation or decrease in lifetime utility - in a

non stationary model is a quantitative issue.

More than giving a detailed policy advise, the aim of this section is to illustrate the

effect of both wage depreciation and hazard rate duration dependence on incentives, and

- as a consequence - on the shape of the optimal UI scheme. To better understand the

forces in act, we disentangle the effects on the optimal UI program of each one of these

two consequences of human capital depreciation. We pursue this task using a couple of

calibration exercises. The first example refers to Spain. Spanish data on wages are often

27The logarithmic case seems to be a good approximation for an average level of relative risk aversion.

Attanasio and Weber (1993) use UK cohort data to estimate the intertemporal elasticity of substitution.

Assuming CRRA preferences, the results of Attanasio and Weber imply a constant risk aversion parameter

between 1.3 and 1.5 (where 1 corresponds to the log-case). This is consistent with many other previous

studies. For example, Mehra and Prescott (1985) cite various empirical studies that provide support for a

constant relative risk aversion parameter between 1 and 2.

19



poor or difficult to interpret. In contrast, most empirical studies document a clear negative

duration dependence in the reemployment probability. We thus use the Spanish economy to

study how the optimal unemployment insurance scheme is affected by duration dependence

in the probability finding a new job alone. In our second example, we use the US economy

to study the implications of wage depreciation.

Our numerical methodology is based on value function iteration. We approximate the

value function with Chebyshev polynomials.28 Value function iteration involves a global

maximization step. Although first-order conditions were successfully used to characterize

qualitatively the contract, given the non-concavity of the problem, we are forced to use a

numerical maximization procedure to determine the optimal choices at each value function

iteration.

In both exercises we assume CRRA worker’s preferences

u(c) =
c1−σ

1− σ
,

with σ = 1, i.e. log-utility. Moreover, in both cases we set the search cost equal to the cost

of labor, i.e. v = l > 0.

4.1 The Spanish Example: the effects of the hazard rate duration

dependence.

To calibrate the model with the Spanish economy we assumed a constant gross wage S.

Hence the calibration exercise consists of choosing 3 parameters: [S, β, l] , together with the

hazard rate paths {π(a, ht)}Tt=0 for a ∈ {0, 1} and the initial utility level U0. We normalize
the wage S to 100, and interpret each period as a month by setting β = 0.996. Finally, we

set l = 1, which is between one fourth and one fifth of the utility the agent would receive

from consuming the gross wage u(S) = ln(100) = 4.6. In summary

[S, β, l] = [100, 0.996, 1] .

The initial level of worker’s utility U0 is computed backward in accordance with the

existing scheme. Since S = 100, the current insurance system can be represented by a

contract that has not taxes or transfers when unemployed (w = S), and pays a first benefit

level b1 of 70 for the first six months of unemployment, from the 7th to the 24th month the

benefit level b2 is set equal to 60, and from the 25th onward we assume the worker receives

28Chebyshev polynomials have several mathematical and practical advantages as shown by Judd (1998).
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an assistance level of benefits b3 = 20.29 The corresponding expected discounted utility value

U0 for an unemployed worker, can be calculated backward as follows. When a worker finds

a job, his lifetime utility is

Uwork =
u(S)− l
(1− β)

=
4.6− 1
0.004

= 900,

which represents the utility of working forever and receiving the gross wage S = 100. More-

over, note that from period T onward the worker’s problem is stationary. Both the unem-

ployment benefits and the probability of finding a job are at their minimum level. Thus,

under our parametrization, the worker will be searching for a job (a = 1), which will be

found with probability π(1, hT ) = π. And jobs are permanent. The value of his expected

discounted utility UT at period T can be computed as follows

UT =
u(b3)− 1 + βπUwork

1− β(1− π)
,

where b3 = 20 is the non-contributive assistance level of unemployment benefits. For any

0 ≤ t ≤ T we can now define the value UT−t recursively by

UT−t = u(bt)− v(a∗t ) + β
k
π(a∗t , ht)Uwork + (1− π(a∗t , ht))UT−(t−1)

l
,

where the period t benefit level bt ∈ {b1, b2, b3} is computed according to the three steps
scheme described above, and a∗t denotes the effort level chosen optimally by the worker in

period t.30

Our calibration of hazard rates is based on Bover, Arellano and Bentolila (1997). Ac-

cording to our interpretation of the data, an increase in unemployment duration seems to

29In Spain, the replacement ratio is equal to 70% during the first six months of unemployment and 60%

thereafter, subject of a floor of 75% of the minimum wage. Benefit duration is one-third of the last job’s

tenure, with a maximum of two years. The assistance system pays, for up to two years, 75% of the minimum

wage to (unemployed) workers, with dependant, whose average family income is precisely below that amount.

In 1998, the minimum wage was around 70, 000 pesetas ($280) (Guia Laboral 1998 y de Asuntos Sociales

(1998)). The amount of the non-contributive assistance level of transfers varies across different Autonomous

Communities between 30, 000 to 45, 000 pesetas ($150/180), is means-tested, and there is no fixed duration

(See Lopez (1996)). The Bulletin of Labor Statistics (1999) reports as 300, 000 pesetas ($1, 200) per month

the 1998 average wage in non-agricultural activities. Following the common assumption that workers subject

to severe unemployment risk face a wage that is two thirds of the average national wage, we consider the

assistance level of benefits as 15 = 20% of the gross wage S.
30That is, a∗t solves

max
at∈{0,1}

u(bt)− v(at) + β
�
π(at, ht)Uwork + (1− π(at, ht))UT−(t−1)

�
.
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reduce the effectiveness of the job-search activity. However, since the search effort level a is

obviously not reported by the study we had to perform an “identification” exercise. Here

is our strategy. Bover et al. (1997) use data from the Spanish Labour Force Survey (EPA)

to estimate the Spanish hazard rates both for workers receiving unemployment insurance

benefits and for those who do not receive any UI benefit transfer.31 This for 30 consecutive

months of unemployment duration. As expected, for any duration level of unemployment the

former hazard rates (the one related to workers receiving UI benefits) are always lower then

the latter ones. Moreover, the difference between the two functions decreases considerably

with unemployment duration, and approaches zero after 2 years. We believe it is reason-

able to assume that workers not receiving benefits supply a higher effort level than workers

receiving benefits. We need to assume that this is the case at any level of unemployment du-

ration. These considerations induce us to interpret in our two effort framework the decrease

in the difference between the hazard rates of the two groups of workers as a decrease in the

effectiveness of the search activity. As a consequence, we calibrate the hazard rate paths

{π(a, ht)}Tt=0 by linearly interpolating the estimations of Bover et al. (1997) as follows. We
set T = 30, π(1, h0) = 0.21 and π(1, hT ) = 0.03 with a time constant decrease in the hazard

rate of 0.06 each period. Furthermore, consistently with the approximate stationarity of the

estimated lower hazard rate function, we set the “passive” hazard rate π(0, ht) = π̂ = 0.01

at a constant level for any unemployment duration t.

The results of our simulations of the efficient scheme are reported in Figure 4. First,

the interested reader can verify that the scheme always obeys to the triangle rule. Second,

we observe that the optimal path for unemployment benefit payments (the dotted lower-

level line) is initially decreasing an then becomes completely flat. The reason is that, when

human capital depreciates rapidly enough during unemployment, the planner looses the

incentive to induce the agent to supply the high effort level. Thus, benefits eventually stop

decreasing because the agent is fully insured. The second part of the benefit path (the flat

one) is particularly important since induces an endogenous lower bound on workers’ expected

discounted utilities. Finally, note that the net wage wt - represented by the upper-level solid

line - is initially roughly constant and then increases with unemployment duration. Moreover,

it presents an important downward jump for long term unemployed, when the worker is asked

to stop searching actively, and he is fully insured by the planner.

The wage tax behavior is one key policy implication of the our non stationary model. In

fact, we already mentioned that this prediction contrasts with the one of stationary models

such as Hopenhayn and Nicolini. Finally, notice that after 24th months the simulated optimal

31Workers non receiving benefits include those who received benefits at some previous period.
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scheme presents a sharp downward jump of the net wage, that is, a sharp increase in the wage

tax. However, it seems reasonable to assume that while working agents have additional costs

with respect to the situation where they are unemployed and do not search for new jobs:

consider for example transportation costs, or the cost of having lunch in a restaurant during

the working days, an so on. Thus, in order to compensate the worker for these additional

costs, full-insurance actually implies a net wage level well above the unemployment insurance

benefits.

4.2 The US Example: the consequences of wage depreciation.

Our second numerical example is a calibration with the US economy, and focuses on the

effect of wage depreciation. We thus assume that the hazard rates do not vary with h, that

is, π(1, h) = π and π(0, h) = π̂ for any h. To allow for wage depreciation, we consider a very

simple relationship between human capital endowment and gross wage32

S(ht) = ωht.

Moreover, we assume a geometric depreciation rule mu for human capital:

ht+1 = (1− δ)ht.

This formulation implies that during unemployment the gross wage S(ht) decreases at the

exogenous and constant rate δ, equal to that of human capital. For simplicity, we as-

sume that when the worker is employed his human capital endowment remains constant, i.e.

me(h) = h for any h. To complete our calibration exercise we have six parameters to choose:

[S0, l, β, π, π̂, δ] , together with the initial utility level U0. We set S(h0) = S0 = 100, and

l = 1. To be consistent with the US payment system, we choose one week as reference pe-

riod, and accordingly calibrate β = 0.999. Using the results in Meyer (1990) and partially

following Hopenhayn and Nicolini (1997a), we set the weakly US hazard rate π = 0.1, the

”passive” hazard rate π̂ = 0.01, and we computed the initial utility level U0 in a way similar

to the previous example.33 Finally, the depreciation rate parameter δ is calibrated following

32This formulation can be motivated by an aggregate technology in which skill units h are perfect substi-

tute. In this case, ω is equal to skill’s marginal product.
33According to Meyer (1990), the average level of UI benefits received in the sample is 66% of the average

value of the pre-unemployment wage S(h0) = 100, and lasted - again in average - 34 weeks. To have a finite

value for U0 with log utility, we assumed that after 34 weeks of UI benefit payments the worker continues

to receive 0.1% of his gross wage. The latter can be justified - for example - by the existence of assistance

programs such as the Temporary Assistance for Needy Families (TANF) program; or by the existence of

charity institutions which should provide minimal levels of cash financial support to individuals.
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the results of Keane and Wolpin (1997). Using NLSY data, they provide (structural) econo-

metric estimates for rates of skill depreciation during periods of unemployment. Keane and

Wolpin estimate an annual human capital depreciation rate for white USA males of between

9.6% (for blue collars) and 36.5% (for white collars). We set our weekly level of δ = 0.005,

which corresponds to an intermediate annual depreciation rate of 23%. In summary, our

choice are as follows  S0 l = v β π π̂ δ

100 1 0.999 0.1 0.01 0.005

 .
The results of our computer simulations are reported in Figure 5. Three lines are dis-

played in this figure as a function of unemployment duration t: the UI benefit payments bt
(represented by the thick dotted lower-level line), the gross wage St = S(ht) (represented by

the homogeneously decreasing solid line), and the net wage wt = St − τ t (the thin dotted

upper-level line). The optimal path for unemployment benefit payments bt presents qual-

itatively the same characteristics as the Spanish case: it is initially decreasing an then -

approximately after 60 weeks - becomes completely flat. Notice that in this example both

π and π̂ are constant, hence the incentive costs of implementing the high effort level are

constant. The planner’s expected returns are however decreasing, since the gross wage S(h)

decreases with unemployment duration. The resulting effect is similar to the one of previous

example: at some point the planner releases the agent from the search duty, and simply

transfers him some income. The agent is hence fully insured and the unemployment insur-

ance benefits stop decreasing. The net wage schedule wt is surprisingly very flat at a level

of 91/93. As it is clear from the figure, the flatness of the wt schedule implies that the

reemployment wage tax τ t = S(ht) − wt is strictly decreasing during unemployment, and
for unemployed durations between 12 and 60 weeks is optimal to pay a wage subsidy after

reemployment.34

The net wage wt presents again an important downward jump after a sufficiently long

period of unemployment. This occurs when the worker is asked to stop searching actively

and is fully insured by the planner. However, with decreasing gross wage S(ht) - and recalling

the discussion about the existence of some additional costs in the working state, we made

at the end of the previous example for Spain - what seems mainly to happen in this US

example is that the government simply stops paying the wage subsidy.

34For example, recall that the parameter δ is calibrated such that after t = 54 weeks, the gross wage is

S(h54) = 76. This implies that, after approximately one year of unemployment, the worker should receive a�
92
76 − 1

�
100 = 21% wage subsidy after unemployment.
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5 Conclusions

In the present paper we extend previous studies on optimal unemployment insurance to incor-

porate the effects of human capital depreciation and duration dependence in this mechanism-

design problem.

Our results partially confirm those obtained with stationary models, namely that ben-

efits should decrease with unemployment duration. However, the introduction of human

capital depreciation and duration dependence generates some novel features on the opti-

mal program. First, if human capital depreciates sufficiently rapidly during unemployment,

the planner loses the incentives to induce the agent to supply the high search effort level.

Consequentially unemployment benefit payments are initially decreasing and then eventu-

ally become completely flat, since the long-term unemployed worker is fully insured by the

planner. This creates an endogenous lower bound on worker’s expected discounted utility,

providing an alternative way of eliminating the immiserization result of Thomas and Wor-

ral (1990). Second, we find that the increasing wage tax result of Hopenhayn and Nicolini

(1997a) is not robust to this extension. Our simulation results both for the US and Span-

ish economies show that although it is optimal to impose a wage tax after reemployment

on short-term unemployed workers, the optimal level of wage tax should decrease with the

length of worker’s previous unemployment spell, eventually becoming a wage subsidy for the

long-term unemployed. The optimality of a wage subsidy is in fact a key policy implication

of our non stationary search model with moral hazard.

Our analysis also has an independent theoretical interest, in that we develop a new

approach that allows us to study recursively the properties of the dynamic moral hazard

model in a systematic way. We find that the associated value function is in general non-

concave and non-differentiable. In spite of these non-smoothness problems, we show that

the optimal contract can be characterized by using the usual first order conditions. The

technique we developed in this paper uses the Daskin’s envelope theorem, and can be easily

extended both to a more general class of moral-hazard problems and to other problems with

similar characteristics.

One aspect of our characterization of the contract is a simple necessary characteristic of

any optimal unemployment insurance scheme, which we call it the triangle rule. We believe

that the simplicity of the triangle rule deserves an accurate analysis. We plan to study the

degree of optimality of an unemployment scheme computed using the triangle rule, when the

worker’s utility function is different from the logarithmic case, within a range of parameters

consistent with microeconomic empirical estimations.

In addition to a wage subsidy, the results in this paper suggest that, by extending the
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policy instruments available to the planner, some other policy implications could be derived,

especially for long-term unemployed workers. In both examples of Section 4, a worker who

stays unemployed for a sufficiently long period is required to stop actively searching for a

job, and is fully insured. The long-term unemployed worker is a net cost for the government,

especially when he has no hope of finding a new job in the future. In this case, an alternative

active labor market policy may become the only valuable alternative to rescue the worker

from his state. The fact that the planner’s value function V represents the monetary cost

of the unemployed worker suggests that our recursive formulation might be a natural way

to analyze the choice of alternative active labour market policies. In Pavoni and Violante

(2003) we build on the model developed here, we extend the instruments available to the

planned to include retraining programs and/or job-search activities, and study the optimal

sequence of programs and payments.
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6 Appendix A: Proofs

Proof of Proposition 1 (i) If at t = 0 a0 = 1 then we have that V1(U0) ≥ V0(U0). For
any n ≥ 0 let us now define the set of conditional functions as follows

V (U, n+ 1) = max
b,Ue,Uu

−b+ β [πW (Ue) + (1− π)V (Uu, n)]

U = u(b)− v + β [πU e + (1− π)Uu]

U ≥ u(b) + βUu,

with V (U, 0) ≡ V0(U). Notice they are all strictly concave and continuously differentiable.
By the contraction mapping, also V (U,∞) is concave. It is not difficult to see that V (U,∞)
is continuously differentiable.

Lemma 10 V �(U, n+ 1) ≤ V �(U, n) for any n with strict inequality at least for some n.

Proof. The proof for n = 0 is as follows and then we can follow an inductive argument.
So let consider the problem

V (U, 1) = max
b,Ue,Uu

−g(z) + β [πW (U e) + (1− π)V0(U
u)]

U = z − v + β [πU e + (1− π)Uu]

U ≥ z + βUu.

It is easy to see that incentive compatibility is binding in this case (since W �(U) = V �0(U) if

the incentive compatibility is slack we have Uu = Ue). Hence from the first order conditions

we have

−g� (U − βUu) = V �(U, 1) > V �0(U
u) = −g� ((1− β)Uu)

which implies U > Uu. But then U −βUu > (1−β)U. From the convexity of g we have that

V �0(U) = −g� ((1− β)U) > V �(U, 1). Now assume that V �(U, n) ≤ V �(U, n− 1) and solve the
problems in the two cases. From first order conditions we get

V �(Uun , n− 1) = −g� (U − βUun ) + µn
π

1− π
W �(U en) = −g� (U − βUun )− µn

V �(Uun+1, n) = −g�
�
U − βUun+1

�
+ µn+1

π

1− π

W �(U en+1) = −g�
�
U − βUun+1

�
− µn+1

Now assume µn+1 > µn ≥ 0. Then by the induction argument we must have Uun ≥ Uun+1 (just
assume that Uun+1 > Uun and you get a contradiction), and by the incentive compatibility
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constraint we have Uen ≥ U en+1. But then U − βUun ≤ U − βUun+1and that µn+1 > µn implies

that −g�
�
U − βUun+1

�
− µn+1 < −g� (U − βUun )− µn which is in contradiction with the fact

that by concavity W �(U en+1) ≥ W �(U en). Hence it must be that µn ≥ µn+1 ≥ 0. Similarly

as before, the induction argument and incentive compatibility imply Uun ≤ Uun+1 and by

envelope V �(U, n+ 1) ≤ V �(U, n). Q.E.D.
Of course, the limit function V (U,∞) is such that V �(U,∞) ≤ V �(U, n). Now notice that

we have also shown that if a0 = 1 then Uu ≤ U. As a consequence Lemma 10 implies that if
a0 = 1 will never choose at = 0 in the future and V1(U) = V (U,∞).
(ii) Now since V1 is concave, at any t, from the first order conditions we have Ut > Uut =

Ut+1, (Pavoni, 2003, Lemma 1 shows that the incentive constraint must be binding) hence

Ut is decreasing. From the envelope condition bt decreases as well, and from the incentive

compatibility constraint we have U et decreasing and from envelope u (wt) = (1− β)Uet so wt
decreases as well. (iii) If we let δ ≡ minU≤U0 {U − Uu(U)} then the minimization is well
defined by the theorem of the maximum δ > 0, and T is such that δT ≥ U0 − U. Q.E.D.

Proof of Proposition 3 First of all we should define a topology on A. In fact, we do
much more than this. We define the δ−metric on A as follows

dδ(a, a
�) =

∞[
n=0

δn |a(n)− a�(n)| , δ ∈ (0, 1) .

Second, let us simplify the notation by eliminating the h indexation. It will become clear

below that the continuity of mu(·), together with Lemma 9.5 of Stokey and Lucas (1989),
allows us to make this simplification, at this stage.

Now consider a generic s = (a, U) with a = {a(0), a(1), a(2).....} = {a(0),1 a} ∈ A. Recall
that the distance between two such points can be derived as follows ns− s�n = na− a�nδ +
|U − U �| . Using the promise keeping constraint we rewrite the Bellman operator T as follows

(TV ) (s) = sup
Uu,Ue; sub(5)

−u−1 (U − v(a(0))− β [π(a(0))Ue + (1− π(a(0)))Uu]) +

+β [π(a(0))W (U e) + (1− π(a(0)))V (1a, U
u)]

Now we show that the operator T maps bounded and continuous functions into itself. From

the definition of continuity, we must verify that for each given point s and for each ε > 0,

there exists a γ > 0 such that

if ns− s�n < γ then |(TV ) (s)− (TV ) (s�)| < ε.

To this extent, we rewrite the previous condition using the definition of the Bellman operator

T

| sup
Uu,Ue; sub(5)

g(U,Uu, U e, a(0)) + β (1− π(a(0)))V (1a, U
u)−
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− sup
Uu,Ue; sub(5)

g(U �, Uu, U e, a�(0)) + β (1− π(a�(0)))V (1a�, Uu) | < ε (25)

where

g(U,Uu, U e, a(0)) = −u−1 (U − v(a(0))− β [π(a(0))Ue + (1− π(a(0)))Uu])+βπ(a(0))W (U e)

and

W (U e) =
S − u−1((1− β)U e + l)

1− β
.

Now consider the two cases.

Case 1: Suppose that a(0) = a�(0). In this case, we can assume a(0) as a parameter of

the problem, and apply the Maximum Theorem to the problem

G(U,1 a) = sup
Uu,Ue

g(U,Uu, U e, a(0)) + β (1− π(a0))V (1a, U
u) (26)

sub : (5), Uu, U e ∈ Γ(U)

to show continuity of G in (U,1 a). The auxiliary constraint Γ(U) is imposed in order to

guarantee the constraint correspondence to be compact valued. A possibility is the following.

The incentive compatibility constraint (5) requires U e ≥ Uu + f(a(0)), so we can always

choose appropriately two constants k1, k2 > 0, and add to (5) the constraints Uu ≥ U − k1
and U e ≤ U + k2. The continuity of G implies that we can always find a γ such that (25) is

verified.

Case 2: Now suppose a(0) 9= a�(0). The idea here is that we do not check for continuity
in this case, that is, we set γ such that, whenever a(0) 9= a�(0), then ns− s�n > γ. This can

always be done since in this case |a(0)− a�(0)| = 1. In summary, the choice of γ is done

according to the continuity properties of G, with the restriction γ ≤ 1.
Since u−1 is bounded, if we start from a bounded V then TV will remain bounded.

Finally, one can checked directly that the operator satisfies the Blackwell’s sufficient

conditions, thus T defines a contraction in the complete metric space of the bounded and

continuous functions with the sup norm, in the “reduced” space S = A×U . The continuity
of the low mu(·), allows us to complete the proof by applying Lemma 9.5 and Theorem 9.6

of Stokey and Lucas (1989) which guarantee that the contraction mapping result is still true

in the original space A× U ×H, with h as exogenous sate variable.

Proof of Proposition 4 The presence of the index h creates only notational complications,

so we fix h and eliminate the h index in what follows. Following Grossman and Hart (1983)

and changing the variable by defining z ≡ u(b), the problem becomes

V (a, U) = sup
z,Uu,Ue

−u−1(z) + β [π(a)W (Ue) + (1− π(a))V (1a, U
u)] (27)
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s.t. : z − v(a) + β [(1− π(a))Uu + π(a)U e] ≥ z − v(â) + β [(1− π(â))Uu + π(â)Ue]

U = z − v(a) + β [(1− π(a))Uu + π(a)U e]

where a is the first element in the sequence a = {a(n)} . Notice that the problem satisfies all
the conditions required to apply Theorems 4.7 and 4.8 of Stokey, Lucas and Prescott (1989).

To see why the problem is monotone, use the promise keeping constraint and notice that since

u is increasing, the planner’s objective function−u−1 (U − v(a) + β [(1− π(a))Uu + π(a)U e])

is strictly decreasing in U . In particular, notice that interiority is important here, it guar-

antees that z = U − v(a) + β [(1− π(a))Uu + π(a)Ue] can indeed be modified to satisfy

promise keeping without affecting incentive compatibility. Finally, note that if V is concave

the planner objective function is concave (since u−1 is convex), and the constraints set is

convex (linear), as a consequence (27) is a concave problem. This proves concavity.

Differentiability can be shown as follows. Given the value function is concave we can

use Lemma 2 in Benveniste and Scheinkman (1979). For a fixed level of promised utility

U0 we are looking for a differentiable concave function G(a,U) such that it is well defined

in an interval I around U0 and such that for any U ∈ I we have G(a,U) ≤ V (a,U) and

G(a,U0) = V (a,U0). We claim that

G(a,U) = −u−1 (U + v(a)− β [(1− π(a))Uu0 + π(a)U e0 ]) + β [pW (U e0 ) + (1− p)V (1a, Uu0 )]
is the function we are looking for. Indeed, the optimal values U e0 and U

u
0 satisfy the incentive

compatibility and (by interiority) the promise keeping constraint can always be satisfied by

varying the benefit transfer b, so the function G is well defined and we have G(a, U) ≤
V (a,U) ∀ U ∈ I as required. The properties of u imply the concavity and differentiability
of −u−1. So G is concave and differentiable, and this implies that V is differentiable in U0
and V �(a,U0) = − 1

u�(b0)
. Since V is concave, it is continuously differentiable.

Proof of Proposition 5 Given the continuity result we obtained in Proposition 3, to show

Proposition 5 it suffices to show the compactness of A. That is
Lemma 11 A is compact in topology induced by the metric dδ(x, y) for any δ ∈ (0, 1) .
Proof Noting that the set of all infinite sequences of zeros and ones corresponds to the

Cantor set ∆ ≡ {0, 1}IN, which is known to be compact in the topology induced by the
metric dδ(x, y) for δ = 1

3
.35 From this we can easily show that the Cantor set is topologically

35If we start by endowing the set {0, 1} with the discrete topology (which is both compact and Hausdorff),
then it is well known that the metric dδ(x, y) =

S∞
n=0 δ

n |x(n)− y(n)| with δ = 1
3 induces the product

topology on∆ (see, for example, Aliprantis and Border 1994, page 93) so from the properties of the Hausdorff

spaces and using the Tychonoff Product Theorem we have that ∆ is both Hausdorff and Compact.
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equivalent to the same set endowed with the topology induced by a generic δ ∈ (0, 1) . Finally
notice that the set A is a closed set of such set of sequences, hence it is compact. Q.E.D.
Given that existence is proved, it is then easy to combine the continuity and boundedness

results of Proposition 5 to show the equivalence between the sequential and the recursive

choice of efforts.

Proof of Proposition 6 Our line of proof if based on the Daskin’s envelope theorem. To

state the result in terms of our model we fist need some definitions.

Definition 1 For each U and h, define the non-empty set A∗(U, h) = argmaxa∈A V (a, U, h),
moreover we call A∗(h) = V

U A∗(U, h) the set of all possible maximizers.

Here below we state the Daskin’s envelope theorem and give a version of the proof adapted

from Milgrom (1999).

Lemma 12 Assume that (i) A∗(h) is non-empty and compact and that for any U, h, the
function V (·, U, h) : A∗(h) → IR is continuous. Moreover assume that (ii) V �(a, U, h) ≡
∂V (a,U,h)

∂U
exists and is continuous in (a,U). Then, for any h, the value function V (U, h) has

always both right and left derivative in U, and these are given by the formulas

V �+(U, h) = max
a∈A∗(U,h)

V �(a, U, h)

V �−(U, h) = min
a∈A∗(U,h)

V �(a, U, h),

moreover V (U, h) is almost everywhere differentiable in U, and whenever the derivative exists

then

V �(U, h) = V �(a∗, U, h) for any a∗ ∈ A∗(U, h).

Proof of the lemma. To simplify the notation we neglect the dependence on h. Hence
A∗(U, h) becomes A∗(U), and A∗(h) becomes A∗.
Let us show first the right hand derivative. From our assumptions A∗(U) is non-empty

and u.h.c., so for each U we can take a(U) ∈ argmaxa∈A∗(U) V �(a, U). This is indeed a
well defined procedure since V �(a, U) is continuous. Now consider U � > U and write the

incremental ratio

V (U �)− V (U)
U � − U =

V (a(U �), U �)− V (a(U), U)
U � − U ≥ V (a(U), U

�)− V (a(U), U)
U � − U

the last inequality comes from the fact that a(U �) ∈ A∗(U �) so any other choice will reduce
the value of V (a(U �), U �) = V (U �). Now from the properties of the conditional functions as
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U � → U with U � > U the right hand side converges to the derivative. So we have that

lim inf
U �→U
U �>U

V (U �)− V (U)
U � − U ≥ V �(a(U), U).

And we are done for the first part. We now want to show that

lim sup
U �→U
U �>U

V (U �)− V (U)
U � − U ≤ V �(a(U), U)

where I recall that a(U) is the maximizer of the partial derivative V �(a, U) over the no-empty

and compact set A∗(U). To this extent, notice that we have the following
V (U �)− V (U)

U � − U ≤ V (a(U
�), U �)− V (a(U �), U)
U � − U = V �(a(U �), ξ). (28)

The first inequality in (28) is guaranteed by a similar reasoning as the one we made before.

Namely, because a(U �) does not in general maximizes V when the utility is at U instead

of at U �. The last equality, i.e. the existence of a point ξ ∈ (U �, U) such that it is true is
guaranteed by the by the Mean Value Theorem. Now, since ξ and the value of the derivative

is calculated for a given a(U �), which in turn depends on U �, we write this number ξ(U �).

From the continuity of V �(a, U) we know that for any U �, the partial derivative in the right

hand side V �(a(U �), ξ(U �)) is a real number, hence the number

R = lim sup
U �→U
U �>U

V �(a(U �), ξ(U �))

is well defined. Since R is an accumulation point, there exists a converging subsequence

Rn → R.Moreover, we take a sequence of Un such that this sequence is reproduced by points

of the type V �(a(Un), ξ(Un)). The reason is that V �(a, U) is continuous jointly in (a, U). Since

Rn converges, there must exist a converging sequence (a(Un), ξ(Un))→ (a, U) . The sequence

of ξ(Un) must converge to U since for any n ξ(Un) ∈ (Un, U) and Un → U. Moreover,

by construction, the sequence of a(Un) is such that for any n, a(Un) ∈ A∗(Un). If the
correspondence A∗(U) were upper-hemicontinuous, then we could be sure that a ∈ A∗(U).
This is nothing more then the definition of upper-hemicontinuity: an upper-hemicontinuous

correspondences is defined by the fact that a(Un) ∈ A∗(Un) for any n implies that a =
limn→∞ a(Un) is such that a ∈ A∗(limn→∞Un) = A∗(U). But notice that since the partial
derivative V �(a, U) is continuous in U , V (a, U) is continuous also in U (not necessary jointly

in (a, U)). So the Theorem of the Maximum (or Berge’s Theorem) guarantees that A∗(U) =
argmaxa∈K V (a, U) is upper-hemicontinuous correspondence. We then have

lim sup
U �→U
U �>U

V (U �)− V (U)
U � − U ≤ lim sup

U �→U
U �>U

V �(a(U �), ξ(U �)) = V � (a, U) ≤ V �(a(U), U)
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where the first inequality comes from the first part of equation (28) by taking the sup on

both sides. The second equality comes from our assumptions and the last inequality holds

because a ∈ A∗(U) and a(U) is the maximizer of V � (a, U) in this set.

Proof of Proposition 6 Notice that after period T (h) the problem becomes stationary.

Hence from Proposition 1 we know that the optimal path of actions a∗ is necessarily such

that either (I) for all t ≥ T (h) we have a(t) = 0 or (II) a(t) = 1 for all t ≥ T (h). In both
cases the set of optimal efforts A∗(h) for the period-zero problem, is a subset of the finite set
of all the sequences of efforts which end either with the sequence 0 = {0, 0, 0, 0.....} or with
the sequence a = 1 after T (h) <∞.
From Proposition 5 the set A∗(h) is non-empty. Moreover, it is also trivially compact,

since it is finite. This guarantees that assumption (i) of Lemma 12 is satisfied. Finally,

notice that from Proposition 4 V �(a, U, h) ≡ ∂V (a,U,h)
∂U

exists and it is continuous in U. Since

A∗(U, h) is finite (and non-empty), V �(a, U, h) is also jointly continuous in (a, U). Hence also
assumption (ii) is satisfied, and we can apply Lemma 12 to our problem.

Proof of Proposition 8 It is immediate to see that (19), (20) and (21) are the first

order conditions for the proposed problem. Moreover, notice that the existence of V �(U, h)

is justified by Proposition 4. However, we must show: (i) first, that the differentiability

conditions for taking the fist order conditions are indeed satisfied, (ii) second, that µ ≥ 0 as
claimed.

(i) Since the case with a∗ = 0 is obvious, we will consider only a∗ = 1.When a∗ = 1, the

incentive constraint (5) can be rewritten as follows

Ue − Uu ≥ v

βπ(1, h)
. (29)

We can have two cases. Case 1: At the optimum the incentive constraint (29) is satisfied

with equality. If we rewrite the objective function using (29) with equality and use (4), we

can rewrite the problem as a function of Uu alone:

sup
Uu
−u−1

#
U + v − β

%
Uu +

π(1, h)v

βπ(1, h)

&$
+

+β

%
π(1, h)W

#
Uu +

v

βπ(1, h)

$
+ (1− π(1, h))V (Uu, h�)

&
.

The problem is now a free maximization whose objective function is a weighted sum between

the differentiable functions u−1 and W, and the function V (Uu, h�). We can directly apply

Lemma 7 to this problem and obtain the desired result. Case 2: The optimum is such that
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the incentive constraint (29) is slack. In this case, we can use (4) and rewrite the problem

as a function of both Uu and U e as follows

sup
Uu,Ue

−u−1 (U + v(a∗)− β [Uu + π(a∗, h) (Ue − Uu)]) +
+β [π(a∗, h)W (U e, h) + (1− π(a∗, h))V (Uu, h�)] .

Notice that in the objective function the two choice variables Uu and U e interact in a very

peculiar way. Either they are part of a linear mapping into a differentiable function (this is

the case if the first term of the objective function, inside u−1) or they enter into two different

function which are related linearly among them. This feature guarantees that when taking

the directional derivative for optimality we can separate the two variables. The choice of

U e is clearly well defined since both u−1 and W are differentiable everywhere. Moreover,

for any given choice of U e, the optimal level Uu is now computed by solving again a free

maximization over a weighted sum between the differentiable function u−1 and the function

V (Uu, h�), thus Lemma 7 also applies to this case.

(ii) Once we have shown that the problem must be differentiable at the optimum, we

can use the (local) Kuhn-Tucker theorem. For this, notice that the incentive constraint (29)

is linear, hence satisfies the constraint qualification requirement needed to apply the Kuhn-

Tucker theorem. Hence, if µ is the multiplier associated to the incentive constraint, µ is

non-negative as claimed.

Proof of Corollary 9 The first part of the corollary is easily derived from the last result of

Proposition 8. It suffice to use Proposition (4) and rewrite V �(U, h) = − 1
u�(b∗t )

, W � (Ue∗, h�) =

− 1
u�(w∗t+1)

, and V � (Uu∗, h�) = − 1
u�(b∗t+1)

. To show the second part, notice that since π(1, h) > 0,

both (i) and (ii) results can be easily derived from (19), (20), (21) µ ≥ 0 and the strict

concavity of u. Obviously, if a∗t = 0 then w
∗
t+n = b

∗
t = b

∗
t+n for n ≥ 1.
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Unemployed u(bt)− v(at)
Unemployed

time

Employed

Search

t+1t-1 t

bt+1

wt+1
bt

π(at, ht)
1− π(at, ht)

Figure 1: The timing of the model in the unemployment state. At the beginning
of period t the unemployed worker receives the unemployment benefit bt and is required to

supply the costly job-search effort at. This effort affects the probability of being employed

at the beginning of the next period π(at, ht). If at the beginning of next period the worker

is employed he receives a net wage wt+1 = S(ht+1)− τ t+1 otherwise, if he still unemployed,

the worker receives the unemployment benefit bt+1, and so on.

Figure 2: An example of the triangle rule.
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Figure 3: A parametrized example of the Closed form

42



 

0 5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

 Months

w t

bt

R
ep

la
ce

m
en

t  
R

at
io

s 
 b

/S
, w

/S
 

Unemployment Duration  

Figure 4: The Spanish Example: the effects of the hazard rate duration depen-
dence. In this figure, the dotted lower-level line represents UI benefit payments bt, and the
upper-level line represents net wage wt = S − τ t, as a function of unemployment duration.

From the figure bt is clearly decreasing in t and given S is constant in our example, τ t is

initially decreasing in t, and them presents a last downward jump.
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Figure 5: The US Example: the consequences of wage depreciation. In this fig-
ure, the thick dotted lower-level line represents UI benefit payments bt, the homogeneously

decreasing solid line represents the gross wage St = S(ht), and the thin dotted upper-level

line represents net wage wt = St − τ t, as a function of unemployment duration. From the

figure, bt is decreasing in t and the reemployment wage tax τ t steadily decreases until the

58th week, where it is negative, i.e. it is actually a substantial subsidy. Then the subsidy

jumps down.
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