
Automatic extraction 
of hierarchical urban 

networks: a micro-
spatial approach

Rui Carvalho
Michael Batty

http://www.casa.ucl.ac.uk/working_papers/paper73.pdf

Centre for Advanced Spatial Analysis • University College London • 1 - 19 Torrington Place • Gower St • London • WC1E 7HB 

T  +44 (0) 20 7679 1782   •   T  +44 (0) 20 7679 1813   •   F  +44 (0) 20 7813 2843    •    E  casa@ucl.ac.uk

 www.casa.ucl.ac.uk

W
O

R
K

IN
G

 P
A

P
E

R
 S

E
R

IE
S

ISSN: 1467-1298© Copyright CASA, UCL

73
02 | 04



Automatic Extraction of Hierarchical Urban
Networks: a Micro-Spatial Approach

Rui Carvalho1 and Michael Batty2

1 The Bartlett School of Graduate Studies
rui.carvalho@ucl.ac.uk,

2 Centre for Advanced Spatial Analysis
m.batty@ucl.ac.uk,

University College London,
1-19 Torrington Place, London WC1E 6BT, UK

Abstract. We present an image processing technique for the identifica-
tion of ’axial lines’ [1] from ridges in isovist fields first proposed by Rana
[2, 3]. These ridges are formed from the maximum diametric lengths of
the individual isovists, sometimes called viewsheds, that make up the
isovist fields [4]. We discuss current strengths and weaknesses of the
method, and show how it can be implemented easily and effectively.

1 Axial Maps as Skeletons for Urban Morphology

Axial lines are used in ’space syntax’ to simplify connections between spaces
that make up an urban or architectural morphology. Usually they are defined
manually by partitioning the space into the smallest number of largest convex
subdivisions and defining these lines as those that link these spaces together.
Subsequent analysis of the resulting set of lines (which is called an ‘axial map’)
enables the relative nearness or accessibility of these lines to be computed. These
can then form the basis for ranking the relative importance of the underlying
spatial subdivisions and associating this with measures of urban intensity, den-
sity, or traffic flow [1, 5, 6]. Progress has been slow at generating these lines
automatically. Lack of agreement on their definition and lack of awareness as to
how similar problems have been treated in fields such as pattern recognition, ro-
botics and computer vision have inhibited explorations of the problem and only
very recently have there been any attempts to evolve methods for the automated
generation of such lines [7, 8, 4].
One obvious advantage of a rigorous algorithmic definition of axial lines is

the potential use of the computer to free humans from the tedious tracing of lines
on large urban systems. Perhaps less obvious is the insight that mathematical
procedures may bring about urban networks, and their context in the burgeon-
ing body of research into the structure and function of complex networks [9, 10].
Indeed, on one hand urban morphologies display a surprising degree of univer-
sality [11—15], but little is yet known about the relation between this observed
universality and the transport and social networks embedded within urban space



(but see [16, 17]). On the other hand, axial maps are a substrate for human navi-
gation and rigorous extraction of axial lines may substantiate the development of
models for processes that take place on urban networks which range from issues
covering the efficiency of navigation, and the vulnerability of network nodes and
links to failure, attack and related crises.
Axial maps can be regarded as members of a larger family of axial represen-

tations (often called skeletons) of 2D images. There is a vast literature on this,
originating with the work of Blum on the Medial Axis Transform (MAT) [18,
19].

2 Axial Lines as Ridges on Isovist Fields

An isovist is the space defined around a point (or centroid) from which an object
can move in any direction before it encounters some obstacle. We shall see that
the paradigm shift from the set of maximal discs inside the object (as in the
MAT) to the maximal straight line that can be fit inside its isovists holds a key
to understanding what axial lines are.
As in ’space syntax’, we simplify the problem by eliminating terrain elevation

and associate each isovist centroid with a pair of horizontal coordinates (x, y)
and a third coordinate - the length of the longest straight line across the isovist
at each point which we define on the lattice as∆max

i,j . We extend previous work by
Rana [3], where he noted that "the ridge lines give an indication of the disposition
of the axial lines", by using a modification of the Medial Axis Transform [18,
19] and the Hough Transform [20]. The hypothesis states that all axial lines are
ridges on the surface of∆max

i,j . The reader can absorb the concept by ’embodying’
herself in the ∆max

i,j landscape: movement along the perpendicular direction to an
axial line implies a decrease along the ∆max

i,j surface; and ∆max
i,j is an invariant,

both along the axial line and along the ridge. The hypothesis goes further to
predict that the converse is also true, i.e., that up to an issue of scale, all ridges
on the ∆max

i,j landscape are axial lines.
Here we sample isovist fields by generating isovists for the set of points on

a regular lattice [2, 21, 8, 22]. Specifically, we are interested in the isovist field
defined by the length of the longest straight line across the isovist at each mesh
point, (i, j). This measure is denoted the maximum diametric length, ∆max

i,j [4],
or the maximum of the sum of the length of the lines of sight in two opposite
directions [8, p 204]. To simplify notation, we will prefer the former term.
First, we generate a Digital Elevation Model (DEM) [23] of the isovist field,

where ∆max
i,j is associated with mesh point (i, j) [21, 8]. Our algorithm detects

ridges by extracting the strict maxima (i.e. a cell with value stricly greater than
any of its nearest neighbours [24]) of the discrete DEM. Next, we use an image
processing transformation (the Hough Transform) on a binary image containing
the local maxima points which lets us rank the detected lines in the Hough
parameter space. Finally, we invert the Hough transform to find the location of
axial lines on the original image.



The process of using the HT to detect lines in an image involves the com-
putation of the HT for the entire image, accumulating evidence in an array for
events by a voting (counting) scheme and searching the accumulator array for
peaks which hold information of potential lines present in the input image. The
peaks provide only the length of the normal to the line and the angle that the
normal makes with the y-axis. They do not provide any information regarding
the length, position or end points of the line segment in the image plane [25].
Our line detection algorithm starts by extracting the point that has the largest
number of votes on parameter space, which corresponds to the line defined by
the largest number of collinear local maxima of ∆max

i,j , and proceeds by extract-
ing lines in rank order of the number of their votes on parameter space. One of
us [4] has previously proposed rank-order methods as a rigorous formulation of
the procedure originally outlined of “first finding the longest straight line that
can be drawn, then the second longest line and so on (. . . )” [1, p 99].
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Fig. 1. (a) Plot of the Maximum Diametric Length (∆max
i,j ) isovist field for an ’H’

shapped open space structure. (b) Zoom-in (detail) of (a) showing the ridges on the
longer arms of the ’H’ shape. Arrows point to the ridges o nboth figures.

To test the hypothesis that axial lines are equivalent to ridges on the ∆max
i,j

surface, we start with a simple geometric example: an ‘H’ shaped open space
structure. As illustrated in Fig. 1, axial lines are equivalent to ridges for this
simple geometric example, if extended until the borders on the open space. In-
deed, one confirms this both in Fig. 1a) and Fig. 1b) by properly zooming-in the
∆max
i,j landscape. Next, we aim at developing a method to extract these ridges as

lines by sampling. In Fig. 2a), we plot the local maxima of the discretized ∆max
i,j

landscape, which are a discretized signature of the ridges on the ∆max
i,j contin-

uous field. Figure 2b) is the Hough transform of Fig. 2a) where θ goes from 0̊
to 180̊ in increments of 1̊ . The peaks on Fig. 2b) are the maxima in parameter
space, (ρ, θ), which are ranked by height in Fig. 2c). Finally, the ranked maxima
in parameter space are inverted onto the coordinates of the lines in the original
space, yielding the detected lines which are plotted on Fig. 2d).



Having tested the hypothesis on a simple geometry, we repeat the procedure
for the French town of Gassin –see Fig. 3. We have scanned the open space
structure of Gassin [1, p 91] as a binary image and reduced the resolution of the
scanned image to 300 dpi (see inset of Fig. 3). The resulting image has 171×300
points, and is read into a Matlab matrix.

Fig. 2. (a) Local maxima of the Maximum Diametric Length (∆max
i,j ) for the ’H’ shaped

structure in Fig. 1. (b) Hough transform of (a). (c) rank of the local maxima of the
surface in (b). (d) The Hough transform is inverted and the 6 highest peaks in (c)
define the axial lines shown.

Next we use a ray-tracing algorithm in Matlab (angle step=0.01̊ ) to deter-
mine the ∆max

i,j measure for each point in the mesh that corresponds to open
space. The landscape of ∆max

i,j is plot on Fig. 3. To extract the ridges on this
landscape, we determine the local maxima. Next, we apply the Hough Trans-
form, as in the ‘H’ shape example, and invert it to determine the 6 first axial lines
(see Fig. 4). We should alert readers to the fact that as we have not imposed any
boundary conditions on our definition of lines from the Hough Transform, three
of these lines intersect building forms illustrating that the technique is identify-
ing the dominant linear features in image space but ignoring any obstacles which
interfere with the continuity of these linear features. We consider that this is a
detail that can be addressed in subsequent development of the approach.
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Fig. 3. Plot of the Maximum Diametric Length (∆max
i,j ) isovist field for the town of

Gassin. The inset shows the scanned image from [1]

3 Where Do We Go From Here?

Most axial representations of images aim at a simplified representation of the
original image, in graph form and without the loss of morphological information.
Therefore, most shape graphs are invertible —a characteristic not shared with
axial maps, as the original shape cannot be uniquely reconstructed from the
latter. Also, metric information on the nodes length is often stored together with
the nodes (the latter often being weighted by the former), whereas it is discharged
in axial maps. On the other hand, most skeletonizations aim at a representation
of shape as the human observer sees it and therefore aim mostly at small scale
shapes (images), whereas the process of generating axial maps assumes that the
observer is immersed in the shape and aims at the representation of large scale
shapes (environments). Nevertheless, we have shown that the extraction of axial
lines can be accomplished with methods very similar to those routinely employed
in pattern recognition and computer vision (e.g. the Medial Axial Transform and
the Hough Transform).
The hypothesis has successfully passed the test of extracting axial lines both

for a simple geometry and for a classical case study in Space Syntax — the town of
Gassin. Indeed, l2,detected, l3,detected, l4,detected, l5,detected and l6,detected in Fig. 4
all match reasonably well lines originally drawn [1]. Differences between original



Fig. 4. (a) Axial lines for the town of Gassin [1]. (b) Local maxima of ∆max
i,j (squares)

and lines detected by the proposed algorithm.

and detected lines appear for l3,original and l3,detected, where the mesh we used
to detect lines was not fine enough to account for the detail of the geometry
and the HT counts collinear points along a line that intersects buildings, and
for l5,original and l5,detected, where the original solution is clearly not the longest
line through the space.
Fig. 4 highlights two fundamental issues. First, defining axial lines as the

longest lines of sight may lead to unconnected lines on the urban periphery. The
problem is quite evident with line l1,original in Fig. 4a) [1, p 91], where the so-
lution to the longest line crossing the space is l1,detected –see Fig. 4b). Thus,
the price to pay for a rigorous algorithm may be that not all expected connec-
tions are traced. The second problem is an issue of scale, as one could continue
identifying more local ridges with increasing image resolution (see discussion in
[4]). We believe that the problem is solved if the width of the narrowest street
is selected as a threshold for the length of axial lines detected from ridges on
isovist fields. Only lines with length higher than the threshold are extracted. We
speculate that this satisfies almost always the condition that all possible links
are established, but are aware that more lines may be extracted automatically
than by human-processing. Again, this seems to be the price to pay for a rigorous
algorithm.



By being purely local, our method gives a solution to the global problem of
tracing axial maps in a time proportional to the number of mesh points. Thus,
algorithm optimization is akin to local optimization (mesh placement and ray-
tracing algorithm). Although most of the present effort has been in testing the
hypothesis, it is obvious that regular grids are largely redundant. Indeed, much
optimization could be accomplished by generating denser grids near points where
the derivative of the boundary is away from zero (e.g. turns) to improve detec-
tion at the extremities of axial lines. Also, the algorithm could be improved by
generating iterative solutions that would increase grid and angle sweep resolu-
tions until a satisfactory solution would be reached or by parallelizing visibility
analysis calculations [26].
Our approach to axial map extraction is preliminary as the HT detects only

line parameters while axial lines are line segments. Nevertheless, there has been
considerable research effort put into line segment detection in urban systems,
generated mainly by the detection of road lane markers [27, 28], and we are
confident that further improvements involve only existing theory.
This note shows that global entities in urban morphology can be defined

with a purely local approach. We have shown that there is no need to invoke the
concept of convex space to define axial lines. By providing rigorous algorithms
inspired by work in pattern recognition and computer vision, we have started to
uncover problems implicit in the original definition (disconnected lines at bound-
ary, scale issues), but have proposed working solutions to all of them which, we
believe will engage other disciplines in the effort of gaining insight into urban
morphology. Finally, we look with considerable optimism to the automatic ex-
traction of axial lines and axial maps in the near future and believe that auto-
matic processing of medium to large scale cities may be only a few years away
from being implemented on desktop computers.
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