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With semiconductors we can:

- control the electron density;

- grow crystals of high purity and high carrier

mobility;

- engineer the band-structure;

All this allows us to fabricate low-dimensional 

electron gases (LDEG).

In an heterostructure electrons are confined to a 

plane: a two-dimensional electron gas (2DEG).

Lateral constriction using a pair of metallic gates

produces a one-dimensional (1D) wire:
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COMPUTER

At low temperatures the mean free path is larger than 

the length of the 1D wire: transport is ballistic.

By varying the voltage on the gates, the width of the 

constriction, and the number N of occupied 1D sub-

bands, is varied.

Each occupied 1D subband is fully transmitting and 

carries the same amount of current, so the conductance 

is given by the Landauer formula:

It can be shown that the thermo-electric power in 

the ballistic regime follows the Cutler-Mott 

relation:

which means that the thermopower is proportional 

to the transconductance. In particular, the 

thermopower is zero in correspondence of the 

conductance plateaux:

Earlier measurements of the thermal 

conductance (Molenkamp 1992, see 
figure above) suggest that 1D  wires in 

the ballistic regime follow the 

Wiedemann-Franz law:
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Samples
The samples used in this work are of higher 

quality than in Molenkamp 1992.

The wafers were fabricated from a wafer

grown by molecular beam epitaxy. The 2DEG 

is 100 nm below the sample surface, with a 

carrier density of 3×1011 cm-2 and a mobility

of 5×106 cm2/Vs.

The three split-gates have a gap 0.5 µm long 

and 0.65 µm wide, and form a 6 µm × 10 µm 

box containing about 2×105 electrons.

Design

The electrons in the heating channel are heated above the
lattice temperature TL by passing a current IH through the

electron gas. The electron-electron scattering rate is much

faster than all other rates, and so electrons in the heating

channel equilibrate at a local temperature TH >TL.

We modify the device of Molenkamp 1992 by introducing a 
closed electron box, whose temperature Tbox is measured from

the thermopower in the linear regime of constrictions B and C
(Appleyard 1998).

The electrons in the closed box have a well-defined

temperature and for a given IH it produces larger 

thermovoltages than the more open structures. The 

temperature Tbox is determined by the heat balance equation:

where the last term on the right is the heat lost through 

electron-phonon interaction.

Setup
The internal oscillator of the digital lock-in was 

used to apply the heating current at frequency f = 32 
Hz. The thermovoltage Vth

box was measured by the 

same lock-in at a frequency 2f, after being pre-
amplified.

The voltages on the split-gates were applied by a 

digital-analog converter (not shown in the drawing).

Quantized Thermal Conductance

The measurements were performed by fixing the gate voltage for 

constrictions B (the thermometer) and C (the reference), while 

sweeping the voltage for A. At low temperatures (T < 0.5 K) the 
electron-phonon interaction is negligibly small, therefore the variation 

of Tbox is determined by the variation of κA.

The measured thermovoltage characteristics Vth
box(Vg) follow the 

shape of the conductance characteristic GA(Vg), which means that the 

thermal conductance κA(Vg) shows the same subband structure.

Wiedemann-Franz law

Since κA shows the same structure as GA, we can assume that it follows 

a Wiedemann-Franz relation, although the proportionality constant is 

not fixed. We define a thermally derived conductance (Chiatti 2006):

0.7 structure

For GA < 2e
2/h the Wiedemann-Franz law is violated:

• GA ~ 0.7(2e
2/h), know as the “0.7 structure”;

• ĜA ~ e
2/h.

This is more evidence that the single electron picture breaks down 

below 2e2/h. However, a theoretical explanation is still lacking.
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where Vth
H = Vth

box(0.5 V) is the thermovoltage when constriction A is 
not defined, and so the electron thermometer is in direct contact with 

the heating channel.

We can see in the figure above that, for GA ≥ 2e2/h, ĜA(Vg) shows the 
same quantization as GA(Vg) for the first four subbands.


