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Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an

enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of L-a-aminoadipic semialdehyde/

L-�1-piperideine 6-carboxylate. However, whilst this is a highly treatable disorder, there is general uncertainty about when

to consider this diagnosis and how to test for it. This study aimed to evaluate the use of measurement of urine L-a-aminoadipic

semialdehyde/creatinine ratio and mutation analysis of ALDH7A1 (antiquitin) in investigation of patients with suspected or

clinically proven pyridoxine-dependent epilepsy and to characterize further the phenotypic spectrum of antiquitin deficiency.

Urinary L-a-aminoadipic semialdehyde concentration was determined by liquid chromatography tandem mass spectrometry.

When this was above the normal range, DNA sequencing of the ALDH7A1 gene was performed. Clinicians were asked to

complete questionnaires on clinical, biochemical, magnetic resonance imaging and electroencephalography features of patients.
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The clinical spectrum of antiquitin deficiency extended from ventriculomegaly detected on foetal ultrasound, through abnormal

foetal movements and a multisystem neonatal disorder, to the onset of seizures and autistic features after the first year of life.

Our relatively large series suggested that clinical diagnosis of pyridoxine dependent epilepsy can be challenging because:

(i) there may be some response to antiepileptic drugs; (ii) in infants with multisystem pathology, the response to pyridoxine

may not be instant and obvious; and (iii) structural brain abnormalities may co-exist and be considered sufficient cause of

epilepsy, whereas the fits may be a consequence of antiquitin deficiency and are then responsive to pyridoxine. These findings

support the use of biochemical and DNA tests for antiquitin deficiency and a clinical trial of pyridoxine in infants and children

with epilepsy across a broad range of clinical scenarios.

Keywords: antiquitin; pyridoxine; epilepsy; �-AASA; ALDH7A1

Abbreviations: �-AASA = L-�-aminoadipic semialdehyde; P6C = L-�1-piperideine 6-carboxylate; PDE = pyridoxine-dependent
epilepsy

Introduction
Pyridoxine-dependent epilepsy (PDE) (MIM 266100) was first

described in 1954 (Hunt, 1954). In classical PDE, seizures are

observed within the first month of life, often within hours of

birth (Baxter, 2001). They are resistant to antiepileptic drugs but

are controlled within an hour by 50–100 mg of pyridoxine, usually

given intravenously. The epilepsy remains controlled by

5–10 mg/kg/day of oral pyridoxine; fits may restart within days

when pyridoxine is stopped but are rapidly controlled again when

treatment is restarted. In atypical (late onset) PDE, seizures start

later (up to 2 years) (Baxter, 2001). Up to seven days of pyridox-

ine therapy may be required before seizure response. Seizure free-

dom may then continue for up to five years following withdrawal.

Various additional clinical features have been described in patients

with classical PDE including abnormal foetal movements, features

suggestive of birth asphyxia or hypoxic ischaemic encephalopathy,

irritability, abnormal cry, exaggerated startle response, dystonic

movements, respiratory distress, abdominal distension, bilious

vomiting, hepatomegaly, hypothermia, shock and acidosis.

Seizures may be of almost any type but generalized tonic-clonic

seizures predominate. The EEG is usually severely abnormal

(Nabbout et al., 1999); possible patterns include burst suppression,

hypsarrhythmia and multiple spike-wave discharges. Imaging may

be normal or may demonstrate cerebellar dysplasia, hemispheric

hypoplasia or atrophy, neuronal dysplasia, periventricular hyperin-

tensity or intracerebral haemorrhage (Baxter, 2001).

Until recently the biochemical basis of PDE was unknown and

diagnosis was exclusively clinical. In 2000, elevation of pipecolic

acid concentrations in plasma and CSF of patients with PDE was

described (Plecko et al., 2005). This however is not specific for

PDE with elevation also demonstrated secondary to liver disease

and in peroxisomal defects (Peduto et al., 2004). Recently we

showed that a group of children with classical PDE had mutations

in ALDH7A1 that abolished the activity of antiquitin as an

L-�-aminoadipic semialdehyde (�-AASA)/L-�1-piperideine 6-

carboxylate (P6C) dehydrogenase (Mills et al., 2006). In solution,

�-AASA is in equilibrium with P6C, its cyclic Schiff base. These

children accumulated �-AASA in their body fluids and P6C was

shown to inactivate the active form of pyridoxine (pyridoxal phos-

phate) by the formation of a Knoevenagel condensation product.

Mutations in the ALDH7A1 gene in other children with PDE have

been reported subsequently (Kanno et al., 2007; Plecko et al.,

2007; Salomons et al., 2007; Kaczorowska et al., 2008; Bennett

et al., 2009; Gallagher et al., 2009; Kluger et al., 2009; Striano

et al., 2009), including in patients who had been previously diag-

nosed as having ‘folinic acid responsive seizures’. To characterize

further the phenotypic spectrum of this disorder we investigated

individuals with clinically proven or suspected PDE by measure-

ment of urinary �-AASA and mutational analysis of the

ALDH7A1 gene.

Materials and methods

Patients
This study was approved by the Ethics Committee of the UCL Institute

of Child Health and Great Ormond Street Hospital. Urine samples

were sent to our laboratories for analysis of urinary �-AASA/creatinine

ratio because the primary clinician suspected or wanted to rule out

PDE. A preliminary analysis indicated that the ion chromatograms were

of inferior quality when very dilute samples were analysed therefore a

repeat sample was requested. The results included in this article are all

on urine samples with a creatinine 40.5 mM.

Of the 272 urine samples with creatinine 40.5 mM, 269 samples

(from 243 patients) were from children with a seizure disorder

and three were asymptomatic heterozygote first degree relatives of

patients shown to have two ALDH7A1 mutations. When a urine

sample was shown to have an elevated �-AASA/creatinine ratio rela-

tive to the control range established using urine samples from normal

children (Mills et al., 2006), a repeat urine analysis or sequence ana-

lysis of the ALDH7A1 gene was offered to the family. Of the

269 samples from symptomatic patients, seven were duplicate urine

samples (i.e. seven patients, 14 samples), eight were triplicate samples

(i.e. eight patients, 24 samples) and four samples were from one pa-

tient in order to determine whether an elevated value could be con-

firmed. Of the 243 patients (208 urine samples from 208 patients;

10 urine samples from five patients; 24 urine samples from eight

patients; four urine samples from one patient), 222 who had no

ALDH7A1 mutations or no reported response to pyridoxine and the

three asymptomatic heterozygotes were assigned to the control group.

Values of urinary �-AASA/creatinine ratio for this group were subse-

quently used to establish new age-specific control ranges for children

investigated for PDE (see Results section for further details).
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ALDH7A1 sequencing was undertaken on 21 patients who had ele-

vated urinary �-AASA, in addition to 16 patients with a clinical diag-

nosis of PDE (Baxter, 2001) in whom urinary �-AASA/creatinine ratio

was not measured. For all patients shown to have a mutation or mu-

tations in the ALDH7A1 gene, the referring clinician was asked to fill in

a questionnaire regarding clinical, biochemical, MRI and EEG features.

Detailed histories of patients who demonstrated a severe phenotype,

classical PDE with additional features, cortical malformations and

late-onset PDE are included in the online Supplementary material.

Biochemical methods
The chemical synthesis of AASA/P6C was as described previously

(Mills et al., 2006). Essentially, allysine ethylene acetal was deblocked

by mixing with Amberlyst-15 (dry) ion exchange resin. The resin was

subsequently washed twice with 1 ml water prior to elution of AASA/

P6C from the resin with 25% ammonia solution. The eluant was dried

under nitrogen at room temperature and resuspended in water.

Measurement of �-AASA in urine was performed using liquid-

chromatography-tandem mass spectrometry (Mills et al., 2006). One

nmol of 15N-�-aminoadipic acid was added to 10 ml of urine prior to

derivatization with 9-fluorenylmethyl chloroformate. Reaction mixture

(15 ml) was analysed on a 5 cm� 2.1 mm, 5 mm Discovery� HS F5

high-pressure liquid chromatography column (Supelco). The fluorenyl-

methyloxycarbonyl derivatives of �-aminoadipic semialdehyde and
15N-aminoadipic acid were eluted from the column. The mobile

phase consisted of A (4 mM ammonium acetate, pH 5.0) and B

(100% acetonitrile) and the following gradient was used: 0–1.9 min

(95% A and 5% B; 0.5 ml/min), 2–10 min (80% A and 20% B to 20%

A and 80% B; 0.25 ml/min), 10–12 min (80% A and 20% B to 100%

B; 0.25–0.5 ml/min), 12–16 min (100% B; 0.5 ml/min). The column

was then re-equilibrated prior to the next sample injection. All gradient

steps were linear. 15N-Aminoadipic acid and �-AASA were analysed

in positive ion mode. The multiple reaction monitoring transitions

monitored were 366.044144.04 m/z and 383.024161.06 m/z for

�-AASA and 15N-aminoadipic acid, respectively.

The concentration of creatinine was determined by liquid-

chromatography-tandem mass spectrometry, using a Waters 2795XE

high-pressure liquid chromatograph coupled to an electrospray triple

quadrupole mass spectrometer (QuattroMicro, Waters, UK). Ten

microlitres of 5 mM creatinine-d3 (CDN isotopes) were added to

10 ml of urine and diluted with 200 ml of water. Ten microlitres of

the mixture was analysed on a 5 cm�2.1 mm, 5 mm Discovery� HS

F5 high-pressure liquid chromatography column (Supelco). The mobile

phase consisted of A (4 mM ammonium acetate, pH 5.0) and B

(MeOH) and the following gradient was used: 0–1.9 min (95% A

and 5% B; 0.5 ml/min), 1.9–2 min (95% A and 5% B to 100% A;

0.2 ml/min) 2–6 min (100% B; 0.5 ml/min), 6.01–10.00 min (95% A

and 5% B; 0.5 ml/min). All gradient steps were linear. The multiple

reaction monitoring transitions monitored were 113.70443.90 m/z

and 116.70446.90 m/z for creatinine and creatinine-d3, respectively.

All control urine samples featured in this article were measured by

the laboratory in London whilst those of patients with clinical PDE

were measured either in London or Amsterdam. The concentration

of pyridoxal phosphate in CSF was determined using published meth-

ods (Ormazabal et al., 2008).

ALDH7A1 gene analysis
Mutation analysis of the ALDH7A1 gene was essentially as described

previously (Mills et al., 2006). The 18 exons and intron/exon bound-

aries of the antiquitin gene were amplified by polymerase chain

reaction using intronic primers. A typical polymerase chain reaction

reaction using 100 ng of genomic DNA contained 25 pmol of each

primer, 1�NH4 reaction buffer (Bioline), 0.2 mmol/l deoxynucleotide

triphosphates and 0.25ml (1.25 units) BioPro DNA polymerase (Bioline)

(added after a ‘hot start’). PCRx Enhancer System (Invitrogen) was

used for amplification of exon 6. Mutations were detected by directly

sequencing the amplified regions using the BigDye Terminator v. 3.1

Cycle Sequencing Kit (Applied Biosystems) and the MegaBACE capil-

lary DNA sequencer (Amersham Biosciences). All new sequence

changes were confirmed by digestion with a restriction enzyme or

by amplification created restriction site polymerase chain reaction.

Numbering of mutations is based on the Ensembl protein-coding

gene, ENSG00000164904 (http://www.ensembl.org) with +1 as

the A of the ATG initiation codon and the Ensembl transcript,

ENST00000297542. Any mutations that were believed to have an

affect on splicing were analysed using a splice site prediction pro-

gramme (http://fruitfly.org/seq_tools/splice.html).

Results

Urinary a-AASA as a diagnostic test
Analysis of urinary �-AASA by liquid-chromatography-tandem

mass spectrometry in 272 samples identified 21 new patients

with PDE; the urinary �-AASA/creatinine ratio (Fig. 1 and Table

1) was well above the control range (51 mmol/mol creatinine)

(Mills et al., 2006) and sequencing of ALDH7A1 showed muta-

tions. Two of these patients had a second urine sample analysed,

therefore two values are included in Fig. 1. The �-AASA/creatinine

ratios of the patients with ALDH7A1 mutations were 47 mmol/

mol creatinine in children 56-months-old and from 6 months to

1 year (six samples from four patients) and 42 mmol/mol creatin-

ine for children over 1 year of age (16 samples from 16 patients).

There was one exception; one symptomatic and pyridoxine re-

sponsive child (F19), for whom we only found one heterozygous

mutation, had a urinary �-AASA concentration of 1.3 mmol/mol

creatinine. This was only just above the upper limit of the control

range of the laboratory in Amsterdam where this sample was

analysed. Two infants aged56 months, who did not fit the clinical

criteria for definite PDE (P1 and P2), had duplicate samples with

urinary �-AASA excretion in the range 2.2–4.6 mmol/mol creatin-

ine; ALDH7A1 was sequenced for these two infants and no mu-

tations were found. A third urine sample from P1 and P2 showed

ratios of 51.0 and 51.2, respectively. Hence a new threshold

for ALDH7A1 sequencing was established for the laboratory in

London (56 months, 55 mmol �-AASA/mol creatinine; 6–12

months, 52.5 mmol �-AASA/mol creatinine; 412 months,

52 mmol �-AASA/mol creatinine). Subsequently, 12 other urine

samples were also found to have a urinary �-AASA concentration

41.0 mmol �-AASA/mol creatinine but below these thresholds.

At least one repeat sample from nine of the 12 showed a value

51.0 and all were below the new thresholds and so they were

assigned to the control group. Of the 249 urine �-AASA results

assigned to the control group [no mutations (two patients, seven

samples), no diagnostic response to pyridoxine and/or alternative

diagnosis (239 samples, 217 patients) or asymptomatic heterozy-

gotes (three patients)], 95 were aged 56 months, 61 were aged
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6–12 months, and 93 were over 1 year (Figs 1 and 2). Analysis of

the �-AASA/creatinine ratios in these three groups using the

Dunn’s multiple comparison test showed that the three groups

were significantly different from one another indicating that the

urine �-AASA excretion is age-dependent.

An additional 16 patients with a clinical phenotype of PDE, in

whom �-AASA was not measured, have also been confirmed

genetically.

Mutations
Mutations were identified in ALDH7A1 of 37 individuals (Table 1)

from 30 families. Seventeen of these were novel mutations and

included missense, nonsense and splice site mutations as well as

deletions and a single-base insertion. All other mutations have

been published previously (Mills et al., 2006; Kanno et al.,

2007; Plecko et al., 2007; Salomons et al., 2007; Kaczorowska

et al., 2008; Bennett et al., 2009; Gallagher et al., 2009; Kluger

et al., 2009; Striano et al., 2009). The novel missense mutations

P169S, P78L, W175G, S289L, Q300R and S448L were not found

in ethnically matched controls (Caucasian; n = 96). Similarly, the

novel missense mutations A129P, A149E and T398P were also

not found in ethnically matched controls (Pakistani; n = 96). A

splice site prediction tool was used to predict the effect of the

novel splice site mutations; c.1482�1G4C and c.1405+2T4C are

both predicted to result in the abolition of splice sites. For the

novel splice mutation c.611+5G4A, however, the prediction tool

suggests that the extremely high probability score of 0.99 for the

authentic donor site only drops to 0.92 in the presence of the

mutation. However, this mutation was not found in 96 ethnically

matched control samples and analysis of urinary �-AASA (Table 1)

confirmed the clinical diagnosis of PDE.

Only one mutated allele has been identified for patients F19,

F16 and F8. Two of these patients had clearly elevated levels of

urinary �-AASA (Table 1). In one (F19) the elevation is equivocal

(Supplementary material) but clinically he had late onset PDE, with

seizures recommencing within 10 days of pyridoxine withdrawal

on three occasions.

Biochemical data
For some patients, data were available for CSF and plasma analyses

prior to treatment (Tables 2 and 3). Additionally we had data from

two patients described previously (H1 and H2) (Mills et al., 2006).

In all of these patients, CSF threonine was elevated. In three

patients in whom 3-methoxytyrosine was measured, this was

elevated prior to treatment and elevated 38 days after a single

intravenous dose of pyridoxine. CSF glycine was only elevated in

3/5, taurine in 1/2 and histidine in 1/4. Alanine, glutamine, phenyl-

alanine and methionine were elevated in 3/4. Arginine was low in
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2/4. CSF glutamate and aspartate were low-normal or low. Plasma

analyses showed that all patients had elevated plasma glycine; a

number of other amino acid abnormalities were seen but inconsist-

ently or with fewer than three results available.

Clinical phenotypes
The available clinical data confirmed that the spectrum of add-

itional features previously described in PDE (Baxter, 2001), occur

in antiquitin deficiency. Our series also identified some new clinical

features including profound electrolyte derangement (hypo-

calcaemia and hypomagnesaemia) and endocrine disturbance

(hypothyroidism, diabetes insipidus) that broaden the clinical

phenotype (Table 4 and Supplementary material). This series high-

lights some of the practical difficulties in relying upon clinical

response to pyridoxine to make a diagnosis of, or to exclude,

PDE. For example, 38% of patients with antiquitin deficiency

had seizures that were partially controlled by antiepileptic drugs,

and in addition 14% did not show a clear clinical or EEG response

to pyridoxine—often when other antiepileptic drugs were being

given or in the presence of electrolyte disturbance or infection.

Following withdrawal of pyridoxine, fits took up to 51 days to

recur (mean = 13.5 days; median = 9 days, range 1–51 days;

n = 11).

In two late-onset patients (F20 and F19), seizures commenced

at 8 and 14 months, respectively. F20 had two mutations in the

ALDH7A1 gene and learning difficulties responded to an increased

dose of pyridoxine (Supplementary material) (Baxter, 2001). In the

case of F19 (Supplementary material) both seizures and autistic

features responded to treatment with pyridoxine.

Reported seizure types (Table 4) included clonic (91%),

myoclonic jerks (62%) and tonic (44%). The EEG abnormalities

(Table 5) included burst suppression (21%) and hypsarrythmia

(5%). Normal EEG recordings have been reported in antiquitin

deficiency both prior to and following pyridoxine treatment

(F20, F13). In two children (F4.2 and F19), abnormal movements

Table 2 CSF biochemistry of patients with PDE with proven mutations in the ALDH7A1 gene prior to treatment

CSF concentration (mM)

Patient identifier H1a F4.2 F29 Normal range F1.2 F1.1 Normal range

Threonine 78 53 97 10–45 107 118 0–101

Glycine 8 5 28 4–14 18 17 3.7–7.6

Taurine 7 13 n.d. 3–10 n.d. n.d. n.d.

Histidine 40 18 n.d. 3–18 23 36 8–29

Alanine 46 18 n.d. 16–36 45 70 17–37

Aspartate n.d. n.d. n.d. n.d. 1 1 3.1–9.9

Arginine 15 11 n.d. 15–40 9 13 10–30

Methionine 9 6 n.d. 2–6 11 15 0.7–6.0

Glutamine 1126 549 n.d. 420–600 1063 971 363–785

Glutamate 3 2 n.d. 5–17 2 0 0–7.8

Phenylalanine 27 16 n.d. 5–15 37 43 0.6–23

Serine 49 46 n.d. 10–81 45 57 27–77

3-methoxytyrosine n.d. 0.13 (11d)b

0.44 (38d)c
1.2 50.3 n.d. n.d.

Peaks seen in folinic acid
dependent epilepsy

Present Present Not seen

These data were collected from three different laboratories using different methodologies for CSF amino acid analysis. For this reason the reference range for the local
laboratory is given to the right of each patient’s results. n.d. = not determined.
Bold values indicate above the normal range for the measuring laboratory.

Underlined values indicates below the normal range for the measuring laboratory.
a Mutation analysis published previously (Mills et al., 2006).
b Pyridoxine 50 mg i/v had been given at 7 d (4 days previously).
c Pyridoxine 50 mg i/v had been given at 7 d (38 days previously).
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Figure 2 Urinary �-AASA concentrations of controls. All of

these controls were measured in the laboratory in London.

Number of controls measured: age56 months = 95; age

6–12 months = 61; age412 months = 93. Solid line represents

the mean. Dotted line indicates the lowest measurement of

�-AASA in age-related patients with PDE in whom at least one

mutation in ALDH7A1 has been demonstrated. Using the

Dunn’s multiple comparison test, the three control groups are

found to be significantly different from each other (P50.001).

The asterisk indicates that Patient F19 had a urine excretion52

but was measured in the laboratory in Amsterdam and we have

found one ALDH7A1 mutation (see Supplementary material).
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were not accompanied by EEG changes and may have been due

to dystonia.

The MRI findings (Table 6) in antiquitin deficiency were diverse

varying from normal to significant cortical dysplasia or hydroceph-

alus requiring a ventriculoperitoneal shunt. There was no apparent

relationship between biochemical (�-AASA) or genetic mutation

and MRI or EEG findings.

One patient underwent focal resective epilepsy surgery;

neuropathology of the cortex showed Grade II cortical dysplasia

(Supplementary material).

Discussion

Urinary a-AASA as a diagnostic test
This study confirms that, in infants and children with a seizure

disorder, elevated urinary �-AASA excretion is a good marker

for detecting individuals who have PDE due to mutations in the

ALDH7A1 gene, provided that age-related control ranges are

used. Because the ALDH7A1 gene was not sequenced in all pa-

tients with normal �-AASA excretion, we cannot be completely

sure that the test does not produce false negative results, but

this is unlikely as none of these patients were shown to meet

the clinical criteria for PDE.

Mutations
This article takes the number of published disease causing

mutations in ALDH7A1 to 64. Whilst many of the mutations

were ‘private’ mutations some of the exons appear to be mutation

‘hot spots’. Our analyses further strengthen published findings

(Plecko et al., 2007; Salomons et al., 2007; Bennett et al.,

2009); that E399Q (exon 14) is a common mutation responsible

for �30% of mutated alleles. An additional six mutations (nine

families) are found in exon 14. Other ‘hot spots’ include exon 6

(five mutations; eight families), exon 11 (six mutations; seven

families), exon 9 (5 mutations; 14 families) and exon 4 (three

mutations; nine families). The ‘silent’ mutation (c.750G4A;

exon 9) (Salomons et al., 2007) has now been detected in 11

patients, all of whom are of Caucasian origin. These data suggest

that an initial screen of ALDH7A1 in Caucasian patients should

include exons 4, 6, 9, 11 and 14, as �60% of the reported mu-

tations to date have been located in these regions of the gene.

The novel missense mutations P169S, P78L, W175G, S289L,

Q300R and S448L all occur in regions that are highly conserved

in antiquitin across species. P169 is present in the majority of the

aldehyde dehydrogenase superfamily (to which antiquitin belongs)

and is one of the 12 invariant residues that are found in more

than 95% of 145 full-length aldehyde dehydrogenase-related

sequences when they were aligned (Perozich et al., 1999). This

proline residue lies at a critical turn in the class 3 aldehyde

dehydrogenase structures. The homozygous missense mutation

Q300R occurs in a region of the antiquitin gene that is not only

highly conserved across all species (except soybean) but is indeed

one of the 37 residues that have been shown to be conserved in

at least 80% of the aldehyde dehydrognase family (Perozich et al.,

1999), suggesting that it may have an important structural and/or

functional role of the enzyme as an aldehyde dehydrogenase.

Conversely, whilst P78, W175 and S289 are conserved in antiqui-

tin across species, they are not conserved across the aldehyde

dehydrogenase superfamily, suggesting that these residues are im-

portant more specifically for the function/activity of the �-AASA

dehydrogenase and not for aldehyde dehydrogenases per se.

The novel missense mutations A129P, A149E and T398P do not

occur in such highly conserved regions of antiquitin; A129 and

A149 are conserved across mammalian species whilst residue

398 is T in most species but not in plants, rat, mouse and opos-

sum. Because of the conformational rigidity of proline compared

to other amino acids it is likely that the substitution of A129 or

Table 3 Plasma biochemistry of patients with PDE with proven mutations in the ALDH7A1 gene prior to treatment

Plasma concentration (mM)

Patient identifier F16 H2a H1a Normal range F1.2 F1.1 Normal range

Threonine 138 127 92 70–220 129 116 70–190

Glycine 409 437 349 100–330 415 573 140–300

Taurine 155 200 221 40–140 99 38 35–110

Histidine 105 129 100 30–150 54 58 60–105

Alanine 529 102 336 150–450 243 470 190–450

Aspartate n.d. n.d. n.d. n.d. 3 3 5–10

Arginine 67 34 26 40–120 10 28 40–110

Citrulline n.d. n.d. n.d. n.d. 6 12 10–35

Glutamine 691 858 605 480–800 767 681 400–700

Glutamate 156 27 26 25–130 92 78 30–100

Proline 267 510 547 85–290 313 241 100–280

Serine 456 146 124 90–290 144 199 65–279

n.d. = not determined.
Bold values indicate above the normal range for the measuring laboratory.
Underlined values indicate below the normal range for the measuring laboratory.
a Mutation analysis published previously (Mills et al., 2006).
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T398 with this amino acid affects the secondary structure and

activity of the protein.

The novel insertion of a single nucleotide c.191_192insA and

the single base deletions, c.758delA and c.749delT, are all pre-

dicted to result in frameshifts in the nucleotide sequence. The

insertion would be predicted to cause a frameshift in the

nucleotide sequence resulting in a change of the amino acid se-

quence creating a premature termination codon

(17LGLREENEGVY27 . . .! 17LGLSRGKNGRV27X). This predicts a

highly truncated protein and the coding mRNA is likely to be

degraded by nonsense-mediated mRNA decay. c.758delA would

alter the next three amino acid residues

(250VGKQVGLM257 . . .! 250VGKRWA255X) prior to introducing

an in-frame stop codon, which would result in a highly truncated

protein of 255 instead of 511 amino acid residues. c.[749delT] is

predicted to result in a frameshift in the nucleotide sequence alter-

ing the next six amino acid residues

(246GSTQVGKQ253 . . .! 246GSTQGENRWA255X) prior to introdu-

cing an inframe stop codon. This new stop codon is at the same

position as that which is introduced by the deletion c.758delA. The

deletion c.787+3delAAGT, however, is predicted to affect splicing

resulting in ablation of the normal donor site. The novel nonsense

mutation, R53X would be expected to result in a severely trun-

cated protein and mRNA that is degraded by nonsense-mediated

decay. Unfortunately a source of cDNA was not available to char-

acterize any of these mutations further.

Biochemical phenotype
A comparison of pre-treatment CSF amino acid profiles in patients

with antiquitin deficiency (PDE) and pyridoxine-50-phosphate

oxidase deficiency (pyridoxal phosphate-dependent epilepsy)

(Table 7) shows that differential diagnosis based on amino acid

profiles and amine metabolites is not straightforward (Hoffmann

et al., 2007). Biochemical analyses showed evidence of secondary

deficiencies of several pyridoxal phosphate-dependent enzymes.

Raised levels of CSF threonine, glycine, taurine and

3-methoxytyrosine were evident in 450% of patients with anti-

quitin deficiency and pyridoxine-50-phosphate oxidase deficiency,

suggesting that biochemical abnormalities in PDE may mimic

those of pyridoxine-50-phosphate oxidase deficiency. Differentiat-

ing the two disorders should therefore include �-AASA measure-

ment [for antiquitin deficiency (PDE)], alongside assessment of the

response to pyridoxine and/or pyridoxal phosphate. Several previ-

ous reports (Kurlemann et al., 1992; Gospe et al., 1994; Goto

et al., 2001) have suggested that an imbalance between excita-

tory (glutamate) and inhibitory (GABA) mechanisms via the pyri-

doxal phosphate-dependent enzyme glutamate dehydrogenase

may play a role in seizure development in PDE. Results reported

here (low or normal CSF glutamate) argue against a major role for

glutamate excitotoxicity, although as GABA is not routinely mea-

sured, we cannot exclude GABA deficiency as a potential seizure

mechanism. It remains likely that the clinical features of PDE result

from the dysfunction of several pyridoxal phosphate dependent

enzymes. A response to pyridoxal phosphate in an infant who

failed to respond to pyridoxine is highly suggestive of

pyridoxine-50-phosphate oxidase deficiency. The case histories pre-

sented in detail (Supplementary material), however, illustrate that

therapeutic trials with pyridoxine may be complicated by concomi-

tant treatment with antiepileptic drugs; with partial response to

these drugs and additional biochemical causes of seizures in PDE

such as hypocalcaemia and hypomagnesaemia.

Table 4 Clinical features observed in patients with PDE
diagnosed by urine a-AASA measurement and ALDH7A1
gene analysis

Clinical features and
demographics

Incidence

Gender Male 12; female 20

Ethnicity Caucasian 22; Turkish 1;
Mauritian 1; Algerian 4;
Pakistani 1; Indian 1;
Ghanaian 1;
Caucasian/Asian 1

Parental consanguinity 7/28 (25%)

Gestational age �37/40 5/28 (18%)

Abnormal intrauterine movements 8/24 (33%)

Foetal distress 8/27 (29%)

Apgar score 57 at 1 min 3/20 (15%)

Acidosis 6/23 (26%)

Respiratory distress 6/18 (33%)

Hypotonia (neonatal) 13/23 (57%)

Abdominal distension/vomiting 6/22 (27%)

Irritability 14/24 (58%)

Seizure onset within first 28 days 24/27 (89%)

Resistance to antiepileptic drugs Complete: 14/24 (58%);
partial: 9/24 (38%)

Seizure type: clonic 21/23 (91%)

Seizure type: tonic 11/25 (44%)

Seizure type: myoclonic jerks 16/26 (62%)

Pyridoxine trial at �28 days 22/29a (76%)

Age at first pyridoxine trial Range 1 day–3 years;
median 8 days

Cardiovascular/respiratory
decompensation with pyridoxine
trial

6/22 (27%)

Complete cessation of seizures
with first trial of pyridoxine

25/29 (86%)

Speech delay 11/19 (58%)

Squint 6/18 (33%)

Motor delay 18/24 (75%)

Breakthrough seizures with fever 8/23 (35%)

Trial of pyridoxine withdrawal
(range of days until seizure
recurrence)

14/23 (61%) (1–51 days)

Observed in the present series but not previously described in
clinically diagnosed classical PDE

Thrombosis 1

Escherichia coli sepsisa 2

Hypocalcaemia plus
hypomagnesaemia

2

Hypoglycaemia 4

Diabetes insipidus 1

Optic nerve hypoplasia 2

Hypothyroidism 1

a Reported previously but only in one patient (Adam et al., 1972).
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Clinical phenotype
Additional presenting features included metabolic acidosis,

respiratory distress, hypotonia, irritability, abdominal distension

and enteral feed intolerance (requiring parenteral nutrition) in a

proportion of early onset, typical cases. Prematurity (537/40) and

foetal distress with low Apgar scores mimicking birth asphyxia

were also observed in some cases.

In keeping with previous reports (Baxter, 2001; Basura et al.,

2009), neurodevelopmental outcome is impaired in the majority

of cases, however, as some of our data were qualitative in nature

it is difficult to draw conclusions regarding the relationship of

outcome to age at diagnosis and treatment with pyridoxine.

Cases of delayed diagnosis and treatment are compatible with

normal neurological outcome (Basura et al., 2009); equally,

prompt treatment with pyridoxine in screened siblings does not

guarantee a normal neurodevelopmental outcome (Rankin et al.,

2007).

In siblings F4.1 and F4.2, electrolyte disturbance and endocrine

abnormalities were major management problems (and may have

contributed to the delay in the diagnosis of pyridoxine depend-

ency). Measurements of plasma parathyroid hormone at times of

hypocalcaemia suggested hypoparathyroidism. There is one previ-

ous case report of hypocalcaemia occurring in a neonate with PDE

(Lauras et al., 1984). Patient F4.2 also had biochemical evidence

of hypothyroidism and of diabetes insipidus. These abnormalities

resolved with vitamin B6 therapy suggesting that they were sec-

ondary to inactivation of pyridoxal phosphate in parathyroid/thy-

roid/pituitary/hypothalamus cells. It may be that the pathway of

lysine degradation in these cells follows the ‘brain pathway’ via

P6C and �-AASA, allowing P6C to inactivate pyridoxal phosphate

in the same way as is proposed to occur in the brain (Clayton,

2006a, b; Mills et al., 2006).

Two siblings (F1.1 and F1.2) treated with pyridoxine remained

neurologically abnormal with persistent hypotonia despite good

seizure control. They had persistent vomiting and both developed

Table 5 Summary of EEG findings for patients with an elevated concentration of urinary a-AASA

Family a-AASA
(mmol/mol
creatinine)

EEG (performed before treatment with pyridoxine except where stated otherwise) Age of onset

F1.2 316(Am) Burst suppression pattern 1 h

F2 93(Lon) (9 days);
138(Lon) (3 m)

Background moderately abnormal with excess of spiky morphology and irregular
unvarying fluctuating pattern. Suggests moderately severe diffuse cortical dysfunction.
Does not normalize with pyridoxine. Additionally, few very focal left central seizure runs.

7 d

F3 90(Am) Spikes 2 d

F4.2 72(Lon) Day 4 showed frequent, high-voltage bursts of bilateral rhythmic 10–12 Hz activity mixed
with very high-voltage irregular slow waves at 51–2 Hz

524 h

F5 42(Lon) Frequent spike wave discharges, high-voltage on right but more prominent on left. 9 weeks

H1a 28(Am) (2 years);
35(Lon) (6 years)

Neonatal: background showing slow delta wave activity mixed with fast activity with
frequent long periods of suppressed cerebral activity. There are epileptic features with
frequent intermittent episodes of short runs of theta wave activity in the central region
with scattered sharp/spiky waves in the left mid parietal region.

12 h

R3a,b 28 (Am) On pyridoxine (6 years; 3 months): widespread 5–9 Hz (20–60 mV). At times sharpened
over right central regions and posterior 2–4 Hz activity. Some low amplitude fast.

No seizuresc

F7.2 12(Lon) Long runs of sharp waves independently on both sides. 3 d

H2a 15(Am) (2 years);
11(Lon) (6 years)

Neonatal: slow delta wave activity mixed with beta activity and periods of suppressed
cerebral activity. Short runs of rhythmic theta wave activity of sharp configuration in the
central region with scattered sharp spiky waves occurring on either side.

12 h

F10 14(Lon) Intermittent burst suppression 2 h

F12 11(Am) No EEG prior to treatment with pyridoxine. Normal whilst on pyridoxine. 524 h

F13 11 First EEG after pyridoxine—‘immature’ 2 d

F14 11(Am) Burst suppression pattern 4 d

F15 10(Lon) Sharp spike waves and waves with right temporal emphasis (514 weeks). Six months:
multi focal spike in association with status epilepticus. Reduction of burst suppression in
response to pyridoxine. EEG normalized after 12 days after pyridoxine treatment
commenced.

14 d

R2a,b 7.8(Am) On pyridoxine (7 years; 4 months): irregular 4–7 Hz (20–70 mV) theta activity dominates
the record. 8–11 Hz faster components intermixed. 2–3 Hz delta transients occur
intermixed posteriorly.

4 h

R1a,b 7.4(Am) On pyridoxine (7 years): some theta waves intermixed with higher frequencies over both
right and left temporal areas. Regular spike discharges from right temporosylvian area,
increased during sleep.

4 h

F16 7(Lon) Left-sided epileptiform discharges 5 d

F17 4(Am) Hypsarrythmia at 6 weeks 1 d

F19 1.3(Am) 3–4 Hz activity post centrally. Irregular fast and spiking right and left 14 m

(Lon)/(Am) = AASA measured in London or Amsterdam, respectively.
a Mutation analyses published previously (Mills et al., 2006).

b Detailed clinical histories (Rankin et al., 2007).
c Treated from in utero; no withdrawal trial ever given.
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fatal Escherichia coli sepsis at one month of age for which im-

munological work-up failed to reveal a cause. There is one previ-

ous report of severe neonatal infection with E. coli in a patient

with PDE (Adam et al., 1972).

Late onset PDE cases do not usually show major additional fea-

tures (Baxter, 2001). Previously published findings have shown

mutations in ALDH7A1 in children whose seizures started as late

as 6 months of age (Bennett et al., 2009). In this study, mutations

in ALDH7A1 were found in children whose seizures did not start

until 8 and 14 months of age, respectively.

Electroencephalography,
magnetic resonance imaging and
neuropathology
In this series, no particular EEG abnormality was consistently

observed in antiquitin deficiency (Tables 5 and 6). Burst suppres-

sion was observed in some cases and hypsarrhythmia in others.

The most common MRI finding was an abnormality of white

matter often involving reduced bulk e.g. of the corpus callosum

and/or cerebellar white matter. There were no pathognomonic

EEG and MRI features that could alert the clinician or provide

diagnostic clues in advance of biochemical or genetic results.

Additionally there was no apparent relationship between biochem-

ical (�-AASA) or genetic mutation and MRI or EEG findings.

Table 6 Summary of MRI findings for patients with an elevated concentration of urinary a-AASA

Family a-AASA
(mmol/mol
creatinine)

MRI/neuropathology Age of onset

F1.2 316(Am) Neonatal MRI: diffuse signal and density abnormality of the white matter in both cerebral
hemispheres

1 h

F2 93(Lon) (9 days);
138(Lon) (3 m)

Foetal: mild ventriculomegaly and enlarged posterior ventricles. Neonatal: petechial haem-
orrhage in periventricular white matter and deep white matter lesions; consistent with
periventricular leucomalacia. Four months: long-standing hydrocephalus

7 d

F3 90(Am) Nothing abnormal detected 2 d

F4.2 72(Lon) Neonatal: agenesis of corpus callosum, neuronal heterotopias, cerebellar hypoplasia; sub-
ependymal grey matter heterotopia at temperal horn tips.

524 h

F5 42(Lon) Nothing abnormal detected 9 weeks

H1a 28(Am) (2 years);
35(Lon) (6 years)

Hydrocephalus at 7 months 12 h

R3a,b 28(Am) 4 years: borderline normal with a minimal lack of white matter bulk No seizuresc

F8 21(Lon) Neonatal: normal. 10 months: cerebral atrophy of both hemispheres. Poor myelination of
cerebral hemispheres.

6 d

H2a 15(Am) (2 years);
11(Lon) (6 years)

10 months: nothing abnormal detected 12 h

F10 14(Lon) Nothing abnormal detected 2 h

F11.1 11(Am) Cortical dysplasia (see Supplementary material) 8 d

F13 11 Abnormal: plexus bleeding both posterior ventricle horns, cystic lesions anterior horns 2 d

F14 11(Am) Atrophy especially bifrontal/left temporal regions. Hypoplasia of inferior vermis 4 d

F15 10(Lon) Neonatal: right frontal lobe focal brain abnormality? Cortical dysplasia. Background
of diffuse change. Damage to lentiform nucleus

14 d

R2a,b 7.8(Am) 5 years; 8 months: white matter hypoplastic to a moderate degree with global lack
of bulk. This included the corpus callosum, brainstem, cerebellum and pons.

4 h

R1a,b 7.4(Am) 7 years; 3 months: global lack of white matter bulk to a mild degree. Thinning of the
posterior region of the corpus callosum.

4 h

F16 7(Lon) Nothing abnormal detected 5 d

F17 4(Am) Agenesis corpus callosum, megacisterna magna, hydrocephalus 1 d

F19 1.3(Am) Nothing abnormal detected 14 m

(Lon)/(Am) = AASA measured in London or Amsterdam, respectively.
a Mutation analyses reported previously (Mills et al., 2006).

b Detailed clinical histories (Rankin et al., 2007).
c Treated from in utero; no withdrawal trial ever given.

Table 7 Comparison of the pre-treatment CSF amino-acid
profiles in our patients with PDE and pyridoxine-
50-phosphate oxidase deficiency (pyridoxal phosphate-
dependent epilepsy)

Biochemical result PDE Pyridoxal phosphate-
dependent epilepsy

CSF glycine " 3/5 6/10

CSF threonine " 5/5 6/10

CSF taurine " 1/2 5/10

CSF histidine " 1/4 6/10

CSF 3-methoxytyrosine " 2/2 6/9

Plasma glycine " 5/5 4/5

Plasma threonine " 0/5 3/5

Plasma taurine " 3/5 1/2

Plasma proline " 3/5 0/1

"= elevated.
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The findings of cortical dysplasia (histologically proven in one

patient) and antenatal-onset hydrocephalus, support the role of

vitamin B6 in the developing brain. Impaired neuronal migration

may be an important feature in the pathogenesis of neurodeve-

lopmental dysfunction that persists following control of epilepsy in

some patients with PDE. It has recently been established that the

pyridoxal phosphate-dependent enzyme serine racemase plays an

important role in control of neuronal migration (Kim et al., 2005)

and this may provide an explanation for deranged neuronal mi-

gration in some patients with PDE. Our results suggest that prior

to accepting that an area of cortical dysplasia is the cause of in-

tractable epilepsy, a urine test for �-AASA and a therapeutic trial

of pyridoxine should be undertaken.

Genotype–phenotype correlation
Because of the urgency of treatment, data on urinary �-AASA

prior to treatment are limited and so it is difficult to ascertain if

there is any correlation with genotype. However, there appears to

be very little correlation between urinary �-AASA concentration on

pyridoxine treatment and genotype. A wide range of concentra-

tions is seen in treated patients that are homozygous for the

‘common’ E399Q missense mutation (Mills et al., 2006; Plecko

et al., 2007; Salomons et al., 2007). Indeed E399Q has been

reported to cause both neonatal- and late-onset PDE (Bennett

et al., 2009). Interestingly in our series, however, the three chil-

dren (56 months) with the highest urinary �-AASA concentrations

(F1.2, F2 and F4.2) all had a very severe phenotype. Whether this

represents some genotype–phenotype correlation is unclear. Only

the mutations found in F2 have been described previously. Whilst

Asn273Ile was found in a patient with later onset PDE (Bennett

et al., 2009), clinical details for the patient carrying Gly83Glu have

not been published (Gallagher et al., 2009). It is noteworthy that

2/3 patients in this study with late-onset PDE had the mutation

W175G. Molecular modelling of delta(1)-pyrroline-5-carboxylate

dehydrogenase (Tang et al., 2008), which accepts the substrate

glutamate-�-semialdehyde (whose aliphatic chain is one CH2 unit

shorter than that of �-AASA), indicates that W175 in antiquitin is

replaced by glycine—the exact scenario seen in F19 and F20.

Indeed the concentration of urinary �-AASA in F19 was only

just above the upper limit of the control range of the laboratory

in Amsterdam where this sample was analysed. This may be a

reflection of the disease severity in this patient, who is seizure

free and coping well with mainstream school. Whilst it may be

interesting to speculate that W175G is associated with late-onset

PDE, mutation analysis of antiquitin in three other patients with

late-onset PDE (Bennett et al., 2009) and F5 revealed that one of

the patients is homozygous for the ‘common’ E399Q mutation

and the other patients are heterozygous for T297R/E399Q,

N273I/E399G and S448L/E399Q. Four out of five of these muta-

tions have also been reported in patients with neonatal-onset PDE.

The relationship between genotype, over production of �-AASA/

P6C, inactivation of pyridoxal phosphate and clinical phenotype

is likely to be complex. Determinants of brain pyridoxal phos-

phate level may include genotype, dietary lysine intake, anabol-

ic/catabolic state, pyridoxine intake, other environmental factors

(e.g. infection) and polymorphisms in other genes involved in

lysine catabolism and/or pyridoxal phosphate homeostasis.

Conclusion
In conclusion, the clinical diagnosis of PDE may be very challen-

ging because: (i) neonates and infants can have multisystem path-

ology; (ii) the tendency to regard structural brain abnormalities as

a sufficient cause of epilepsy may prevent clinicians considering

alternative diagnoses such as PDE; (iii) there may be some re-

sponse to antiepileptic drugs; and (iv) the response to pyridoxine

may not be immediate and total. Our findings support the use of

biochemical and DNA tests for antiquitin deficiency in a wide

range of infants with epilepsy. We suggest that an adequate

trial of pyridoxine (minimum 72 h) with careful clinical and EEG

monitoring is necessary and if there is any sign of improvement,

then pyridoxine should be continued. A repeat trial should be

considered if seizures remain poorly controlled. Measurement of

urinary �-AASA should be performed for all neonates with intract-

able seizures, regardless of the presence of MRI findings of brain

structural abnormalities.
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