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Abstract 

 Simulation is an increasingly essential tool in the design 

of our environment, but any model is only as good as the 

initial assumptions on which it is built. This paper aims to 

outline some of the limits and potential dangers of reliance 

on simulation, and suggests how to make our models, and 

our buildings, more robust with respect to the uncertainty 

we face in design. It argues that the single analyses provided 

by most simulations display too precise and too narrow a 

result to be maximally useful in design, and instead a 

broader description is required, as might be provided by 

many differing simulations. Increased computing power 

now allows this in many areas. Suggestions are made for the 

further development of simulation tools for design, in that 

these increased resources should be dedicated not simply to 

the accuracy of single solutions, but to a bigger picture that 

takes account of a design‘s robustness to change, multiple 

phenomena that cannot be predicted, and the wider range of 

possible solutions. Methods for doing so, including 

statistical methods, adaptive modelling, machine learning 

and pattern recognition algorithms for identifying persistent 

structures in models, will be identified. We propose a 

number of avenues for future research and how these fit into 

design process, particularly in the case of the design of very 

large buildings. 

 

1. INTRODUCTION 

 The development of contemporary technologies of 

simulation has yielded many techniques for deriving results 

of high quality and precision. As these technologies are 

predominantly computational, Moore‘s [1965] law has 

ensured a steadily increasing speed and precision at an 

exponential rate that should continue to improve these 

results into the future, allowing the same tools to apply in 

greater detail to ever larger projects. But where do we go 

from here? What are the future directions for research and 

development in simulation?  

 Design projects undertaken by architects and engineers 

are of a scale that is unprecedented in history. Not only do 

highly programmed buildings such as the international 

airports of Beijing and Dubai encompass a square kilometre 

or more of floor area, but the planning of entire new cities, 

in all their functional complexity, is becoming 

commonplace, especially in Asia. There are few models for 

such projects, and little that intuition and experience can 

hope to contribute, so the need for modelling and simulation 

in virtually every aspect of the design and planning process 

has become ever more clear. Moreover, the collaborative 

teams required to realise these projects are of similarly 

unprecedented scale, and require effective communication. 

Their members may be distributed geographically, as well 

as temporally, and may even change over the duration of the 

task, making detailed virtual models ever more relevant as a 

requirement of collaboration. 

 These factors indicate a greater need for simulation, but 

also make that simulation far more difficult. 

The size and complexity of projects ensures this, as does the 

obviously disastrous cost of mistakes on such a scale. This 

position paper outlines current limits or difficulties in the 

state of the art, then suggests possible solutions and where 

research efforts should be made. 

 

2. DIFFICULTIES 

In practice, there are a number of important limits to what 

simulation is capable of and how it can be used. Examples 

are given in this section of a number of current difficulties: 

resource dependent limits, unknowable design parameters, 

‗wickedness‘ of design problems, the process of design in 

practice, and miscommunication inherent in the use of 

models. 

 

2.1. Difficult to simulate 

 For many tasks, the complexity of the situation alone 

makes simulation exceedingly difficult, either because of 

the time or resolution required to generate a usable solution.  

 The Pinnacle, at nearly 300m tall, is designed by Kohn 

Pedersen Fox to be London‘s tallest building. In addition to 

the structural and wind load problems typical of its height, 

its double-skin of partially overlapping glazing panels 

introduces additional complexity as it forms a scaled ‗snake-

skin‘ of a singly and doubly curved façade. In this case, the 

effect of the new building on air flow in the area was of 

concern, particularly the possible impact on pedestrian areas 

at ground level, which might be adversely effected by winds 

redirected and amplified by the building‘s extreme size. In 



this, a series of computational fluid dynamics simulations 

were instrumental in guiding the design. Performed in X- 

Flow by Next Limit, these contributed to a ‗skirt‘ near 

ground level in which the vertical surfaces of the glazed 

tower flare outward to form a canopy and redirect air flow at 

the ground (Figure 1). 

 But the building skin has other requirements at a finer 

level of detail that present more difficulties. The double-skin 

design is intended to perform passive cooling and 

ventilation via the cavity between the two layers (Figure 2). 

Outside air is allowed to enter each glazing unit through an 

opening at the bottom, rises as it draws heat from the 

building, and is drawn out laterally through the vertical slot 

between overlapping panels. This flow also is relatively 

straightforward to simulate, however the building consists 

of 8,500 units, each with a unique shape angle and position 

with respect to prevailing winds, and as the local flow of air 

is altered by any change made to overlapping, neighbouring 

panels, the evaluation of how any particular design behaves 

requires the modelling and simulation of air flow with 

respect to 12,000 independent angles of glazing. 

Optimisation of the position and angle of each panel 

required many iterations of this, and thus a cost in 

computation time of approximately two weeks, each time a 

significant change was made in the building shape.    

 Such a task is not uncommon, and a time frame of two 

weeks is acceptable for occasional testing, but hardly ―real-

time‖. The case is particularly noticeable as the overall 

shape of the building was modelled parametrically using 

Bentley‘s Generative Components, and so could be easily 

modified in many other respects. The optimisation process 

thus sits somewhat outside the normal process of 

negotiating the interdependent systems that make up a 

complex building. Phenomena of much greater precision 

were ruled out entirely. What about the noise due to the 

acoustic effect of air flow on each panel? What about rain? 

These could not have been simulated accurately enough to 

be of any real use. Although possible in principle, they are 

at present beyond feasibility due to another level of 

magnitude in their complexity. 

 

 
Figure 1.  Detail of partially overlapping gazing in the 

Pinnacle ‗skirt‘. Image: Kohn Pedersen Fox. 

  
 

Figure 2.  Exterior air enters the cavity through the opening 

at the bottom (left). Air rises as it heats up and is drawn to 

the left, exiting through the vertical slots between 

overlapping planes (right). Image: Kohn Pedersen Fox. 

 
 

Figure 3.  A single simulation gives precise values for wind 

velocity, but some regions can be particularly sensitive to 

initial conditions. Image: Next Limit Technologies. 



2.2. Impossible to simulate 

 Compounding the difficulties above, for some design 

problems we do not even know the values of all the 

variables involved.  In the case of the Pinnacle it is certain 

that the state of surrounding buildings will change in future, 

and possibly affecting the air flow drastically enough to 

make analyses of the current environment obsolete. For 

many complex problems, the precise states of relevant 

variables cannot be measured, or (as is the case with many 

kinds of human behaviour) there is insufficient knowledge 

on how to even model the system. 

 Even in the relatively stable state of an unchanged 

urban environment, most phenomena to be simulated are 

continuous and can take on any of an infinite range of real 

values. In such cases, the probability of simulating the exact 

values for wind speed, direction or other factors approaches 

zero (Figure 3). This can often pass without causing 

problems, but if conditions lie within an instability regime, 

in which a minor change in the wind causes big differences 

in performance, then the simulation becomes useless.   

 In practice, one makes a series of best guesses, and then 

plans for multiple scenarios. A number of other towers are 

currently planned for the City of London, and one can use 

the current state of their designs in a model for the vicinity 

of the building. But these are only coarse guesses, subject to 

change, and if the result of the simulation is highly sensitive 

to initial conditions they may not always suffice. Complex 

phenomena are dependent on many factors, and for many 

design problems it is impossible to collect all the relevant 

data at the outset. Unfortunately, this is often just the type of 

problem designers face. 

 

2.3. ‘Wicked’ problems 

 Such difficulties in simulation are made explicit in 

Rittel and Webber‘s [1984] definition of the ―wicked 

problem‖, which by its nature resists any kind of clear 

definition. Unfortunately, design in disciplines such as 

architecture and planning is described as dealing almost 

exclusively with such problems. The brief is relatively ill-

defined relative to the real range of problem considerations, 

the perception of the problem itself may change radically as 

design progresses, and the solution is typically arrived at by 

a unique process that cannot be predicted in advance.   

 Rittel and Webber list ten points that describe the 

nature of this wickedness. For such problems, the problem 

domain itself cannot be defined. It is perhaps misleading 

even to consider the design task as dealing with a problem at 

all, in the traditional sense, as this has no ―definitive 

formulation‖ [ibid., point 1] in terms of boundaries or 

objectives. Moreover, wicked problems ―do not have an 

enumerable (or an exhaustively describable) set of potential 

solutions, nor is there a well-described set of permissible 

operations that may be incorporated into the plan‖ [ibid., 

point 6], so no finite set of rules can be considered that 

might guarantee they are solved. Even with the fastest 

computer available, the notion of a solution space can 

simply expand endlessly. 

 Even given a wealth of potential solutions, the act of 

testing them is problematic in itself. Solutions to wicked 

problems have no ―immediate [or] ultimate test‖ [ibid., 

point 4]. Aside from the inability to define an objective, the 

unpredictability of the system in question and emergent 

nature of its behaviour mean that any proposal may generate 

repercussions, or ―waves of consequences‖ into a future 

beyond the point at which the test is made. Moreover, 

―every solution to a wicked problem is a ―one-shot‖ 

operation; because there is no opportunity to learn by trial-

and-error, every attempt counts significantly‖ [ibid., point 

5]. One therefore cannot experiment with the various 

possible options, trying out, for example, various versions 

of a motorway or an urban development, because the cost of 

these is so high, and each is ―essentially unique‖ [ibid. point 

7].  

 The architect may frequently be of the attitude: ―once 

we define it as problem and solution any competent 

engineer can deal with it‖.  This is not a comment on the 

skill level of any member of a particular profession, but 

merely an observation on the way problems in disciplines 

are often framed—the classic formulation of engineering 

problem, or an optimization scenario, is clear. Optimisation 

might be resource expensive, but it consists simply of 

defined solution spaces, constraints and performance 

measures. Unfortunately, these are the wicked part of 

wicked problems. The bigger and more complex the system, 

the more we are forced to rely on models to aid in 

understanding and designing for them, but our certainty 

about the results of these models also decreases as 

complexity grows.  

 

2.4. Fit with the design process 

The design process is characterised by rapid change, 

requiring frequent remodelling, re-simulation or re-

optimisation. The working relationships of the team both in 

design and construction also change from project to project, 

as requirements themselves change, and the structure of 

communication must be reconstructed to some extent to 

reflect this. 

 The features of wicked problems noted above are in 

stark contrast to the comparatively constrained design 

domains of, for example, the automotive and aerospace 

industries—the industries in which optimisation and 

simulation are used most successfully. These are the 

industries primarily responsible for the tools (e.g. Abaqus, 

for finite element analysis and CATIA, for parametric CAD 

modelling, are both by Dassault, the latter created directly 

within its aviation division) and currently remain their 

greatest influence and market. Within these industries, much 

more is clearly defined and constrained in advance about the 



design objective, methods of manufacturing and channels of 

communication. The processes of design and fabrication are 

usually known, and therefore highly streamlined. A greater 

proportion of variables are known throughout the process, 

thereby justifying a greater investment of time and resources 

to set up a model that is known to be useful at the outset of a 

new production line. A spoiler on a car, for example, 

presents a complex aerodynamic situation, but many cars 

have them and so they are well understood. Architecture has 

few such spoilers. Where a good deal of systematic, refined 

and explicit knowledge can be reliably used and traded in 

these specific domains, the practice is necessarily messy 

with respect to the built environment. 

 Attempts have been made to systematise design more 

generally. In Simon‘s [1996] proposal for a ―science of the 

artificial‖, he attempts to rectify the seemingly intuitive and 

―cookbooky‖ nature of how it has traditionally been taught 

and practiced. But such attempts have been opposed, for 

example by Schön [1983], who criticises this picture of 

engineering in which problems are well defined and ends 

are agreed a priori as ―Technical Rationality‖, an essentially 

Positivist view that is somewhat limited. Schön argues that 

real design occurs only by an extended practice of re-

evaluation and reflection, in which the working definitions 

of the problems are refined in parallel with their solutions. 

This cycle of reinterpretation is often observed as an 

essential feature of design [Snodgrass and Coyne 1999; 

Lawson 2006] and creativity [Czikszentmihalyi 1988] in 

practice, and it would seem necessary to support it with 

different types of tools. 

 

2.5. A false sense of accuracy 

 The precision of engineering simulations belies the fact 

that they are ultimately built on statistical measurements of 

a significant variation of real cases, and this basis may be 

unknown to the end-user. The simulated behaviour of a 

single beam of given dimensions is known only because of 

real tests on many samples of a similar material, with the 

potential range of structural properties taken into account as 

a factor of ignorance. But while the models themselves are 

founded on statistical approximation, this unfortunately 

doesn‘t show in the result of simulation. Precise values are 

given for minimum material tolerances, and these are used 

in a structural model, along with similarly precise geometry 

for idealised members, connection details, etc. The result, 

naturally, is just as precise. For a trained engineer familiar 

with the factor of ignorance implicit in the original 

assumptions, the level of real accuracy may be estimated 

with a little thought, but this can easily be forgotten in 

practice.  

 Lawson [2006] gives examples of two types of dangers 

in how this affects design. The first is that the precision of 

calculation itself conveys an image of knowledge that does 

not actually exist. The ease with which computers perform 

hidden calculation to many decimal places obscures the 

scientific notion of significant digits, and the polished 

graphical display can give the uncanny impression of 

authority. This is typical with students, who ―sometimes 

submit thermal analyses of their buildings […] calculated 

down to the last watt. Ask them how many kilowatts are lost 

when a door is left open for a few minutes and they are 

incapable of answering.‖ [Lawson 2006 p. 70] The 

unknown quantity of heat loss due to use far outweighs any 

minor benefits of a few watts here and there, but in this case 

the designer‘s ignorance of the major factor in the margin of 

error is too easily concealed by the clarity of the simulated 

output. The precision of this output is too often taken to 

indicate accuracy.  

 Even if factors contributing to the performance of the 

design are well known, the second danger is that easily 

accessible statistics about one factor may influence the 

designer to emphasise it over more important ones. The kind 

of precise measurement in Boje‘s [1971] account of the 

seconds lost in every opening and closing of an office door, 

for example, exemplifies a kind of ―numerical measuring 

disease‖ [Lawson 2006] that might sway a designer toward 

open plans as they ignore the far more important social and 

interpersonal factors dependent on spatial separation. This 

influence may be the result of any of a number of properties 

inherent to our perception of statistics: they make the factor 

in question more frequently visible, more explicit and more 

easily explained to others. 

 

3. POSSIBLE SOLUTIONS & RESEARCH AIMS  

 In the example of the Pinnacle given above, 8,500 

glazing units with 12,000 angles of placement are all unique 

and require different solutions for optimisation. As a set, 

however, there are many common features: overall 

structural hierarchy, materials, but also how they respond to 

varying wind conditions. There may well be regularities to 

be found in these that can help in determining the results of 

the simulation or design optimisation, in the same manner as 

the statistical regularities assumed in everything from 

structural capacity of a beam to the variation of annual 

climate. These regularities are not likely to be statistical, 

however. In a statistical approach, the variables are defined 

a priori. Here, and for interesting design tasks, they are 

unknown at the outset. This section describes directions for 

research in several areas that may help to deal with the 

limits and problems of the previous section. Several 

possible solutions are described: the mapping of broader 

state spaces, a change in design goals, and ‗smarter‘ 

modelling techniques. 

 

3.1. Multiple runs of the simulation 

 The single run of a simulation results in a prediction of 

behaviour for a precise set of conditions—a specific 

temperature, humidity, wind direction and velocity, and 



sunlight, for example, constitute the weather. Designers, 

however, are usually interested less in this than in climate. 

Planning for a building that is intended to last for many 

years, they need a range of varying conditions that must be 

accommodated, not an instantaneous snapshot of a specific 

one. In the case of wind, a ‗wind rose‘ captures a range of 

possible input parameters of wind velocity and direction, as 

they might be distributed probabilistically for a given 

location. Designing for this range then means running a 

series of multiple simulations under differing conditions 

within this given range, and often weighting any conflicting 

recommendations according to their likelihood or 

importance.    

 Multiple runs are often done in an ad-hoc fashion due to 

time constraints, or more methodically in the case of 

sensitivity analysis to test perturbations around a single 

solution under investigation. With enough such runs of a 

simulation, however, one might begin to build a more 

systematic overall picture of the effect of a particular design 

parameter on the behaviour of the system as a whole: The 

width of building element A has a non-linear but reliable 

effect on the wind velocity in zone B, at least when the wind 

direction is between 150 and 230 degrees; If the building 

remains constant, the wind direction has a quantifiable non-

linear relationship with the load on element C, at least below 

a threshold velocity D. These relationships, as complex as 

they may be, constitute the state space of the system—an 

abstract, high-dimensional space in which each point 

represents a different version of the design, its environment 

or boundary conditions. Even if the relevant relationships 

between variables are difficult to know in advance, they can 

emerge when sufficiently frequent samples are taken. By 

mapping this in detail, one can discern a great deal more 

about the kinds of effects that ranges of design choices will 

have, and the ranges of conditions within which one may 

operate. Moreover, in the language of complexity science, 

this state space will likely contain certain regions of 

divergence and instability, and others that form basins of 

attraction. Identifying these, and their limits, would allow 

one to design for stability over time by mapping a (intuitive 

or systematic) description of the stability and instability of a 

given configuration.   

 Many approaches to multi-objective optimisation, 

including Pareto optimisation [Deb 2001], take a variation 

on this approach. In these, many solutions are evaluated to 

determine a range of possible optima that trade one 

parameter off against another. The final decision as to which 

solution is used may be deferred to a later time. 

 It appears that the knowledge gained by many runs of a 

simulation can have a direct effect on the designer. While 

the simulation of how people move through spaces is far 

more complex than the physical behaviour of inanimate 

systems, Space Syntax methods of analysis [Spiliopoulou 

and Penn 1999; Hillier and Shu 2001] have proven reliable 

in doing so. Part of the reason is the acknowledgement that 

the prediction is ultimately founded on the cumulative 

results of a vast number of people—in the simulation of 

visual agents [Turner 2006], a single agent moving through 

a building will trace a path that appears unlike that of a 

normal person, however the total effect of a large number of 

agents in a virtual model will correlate highly with the 

movement of real people in the actual space. Designers 

working with such agents in real time have been observed to 

change their interaction with the developing plan from one 

of first person manipulation of elements, to one of 

engagement with or accommodation of the agents 

themselves. It appears likely that instead of imagining 

walking a single path through a building as an aid to design, 

the view of many simultaneous simulations allows the 

designer to think more abstractly in terms of the overall 

behaviour relevant to the building. 

 To fully exploit this exploration of design spaces by 

multiple simulation, a fuller understanding is required of 

complex systems in general, and any specific design domain 

in particular. From its inception over half a century ago, 

complexity science has explicitly acknowledged the 

difference between systems that can be reliably predicted 

statistically, and those complex systems which cannot 

[Weaver 1948]. Given that the identification of a regularity 

in a previously unconsidered set of variables may allow the 

latter to become predictable, this distinction may not be 

absolute. The relevant questions for any given domain are 

just what sort of regularities is it possible to find? Structural 

systems are generally more stable then fluid dynamics, for 

example. An understanding of what causes phase changes, 

and what tools, variables and resolutions are most 

appropriate to model them, is still relatively unexplored in 

domains relevant to design.   

 

3.2. Change in goals: robustness 

 If one is to design a built environment that is robust and 

sustainable as conditions change, the attempt to predict, or 

futurology, is less tenable than providing an adaptable 

infrastructure. Designing for a sustainable future is largely 

about identifying persistent structures across scales—

everything from road networks to floor to ceiling heights—

that have been viable and robust in the past, and ensuring 

they continue. The result should maintain adaptability even 

when more precise predictions inevitably turn out to be 

wrong. 

 A change in how we conceptualise our goals for design 

to explicitly acknowledge robustness in spite of variation 

may be required. In specifying an invariant objective, 

optimisation normally targets single optima which may be 

unstable to perturbation when apparent project goals change 

rapidly during design or real-world conditions turn out to be 

somewhat different from those predicted. Somewhat less 

optimal plateaus of stability are preferable. Technical 



research required here overlaps with that of the other 

suggestions in this section: increased computational power 

allows exploration of search spaces and multi-objective 

optimisation (§3.1) and structured approximations (e.g. low 

resolution models) may be derived by running a truncated 

optimisation process during early stages of design, to be 

completed in detail later (§§3.3 & 3.4).  

 

3.3. Increased speed and smarter models 

 Performing optimisation (as in §2.1) or reliably 

mapping a state space (§3.1) require numbers of simulations 

of progressively higher orders of magnitude, and making 

these multiple runs feasible requires faster simulations. 

These are guaranteed by current trends in the increasing 

availability of computing power: its cost will continue to 

decrease (Moore‘s law [Moore 1965]), and the adoption of 

grid and cloud (internet based) computing will make better 

use of it by sharing otherwise dormant resources. But these 

are only incremental improvements, and a step change from 

single simulations to an overview of a complex state space 

requires a vastly larger number of simulations. Moreover, it 

is likely that constantly growing projects, increased pressure 

on project timelines and new demands for detail will negate 

much of this benefit. This is even without the possible 

counter effects of increased demands from software known 

as ―Wirth‘s law‖ [Wirth 1995]. In addition to better 

hardware, the step change may be affected by the 

development of smarter models for use in simulation. 

  In the simplest case these might be based on statistical 

approximations—low resolution working models, for 

example. Mesh sizing for finite element analyses takes such 

an approach in attempting to use the largest element 

dimensions possible to reliably capture relevant details, 

thereby increasing resolution in some zones and decreasing 

it elsewhere [Langham and Grant 1999].  In mapping a large 

state space of multiple simulations, the basins of attraction 

or regions of greatest sensitivity to initial conditions may be 

the same across a broad range of resolutions, and a far lower 

resolution may be used in some areas. 

 In more complex cases, patterns or otherwise hidden 

correlations in data might be found via more advanced 

statistical techniques or machine learning algorithms. Hanna 

[2007] uses such an approach in the optimisation of cellular 

structures consisting of many thousands to millions of 

unique cells. The modular nature of the individual units 

provides enough regularity to allow a function to be derived 

that can replace the optimisation and simulation entirely. A 

support vector machine is used to map local stress to an 

optimal cellular structure by training on data taken from 

between 100 and 600 previously optimised samples. The 

result can actually improve performance (verified in 

simulation) over traditionally optimised versions, and 

increase speed in the order of tens of thousands of times 

faster. The patterns derived from large data sets may extend 

to much less clearly defined properties as well. Similar 

machine learning methods have been used to extract and 

manipulate arbitrary patterns from spatial arrangements of 

desks in the workplace [Hanna 2007a] buildings [Laskari et 

al. 2008] or entire cities. In the latter case [Hanna 2009] the 

geographical location of a city has been shown to correlate 

with a number of properties of its form that are non-

discursive in the sense that they are not easily spotted or 

described explicitly by a human observer, but the computer 

can derive them from plan data and thereby classify cities as 

to their location with a significant degree of accuracy.     

 Research into machine learning in general is necessary 

here, in addition to more domain specific investigation. In 

many cases, reliable predictions are possible because of the 

underlying stability of a different part of the system. The 

consistent patterns predicted by Space Syntax of social 

interaction [Spiliopoulou and Penn 1999] and  crime [Hillier 

and Shu 2001] in addition to human movement, for 

example, are due to the relative stability of building layout 

or street networks over time. Identifying how various 

subsystems are related for any particular domain will help to 

identify strategies for design. 

 

3.4. Adaptable, flexible methods of modelling 

 A design process in which change is frequent (§2.4) and 

problems are ill-defined (§2.3) would benefit from 

modelling and simulation methods that can easily and 

quickly adapt to new problem definitions. 

 To increase the speed of simulation when ideal levels of 

resolution are not known in advance, modelling techniques 

that readily allow changes in resolution may be used. 

Particle systems may be preferred to meshes of fixed 

topology, for example, because although the latter allow 

variation in detail at crucial edges, they are not easy to 

change over time. In a simulation of air flow over an 

automobile, Next Limit‘s X-Flow dynamically updates the 

number of particles in the system depending on the volume 

of turbulent air (Figure 4). The process uses a maximum of 

50 million particles, but begins with only 5 million for a 

substantial saving of computation time. This flexibility is 

potentially more valuable if varying the resolution of 

particles also becomes possible, with particle (and therefore 

computation) density increasing over time in turbulent zones 

where detail is greater and decreasing where it is not 

needed. This is now being considered for development in 

the future. The principle can be extended in n-dimensions to 

the resolution of sampling of state spaces as described above 

(§3.1).    

 To fit with the design process and ill-defined problems, 

there are several ways in which it is possible to use and re-

use intermediate results throughout the design process. A 

typical example of how this is frequently done already is the 

overall surface shape of a large roof, which might be 

optimised at a low resolution, while finer details such as the 



space frame modules that form the actual structure, the 

dimensions of the structural grid and even the local 

interruption of the structure by cuts for services might 

change frequently thereafter. Because their effects on the 

partial solution are local or non-existent, there is no need to 

revisit the initial optimisation. The development of a 

repertoire of such partial solutions is frequently employed in 

practice. 

 

 
 

Figure 4.  X-Flow dynamically updates the number of 

particles in the system depending on the volume of turbulent 

air. Image: Next Limit Technologies. 

  

 
 

Figure 5.  Multilight renders each light source separately so 

that they can be adjusted independently after rendering is 

complete. Different versions of the same scene can be 

produced without re-rendering. Image: Next Limit 

Technologies. 

 

 Simulation tools can accommodate these. In Maxwell 

render, Next Limit have developed the ‗Multilight‘, in 

which each light source is rendered and separately as a 

partial solution, then to be mixed afterward in the final 

image. The user is then able to adjust the exact mix of light 

sources after the fact, in real time, to produce different 

versions of the scene (Figure 5). This results in increased 

ease of use for the user, as it does not require decisions 

about final light to be made early on, but allows a reflective 

process by which the effect of the light can be seen directly 

and immediately as the decisions are made later. It also 

allows far better communication with a client or among 

design teams. While renderings are often seen as somewhat 

final, they are crucial to the collective creative process, and 

such tools encourage engagement. 

 Basic research is still required. Multilight is possible 

because light is easily separable, but many design variables 

are not. The roof example above is strictly hierarchical in 

that decisions of detail design may be dependent on overall 

shape, but not vice-versa. Finding the points at which partial 

solutions to more complex models may be stable enough for 

re-use is another task for the investigation of state spaces 

and machine learning research mentioned above (§§3.1 & 

3.3). Technical development will then be required in the 

development of tools that allow the use of partial solutions. 

This use of simulation and models at intermediate stages, 

without clearly defined start conditions or a fixed end 

solution, is intimately related to the way designers work, 

and ultimately, some re-education of designers themselves 

may also be required.  

 

4. CONCLUSION 

 As designers take on larger and more complex tasks, 

this paper has suggested that the single analyses currently 

provided by most simulations display too precise and too 

narrow a result to be maximally useful in design, and 

instead a broader description of what simulation can do, and 

how it can be used, is required. It has attempted to outline 

ways to make our simulations, and our buildings, more 

robust with respect to the uncertainty we face in design: a 

better exploration of the range of solutions, changes in how 

we perceive optimisation goals, and the use of statistical and 

machine learning algorithms to do so. 

 In planning efforts for future research, there is certainly 

the tendency to refine the simulation methods we have to 

ever finer degrees of precision. This is helpful, but only in 

context of understanding the real needs of the design tasks. 

None of the methods in question are in any danger of 

becoming ―technologies looking for an application‖, but this 

paper has aimed to present the ways in which they need to 

be used, in the hope that newly developing technologies will 

improve designers‘ understanding of uncertainty and 

robustness and better equip them to deal with the complex, 

ill-defined problems they face.  
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