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Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-
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Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss
the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the
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of the basic physiology relevant to understanding their relationship.
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1. Introduction

Since the mid 1990s there has been an increase in interest in
synchronous multi-modal imaging, whereby two modalities
or more are used simultaneously, which has arisen in large
part from investigators interested in the study of spontaneous
brain activity and in particular epilepsy. Although the
electroencephalogram (EEG) was previously combined with
PET, the advent of simultaneous EEG-fMRI (and optical
imaging techniques, such as NIRS) with temporal resolutions
of the order a second or less has lead to multiple applications
in and outside the field of epilepsy.

The overarching motivation for integrating data from
multiple modalities is to gain a more complete picture
of the brain activity of interest. Implicit in the multi-
modal integration or multi-modal imaging is the notion
that all measurements relate to the same activity in space
and time. Therefore at the most basic level, multi-modal
integration can mean spatial coregistration of the observa-

tions. Coregistration in time can mean two things: either
measurements are performed simultaneously (same time
of day), simultaneous EEG-fMRI of randomly occurring
epileptic discharges being an example; or monomodality
measurements made at the same time relative to an event
but not simultaneously, that is, serially. Examples include
separate ERP and fMRI studies in relation to the same
stimulus subsequently brought together through correlation
of the responses (as a function of some externally controlled
factor) or the spatial coregistration of independently derived
source localisation estimates. Serial multi-modal integration
implies a degree of predictability and more importantly
reproducibility of the events: the retrospective integration
of serially acquired datasets is actually restricted to the
reproducible aspects of the activity of interest, such as effects
averaged across repeated events.

The integration of electrophysiological and haemody-
namic signals (BOLD, CBF, CBV) is particularly important in
the context of this discussion for two reasons: their intrinsic
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importance and complementarity, and data availability.
Electrophysiological signals are particularly important given
the direct link between EEG/MEG and neuronal synchrony.
On the other hand localisation based on EEG/MEG is
fundamentally limited. The more indirect link between
haemodynamic signals and neuronal activity is partly com-
pensated by our capacity to obtain 3D maps covering
almost the entire brain and with good spatial resolution
particularly for fMRI. While numerous observations have
shown that BOLD changes can be related with various forms
of brain activity, such as the haemodynamic response to
external stimuli recently, which makes fMRI possible and
useful, much remains to be learnt. Recently, experiments
have focused more specifically on the relationship between
neuronal activity measured at the microscopic level and the
BOLD effect.

2. Basic Studies of the Relationship between
the BOLD Signal and Brain Activity

2.1. The Neuronal Correlates of the BOLD Signal. The chain
of events and factors that links neuronal activity to BOLD
signal change is long (Figure 1), and the transitions between
them are far from simple. Neural activity through neurovas-
cular coupling influences the metabolic demand. Metabolic
changes impact on haemodynamic response which is depen-
dent on physiological factors such as local cerebral blood
flow, deoxyhaemoglobin/oxyhaemoglobin ratio, blood vol-
ume, and vascular geometry. Therefore, inferences in fMRI
concerning neural activity rely on the accuracy, validity, and
efficiency of prespecified models and hypotheses.

A model elucidating the basis of BOLD signal was
formulated by Friston et al. [1], furthering the Balloon model
of Buxton et al. [2], which described how evoked changes
in blood flow were transformed into fluctuations in blood
oxygenation level. The Balloon model was embedded in
a haemodynamic input-state-output model that included
the dynamic of perfusion changes that are contingent on
underlying synaptic activation. In the model of Friston et al.
it was assumed that neural activity is linearly coupled to
the metabolic demand, but the relationship between blood
flows and BOLD is non-linear. The model provides a level
of explanation for the biphasic shape of the haemodynamic
response function, with a positive peak around 6 seconds
following event or stimulus onset, followed by a negative
undershoot at around 15 seconds (first to second peak
amplitude ration ∼6) and gradual recovery to baseline.

However, a general assumption is of a linear relationship
between certain measures of neural activity and BOLD
signal, which finds confirmation in some experimental
studies for example: [3, 4]. Nevertheless it was demonstrated
that nonlinear refractoriness of BOLD responses can occur
at very short interstimulus intervals [5]. It was also reported
in another study that BOLD signal increases linearly with
positive stimulus amplitude, but for negative amplitude of
stimulus highly nonlinear behaviour ensues and that the
response to a second stimulus was compromised by first,
evidencing a nonlinear refractoriness of the BOLD response,

possibly of haemodynamic origin [6]. These studies point
out that the results of the fMRI studies of evoked activity
depend strongly on the choice of the interstimulus interval.

Several factors in the chain of events from neuronal
activity to vascular changes are difficult to account for in
models of the BOLD effect. For example, the details of
the vascular architecture and the presence of large veins in
the vicinity of the activated neurons. Microvascular density,
which is lower than that of neurons and is affected by large
vessel contribution, may influence the results and may be
a limiting factor of spatial resolution of BOLD signal [7].
Which aspect, or expression, of neuronal activity is best
reflected in the BOLD signal namely potential firing versus
synaptic activity remains unclear. This problem was reviewed
in [8, 9], where the contradictory opinions were discussed.
Namely the empirical evidence was quoted suggesting that
the spikes generated by cortical cells contribute little to
the metabolic demand of brain, accounting for only 3% of
the resting cortical energy consumption; also experiments
performed on rates show that up to 95% of regional cerebral
blood flow increases might be dependent on postsynaptic
activity. However another contribution reported a correla-
tion between spiking activity and BOLD signal [10]. In fact,
spiking activity and synaptic potentials are related to each
other. Nevertheless the comparative studies indicated that
the BOLD signal matched (Local Field Potentials) LFPs better
than multiunit spiking activity [4].The findings of the same
study suggest that the BOLD contrast mechanism reflects the
input and intracortical processing of a given area rather than
its spiking output.

BOLD decreases (sustained decreases, in contrast to the
transient negative undershoot of “positive” haemodynamic
response function) have been reported in relation to some
stimuli and events, such as epileptic spikes. Simultaneous
fMRI measurements and electrophysiological recordings
revealed a negative BOLD response beyond the stimulated
regions of visual cortex, associated with local decreases in
neural activity as expressed in terms of LFP power below the
level of spontaneous (background) activity [11].

The relationship between neuronal inhibition and BOLD
is currently under debate. Since the inhibitory activity
similarly to excitatory processes requires energy, inhibition
can be associated with increased metabolic demand which
may be reflected as BOLD increase. On the other hand
most connections in the brain are excitatory and decrease of
excitatory activity caused by inhibition may lead to a decrease
of blood flow. Experimental results point out that both argu-
ments may be valid. Mathiesen et al. [12] found comparable
cerebral blood flow increases during stimulation of excitatory
and inhibitory pathways in cerebellum. However, studies
using agonists of inhibitory transmitters have generally
shown decreases in measured energy metabolism for exam-
ple: [13, 14]. Modelling studies [15] have demonstrated that
there are several factors that may play the role in the impact
of inhibition on imaging results: local connectivity, type
of inhibitory connection, and the kind of task. Depending
on these factors neuronal inhibition may result in BOLD
increases if the region is not driven by excitation or there
is low local excitatory recurrence. Alternatively for active
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Figure 1: From neural activity to fMRI image.

excitation or high recurrence, inhibition may lead to BOLD
decreases.

Another interesting and still unresolved problem is
whether fMRI can differentiate between small activity
changes in large cellular populations, and large changes in
small populations. The resolution in typical fMRI scanner is
∼8–50 mm3, which corresponds to at least 106 neurons. The
highest resolution corresponds to one cortical column which
contains 105 neurons. Therefore in the case of an apparatus

of typical resolution several neural populations of different
activity patterns may be scanned.

2.2. BOLD versus Brain Oscillations. At the macroscopic
level, while BOLD reflects the number of active neurons,
EEG/MEG amplitude depends primarily on the number
of neurons acting synchronously. As was pointed out by
Nunez [16] the activity of synchronously acting neurons
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is proportional to their number and for asynchronously
acting neurons it is proportional to the square root of
their number. There are about 108 neurons located within
range of a standard EEG electrode; supposedly all of
them are continuously active, but only 1% of them acting
synchronously. The latter’s contribution to the scalp signal
will be 106/sqrt (108–106), that is, 100 times greater than
the 99% nonsynchronised neurons. Therefore asynchronous
neural activity will be hardly reflected in EEG, in contrast to
fMRI.

The synchronous action of neural populations gives rise
to the characteristic EEG rhythms, which have specific roles
in the information processing by brain. Specific tasks such as
movements or perceptions are connected with the synchro-
nization and desynchronization of EEG in specific frequency
bands. It is therefore of importance to establish the relations
between the electroencephalographic rhythmical activity and
fMRI results. A heuristic model relating haemodynamic
changes to the spectral profile of ongoing EEG activity was
elaborated by Kilner et al. [17]. The assumptions of the
model were that the BOLD signal is proportional to the
rate of energy dissipation, where dissipation was expressed
as a product of trans-membrane potential and current. The
authors found that the metabolic response is proportional
to the “effective connectivity” and temporal covariance of
the trans-membrane potentials. “Effective connectivity” in
the sense of synaptic efficacies was expressed as a Jacobian
J , with diagonal elements reflecting effective membrane
conductance. The measure of change of effective connectivity
is expressed by parameter α, defined by,

J(α) = J(0) +
α∂J

∂α
, (1)

where J(α) = J(0) corresponds to the resting state.
This model of activation postulates that an increase of α
caused an acceleration of dynamics of the neural system
and consequent increase of the system’s energy dissipation.
Next the authors connected the acceleration with the spectral
properties of the system. Namely they have shown that
the activation modulates the EEG spectral density g(ω)
according to

g̃(ω) = g((1 + α)ω)
1 + α

, (2)

where ω is the circular frequency and g̃ is the modulated
spectral density.

From (1) and (2) it follows that activation causes a
shift of EEG spectral profile towards higher frequencies with
amplitude decrease. This means that as neuronal activation
increases there is a concomitant increase in BOLD signal and
shift in the spectral power towards higher frequencies.

Indeed, the relative decrease of BOLD signal for low
frequency EEG rhythms and an increase in high frequen-
cies found experimental confirmation. The simultaneous
EEG/fMRI studies have shown that alpha rhythm is nega-
tively correlated with BOLD signal, for example: [18, 19],
also in the experiment involving low-frequency entrainment
the reduction of BOLD was reported [20]. In the same

publication predominantly positive correlations between
EEG and fMRI were found in the higher frequency bands:
17–23 Hz and 24–30 Hz.

These findings support the model; however it does not
account for some low frequency phenomena in brain, as
the authors of [17] admit themselves. Namely it has been
reported that very slow EEG activity fluctuations in the
monkey visual cortex were reflected in the BOLD signal [21].
It seems that the further studies concerning simultaneous
EEG-fMRI studies as well as improvement of models are
needed to unravel the mechanisms underlying manifestation
of rhythmic brain activity in the imaging studies.

Finally, the relationship between electrophysiological sig-
nals and BOLD will be greatly affected by the fluctuations of
the background activity which may influence the evaluation
of evoked activity hampering the estimation of stimulus-
related responses. On the other hand the fMRI investigation
of spontaneous activity offers the new possibilities in the
investigations of brain rhythms, sleep patterns, and epilepsy
[8].

3. Modes of Multimodal Fusion at
the Macroscopic Level

3.1. EEG versus FMRI: Illustration in Motor Imagery. The
purpose of even more advanced fusion of multi-modal data
in relation to a specific type of brain activity is to overcome
some of the limitations of individual measurements. In
this section we will consider examples of single-modality
studies of a specific cognitive, namely, motor imagery.
More specifically, we will review and contrast investigations
of motor execution, passive movements, and movement
imagination in spinal cord injured (SCI) using EEG and
fMRI separately.

In an EEG study by Müller-Putz et al. [22] event-related
desynchronization/synchronization (ERD/ERS) patterns in
paraplegic patients (suffering from a complete spinal cord
injury) are compared with able-bodied controls during
attempted (active) and passive foot movements. The aim
was to address the question, whether patients do have the
same focal beta ERD/ERS pattern during attempted foot
movement as normal subjects. For this purpose EEG was
recorded from sixteen sintered standard scalp electrodes. The
results showed a mid-central focus of beta ERD/ERS patterns
during passive, active, and imagined foot movements in
normal subjects. This is in contrast to a diffuse and broad
ERD/ERS pattern during attempted foot movements in
patients. Only one patient showed an ERD/ERS pattern
similar to able-bodied subjects. Furthermore, no significant
ERD/ERS patterns during passive foot movement in the
group of the paraplegics were found. In a further EEG study
[23] a 3-class Brain-Computer Interface motor imagery
screening (left hand, right hand, feet) was performed in a
group of able-bodied and spinal cord injured participants.
EEG was recorded from 15 scalp electrodes. Comparing
Brain-Computer Interface classification accuracy we found
a significantly lower classification rate in the patients com-
pared to the healthy subjects. In conformity with the results
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discussed above, ERD/ERS patterns are diffuse and scattered
in the patients group.

Using fMRI Alkadhi et al. [24] measured imagination of
foot movements in able-bodied and SCI participants (lesion
height from Th3 to L1, range of age was 22–43 years). They
found that the degree of BOLD activation (contra-lateral M1
and S1 foot representation; bilaterally SMA, pre-SMA, CMA,
and further) was significantly higher in the SCI patients as
compared to the able-bodied participants. It is of interest to
note that the SCI patients showed a strong correlation with
their vividness scores for motor imagery. One explanation for
the enhanced activation in SCI patients could be that they
were engaged in the task and displayed a higher mental effort
as compared to the able-bodied subjects. In a further fMRI
study Enzinger et al. [25] compared BOLD patterns of motor
imagery patterns in a remarkable SCI patient, who was well
trained in motor imagery (extensive training for a period
of several years), to a group of able-bodied controls. In
the patient significant activation of sensorimotor networks
(sensorimotor cortex contralateral to side of movement
imagination, SMA, pre-SMA, and further) occurred during
imagery of repetitive hand and foot movements (versus
rest); whereas in able-bodied subjects significant activation
only occurred in relation to hand motor imagery and only
in premotor areas (pre-SMA). No significant activation
could be demonstrated within the sensorimotor cortex in
the control group. The pattern of activation found in the
patient during motor imagery corresponded to the pattern
of activation found in controls during motor execution.

The possible explanations for the contrasting results of
the EEG and fMRI studies include: experimental factors
(such as intersubject variability and differences in experi-
mental conditions) or biological factors. Using simultane-
ous EEG and fMRI acquisitions would eliminate interses-
sion (and therefore intermodality) experimental confounds
opening the way for greater biological insights. For example,
one could assess whether the results reflect a mismatch
between the BOLD effect, and whichever aspect of the EEG
was used. Such studies have already been performed for ERD.
For example Formaggio et al. [26] used combined EEG-
fMRI over motor areas during finger movements and found a
negative correlation between EEG power changes and BOLD
activity contra-lateral to the movement. Significant ERD
in alpha and beta frequency bands were associated with
activation of the anterior and posterior central sulcus in both
sensorimotor areas.

3.2. FMRI-Informed EEG: Haemodynamic Priors for Cortical
Activity and Conectivity Estimation . In this section, we will
review some examples of how information obtained from
fMRI recordings can be used to improve the accuracy of the
estimation of the cortical activity and connectivity from EEG
recordings. There is experimental evidence suggesting that
the estimation of the cortical activity performed with the use
of neuroelectromagnetic recordings improves with the use of
the haemodynamic information recording during the same
task [27–30]. This was also demonstrated during simulation
studies [27, 29, 31].

In [32] the impact of the use of a priori information from
fMRI recordings in the EEG-based estimation of the cortical
activity and connectivity was reported. The data used were
related to high resolution EEG and fMRI signals collected
during visually triggered finger tapping movements in four
healthy subjects. The methods include the use of subjects’
multicompartment head models (scalp, skull, dura mater,
cortex) constructed from MRI, multidipole source model,
and regularized linear inverse source estimates of cortical
current density [33, 34]. The priors in the resolution of the
linear inverse problem were derived from the haemodynamic
responses of the cortical areas as revealed by block-designed
(strength of activated voxels) and event-related (coupling
of activated voxels) fMRI. The multimodal integration of
EEG and fMRI data was performed using a metric which
takes into account the haemodynamic information offered
by the recorded fMRI data as a norm in the source space.
As described in [31] the contribution of the fMRI priors
in the estimation of the cortical current density is given by
the statistically significant percentage increase of the fMRI
signal during the task, compared to the rest state. The
statistical significance of the cortical activity obtained was
assessed by computing the z-score with respect to the rest
period. Cortical activity was significantly increased in the
left ROIs representing parietal (BA 5), premotor (BA 6A),
sensorimotor (BA 3, 2, 1, BA 4), and prefrontal (BA 8 and
BA 9) cortical areas, and similarly for the ROIs located in the
right hemisphere in premotor (BA 6A) and prefrontal (BA 8)
cortical areas.

Connectivity estimations on the cortical waveforms
obtained by the multimodal integration of EEG and fMRI
recordings were performed. The connectivity was estimated
by means of the Directed Transfer Function [35], a method
to determine the directed influences between any given pair
of signals in a multivariate data set. The approach is based
on the concept of Granger causality and uses a multivariate
autoregressive model (MVAR) simultaneously modelling the
entire set of signals [36]. The application of DTF to linear
inverse estimate of the cortical activity was described in [37–
39].

The main results obtained with the multimodal integra-
tion of ERP and fMRI data were related to the activity of a
network involving the right frontoparietal cortical structures.
The flow of the connections moved from the parietal and
premotor areas towards the right and left prefrontal ones.
The ROIs located at the parietal (B.A.5 ) and premotor areas
(B.As 6) revealed as the source of an activity that spreads
and reaches virtually all the other ROIs considered, from the
occipital (B.A. 19) to the prefrontal (B.A. 9, 46) areas of both
hemispheres.

These results were compared to those obtained on the
same data set in [38] with the use of the EEG data without
fMRI priors. A substantial agreement between the two sets
of connectivity patterns (with and without fMRI priors)
can be appreciated, although differences are present in some
cortical areas, in the intensity of the cortical connections.
While the parietal and frontal connections are revealed in
both the estimations, a shift of the intensity is observed in
the connectivity patterns computed by using EEG and fMRI
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information when compared to those obtained using only
the EEG data.

Similar results were obtained by estimating the cortical
connectivity patterns in the beta band from the high
resolution EEG recordings obtained during the execution
of the Stroop task, with and without fMRI priors [40, 41].
In this case it can be noted that a substantial agreement
exists for the connectivity patterns obtained, that show
an involvement of the parietal and the frontal areas. This
finding is similar to that already observed in the finger
tapping experiment, as in this case the intensity of the
DTF estimated by the cortical waveforms obtained with
the multimodal integration was significantly higher than
that obtained by using only the EEG information. Slight
differences in the cortical pattern in different cortical areas
were noted.

We conclude that the inclusion of fMRI priors in the
estimation of cortical activity and connectivity from high
resolution EEG can add information to the estimation and
help to define the role of some specific cortical areas in the
flow of information necessary to the execution of a specific
task.

3.3. Simultaneous EEG-FMRI of Spontaneous Brain Activity:
Epilepsy. Simultaneous multi-modal acquisitions make it
possible to acquire signals in identical experimental condi-
tions. Assuming that data quality is preserved continuous
acquisition synchrony means that the same events are
captured and can be studied across modalities. Therefore
synchronous multi-modal acquisitions make it possible to
study signals related to events over which one has no
experimental control, that is, spontaneous brain activity in
the resting state. An important example of this is epileptic
activity which can be captured on EEG, an important
investigative and clinical tool in the field of epilepsy (And
visually of course, in the case of seizures; there have been
a number of (single-modality) fMRI studies of seizures, for
example, [42–44].).

Due to its potential clinical impact in cases with drug-
resistant epilepsy considered for surgical resection, local-
isation of the generators of epileptic activity is a central
issue in the field of epilepsy imaging. Although EEG
provides important clinical information its ability to localise
generators is fundamentally limited by the nonunicity of
the inverse electromagnetic problem [45]. However, tomo-
graphic modalities such as fMRI do not suffer from this
limitation. Therefore, as early as 1993, only a few years
following the demonstration of BOLD fMRI, investigators
in Boston started working on combined EEG and fMRI
acquisitions [46–48]. The key driver for this methodological
development is the lack of overt manifestation during or
following an interictal spike (in contrast to seizures, which
are rarer and generally more difficult to study using fMRI
due to motion and safety considerations). In the context
of fMRI this means that the only way of tagging scans
according to brain state (e.g., IED versus. background)
necessary for modelling the BOLD changes is to record the
EEG simultaneously.

Studies using EEG-fMRI applied to epilepsy generally
follow the asymmetric, EEG -> fMRI, mode of integration:
the EEG’s sole purpose is as a basis for fMRI modelling, that
is, to answer the question, what are the BOLD correlates of
the EEG events? For example, early applications used a spike-
triggered acquisition mode whereby each fMRI scan (or burst
of scans) was acquired following the visualisation of a spike,
and a corresponding number of scans acquired following
periods of background activity [49–54]. It is important
to remark that this (nonperiodic) interleaved acquisition
scheme was also motivated by one of the key issues in
synchronous multi-modal data acquisition: data quality
degradation due to interaction between each modality’s
hardware. In the case of EEG recording inside MR scanners,
the problem of pulse-related and image acquisition artefacts
arises. By implementing a pulse-artefact reduction scheme,
the authors were able to increase the reliability of spike
detection; by limiting scanning to short bursts following
events of interest, they limited the impact of the image
acquisition artefact [50, 51]. Subsequently, the development
of software techniques to allow recording of good quality
EEG during continuous scanning gave rise to the more
flexible technique of continuous and simultaneous EEG-
fMRI [55].

In the spike-triggered approach spike-related activation
was determined by applying voxel-wise t-tests across the two
scan sets. For datasets acquired using the analytical frame-
work of event-related designs is employed, whereby EEG
events of interest are identified, marked, and represented
mathematically to form the basis of a general linear model
of the entire BOLD time course and conforms to the EEG
-> fMRI, mode of integration [55, 56]. In an extension
of the straightforward EEG -> fMRI mode of integration
Liston et al. tested the significance and localisation of
BOLD changes linked to EEG epochs below the threshold
of visual spike detection, but marked as possible spikes by
an automated algorithm, and were able to demonstrate the
epochs’ probable epileptiform nature [57]. In the not so
distant future, we envisage that the availability of biophysical
models linking neuronal activity to EEG and BOLD signals
that can be inverted should result in more symmetrical
improved estimation of neuronal generators.

3.4. Simultaneous ERP-FMRI: Single Trials. Event-related
potentials (ERPs) are EEG responses to specific sensory,
cognitive and motor events [58]. Despite the rich temporal
information provided by ERPs, they suffer from the same
spatial resolution limitations as other scalp EEG patterns.
The integration of ERP and fMRI may provide a more com-
plete spatiotemporal characterisation of evoked responses
through the study of individual trials.

To this end a major breakthrough was achieved when
simultaneous EEG and fMRI recordings became feasible
[59], safe [60], and of sufficient quality [61–63]. As men-
tioned above, synchronous acquisitions remove intermodal-
ity bias relative to experimental conditions [64]; for example,
Novitski et al. [65] showed, that the loud noise of the
scanner can influence how the brain reacts to certain stimuli.
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In addition, simultaneous recordings allow the investigation
of relationships between event-related potentials and BOLD
responses across individual events.

In the following, we illustrate four approaches to the
analysis of simultaneously acquired ERP-fMRI, namely, ERP-
informed fMRI analysis, the use of constrained source
localisation, parallel independent component analysis (ICA),
and joint ICA.

The general idea behind ERP-informed fMRI analysis
is to identify brain regions with fMRI responses that
reflect paradigm-related amplitude modulations in individ-
ual ERPs. In [66], for instance, EEG data were acquired
during an auditory target detection (oddball) paradigm and
both ICA and wavelets were applied to denoise the data.
Subsequently single-trial N1, P2 and P3 amplitudes [67] were
extracted from the data. The resulting vectors were convolved
with the haemodynamic response function (HRF) and used
as regressors in a general linear model (GLM) for the BOLD
time course. The findings confirmed that the combination
of ERP and fMRI enables identification of regional responses
in the fMRI, reflecting a specific aspect of varying potentials.
Similarly, Debener et al. [68, 69] applied ICA to isolate task-
related activity from a typical EEG mixture of overlapping
brain and nonbrain sources. These single-trial amplitudes
from selected independent components preserve event-
related trial-by-trial fluctuations within each condition and
can thus be correlated with the BOLD response. This research
showed that ICA is a practical solution to minimise artefacts
and identify functionally meaningful EEG activity on a trial-
by-trial basis. Another example of this approach can be
found in [63] where subjects performed an auditory oddball
task during simultaneous EEG-fMRI measurements. They
showed significant BOLD effects related to ERP latency and
amplitude.

In a further refinement, regions of interest (ROIs) were
extracted from the fMRI maps [70] and used as con-
straints in source localisation analysis. The cortical generators
thus found, corresponded highly to findings by means
of intracranial measurements and the different timing of
activations associated with the task paradigm could also be
appreciated. As such, this method improved the solution
of the inverse EEG problem and enabled the study of the
dynamic behaviour of ROIs.

The abovementioned methods rely on the assumption
that scalp EEG data from both a selected channel and latency
can predict BOLD changes in single voxels [71]. However,
this is not physiologically plausible, because event-related
processes might be spatially and temporally mixed across the
brain. Therefore, Eichele et al. [71] propose “parallel ICA”
to unmix EEG and fMRI separately and to match temporal
sources from the EEG with spatial sources from the fMRI.

The above approaches are asymmetric in the use of
data, namely, EEG for analysis of fMRI data or vice versa.
Moosmann et al. [72] propose a symmetric approach by
not only combining EEG and fMRI in one common data
space but also by applying a joint ICA model to these
data. Therefore features of neural sources whose trial-to-trial
dynamics are jointly reflected in both modalities can now be
studied.

ERP-informed fMRI is so far the most widely vali-
dated method; it has already been studied in numerous
applications. Since it allows tracking and correlating the
trial-to-trial variability of both EEG and fMRI, it provides
detailed information about regional fMRI responses with
the temporal accuracy typical of EEG. Furthermore, the
second proposed method, constrained source localisation,
is based on the same principles but additionally uses the
ERP-informed fMRI regions as constraints for further source
localisation. Unfortunately, both these methods suffer from
several important drawbacks. First of all they leave room
for improvement concerning the proportion of EEG data
used for integration [72]. The reason for this is that all
these studies take into account only certain features of the
data and therefore possibly disregard important temporal or
spatial information. In addition, the observed data from both
modalities often represent a mixture of signals coming from
multiple neural sources. A voxel-by-voxel prediction of the
fMRI signals based on the ERP data (even after application of
ICA on these ERPs) may therefore become unreliable when
multiple sources contribute to either the predictor or the
response variables. The parallel ICA approach tries to address
both these issues, but still shares a disadvantage with the
above methods, namely, the asymmetry of the procedure.
In the joint ICA approach both modalities are therefore
assembled and decomposed in one common data space. As
such an asymmetric information flow is no longer present. A
limitation of joint ICA is however that it cannot reflect the
time domain of event related oscillations that are not time
locked within one component [72].

ICA is clearly emerging as an important analytical tool,
reflecting the exploratory nature of work on EEG and
fMRI data fusion at the level of single events. However, the
relevance of the assumptions on which ICA is based with
regard to the separation of the source activity into electrical
and haemodynamic components requires further testing.
Furthermore, not enough validation has yet been performed
to conclude whether one of the above methods performs
much better than the others. So far the performance of
the methods seems highly dependent on the application of
interest.

4. Conclusion

The relationship between the BOLD signal and neural activ-
ity is complex, and depending on the experimental paradigm
it can be linear or nonlinear. The relative contributions of
slow wave activity versus spiking activity and the dependence
of BOLD on spectral properties of neural activity also
remain to be fully characterised but increasing evidence
indicates that Local Field Potentials and the higher frequency
components of brain rhythms are good correlates of the
metabolic response. Experimentally, various modes of multi-
modal image integration are available to the investigator.
The inclusion of fMRI priors in the linear inverse estimation
of the cortical activity can be used to increase the spatial
resolution of the EEG and improved estimation of cortical
connectivity, which is one of the most challenging and
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important objectives of neuroimaging. Synchronous acquisi-
tions represent the most flexible solution in terms of analysis,
allowing full exploitation of the data at the available temporal
and spatial resolution, down to individual events and free
of intersession bias. In the field of motor imagery, this
approach has demonstrated a negative correlation between
event-related desynchronization and the BOLD signal. In the
field of epilepsy, simultaneous EEG-fMRI is necessary for the
study of the haemodynamic correlates of interictal patholog-
ical discharges due to their subclinical nature. Such studies
have demonstrated BOLD increases and decreases in relation
to sharp waves and sharp- and slow-wave complexes. In the
field of evoked response studies we envisage the extension of
the connectivity estimators in the time-frequency domain,
which would return more detailed information about the
functional links established between different cortical sites
during the evolution of the task. The proposed fusion
procedures for single trial ERPs and fMRI enable us to study
the temporal dynamics the spatial behaviour of information
processing and cognitive functioning in greater detail. Future
developments in biophysical modelling will permit more
precise and complete estimations of neuronal activity using
noninvasive means. This may lead to more symmetric data
analysis approaches better capable of identifying salient
spatiotemporal patterns and assist in the design of efficient
experimental strategies.
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