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Abstract 
 
Neonatal responses to peripheral cutaneous sensory stimuli appear hyperexcitable 

compared to those of the adult, at both behavioural and cellular levels.  Little is 

known, however, of the mechanisms involved in the maturation of this sensory 

circuitry over the postnatal period. I hypothesise that the excitability of neonatal 

networks is due to immature local and descending inhibitory control of spinal 

circuits. To test this I have examined the maturation of descending and local 

inhibitory spinal circuitry using immunohistochemical staining in the dorsal horn, in 

vivo electrophysiological recordings of dorsal horn neurons and stimulation of 

brainstem descending pathways. 

 

Firstly, I mapped the development of spinal glycinergic circuitry over the first three 

postnatal weeks using immunohistochemical staining of glycinergic terminals and 

receptors. Results show a clear shift in expression pattern from deep dorsal horn 

staining of both glycinergic terminals and receptors in the neonate, to selective 

expression in lamina III by the third postnatal week. 

 

I then characterised the functional development of glycinergic inhibition of spinal 

sensory pathways at a cellular level using in vivo extracellular recordings of dorsal 

horn neurons in neonatal and adolescent rats in the presence of the glycine receptor 

antagonist strychnine. Results illustrate an absence of glycinergic inhibition of 

sensory stimuli until postnatal day 21 and a facilitatory role of glycine in the 

transmission of low-threshold stimuli in the neonatal spinal cord. 

 

Finally, I examined the descending influence of the rostroventral medulla on dorsal 

horn neuronal activity over postnatal development. Results indicate that the influence 

of descending control shifts dramatically from predominantly excitatory in early 

development, to predominantly inhibitory at a later stage in life. 

 

In conclusion, there is significant postnatal modulation of segmental and descending 

influences on spinal networks in the postnatal period, both of which are likely to 

contribute to the maturation of cutaneous sensory spinal processing. 
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1.1 Introduction 

 

The spinal cord serves as the first integrative point of primary afferent sensory 

information in the central nervous system and is under local segmental, as well as 

descending control from the brainstem. Within the spinal dorsal horn, sensory input 

is relayed locally before transmission to higher centres. Here it can be modulated and 

influenced by both excitatory and inhibitory neurotransmitters released from local 

interneurons; regulation of these interneurons and the balance between inhibition and 

excitation can therefore strongly affect the perception and discrimination of sensory 

information. Increasing inhibition by means of clinically utilised medicines can 

dampen down all afferent information from both peripheral tissues and descending 

from brainstem structures, resulting in anaesthesia and analgesia (Franks, 2006). In 

stark contrast to this, removal of spinal inhibition using pharmacological blockade of 

inhibitory transmitter receptor systems results in excessive neural activity and 

models of pathological pain states in rats (Yaksh, 1989; Sivilotti & Woolf, 1994; 

Sherman & Loomis, 1996; Sorkin & Puig, 1996). 

 

Whereas this equilibrium is carefully managed in the healthy adult system, studies in 

both animals and humans reveal that this balance is not established at birth, and the 

mature balance is the result of postnatal activity-dependent strengthening of sensory 

synapses. Advances in the scientific understanding of biological systems have 

allowed us to take advantage of the versatility of the human organism in order to 

better treat adult pathologies, but little is known of how the neonatal system adapts to 

its environment and how excitatory and inhibitory neurotransmission changes over 

the critical learning period in early life. This gap in knowledge has led to a distinct 

lack of treatments directed at pain relief in newborn and premature infants. 

Behaviourally, neonates appear more sensitive to touch and pain, often responding 

with exaggerated reflexes and whole-body movements to an isolated cutaneous 

stimulus to the leg (Fitzgerald et al., 1988; Andrews & Fitzgerald, 1994), implying 

excessive excitation in nociceptive networks. The mechanisms behind this sensitivity 

are incompletely understood, but the outdated view that infants can be treated as 

‘smaller adults’ certainly no longer applies. Physiologically, premature infants can be 
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seen as distinct to adults and in some cases medicines commonly used in adults can 

have entirely opposite effects in the immature system (Koch et al., 2008). 

 

This chapter provides background on the sensory circuitry of the adult spinal dorsal 

horn, describing the anatomy of the dorsal horn and detailing the neurotransmitters 

involved in the transmission of cutaneous sensory input.  Further, the influence of 

descending control from the brainstem upon nociceptive behaviour and the sensory 

coding of spinal neurons will be introduced. Finally, an overview of what is known 

of the development of this sensory circuitry is presented with particular emphasis on 

glycinergic inhibition and the role of supraspinal control in the early postnatal period. 

This will serve to act as a platform for the aims of this thesis, which are outlined at 

the end of the chapter. 

 

1.2 Anatomy of the adult spinal dorsal horn 

1.2.1 Laminar organisation adult dorsal horn neurons 

 

The spinal dorsal horn is subdivided into parallel laminae according to cell size and 

packing density, named lamina I through VI ((Rexed, 1952); see Figure 1. 1). 

Laminae are broadly grouped into superficial (laminae I and II), and deep dorsal horn 

(laminae III-VI). These delineations also hold true for the functions of neurons 

within each band. Peripheral information, relayed through primary afferent fibres, 

enters the spinal cord in a highly organised fashion and each class of afferents 

terminates within a given lamina. This information can then be relayed locally within 

the spinal cord or to higher centres via projection neurons, allowing a tight control on 

the transmission both innocuous and noxious sensory information. 

 

Together, laminae I and II make up the superficial dorsal horn. As the primary target 

for peripheral nociceptive afferents, the superficial dorsal horn plays a critical role in 

the processing of nociceptive information. Lamina I, also known as the marginal 

layer, is comprised of a thin sheet of densely packed interneurons and large 

projection neurons, both of which have dendrites remaining primarily within the 

laminar plane. Cells within the marginal layer have been classified by morphology 
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into fusiform, pyramidal, multipolar and flattened neurons (Lima & Coimbra, 1988; 

Grudt & Perl, 2002) and, more recently, by electrophysiological properties (Prescott 

& De Koninck, 2002). Although the percentage of projections neurons within this 

lamina does not extend beyond 5% (Spike et al., 2003), lamina I has the highest 

density of projection neurons within the dorsal horn, most of which are neurokinin-1 

(NK1) receptor positive and receive monosynaptic innervation from excitatory 

substance P-containing peripheral afferents (Todd et al., 2000). Projection neurons in 

lamina I have been shown to be particularly important in setting the excitability of 

spinal circuits; they have direct connections to key brainstem areas known to be 

involved in nociceptive processing, such as the thalamus (Al-Khater et al., 2008), 

periaqueductal grey (PAG; (Spike et al., 2003)) and parabrachial areas (Almarestani 

et al., 2007). These  can then relay to, and receive information from, higher centres 

in the cerebral cortex and subsequently influence excitability of neurons in the 

deeper dorsal horn through descending control (Hunt & Mantyh, 2001; Suzuki et al., 

2002), forming both a feedback loop onto themselves and feedforward loop onto 

neurons in the deeper dorsal horn. 

 

Lamina II, in contrast to lamina I, is primarily composed of small interneurons and is 

known as the substantia gelatinosa due to the lack of myelination within this layer. It 

is further subdivided into an inner layer (IIi) and an outer layer (IIo), each of which 

contains a subset of unmyelinated C fibre peripheral afferents allowing for 

neurochemical identification. Lamina IIi contains non-peptidergic isolectin B4 (IB4) 

positive afferents, whereas peptidergic C fibres terminate in lamina I and IIo and can 

be identified by calcitonin gene related peptide (CGRP) immunostaining (Hunt & 

Rossi, 1985). The high density of interneurons in lamina II and the easily 

distinguishable lack of myelination have allowed detailed analysis of excitatory and 

inhibitory interneurons. In fact, most of the electrophysiological data relating to 

interneurons has been obtained from recordings within this lamina. Laminae I-III is 

said to be comprised of around 30% inhibitory neurons (Todd & Sullivan, 1990) 

although a recent study has shown that the majority of interneuronal connections in 

the substantia gelatinosa are excitatory (Connor et al., 1987; Santos et al., 2007; Kato 

et al., 2009). Interestingly, as of yet no morphological characterisation of 

interneurons has been fully successful. Although at least seven different neuronal 

subtypes have been suggested (Grudt & Perl, 2002), only two cell types can be 
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readily identified across species: islet cells, which have elongated dendritic trees 

spanning rostrocaudally and locally situated axons, and stalked cells, found in lamina 

IIo with ventrally extending dendrites and axons projecting to lamina I (Gobel, 1978; 

Todd & Spike, 1993; Grudt & Perl, 2002). Immunohistochemical analysis has 

revealed that islet cells are GABAergic, suggesting they are inhibitory (Todd & 

Spike, 1993), but the morphological identification of excitatory interneurons remains 

unspecified and attempts at correlating these morphologies with function have been 

unsuccessful (Light et al., 1979; Woolf & Fitzgerald, 1983; Light & Kavookjian, 

1988). Lamina II is also known to contain a high number of synaptic glomeruli. 

These are a complex of primary afferent terminals and dendritic arbors of local 

interneurons and are thought to be important in the signalling of nociceptive 

information (Gobel et al., 1980; Willis & Coggeshall, 1991; Wu et al.). Afferent 

terminals can be found both presynaptic to dendritic arbors of interneurons and 

postsynaptic to synaptic vesicle-containing dendrites, which are often GABAergic in 

origin (Barber et al., 1978; Ribeiro-da-Silva et al., 1985; Todd et al., 1996). These 

glomeruli can therefore serve both as signal amplifiers, when one afferent terminal is 

presynaptic to several dendritic spines, and as signal integrators, when afferent 

terminals are found postsynaptic to local inhibitory GABAergic dendrites (see 

(Willis & Coggeshall, 1991; Wu et al.)).  

 

Laminae III-VI form the deep dorsal horn and are composed of a heterogeneous 

population of both interneurons and a few projection neurons. These also contain the 

terminals of Aβ primary afferent fibres, which convey innocuous touch and brush. 

Interneurons found within these laminae possess large dendritic trees that can extend 

up to lamina I or ventrally to laminae IV and beyond (Gobel, 1978; Grudt & Perl, 

2002; Schneider, 2008) allowing for monosynaptic input from various functional 

classes of primary afferents as well as information from interneurons in lamina II 

(Light & Kavookjian, 1988; Todd, 1989). The second largest site of spinal projection 

neurons after lamina I is found in lamina V. Neurons within this region send their 

axons to the thalamus, dorsal column nuclei, the lateral cervical nucleus as well as 

various regions of the spinal cord; collaterals from lamina V neurons range dorsally 

to lamina III to ventral lamina VII. Although primary afferent input to this region is 

predominantly mediated by Aβ fibres, there is also input from thinly myelinated Aδ 

nociceptors, allowing for multireceptive or wide dynamic range neurons (WDRs) 
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which respond to innocuous and noxious stimuli (see (Willis & Coggeshall, 1991; 

Wu et al., 2010).   

 

1.2.2 Anatomical organisation of peripheral terminals 

 

Sensory information entering the spinal cord is organised by sensory modality and 

primary afferent terminals exhibit laminar organisation depending on their functional 

class ((Light & Perl, 1979; Light et al., 1979; Hantman et al., 2004; Heinke et al., 

2004); see Figure 1. 1). Cutaneous peripheral afferents can be classified into three 

categories, based upon their size and conduction velocities. These include: 

 

 C fibres: thin, unmyelinated fibres that are slowly conducting (0.5-2.0 m/sec). 

C fibres terminals are mainly located in lamina II, but are also found in 

lamina I (LaMotte, 1977; Light & Perl, 1979; Cruz et al., 1987; Mizumura et 

al., 1993; Sugiura et al., 1993) and primarily transmit noxious mechanical, 

chemical and heat stimuli. 

 Aδ fibres: small, myelinated fibres, with conduction velocities that are faster 

than C fibres (12-30 m/sec). Terminals are found primarily in lamina I, III 

and lamina V (LaMotte, 1977; Light & Perl, 1979; Mizumura et al., 1993) 

and fibres transmit noxious information such as pin-prick as well as non-

noxious information from hair follicles.  

 Aβ fibres: large, myelinated fibres conducting at a rate of 30-100 m/second. 

These distribute to deeper laminae III and IV (Cruz et al., 1987; Woolf, 1987; 

Cruz et al., 1991; Shortland & Woolf, 1993) and are sensitive to innocuous 

stimuli such as brush and touch. 
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Figure 1. 1: Schematic of afferent input into the spinal cord.  

Unmyelinated C fibres and thinly myelinated A δ fibres terminate in superficial laminae I-II, with 

some Aδ fibres reaching lamina V. Myelinated Aβ fibres enter the spinal cord primarily in deeper 

laminae III-V. 

 

Dorsal horn neurons all possess a receptive field. In the case of those with cutaneous 

inputs, this corresponds to the skin region that upon stimulation alters neuronal 

activity beyond the resting state. Receptive fields are influenced by both 

monosynaptic inputs from peripheral afferents as well as by polysynaptic inputs via 

local excitatory or inhibitory interneurons. Stimulation of the centre of a receptive 

field of a neuron will generate an action potential of the target neuron, whilst 

stimulating the area directly surrounding the receptive field can generate excitatory 

or inhibitory postsynaptic potentials without reaching action potential threshold 

(Price et al., 1978a; Brown & Fyffe, 1981; Brown et al., 1987; Woolf & King, 1989). 

These surrounding areas have been termed “low-probability firing fringes” (Woolf & 

King, 1989). 

 

Receptive fields are arranged somatotopically: specific areas of the dermatome are 

represented by groups of dorsal horn neurons with overlapping receptive field areas 

(Wall, 1967; Willis & Coggeshall, 1991; Wang et al., 1997) and areas differ in size 

according to the laminar distribution of the cell. Recordings from both cats and rats 

have shown lamina II neurons to have “amoeboid” receptive fields that are dynamic 

in size and shape, and can change within a given recording (Dubuisson et al., 1979; 

Woolf & Fitzgerald, 1983). Furthermore, receptive fields of deep dorsal horn 
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neurons are generally larger than those found in the superficial layers (Wall, 1967; 

Wall et al., 1979; Woolf & Fitzgerald, 1983), suggesting a larger integration of input. 

These larger receptive field areas are thought to aid in the discrimination of stimulus 

area and intensity, information from which can then be transmitted to supraspinal 

centres by projection neurons located in lamina V.  

 

Transient increases or decreases in receptive field area can be achieved through the 

application of pharmacological agents near the recorded neuron (e.g. 

(Zieglgansberger & Herz, 1971)) or in response to tissue injury or intense chemical 

stimulation near the receptive area (e.g. (McMahon & Wall, 1984; Woolf & King, 

1990)). Similarly, receptive fields can be altered and even fully reorganised in 

response to nerve damage (Koerber & Mirnics, 1996; Wilson & Kitchener, 1996; 

Zhang & Rowe, 1997). This would suggest both central and peripheral changes 

including dorsal horn neuron sensitisation, abnormal peripheral afferent input from 

receptive field areas, and dysfunctional inhibitory circuits within the spinal cord and 

from descending supraspinal centres (Lewin et al., 1994).  

 

The range of modalities to which a cell will respond is largely determined by 

peripheral input and so the cell’s laminar distribution, such that a large number of 

nociceptive specific neurons are found in lamina I of the dorsal horn, whereas a large 

number of wide dynamic range neurons are found in lamina V. However, laminar 

distribution is not necessarily an accurate gauge of cell activity and as such, dorsal 

horn neurons are generally classified according to their response properties, and not 

their laminar layer (see Figure 1. 2). Although many different forms of classification 

have been suggested, the most widely held classification is that set out by Menetrey 

(Menetrey et al., 1977): (i) low-threshold neurons (LT), which respond only to 

innocuous brush or touch, also known as Class 1 neurons; (ii) wide dynamic range 

(WDR) or Class 2 neurons, respond to innocuous and noxious stimuli and are the 

most abundant cell type; (iii) high threshold nociceptive specific cells (NS), which 

response to noxious stimuli only, also known as Class 3 neurons; and (iv) Class 4 

neurons, which respond to joint movement or deep pressure. 
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Figure 1. 2: Schematic of neuronal populations in the dorsal horn and innervating peripheral 

afferents.  

Primary afferents innervate the dorsal horn in a size and modality-dependent manner, such that 

nociceptive afferents preferentially innervate superficial laminae and low threshold afferents terminate 

in the deeper dorsal horn. Cell type is not lamina-specific, and is mainly dependent on afferent input. 

NS: nociceptive specific neurons, which respond to Aδ and C fibre input; LT: low threshold neurons 

are excited by innocuous touch and brush transmitted through Aβ and Aδ fibres; WDR: wide dynamic 

range neurons are responsive to both noxious and innocuous stimuli applied to their cutaneous 

receptive fields. I, IIo, IIi etc refer to dorsal horn laminae. Aβ thickly myelinated fibres are represented 

by a thick yellow line, thinly myelinated Aδ fibres by green, and unmyelinated C fibres by a thin red 

line. Figure modified from (Millan, 1999). 

 

Cutaneous information from peripheral afferents is transmitted to supraspinal sites 

both by direct monosynaptic inputs between projection neurons and Aδ and C fibre 

terminals and indirect polysynaptic inputs from excitatory interneurons (Price et al., 

1978b; Dubner & Bennett, 1983; Ruda et al., 1986; Willis & Coggeshall, 1991; 

Coggeshall & Carlton, 1997). Excitatory interneurons are therefore involved in the 

transmission of innocuous touch and brush mediated by Aβ fibres to neurons in the 

superficial dorsal horn. Neurons in the deeper dorsal horn receive direct 

monosynaptic input from Aβ fibre afferents, and wide dynamic range and 
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nociceptive specific neurons in lamina V are primarily thought to receive nociceptive 

information via excitatory interneurons found in lamina II (Dubner & Bennett, 1983; 

Light & Kavookjian, 1988; Todd et al., 1994; Coggeshall & Carlton, 1997), although 

some direct monosynaptic input from C fibres has been demonstrated (De Koninck et 

al., 1992).  

 

Whereas excitatory interneurons and projection neurons form an integrated network 

involved in the transmission of nociceptive information from primary afferents to 

higher centres, inhibitory interneurons in conjunction with descending inhibitory 

influences are involved in the fine modulation and limitation of this flow of 

information, and are activated in parallel to excitatory interneurons by nociceptive 

Aδ, C fibres and by innocuous Aβ primary afferents (Zhou et al., 2007, 2008). 

Inhibition through interneurons is achieved both presynaptically by acting directly 

onto primary afferents, and postsynaptically by inhibition of target wide dynamic 

range or projection neurons (Schmidt, 1971; Willis & Coggeshall, 1991; Todd & 

Spike, 1993; Malcangio & Bowery, 1996; Todd et al., 1996; Wu et al., 2010). This 

allows for tight control of incoming signals from the periphery to the spinal cord 

(feedback inhibition), as well as control on the transmission of information to higher 

centres (feedforward inhibition), both of which are crucial to dampen excitability of 

the spinal cord, encourage sensory discrimination and allow for fine tuned responses 

to noxious input. 

 

1.3 Local inhibitory circuits in the adult dorsal horn 

 

The influence of inhibitory interneurons on spinal sensory processing can be revealed 

experimentally by using pharmacological blockade of inhibitory receptors. Spinal 

application of GABAA or glycine receptor antagonists results in an expansion of the 

receptive field size of dorsal horn neurons and significantly increases neuronal firing 

to cutaneous stimuli (Sivilotti & Woolf, 1994; Sorkin & Puig, 1996; Drew et al., 

2004; Kawamata et al., 2005). These neuronal effects are mirrored in behaving 

animals, which consequently display signs of pathological pain states including 

hyperalgesia, whereby perception of a noxious stimulus is heightened, and touch-

evoked allodynia, during which a normally innocuous stimulus is perceived as 
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noxious (Beyer et al., 1985; Yaksh, 1989; Sherman & Loomis, 1996; Sorkin & Puig, 

1996). 

 

Inhibition in the adult mammalian spinal cord is mediated primarily by the amino 

acid transmitters glycine and GABA, released from both intrinsic interneurons and 

descending fibres (Curtis et al., 1967, 1968; Reichling & Basbaum, 1990; Kato et al., 

2006). Both GABA and glycine are expressed in neurons throughout the spinal cord 

(Aprison & Werman, 1965; Curtis & Watkins, 1965; Davidoff et al., 1967; Aprison 

et al., 1969). These have been shown to be extensively co-transported and co-

released, resulting in a dual-component inhibitory synaptic current composed of a 

fast glycinergic phase and a slow GABAA-receptor mediated phase (Game & Lodge, 

1975; Todd & Sullivan, 1990; Baba et al., 1994; Yoshimura & Nishi, 1995; Todd et 

al., 1996). Exogenous iontophoresis of GABA or glycine onto the dorsal horn 

decreases the activity of interneurons throughout superficial and deep laminae across 

species (Curtis et al., 1967, 1968; Werman et al., 1968; Zieglgansberger & Herz, 

1971), effects of which can be prevented through application of the GABAA receptor 

antagonist bicuculline or the glycine receptor antagonist strychnine (Curtis et al., 

1969; Game & Lodge, 1975; Sivilotti & Woolf, 1994; Yoshimura & Nishi, 1995; 

Sorkin & Puig, 1996; Sorkin et al., 1998; Narikawa et al., 2000). 

 

Glycinergic and GABAergic inhibition in the dorsal horn is thought to occur via 

three main routes (see Figure 1. 3 and (Zeilhofer, 2005)): firstly, afferent fibres are 

thought to excite inhibitory interneurons locally in the dorsal horn as well as lead to 

indirect GABA and glycine release (Narikawa et al., 2000; Zhou et al., 2007, 2008); 

secondly, inhibitory descending control from the brainstem can directly inhibit target 

dorsal horn neurons (Antal et al., 1996; Zeilhofer et al., 2005); and thirdly, 

descending control from the brainstem can serve to excite inhibitory interneurons, 

resulting in polysynaptic inhibitory control (Tambeli et al., 2003).  
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Figure 1. 3: Three modes of GABAergic and glycinergic inhibition of dorsal horn neurons. 

Target neurons in the spinal dorsal horn can be inhibited by three means: 1) afferent primary afferent 

fibres excite spinal inhibitory interneurons, which synapse with, and release GABA and/or glycine 

onto, local target neurons; 2) descending inhibitory fibres from the brainstem synapse directly onto 

target neurons in the spinal cord to inhibit firing; 3) descending excitatory fibres inhibit target neurons 

indirectly through activation of local inhibitory interneurons. Blue indicates inhibitory signals, red 

indicates excitatory transmission. Modified from Zeilhofer 2005 (Zeilhofer, 2005). 

 

1.3.1 GABA and its receptors 

 

GABA has been shown to be present in approximately a third of all interneurons in 

laminae I, II and III of the dorsal horn (Barber et al., 1982; Todd & McKenzie, 1989; 

Carlton & Hayes, 1990). It is found throughout the spinal cord along with its 

synthetic enzyme glutamic acid decarboxylase (GAD), although it is most 

concentrated in the superficial laminae (Curtis & Watkins, 1965; Graham & Aprison, 

1969; McLaughlin et al., 1975). GABA exerts its inhibitory actions through three 

receptor subtypes: ligand-gated anion channels GABAA and GABAC receptors and 

the metabotropic guanine nucleotide-binding protein (G-protein) coupled GABAB 

receptor. 
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1.3.1.1 GABAA receptors 

 

The GABAA receptor is a heteropentameric ligand-gated anion channel permeable to 

both chloride and bicarbonate anions (Curtis & Watkins, 1965; Bormann, 1988; 

Sivilotti & Nistri, 1991; Mehta & Ticku, 1999). It is known to have seven subunit 

subtypes (α, β, γ, δ, ε, η, and θ) each of which has multiple isoforms (Olsen & Tobin, 

1990; Burt & Kamatchi, 1991; Macdonald & Olsen, 1994; De Blas, 1996). Receptor 

stoichiometry appears to shift according to CNS location but in the adult spinal cord 

is preferentially in a 2α:2β:1γ conformation (Ma et al., 1993; Rudolph & Mohler, 

2004).  

 

GABAA receptors are generally categorised according to their sensitivity to 

benzodiazepines, conferred primarily by the α subunit of the receptor. This subunit 

also confers unique binding characteristics and channel kinetics (McKernan et al., 

1991; Rudolph & Mohler, 2004; Wafford et al., 2004). Immunohistochemical and 

radioligand studies have demonstrated the presence of GABAA receptors throughout 

the dorsal horn, with particular emphasis in lamina I-III (Ribeiro-Da-Silva & 

Coimbra, 1980; Sur et al., 1995; Alvarez et al., 1996; Bohlhalter et al., 1996; Todd et 

al., 1996). Similarly, neurons under tonic GABAergic control are found in lamina I-

VI, with peaks in laminae IIo and V (Cronin et al., 2004). 

 

GABAA receptor-mediated inhibition occurs both on the presynaptic terminal of 

primary afferents and at the postsynaptic membrane of target cells. At the 

postsynaptic site, binding of GABA to GABAA receptors results in the opening of 

the anion channel. This allows the flow of chloride ions down their electrochemical 

gradient (Curtis & Watkins, 1965), which subsequently hyperpolarises the cell and 

prevents action potential firing. Presynaptically, GABA-binding to the receptor 

results in depolarisation known as primary afferent depolarisations (PADs) due to the 

high intracellular chloride concentrations of primary afferent terminals (Sung et al., 

2000). This depolarisation acts as a shunt by preventing further excitation and 

inhibiting the release of the excitatory neurotransmitters glutamate and substance P 

(Rudomin & Schmidt, 1999; Ishikawa et al., 2000). 
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1.3.1.2 GABAB receptors 

 

GABAB receptors mediate slow inhibitory postsynaptic currents. These receptors are 

coupled to potassium and calcium ionotropic channels via G-proteins, which in turn 

activate second messenger systems within the cell (Sivilotti & Nistri, 1991; Bowery, 

1993; Bowery et al., 2002; Bettler et al., 2004). GABAB receptors are composed of 

three known subunits (GABAB1a, GABAB1b and GABAB2), found in several brain 

regions including the thalamic nuclei, cerebellum and cerebral cortex, as well as in 

the spinal dorsal horn, where they are located on small primary afferent fibre 

terminals (Price et al., 1987; Malcangio & Bowery, 1996; Ataka et al., 2000; Towers 

et al., 2000).  

 

The mechanisms underlying GABAB receptor mediated presynaptic inhibition of 

primary afferent terminals and that of postsynaptic target neurons differs. 

Presynaptically, GABAB receptor activation prevents calcium influx into the cell 

through inhibition of calcium channels. In this way they can function as 

heteroreceptors by preventing release of other neurotransmitters such as glutamate 

and substance P and as autoreceptors, by preventing the release of GABA and so 

limiting their own activation (Price et al., 1987; Lüscher et al., 1997; Ataka et al., 

2000; Iyadomi et al., 2000; Schuler et al., 2001; Bowery et al., 2002). GABAB 

receptor activation on the postsynaptic membrane acts to open K+ channels, resulting 

in hyperpolarisation (Lüscher et al., 1997).  

 

1.3.1.3 GABAc receptors 

 
Much like GABAA receptors, GABAC receptors are GABA-gated chloride ion 

channels, however, unlike the heteromeric composition of GABAA receptors, 

GABAC receptors are homomeric and composed exclusively of ρ-subunits (Chebib 

& Johnston, 2000). The two anion channel GABA receptors can be readily 

distinguished on the basis of their channel properties and pharmacology: the mean 

channel open time for GABAC receptors is longer, and they are insensitive to the 

GABAA receptor antagonist bicuculline, whilst being 7 times more sensitive to 

GABA (Feigenspan & Bormann, 1994; Darlison & Albrecht, 1995).  
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GABAC receptors are found primarily in the retina, but ρ subunits have also been 

located in discrete areas of the brain and throughout the spinal cord, both on 

interneurons and motoneurons (Enz et al., 1995; Rozzo et al., 2002). The full 

functional role of these receptors has yet to be elucidated. 

 

1.3.2 Glycine and its receptor 

 

Glycine is the second major inhibitory neurotransmitter in the adult central nervous 

system after GABA and is involved in the processing of sensory information and 

motor control. Expression studies using radioactive tritiated strychnine and glycine 

have demonstrated the presence of glycine receptors throughout the spinal grey 

matter and brainstem, with decreasing expression at more rostral regions in the 

central nervous system (Zarbin et al., 1981; Araki et al., 1988). Glycine and glycine 

receptor immunoreactivity are found at high levels in the ventral and dorsal horns of 

the spinal cord. Within in the dorsal horn these are primarily located in lamina III-V 

with a small population of neurons in lamina I (Aprison & Werman, 1965; Aprison et 

al., 1969; Ribeiro-Da-Silva & Coimbra, 1980; Zarbin et al., 1981; Araki et al., 1988; 

Basbaum, 1988; van den Pol & Gorcs, 1988; Todd, 1990; Todd & Sullivan, 1990; 

Lynch, 2004; Zeilhofer et al., 2005). 

 

1.3.2.1 Glycine receptor 

 

The glycine receptor is a heteropentameric ion channel permeable to chloride and 

shares many structural characteristics of the nicotinic acetylcholine receptor. Unlike 

GABAA receptor-mediated inhibition, glycine receptor-mediated inhibition is 

primarily postsynaptic (Mitchell et al., 1993; Todd et al., 1996). When activated, the 

channel serves to increase chloride conductance in the postsynaptic membrane 

leading to hyperpolarisation and decreased excitability. Fos immunoreactivity 

following administration of the glycine receptor antagonist strychnine revealed that 

neurons under tonic glycine inhibition are located in the deep dorsal horn laminae 

III-V (Cronin et al., 2004). 
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The glycine receptor is composed of α and β subunits, arranged around a central 

pore; studies have shown evidence for both a 3α:2β (Becker et al., 1988; Kuhse et 

al., 1993), and more recently 2α:3β stoichiometry (Grudzinska et al., 2005). The α 

subunit of the glycine receptor, confers channel kinetics and pharmacology, whilst 

the β subunit allows anchoring of the receptor to the membrane through binding of 

the auxiliary structure protein gephyrin (Triller et al., 1985; Schmitt et al., 1987; 

Betz et al., 2006). To date there are four known α subunit isoforms, named α1-α4 

(Grenningloh et al., 1990; Kuhse et al., 1990; Matzenbach et al., 1994) and a single β 

subunit isoform.  

 

1.3.2.2 Glycinergic inhibition of sensory information in the adult spinal 

cord 

 

The extent of the role of glycine in sensory transduction in vivo can be examined by 

making use of the natural alkaloid strychnine, a glycine receptor-specific antagonist 

(Curtis et al., 1968). As mentioned above, the laminar distribution of GABA and 

glycine differ significantly: whereas GABA is primarily located in the superficial 

dorsal horn, glycine is found in deeper laminae III-V (Aprison & Werman, 1965; 

Aprison et al., 1969; Ribeiro-Da-Silva & Coimbra, 1980; Zarbin et al., 1981; Araki 

et al., 1988; Basbaum, 1988; van den Pol & Gorcs, 1988; Todd, 1990; Todd & 

Sullivan, 1990; Puskár et al., 2001; Lynch, 2004; Zeilhofer et al., 2005). As a 

consequence of this, there is a certain level of modality-specificity for each inhibitory 

neurotransmitter: GABAergic interneurons in laminae I-II will receive 

predominantly nociceptive afferent input through Aδ and C fibres, whilst glycinergic 

interneurons in laminae III-V will receive innocuous input from Aβ fibres as well as 

indirect input from Aδ and C fibres (see Anatomical organisation of peripheral 

terminals above). Consistent with this, several studies have reported that strychnine 

administration results in a low threshold-specific disinhibition: treated animals show 

increased neuronal firing to innocuous hair deflection, mirroring responses normally 

only evoked by noxious stimulation in naïve animals (Yokota et al., 1979; Sherman 

& Loomis, 1994; Sivilotti & Woolf, 1994; Sherman & Loomis, 1996; Sorkin & Puig, 

1996). This is further supported by genetic studies in which the gene encoding the 

glycine receptor has been altered; these have shown that mice with deficits in 
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glycinergic transmission display extreme sensitivity to touch (White & Heller, 1982). 

Strychnine-induced touch-evoked allodynia is insensitive to morphine, unlike that 

seen following administration of GABAA receptor antagonists (Sherman & Loomis, 

1994), suggesting independent mechanisms of disinhibition between both receptors.  

 

These results have been replicated at the structural and functional cellular level in the 

dorsal horn. Electron microscopy and in vivo patch-clamp studies provide evidence 

of direct monosynaptic low threshold myelinated input onto glycinergic neurons in 

the dorsal horn (Todd, 1990; Narikawa et al., 2000) and in vivo extracellular and in 

vitro patch clamp studies have revealed a polysynaptic protein kinase C gamma 

(PKC-γ)-mediated excitatory pathway between low-threshold sensitive neurons in 

laminae III-IV and nociceptive circuits in laminae I-II, that is normally under strong 

glycinergic inhibitory control in the mature spinal cord (Sorkin & Puig, 1996; Baba 

et al., 2003; Torsney & MacDermott, 2006; Miraucourt et al., 2007).  

 

1.4 Descending modulation of adult dorsal horn circuits 

 

Early studies by Sherrington were amongst the first to show the importance of 

supraspinal descending control onto spinal networks, where transection of the spinal 

cord of adult cats resulted in a significant increase in flexion reflex withdrawal 

(Sherrington & Sowton, 1915). This finding held true in non-motor circuits, thoracic 

cold block interrupting descending influences onto spinal dorsal horn neurons lead to 

increased excitability and larger receptive fields of spinal dorsal horn neurons, most 

notably of those located in the deeper dorsal horn (Wall, 1967). Although both 

studies revealed a tonic descending inhibitory control over spinal circuits, the true 

origins of this modulation were unclear. This remained the case until 1969 when 

Reynolds identified the periaqueductal grey (PAG) as a major site of descending 

control (Reynolds, 1969). Inhibition as a result of PAG stimulation was strong 

enough that when stimulated, would result in sufficient analgesia to enable 

abdominal surgery on live rats without the need for any additional anaesthesia. PAG-

mediated control of spinal nociception has since been shown to act primarily via 

projections to the rostroventral medulla (RVM) and ablation or blocking of the RVM 

is sufficient to inhibit the analgesic effects of PAG stimulation (Gebhart et al., 1983; 
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Prieto et al., 1983; Sandkuhler & Gebhart, 1984; Chung et al., 1987). Although these 

early studies focussed primarily upon descending inhibition from the brainstem, 

descending control from this area is in fact biphasic: high intensity electrical or 

chemical stimulation results in spinal inhibition or antinociception, whereas low 

intensity stimulation produces facilitation of nociception at the spinal level (Ren et 

al., 1990; Zhuo & Gebhart, 1997). This adaptable system allows for heightened 

sensory perception and discrimination in periods of rest, whilst allowing flow of 

information from higher centres to influence the perception of nociceptive stimuli at 

the spinal levels when active or in a stressful environment.  

 

1.4.1 Anatomy of descending pathways 

 

Descending modulation of spinal nociceptive signalling has been shown to arise from 

stimulation of a multitude of brain centres, including the thalamus, sensory cortex, 

amygdala, and multiple areas in the midbrain and brainstem (Gebhart, 2004; Fields et 

al., 2006; Heinricher et al., 2009). These act primarily through polysynaptic input to 

the dorsal horn via the RVM and other brainstem components. The PAG integrates 

information from areas such as the hypothalamus, amygdala, and cerebral cortex as 

well as ascending information from projection neurons in the spinal dorsal horn 

(Menetrey et al., 1982; Aggleton et al., 1992; Bandler & Keay, 1996). Consequently, 

not only does descending modulation involve a range of brain regions, but the 

multitude of neurotransmitters released can also have multiple actions on dorsal horn 

neurons in the spinal cord. Whereas some projections and neurotransmitters can be 

broadly categorised into having a generally inhibitory or excitatory action at the level 

of the dorsal horn, the end effects of these on spinal nociceptive processing is far 

from straightforward. For one, descending axons can synapse onto both primary and 

descending afferents, as well as directly onto spinal neurons, resulting in pre and 

postsynaptic control (Grudt et al., 1995; Almeida et al., 1996; Urban et al., 1996a; 

Urban et al., 1996b; Urban & Gebhart, 1997; Zhuo & Gebhart, 1997; Millan, 1999; 

Baba et al., 2000; Yoshimura & Furue, 2006). The phenotype of targeted spinal 

neurons will also influence the outcome of descending modulation. For instance, 

excitatory influences from the brainstem could act to inhibit nociceptive processing if 

acting upon inhibitory interneurons in the dorsal horn, whilst if they synapse onto 
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projection or excitatory interneurons, these would enhance sensory transmission. 

Furthermore, a single neurotransmitter can both facilitate and inhibit local 

transmission according to the receptor activated at the spinal level. An example of 

such a transmitter is serotonin, which can produce antinociception when acting on 

the 5-HT1A receptors, or algesia when acting upon of 5-HT3 receptors, depending on 

receptor location. 

 

Direct projections from the PAG to the spinal cord are limited and direct 

monosynaptic control of dorsal horn circuits arises from a few select centres; the 

most prominent of these are the RVM, parabrachial nucleus, dorsal reticular nucleus 

(DRN), ventrolateral medulla (VLM), and projections from the locus coeruleus, A5 

and A7 cell groups of the dorsolateral pontine tegmentum (DLPT). Axons of spinally 

projecting neurons from the brainstem are located the dorsolateral funiculus (DLF) 

and ventrolateral funiculus (VLF) and generally project directly to spinal laminae I, 

II, V, VI and VII (Basbaum et al., 1978; Basbaum & Fields, 1979; Bowker et al., 

1981; Holstege & Kuypers, 1982; Basbaum et al., 1986), whereas parabrachial 

projections travel through the same funiculi and terminate more superficially in the 

dorsal horn (Yoshida et al., 1997). The wider innervation of deeper neurons from the 

brainstem can also be observed in physiological recordings; several reports suggest 

wide dynamic range neurons are particularly affected by descending influences, 

whereas more superficially located neurons are thought to be more affected by DLF 

stimulation-induced descending facilitation (Fields & Basbaum, 1978; McMahon & 

Wall, 1988; Hudson et al., 2000). Importantly, neurons within the superficial laminae 

also project rostrally to the brainstem, including the parabrachial nucleus and PAG. 

Excitation of these neurons could therefore be a result of feedforward spino-

brainstem-spinal loops, or alternatively could be the result of antidromic excitation of 

higher brain centres in experiments in which the DLF was not cut.  

 

1.4.2 Neurotransmitter networks involved in descending control 

 

There are a wealth of neurotransmitter systems involved in descending control of 

spinal dorsal horn neurons. These can either be intrinsic to brainstem structures and 

released into the spinal cord to act upon their respective receptors, or they can act to 
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indirectly modulate nociception through activation or inhibition of another spinal 

neurotransmitter system. A brief summary of a few of those of interest is covered in 

the following section and shown in Figure 1. 4. For clarity, focus is primarily on 

neurotransmitters released in the spinal cord, which modulate nociception locally 

within the dorsal horn. 

 

 
 

Figure 1. 4: Simplified schematic of descending pathways that influence spinal dorsal horn 

neurons and neurotransmitter systems involved.  

PAG: periaqueductal grey; DLPT: dorsolateral pontine tegmentum; RVM: rostroventral medulla; NT: 

neurotensin; ENK: enkephalin; Glu: glutamate; 5-HT: serotonin; CCK: Cholecystokinin; Gly: glycine. 

 

1.4.2.1 Opioids 

 

Classical opioid receptors include , , and  opioid receptors, with recent addition 

of a fourth subtype, ORL1. These are present throughout the CNS, particularly in the 

amygdala, PAG, RVM, DLPT and spinal dorsal horn (Mansour et al., 1995; Darland 

et al., 1998). As is the case of many of the inhibitory neurotransmitters already 

covered in this Chapter, opioid-mediated analgesia occurs through both presynaptic 
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and postsynaptic mechanisms. Presynaptic inhibition, notably of glutamatergic 

neurons, occurs through inhibition of neurotransmitter release achieved primarily 

through the activation of  and  opioid receptors located on primary afferent and 

descending terminals (Glaum et al., 1994; Grudt & Williams, 1994). 

Postsynaptically, opioids directly inhibit spinal dorsal horn neurons; this may play an 

especially important role in the inhibition of transmission of nociceptive primary 

afferent input to projection neurons in lamina I (Bennett & Mayer, 1979; Light & 

Kavookjian, 1988; Fields et al., 2006). 

 

Spinal iontophoresis of opioids inhibits firing of nociceptive dorsal horn neurons 

(Fleetwood-Walker et al., 1988), a phenomenon that is particularly clear in lamina II, 

where -opioid receptors are highly concentrated (Duggan et al., 1976). Although 

the vast majority of opioid terminals in the dorsal horn arise from local spinal 

interneurons (Hokfelt et al., 1979), these do not account for the full analgesic effects 

of systemic opioids in vivo. In fact, the degree of neuronal inhibition in laminae I, II 

and V as a result of stimulation of the PAG or RVM is comparable to that seen as a 

result of systemic morphine administration (Gogas et al., 1991; Hammond et al., 

1992). Further to this, microinjection of opioid antagonists into the RVM or PAG 

alone reduces the effects of systemically administered opioids (Kiefel et al., 1993). 

Many of the brain regions involved in spinal analgesia appear to be linked through 

release of opioids, as evidenced by the reduction in stimulation produced analgesia 

by intrathecal administration of the opioid antagonist naloxone (Zorman et al., 1982; 

Aimone et al., 1987). Similarly, microinjection of opioid antagonists into the RVM 

will attenuate the antinociceptive effects of PAG-stimulation (Kiefel et al., 1993; 

Roychowdhury & Fields, 1996).  

 

1.4.2.1.1 Cholecystokinin and Neurotensin 

 

There are a large number of cholecystokinin receptor-containing neurons in both the 

PAG and RVM, and these are often located in membranes of endogenous opioid-

containing neurons (Skinner et al., 1997). Cholecystokinin is therefore thought to act 

as an antagonist to opioid-mediated analgesia both at spinal and supraspinal levels 

(Mitchell et al., 1998; Heinricher et al., 2001) by acting through the CCK2 receptor 
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(Crawley & Corwin, 1994). In support of this, the analgesic effects of opioids can be 

enhanced in the presence of CCK2 antagonists (Crawley & Corwin, 1994). 

 

The RVM receives strong neurotensinergic projections from the PAG, (Beitz, 1982) 

and similar to the situation described above with cholecystokinin, neurotensin has 

been found to be extensively co-expressed with opioids. The effects of neurotensin 

are heavily dose-dependent, such that low doses of neurotensin microinjected into 

the RVM produce hyperalgesia, whereas high doses exert analgesia (Smith et al., 

1997; Urban & Gebhart, 1997). 

 

1.4.2.2 Serotonin 

 

The RVM includes the nucleus raphe magnus (NRM), nucleus gigantocellularis pars 

alpha and nucleus paragigantocellularis lateralis, of which the NRM contains a large 

number of serotonin-rich neurons (Steinbusch, 1981), comprising of around 20% of 

total neurons in the RVM (Moore, 1981). Electrical stimulation of the RVM has been 

shown to result in a spinal release of serotonin; the analgesic effects of this 

stimulation can be reversed by intrathecal administration of serotonin antagonists (Le 

Bars & Villanueva, 1988). Serotonin itself has a role in dampening of cellular 

responses to nociceptive stimuli in the spinal dorsal horn, and the RVM is the only 

source of this release. Release has been shown to occur both tonically and phasically, 

implicating serotonin in the maintenance of excitatory/inhibitory balance in the 

spinal cord (Mason, 1997; Gao et al., 1998). 

 

The complexity of the serotonergic system arises from the multiplicity of 5-HT 

receptors through which the neurotransmitter can act, each of which can result in 

either inhibition or facilitation of transmission. 5-HT1 and 5-HT2 receptors are 

involved in direct inhibition of nociceptive processing in the superficial dorsal horn; 

serotonin-mediated analgesia is thought to occur in part through 5-HT1A and 1D 

receptor subtypes located on the primary afferent terminals of C fibres (Potrebic et 

al., 1994; Ito et al., 2000). Ionotropic 5-HT3 receptors on the other hand, have a more 

complex role in nociception. They have been shown to be involved in indirect 

inhibition through excitation of inhibitory interneurons (Alhaider et al., 1991) and in 
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facilitation of nociception, primarily exerted through 5-HT3 receptors located on 

nociresponsive neurons or on primary afferent terminals (Todd & Millar, 1983). In 

support of this last action, 5-HT3 receptor antagonism has been shown to minimise 

pain behaviour in rats (Oyama et al., 1996; Zeitz et al., 2002). Notably, descending 

serotonergic fibres are thought to contribute to opioid-induced analgesia, in part 

through direct inhibition of projection neurons via 5-HT5A receptors (Doly et al., 

2004) as well as contribute to the transmission of noxious information to higher 

centres via activation of projection neurons (Conte et al., 2005).  

 

1.4.2.3 Noradrenaline 

 

The DLPT is the major source for noradrenergic projections to both the RVM and 

the dorsal horn (Proudfit, 1992). Spinal release of noradrenaline results in 

behavioural analgesia and inhibition of dorsal horn neurons through activation of 2 

receptors. Whilst this system does not appear to be active under resting conditions, 

noradrenergic pathways have been shown to play a role in hyperalgesia and 

neuropathic pain (Xu et al., 1999; Jasmin et al., 2003). Noradrenergic activity can be 

either facilitatory or inhibitory depending on the pathology, which could be a 

function of receptor subtype activation as noradrenaline acting through 1 receptors 

tends to facilitate nociception, whereas noradrenaline acting upon presynaptic 2 

receptors inhibits glutamate release from C fibres onto lamina II neurons leading to 

analgesia (Roudet et al., 1994; Stone et al., 1998; Pan et al., 2002; Yoshimura & 

Furue, 2006). The α2 agonists clonidine and dexmedetomidine have been shown to 

significantly decrease dorsal horn firing to noxious stimuli and are also successfully 

used as analgesics in clinical practice (Sullivan et al., 1992; Takano & Yaksh, 1992; 

Eisenach, 1996; Eisenach et al., 1996; Millan et al., 1997; Yoshimura & Furue, 

2006). 

 

Importantly, the DLPT and RVM are interconnected and the DLPT also receives 

direct afferents from the PAG (Bajic & Proudfit, 1999). These three brain regions 

can therefore all act in concert to affect nociceptive processing at the spinal level 

(Clark & Proudfit, 1991; Holden & Proudfit, 1998), indeed stimulation of the RVM 

has been shown to result in a spinal release of noradrenaline. In a similar fashion, 
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descending inhibition arising from the RVM or PAG can be attenuated by 

intrathecally administered noradrenergic antagonists (Yaksh, 1979; Barbaro et al., 

1985; Budai et al., 1998).  

 

1.4.2.4 Other neurotransmitters 

 

1.4.2.4.1 Dopamine 

 

The lumbar region of the spinal cord contains only very few dopaminergic cell 

bodies (Mouchet et al., 1986) although all three dopamine receptor subtypes (D1, D2, 

and D3) have been identified within the superficial dorsal horn (Yokoyama et al., 

1994). Spinal dopaminergic innervation arises primarily from cerebral structures, 

particularly the hypothalamus (Millan, 2002) terminations from which are found 

throughout the dorsal horn. Although the full influence of dopamine in nociceptive 

processing is not yet clear, it is thought that D1 receptors may be involved in 

pronociception, whilst D2 receptors are most likely antinociceptive (Jensen & Smith, 

1982; Jensen & Yaksh, 1984; Fleetwood-Walker et al., 1988; Gao et al., 2001b). 

 

1.4.2.4.2  GABA and Glycine 

 

Stimulation of the PAG does not only act to inhibit spinal neurons, it has also been 

shown to result in facilitation of a population of neurons in the superficial dorsal 

horn, a region known to contain a high number of inhibitory GABAergic and 

glycinergic interneurons (Millar & Williams, 1989; Todd et al., 1996). Stimulation 

produced analgesia is therefore an effect of both direct inhibition of primary afferent 

fibres or projection/excitatory neurons and indirect inhibition through activation of 

inhibitory interneurons. Similarly, RVM stimulation results in a release of GABA 

and glycine in the dorsal horn (Sorkin et al., 1993) and the RVM is known to contain 

a large number of both GABAergic and glycinergic inhibitory neurons, which 

synapse directly onto spinal excitatory neurons, some of which may also be 

projection neurons (Antal et al., 1996; Kato et al., 2006). 
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1.4.3 Physiology of the RVM 

 

The biphasic response of RVM stimulation on dorsal horn neuronal firing has been 

shown to be a result of the physiological circuitry within its structure. The RVM 

contains three distinct cell types first identified by their firing responses to noxious 

reflex behaviour: ‘ON’ cells, ‘OFF’ cells and ‘NEUTRAL’ cells (Fields & 

Heinricher, 1985; Fields et al., 1991; Heinricher et al., 2009). ‘On’ cells begin firing 

just prior to a mechanical withdrawal of tail or paw from a noxious stimulus, and so 

are thought to be pro-nociceptive. Conversely, ‘off’ cells stop firing just before 

mechanical withdrawal, and so are thought to be anti-nociceptive. The third group of 

cells, ‘neutral’ cells, do not appear to respond to noxious stimulation of cutaneous 

tissue (Fields & Heinricher, 1985; Fields et al., 1991; Heinricher et al., 2009). A 

significant portion of each cell group projects to the spinal cord and both ‘on’ and 

‘off’ cells respond to manipulation of the PAG. 

 

Since the initial identification of these cell groups, their classification has been 

extended beyond their responses to mechanical reflex withdrawals. Thus, cells are 

now often discussed in terms of their general responses to noxious stimuli in the 

anaesthetised animal, in the absence of obvious behaviour. Ongoing ‘on’ cell activity 

has been associated with a number of persistent pain states: manipulation in order to 

cause activation of this cell group in the absence of pathology results in behavioural 

hyperalgesia and increases response to subsequent noxious stimuli (Heinricher et al., 

1989; Ramirez & Vanegas, 1989; Bederson et al., 1990; Foo & Mason, 2003). 

Interestingly, some reports suggest that ‘on’ cells are not selective for nociception, as 

they respond to brisk touch or loud noises (Oliveras et al., 1990; Leung & Mason, 

1999). These could therefore be involved in the general enhancement of vigilance to 

behaviourally relevant or important stimuli (Fields et al., 2006; Heinricher et al., 

2009). 

 

‘Off’ cells have been proven to be important mediators of the analgesic effects of the 

RVM in that activation of this subset of neurons is sufficient to produce behavioural 

analgesia (Heinricher & Tortorici, 1994). Similarly, inhibition of ‘off’ cells leads to 

widespread hyperalgesia (Ramirez & Vanegas, 1989; Foo & Mason, 2003) and 

prevents the analgesic actions of systemic opioid administration (Roychowdhury & 
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Heinricher, 1997; Heinricher et al., 2001). The mechanisms behind opioid analgesia 

appear to be in the opioidergic sensitivity of different classes of RVM neurons. 

Microinjection of opioids into the PAG or RVM selectively silences ‘on’ cells whilst 

rendering ‘off’ cells tonically active (Heinricher & Tortorici, 1994; Heinricher et al., 

2001; Nalwalk et al., 2004). Whereas the fine detail of activation within each cell 

type is unclear when using the relatively large volumes of drug delivery via 

microinjections, the particulars of cell-selective opioidergic sensitivity have been 

assessed by iontophoresis of opioid agonists onto cells of each class (Heinricher et 

al., 1992; Heinricher & Tortorici, 1994; Fields, 2004). ‘On’ cells are postsynaptically 

inhibited by opioids but surprisingly these drugs do not directly affect either ‘off’ or 

‘neutral’ cells. GABA is known to preferentially inhibit ‘off’ cells in the RVM, 

thereby favouring facilitation of nociception (Heinricher & Tortorici, 1994; Thomas 

et al., 1995; Bajic et al., 2001; Gilbert & Franklin, 2001). The activation of ‘off’ cells 

in response to microinjection of opioids is therefore most probably an indirect 

consequence of opioid-mediated inhibition of GABAergic interneurons that normally 

act to silence discharging ‘off’ cell activity. This in turn results in tonically active 

‘off’ cells and antinociception.  

 

Interestingly, ‘neutral’ cells appear to have a different afferent input to either ‘on’ or 

‘off’ cells, as they are not affected by either PAG stimulation or microinjection of 

opioids (Gao et al., 1997; Gao et al., 1998). In vivo, all recorded serotonergic cells 

within the RVM have been shown to be ‘neutral’ cells (Potrebic et al., 1994; Gao & 

Mason, 2000) and although there is extensive literature on the analgesic and algesic 

effects of serotonin ((Suzuki et al., 2002) and see above), ‘neutral’ cells have not as 

of yet been assigned to a specific role in nociceptive processing.  

 

The balance of ‘on’ and ‘off’ cell activity at any given time is therefore a major 

determinant in the nociceptive thresholds and overall activity of spinal nociceptive 

circuits. Pharmacologically induced allodynia and hyperalgesia also result in an 

increase in c-fos positive neurons in the RVM (Hall et al., 1999) indicating a strong 

feedforward loop onto spinal dorsal horn neurons. 
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1.5 The development of sensory networks in the postnatal period  

 

The discussion so far has illustrated the critical importance for a correct equilibrium 

between excitation and inhibition in the mature spinal dorsal horn. This balance 

arises from both local excitatory and inhibitory interneurons within the dorsal horn, 

and descending control from supraspinal centres. Inhibition in the adult forms a 

crucial part of survival, yet there is growing evidence that some inhibitory processes 

are lacking in the neonate such that newborn rats and humans have exaggerated 

reflexes in response to noxious stimuli compared to mature counterparts (Fitzgerald 

et al., 1987; Andrews & Fitzgerald, 1994; Andrews et al., 2002; Fitzgerald, 2005). 

Experimentally, the rat is often used as a model of human development as it is born 

in a relatively premature state. At postnatal day 3 (P3), neonatal rats correspond 

developmentally to a 26-35 postconceptional week old premature human infant, 

whereas P21 rats are considered to be adolescents (McCutcheon & Marinelli, 2009).  

Rats can thus provide insight into the mechanisms behind the development of 

inhibitory circuitry from what would be a premature human infant to the fully 

independent adult. Detailed studies outlined below have provided evidence for a lack 

of both segmental and descending inhibition, resulting in increased sensitivity of 

spinal dorsal horn neurons to innocuous Aβ fibre stimulation and lower mechanical 

thresholds in the immature rat. The development of sensory networks in this chapter 

will therefore be covered in two parts: (i) the role of local spinal inhibition in the 

dorsal horn through development, with particular emphasis on local glycinergic 

inhibition; and (ii) the development of descending controls from the brainstem. 

 

1.6 Spinal sensory networks and the development of spinal sensory 

circuitry 

 

Over the early postnatal period, refinement of sensory networks and motor reflexes 

occurs through Hebbian strengthening and weakening of synapses. One major 

consequence of this is an inherent excitability of immature networks than is not 

normally found in the healthy adult. The developing spinal cord therefore has a much 

higher sensitivity to incoming cutaneous sensory signals. Functionally, this can be 

observed at three levels as outlined below. 
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1. Cutaneous reflexes are exaggerated and poorly tuned at birth  

Dorsal root stimulation evokes significant intersegmental spinal activity in the 

isolated neonatal spinal cord that then decrease in magnitude with increasing age 

(Saito, 1979). Behaviourally this is seen as synchronised whole body movements in 

response to a noxious stimulus to the hindpaw of a neonatal rat, as opposed to the 

tuned reflex withdrawal of the single affected limb seen in adults (Schouenborg, 

2003). Threshold needed to elicit a reflex withdrawal are also more sensitive, such 

that not only is withdrawal elicited in response to a much weaker stimulus relative to 

the mature system, but neonatal rats can also be sensitised to innocuous stimuli, a 

feature absent in healthy adults (Jennings & Fitzgerald, 1998). This sensitivity has 

been shown to be centrally mediated, as thresholds for activating cutaneous primary 

afferents have been observed to be similar in both the neonate and in the adult 

(Fitzgerald, 1988). Tuning of withdrawal responses is slow, in the rat this occurs 

after the first postnatal week, whilst in the human infant this occurs at 29-35 

postconceptional age (Ekholm, 1967; Fitzgerald et al., 1988; Andrews & Fitzgerald, 

1994, 1999; Andrews et al., 2002).  

 

2. Reflexes are inappropriately directed in the neonate 

In addition to the exaggerated response to noxious stimuli, there is a high incidence 

of misdirected reflexes consistent with disorganised receptive fields in the early 

postnatal period. One study showed that neonatal rats tended to move their tails 

towards a noxious laser more often than they would form a directed movement away 

from the stimulus, a feature that lasted until the second postnatal week (Waldenstrom 

et al., 2003). Interestingly, this was found to be a selective low threshold activity-

dependent process. Age-related decrease in error-rate was delayed if low-threshold 

tactile stimuli to the tail were blocked by local anaesthetics, yet noxious stimuli did 

not speed up this learning.  

 

3. Activity of neonatal dorsal horn neurons mirrors behaviour 

The neonatal behavioural sensitivity described above is equally seen at the level of 

individual dorsal horn neurons: these are found to have larger receptive fields, lower 

mechanical thresholds and respond with prolonged afterdischarges in response to 
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noxious stimuli (Fitzgerald, 1985; Fitzgerald, 1988; Torsney & Fitzgerald, 2002). 

These responses mature slowly with age and are the result of a range of postnatal 

developmental alterations in peripheral and descending afferent input and synaptic 

strengthening, each of which will be covered in the following sections.  

 

1.6.1 Anatomical changes in primary afferent central terminals over 

development 

 

1.6.1.1 C fibres 

 

C fibres enter the grey matter at E18-20 (Mirnics & Koerber, 1995; Jackman & 

Fitzgerald, 2000) and recordings from polymodal nociceptors have revealed mature 

firing patterns and thresholds from birth (Fitzgerald, 1985; Koltzenburg & Lewin, 

1997; Koltzenburg et al., 1997). Terminal fields are somatotopically arranged such 

that C fibres reach their adult terminations in lamina I-II from the outset (Scott, 1982; 

Fitzgerald, 1987a). Non-peptidergic IB4+ C fibres mature later than peptidergic C 

fibres and their terminals are not detectable in the dorsal horn until P5 (Fitzgerald & 

Swett, 1983; Fitzgerald, 1987c; Benn et al., 2001).  

  

1.6.1.2 A fibres 

 

Low threshold myelinated A fibres penetrate the grey matter at embryonic day 15-17, 

several days before C fibres (Mirnics & Koerber, 1995; Jackman & Fitzgerald, 

2000); these do not however settle into their adult terminal fields until later in 

postnatal life (Fitzgerald, 1985). A subset of neonatal A fibres, visible at the electron 

microscopic level, have been shown to grow beyond their adult terminations to 

terminate in the superficial dorsal horn (Coggeshall et al., 1996; Torsney et al., 2000; 

Beggs et al., 2002; Woodbury & Koerber, 2003). These are thought to be of a 

subtype that is not found in the adult and are sensitive to pressure (Fitzgerald, 1987b; 

Woodbury et al., 2001; Woodbury & Koerber, 2003). Fibres withdraw from the 

superficial dorsal horn by P21 to terminate in their adult laminar pattern in laminae 

III and IV, resulting in a significant period of overlap of both low threshold A and 
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nociceptive C fibre terminals in the superficial dorsal horn until the third postnatal 

week. The withdrawal of these A fibre terminals is activity-dependent, thus chronic 

blockade of dorsal horn NMDA receptors over the postnatal period prevents the 

withdrawal of A terminals from lamina II (Beggs et al., 2002). More recently, it has 

been suggested that raising rat pups in a ‘sensory noisy’ environment, by placing the 

housing cage on a shaker, can also prevent the arrangement of terminals, highlighting 

the critical role of touch in determining adult sensory networks (Granmo et al., 

2008). 

 

1.6.2 Development of central afferent input 

 

1.6.2.1 C fibres 

 

Although peripheral C fibre terminals are present from birth, the maturation of C 

fibre synapses takes place slowly over a number of postnatal weeks. A lower 

percentage of neurons in the neonate respond to noxious stimulation of the receptive 

field than in the adult, and C fibres input into the dorsal horn does not appear to be 

fully functional until the end of the first week of life (Jennings & Fitzgerald, 1998). 

Similarly, electrical stimulation of C fibres fails to evoke synchronised bursts of 

spikes in both dorsal and ventral spinal horn in vivo and in vitro (Fitzgerald et al., 

1987; Hori & Watanabe, 1987; Fitzgerald, 1988; Jennings & Fitzgerald, 1998; 

Fitzgerald & Jennings, 1999). Importantly however, in vitro slice work has revealed 

that neurons can physiologically react to topically applied capsaicin from birth 

(Baccei et al., 2003), demonstrating the presence of functional C fibres that are 

presumably unable to respond in a mature synchronised manner to C fibre afferent 

input in vivo. This is possibly the result of unsynchronised presynaptic 

neurotransmitter release, which requires stronger and more sustained stimulation to 

adequately and reliably discharge in response to C fibre-mediated noxious input. The 

activity of C fibres in the early postnatal period is, however, critical in the 

organisation of sensory circuits of the dorsal horn. Chemical destruction of C fibres 

using the neurotoxin capsaicin in early life has been shown to prevent the withdrawal 

of A fibres from the superficial dorsal horn, decrease descending inhibition from the 

brainstem, and result in disorganised somatotopic maps in the adult (Wall et al., 
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1982; Cervero & Plenderleith, 1985; Shortland et al., 1990; Zhuo & Gebhart, 1994; 

Beggs et al., 2002). 

 

1.6.2.2 A fibres 

 

Myelinated A fibre evoked responses dominate until the second week of postnatal 

development, at which point primary afferent fibres innervating lamina II shift from 

a predominantly Aβ fibre to predominantly Aδ and C fibre innervation (Fitzgerald, 

1985; Fitzgerald, 1988; Park et al., 1999; Nakatsuka et al., 2000; Daniele & 

MacDermott, 2009). A fibre input has been shown to form a greater number of 

monosynaptic inputs to superficial dorsal horn neurons during the first weeks of life 

relative to C fibre input into the same area (Park et al., 1999; Nakatsuka et al., 2000). 

As a consequence of the overlap of noxious C fibre and innocuous Aβ fibre terminals 

in lamina II, electrophysiological experiments and c-fos expression studies have 

demonstrated that neonatal dorsal horn neurons respond to innocuous low threshold 

input in a manner normally expected of noxious stimuli in the adult (Fitzgerald, 

1985; Jennings & Fitzgerald, 1996; Torsney & Fitzgerald, 2002). Innocuous tactile 

information therefore appears to be key in enabling the strengthening of synapses in 

the neonatal dorsal horn. Behaviourally this has been clearly shown in two 

experiments: (i) inhibiting the transmission of cutaneous tactile input by means of a 

local anaesthetic block to the tail over a critical ten day period was sufficient to 

prevent the development of organised withdrawal responses to a noxious stimulus 

(Waldenstrom et al., 2003) and (ii) enhancing the transmission of tactile afferent 

input by means of a shaking cage was sufficient to permanently alter spinal 

organisation of Aβ terminals (Granmo et al., 2008). The same authors have also 

postulated a link between spontaneous twitching of newborn infants and the 

strengthening of sensory pathways (Petersson et al., 2003). 
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Neonatal dorsal horn Adult dorsal horn 

Anatomical and electrophysiological evidence for 
large myelinated A fibre terminals in lamina II in 
the neonatal dorsal horn, leading to significant 
overlap of A and C fibre terminals in the 
superficial dorsal horn (Fitzgerald et al., 1994; 
Mirnics & Koerber, 1995; Coggeshall et al., 1996; 
Park et al., 1999; Nakatsuka et al., 2000). 

Aβ fibre terminals are located in the deep dorsal 
horn, and lamina II contains C fibre terminals only 
(Willis & Coggeshall, 1991). 
 

Low threshold A fibre stimulation of the 
peripheral cutaneous receptive field results in c-
fos activation of lamina II neurons and 
electrophysiological responses similar to that 
expected of noxious stimulation in the adult 
(Fitzgerald, 1985; Jennings & Fitzgerald, 1996; 
Torsney & Fitzgerald, 2002). 

C-fos expression is selectively evoked by 
nociceptive stimulation in the healthy adult spinal 
cord (Hunt et al., 1987; Ma & Woolf, 1996). 

Lack of C fibre-evoked postsynaptic activity until 
the second postnatal week, with merely 13% of 
neurons in the dorsal horn responding to C fibre 
stimulation at P10 (Fitzgerald, 1988; Jennings & 
Fitzgerald, 1998) 

32% of dorsal horn neurons respond to C fibre 
neurons by P21 (Jennings & Fitzgerald, 1998). 
 

Repeated A fibre stimulation causes prolonged 
afterdischarge action potential firing in vivo in 
33% of P6 spinal dorsal horn neurons (Jennings & 
Fitzgerald, 1998) 

Central sensitisation is evoked by C fibres only in 
the healthy adult spinal cord from P21 (Mendell & 
Wall, 1965; Woolf et al., 1988; Woolf & 
Thompson, 1991; Thompson et al., 1993; Jennings 
& Fitzgerald, 1998). 

 
Table 1. 1: Summary of the evidence for relative A and C fibre input in the neonatal and adult 

spinal dorsal horn. 

 

1.6.3 Spinal inhibition in the neonatal CNS 

 

The sensory qualities of neonatal circuits are suggestive of an imbalance between 

excitation and inhibition at the spinal level. Whereas there is significant 

developmental tuning of excitatory neurotransmission in first week of life (Pattinson 

& Fitzgerald, 2004; Fitzgerald, 2005), the intrinsic excitability of dorsal horn 

neurons at this period does not differ from that of adult neurons (Baccei et al., 2003) 

and the influence of late development of inhibitory synapses is becoming 

increasingly evident (Fitzgerald, 2005; Baccei, 2007).  

 

The spinal cord develops along a ventrodorsal axis: motor neurons are generated first 

and neurons in the more superficial layers are the last to mature just prior to birth 

(Altman & Bayer, 1984; Kitao et al., 1996). Inhibitory interneurons within the 
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superficial dorsal horn develop after the establishment of projection neurons in 

lamina I (Bice & Beal, 1997a, b). These do not fully mature until the fourth postnatal 

week, as in vitro patch clamp studies have revealed a five fold higher frequency of 

mini excitatory postsynaptic potentials (mEPSCs) in neonatal lamina I projection 

neurons compared to firing of interneurons at the same age (Dahlhaus et al., 2005). 

Interneurons therefore undergo significant maturation in the postnatal period, 

including an increased axodendritic spread; a larger spread would then allow for 

broader spread of inhibitory transmission in later life and finer tuning of excitatory 

inputs into the spinal cord. This could in turn lead to fine tuned responses and tighter 

receptive fields in the adult as described in the sections above. 

 

Both GABA and glycine are present in the spinal cord from the early embryonic 

period (Ma et al., 1992; Poyatos et al., 1997). They show significant co-localisation, 

co-release and co-transmission from this time until P23, after which time 

postsynaptic events are either GABAergic or glycinergic, but not both (Berki et al., 

1995; Keller et al., 2001). In vitro experiments have shown that, contrary to early 

reports, neither GABA nor glycine are excitatory at any stage in the postnatal period 

(Baccei & Fitzgerald, 2004; Holmgren et al., 2009; Rheims et al., 2009). In fact, in 

vivo extracellular recordings of neonatal rat dorsal horn neurons in the presence of 

GABAA receptor antagonism have shown that GABA acts as a fully functional 

inhibitor of activity at this stage (Bremner et al., 2006) whilst further developmental 

in vitro patch clamp studies suggest that the net inhibitory effect of GABAA-receptor 

activation may be even stronger in the early postnatal period due to slower decay 

kinetics of mini inhibitory postsynaptic currents (mIPSCs; (Keller et al., 2004)), 

leading to longer inhibitory events. Although these studies have defined a role for 

GABAergic signalling, no studies have as of yet determined the role of glycine at 

this early stage of postnatal development in the intact animal, nor is it known if it can 

fully function as an inhibitory neurotransmitter from birth. The lack of inhibitory 

control at this time could therefore be as a result of inefficient glycinergic signalling. 
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1.6.3.1 Developmental expression of glycine receptor subunits 

 

One striking feature of the maturation of inhibitory neurotransmission in the dorsal 

horn is that inhibition in the early postnatal period is mediated primarily by 

GABAergic networks, with little or no involvement of glycine until the end of the 

first postnatal week (Baccei & Fitzgerald, 2004). This is consistent with 

immunohistochemical analyses: the percentage of dorsal horn neurons that are 

positive for GABA increases steadily between the embryonic period and postnatal 

day 14 (P14), after which time this number decreases to reach a plateau by P21 

(Schaffner et al., 1993). Surprisingly, in vitro intracellular recordings of lamina II 

neurons has shown that although there is an absence of glycinergic mIPSCs at birth, 

exogenous glycine application onto neonatal spinal slices reveals inward currents 

indicative of functional glycine receptors at this age. Two possible reasons for this 

are (i) receptors, although functional, are not synaptically located, and so may not be 

able to respond to endogenous release of glycine, and/or (ii) presynaptic glycine is 

not released at sufficient levels to activate postsynaptic receptors. Of particular note 

regarding the first point therefore, is the developmental shift in glycine receptor 

conformation over the postnatal period. 

 

1.6.3.2 α1 and α2 subunits 

 

Over the first two postnatal weeks, α1 and α2 subunit expression are inversely 

correlated: α2 subunit expression decreases and expression is shifted towards α1-

containing heteromeric receptors by P20 (Becker et al., 1988; Akagi et al., 1991; 

Malosio et al., 1991; Watanabe & Akagi, 1995). The immature α2-containing 

receptor is thought to be expressed as an α2 homomer in absence of the β subunit 

(Becker et al., 1988; Malosio et al., 1991), which is involved in binding the 

membrane anchoring protein gephyrin (Meyer et al., 1995; Kneussel et al., 1999). As 

a result of this, neonatal homomeric receptors display different cellular expression 

patterns to the adult heteromeric receptors: whereas heteromeric α/β receptors are 

predominantly expressed at postsynaptic sites, homomeric α2 receptors are primarily 

located extrasynaptically (Takahashi et al., 1992; Kneussel & Betz, 2000a; Mangin 

et al., 2003). The lack of anchoring of the glycine receptor to synapses could 
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therefore help explain the lack of glycinergic mIPSC early in development as 

previously mentioned (Baccei & Fitzgerald, 2004). This shift in subunit expression 

also has functional significance in the inherent receptor signalling; neonatal α2 

homomeric receptors have been shown to have slower decay kinetics and longer 

opening times compared to adult α1-containing heteromer (Takahashi et al., 1992; 

Mangin et al., 2003) and the switch in subunit expression seems to correlate with the 

acceleration of glycinergic IPSCs. The full functional relevance of this switch on the 

intact nervous system is however unclear, not least due to the lack of phenotype of α2 

knock-out mice (Young-Pearse et al., 2006). 

 

1.6.3.3 α3 subunit 

 

The α3 subunit has been shown to be directly implicated in the development of 

inflammatory pain in the adult spinal cord; its expression pattern is unique in that it is 

found exclusively in lamina III of the superficial dorsal horn, consistent with its role 

in nociception (Harvey et al., 2004). Although early studies of developmental 

regulation of α3 subunit expression found no postnatal change (Malosio et al., 1991) 

a more recent study using α3 subunit knock-out mice found an increasing importance 

in the role of the α3 subunit in inhibitory processing over the first three weeks of 

postnatal life (Rajalu et al., 2009), suggesting an important early role in nociceptive 

processing. 

 

Thus, in the early postnatal period there is a well defined shift in inhibitory 

phenotype of spinal dorsal horn neurons from a primarily GABAergic driven 

inhibition, to a larger influence of glycinergic transmission by the second postnatal 

week (Baccei & Fitzgerald, 2004). Although GABA is a fully functional inhibitory 

neurotransmitter in the spinal dorsal horn from birth (Baccei & Fitzgerald, 2004; 

Bremner et al., 2006) neonatal dorsal horn neurons are known to display a 

characteristic excitability visible both at the behavioural and cellular levels 

(Fitzgerald et al., 1988; Jennings & Fitzgerald, 1996; Fitzgerald & Jennings, 1999; 

Torsney & Fitzgerald, 2002; Fitzgerald, 2005). Of particular importance is the 

inherent sensitivity of these neurons to A fibre stimuli, to which they can become 

sensitised in a manner not seen in the adult (Fitzgerald, 1988; Jennings & Fitzgerald, 
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1996; Fitzgerald, 2005). As glycine is selective for the transmission of Aβ fibre 

mediated innocuous touch stimuli in the adult ((Yokota et al., 1979; Sherman & 

Loomis, 1994; Sivilotti & Woolf, 1994; Sherman & Loomis, 1996; Sorkin & Puig, 

1996) and see 1.3.2.2) this raises the possibility that the apparent lack of inhibition 

within the neonatal spinal dorsal horn is due to the late maturation of glycinergic 

signalling and circuitry in the first weeks of life. This theory is further supported by 

the lack of glycinergic inhibition in the superficial dorsal horn of neonatal spinal 

slices (Baccei & Fitzgerald, 2004). As of yet however, the molecular correlates of 

this observation, and the functional significance of this lack of glycinergic inhibition 

on neuronal activity in the intact animal have not been investigated. 

 

1.7 Postnatal development of descending modulation 

 

It is clear that there is significant postnatal development of dorsal horn circuitry; yet 

several reports indicate developmental changes are also taking place at supraspinal 

sites. Surprisingly, whereas extracellular recordings from individual neurons 

revealed an inhibitory role for GABA at the level of the dorsal horn (Bremner et al., 

2006), intrathecal administration of the GABAA receptor antagonist gabazine in 

behaving neonatal rats was found to increase mechanical reflex withdrawal 

thresholds, suggesting GABA was acting as an excitatory neurotransmitter at this age 

(Hathway et al., 2006). This effect was completely reversed upon removal of 

supraspinal control onto spinal networks by spinalisation, indicating that although 

GABA is inhibitory at the spinal level from birth, a tonic supraspinal facilitation at 

this age that is absent in the adult reverses this GABAergic inhibition in the 

unanaesthetised behaving animal (Hathway et al., 2006).  

 

Anatomical studies have revealed that descending serotonergic fibres innervate the 

spinal grey matter from birth (Rajaofetra et al., 1989) but these do not reach their 

adult termination patterns until P21 (Bregman, 1987). As a consequence of this, 

spinal application of a serotonergic agonist before P10 does not significantly reduce 

formalin-induced pain responses in rats (Giordano, 1997). Although this implies a 

postnatal maturation in serotonergic receptor expression, other reports also imply 

delayed descending inhibition to be the result of an insufficient release of serotonin 
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from descending fibre terminals (Abbott & Guy, 1995). Descending noradrenergic 

fibre terminations, conversely, mature relatively early and 2 agonists are analgesic 

from the early postnatal period (Hughes & Barr, 1988; Kendig et al., 1991; Walker et 

al., 2005). 

 

The influence of descending control is not apparent until the second postnatal week: 

whereas spinalisation in the adult results in massive spinal shock, this procedure has 

little influence on naïve neonatal rats until P10 (Weber & Stelzner, 1977). Similarly, 

stimulation produced analgesia is not functional until the third postnatal week (van 

Praag & Frenk, 1991) and electrical stimulation of the dorsolateral funiculus does not 

result in inhibition of peripherally-evoked spinal neuronal activity until the end of the 

second week of life (Fitzgerald & Koltzenburg, 1986). Whereas much of this 

previous work has focussed on the absence of inhibition, recent work using 

electromyographic recordings has suggested that descending control from the 

brainstem exerts a facilitatory effect on spinal nociceptive networks until P28 

(Hathway et al., 2009) suggestive of a shift in supraspinal control of spinal circuits 

from solely excitatory to biphasic in the fourth postnatal week. The nature of these 

experiments does however depend on motor function and muscle contraction, which 

are tightly linked to nociceptive neuronal responses such that EMG responses could 

be the result of non-nociceptive specific motor effects of RVM stimulation. The role 

of descending control on developmental nociceptive spinal networks has yet to be 

defined. 
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1.8 Summary 

 

There are a significant number of postnatal modifications in the spinal processing of 

cutaneous sensory information, all of which lead to a defined shift in neuronal and 

behavioural responses to sensory stimuli. These changes can be classified into local 

effects within the spinal dorsal horn, and alterations in the supraspinal control of 

spinal sensory networks.  

 

Within the first few weeks of life, spinal circuitry undergoes a significant shift as a 

result of maturing primary afferent terminal innervation, from a primarily A fibre 

driven excitation of lamina II dorsal horn neurons, to a largely C fibre mediated 

excitation. With this shift in afferent terminal patterning comes a shift in the 

behavioural responses of the rat: in the first week of life when A fibres dominate in 

the superficial dorsal horn, animals display extreme sensitivity to innocuous A fibre 

stimulation. Once C fibre central synapses strengthen, A fibres begin to withdraw 

from the superficial dorsal horn to reside in the deeper dorsal horn, at which time 

neuronal and behavioural responses begin to refine and sensitivity to A fibre stimuli 

subsides ((Coggeshall et al., 1996; Jennings & Fitzgerald, 1996; Beggs et al., 2002; 

Fitzgerald, 2005) and see Sections 1.6.1 and 1.6.2). GABAergic inhibition in the 

spinal cord is known to be mature by birth and the absence of tonic glycinergic 

activity in lamina II is suggestive of immature glycinergic circuitry and signalling 

(Baccei & Fitzgerald, 2004; Bremner et al., 2006), which could underlie the 

sensitivity of neonatal spinal neurons to low-threshold stimuli. This hypothesis is 

further strengthened by the selective glycinergic inhibition of innocuous Aβ fibre 

mediated excitation of adult sensory spinal circuits ((Yokota et al., 1979; Sherman & 

Loomis, 1994; Sivilotti & Woolf, 1994; Sherman & Loomis, 1996; Sorkin & Puig, 

1996) and see Section 1.3.2.2). Importantly however, previous studies do not offer 

clues as to whether the lack of glycinergic activity seen in whole cell patches is due 

to immature presynaptic circuitry or whether there are developmental changes in 

postsynaptic receptor expression. Additionally, the functional role of glycine in the 

processing of sensory stimuli has not yet been examined in the intact animal. 

 

Although descending fibres have reached the lumbar spinal cord before birth 

(Rajaofetra et al., 1989), supraspinal control of spinal sensory networks is slow to 
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mature and has been shown in electromyographic recordings to produce a primarily 

facilitatory drive onto spinal networks until P28 (Hathway et al., 2009), at which 

time brainstem control can be inhibitory or facilitatory (Urban & Gebhart, 1997; 

Zhuo & Gebhart, 1997; Gebhart, 2004). Interestingly, the fourth postnatal week also 

corresponds to the strengthening of C fibre terminals in the superficial dorsal horn, a 

process which is thought to lead to the maturation of descending inhibitory signals 

(Cervero & Plenderleith, 1985; Zhuo & Gebhart, 1994). Studies investigating the 

maturation of descending influences thus far have focussed on behavioural or 

electromyography recordings of immature and adult rats, which have the 

disadvantage of the involvement of motor control as outcome measures, making it 

difficult to assess the purely sensory and/or nociceptive role of descending control in 

the early postnatal period.  

 

1.9 Aims of thesis 

 

The aims of this thesis were therefore three fold: 

 

(i) to map out the developmental expression patterns of glycinergic 

innervation and receptor expression in the spinal dorsal horn. 

(ii) to examine the functional effects of glycinergic inhibition in individual 

dorsal horn neurons of P3 and P21 rats in vivo using the glycine receptor 

antagonist strychnine. 

(iii) to assess the role of descending RVM control on spontaneous and 

peripherally-evoked activity of spinal dorsal horn neurons in the dorsal 

horn of P21 and P40 rats. 
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2.1 Introduction 

  

2.1.1 The glycine receptor 

 

On a cellular level the actions of GABA and glycine appear similar. Although they 

are often co-released and co-transmitted (Todd & Sullivan, 1990; Todd et al., 1996), 

their spinal regional expression and that of their receptors differ significantly. 

Immunohistochemical and electrophysiological studies have revealed dorsal horn 

segmentation in neurotransmitter receptor expression as well as presynaptic terminal 

endings. GABAergic inputs are located primarily in the superficial dorsal horn 

laminae I-III, whilst glycine and glycine receptor immunoreactivity appear most 

prominently in lamina III-V, with a small population found in lamina I (Ribeiro-Da-

Silva & Coimbra, 1980; Zarbin et al., 1981; Araki et al., 1988; Basbaum, 1988; van 

den Pol & Gorcs, 1988; Todd, 1990; Todd & Sullivan, 1990; Antal et al., 1996; 

Puskár et al., 2001; Cronin et al., 2004; Lynch, 2004; Zeilhofer et al., 2005; Kato et 

al., 2006).  

 

Glycine-mediated inhibition is primarily postsynaptic, unlike GABAA receptor-

mediated inhibition, which has been shown to occur both at the postsynaptic 

membrane of local neurons, and presynaptically onto primary afferent fibres 

(Mitchell et al., 1993; Todd et al., 1996). The glycine receptor is a heteropentameric 

ion channel permeable to chloride and belongs to the Cys-loop ligand-gated ion 

channel receptor family, sharing many structural characteristics with the nicotinic 

acetylcholine receptor. When activated, the channel serves to increase chloride 

conductance in the postsynaptic membrane leading to hyperpolarisation and 

decreased excitability. Expression studies using radioactive tritiated strychnine and 

glycine have shown glycine receptors to be located throughout the spinal grey matter 

and brainstem, with decreasing expression at more rostral regions in the central 

nervous system (Zarbin et al., 1981; Araki et al., 1988).  

 

The glycine receptor is composed of  and  subunits arranged around a central 

pore; studies have shown evidence for both a 3:2 (Becker et al., 1988; Kuhse et 
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al., 1993), and more recently 2:3 stoichiometry (Grudzinska et al., 2005). To date 

there are four known  subunit isoforms, named 1-4 (Grenningloh et al., 1990; 

Kuhse et al., 1990; Matzenbach et al., 1994) and a single  subunit isoform. The β 

subunit is thought to be responsible for receptor assembly and channel properties and 

allows membrane anchoring of the receptor through binding of the auxiliary structure 

protein gephyrin (Triller et al., 1985; Schmitt et al., 1987; Betz et al., 2006). Primary 

isoforms of the  subunit in the adult CNS are 1 and 3. Expression of the 2 

subunit decreases sharply after the first two weeks of postnatal life to minimal levels 

in the mature system and the 4 subunit is only present at low levels in discrete areas 

of the central nervous system. 

 

2.1.2 Presynaptic glycine release 

 

Glycine is packaged into vesicles by the vesicular inhibitory amino acid transporter 

VIAAT. Stored in high concentrations in presynaptic terminals of spinal 

interneurons, it is then released into the synaptic cleft upon cellular depolarisation. 

Termination of glycinergic transmission is achieved through its removal from the 

synaptic space by specific high affinity, high capacity transporters comprising of two 

subtypes: GlyT1, present in neurons and glial cells, and GlyT2, found exclusively in 

the plasma membrane of glycinergic neuron terminals (Burger et al., 1991; Zafra et 

al., 1995a; Zafra et al., 1995b). Genetic knock-out studies have identified distinct 

roles for each transporter. GlyT1 appears to be involved in the clearing of glycine 

from the synaptic space, whereas the role of GlyT2 is primarily involved in 

enhancing glycinergic efficacy by transporting glycine from the synapse into the 

presynaptic terminal. Glycine can then be recycled and repackaged into vesicles for 

release (Gomeza et al., 2003a; Gomeza et al., 2003b; Rousseau et al., 2008). In fact, 

expression of VIAAT and GlyT2 alone have been shown to be sufficient for 

adequate glycine accumulation and release in model systems, more so than co-

expression of VIAAT and GlyT1 (Aubrey et al., 2007). Unsurprisingly therefore, 

immunostaining studies have shown GlyT2 expression to overlap extensively with 

glycine immunoreactivity both synaptically and in terms of laminar distribution, 

proving it to be a reliable marker of glycinergic neurons (Luque et al., 1994; Jursky 

& Nelson, 1995; Zafra et al., 1995a; Zafra et al., 1995b; Poyatos et al., 1997; Spike 
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et al., 1997; Betz et al., 2006). Studies utilising GlyT2 staining in this way have 

therefore found its expression to be primarily restricted to laminae III in the mature 

spinal dorsal horn. 

 

2.1.3 Postnatal development of glycinergic neurotransmission 

 

In the motor system, GABAA receptors are present at threefold higher level than 

glycine receptors in the early developmental period (Gao & Ziskind-Conhaim, 1995). 

The amplitude of glycinergic mIPSCs then doubles from E17-P3 (Gao et al., 2001a), 

indicating a postsynaptic increase in receptor expression and/or perhaps an increase 

in presynaptic quantal release. Similarly, postsynaptic glycinergic mIPSC frequency 

undergoes a developmental increase in the dorsal horn over the first three postnatal 

weeks despite the fact several studies have shown the anion reversal potential and 

pattern of inhibitory glycinergic innervation to be functionally mature by the second 

postnatal week (Rivera et al., 1999; Keller et al., 2001; Baccei & Fitzgerald, 2004). 

Both individual and mixed GABAA receptor and glycine receptor-mediated mIPSCs 

can be recorded within laminae I-II until P23, after which inhibitory postsynaptic 

events (i.e. detection) are either GABAergic or glycinergic in nature but never both 

although co-release continues well into adulthood, indicative of a postsynaptic shift 

in receptor expression from GABAergic and glycinergic synapses to glycine 

receptor-only postsynaptic sites (Chery & De Koninck, 1999; Keller et al., 2001; 

Rajalu et al., 2009). 

  

Protein levels of GlyT2 are developmentally regulated, the protein is expressed from 

late foetal life and levels increase postnatally until P14, when they decrease to a 

plateau by P21 (Zafra et al., 1995b). The influence of this on glycinergic activity and 

availability in the early postnatal period is not known, nor whether protein expression 

patterns are developmentally regulated in conjunction with the increase in protein 

level. A developmental shift in expression could potentially lead to inappropriately 

targeted glycine release in the dorsal horn and/or inefficient recycling of glycine for 

release onto postsynaptic neurons in the immature dorsal horn. Similarly, patterns of 

glycinergic terminals and receptor expression patterns are well established in the 
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adult spinal cord but little is known of how these patterns change over postnatal 

development or how this affects developing nervous networks.  
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2.2 Aims 

 

The pattern of glycinergic inputs have been well described in the adult dorsal horn 

(Todd, 1990; Todd & Sullivan, 1990; Todd et al., 1995; Zafra et al., 1995b; Todd et 

al., 1996; Spike et al., 1997), yet little is known of how this pattern develops over the 

postnatal period, nor how this can impact on glycinergic transmission in the early 

stages of life. I aim to study the expression pattern of glycinergic terminals, their 

receptors and the pattern of neurons under tonic glycinergic inhibitory control in the 

spinal dorsal horn over the first three postnatal weeks in order to better understand 

the postnatal maturation of glycinergic circuitry over this period. 

 

The experiments in this chapter were completed with the assistance of two BSc 

students: Geoffrey Brent and Azhaar Ashraf.  
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2.3 Methods  

 

Animals aged P3, P10, P14, P21 and P40 were used for immunohistochemical 

studies. All sections are from lumbar regions 4 to 5 in the spinal cord (L4 and L5 

respectively). Four animals per age group were used for each antibody unless 

otherwise stated and the sections with the clearest staining patterns were chosen for 

photos. Not all age groups were used for each antibody. P21 protein expression 

patterns matched those seen from P40 adult rat lumbar sections (see Figure 2. 2), 

thus P3 sections were used as a model for the neonatal spinal cord, and P21 sections 

were used as models of the mature spinal cord. 

 

2.3.1 NeuN immunohistochemical staining 

 

Initially, an antibody raised against the neuronal nucleic marker NeuN was used to 

compare relative spinal cord sizes of P21 and P40 spinal cords. NeuN is an antibody 

raised against a neuron-specific nuclear protein initially isolated from mouse brain 

lysates, and is located in most vertebrate postmitotic neurons from early in 

development, with the exception of few neuron cell types including cerebellar 

Purkinje cells (Mullen et al., 1992; Wolf et al., 1996; Sarnat et al., 1998). Detailed 

studies since its discovery have shown NeuN to be located in areas of low chromatin 

and low DNA packing density (Lind et al., 2005). Animals aged P21 and P40 were 

terminally anaesthetised with an intraperitoneal overdose of pentobarbital sodium 

(Euthatal, 200 mg/ml, Merial Animal Health Ltd, UK) and transcardially perfused 

with heparinised saline (0.5% heparin (Monoparin, CP Pharmaceuticals, UK) in 

0.9% NaCl (Baxter, Belgium)) followed by 4% paraformaldehyde in distilled H2O 

(pH 7.4). The lumbar enlargement of the spinal cord (L4 and L5) was removed, 

postfixed for 2 hours and cryoprotected overnight at 4°C in 30% sucrose and azide 

solution. 40 µm transverse lumbar spinal cord sections were cut using a freezing 

microtome (Leitz Wezlar, Germany) and stored in a 0.1 M phosphate buffer (PB) 

solution containing 5% sucrose and 0.02% azide. Free floating sections were then 

blocked in 0.1 MPB solution containing 5% normal goat serum (NGS, Vector) and 

0.4% Triton-X (BDH) for 1 hour. Following this, sections were incubated in primary 
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mouse polyclonal antibody anti-NeuN (NeuN; 1:5000; 48 hours at 4°C; MAB377, 

Chemicon, USA). Sections were then washed three times in 0.1M PB for 10 minutes 

before incubation in the secondary goat anti-mouse polyclonal antibody (1:500, 2 

hours; Invitrogen, Eugene, Oregon, USA). After a further three washes in 0.1 M PB, 

sections were mounted onto gelatinized slides and left to dry for 15 minutes. Finally, 

slides were coverslipped in fluoromount (Sigma-Aldrich Inc.). Images were obtained 

using an Olympus confocal microscope with FluoView FV1000 scanning unit and 

IX81 inverted microscope and Olympus FluoView software version 2.0c (Olympus 

Optical Co. Ltd., Tokyo, Japan). Z stacks were compiled using Image J software 

(ImageJ 1.42q, National Institute of Health, USA, http://rsb.info.nih.gov/ij). 

Antibody specificity was shown by omitting the primary antibody to test for 

secondary antibody specificity, and by omitting the secondary antibody to check for 

any primary antibody fluorescence, both controls were negative in agreement with 

published work (Cavallaro et al., 2008). 

 

2.3.2 GlyT2 mapping of glycinergic terminals in the developing spinal 

cord 

 

Animals aged P3, P10, P14, P21 and P40 were terminally anaesthetised with an 

intraperitoneal overdose of pentobarbital sodium (Euthatal, 200 mg/ml, Merial 

Animal Health Ltd, UK) and transcardially perfused with heparinised saline and 4% 

paraformaldehyde in distilled H2O (pH 7.4) as outlined above. The lumbar 

enlargement of the spinal cord was removed, postfixed for 2 hours and cryoprotected 

overnight at 4°C in 30% sucrose and azide solution. 40 µm transverse lumbar spinal 

cord sections were cut using a freezing microtome (Leitz GmbH, Wetzlar, Germany) 

and stored in a 0.1 M phosphate buffer (PB) solution containing 5% sucrose and 

0.02% azide. Free floating sections were then blocked in 0.1 M PB solution 

containing 5% normal goat serum (NGS, Vector), 0.4% Triton-X (BDH) for 1 hour.  

 

Three antibodies against GlyT2 were used in total, two commercially available and 

one offered by Professor Francisco Zafra’s laboratory at the Universidad Autónoma 

de Madrid, Spain.  
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2.3.2.1 Santa Cruz anti-GlyT2 antibody 

 

After blocking, sections were incubated in primary rabbit polyclonal antibody anti-

GlyT2 (1:10,000, 48 hours at 4°C; H-155, Santa Cruz antibodies, CA, USA) and 

washed three times in 0.1 M PB for 10 minutes before biotinylated secondary goat 

anti-guinea-pig antibody was added (1:500, 2 hours, Vector, CA, USA). 

Immunostaining for GlyT2 was visualised using an indirect tyramide signal 

amplification (TSA) protocol (Vectastain Elite ABC kit, Vector, CA, USA). Briefly, 

sections were incubated in 2.5% biotinylated goat anti-guinea pig in 0.1M PB 

containing 0.4% Triton-X for 90 minutes. After three 10 minute washes in 0.1 M PB, 

Vector ABC Elite solution consisting of 0.4% Vectastain A + 0.4% Vectastain B in 

TTBS was added to the sections. Following 30 minutes of incubation, sections were 

washed three times for 10 minutes in 0.1 M PB and left to incubate for 7 minutes in 

Vector kit diluent containing 1.33% biotinylated tyramide solution (Vector, CA, 

USA). A further series of three 10 minutes washes was followed by incubation in a 

0.1 M PB solution containing 0.4% Triton-X (BDH Ltd) and 0.167% Fluoroscein 

Avidin D (FITC, Vector, CA, USA). The sections were washed again and mounted 

onto gelatinized slides before being left to dry for 15 minutes. Finally, the slides 

were coverslipped in fluoromount (Sigma-Aldrich Co., St Louis, MO, USA). Images 

were obtained using a Hamamatsu C4742-95 digital camera and digital controller 

(Hamamatsu Photonics K.K., Japan) attached to a Leica DMR microscope (Leica 

Microsystems GmbH, Wetzlar, Germany). Openlab 4.0.4 software was used to 

capture the image (Openlab, Improvision Ltd). Antibody specificity was shown by 

omitting the primary antibody to test for secondary antibody specificity, and by 

omitting the secondary antibody to check for any primary antibody fluorescence, 

both controls were negative in agreement with published work (Horiuchi et al., 

2001). 

 

2.3.2.2 Chemicon anti-GlyT2 antibody 

 

After blocking, sections were incubated in primary rabbit polyclonal antibody anti-

GlyT2 (1:10,000, 48 hours at 4°C; AB1773, Chemicon, USA) and washed three 

times in 0.1 M PB for 10 minutes before biotinylated secondary goat anti-guinea-pig 
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antibody was added (1:500, 2 hours, Vector, CA, USA). Immunostaining for GlyT2 

was visualised using a TSA amplification protocol as outlined above (Vectastain 

Elite ABC kit, Vector, CA, USA). Sections were then mounted onto gelatinised 

slides and allowed to dry for 15 minutes before being coverslipped using 

fluoromount (Sigma-Aldrich Co., St Louis, MO, USA). Antibody specificity was 

shown by omitting the primary antibody to test for secondary antibody specificity, 

and by omitting the secondary antibody to check for any primary antibody 

fluorescence, both controls were negative in agreement with other studies (Lim et al., 

2004). Images obtained using a Hamamatsu C4742-95 digital camera and digital 

controller (Hamamatsu Photonics K.K., Japan) attached to a Leica DMR microscope 

(Leica Microsystems GmbH, Wetzlar, Germany). Openlab 4.0.4 software was used 

to capture the image (Openlab, Improvision Ltd).  

 

2.3.2.3 Anti-GlyT2 antibody from Professor F Zafra 

 

After blocking, sections were incubated in primary rabbit polyclonal antibody anti-

GlyT2 (1:4000, 48 hours at 4°C, kind gift of Professor Francisco Zafra, Universidad 

Autónoma de Madrid, Spain) and washed three times in 0.1 M PB for 10 minutes 

before biotinylated secondary goat anti-rabbit antibody was added (1:500, 2 hours, 

Vector, CA). Immunostaining for GlyT2 was visualised using a TSA amplification 

protocol (Vectastain Elite ABC kit, Vector, CA, USA) as outlined above. Sections 

were then mounted onto gelatinised slides and allowed to dry for 15 minutes before 

being coverslipped using fluoromount (Sigma-Aldrich Co., St Louis, MO, USA). A 

pre-absorption study had been previously performed by the manufacturers of the 

antibody in a previously published peer reviewed paper (Zafra et al., 1995a). An 

additional control omitting the primary antibody was performed and was found to be 

negative for immunostaining. Images were obtained using an Olympus confocal 

microscope with FluoView FV1000 scanning unit and IX81 inverted microscope and 

Olympus FluoView software version 2.0c (Olympus Optical Co. Ltd., Tokyo, Japan). 

Z stacks were compiled using Image J software (ImageJ 1.42q, National Institute of 

Health, U.S.A, http://rsb.info.nih.gov/ij). 
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For dual localisation of GlyT2 with Isolectin B4, the fluorescently tagged primary 

antibody (1:500; IB4; Fluoroscein Griffonia Bandeiraea Simplicifolia; Vector, CA, 

USA) was added to the anti-GlyT2 antibody and incubated over 48 hours at 4°C. 

Sections were washed in 0.1 M PB three times for 10 minutes each as outlined 

above. Instead of tagging GlyT2 with FITC conjugated secondary antibody, an Alexa 

594 streptavidin conjugate (1:500, Vector, CA, USA) was used to distinguish from 

the green fluorophore of the conjugated IB4 antibody.  Antibody specificity was 

shown by omitting the primary antibody to test for secondary antibody specificity, 

and by omitting the secondary antibody to check for any primary antibody 

fluorescence, both controls were negative in agreement with published data (Fang et 

al., 2006). Images were obtained using an Olympus confocal microscope with 

FluoView FV1000 scanning unit and IX81 inverted microscope and Olympus 

FluoView software version 2.0c (Olympus Optical Co. Ltd., Tokyo, Japan). Z stacks 

were compiled using Image J software (ImageJ 1.42q, National Institute of Health, 

U.S.A, http://rsb.info.nih.gov/ij). 

 

The expression profile of GlyT2 in the dorsal horn of P3 and P21 rat spinal sections 

was analysed by measuring the distance from medial point above the central canal to 

the lateral edge of the spinal cord in order to include lamina V. The area selected and 

analysed included laminae I-V of the dorsal horn and was 1/8th in width of the total 

distance between the medial and lateral edges of the dorsal horn (see Figure 2. 1 for 

details, ‘selected area’ is represented in a red box). The width of the selected area 

was chosen in order to incorporate the laminae without the distortion that occurs 

more laterally, where the laminae are more angled. The length was chosen to extend 

to beyond the dorsal surface so lamina I was included. This area remained constant 

within an age group to allow for grouping of data points thereafter. There were small 

differences within age groups, which were controlled for by ensuring the base of the 

selection was level with the medial edge of the dorsal horn. ImageJ software (ImageJ 

1.42q, National Institute of Health, U.S.A, http://rsb.info.nih.gov/ij) was used to 

construct a "column average plot", where the x-axis represents the vertical distance 

through the selected area (shown in red in Figure 2. 1) and the y-axis the horizontally 

averaged pixel intensity throughout this section. Each graph represents seven 

sections chosen at random from four separate animals. Graphs were plotted using 
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graph using GraphPad Prism software (version 5.00, GraphPad Software, San Diego, 

CA, USA, www.graphpad.com) 

 

 
Figure 2. 1: Diagram of measurements used to graph GlyT2 staining expression patterns.  

Analysed area is shown in red, see text for details. 

 

2.3.3 Developmental expression patterning of the  subunit of the glycine 

receptor  

 

Animals aged P3 and P21 were terminally anaesthetised with an intraperitoneal 

overdose of pentobarbital sodium and transcardially perfused with heparinised saline 

(0.5% in NaCl) and 4% paraformaldehyde in distilled H2O as outlined above. The 

lumbar enlargement of the spinal cord was removed, postfixed for 2 hours and 

cryoprotected overnight at 4°C in 30% sucrose and azide solution. 20 µm lumbar 

spinal cord sections were cut using a cryostat (Bright Model OTF, 5040, Bright 

Instrument Company Ltd, Huntingdon, UK) and mounted directly onto SuperFrost 

Plus glass slides before being left to dry overnight. Slides were blocked using 10% 

normal goat serum solution in 0.1 M PB for 1 hour and incubated with an antibody 

raised against the alpha subunit of the glycine receptor (αGlyR; 1:1000 24 hours at 

room temperature; Santa Cruz, U.S.A). After three 10 minute washes, sections were 

incubated in a 0.1 M PB solution containing goat-anti rat (1:500; 2 hours; Vector, 

CA, USA). Slides were then washed and allowed to dry for 15 minutes before being 

coverslipped with fluoromount (Sigma-Aldrich Co., St Louis, MO, USA). To control 

for the selectivity of the antibodies used, two controls were performed: omission of 

b =1/4 
length ‘a’ 

c = 1/8 total length of 
‘a’

d = distance 
to beyond 

dorsal edge

a= length between medial and 
lateral edges of dorsal horn 
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the primary antibody and omission of the secondary antibody. Both controls were 

found to be negative for immunofluorescence confirming the selectivity of the 

primary and secondary antibodies in agreement with published work (Wang et al., 

2009). Images were obtained using an Olympus confocal microscope with FluoView 

FV1000 scanning unit and IX81 inverted microscope and Olympus FluoView 

software version 2.0c (Olympus Optical Co. Ltd., Tokyo, Japan). Z stacks were 

compiled using Image J software (ImageJ 1.42q, National Institute of Health, U.S.A, 

http://rsb.info.nih.gov/ij). 

 

2.3.4 C-fos mapping of neurons under tonic glycinergic inhibition 

 

Animals aged 3 days (P3, n= 8) and 21 days (P21; n= 8) were anaesthetised with 

intraperitoneal injection of urethane (2.0-2.5 mg/kg) adjusted to allow an anaesthetic 

depth light enough to allow mechanical withdrawal responses to a strong pinch 

stimulus without full arousal from anaesthesia. Once an adequate level of anaesthesia 

was achieved, animals were given an intrathecal dose of either strychnine (165 ng/g; 

S0532, Sigma-Aldrich Co., St Louis, MO, USA; n= 4 at each age) or saline vehicle 

(0.9% NaCl, Baxter, Belgium; n= 4 at each age), at a volume of 2 µl for P3 rat pups 

and 7 µl for P21 rats. Animals were then left for 2 hours and 20 minutes in a heated 

recovery box. This was to account for the 20 minute time point needed for maximum 

strychnine response (see Chapter Three) and the 2 hours needed for maximal c-fos 

protein activation (see (Hunt et al., 1987)). Animals were subsequently given an 

overdose of pentobarbital sodium (Euthatal, 200 mg/ml, Merial Animal Health Ltd, 

UK) and transcardially perfused with heparinised saline and 4% paraformaldehyde as 

outlined above. The lumbar enlargement of the spinal cord was removed, postfixed 

for 2 hours and cryoprotected overnight at 4°C in 30% sucrose and azide solution. 

40µm transverse lumbar spinal cord sections were cut using a freezing microtome 

(Leitz Wetzlar, Germany) and stored in a 0.1 M PB solution containing 5% sucrose 

and 0.02% azide. Free floating sections were then blocked in 0.1 M PB solution 

containing 5% normal goat serum (NGS, Vector, CA, USA) and 0.4% Triton-X 

(BDH Ltd.) for 1 hour. 
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Sections were incubated in primary rabbit polyclonal antibody anti-c-Fos (1:10,000, 

24 hours at room temperature; Calbiochem, La Jolla, CA) and washed three times for 

10 minutes each in 0.1 M PB before a secondary goat anti-rabbit antibody was added 

(1:500, 2 h, Vector, CA, USA). Immunoreactivity for c-fos was visualised using the 

diaminobenzene amplification protocol (Vector DAB peroxidase substrate kit, 

Vector, CA, USA) and sections were mounted onto gelatinised slides. These were 

then dried overnight, dehydrated by dipping slides (2 minutes) sequentially into 70% 

ethanol, 95% ethanol, absolute alcohol and Histoclear (National Diagnostics, USA), 

before being coverslipped using DPX (VWR International Ltd, Poole, UK). To 

control for the selectivity of the antibodies used, two controls were performed: 

omission of the primary antibody and omission of the secondary antibody. Both 

controls were found to be negative for immunofluorescence confirming the 

selectivity of the primary and secondary antibodies in agreement with published 

work (Rodríguez & Ferrer, 2007). 

 

The single best section from four separate animals at each age group was chosen for 

camera lucida drawings of cumulative cfos positive neuronal expression at both age 

groups. These were selected according to the level of cfos staining and quality of the 

tissue. Images were obtained by drawing c-fos positive neurons onto an acetate sheet 

using a camera lucida (Nikon Y-IDT, Nikon, Japan) and Nikon microscope (Nikon 

Eclipse E800, VFM, Nikon, Japan). The central canal was taken as the midway point 

between dorsal and ventral horns and the number of c-fos positive neurons dorsal to 

this were counted and plotted onto a graph using GraphPad Prism software (version 

5.00, GraphPad Software, San Diego, CA, USA, www.graphpad.com). Student’s t-

test was performed comparing saline and strychnine treated animals within an age 

group using GraphPad Prism version 5.00 for Windows (GraphPad Software, San 

Diego, CA, USA, www.graphpad.com).  
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2.4 Results 

 

2.4.1 NeuN staining 

 

NeuN staining was used to compare P21 and P40 spinal cord sizes and neuronal 

expression patterns. These were found to be equivalent by visual examination 

(Figure 2. 2) and as such, P21 spinal cords were used as models for the mature spinal 

cord. 

 

 
Figure 2. 2: Representative images of NeuN staining of P21 and P40 sections.  

Pattern of neuronal staining is equivalent between the two age groups. Images were taken at 10 x 

magnification and scale bar is identical for both images. 

 

2.4.2 GlyT2 staining 

 

GlyT2 immunostaining was used as a marker of glycinergic terminals in order to 

assess the pattern of presynaptic glycinergic input in the developing spinal dorsal 

horn (Luque et al., 1994; Jursky & Nelson, 1995; Zafra et al., 1995a; Zafra et al., 

1995b; Poyatos et al., 1997; Spike et al., 1997; Betz et al., 2006). Although three 

antibodies were tried, only the privately-acquired antibody kindly supplied by 

Professor Francisco Zafra’s laboratory in Universidad Autónoma de Madrid, Spain 

offered the specificity needed and was used for the rest of the study. The antibody 
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raised against GlyT2 acquired from Santa Cruz appeared non-specific and resulted in 

immunostaining of cell bodies instead of selective staining of glycinergic terminals. 

Although the antibody bought through Chemicon appeared to provide the pattern 

expected of GlyT2 immunostaining, the background levels of fluorescence remained 

high (see Figure 2. 3).  

 

 
Figure 2. 3: Representative images GlyT2 staining of spinal dorsal horn of P3 and P21 spinal 

cord sections.  

(left) P3 sections, (right) P21 sections. (a. and b.) Non-specific staining of cell bodies using the Santa 

Cruz antibody. (c. and d.) High background staining using the Chemicon antibody. Images are taken 

at 4x magnification; scale bar is identical for all sections.  

 

GlyT2 staining using the privately acquired antibody offered the specificity required 

and clearer glycinergic terminal staining could be discriminated without high non-

specific background immunofluorescence observed with the commercially available 

antibodies. Staining revealed a striking difference in protein expression pattern in 

spinal sections of the four postnatal ages tested (see Figure 2. 4). GlyT2 

immunopositive staining in the P3 neonatal spinal cord slices is diffuse in the deep 

dorsal horn, but lacking in the substantia gelatinosa. Over the course of the next two 
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postnatal weeks, immunostaining gradually shifts dorsally and begins to be restricted 

to the lamina III from age P14. This is not fully established until P21, when a clear 

expression ‘eyebrow’ can be differentiated in lamina III. 

 

 
Figure 2. 4: GlyT2 staining of representative P3, P7, P14, P21 and P40 rat lumbar spinal 

sections.  

Staining is diffuse and unrestricted in the neonate and becomes refined to laminae III by the third 

week of life. Images are taken at 10 x magnification except for the final image bottom right, which is 

at 40 x magnification; scale bars are as marked. 

 

Quantification of this shift in expression was achieved through graphing a column 

average plot of intensity of staining versus depth from the surface of the spinal cord 

(Figure 2. 5). GlyT2 staining in the mature dorsal horn was found to peak at around 

160 µm from the dorsal edge of the spinal cord. In agreement with previous studies 

examining the laminar expression of GlyT2 and the glycine receptor, the entire 

expression band was found to spread over 100 µm (140 µm - 220 µm) presumed to 

lamina III, with a smaller peak found in the very superficial layer, presumed lamina I 

(Mitchell et al., 1993; Spike et al., 1997; Harvey et al., 2004).   
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Figure 2. 5: Graphical representations of GlyT2 immunofluorescence across the dorsal horn of 

P3 and P21 rat spinal cord sections.  

Example images of GlyT2 staining used for analysis of (a.) P3 (8 sections; n=4) and (b.) P21 (8 

sections; n=4) spinal sections taken at 4 x magnification. (c. and d.) Graphs representing the mean and 

standard deviation of the intensity of GlyT2 staining at given depths across the dorsal horn. (c.) 

Intensity of immunofluorescence in P3 spinal sections peaks initially at 50 µm from the dorsal edge 

and reaches maximum intensity at 150 µm, after which intensity plateaus. (d.) Intensity of GlyT2 

staining in P21 spinal sections peaks at 160 µm with the most intense staining occurring between 140 

µm - 220 µm after which intensity dips and reaches a plateau. 

 

2.4.2.1 GlyT2 and IB4 staining 

 

The predominant localization of GlyT2 in lamina III was also verified using co-

staining with Isolectin B4 (IB4), a protein expressed in non-peptidergic C fibres that 

is restricted to inner lamina II (LIIi) in the spinal dorsal horn. Non-peptidergic C 

fibres do not to reach their adult termination points until the second postnatal week 

(Jennings & Fitzgerald, 1998; Park et al., 1999; Nakatsuka et al., 2000) and as such, 
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IB4 staining is faint until P14. GlyT2 was found to be expressed independently to 

IB4 at all ages tested (Figure 2. 6). Instead, expression was located both dorsal and 

ventral to lamina II in agreement with the intensity plot in Figure 2. 5. 

 

 
Figure 2. 6: Representative GlyT2 (red) and IB4 (green) double-staining in P3, P7, P14, P21 and 

P40 rat lumbar spinal sections.  

Using IB4 as a marker for lamina II, it is apparent that GlyT2 staining is absent from lamina II at any 

age tested, indicating a LIII expression band in adult spinal sections. Images are taken at 10 x 

magnification except for bottom right image, which is taken at 40 x magnification; scale bar is as 

marked for each image.  

 

2.4.3 GlyR staining 

 

Immunohistochemical staining of the  subunit of the glycine receptor was used to 

map the expression pattern of all  subunit-containing glycine receptors over the first 

forty days of life. Although staining was found to be less well-defined than that seen 

with the antibody raised against GlyT2, there is a distinct absence of  containing 

glycine receptor staining in the neonatal superficial dorsal horn (Figure 2. 7). 

Staining was found intracellularly and could be seen to clearly label cytoplasm and 

dendrites of neurons in both the dorsal and ventral horns of the spinal cord. 
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Maturation of this expression occurred over the same timeline as that seen for GlyT2 

and in similar areas. 

 

 

Figure 2. 7: Immunostaining of the  subunit of the glycine receptor in representative P3, P7, 

P14, P21 and P40 rat lumbar spinal sections.  

Staining is diffuse and unrestricted in the neonate and becomes refined to laminae III by the third 

week of life. Images are taken at 10 x magnification except for the final image bottom right, which is 

at 60 x magnification; scale bars are as marked. 

 

2.4.4 Functional mapping of postsynaptic neurons under tonic 

glycinergic inhibitory control 

 

C-fos has been shown to be a reliable marker for neuronal activation in the spinal 

cord (Hunt et al., 1987) and was used as a dynamic marker to identify the pattern of 

neurons normally under tonic glycinergic inhibitory control in the early postnatal 

period, providing an intermediate between the immunohistochemical mapping 

described above and functional mapping studies of glycinergic networks. Thus, 

neurons normally under glycinergic inhibition would be disinhibited, or facilitated, 

after glycine receptor antagonism using strychnine. These excited neurons will then 

express c-fos upon activation, and can be identified according to this protein 
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expression by immunohistochemistry. This has previously been used in adult rat 

spinal cord to show disinhibited neurons after systemic strychnine administration 

(Cronin et al., 2004). 

 

2.4.4.1 C-fos staining  

 

C-fos staining was not as ubiquitous as expected, potentially due to the high level of 

urethane anaesthesia used. It did none-the-less reveal a significant increase in c-fos 

positive dorsal horn neurons in the adult following strychnine as compared to those 

treated with saline (4.04 ± 0.8 c-fos positive neurons in the dorsal horn of saline 

treated versus 6.7 ± 0.8 c-fos positive neurons in strychnine treated animals, P= 

0.018; Figure 2. 9). No significant difference was found in P3 rat spinal sections, 

although there was a trend towards a decrease in activated neurons 2 hours following 

intrathecal strychnine as compared to sections of saline treated pups (4.63 ± 0.6 

activated neurons in saline treated rats versus 3.5 ± 0.8 c-fos positive neurons in 

strychnine-treated pups). As an additional analysis, the pattern of these positive 

neurons was also examined using camera lucida drawings. Each lucida image 

consists of four sections of spinal cord from four animals (Figure 2. 9a). This was 

further quantified by graphing the number of c-fos positive neurons found in 

superficial laminae I-II, deep dorsal horn III-V and lamina X surrounding the central 

canal (Figure 2. 9b). Strychnine resulted in a specific pattern of neuronal activation 

in the adult dorsal horn, with a group of neurons activated throughout laminae I-III as 

well as in the regions of lamina X, thought to correspond to sympathetic activity, 

found to be significantly different from saline treated patterns (P<0.02, two-way 

ANOVA). In the neonatal spinal cord there was a large variability in the number of 

c-fos positive neurons evoked by strychnine or saline. Although not significant, 

glycine receptor antagonism somewhat prevented the activation of neurons in the 

superficial dorsal horn seen after saline treatment. The pattern of activation is 

broadly found in laminae III-IV and deeper lamina X, with no activation in laminae 

I-II. 
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Figure 2. 8: Graph of total number of c-fos positive dorsal horn neurons of P3 and P21 rats 2 

hours following intrathecal saline or strychnine.  

There is a significantly increased activation in P21 spinal cord after strychnine treatment (n= 4; 

P<0.05) indicating high levels of tonic glycinergic inhibition. Strychnine had no significant effect on 

number of c-fos positive neurons at P3 (n=4), suggesting minimal glycinergic activity at this age. 
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Figure 2. 9: Mapping of neurons under tonic glycinergic inhibition in the neonatal P3 and P40 

spinal dorsal horn.  

(a.) Camera Lucida images of c-fos positive neurons in the dorsal horn. Images are the summated 

expression patterns of four sections from four separate animals treated with (left) saline or (right) 

strychnine. (b.) Graph of number of c-fos positive neurons found in laminae I-II, III-V and X. 

Strychnine significantly increased c-fos activation at P21 (P<0.05, two-way ANOVA) but not at P3.  

b. 

a. 
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2.5 Discussion 

 

This Chapter describes the developmental expression patterns of glycinergic inputs 

into the spinal cord and maps postsynaptic receptor expression over the course of the 

first forty postnatal days using immunohistochemical techniques. Two different 

methods were used to examine developmental expression changes in glycinergic pre 

and postsynaptic sites: (i) a study of the expression patterns of presynaptic 

glycinergic inputs and postsynaptic glycine receptors in the naïve neonatal and adult 

rats, and (ii) a functional mapping study, in which animals were challenged with 

intrathecal strychnine or saline to examine the effects of tonic glycinergic activity in 

the immature and mature dorsal spinal cord. Activated neurons were then 

immunostained with an antibody raised against the activity marker protein c-fos. A 

summary of the targets of antibodies is shown below in Figure 2. 10. 

 

 
Figure 2. 10: Summary schematic of antibodies used and results found in this study.  

Further details on the use of these antibodies and the findings of this chapter can be found in the 

methods and within this Chapter discussion. 

 

GlyT2 immunostaining in the neonatal dorsal horn was diffuse and unrestricted in 

the deep dorsal horn and completely absent from the substantia gelatinosa until the 
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second week of life. After P21, GlyT2 expression became largely restricted to lamina 

III, consistent with previous reports (Todd, 1990; Zafra et al., 1995b; Todd et al., 

1996; Poyatos et al., 1997; Spike et al., 1997; Harvey et al., 2004). This pattern was 

also followed by glycine-receptor expressing neurons (Todd & Sullivan, 1990; 

Mitchell et al., 1993; Todd et al., 1996) suggesting a local glycinergic action from 

birth. Glycinergic inputs therefore do not reach their adult terminations until the third 

week of life, and expression of terminals is broad and ill-defined until this time. 

Similarly c-fos expression following strychnine suggests that cells under tonic 

glycinergic inhibition and so glycine receptor-containing neurons, are located deeper 

within the neonatal dorsal horn and absent in superficial laminae, although activation 

of superficial dorsal horn neurons was pronounced in the adult. Moreover, c-fos cell 

counts show that tonic glycinergic inhibitory control is not as widespread in the 

neonate as in the adult, suggesting a minor role for tonic glycinergic transmission in 

the first week of postnatal life, consistent with in vitro patch clamp analyses (Baccei 

& Fitzgerald, 2004). 

 

2.5.1 Mapping of glycinergic terminals using GlyT2 

 

Developmental studies have revealed GlyT2 to be expressed from the early 

embryonic period. Expression levels reach maximum values by postnatal day 14 and 

decrease to adult levels after weaning, such that GlyT2 protein levels are lower in P3 

rat spinal cord than those found in P21 rats (Zafra et al., 1995b). The differences in 

GlyT2 immunostaining between neonatal and mature spinal dorsal horn sections seen 

in this Chapter can therefore be attributed to both a developmental up-regulation of 

protein and a shift in expression pattern. The mechanisms behind this shift are still 

unknown, but can potentially be answered by research completed in other sensory 

systems. Glycinergic transmission in the auditory system has also been shown to 

undergo substantial functional changes in the early postnatal period at a time when 

GlyT2 expression begins (Sanes, 1993; Kandler & Friauf, 1995; Friauf et al., 1997; 

Ehrlich et al., 1998; Kotak et al., 1998; Friauf et al., 1999) indicative of a role for 

GlyT2 in mediating of these changes. Histochemical and in vitro studies support this, 

and have demonstrated that the developmental expression of GlyT2 in the brainstem 

auditory nucleus coincides with a shift of inhibitory signalling from primarily 
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GABAergic to glycinergic (Zafra et al., 1995a; Zafra et al., 1995b; Kotak et al., 

1998). Furthermore, pharmacological blockade of the transporter in embryonic 

mouse spinal cord cultures is sufficient to lead to mixed GABA/glycinergic neurons 

adopting a primarily GABAergic phenotype (Rousseau et al., 2008).  

 

Interestingly, GlyT2 expression in the cochlear nucleus has been found to be 

influenced by neuronal activity, such that increased synaptic excitation can evoke a 

localized increase in GlyT2 expression in cochlear neurons (Barmack et al., 1999). It 

is therefore plausible that the maturation of sensory afferent synaptic connections in 

the neonatal cord evokes enough activity to promote the GlyT2 expression in lamina 

III. This could then allow glycinergic inhibition to function more efficiently and 

bring about the shift in inhibitory phenotype and the apparition of glycine receptor-

only synapses found in the mature spinal cord. Indeed glycine receptor clustering in 

the neonate has been shown to be dependent upon glycinergic transmission, such that 

blocking it using the glycine receptor antagonist strychnine prevents adequate 

receptor clustering (Kirsch & Betz, 1998; Levi et al., 1998). The sub-optimal 

recycling of glycine due to lack of GlyT2 in the first week of postnatal life could 

therefore prevent adequate receptor clustering rendering transmission ineffective. 

 

Much of what is known of the function of glycine transporters comes from research 

using genetically modified mice in which GlyT2 or GlyT1 were knocked down. 

From these, the primary purpose of GlyT1 appears to be in clearing glycine from the 

synaptic space into the postsynaptic site. Conversely, GlyT2 appears to enhance 

glycinergic signalling by making it available for recycling in the presynaptic terminal 

(Gomeza et al., 2003a; Gomeza et al., 2003b; Rousseau et al., 2008). These studies 

also revealed an insight into the role of glycinergic transmission early in postnatal 

development. GlyT1 knockout mice were terminal within a day of life, due to 

apparent over-inhibition that could be prevented by administration of strychnine 

(Gomeza et al., 2003a). Interestingly however, GlyT2-null mice survived for up to 

two weeks. The eventual fatality was a result of a lack of glycinergic inhibition, 

accompanied by hyperexcitability and motor spasticity (Gomeza et al., 2003b). That 

this would only occur after two weeks of life suggests that glycine is not released in 

large enough amounts to significantly affect the developing central nervous system 

until this time, a theory that seems heavily supported by the lack of glycinergic 
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terminals at the appropriate levels of the spinal cord in the neonate as shown in this 

Chapter.  

 

Pharmacological blockade of GlyT2 inhibitors in adult systems seem to counteract 

these findings, and act to increase the extracellular concentration of glycine and 

prolong the duration of the glycinergic postsynaptic currents in the spinal cord 

(Bradaia et al., 2004; Whitehead et al., 2004) providing evidence of a role for 

GlyT2-mediated reuptake in controlling the extracellular concentration of glycine 

(Morita et al., 2008). This could be a developmental shift in the role of GlyT2 in 

glycinergic signalling or potentially a factor of other pathological pain syndromes; 

alternatively it could reveal a dual role for GlyT2. 

 

2.5.2 The influence of a developmental shift in glycine receptor subunit 

expression 

 

Up until this point the discussion has focused primarily upon presynaptic changes in 

glycinergic signalling. However, postsynaptic changes are equally important in the 

transmission of glycinergic signalling. Studies completed over a century ago, and 

later repeated in 1921, found that behaving neonatal rats required a much larger dose 

of strychnine per unit weight to induce seizures and result in eventual death 

compared to doses needed in adult rats (Falck, 1884, 1885; Scwartze, 1921). 

Although this could not be explained at the time, it is now known that expression of 

the various glycine receptor isoforms are developmentally regulated, and these 

display different sensitivities (Malosio et al., 1991; Rajendra et al., 1997). In fact, 

there is a clear postnatal shift in receptor subtype over the first two weeks of 

postnatal life from α2 homomeric receptors to α/β heteromeric receptors, which has 

been shown to result in differing kinetics and binding properties between mature and 

neonatal receptors (Basbaum, 1988; Todd et al., 1996). The true physiological 

relevance of this switch is unclear but clues can potentially be revealed in the 

characteristics of each receptor subtype. There are two significant differences 

between neonatal and adult receptors:  
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(i) neonatal 2 homomeric glycine receptors lack a gephyrin-binding site unlike  

heteromers. The anchoring protein gephyrin is necessary for glycine receptor cluster 

formation by binding the  subunit of the glycine receptor. The lack of a gephyrin-

binding site on homomeric 2 receptors therefore implies that only / heteromeric 

glycine receptors should aggregate at inhibitory synapses (Kirsch et al., 1996; 

Fritschy et al., 2008). Evidence supporting this proposal has been derived from 

experiments based on antisense strategies (Kirsch et al., 1993; Kirsch & Betz, 1995; 

Kirsch et al., 1995; Meier et al., 2000) and from gephyrin knockout mice in which 

synaptic clustering of glycine receptors is abolished (Feng et al., 1998), although 

others have shown homomeric glycine receptor clustering at the cell surface 

independently of gephyrin (Meier et al., 2000). 

 

(ii) immature 2 homomeric receptors have slower decay kinetics and longer opening 

times compared to adult 1-containing heteromer (Takahashi et al., 1992; Mangin et 

al., 2003). Longer opening times of homomeric receptors could lead to a greater 

influx of chloride ions, resulting in greater hyperpolarisation and therefore more 

inhibition/shunting of excitatory signals. Slower kinetics would however, also lead to 

slow re-opening of the channel and a more ‘sluggish’ response to agonist binding. 

This could in turn provide rationale for the postnatal sharpening and tuning of 

glycinergic inhibition (Keller et al., 2001; Baccei & Fitzgerald, 2004), which 

coincides with receptor subtype switch from 2 homomeric receptors to / 

heteromeric receptors (Malosio et al., 1991). Although it would be tempting to 

speculate that the slower kinetics are due to a difference in number of binding sites, 

such that the neonatal homomeric receptor may be able stay open for longer due to a 

larger number of glycine molecules binding in the active site, this has not been found 

to be the case with 1 homomers (Beato et al., 2004) and so would not be suspected 

for α2 homomeric receptors. 

 

Importantly, the staining studies in this Chapter describe postnatal changes in the 

expression of the  subunit of the glycine receptor, and not of a given  subunit 

subtype. Although this provides useful insight into the areas of expression of glycine 

receptors in general, further immunostaining studies outlining the developmental 

expression profile of both the /β heteromeric and 2 homomeric receptors would 
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provide additional detailed information concerning the postsynaptic re-organisation 

of glycine receptors in the spinal dorsal horn in the first three postnatal weeks. 

 

2.5.3 Functional mapping of dorsal horn neurons under tonic glycinergic 

inhibition 

 

In isolation, immunostaining studies are invaluable for the expression profiling of a 

protein of interest but cannot offer receptor functionality. To address this, c-fos 

immunostaining was used in conjunction with the glycine receptor antagonist 

strychnine to visualize dorsal horn neurons normally under postsynaptic tonic 

glycinergic inhibitory control in P3 and P21 rats. Neurons normally under 

glycinergic inhibition will be facilitated by strychnine blockade as inhibition is lifted, 

and will thus express the activity marker protein c-fos (Hunt et al., 1987). Following 

strychnine treatment, the number of c-fos activated neurons in the spinal dorsal horn 

increased significantly in P21 spinal sections, indicating a significant number of 

dorsal horn neurons under tonic glycinergic control in the developmentally mature 

spinal cord. Conversely, the number of c-fos positive neurons was not significantly 

changed between spinal sections of P3 rats treated with saline or strychnine. The lack 

of significant increase in activated neurons in the neonatal cord following strychnine 

treatment is consistent with in vitro patch-clamp studies showing a lack of 

glycinergic-mediated tonic inhibition until the second postnatal week (Baccei & 

Fitzgerald, 2004). Although this does not offer any specific information regarding the 

phenotype of these neurons, it can give an indication of the influence of glycinergic 

inhibition in the early postnatal period. The fact that both glycine receptor 

immunoreactivity and c-fos staining after intrathecal strychnine treatment were found 

in the deeper dorsal horn of immature rats as compared to mature animals suggests 

that glycinergic inhibition is not appropriately targeted in the neonatal dorsal horn. 
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2.6 Conclusions 

 

2.6.1 Glycinergic terminals do not reach adult spinal patterns until the 

end of the second postnatal week 

 

GlyT2 staining revealed a postnatal shift in protein expression pattern in the spinal 

dorsal horn. Immunostaining was diffuse and unrestricted in neonatal spinal cord 

sections and absent from superficial laminae. Expression gradually increased over 

the following three weeks when the is pattern restricted to lamina III of the dorsal 

horn, corresponding to the area of innocuous sensory input from the periphery. This 

would suggest that although glycine has a specific role for local inhibition of sensory 

afferent information in lamina III in the mature spinal dorsal horn, this is not 

established until the third week of postnatal life. 

 

2.6.2 Developmental receptor expression changes in the dorsal horn 

 

Glycine receptor staining combined with functional mapping of the receptor using c-

fos and intrathecal strychnine treatment mirrored results found with terminal 

mapping: although receptors were present in the neonatal deep dorsal horn, 

expression was sparse in the more superficial laminae. Further to this, no cells in 

laminae I or II were activated following strychnine-induced disinhibition in the 

neonate. The corresponding location of expression of glycinergic terminals and 

receptors at both ages suggests that glycinergic neurons are acting locally at both P3 

and P21 but mature glycinergic circuitry is not in place until the third postnatal week. 

Glycinergic circuitry therefore undergoes a significant amount of postnatal 

adjustment over the first three weeks, both in terms of presynaptic glycinergic 

terminals and postsynaptic receptor expression patterns, neither of which are present 

in lamina III until P21.  
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3.1 Introduction 

 

The spinal cord serves as a crucial first point of sensory integration for incoming 

peripheral afferent signals. Information from primary afferent fibres entering the 

spinal cord is not only relayed to higher centres but is also integrated and modulated 

locally via spinal interneurons, which can be excitatory or inhibitory in action. 

Regulation of these interneurons can therefore have important consequences on 

perception of sensory information. Glycine is one of the two major inhibitory 

neurotransmitters in the mature spinal cord in conjunction with GABA. Unlike 

GABA, glycine is mainly present in caudal areas of the central nervous system, most 

notably in the ventral and dorsal horns of the spinal cord where it is involved in 

motor control and the modulation of sensory information respectively.  

 

3.1.1 The development of glycinergic inhibition in the spinal dorsal horn  

 

GABA and glycine are present in the spinal dorsal horn from embryonic day 16 (Ma 

et al., 1992; Poyatos et al., 1997) and the proportion of spinal GABAergic neurons 

increases until the third postnatal week before lower adult levels are reached 

(Schaffner et al., 1993). Both inhibitory neurotransmitters are co-transported and co-

transmitted in the early postnatal period (Keller et al., 2001) and are particularly 

important over early development as they have been shown to act as excitatory 

neurotransmitters through their respective receptors over the embryonic period, 

achieved through the presence of high intracellular chloride concentrations ((Ben-Ari 

et al., 1989; Reichling et al., 1994; Rivera et al., 1999) and see (Ben-Ari, 2002)). 

These embryonic high intracellular levels result in a chloride reversal potential that is 

more positive than both the resting membrane potential and action potential threshold 

of neurons such that when GABA or glycine bind their receptors, chloride diffuses 

down its concentration gradient and the cell is depolarised, which can lead to action 

potential firing. Changes in chloride reversal potential have been correlated with 

increased expression of the potassium chloride co-transporter KCC2 (see (Ben-Ari, 

2002)). As expression levels of this co-transporter increase with age, the chloride 

reversal potential decreases and depolarisations become less likely (Ehrlich et al., 
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1999; Rivera et al., 1999). Importantly, GABA has not been found to be excitatory in 

the spinal cord postnatally. In vitro experiments using spinal slices of neonatal rats 

showed that although a subset of neurons in lamina II were depolarized by GABA in 

the first few postnatal days, these were not sufficient to cause action potential firing 

and were purely hyperpolarizing by P7 (Baccei & Fitzgerald, 2004). Similarly, in 

vivo extracellular recordings of spinal dorsal horn neurons in P3 rats showed GABA 

to be as inhibitory in the neonate as it is in the adult (Bremner et al., 2006). In fact, 

the longer decay time of GABAergic miniature inhibitory postsynaptic currents 

(mIPSCs) of neonatal spinal dorsal horn neurons could result in stronger GABAergic 

inhibitory control in the newborn by allowing a larger influx of chloride and so 

stronger hyperpolarisation (Keller et al., 2001).  

 

Chapter Two described clear changes in the expression patterns of glycinergic 

terminals and that of glycine receptors in the spinal dorsal horn over the course of the 

first three postnatal weeks. The lack of glycinergic input into lamina III of the 

neonatal dorsal horn is likely to have a profound effect on the functional 

development of sensory processing at this age yet the full implications of this 

expression change in vivo is unclear. 

 

3.1.2 The functional role of glycine in modulating low threshold activity 

 

Within the mature spinal dorsal horn, glycinergic terminals are located 

predominantly in lamina III, corresponding to the laminar input of low threshold A 

fibres (Todd, 1990; Willis & Coggeshall, 1991; Mitchell et al., 1993; Todd et al., 

1996; Spike et al., 1997). Accordingly, several studies making use of the natural 

alkaloid strychnine, a glycine receptor-specific antagonist (Curtis et al., 1968), have 

shown that pain as a result of glycine receptor antagonism is specific for low 

threshold input. In treated animals, innocuous hair deflection therefore causes an 

increase in dorsal horn neuron firing, mirroring responses evoked by noxious 

stimulation in naïve animals (Yokota et al., 1979; Sherman & Loomis, 1994; Sivilotti 

& Woolf, 1994; Sherman & Loomis, 1996; Sorkin & Puig, 1996). This touch-

allodynic behaviour is insensitive to morphine, thus seemingly unrelated to 

nociception as a result of activation of nociceptive fibres (Sherman & Loomis, 1994). 
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The selectivity of this allodynia is further confirmed by genetic studies in which mice 

with deficits in glycinergic transmission display extreme sensitivity to touch (White 

& Heller, 1982). Behavioural findings have also been extended to spinal in vitro 

patch-clamp studies, where strychnine has been shown to result in a significant 

increase in non-nociceptive input to superficial lamina I and II dorsal horn neurons 

(Baba et al., 2003; Torsney & MacDermott, 2006). This has been identified as a 

polysynaptic protein kinase C gamma (PKC-γ)-mediated excitatory pathway between 

low threshold afferents terminating in laminae III-IV and nociceptive circuits in 

lamina II that is suppressed by inhibition in the normally functioning mature spinal 

dorsal horn (Yaksh, 1989; Sherman & Loomis, 1994; Sorkin & Puig, 1996; 

Miraucourt et al., 2007). Additionally, anatomical and in vivo patch-clamp studies 

have shown monosynaptic low threshold myelinated input directly onto glycinergic 

neurons in laminae I-III (Todd, 1990; Narikawa et al., 2000), which could be 

involved in the gating of flow of innocuous information to projection neurons in the 

more superficial dorsal horn.  

 

The role of glycine in inhibiting the transmission of innocuous information from 

deep to superficial dorsal horn is clear in the mature system, yet its function in early 

postnatal development of sensory transduction remains to be elucidated. This is of 

particular interest given the apparent dominance and widespread influence of A 

fibres throughout the neonatal dorsal horn for the first two weeks of postnatal life, 

(Fitzgerald, 1985; Fitzgerald, 1988; Fitzgerald et al., 1994; Coggeshall et al., 1996; 

Jennings & Fitzgerald, 1996, 1998; Fitzgerald & Jennings, 1999; Park et al., 1999; 

Nakatsuka et al., 2000; Torsney et al., 2000; Beggs et al., 2002) and the neonatal 

sensitivity and predominance to A fibre mediated sensitisation (Jennings & 

Fitzgerald, 1998).  

 

3.1.3 The functional role of glycine in modulation of nociceptive stimuli 

 

Although studies have primarily reported glycinergic inhibition of innocuous sensory 

information, others have also provided evidence for its role in nociceptive sensory 

transmission (Yaksh, 1989; Sivilotti & Woolf, 1994; Sorkin & Puig, 1996). Indeed 

studies have linked glycinergic transmission to a number of pathological pain states 
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in which glycinergic inhibition appears to be insufficient, most significantly of late 

being the involvement of 3 subunit containing receptors in inflammatory pain 

(Harvey et al., 2004) and a number of neuropathic conditions, where inefficient 

glycinergic transmission is thought to lead to touch-induced pain or allodynia 

through the disinhibition of an interlaminar connection between low threshold 

neurons and projection neurons in the more superficial dorsal horn (see (Besson & 

Chaouch, 1987; Millan, 1999; Scholz & Woolf, 2002) for reviews).   

 

Behaviourally, features of neonatal sensitivity are found across species and can be 

seen in behaving newborn infants, rats and kittens and include exaggerated, 

imprecise cutaneous reflexes and low mechanical withdrawal thresholds (Ekholm, 

1967; Fitzgerald et al., 1988; Andrews & Fitzgerald, 1994; Andrews et al., 2002). 

Similarly, neonatal dorsal horn neurons have a characteristic excitability that is not 

normally seen in the adult: their cutaneous receptive fields are generally larger 

(Fitzgerald, 1985; Torsney & Fitzgerald, 2002), they sensitise to A fibre strength 

stimulation (Jennings & Fitzgerald, 1998) and they possess lower cutaneous 

mechanical thresholds (Torsney & Fitzgerald, 2002). Naïve neonatal rats therefore 

display sensitivity to innocuous stimuli in a manner arguably similar to those 

reported in neuropathic animals. This is of particular importance as neuropathic pain 

cannot be induced in neonatal rat pups (Howard et al., 2005; Moss et al., 2007; 

Vega-Avelaira et al., 2009) suggesting that the immature glycinergic circuitry of the 

superficial dorsal horn outlined in the previous Chapter could underlie a lack of 

glycinergic control over the transmission of innocuous sensory information at this 

time. 
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3.2 Hypothesis 

 

Chapter Two described the regional and developmental expression changes in 

glycinergic terminals and postsynaptic receptor protein patterns but the functional 

significance of this shift in protein expression is not yet known. This chapter 

addresses the functional development of glycinergic activity in the spinal dorsal 

horn.  

 

I hypothesise that immature glycinergic input in the first three of postnatal weeks 

underlies inefficient glycinergic inhibition of sensory transduction in the neonatal 

spinal dorsal horn. Specifically, I propose that glycinergic control of A input is 

lacking in young animals, allowing the transmission of innocuous information to 

superficial laminae that would normally be under strong glycinergic control in the 

adult.  

 

To test this I performed extracellular recordings from individual spinal dorsal horn 

wide dynamic range neurons in in vivo anaesthetised intact rats of several ages. 

Spontaneous and evoked activity to dynamic and static mechanical stimulation of the 

hindpaw were recorded in the presence of the glycine receptor antagonist strychnine 

in order to assess the functional role of glycine in spontaneous activity of neurons, 

and phasic control of cutaneous sensory transduction in the developing spinal cord. 
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3.3 Methods 

 

3.3.1 In vivo extracellular recordings 

 

Sprague–Dawley rats of both sexes aged postnatal day 3 (P3), 10 (P10), 21 (P21) and 

40 (P40) were used in these studies. Animals were allowed free access to water and 

food and were housed in 12-hour light/dark cycles. P3 and P10 rat pups were housed 

with mother and littermates, P21 and P40 rats were caged according to sex in cages 

of six littermates. All experiments were conducted in accordance with the United 

Kingdom Animals (Scientific Procedures) Act of 1986. 

 

Rats were anaesthetised with isoflurane to achieve areflexia (induction at 3.5% 

isoflurane in medical O2) and tracheotomised, after which the cannula was sutured in 

place. The animal was then mounted in a stereotaxic frame (Kopf Instruments, CA) 

and artificially ventilated using a ventilator pump (Small animal ventilator, model 

687, Harvard Apparatus Inc.) under constant isoflurane-anaesthesia (maintenance of 

1.8% in medical O2, Univentor Anaesthesia Unit 400, Royem Scientific, UK) at 79 

breaths per minute. The air-flow was adjusted according to the animal’s size, blood 

perfusion and heart rate (target of 300-450 beats per minute), which was being 

monitored via electrocardiogram. A homeothermic blanket with probe sensor, and 

heating lamp were used to maintain body temperature at physiological levels (36ºC). 

Animals were mounted via hip and ear bars, and a laminectomy was performed to 

expose the lumbar spinal cord, the vertebral column secured with a clamp to the 

thoracic spine and the dura and pia mater removed. A subcutaneous injection of 

saline was given to each animal post laminectomy to maintain hydration and a thin 

film of mineral oil was used to cover the exposed spinal cord to prevent heat loss and 

excessive drying of the cord. Once stabilised, a 10 M tipped glass-coated tungsten 

microelectrode was lowered onto the surface of the cord under microscopic vision, 

with a reference electrode inserted into the muscle near the recording area. Neuronal 

activity was passed through a x1 headstage amplifier and a further x 5k differential 

amplifier (NeuroLog, Digitimer, UK). This signal was passed through low and high 

pass filters, set at 1 kHz and 10 kHz respectively and onto a spike trigger, which is 

set manually to produce output TTL pulses for spikes above a particular voltage, an 
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audio amplifier as well as through an oscilloscope (TDS 2012 digital storage 

oscilloscope, Tektronix). Information was also fed into a PowerLab system (4SP, AD 

Instruments, UK), which was connected to a computer in order to allow recording 

and analysis of data using Chart 5 software (Chart 5 version 5.5.5, AD Instruments, 

UK).  

 

In order to isolate individual neurons in the spinal cord, the microelectrode was 

lowered through the cord in 2- or 10 µm steps by a microdrive (Epson HX-20, Seiko 

Epson Co. powered by Digitimer SCAT-01 microelectrode stepper system, Digitmer, 

UK). Stroking of the plantar skin of the hind paw was used as a search stimulus and 

cells were selected once a reliable action potential spike amplitude and shape could 

be distinguished from background noise levels. Wide dynamic range neurons were 

selected such that each neuron tested responded to light touch and to noxious pinch 

applied to the centre of the receptive field.  

 

The plantar paw receptive field of a cell was characterised and mapped using pinch 

and brush of the skin and drawn out in detail onto a representative image of the 

plantar paw surface (see Figure 3. 1). This image was then scanned and digitally 

analysed using ImageJ software (ImageJ 1.42q, National Institute of Health, U.S.A, 

http://rsb.info.nih.gov/ij). 

 

Von Frey hairs were calibrated by assessing the weight needed to bend each hair in 

succession (see Figure 3. 2). Von Frey Hair threshold was established as the lowest 

hair needed to evoke spikes when applied to the centre of the receptive field (see 

Figure 3. 3). Subsequent to this, neuronal firing to three hairs was recorded: 

threshold von Frey hair, subthreshold: two hairs below threshold and suprathreshold: 

two hairs above the threshold. Pinch stimuli and von Frey hairs were each applied 

three times in succession and the brush stimulus was applied five times. The mean 

number of spikes evoked to each stimulus was then used for analysis. In order to try 

to normalise the pinch stimulus used in this study, a screw was mounted into the 

forcep arms, such that once the screw was tightened, forceps could only be squeezed 

up until a given point. 
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Figure 3. 1: Schematic of in vivo extracellular recordings.  

An electrode is inserted into the spinal dorsal horn of an anaesthetised intact rat. Once an individual 

neuron is isolated, its cutaneous receptive field on the plantar hindpaw is stimulated by means of 

brush and pinch stimuli and neuronal responses are recorded. 

 

 

 
 

Figure 3. 2: Calibration of von Frey hairs. 
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Figure 3. 3: Example traces of dorsal horn neuron responses to subthreshold, threshold and 

suprathreshold von Frey hair application to the receptive field. 

 

Baseline responses of the cell were characterized as follows:  

 

(i) spontaneous activity, recorded over 5 minutes  

 

(ii) cutaneous receptive field area on the plantar paw, as mapped by brush and pinch 

stimuli 

 

(iii) responses to the following stimuli applied to the cutaneous receptive field: 

 

a. spikes fired during innocuous brush of the skin, using a fine 

paintbrush for 2 seconds 

 

b. spikes fired during noxious forcep pinch of the skin for 2 seconds 

 

c. spikes fired during application of a calibrated von Frey hair (vFh) at 

threshold for 1.5 seconds  

 

d. spikes fired during subthreshold vFh application for 1.5 seconds 

 

e. spikes fired during suprathreshold vFh application for 1.5 seconds 
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3.3.2 Pharmacology 

Strychnine was applied to the surface of the cord during dorsal horn cell recording. 

P3 rat pups correspond approximately to the developmental stage of a 32-week old 

premature human infant, whilst P21 rats correspond to adolescents and P40 rats 

correspond developmentally to an adult (McCutcheon & Marinelli, 2009). As seen in 

Chapter Two, the development of a P21 spinal cord is similar to that of a P40 adult 

rat (see Figure 2.2), and dorsal horn neurons respond to noxious stimuli in a mature 

manner from P20 (Hammond & Ruda, 1991). Comparisons between P3 rat pups and 

P21 rats were therefore used as models of neonatal and adult spinal circuits 

respectively. The total amount of strychnine administered was 1.65 µg (4.9 nmol) in 

P3 rat pups and 8.25 µg (29.4 nmol) in P21 rats. The dose of strychnine used in this 

study was chosen as it is significantly lower than adult rat convulsant ED50 dose (233 

nmol; (Yaksh, 1989)) and a similar dose has been shown to result in significant 

changes in behaviour of awake animals ((Miraucourt et al., 2007) and unpublished 

observations).  

Once baseline responses were established, 150 µl strychnine (165 ng/g in 0.9% NaCl 

(Baxter, Belgium); S 0532, Sigma-Aldrich Co., St Louis, MO, USA) or saline (0.9%) 

was applied topically to the exposed cord. Spontaneous activity, receptive field area 

(measured as a percentage of the total hindpaw plantar area) and response to brush, 

pinch and subthreshold, threshold and suprathreshold vFhs were measured every 10 

minutes for up to 60 minutes after strychnine or saline application. The 20-minute 

time point was used for all subsequent graphing and analysis, as this was the time 

point that showed the largest increase in activity from baseline. N numbers for 

number of animals used in the above experiments are: P21: n=14; P3: n=9. The area 

of the paw sensitive to brush and/or pinch was represented as a percentage of the 

total plantar paw surface both at baseline and 20 minutes after strychnine 

administration. Receptive field data is presented as maximum or total receptive field 

area at baseline and 20 minutes after strychnine application, and separated into pinch 

and brush-sensitive receptive field areas. Neuronal activity was defined for both age 

groups as being facilitated or inhibited if activity during stimulation increased or 

decreased by more than 10% of the baseline value. 
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Saline controls were performed in both P3 and P21 dorsal horn neurons (P3: n=11 

from six animals; P21; n=4 from four animals). No changes in responses to any of 

the tested modalities was observed 20 minutes following saline application to the 

surface of the cord except for cellular responses to subthreshold von Frey hair 

application to the receptive field in neonatal rats, which were found to increase. The 

reason for this is unclear, but may be due to sensitisation of the neonatal sensory 

system to innocuous stimuli, which has been shown in previous studies (Fitzgerald, 

1985; Torsney & Fitzgerald, 2002). 

 

All data is presented as mean ± standard error of the mean unless otherwise stated. 

Number of spikes was analysed and graphed using GraphPad Prism software 

(version 5.00, GraphPad Software, San Diego, CA, USA, www.graphpad.com). 

Statistical analyses were performed using GraphPad Prism software and Wilcoxon’s 

signed rank test within an age group or one or two-way ANOVAs between age 

groups and/or treatments followed by Dunnett’s post hoc multiple comparisons test 

or Bonferroni post hoc test respectively for significant values. For all data a 95% 

confidence interval was used as a measure of statistical significance. 

All animals were killed with an overdose of sodium pentobarbitone (i.p.) at the end 

of the experiment. 
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3.4 Results 

 

3.4.1 General baseline electrophysiological properties of dorsal horn 

neurons across the first four postnatal weeks 

 

A total of 113 dorsal horn neurons were used for single unit extracellular recordings: 

18 neurons from P3 rat pups, 64 from P21 rats, and 31 neurons from P40 rats. There 

was no significant difference in depth of recording between age groups (average 

depth P3: 295 ± 42 m; P21: 329 ± 23 m; P40: 267 ± 26 m; Figure 3. 4). Not all 

modalities could be tested in each cell and cells were only included in analysis if 

stable recordings could be maintained. Wide dynamic range neurons were selected 

over nociceptive specific or low threshold neurons. 

 

 

 

Figure 3. 4: Depth of recorded dorsal horn cells at three postnatal ages.  

There was no significant difference in depth of recorded cells between age groups (P3: n= 18; P21: 

n=62; P40: n=31). 

 

3.4.2 Mechanical thresholds 

 
The gram weight force applied with von Frey hair to the skin of the receptive field 

required to evoke action potential firing was found to increase with age and differed 

significantly between P3, P21 and P40 groups in agreement with previous studies 



Chapter Three                                Glycinergic signalling in the neonatal dorsal horn 
 

 101

(Torsney & Fitzgerald, 2002). The threshold at P3 was 1.1 ± 0.2 g, at P21 was 2.9 ± 

0.4 g, and at P40 was 5.3 ± 1.5 g (Figure 3. 5a; one way ANOVA P<0.0001). 
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Figure 3. 5: Baseline properties of recorded dorsal horn neurons.  

(a.) Average thresholds of P3, P21 and P40 of spinal dorsal horn neurons ages in grams (g) (P3: n= 

18; P21: n=62; P40: n=31). Threshold increases significantly with age (one way ANOVA, P<0.0001). 

(b.) Cutaneous receptive field sizes of all recorded cells at three different age groups (P3: n= 18; P21: 

n=33; P40: n=18). Receptive field areas did not significantly differ between age groups. (c.) Baseline 

spontaneous activity of dorsal horn neurons of three different ages (P3: n= 11; P21: n=26; P40: n=20). 

Spontaneous activity increases significantly with age (Kruskal-Wallis across all age groups P<0.001; 

Dunn’s multiple comparisons test: P3 vs. P40 P<0.01, P21 vs. P40 P<0.01). 

 

3.4.3 Cutaneous receptive field sizes 

 
Cutaneous receptive field size was measured as a percentage of the total foot area in 

order to correct for large differences in plantar foot area at the three postnatal ages 

tested. Average receptive field area was 6.64 ± 1.31% of the total plantar surface at 
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P3, 9.74 ± 1.75% at P21 and 9.12 ± 1.34% at P40 (Figure 3. 5b). Although there was 

a tendency towards an increase in receptive field area with increasing age, this was 

found to be insignificant. This could be due to the range of recording depths included 

in the analysis, as cells in the deeper dorsal horn of neonatal rats have previously 

been shown to have a tendency towards larger cutaneous receptive field sizes in 

comparison to their adult counterparts (Torsney & Fitzgerald, 2002). 

3.4.4 Spontaneous activity  

 
Spontaneous activity of dorsal horn neurons was recorded continuously for 5 minutes 

and divided into 1-second time bins (Hz). Baseline spontaneous activity significantly 

increased with age from P3 to P40 (Kruskal-Wallis test across all age groups 

P=0.0006; Dunn’s multiple comparisons test: P3 vs. P40 P<0.01, P21 vs. P40 

P<0.01). Mean spontaneous firing rates were as follows: 0.06 ± 0.01 Hz at P3, 0.12 ± 

0.04 Hz at P21 and 0.2 ± 0.03 Hz at P40 (Figure 3. 5c).  

 

3.4.5 The effect of spinal strychnine upon spontaneous activity at two 

postnatal ages 

 

18 neurons from P3 rats and 25 from P21 neurons were used for strychnine studies. 
A summary of all results is found in Table 3.1. 
 

Strychnine applied onto the surface of the spinal cord significantly increased the 

number of spontaneous spikes per second of P21 spinal neurons, without 

significantly altering number of spontaneous spikes fired in P3 dorsal horn neurons. 

The baseline value of P21 spontaneous firing increased from a mean of 0.05 ± 0.01 

Hz to a mean value of 0.32 ± 0.16 Hz 20 minutes post strychnine, representing a 

mean increase of 431% (Wilcoxon’s signed rank test P= 0.002; Figure 3. 6a and c) 

and out of the 14 neurons tested, 10 were facilitated following strychnine application. 

However, spontaneous activity of P3 neonatal dorsal horn neurons was largely 

unchanged by strychnine treatment; decreasing from a mean baseline value of 0.08 ± 

0.015 Hz to a mean of 0.07 ± 0.01 Hz 20 minutes post strychnine (Figure 3. 6b). 
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Figure 3. 6: The effect of 165 ng/g strychnine upon spontaneous action potential firing of dorsal 

horn neurons of 3-day and 21-day old rats.  

(a.) Strychnine did not affect spontaneous action potential firing of P3 neurons (n=9) 20 minutes after 

application to the surface of the spinal cord, but (b.) significantly increased spiking in P21 neurons 

(n=14; Wilcoxon’s signed rank test P<0.01).  (c.) Table of neuronal subpopulations. Cells were 

characterised as facilitated or inhibited if activity was changed to a greater extent than 10% from 

baseline values, or unchanged. 

 

3.4.6 The effect of spinal strychnine upon pinch evoked activity of spinal 

dorsal horn neurons at two postnatal ages 

 

Pinch-evoked activity of dorsal horn neurons increased two fold following strychnine 

administration in P21 rats from a mean baseline value of 5.72 ± 1.68 Hz to 11.09 ± 

3.64 Hz 20 minutes post strychnine (Wilcoxon’s signed rank test P= 0.01; Figure 3. 

7a and c), with a facilitation of pinch-evoked activity in 71% of cells tested (10/14). 

However, action potential firing of P3 neurons to pinch of the cutaneous receptive 

field was unchanged by glycine receptor antagonism in the neonatal spinal cord 

(mean baseline response of 2.61 ± 0.5 Hz to 1.88 ± 0.4 Hz post strychnine (Figure 3. 

7b)). 
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Figure 3. 7: The effect of 165 ng/g strychnine upon pinch evoked action potential firing of dorsal 

horn neurons of 3-day and 21-day old  rats.  

(a.) Strychnine did not affect action potential firing of P3 neurons (n=9) to pinch 20 minutes after 

application to the surface of the spinal cord, but (b.) significantly increased spiking in P21 neurons 

(n=14; Wilcoxon’s signed rank test P<0.01). (c.) Table of neuronal subpopulations. Cells were 

characterised as facilitated or inhibited if activity was changed to a greater extent than 10% from 

baseline values, or unchanged. 

 

3.4.7 The effect of strychnine on subthreshold, threshold and 

suprathreshold von Frey hair evoked spiking  

 

3.4.7.1 Subthreshold von Frey hair application 

 

The response to a subthreshold von Frey Hair application to the cutaneous receptive 

field increased significantly after strychnine in P21 rats from a mean baseline value 

of 0.66 ± 0.5 spikes/second to 1.31 ± 0.58 spikes/second post strychnine, 

representing a mean increase of 245% (Wilcoxon’s signed rank test P= 0.004; Figure 

3. 8a and c). Firing of P3 rat dorsal horn neurons remained unaffected by strychnine 

(mean baseline value 0.12 ± 0.07 Hz to 0.31 ± 0.13 Hz post strychnine; Figure 3. 8a), 
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with the vast majority of cells (8 out of total of 14) not responding to drug 

application at all. 

 

 
 

Figure 3. 8: The effect of 165 ng/g strychnine on subthreshold von Frey hair-evoked action 

potential firing of dorsal horn neurons of 3-day and 21-day old rats.  

(a.)  Strychnine did not affect firing of P3 neurons (n=14) to subthreshold von Frey hair application, 

but (b.) significantly increased spiking of P21 neurons (n=29; Wilcoxon’s signed rank test P<0.01). 

(c.) Table of neuronal subpopulations. Cells were characterised as facilitated or inhibited if activity 

was changed to a greater extent than 10% from baseline values, or unchanged. 

 

3.4.7.2 Threshold von Frey hair application 

 

The response to a threshold von Frey Hair response also significantly increased 

following strychnine in P21 rats (mean baseline value of 1.32 ± 0.57 to 2.26 ± 0.81 

Hz post strychnine; 117% increase; Wilcoxon’s signed rank test P=0.004) and was 

unchanged in P3 neonatal dorsal horn neurons (mean baseline of 0.92 ± 0.23 

spikes/second to 0.6 ± 0.17 Hz post strychnine; Figure 3. 9a and b). Interestingly, in 

contrast to the neuronal response to subthreshold von Frey hairs, the threshold-

evoked response of the majority of P3 neurons showed a decrease after strychnine 
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application relative to baseline (64%; 9 out of 14; Figure 3. 9c), whereas threshold-

evoked firing of 65% of P21 neurons (19/29) was facilitated.  

 
 
 

Figure 3. 9: The effect of 165 ng/g strychnine on response to threshold von Frey hair-evoked 

action potential firing of dorsal horn neurons of 3-day and 21-day old rats.  

(a.)  Strychnine did not affect action potential firing of P3 neurons (n=14) to threshold von Frey hair 

application to the receptive field 20 minutes after application to the surface of the spinal cord, but (b.) 

significantly increased spiking in P21 neurons (n=29; Wilcoxon’s signed rank test P<0.01). (c.) Table 

of neuronal subpopulations. Cells were characterised as facilitated or inhibited if activity was changed 

to a greater extent than 10% from baseline values, or unchanged. 

 

3.4.7.3 Suprathreshold von Frey hair application 

 

Strychnine did not affect action potential firing to suprathreshold von Frey hair 

stimulus in dorsal horn neurons of P21 rats (mean baseline value of 2.67 ± 0.93 to 

2.62 ± 0.8 Hz post strychnine; Figure 3. 10b and c) but did cause a significant 53% 

decrease in action potential firing in neonatal P3 rats (mean baseline value of 2.09 ± 

0.4 Hz to 0.96 ± 0.31 Hz post strychnine; Wilcoxon’s signed rank test P=0.006; 

Figure 3. 10a and c). 86% of recorded P3 neurons exhibiting a minimum of a 10% 

decrease in firing relative to baseline values (12/14).  
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Figure 3. 10: The effect of 165 ng/g strychnine on response to suprathreshold von Frey hair-

evoked action potential firing of dorsal horn neurons of 3-day and 21-day old rats.  

(a.) Strychnine significantly increased action potential firing of P3 neurons (n=14) to suprathreshold 

von Frey hair application to the receptive field 20 minutes after application to the surface of the spinal 

cord (n=29; Wilcoxon’s signed rank test P<0.01), but (b.) had no effect on that of P21 neurons. (c.) 

Table of neuronal subpopulations. Cells were characterised as facilitated or inhibited if activity was 

changed to a greater extent than 10% from baseline values, or unchanged. 

 

3.4.8 The effect of strychnine on brush evoked activity of spinal dorsal 

horn neurons in P3 and P21 rats 

 

A 2-second brush stimulus to the receptive field was used as an innocuous, dynamic 

stimulus. Brush-evoked activity of P21 adult spinal dorsal horn neurons increased 

significantly from baseline following application of strychnine from a mean baseline 

firing of 6.27 ± 1.64 spikes/second to 11.97 ± 2.89 Hz 20 minutes post strychnine, 

representing a 120% increase from baseline (Wilcoxon’s signed rank test P=0.011; 

Figure 3. 11a). In sharp contrast, strychnine inhibited brush-evoked firing of P3 

neurons from a mean baseline value of 3.94 ± 0.9 Hz to 1.76 ± 0.4 Hz post 

strychnine (53% decrease; Wilcoxon’s signed rank test P=0.03; Figure 3. 11b). 79% 
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of P21 neurons were facilitated over 10% of baseline values (11/14) whereas 89% of 

P3 neurons were inhibited (8/9; Figure 3. 11c). 

 
 
Figure 3. 11: The effect of 165 ng/g strychnine upon brush evoked action potential firing of 

dorsal horn neurons of 3-day and 21-day old rats.  

(a.) Strychnine significantly decreased action potential firing of P3 neurons (n=9) to brush 20 minutes 

after application to the surface of the spinal cord (Wilcoxon’s signed rank test P<0.05), but (b.) 

significantly increased spiking in P21 neurons (n=14; Wilcoxon’s signed rank test P<0.05). (c.) Table 

of neuronal subpopulations. Cells were characterised as facilitated or inhibited if activity was changed 

to a greater extent than 10% from baseline values, or unchanged. 

 

3.4.9 The effect of strychnine on receptive field size in the postnatal 

period 

 

Cutaneous receptive field data is presented as a percentage of the total plantar paw 

surface area and graphed out both as a maximal or total receptive field area before 

and after strychnine application (Figure 3. 12), as well as separated by modality into 

pinch-sensitive and brush-sensitive receptive fields (Figure 3. 13 and Figure 3. 14 

respectively). Maximal receptive field size was found to increase by 132% in mature 

dorsal horn neurons from a mean baseline size of 6.9 ± 1.3% of total plantar area to 

13 ± 1.9% post strychnine (Wilcoxon’s signed rank test P= 0.015; Figure 3. 12). 
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Receptive field areas of P3 neurons in contrast were not found to be affected by 

strychnine application (7.4 ± 1.5% of total foot area at baseline to 4.0 ± 1.73% after 

strychnine treatment). 

 

 
 
 
Figure 3. 12: The effect of 165 ng/g strychnine on maximum receptive field size of spinal dorsal 

horn neurons in 3-day and 21-day old rats.  

(a.) Strychnine application did not significantly affect the total receptive field area of P3 dorsal horn 

neurons (n=5), but (b.) significantly increased the receptive field in dorsal horn neurons of P21 rats 

(n=13; Wilcoxon’s signed rank test P<0.01). (c.) Table of neuronal subpopulations. Cells were 

characterised as facilitated or inhibited if activity was changed to a greater extent than 10% from 

baseline values, or unchanged. 

 

Receptive field size was also separated into pinch and brush-sensitive modalities. 

Strychnine application to the spinal cord was found to increase both the pinch and 

brush-sensitive receptive fields of P21 neurons up to two fold, most notably, brush 

sensitive receptive field increased up to 240% from baseline (pinch receptive field 

increased from mean of 7.8 ± 2% total plantar foot surface at baseline to 14.8 ± 2.6% 

20 minutes after strychnine; Figure 3. 13; Wilcoxon’s signed rank test P= 0.0024; 

brush from baseline mean 6 ± 1.5% to 11.3 ± 2.2% after strychnine; Wilcoxon’s 

signed rank test P= 0.0012; Figure 3. 14). P3 dorsal horn neuron brush or pinch-

sensitive receptive fields did not significantly change in size after strychnine as 
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compared to baseline (mean baseline pinch receptive field 2.3 ± 0.7% to 1.8 ± 0.8% 

of total plantar paw surface post strychnine (Figure 3. 13; mean baseline brush 

receptive field 5.1 ± .8% to 2.5 ± 0.73% post strychnine; Figure 3. 14) 

 

 
 
 
Figure 3. 13: The effect of 165 ng/g strychnine on pinch-sensitive receptive field size of spinal 

dorsal horn neurons in 3-day old and 21-day old rats.  

(a.) Strychnine application did not significantly affect the pinch-sensitive receptive field area size of 

P3 dorsal horn neurons (n=5), but (b.) significantly increased that of dorsal horn neurons in P21 rats 

(n=13; Wilcoxon’s signed rank test P<0.01). (c.) Table of neuronal subpopulations. Cells were 

characterised as facilitated or inhibited if activity was changed to a greater extent than 10% from 

baseline values, or unchanged. 
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Figure 3. 14: The effect of 165 ng/g strychnine on brush-sensitive receptive field size of spinal 

dorsal horn neurons in 3-day old and 21-day old rats.  

(a.) Strychnine application did not significantly affect the brush-sensitive receptive field area size of 

P3 dorsal horn neurons (n=5), but (b.) significantly increased that of dorsal horn neurons in P21 rats 

(n=13; Wilcoxon’s signed rank test P<0.01). (c.) Table of neuronal subpopulations. Cells were 

characterised as facilitated or inhibited if activity was changed to a greater extent than 10% from 

baseline values, or unchanged. 
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Table 3. 1: Summary of the effect of 165 ng/g of strychnine on dorsal horn neuronal activity of P3 and P21 rats.  

Data is presented as mean and standard error of the mean of the percentage change of spiking per second from baseline. vFh t-2 = subthreshold von Frey hair, vFh t = threshold 

von Frey hair, vFh t+2 = suprathreshold von Frey hair. Statistical analysis: Wilcoxon’s signed rank test; NS= not significant *= P<0.05; **= P<0.01. 

 

 P3 P21 
stimulus % change from baseline N significance % change from baseline N significance 

Spontaneous activity 1 ± 24 9 NS 431 ± 195 14 ** 
       

Pinch -25 ± 16 9 NS 186 ± 88 14 ** 
       

vFh t-2 142 ± 74 14 NS 244 ± 103 29 ** 
       

vFh t 82 ± 92 14 NS 117 ± 38 29 ** 
       

vFh t+2 -52 ± 12 14 ** 55 ± 24 29 NS 
       

Brush -52 ± 14 9 * 120 ± 31 14 * 
       

Pinch receptive field area -49 ± 23 5 NS 130 ± 41 13 ** 
       

Brush receptive field area -48 ± 22 5 NS 238 ± 161 13 ** 
       
Maximum receptive field 
area -45 ± 19 5 NS 132 ± 48 13 * 
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3.5 Discussion 

 

The spinal cord serves as the first integrative point of primary afferent sensory 

information from the body in the central nervous system; sensory information 

entering the spinal cord from the periphery is transmitted to higher centres as well as 

relayed locally, where it can be modulated and controlled by both excitatory and 

inhibitory neurotransmission from local interneurons. The balance between 

excitation and inhibition is therefore crucial to maintaining a responsive and 

functional spinal circuit, both in terms of tonic activity and in response to afferent 

cutaneous sensory information. Previous studies have indicated that this balance is 

immature in the early postnatal period, leading to hyperexcitable reflexes and 

sensitivity to innocuous stimuli that are characteristic of young animals and humans 

(Fitzgerald, 1985, 1987a; Fitzgerald et al., 1988; Andrews & Fitzgerald, 1994; 

Jennings & Fitzgerald, 1996, 1998; Fitzgerald, 2005). 

 

Chapter Two illustrated a developmental change in the circuitry involved in 

glycinergic transmission over the first three postnatal weeks, but the physiological 

relevance of this remains unknown. In this study I aimed to examine to test the 

following hypotheses: (i) the protein expression shifts outlined in Chapter Two 

underlie a physiological change in the activity of glycine in the control of spinal 

sensory transduction in the first three weeks of life, and (ii) glycinergic control of 

dorsal horn processing of low threshold mechanical sensory information is absent in 

the first postnatal week. To test these I recorded from individual wide dynamic range 

neurons in the spinal dorsal horn of P3 and P21 rats in vivo in the presence of the 

glycine receptor antagonist strychnine. Strychnine was found to facilitate mature 

spinal dorsal horn neuron responses to noxious and innocuous stimuli and increase 

spontaneous activity, in agreement with previous findings (Yokota et al., 1979; 

Yaksh, 1989; Sherman & Loomis, 1994; Sivilotti & Woolf, 1994; Sherman & 

Loomis, 1996; Sorkin & Puig, 1996). However, glycinergic inhibition was found to 

be absent in the intact neonatal dorsal horn. Notably, strychnine inhibited brush-

evoked activity of P3 neurons implying glycine in the facilitation of low threshold 

mechanical sensory transduction in the early postnatal period. 
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3.5.1 Tonic glycinergic activity is not functional in the immature spinal 

dorsal horn  

 

Intrinsic tonic glycinergic transmission is known to modulate activity in the adult 

dorsal horn, as witnessed at both the behavioural and cellular level (Yaksh, 1989; 

Sivilotti & Woolf, 1994; Cronin et al., 2004) but whether tonic glycinergic control of 

neurons is present from birth has not been previously examined in the intact animal. 

Spontaneous firing of spinal dorsal horn neurons was monitored in the presence of 

strychnine in order to assess the role of glycine in tonic inhibition in the first and 

third weeks of postnatal life. Strychnine was found to have no effect on the 

spontaneous firing of immature dorsal horn neurons in vivo, in contrast to the five-

fold increase over baseline values observed at P21. Although the level of baseline 

spontaneous firing is lower than in adult (see Figure 3. 5 and Figure 3. 6) - making 

any small changes in tonic firing of immature neurons potentially difficult to 

observe, the results of this chapter are in agreement with whole-cell patch clamp 

study of spinal slices from newborn rats aged P0 – 14. The cited study demonstrated 

an absence of glycinergic mIPSCs early in the postnatal period, which increase in 

frequency with age (Baccei & Fitzgerald, 2004), suggesting that the lack of tonic 

glycinergic activity found in the present study is not merely due to low firing 

properties of the immature spinal sensory system.  

 

Work performed in motor and auditory systems have shown a clear shift from a 

primarily GABAA receptor mediated inhibitory tone at birth towards a greater role of 

glycinergic inhibition later in postnatal life and the late introduction of glycine-

receptor only synapses by the third week (Takahashi et al., 1992; Berki et al., 1995; 

Kotak et al., 1998; Baccei & Fitzgerald, 2004; Bremner et al., 2006; Rajalu et al., 

2009). A possible physiological reason for this switch has been revealed in in vitro 

whole cell patch-clamp studies in both cultured neurons and spinal slices. In early 

developmental period, both GABAergic and glycinergic currents have been shown to 

result in calcium influx in the early postnatal period allowing for Hebbian 

strengthening of synapses (Wu et al., 1992; Reichling et al., 1994; Wang et al., 1994; 

Gao & Ziskind-Conhaim, 1995; Serafini et al., 1995; Gao et al., 2001a). Even after 

birth when depolarisations are no longer excitatory (Baccei & Fitzgerald, 2004), the 

slow kinetics of depolarising GABAergic currents could allow for calcium influx and 
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further activity-dependent reinforcement of synaptic contacts in the first few days of 

life. By P7, GABAergic currents are inhibitory and hyperpolarising, but the slow 

kinetics of these currents would mean that, although effective, inhibition would be 

‘sluggish’. The appearance and increasing weight of importance of fast glycinergic 

inhibition later in development would then allow for fast inhibition of cutaneous 

afferent information in the dorsal horn and the fine-tuning of cutaneous responses 

seen in mature systems. 

 

3.5.2 Glycinergic inhibition of cutaneous sensory processing is absent in 

the neonatal spinal dorsal horn 

 

The role of glycine in transmission of evoked activity was examined using a range of 

natural mechanical stimuli to investigate the nature of its role in phasic evoked 

inhibition over the postnatal period. This ranged from noxious pinch, mechanical 

pressure evoked from von Frey hair application, and innocuous brush, in order to 

examine the role of glycinergic transmission in the processing of low threshold 

dynamic stimuli. 

 

3.5.2.1  Strychnine increases nociceptive-evoked dorsal horn neuronal 

activity in the mature dorsal horn 

 

Noxious pinch and suprathreshold von Frey hair application were used to examine 

the effects of glycinergic inhibition on the spinal processing of a suprathreshold 

stimulus applied to the cutaneous receptive field. As expected from previous studies, 

in the adult cell firing to noxious pinch was found to be significantly increased 

following glycine receptor antagonism (Yaksh, 1989), this did not however affect 

pinch-evoked activity of neonatal neurons implying glycinergic control of noxious 

stimuli is absent in the first week of life. Surprisingly, suprathreshold von Frey hairs 

did not reveal the same results: no significant change in firing to suprathreshold von 

Frey hair application from baseline was seen in mature neurons treated with 

strychnine, whilst it significantly decreased von Frey hair evoked action potential 

firing of immature neurons. The lack of significant effect on suprathreshold-evoked 
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firing in mature neurons is in agreement with recent findings by Miraucourt and 

colleagues (Miraucourt et al., 2009). However, the enhanced neonatal response to 

suprathreshold von Frey hair application is less evident given the lack of effect of 

strychnine on pinch-evoked activity. One possible explanation is that the pinch 

stimulus was not as reliable as that provided by a graded suprathreshold von Frey 

hair. Although forceps were adapted to minimise variability in the drive applied (see 

Methods), it is unclear whether this was enough to control the force applied onto the 

foot, resulting in the large error seen in the pinch responses. Alternatively, this could 

reveal a surprising glycinergic role in the transmission of pressure-stimuli in the 

early postnatal period. Further studies will have to be conducted with a more 

consistent stimulus, such as noxious heat or Randall Selitto tests, to understand the 

underpinnings of these findings and the role of glycine in the control of noxious 

sensory information at this early time point.  

 

3.5.2.2 Glycine is involved in the facilitation of innocuous brush-evoked 

activity in the neonate 

 

Strychnine significantly altered brush-evoked firing of both P21 and P3 neurons: 

whereas the number of brush-evoked spikes fired significantly increased following 

glycine receptor antagonism in mature neurons, this was found to significantly 

decrease activity to the same stimulus in immature animal. Strychnine-induced 

sensitivity to dynamic innocuous stimuli is well reported (Yaksh, 1989; Sivilotti & 

Woolf, 1994; Miraucourt et al., 2009), but the resulting decreased cellular activity at 

P3 implies an early life facilitatory action of glycine in the transmission of innocuous 

sensory information in the neonatal spinal dorsal horn. Early in development, 

GABAergic and glycinergic transmission result in depolarising potentials and 

calcium influx into the cell (Obata et al., 1978; Connor et al., 1987; Ben-Ari et al., 

1989; Ito & Cherubini, 1991), thought to be involved in increasing the activity of 

neurons in order to aid in the formation and strengthening of glycinergic synapses 

(Serafini et al., 1995; Kneussel & Betz, 2000a, b). A tempting conclusion for this 

finding could be that glycine is acting as an excitatory neurotransmitter at this age. 

This is however unlikely, as such excitation has not been seen to occur in whole-cell 

patch-clamp studies in neonatal spinal cord slices (Baccei & Fitzgerald, 2004), where 
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GABAA receptor-mediated depolarisations were never sufficient to produce action 

potentials in the early postnatal period. Early reports of excitatory depolarising 

GABAA- receptor mediated potentials in immature brain slices have also recently 

been shown to be the result of an artefact that occurs as a consequence of recording 

in artificial cerebrospinal fluid in which the high-energy requirements of neonatal 

neurons are not being adequately met (Holmgren et al., 2009; Rheims et al., 2009). 

From these results it would appear that although inhibition is functionally immature 

in the first week of postnatal development, GABAergic and glycinergic inputs are 

inhibitory from birth.  

 

Another explanation could be that glycine-mediated facilitation of innocuous stimuli, 

which would enhance Aβ fibre mediated activity in early life, is critical in the 

functional tuning of mature nociceptive networks. Indeed it has been shown by 

means of in vivo patch-clamp experiments that A fibre strength innocuous 

stimulation of the receptive field of a mature lamina II spinal neuron resulted in a 

barrage of both excitatory postsynaptic potentials (EPSPs) and inhibitory 

postsynaptic potentials (IPSPs) (Narikawa et al., 2000). These potentials lasted 

throughout the stimulus, whilst noxious stimulation (pinch) of the same receptive 

field resulted in an increase in EPSCs during the pinch but IPSCs at the onset and 

offset of the stimulus alone. This could suggest an inhibitory role in the tuning of 

non-noxious inputs, which may in turn play a role in the transmission of noxious 

information to superficial dorsal horn neurons in the mature systems. The critical role 

for innocuous touch-mediated tuning of noxious reflexes has also been investigated 

in the whole behaving animal. Key experiments investigating the tuning of a reflex 

tail flick response to noxious laser found that neonatal rats tended to move their tails 

erroneously towards the noxious stimulus. This behavioural response is observed 

until the second postnatal week when reflexes matured and the tail would move away 

from the harmful stimulus. Interestingly this was found to be dependent on low 

threshold tactile input but not noxious input, such that mature tuning was prevented 

by local anaesthetic administration over the first ten days of life, but not sped up by 

repeated noxious stimuli (Waldenstrom et al., 2003). The role of glycine could thus 

be to enhance innocuous stimuli in order to encourage tuning of reflex responses 

without the need for harmful C fibre strength stimuli. 
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3.5.3 Possible mechanisms underlying the developmental shift of 

glycinergic signalling 

 

Inefficient glycinergic inhibition described in this chapter could be the result of 

several changes: 1) reduced inhibitory neurotransmitter release; 2) reduced 

availability of inhibitory receptors; 3) imprecise termination of inhibitory terminals; 

4) reduced descending inhibitory control. 

 

1. Reduced glycinergic release in the developing dorsal horn  

Glycine has been shown to be present in the spinal cord from embryonic day 16-18 

(Berki et al., 1995; Allain et al., 2006), but may not be present at sufficient levels to 

activate postsynaptic glycine receptors in the early postnatal period. The lack of 

mIPSCs in the superficial dorsal horn of spinal slices indicates that although glycine 

is present and can be released, it is not being released at levels sufficiently high to 

activate postsynaptic receptors in the absence of action potentials (Baccei & 

Fitzgerald, 2004), which could be the result of immature glycinergic input into the 

dorsal horn at this age. The lack of GlyT2 in the superficial dorsal horn of neonatal 

spinal cord described in Chapter Two and its low levels of protein expression (Zafra 

et al., 1995b) could underlie immature neurotransmitter recycling resulting in 

suboptimal presynaptic glycine release for the activation of receptors. 

 

2. Reduced availability of glycinergic receptors  

Immunohistochemical studies performed in Chapter Two outlined the early presence 

of  subunit-containing receptors in the deep dorsal horn as well as sparse expression 

in more superficial laminae, but the functional effects of this developmental shift in 

expression has not been previously examined. Sciatic nerve stimulation of spinal 

slices at P0 resulted in both glycinergic and GABAergic IPSCs, although the 

majority seen were GABAergic in origin (Baccei & Fitzgerald, 2004). Interestingly, 

neurons that lacked glycine receptor-mediated spontaneous IPSCs responded to 

exogenous glycine application, indicating functional glycine receptors in 

postsynaptic membranes from birth. As discussed in the previous Chapter, it could be 

that these receptors are present but not yet located at the appropriate site for 

interaction with glycine. Indeed, the anchoring of glycine receptors to the 

postsynaptic site is reliant on the successful binding of the receptor to the auxiliary 
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protein gephyrin, the binding site for which is located on the β subunit of the glycine 

receptor (Kirsch & Betz, 1993; Meyer et al., 1995; Todd et al., 1995; Meier et al., 

2000). Although the β subunit does not undergo significant expression changes in 

postnatal development, the primary glycine receptor conformation in the early 

postnatal period is a homomeric α2 receptor, which lacks the β subunit and so does 

not possess the gephyrin binding site. This could underline an extrasynaptic location 

of glycine receptors, which would therefore only respond to spillover of glycine from 

synapses.  

 

3. Inefficient inhibitory control  

The dorsal horn is complex, involving disinhibitory circuits critical to the tight 

regulation of sensory information. Many glycinergic neurons arborise locally, 

leading to inhibitory control onto inhibitory interneurons within the superficial and 

deep dorsal horn in adult spinal networks (Todd & Sullivan, 1990; Labrakakis et al., 

2009). Within the first two weeks of life inhibition is highly disregulated and poorly 

organized; whereas inhibition in the adult spinal cord is local and tuned, the 

immature spinal cord may have a much wider spread of inhibition. The result of 

which could be a higher likelihood of ‘blanket’ inhibition, whereby glycine would be 

acting upon both excitatory and inhibitory interneurons in a non-specific fashion in 

the early postnatal period. This could in turn lead to a higher level of excitation as a 

result of un-tuned glycinergic inhibition acting upon inhibitory interneurons, which 

would release inhibition onto a target neuron leading to indirect glycinergic 

facilitation, such as was disclosed in this Chapter in response to innocuous brush.  

 

4. The influence of descending controls on spinal inhibitory networks.  

The role of descending signals from supraspinal centres is crucial in the tuning of 

spinal nociceptive reflexes and has also been shown to mediate the switch between 

GABAergic shunting and inhibition through KCC2 transporter expression in 

developing motor system (Jean-Xavier et al., 2006). Descending influences could 

also be involved in mediating the switch between primarily GABAergic to 

glycinergic inhibition in the dorsal horn by an activity-dependent strengthening of 

glycinergic synapses in the spinal cord. Indeed, supraspinal control over inhibitory 

neurotransmission has been shown in neonatal rats, where spinal administration of 

the GABAA receptor antagonist gabazine in a neonatal rats results in a paradoxical 
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inhibition of nociceptive behaviour to mechanical stimulation of the hindpaw, an 

effect that was completely reversed on spinalisation after which gabazine affected 

neonates in much the same way as it did adults (Hathway et al., 2006). This suggests 

a tonic descending facilitation onto spinal networks in the neonate that is absent in 

the adult. The nature of descending control on spinal dorsal horn activity will be 

dealt with in more detail in Chapter Four.  

 

3.6 Conclusion 

 
There are two main findings in this chapter. The first is that tonic glycinergic 

inhibition is absent in the neonatal spinal dorsal horn and is not involved in the 

inhibition of spontaneous activity until the third postnatal week. Secondly, glycine 

facilitates sensory transmission of innocuous brush in the first week of life. 

Interestingly, the response to noxious stimuli was modality dependent. While 

strychnine attenuated the neuronal response to suprathreshold von Frey hair 

application in the neonate, it did not alter action potential firing to pinch. This could 

indicate an early facilitatory role for glycinergic signalling in the fine tuning of 

innocuous sensory processing, which is only involved in nociceptive processing at a 

later stage in development. 
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4.1 Introduction 

 
The first unified theory of pain which acknowledged the influence of supraspinal 

centres was described by Melzack and Wall in 1965 in their description of the gate 

theory of pain (Melzack & Wall, 1965). The importance of supraspinal modulation 

of spinal nociceptive networks has since been widely reported and shown to arise 

from a number of brain regions (Basbaum & Fields, 1984; Besson & Chaouch, 1987; 

Fields et al., 2006; Heinricher et al., 2009), but research in the area has largely 

focussed on projections from the midbrain periaqueductal grey (PAG) and the 

brainstem region of the rostroventral medulla (RVM). Although the PAG is known to 

affect spinal neurons it sends few direct projections to the dorsal horn, instead the 

PAG primarily exerts its spinal effects via projections to the RVM (Gebhart et al., 

1983; Prieto et al., 1983; Sandkuhler & Gebhart, 1984; Chung et al., 1987). The 

RVM also receives direct afferent input from neurons in the superficial dorsal horn 

(Fields & Basbaum, 1978; Dubner & Bennett, 1983). Brainstem control of spinal 

nociceptive networks is therefore bidirectional, allowing effective regulation of 

spinal nociceptive activity. Importantly, descending control from the brainstem is 

biphasic and dependent upon electrical stimulus strength (or concentration of 

microinjected pharmacological intervention), as well as ongoing supraspinal activity; 

although early studies mainly reported the descending inhibitory actions of the 

brainstem, it is now widely accepted that projections from the same areas can also 

result in facilitation of nociceptive reflexes depending on stimulus strength or 

concentration of drug used (Zhuo & Gebhart, 1997). Descending facilitation can be 

evoked at low stimulus intensity (e.g. 2-20 µA in the above mentioned study) in the 

adult rat and this has been shown to be a major contributor in neuropathic and 

inflammatory pain states, where the equilibrium between excitation and inhibition 

appears to be lacking at the level of the spinal cord (Porreca et al., 2002; Ren & 

Dubner, 2002). 

 

Projections from the RVM terminate predominantly in laminae I, II and V (Basbaum 

et al., 1978; Basbaum & Fields, 1979; Ruda et al., 1981; Holstege & Kuypers, 1982), 

which are known to contain terminals of nociceptive Aδ and C fibres (Fields & 

Basbaum, 1978; Light & Perl, 1979; Light et al., 1979; Cervero & Iggo, 1980). 
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Unsurprisingly, descending inhibition of dorsal horn neurons appears to be selective, 

being strongest for deep dorsal horn cells that receive strong C fibre input and absent 

or facilitatory for cells that receive primarily Aδ fibre input (Hudson et al., 2000; 

McMullan & Lumb, 2006a; Heinricher et al., 2009), demonstrating a nociceptive-

specific role in the brainstem control of dorsal horn activity. 

4.2 Functional maturation of descending control 

 

Descending inhibitory controls have been shown to be absent at birth and slow to 

mature (Fitzgerald, 1991; Hathway et al., 2009). Although serotonergic descending 

fibres from the brainstem to the spinal cord have grown into the spinal grey matter by 

birth (Cabana & Martin, 1984; Rajaofetra et al., 1989), these do not reach their 

targets in the dorsal horn for three weeks (Bregman, 1987). Few studies have 

investigated the physiological function of these connections in the early postnatal 

period, early reports provided evidence for inefficient supraspinal inhibition of spinal 

neuronal activity until P10, which is not fully functional until a week thereafter 

(Fitzgerald & Koltzenburg, 1986; Boucher et al., 1998). These findings strongly 

suggest that although the pathways are present, descending inhibition necessary for 

the development of fine tuned responses is not fully functional at this point. 

Recently, an electromyographic study examined influence of descending RVM 

control on mechanical withdrawal magnitudes of intact anaesthetised rats over 

postnatal development (Hathway et al., 2009). Results showed that not only is 

descending inhibition not functional until P30, descending control from the RVM is 

in fact facilitatory until this time, regardless of stimulus strength used, suggestive of 

a primarily facilitatory role of supraspinal sites onto immature spinal systems. 

Electromyography is of particular use in quantifying a behavioural response in a 

lightly anaesthetised preparation, but a complicating factor in the analysis of these 

results is whether descending control is affecting the motor component of the reflex 

or whether this control is affecting the sensory nociceptive-specific component of 

this withdrawal, both of which are tightly linked.  

 

It has recently been reported that descending inhibition in mature rats selectively 

dampens activity in wide dynamic range neurons with strong C fibre input, whereas 

Aδ mediated input is facilitated (McMullan & Lumb, 2006a; McMullan & Lumb, 
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2006b; Koutsikou et al., 2007; Parry et al., 2008; Waters & Lumb, 2008; Heinricher 

et al., 2009). This is particularly noteworthy, as C fibre inputs to the dorsal horn are 

known to be weak at birth and slowly strengthen over the next three to four weeks as 

A fibre input withdraws (Beggs et al., 2002; Baccei et al., 2003; Fitzgerald, 2005). In 

fact, this occurs much over the same timeline as the development of descending 

inhibition (Fitzgerald & Koltzenburg, 1986). Early studies have suggested that 

postnatal onset of descending inhibition is influenced by C fibre afferent input into 

the spinal dorsal horn as ablation of C fibres by capsaicin treatment in neonates 

prevents the maturation of descending inhibitory control later in life (Cervero & 

Plenderleith, 1985; Zhuo & Gebhart, 1994). It is therefore plausible that the weak C 

fibre inputs in the dorsal horn cannot excite dorsal horn neurons to a large enough 

degree to recruit a negative feedback loop from the brainstem onto wide dynamic 

range neurons in the dorsal horn. What is not yet known is whether supraspinal 

inhibition is selective for C fibre input-rich neurons from the first appearance of 

descending inhibition at P28 or whether C fibre evoked activity is in fact facilitated 

by supraspinal sites at this age. 
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4.3 Hypothesis 

 

The focus of many developmental studies has been on the lack of descending 

inhibition from the brainstem, but a recent study has suggested that immature 

brainstem-spinal cord connectivity may in fact lead to an imbalance between 

descending inhibition and facilitation of spinal sensory networks (Hathway et al., 

2006). This work suggests that although descending inhibition is possible from P10 

(Fitzgerald & Koltzenburg, 1986), it is not strong enough to outweigh descending 

facilitation of behaviour until adulthood (van Praag & Frenk, 1991; Hathway et al., 

2009). However, whether this effect is purely nociceptive, or alternatively whether 

this is only observed at the motor output level is still unclear. I hypothesise that the 

rostroventral medulla (RVM) exerts a primarily facilitatory role onto spinal dorsal 

horn neuron activity until the third week of postnatal life after which time the RVM 

begins to show biphasic control over dorsal horn neurons. Secondly, I suggest that C-

fibre-specific modulation from the brainstem is absent in the first three postnatal 

weeks and only becomes functional after P21, at a time when C-fibre inputs into the 

dorsal horn have strengthened and A fibres have withdrawn from the superficial 

laminae. To test these hypotheses, I performed extracellular recordings of individual 

spinal dorsal horn neurons in an anaesthetised in vivo preparation of 21 day old and 

40 day old rats in the presence of RVM stimulation at a range of stimulus intensities. 

The effect of descending control on both spontaneous activity and that of 

nociceptive-evoked dorsal horn firing was examined using a range von Frey hairs 

and electrical stimulation of the cutaneous receptive field. 

 

Some of these studies have previously been published elsewhere (Hathway et al., 

2009). 
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4.4 Methods 

4.4.1 In vivo extracellular recordings 

 

Sprague–Dawley rats of both sexes aged postnatal day 21 (P21) and 40 (P40) were 

used in these studies. Animals were allowed free access to water and food and were 

housed in 12-hour light/dark cycles. P21 and P40 rats were caged according to sex in 

cages of six littermates. All experiments were conducted in accordance with the 

United Kingdom Animals (Scientific Procedures) Act of 1986. 

 

Rats were anaesthetised with isoflurane to achieve areflexia (induction at 3.5% 

isoflurane in medical O2) and tracheotomised, after which the cannula was sutured in 

place. The animal was then mounted in a stereotaxic frame (Kopf Instruments, CA) 

and artificially ventilated using a ventilator pump (Small animal ventilator, model 

687, Harvard Apparatus Inc.) under constant isoflurane-anaesthesia (maintenance of 

1.8% in medical O2, Univentor Anaesthesia Unit 400, Royem Scientific, UK) at 79 

breaths per minute. The air-flow was adjusted according to the animal’s size, blood 

perfusion and heart rate (target of 300-450 beats per minute), which was being 

monitored via electrocardiogram. A homeothermic blanket with probe sensor, and 

heating lamp were used to maintain body temperature at physiological levels (36ºC). 

Animals were mounted via hip and ear bars, and a laminectomy was performed to 

expose the lumbar spinal cord, the vertebral column secured with a clamp to the 

thoracic spine and the dura and pia mater removed. A subcutaneous injection of 

saline was given to each animal post laminectomy to maintain hydration and a thin 

film of mineral oil was used to cover the exposed spinal cord to prevent heat loss and 

excessive drying of the cord. Once stabilised, a 10 M tipped glass-coated tungsten 

microelectrode was lowered onto the surface of the cord under microscopic vision, 

with a reference electrode inserted into the muscle near the recording area. Neuronal 

activity was passed through a x1 headstage amplifier and a further x 5k differential 

amplifier (NeuroLog, Digitmer, UK). This signal was passed through low and high 

pass filters, set at 1 kHz and 10 kHz respectively and onto a spike trigger, which is 

set manually to produce output TTL pulses for spikes above a particular voltage, an 

audio amplifier as well as through an oscilloscope (TDS 2012 digital storage 
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oscilloscope, Tektronix). Information was also fed into a PowerLab system (4SP, AD 

Instruments, UK), which was connected to a computer in order to allow recording 

and analysis of data using Chart 5 software (Chart 5 version 5.5.5, AD Instruments, 

UK).  

 

In order to isolate individual neurons in the spinal cord, the microelectrode was 

lowered through the cord in 2- or 10 µm steps by a microdrive (Epson HX-20, Seiko 

Epson Co. powered by Digitimer SCAT-01 microelectrode stepper system, Digitmer, 

UK). Stroking of the plantar skin of the hind paw was used as a search stimulus and 

cells were selected once a reliable action potential spike amplitude and shape could 

be distinguished from background noise levels. Wide dynamic range neurons were 

selected such that each neuron tested responded to light touch and to noxious pinch 

applied to the centre of the receptive field.  

 

4.4.2 RVM stimulation 

 

Once animals were anaesthetized, tracheotomised and mounted on a stereotaxic 

frame (Kopf Instruments, Tujunga, California, USA), as mentioned above, the skull 

was exposed and bregma located. Stereotaxic co-ordinates for RVM were calculated 

(adult, lateral 0 mm, antero-posterior 9.7 mm, dorso-ventral −10 mm; postnatal day 

21 (P21), lateral 0 mm, antero-posterior 9.2 mm, dorso-ventral −10.0 mm (Hathway 

et al., 2009)). A concentric bipolar stimulating electrode was lowered into the RVM 

using the co-ordinates above. Once an individual cell was isolated in the dorsal horn, 

as outlined above, and baseline responses recorded, stimulation was repeated in 

conjunction with electrical stimulation of the RVM, which lasted for the duration of 

each test stimulus. This lasted for around 2 minutes per stimulus strength with a 1 

minute break between RVM stimuli to allow for afterdischarge firing (see Figure 4. 1 

and  

Figure 4. 2). Trains of stimuli of 500 μs pulse width were applied at 10 Hz, at 

amplitudes ranging from 5 to 200 μA using a stimulus isolator (Neurolog, Digitimer, 

Welwyn Garden City, UK). Stimulus parameters were chosen as these have been 
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shown to evoked reliable descending inhibition and excitation in previously 

published work (Zhuo & Gebhart, 1997; Hathway et al., 2009). 

 

 

Bipolar stimulating
electrode

Wide dynamic range neuron

von Frey hair application

Bipolar stimulating
electrode

Wide dynamic range neuron

von Frey hair application  
 
Figure 4. 1: Schematic of in vivo preparation in which RVM stimulation can be performed 

whilst recording extracellularly from individual dorsal horn neurons.  

See text for details. Modified from (Keller et al., 2007). 

 

 

 
Figure 4. 2: Schematic of the von Frey hair/RVM stimulation protocol.  

vFh: von Frey hair; t-2: subthreshold von Frey hair; t: threshold von Frey hair; t+2: suprathreshold 

von Frey hair; sa: spontaneous activity (1 minute); 10 μA/100 μA RVM: stimulation intensity of the 

RVM. 

 

Spontaneous activity of the cell was recorded over 60 seconds and von Frey Hair 

threshold was established as the lowest hair needed to reliably evoke spikes (see 

Figure 3. 3). Neuronal firing to three hairs was recorded: threshold von Frey hair, 

subthreshold: two hairs below threshold, and suprathreshold: two hairs above the 
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threshold. Von Frey hairs were each applied three times in succession and the mean 

number of spikes evoked to each stimulus was then used for analysis. Neuronal 

activity was defined for both age groups as being facilitated or inhibited if activity 

during stimulation increased or decreased by more than 10% of the baseline value. 

 

All recordings were fed into Chart software (Chart 5 version 5.5.5, AD Instruments, 

Chalgrove, UK), and data was analysed in GraphPad Prism 3.0 (GraphPad Software, 

San Diego, CA, USA, www.graphpad.com).  

 

Statistical analysis was performed using GraphPad Prism 3.0 (GraphPad Software, 

San Diego, CA, USA, www.graphpad.com); data is presented as mean  standard 

error of the mean (s.e.m.) unless otherwise stated. Wilcoxon’s non-parametric signed 

rank tests were used to test for significance between treatments at a given age. One-

way analysis of variance (ANOVA) was used to compare between ages followed by 

Dunnett’s post hoc multiple comparisons test for significant values. For all data a 

95% confidence interval was used as a measure of statistical significance. 

 

Animals were killed with an overdose of sodium pentobarbitone (i.p.) at the end of 

the experiment and the accuracy of stimulating electrode placement assessed. 

 

4.4.3 Hindpaw electrical stimulation in P21 and P40 rats 

 

Compound action potential recordings were performed in P21 and P40 rats in order 

to establish which afferent groups were excited by peripheral electrical stimulation of 

the receptive field at the two ages tested. Rats were anaesthetised with isoflurane 

(induction at 3.5% isoflurane in medical O2) and tracheotomised, mounted and 

monitored as outlined above. The hindlimb was suspended at the ankle and sciatic 

nerve exposed and isolated by means of a thin film of plastic at the level of the thigh. 

The nerve was gently pried apart using finely pulled glass forceps and mounted onto 

silver wire for recording through the Neurolog system as mentioned above. Filters 

were opened to low frequency direct current setting and 150 Hz high frequency. Two 

insect pins were inserted into the ankle 5 mm apart, and a current delivered via a 

stimulus isolator box (NL800, NeuroLog), which was connected to the pins using 
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crocodile clips. Trains of 1 mA, 5 mA and 10 mA at 50 sec delay width and 500 

sec delay width were used to target A, and C fibres respectively. 

4.4.3.1 Experimental protocol 

 

Pilot experiments involving electrical stimulation of the cutaneous receptive field of 

the hindpaw were used to target A and C-fibres whilst stimulating descending 

controls in 6 P40 neurons and 9 P21 neurons in order to better dissect the specificity 

of descending controls on afferent-evoked activity of dorsal horn neurons throughout 

the postnatal period.  

 

Laminectomy and stereotaxic placement of the bipolar concentric electrode into the 

RVM was performed as described above and an individual neuron isolated. Two 

insect pins were inserted into the hindpaw receptive field of the isolated neuron 2 

mm apart, and a current delivered via a stimulus isolator box (NL800, NeuroLog) 

which was connected to the pins using crocodile clips. Baseline responses to a train 

of ten 10 mA impulses at 50 sec delay width (A fibre-targeting electrical stimulus) 

and 500 sec delay width (C fibre-targeting electrical stimulus) at 1 Hz were 

recorded using software mentioned previously. Stimulus strength was chosen in 

order to reliably target each afferent fibre at both ages. Sets of peripheral stimulation 

were separated by one-minute rest periods to allow for afterdischarge firing. Each 

stimulus was repeated with and without simultaneous 10 A or 100 A RVM 

stimulation in order to tease out the effect of descending control on different primary 

afferent inputs at the level of individual neurons as outlined in Figure 4. 3. 

 

 

 
Figure 4. 3: Schematic of experimental protocol of electrical hindpaw/RVM stimulation 

experiments.  
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sa: spontaneous activity (1 minute); 10 μA/100 μA RVM: stimulation intensity of the RVM; 10x A: 

ten repeats of A-fibre strength electrical stimuli; 10x C: ten repeats of C-fibre strength electrical 

stimuli. See Methods text for details. 

Analysis of neuronal responses was completed as follows: A fibre-mediated cellular 

spiking was determined as spikes generated within the first 50 milliseconds of the 

foot stimulus. C fibre evoked spiking was determined as action potential firing 50-

130 milliseconds after the stimulus. An average of the number of action potentials 

fired in response to each of the ten stimuli was used as a measure of the neuronal 

response. Stimuli were repeated at the end of the experiment in the absence of RVM 

stimulation and responses not found to be significantly different from baseline. 

 

For a single cell, neuronal responses to each of the ten individual C fibre strength 

stimuli was plotted in an accumulative plot in order to identify trends in cellular 

excitability. Number of spikes at stimulus ten therefore represents all spikes fired up 

to, and including, that point, i.e. total number of action potentials fired to all ten 

stimuli. 

 

Statistical analysis was performed using GraphPad Prism 3.0 (GraphPad Software, 

San Diego, CA, USA, www.graphpad.com); data is presented as mean  standard 

error of the mean (s.e.m.) unless otherwise stated. Wilcoxon’s non-parametric signed 

rank tests were used to test for significance between treatments at a given age. One-

way analysis of variance (ANOVA) was used to compare between ages followed by 

Dunnett’s post hoc multiple comparisons test for significant values. For all data a 

95% confidence interval was used as a measure of statistical significance. 

 

Animals were killed with an overdose of sodium pentobarbitone (i.p.) at the end of 

the experiment, and the accuracy of stimulating electrode placement assessed. 
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4.5 Results 

 

4.5.1 Electrophysiological properties of recorded cells 

 
 

4.5.1.1 Recording depths 

 

A total of 39 dorsal horn neurons from P21 rats, and 22 neurons from P40 rats were 

used for this group of experiments. Mean recording depths, as measured from the 

surface of the spinal white matter, were 340.4  27.6 m for P21 neurons, which was 

not significantly different from recording depths of P40 neurons (mean depth 266.73 

 26.0 m; Figure 4. 4). As outlined in NeuN immunohistochemical studies in 

Chapter Two, spinal cord size is comparable between the two ages (Figure 2.2). 

 

 
Figure 4. 4: Depths of recorded spinal dorsal horn cells for RVM stimulation experiments.  

P21 (n= 39); P40 (n= 22). 

 

4.5.1.2 Mechanical thresholds 

 
Mechanical threshold was assessed using von Frey hair filaments applied to the 

cutaneous receptive field. The lowest force hair needed to evoke action potential 

firing was denoted the ‘threshold hair’. Cutaneous mechanical thresholds did not 
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differ significantly between ages (P21: 2.26  0.39 g (n = 30) versus P40: 3.74  0.78 

g (n = 15); Figure 4. 5a).  

4.5.1.3 Baseline spontaneous activity 

 

Baseline spontaneous firing properties of the recorded neurons were recorded over a 

period of 1 minute. Spontaneous firing of P21 neurons was 5.99  3.15 Hz (n = 24), 

whilst that of P40 was 0.18  0.04 Hz (n = 15). Although the significant variability in 

baseline firing properties of P21 neurons meant that the mean was heavily skewed; 

no significant difference in spontaneous activity was found between ages (Figure 4. 

5b). 

 

 

 
Figure 4. 5: Baseline properties of recorded cells.  

(a.) Mechanical thresholds (P21: n= 17, P40: n = 13), and (b.) spontaneous activity (P21 : n = 24, 

P40 : n = 15) were not significantly different between P21 (blue) and P40 (purple) cells.  

 

4.5.2 The effect of graded RVM stimulation on spontaneous activity of 

dorsal horn neurons from P21 and P40 rats. 

 

Spontaneous activity of P21 and P40 spinal dorsal horn neurons was recorded over 

60 seconds at baseline and then following 5, 10, 20, 50, 100 and 200 A RVM 

stimulation.   

 

Spontaneous activity during 10 A and 100 A electrical stimulation of the RVM 

was compared to baseline results as these stimulus strengths were shown to reliably 
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produce descending facilitation and inhibition respectively in the adult rat (Hathway 

et al., 2009). RVM stimulation significantly increased spontaneous activity of P21 

dorsal horn neurons (one way ANOVA over baseline, 10 A and 100 A values, P= 

0.011 Figure 4. 6a and b) but did not affect spontaneous activity at P40 (Figure 4. 6a 

and c; two way ANOVA comparing age and RVM stimulus, P< 0.0001). Baseline 

values of P21 neurons increased over two fold from mean 1.47  0.72 spikes/second 

to 3.81  0.94 spikes/second during 10 A RVM stimulation (Wilcoxon's matched 

pairs signed rank test between baseline and 10 A stimulation, P= 0.012) but not 

during 100A RVM stimulation (100 µA stimulation mean spontaneous activity: 

2.34  0.56 Hz). RVM stimulation did not have any significant influence on 

spontaneous firing of P40 mature neurons at either RVM stimulus intensity (baseline 

firing 0.179  0.036 Hz; 10 A RVM stimulation: 1.183  0.53 spikes/second; 100 

A stimulation: 0.106  0.04 spikes/second; Figure 4. 6a and c).  

 

For further analysis of the effect of RVM stimulation on overall populations effects, 

cells were classified as excited, inhibited or unaffected (see Methods). Both 10 A 

and 100 A RVM stimulation amplitudes resulted in excitation of 60% of recorded 

P21 cells (16/27). Conversely, the response of P40 cells was heterogeneous at 10 A, 

and primarily inhibited at 100 A RVM stimulation (11 neurons out of 15 inhibited). 

RVM stimulation was therefore found to have significantly different effect upon the 

population responses of P21 and P40 neurons (χ2 analysis between P21 and P40 cell 

populations at 100 µA, P= 0.0014).                    
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Figure 4. 6: The effect of graded RVM stimulation on spontaneous activity of spinal dorsal horn 

neurons of P21 and P40 rats.   

(a.) Spontaneous activity of P21 dorsal horn neurons (n=28) in response to a range of RVM 

stimulation intensities was significantly different to that of P40 neurons (n=15; two way ANOVA, 

P<0.0001). (b) Activity of P21 neurons significantly increased following RVM stimulation at 100 A 

(P<0.05) but was not significantly affected at lower intensity stimulation. (b.) Spontaneous activity of 

P40 neurons was unaffected by either 10 A or 100 A RVM stimulation as compared to baseline 

values. Population response of P21 and P40 neurons to 100 µA RVM stimulation was significantly 

different (χ2 analysis, P<0.01). 

 

4.5.3 The effect of RVM stimulation on pooled dorsal horn population 

response to graded von Frey hair stimulation of the cutaneous 

receptive field. 

 

Responses to subthreshold, threshold and suprathreshold von Frey hairs on the 

cutaneous receptive field were investigated to examine the nature of descending 

facilitation and inhibition on cutaneous sensory processing over the late postnatal 

period. A summary of these results can be found in Figure 4.7 and Figure 4. 11. 
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Figure 4. 7: The effect of graded RVM stimulation on the response of P21 and P40 dorsal horn 

neurons to subthreshold, threshold and suprathreshold von Frey hair application to the 

cutaneous receptive field.  

The response of (a.) P21 (n= 30) and (b.) P40 dorsal horn neurons (n= 15) to subthreshold von Frey 

hair application to the receptive field in the presence of 10A and 100A RVM stimulation.  

 

4.5.3.1 Subthreshold von Frey hair 

 

It could be argued that a cell which was excited by a subthreshold von Frey hair had 

an effectively lowered threshold in response to RVM stimulation, which could be 

misleading when analysing changes in neuronal sensitivity. The data here was 

analysed in this way in order to give an overall picture of a shift in excitability of 

dorsal horn neurons.  

 

Subthreshold von Frey hair stimulation continued to evoke little or no firing of P21 

neurons in the presence of RVM electrical stimulation (mean baseline firing: 1.16  

0.64 spikes/second; 10 A: 1.14  0.39 spikes/second; 100 A: 1.64  0.6 

spikes/second; Figure 4. 7a) and subpopulation response to both 10 µA and 100 µA 

RVM stimulation was heterogeneous (Figure 4. 8).  
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Figure 4. 8: Subpopulations cellular response to subthreshold von Frey hair application.  

Cells were characterised as facilitated or inhibited if activity was changed to a greater extent than 10% 

from baseline values, or unchanged. Response of subthreshold-evoked activity of P21 neurons was 

heterogeneous at all RVM intensities tested, but 100µA RVM stimulation resulted in the inhibition of 

66% of P40 neurons. 

 

In contrast, although no significant change in subthreshold-evoked activity of P40 

neurons was observed at low intensity 10 A RVM stimulation (mean baseline 

subthreshold von Frey hair evoked activity 0.55  0.12 spikes/second to 3.17  1.24 

spikes/second with 10 A RVM stimulation; Figure 4. 7b), activity was significantly 

decreased at 100 A stimulation by a mean percentage of 38% (mean firing of 0.24  

0.09 spikes/second with 100 A stimulation; Wilcoxon’s test between baseline and 

100 A stimulation value, P= 0.0398) indicating a possible increase in threshold 

(Figure 4. 8).  
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4.5.3.2 Threshold von Frey hair 

 

 
Figure 4. 9: Subpopulations cellular response to threshold von Frey hair application.  

2 analysis reveals significant differences between neuronal responses of P21 and P40 cells to 

threshold von Frey hair application and 100 A stimulation (P< 0.05). Cells were characterised as 

facilitated or inhibited if activity was changed to a greater extent than 10% from baseline values, or 

unchanged.  

  

Threshold-evoked activity of P21 neurons was not significantly changed from 

baseline with either 10 A or 100 A RVM stimulation (baseline 2.64  0.8 

spikes/second; 10 A: 2.4  0.47 spikes/second; 100 A: 3.25  0.92 spikes/second; 

Figure 4. 7a) and both intensities resulted in highly heterogeneous neuronal 

responses (Figure 4. 9). 

 

However, P40 neuronal response to threshold von Frey hair application to the 

receptive field significantly decreased during 100 A RVM stimulation, with three 

cells ceasing to fire to the stimulus altogether (0.92  0.21 spikes/second at baseline 

to 0.35  0.12 spikes/second following 100 A stimulation; Wilcoxon’s test, P= 

0.0067; Figure 4. 7b). 2 analysis reveals significant differences between neuronal 
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responses of P21 and P40 cells to threshold von Frey hair application and 100 A 

stimulation (2: P= 0.0168). This was not found to be the case following 10 A low 

intensity RVM stimulation, which was unchanged from baseline, again seemingly 

due to high variance in data (3.91  1.42 spikes/second; Figure 4. 9).  

 

4.5.3.3 Suprathreshold von Frey hair 

 

 
Figure 4. 10: Subpopulations cellular response to suprathreshold von Frey hair application.  

Cells were characterised as facilitated or inhibited if activity was changed to a greater extent than 10% 

from baseline values, or unchanged. Response to suprathreshold von Frey hair application was highly 

heterogeneous, although 77% of P40 neurons had inhibited response at 100µA RVM stimulation. 

 

P21 neuronal firing to suprathreshold von Frey hair application was unaffected by 

RVM stimulation at either 10 A or 100 A RVM electrical stimulation (baseline: 

4.71  0.96 spikes/second; 10 A : 4.33  0.82 spikes/second ; 100 A : 4.93  1.1 

spikes/second ; Figure 4. 7a and Figure 4. 10) but P40 evoked activity was 

significantly decreased by 100 A RVM stimulation (baseline : 2.21  0.63 

spikes/second to 0.91  0.26 spikes/second in the presence of 100 A stimulation ; 
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Wilcoxon’s test, P= 0.0134 ; Figure 4. 7b). Again, the tendency at 10 A stimulation 

was towards facilitation of von Frey-evoked firing (4.41  1.39 spikes/second at 10 

µA stimulation versus baseline of 2.21  0.63 spikes/second) but the equal 

distribution of excited and inhibited cells resulted in high variability (6/15 facilitated 

and 7/15 inhibited; Figure 4. 10).  

 

 

 
Figure 4. 11: Summary of P21 and P40 dorsal horn responses to von Frey hair application with 

RVM stimulation represented as percentage change in spikes per second from baseline.  

(a.) P21 neuronal firing to subthreshold, threshold or suprathreshold von Frey hair application to the 

receptive field was not affected by RVM stimulation (n= 30). (b.) P40 neuronal response to both 

threshold and suprathreshold von Frey hair application was significantly decreased by 100 A RVM 

stimulation (n= 15). 

 

4.5.4 The effect of RVM stimulation on overall cutaneous evoked activity 

in P21 and P40 dorsal horn neurons 

 

The influence of RVM stimulation on cutaneous evoked activity was examined by 

averaging responses of P21 and P40 neurons to subthreshold, threshold and 

suprathreshold von Frey hair application in order to provide a mean response to 

graded mechanical stimulation of the cutaneous receptive field and observe patterns 

of activity. One data point therefore represents a mean of cellular responses to all 

three von Frey hairs. P40 von Frey hair-evoked neuronal responses to RVM 
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stimulation are biphasic, low intensity stimulation elicits an increase in neuronal 

firing, whilst higher intensity stimulation inhibits this activity (Figure 4. 12a). The 

activity of P21 neurons was not significantly altered by RVM stimulation but 

displayed a trend towards full facilitation at all stimulation intensities.  

 

The populations of cells differed markedly between age groups (Figure 4. 12b and 

d: comparing cellular response of P21 and P40 cells to vFh application during 10A 

RVM stimulation; 2 analysis, P<0.0001; Figure 4. 12c and e: comparing P21 and 

P40 cellular response to vFh application during 100A RVM stimulation; 2 

analysis, P<0.0001). P21 neurons exhibited a much more heterogeneous response to 

RVM stimulation as compared to that of P40 neurons: both at 10 A and 100 A 

RVM stimulation there were an approximately equal number of excited and inhibited 

P21 neurons (10 A: 16/30 cells facilitated, 12/30 inhibited; 100 A: 15/30 cells 

facilitated, 11/30 inhibited), whereas at P40, 100 A RVM stimulation inhibited 80% 

of all cells tested (12/15). 

 

4.5.5 The effect of RVM stimulation on dorsal horn subpopulation 

response to graded von Frey hair stimulation of the cutaneous 

receptive field 

 

The marked differences in cellular subpopulation responses observed raised the 

possibility that although when grouped P21 neurons did not appear to be affected by 

RVM stimulation, evoked firing of individual subpopulations was being significantly 

altered. The subpopulations of P21 neurons seen in Figure 4. 12 at 100 µA RVM 

stimulation were therefore used to plot out the effects of RVM stimulation upon 

subthreshold, threshold and suprathreshold von Frey hair-evoked activity. The 

subpopulations at 100 µA stimulation intensity were chosen as this stimulus intensity 

resulted in the most marked response in P40 cells.  
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Figure 4. 12: The effect of graded RVM stimulation on von Frey hair-evoked activity of P21 and 

P40 rat dorsal horn neurons.  

(a.) A total response of von Frey hair-evoked action potential firing in response to RVM stimulation 

elicited a biphasic response in P40 rat neurons (n=15; purple line) but a monophasic response in P21 

neurons (n=30; blue line), where all stimulus intensities evoked an increase in firing compared to 

baseline results, response was significantly different between ages (two way ANOVA, P<0.05). (b. 

through e.) Scatter plots of populations of (b. and c.) P21 and (d. and e.) P40 neurons grouped as a 

function of percentage change in von Frey hair evoked firing at 10A and 100A RVM stimulation 

intensities from baseline firing values. Cells were characterised as facilitated or inhibited if activity 

was changed to a greater extent than 10% from baseline values, or unchanged. 2 analysis of the 

subpopulations of cells at each group revealed highly significant differences in the distribution of cells 

at these ages at both (b. and d.) 10A and (c. and e.) 100A strength RVM stimulation (P<0.0001).  

 

Cells characterised as excited had facilitated responses to both threshold and 

suprathreshold von Frey hair application at 100 A RVM stimulation (threshold von 

Frey hair: baseline 2.7  1.56 spikes/second to 5.48  1.65 spikes/second at 100 A 

stimulation; Wilcoxon’s test, P= 0.0012; suprathreshold: baseline: 1.49  1.28 

spikes/second to 7.56  1.87 spikes/second; Wilcoxon’s test, P= 0.004; Figure 4. 13). 
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Conversely, cells characterised as inhibited had lower responses at 100 µA to both 

threshold (2.96  1.31 spikes/second at baseline to 1.16  0.31 spikes/second at 100 

A; Wilcoxon’s test, P= 0.0161; Figure 4. 13) and suprathreshold von Frey hair 

applications (baseline: 6.38  1.6 spikes/second to 1.78  0.53 spikes/second in the 

presence of 100 A RVM stimulation; Wilcoxon’s test, P= 0.001).  

 

Interestingly only suprathreshold von Frey hair-evoked firing of inhibited cells was 

significantly affected by 10µA stimulation of the RVM, and firing to subthreshold 

von Frey hairs was not significantly affected by either intensity in excited or 

inhibited cells. One-way ANOVA analysis revealed that RVM stimulation intensity 

had a significant effect of both threshold and suprathreshold von Frey hair evoked 

firing of P21 neurons classified as excited (threshold: one-way ANOVA, P= 0.0018; 

suprathreshold: one-way ANOVA, P= 0.0061), whereas only firing to suprathreshold 

von Frey hair application was significantly affected by RVM stimulation in inhibited 

cells (suprathreshold: one-way ANOVA, P= 0.0023).  

 

 
 

Figure 4. 13: The effect of 10 µA and 100 µA RVM stimulation on von Frey hair-evoked firing 

of two separate P21 dorsal horn neuron subpopulations.  

(a.) Cells characterised as excited (n= 15), had facilitated responses to threshold and suprathreshold 

von Frey hairs at 100 µA RVM stimulation. (b.) Cell characterised as inhibited (n= 12) had 

significantly inhibited responses to both threshold and suprathreshold von Frey hair applications. 

Wilcoxon’s t-test: *= P< 0.05, **= P<0.01, ***= P<0.0001. 
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4.5.6 The effect of graded RVM stimulation on P21 and P40 dorsal horn 

neuronal responses to A and C-fibre strength peripheral 

stimulation 

 

In a pilot study, 6 dorsal horn neurons with both A and C fibre evoked input were 

recorded at P40 and compared to 9 dorsal horn neurons with A and C fibre input at 

P21. The effect of this selective fibre-evoked activity was then assessed in the 

presence of RVM stimulation. 

 

A and C-fibre evoked compound action potential recordings could be performed 

from dorsal roots to establish that both P21 and P40 (Figure 4. 14). A fibre and C-

fibre thresholds were 4.0 mA and 7.0 mA respectively at both ages. A suprathreshold 

stimulus of 10 mA was used in order to reliably recruit both afferents at each 

stimulus and in order to readily compare neurons of both age groups. 

 

 

 
Figure 4. 14: Compound action potential recordings from P21 and P40 dorsal roots.  

Potentials were recorded from (a.) P21 and (b.) P40 dorsal roots in response to 10 mA electrical 

stimulation of the cutaneous receptive field at 500 µsec pulse width. A and C-fibre evoked potentials 

can be evoked at both ages. 

 

When cells from each age were pooled, no significant effect of RVM stimulation 

could be detected upon either A or C fibre evoked responses at either age: P21: A 

fibre evoked spiking baseline: 13.98  1.85 spikes; 10 A: 13.93 spikes  1.96; 100 

A: 13.5  1.88 spikes (Figure 4. 15a); C fibre evoked firing baseline: 3.84  1.0 

spikes; 10 A: 3.9  1.13 spikes; 100 A: 4.45  1.2 spikes (Figure 4. 15b); P40: A 
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fibre firing baseline: 12.2  2.63 spikes; 10 A RVM stimulation: 12.3  2.85 spikes; 

100 A: 12.3  2.33 spikes (Figure 4. 15c); C-fibre evoked activity: baseline 7.8  

2.67 spikes ; 10 A : 8.2  3.05 spikes ; 100 A : 8.32  2.45 spikes (Figure 4. 15d). 

 

However, upon plotting individual cell responses to the ten consecutive C fibre 

stimuli, it was noted that only 1/9 P21 cells displayed any sign of wind-up, which is a 

well-described characteristic of wide dynamic range neurons (Mendell, 1984). 

Analysis of this cell showed a clear effect of RVM stimulation on wind-up: both 10 

µA and 100 µA RVM stimulation intensities appear to facilitate C fibre mediated 

wind-up (Figure 4.16), suggesting that descending control from the brainstem may 

have a role in modulating the excitability of wide dynamic range neurons to C fibre-

mediated input. 

 

 

 
Figure 4. 15: Low and high intensity RVM stimulation on A- and C-fibre strength stimulation of 

the cutaneous receptive field of P21 and P40 dorsal horn neurons.  

RVM stimulation did not significantly affect P21 (n=9) or P40 (n=6) neuronal firing to (a. and c.) A-

fibre, or (b. and d.) C-fibre targeted electrical stimulation of the cutaneous receptive field. 
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Figure 4. 16: 10 µA and 100 µA RVM stimulation on C fibre wind-up of a single P21 dorsal horn 

neuron, recorded at 220 µm from the surface of the dorsal horn.  

Wind-up of a P21 neuron cell increased in the presence of both 10 and 100 µA electrical stimulation 

of the RVM. 
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4.6 Discussion 

 

Descending modulation of spinal nociceptive circuits is crucial in maintaining the 

correct excitatory tone in the dorsal horn to enable the detection of harmful stimuli as 

well as to allow the correct reflex to be mounted against it. The balance between 

excitation and inhibition is finely tuned in the adult through descending control 

arising from the brainstem but this does not appear to be the case in the developing 

spinal cord, where descending inhibition is inefficient until the second postnatal 

week (Fitzgerald & Koltzenburg, 1986). Electromyographic studies have identified 

that descending facilitation from the RVM is predominant until the fourth postnatal 

week, but whether this effect is observed at the single neuron level has not been 

previously studied. 

 

In this study I aimed to examine the effects of descending control from the 

rostroventral medulla (RVM) of the brainstem upon individual spinal dorsal horn 

neuron spontaneous and evoked activity over the first 40 days of postnatal life. 

Furthermore, I aimed to identify whether RVM selective inhibition of C-fibre input 

rich neurons is apparent from the third postnatal week. RVM stimulation was found 

to increase spontaneous activity of P21 dorsal horn neurons at both low (10 µA) and 

high intensity (100 µA) stimulation but had no significant effect on P40 neurons. 

Peripherally evoked activity of spinal neurons was significantly inhibited in the adult 

P40 rats in the presence of high intensity 100 µA stimulation of the RVM, whilst the 

effects of this same intensity stimulation on evoked firing of P21 neurons was 

heterogeneous, with both a population of facilitated and inhibited cells.  

 

4.6.1 Technical considerations 

 

It has been suggested that electrical stimulation may not be the most suitable method 

for the stimulation of brainstem structures, as it can activate fibres of passage as well 

as antidromically stimulate projections neurons in the spinal dorsal horn (McMullan 

& Lumb, 2006a). Whilst electrical stimulation of the RVM can be seen to be 

unnatural, these parameters have been shown to be a reliable method of recruiting 

descending controls and comparable to using microinjections of excitatory amino 
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acids (Zhuo & Gebhart, 1990; Hentall et al., 1991). Importantly, electrical 

stimulation can be finely modulated in order to observe the effects of low and high 

intensity stimulation upon the same cell, without risk of biasing stimulated cells 

within the brainstem. This is especially important in the case of developmental 

studies, as populations of cells could vary over the course of the postnatal period.  

 

Judged by the data of Ranck (Ranck, 1975) myelinated axons can be activated up to 

1 mm away from the electrode with a 250 µA stimulus strength. At the stimulus 

intensities used here (5-200 A) it is therefore reasonable to assume that the 

stimulation was restricted to the RVM.  The use of concentric electrodes further 

allows for selective stimulation of tissue found within the barrel of the electrode. 

However, it is conceivable that the activation of fibres of passage would account for 

the lack of specific C fibre inhibition in the adult as reported in these pilot 

experiments as only the PAG and RVLM have been reported to selectively inhibit 

high intensity peripherally-evoked firing (Hudson et al., 2000; McMullan & Lumb, 

2006b; McMullan & Lumb, 2006a; Heinricher et al., 2009). A further study 

including the microinjection of opioid agonists into the RVM may be able to account 

for this consideration. 

 

4.6.2 The RVM facilitates spontaneous activity of dorsal horn neurons in 

adolescent P21 rats 

 

Spontaneous activity of dorsal horn neurons in normal animals in the presence of 

RVM stimulation has not been fully investigated up until this point. Although c-fos 

studies have shown an increase in number of activated neurons following RVM 

stimulation (Bett & Sandkuhler, 1995), the nature of the study means that it is 

unclear whether these dorsal horn neurons had increased spontaneous activity or 

whether this was simply a matter of increased number of activated cells, nor is the 

identity of these neurons known. Whilst it was somewhat surprising that no 

significant effect on spontaneous activity was found in P40 neurons tested here, the 

findings of this Chapter are in agreement with a previous study performed in this  

laboratory, which showed that RVM injection of the selective µ-opioid receptor 

antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) significantly 
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inhibits mechanical reflex withdrawal magnitude in P21 rats but has no effect on 

reflex withdrawal of P40 rats (G.Hathway and M.Fitzgerald, unpublished 

observations). Hence, the RVM appears to have a strong role in shaping spinal 

nociceptive networks in the absence of peripherally-evoked neuronal activity in the 

first few weeks of life, after which time descending control of spinal dorsal horn 

neurons specifies to the control of nociceptive sensory processing.  

 

4.6.3 Supraspinal biphasic control of dorsal horn neurons is absent over 

the first three postnatal weeks  

 

Both threshold and suprathreshold von Frey hair evoked firing was significantly 

affected by high intensity RVM stimulation in both P21 and P40 rats. Interestingly 

however, although there was a trend towards biphasic P40 neuronal in agreement 

with both previous behavioural and electrophysiology studies (Zhuo & Gebhart, 

1990, 1997; Gebhart, 2004; Hathway et al., 2009), this was not seen in any of the 

P21 cells examined; cells inhibited at 10A were inhibited at all intensities tested. 

Likewise, those that were facilitated remained so regardless of the stimulation 

intensity. It would appear that although descending inhibition is possible by ten days 

of age in the rat (Fitzgerald & Koltzenburg, 1986), inhibition is not sufficiently 

strong or reliable to significantly affect the evoked activity of dorsal horn neurons at 

P21 to the same degree as is seen in the adult. This effect is also seen at larger output 

level, electromyography recordings in rats aged P3 to P40 demonstrated that RVM 

biphasic control over spinal networks was not effective until P30. Prior to this, rats 

displayed facilitated reflex withdrawal magnitudes at all RVM stimulation intensities 

(Hathway et al., 2009). Interestingly, previous studies have reported that the 

induction of brainstem descending inhibitory influence is defined by increasing 

peripheral input. As such, neonatal destruction of C fibres by capsaicin treatment has 

been shown to result in higher levels of spontaneous spiking of spinal dorsal horn 

neurons in mature animals, implying ongoing descending facilitation in these animals 

(Zhuo & Gebhart, 1994). This apparent deficit of descending inhibition in the P21 rat 

may therefore be linked to weak C fibre input to dorsal horn neurons over the first 

three postnatal weeks (Jennings & Fitzgerald, 1998). The strengthening of C fibre 

input into the dorsal horn by the second postnatal week (Fitzgerald, 1985; Fitzgerald, 
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1988; Jennings & Fitzgerald, 1998) would allow for a stimulus strong enough to be 

projected to higher centres. This would then allow for strong feedback inhibition of 

nociceptive responses in deep dorsal horn neurons and a tighter control on 

nociceptive reflexes seen in the adult rat. 

 

4.6.4 RVM stimulation increased C-fibre windup of an individual dorsal 

horn neuron at P21 

 

In a pilot experiment, electrical stimulation was used to peripherally activate C fibres 

in the presence of graded RVM stimulation in order to assess the role of the RVM in 

selective C fibre mediated inhibition in the adolescent rat. Recent studies have shown 

that pharmacological stimulation of the RVM and/or PAG in the adult rat reliably 

inhibits deep dorsal horn neurons with strong C fibre input (McMullan & Lumb, 

2006b; McMullan & Lumb, 2006a; Parry et al., 2008; Waters & Lumb, 2008; 

Heinricher et al., 2009). Whilst the study in this Chapter did not reveal any 

significant effect of RVM stimulation of C fibre evoked dorsal horn firing at either 

age tested, further analysis of the single P21 neuron that exhibited C fibre mediated 

wind-up revealed that firing of this neuron increased in the presence of both low 

intensity 10 µA or high intensity 100 µA RVM stimulation. Wind-up is a well 

described form of monosynaptic activity-dependent plasticity that is characterized by 

a progressive increase in action potential firing of dorsal horn neurons during the 

course of repeated low-frequency C-fibre stimuli (Mendell, 1984) and can be seen as 

a measure of neuronal excitability; suggesting that the RVM has a role in the 

regulation of the excitability of neurons to noxious stimulation. Further studies using 

neurons found deeper in the dorsal horn - specifically in those showing C fibre 

windup - would no doubt provide a clearer role for the RVM in nociceptive 

processing at the level of dorsal horn neurons in the early postnatal period and will 

help clarify whether descending facilitation at P21 is indeed specific to noxious C 

fibre or if it exerts a non-selective facilitation of both C and Aδ fibre inputs. 
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4.6.5 Potential mechanisms underlying the lack of descending inhibition 

at P21 

 

There are a number of possible explanations for the observed lack of inhibition at 

P21: (i) immature neurotransmitter release from descending fibres or immature 

spinal postsynaptic receptor expression; (ii) a shift in phenotypic identity of RVM 

neurons over the first six postnatal weeks; and (iii) immature external inputs into the 

RVM. These will each be covered in turn in the following three sections. 

 

4.6.5.1 The development of descending fibres 

 

Descending modulation involves multiple neurotransmitter systems (Fields et al., 

2006), one of the most studied of which is serotonin (Weber & Stelzner, 1977; Fields 

et al., 2006; Heinricher et al., 2009), present in nearly half of all raphe neurons 

projecting to the adult spinal cord (Bowker et al., 1981). Serotonin-containing 

neurons are among the earliest to be detected in the developing central nervous 

system (Lidov & Molliver, 1982; Okado et al., 1992; Rubenstein, 1998). These are 

especially located along the midline of brainstem, where they are present from 

embryonic day 16 (Lidov & Molliver, 1982). Histological studies have shown the 

development of spinal 5-HT fibres to exhibit a ventro-dorsal gradient. As a result, 

although descending 5-HT fibres are present at birth in the ventral horn of the lumbar 

spinal cord, these do not reach the dorsal horn until the second postnatal week and 

final distribution of terminals is not reached until a week thereafter (Bregman, 1987; 

Rajaofetra et al., 1989; Tanaka et al., 1992; Ballion et al., 2002; Tanaka et al., 2006). 

Much as is described in the case of glycinergic terminal expression in Chapter Three, 

immature serotonergic terminal distribution could affect descending control by 

inefficient release of the neurotransmitter onto spinal postsynaptic receptors. In 

support of this, although in vitro studies have shown functional serotonergic 

receptors in neonatal spinal slices (Hentall & Fields, 1983), a behavioural study in 

neonatal rats found that systemic administration of D-amphetamine at concentrations 

high enough to promote serotonin release from terminals did not significantly 

dampen neonatal nociceptive networks indicating a stunted serotonin release in the 

early postnatal period (Abbott & Guy, 1995). It would therefore appear that although 
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receptors are functional, serotonin is not being reliably released from the presynaptic 

site at levels sufficient to activate postsynaptic receptors.  

 

In addition to the presynaptic mechanisms described above, there are a number of 

postsynaptic modifications that could also occur at the level of the dorsal horn. 

Serotonin acts on a multitude of receptors and activation of different receptor 

subtypes can result in facilitation or inhibition of nociception (Millan, 2002); the 

expression of these serotonin receptor subtypes could be developmentally regulated 

such that dorsal horn neurons in the neonatal spinal cord preferentially express 

facilitatory 5-HT3 receptors over inhibitory 5-HT1 or 5-HT2 receptors.  

 

Although the specific development of serotonergic fibres has been most extensively 

studied, stimulation of the RVM is known to result in spinal release of several other 

neurotransmitters, including noradrenaline, GABA and glycine (Proudfit, 1992; 

Sorkin et al., 1993). Both descending GABAergic and glycinergic projections from 

the RVM are known to form synapses with excitatory neurons in the superficial 

dorsal horn (Antal et al., 1996; Kato et al., 2006). This raises the possibility of a 

developmental change in other descending neurotransmitter systems, which could in 

turn lead to a predominance of facilitation in the juvenile spinal dorsal horn. The use 

of in vivo patch-clamp recordings of dorsal horn neurons in the presence of electrical 

stimulation of the RVM could help resolve the question of the ontogeny of 

descending fibres from this brain region in development: by electrical stimulating the 

brain and recording intracellularly from neurons in the dorsal horn in the presence of 

selective pharmacological agonists and antagonists, a clearer picture could emerge of 

the role of neurotransmitter systems in facilitation and inhibition over the first six 

weeks of postnatal life. 

 

4.6.5.2 The influence of ‘on’ and ‘off’ cells 

 

Many of the early studies exploring the effects of descending control had focussed on 

stimulating the dorsolateral funiculus (DLF), through which axons from the RVM 

travel to reach the dorsal horn. The effects of the RVM clearly go beyond what is 

seen by simple DLF stimulation; whilst biphasic control on dorsal horn neurons has 
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been widely reported by chemical and electrical stimulation of the RVM, this has not 

been shown to be the case of DLF stimulation, in which stimulation causes pure 

inhibition (albeit weakly until P10). This implicates the involvement of an RVM–

mediated switch in the fourth postnatal week. Cells within the RVM have been 

classified into three groups: ‘on’ cells, ‘off’ cells and ‘neutral’ cells (Fields & 

Basbaum, 1978; Fields et al., 1983; Heinricher et al., 1989; Fields et al., 2006). 

Selective activation of ‘on’ cells results in enhancement of nociception (Neubert et 

al., 2004), whilst that of ‘off’ cells produces the opposite effect of analgesia 

(Heinricher & Tortorici, 1994). It could be that the shift in descending facilitation to 

inhibition in the early postnatal is due to a change in RVM neuronal phenotype; 

adolescent rats may have a higher relative proportion of ‘on’ cells as compared to 

‘off’ cells resulting in enhanced facilitation as compared to inhibition. Alternatively, 

there may be potential delayed maturation of ‘off’ cell activity, or immature 

connections between the two cell groups, such that ‘off’ cell activity in the immature 

brainstem does not effectively inhibit that of ‘on’ cells. This could in turn account for 

inefficient inhibition at this age. In vivo recordings from the RVM at P21 and P40 

would help address these questions; in addition this could be teamed with 

iontophoresis of selective agonists and antagonists to accurately investigate the role 

of these neurons in nociceptive processing over this critical time period. 

 

4.6.5.3 RVM input from the PAG 

 

Stimulation of the PAG is sufficient to cause behavioural analgesia in adult rats, yet 

this effect is not apparent until P21 (van Praag & Frenk, 1991). As the RVM is the 

main site through which the PAG exerts its spinal effects (Gebhart et al., 1983; 

Prieto et al., 1983; Sandkuhler & Gebhart, 1984; Chung et al., 1987), it is 

conceivable that although supraspinal-spinal pathways are intact from birth, 

connections between the PAG and RVM are not yet fully functional. Retrograde 

tracing studies would identify the presence of connections but would not address 

functionality. The initial experiments of van Praag and Frenk were analysing the 

effects of PAG stimulation upon tail-flick behaviour of rats (van Praag & Frenk, 

1991), experiments detailing the functional role of the PAG in the control of spinal 

neuronal activity by means of electrical or pharmacological stimulation could help 
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answer whether the PAG exerts any effect on spinal processing over the first three 

postnatal weeks. 

 

Although P21 rats are often seen to be developmentally mature, the influence of 

descending control from the brainstem onto spinal dorsal horn neurons has not yet 

reached adult specification until a week thereafter (Hathway et al., 2009). This is not 

to say that the control is not functional at this age, but that the influence of the RVM 

is markedly different from three weeks postnatal age to six weeks, and the 

appropriate balance between facilitation and inhibition has not been achieved until 

then. In the adult rat, RVM exerts a biphasic control over spinal nociceptive systems 

allowing for contextual response to a harmful stimulus. For example in a dangerous 

environment the rat may not display pain behaviour presumably due to descending 

influences from the amygdala and higher cortical centres. In this way, electrically 

stimulating the brainstem in the present study, could model increasing levels of input 

into the RVM: higher intensity stimulation at 100 µA would then be similar to a 

highly stressful or distracting situation, whilst low intensity 10 µA stimulation would 

mimic that of a resting animal. In the adolescent P21 rat, this biphasic control upon 

nociception does not appear to be as clearly defined; cells are either fully inhibited or 

fully facilitated in response to a range of stimulation intensities and the populations 

of excited and inhibited cells is much less diverse than those seen in the adult dorsal 

horn. This increase in activity could allow for synaptic strengthening and larger and 

more obvious responses to noxious stimuli. This would increase the likelihood of the 

mother tending to the immature rat at a time when it is just about to be weaned and 

protecting it from harm.  
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4.7 Conclusion 

 

The studies in this Chapter have revealed that RVM control over spinal nociceptive 

circuits switches from being generally facilitatory before 3 weeks of age to 

predominantly inhibitory by 4 weeks. This is in line with several other studies 

showing the postnatal change in properties of immature spinal nociceptive networks 

may be due to a marked changed in the descending influence from the RVM 

(Hathway et al., 2006; Hathway et al., 2009). This effect has been observed in both 

spinal nociceptive reflexes and dorsal horn neuronal activity over this critical 

developmental period (Hathway et al., 2009) and is likely the effect of maturing 

descending fibres and the maturation of neurons within the brainstem. 
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5.1 Introduction 

 

Spinal tactile and nociceptive processing undergo significant postnatal maturation. 

Immature rats display exaggerated and inappropriately directed flexion withdrawal 

reflexes to cutaneous mechanical stimulation. Thresholds are lower and sensory 

responses prolonged, effects which are observable both at the behavioural and 

individual neuron levels (Fitzgerald, 1985; Fitzgerald, 1988; Coggeshall et al., 1996; 

Jennings & Fitzgerald, 1996, 1998; Beggs et al., 2002). These features are indicative 

of sensory circuits that are more excitable compared to adults and since intrinsic 

excitability of spinal sensory neurons remains similar throughout postnatal 

development (Baccei & Fitzgerald, 2004) it has been suggested that the changes are 

attributable to an imbalance between excitation and inhibition in spinal sensory 

systems. Excitation in the spinal dorsal horn appears to be particularly directed 

towards sensitivity to low-threshold A fibre stimuli and developmental refinement 

and dampening of responses to tactile stimulation is coincident with the withdrawal 

of A fibres from the superficial dorsal horn and the strengthening of C fibre synaptic 

contacts (Fitzgerald, 1985; Fitzgerald, 1988; Coggeshall et al., 1996; Jennings & 

Fitzgerald, 1996; Beggs et al., 2002). Many studies have explored this idea by 

focussing on the role of GABAergic neurotransmission and its postnatal regulation. 

While there are changes in GABAergic signalling over this period, it is responsible 

for robust inhibition within sensory circuits from birth and is unlikely to be 

responsible for the excitability of neonatal cutaneous sensory processing (Baccei & 

Fitzgerald, 2004; Cordero-Erausquin et al., 2005; Bremner et al., 2006; Hathway et 

al., 2006; Koch et al., 2008). To date few investigators have examined the role of 

glycine during development. Glycine is of particular relevance in the spinal 

transmission of low-threshold touch information as Aβ fibres are known to synapse 

directly onto glycinergic interneurons in the mature dorsal horn (Todd, 1990; 

Narikawa et al., 2000). Glycine receptor antagonism in adults results in enhanced 

low threshold responses in the dorsal horn and behavioural touch-evoked allodynia, 

whereby innocuous touch or brush is apparently perceived as noxious (Yaksh, 1989; 

Sivilotti & Woolf, 1994; Sherman & Loomis, 1996). Experiments described in 

Chapter Two of this thesis were therefore aimed at identifying the pattern of 

expression of glycine terminals and that of glycine receptors over the first three 
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postnatal weeks when tactile and nociceptive processing become less excitable and 

sensory responses refined. Further to this, studies in Chapter Three investigated the 

functional and physiological role of glycinergic neurotransmission in cutaneous 

sensory processing by single dorsal horn cells in the spinal cord in vivo. 

 

Although local spinal networks undergo most developmental change within the first 

three weeks of life, there is evidence that descending controls from the brainstem 

take longer to mature. Thus an overriding descending facilitatory drive onto spinal 

networks persists until the fourth postnatal week before shifting to the predominant 

resting descending inhibition observed in the adult (Hathway et al., 2009). The 

maturation of these inhibitory controls has been shown to be dependent upon the 

development of C-fibre central synapses (Cervero & Plenderleith, 1985; Zhuo & 

Gebhart, 1994) and interestingly in the adult, descending inhibitory signals from the 

brainstem are selective for wide dynamic range neurons with a strong C-fibre input 

(Hudson et al., 2000; McMullan & Lumb, 2006b; McMullan & Lumb, 2006a; 

Koutsikou et al., 2007). Experiments in Chapter Four of this thesis were therefore 

aimed at analysing the functional maturation of descending influences from the 

brainstem upon spontaneous and peripherally evoked activity of spinal dorsal horn 

neurons over the critical 3-6 week postnatal period when descending inhibition 

matures.  

 

5.2 Summary of findings 

 

Immunohistochemical studies in Chapter Two sought to map markers of spinal 

glycinergic circuitry in the dorsal horn over the first three postnatal weeks. To this 

end, three antibodies were used: (i) an antibody mounted against the glycine 

transporter GlyT2, (ii) an antibody raised against the alpha subunit of the glycine 

receptor, and (iii) c-fos immunostaining of cells that were activated by strychnine 

and were therefore concluded to be normally under tonic glycinergic inhibitory 

control. GlyT2 has been shown to be a reliable marker of glycinergic terminals and is 

expressed predominantly in lamina III and deeper laminae in the adult spinal cord in 

agreement with glycine expression (Jursky & Nelson, 1995; Zafra et al., 1995b; 

Poyatos et al., 1997; Spike et al., 1997). A developmental increase in GlyT2 protein 
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expression has been reported using Western Blot (Zafra et al., 1995b), but the 

immunostaining performed here additionally revealed a shift in expression pattern 

that could significantly alter the availability of synaptic glycine in the dorsal horn 

over postnatal development. My results show that GlyT2 and glycine receptor 

expression undergo a significant shift over the first three postnatal weeks, from peak 

expression in the deep dorsal horn at P3 to a gradual dorsally directed shift reaching 

adult termination patterns in lamina III by P21. These findings were echoed in c-fos 

studies, which revealed an absence of superficially located neurons under tonic 

inhibitory glycinergic control at P3. 

 

The postnatal maturation of glycinergic activity in spinal sensory processing was 

further investigated using in vivo extracellular recordings from rats aged 3 days 

postnatal (P3) and 21 days (P21). Whole cell patch recording from lamina II neurons 

in spinal cord slices has shown that inhibitory transmission in the spinal dorsal horn 

in early postnatal life is dominated by GABA-mediated currents, the majority of 

which are inhibitory from birth (Baccei & Fitzgerald, 2004; Bremner et al., 2006), 

but the maturation of glycinergic signalling in intact dorsal horn circuits had not been 

fully investigated. Chapter Three of this thesis describes the first set of in vivo 

recordings investigating the influence of glycinergic transmission on cutaneous 

sensory processing in the first three weeks of life using the glycine-receptor 

antagonist strychnine. While strychnine unmasked a strong tonic glycinergic 

inhibition of spontaneous activity in adolescent P21 wide dynamic range dorsal horn 

neurons, it had no effect on spontaneous firing of neonatal P3 neurons. Furthermore, 

while strychnine substantially increased low threshold brush evoked responses in 

P21 rats, in line with its allodynic action in adult rats (Yaksh, 1989; Sivilotti & 

Woolf, 1994; Sherman & Loomis, 1996; Sorkin & Puig, 1996), it significantly 

decreased neuronal firing to innocuous brush in P3 rats. Thus, glycinergic control 

facilitates the transmission of low threshold sensory information in the early 

postnatal period and only matures to its adult inhibitory role by the third postnatal 

week. As in the adult, this effect was highly modality-specific and neonatal neuronal 

activity to pinch or von Frey hair application was unchanged by strychnine, 

indicating that glycinergic activity, including the shift over the postnatal period, is 

selective for innocuous stimuli.  
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The experiments in Chapter Two and Three concentrated on the development of 

segmental inhibition in the dorsal horn, but there is considerable evidence for a 

critical role of supraspinal control in the maturation of spinal networks, notably on 

inhibitory transmission (Levinsson et al., 1999; Branchereau et al., 2002; Hathway et 

al., 2006; Koch et al., 2008). Maturation of descending supraspinal activity occurs 

over a longer timeframe than that of local spinal networks (Fitzgerald & 

Koltzenburg, 1986; Hathway et al., 2009) and although functional from early in life, 

brainstem control of spinal circuitry is not fully mature until the fourth postnatal 

week (Hathway et al., 2009). The experiments outlined in Chapter Four are the first 

to show the changing effects of descending control from the brainstem on individual 

dorsal horn neurons in P21 and P40 rats, allowing detailed analysis of brainstem 

control of cutaneous sensory-evoked activity over this developmental period. While 

descending inhibition of flexion reflexes is completely absent at P21 (Hathway et al., 

2009), descending inhibition of single dorsal horn neurons could be evoked by RVM 

stimulation in P21 rats, but was not observed in all cells tested and 50% were 

facilitated. In fact the effect of RVM stimulation on wide dynamic range neurons of 

P21 rats was found to be significantly more heterogeneous than the responses of 

dorsal horn neurons in P40 rats suggesting that although the appropriate networks are 

in place, they are not sufficiently synchronised to reliably produce biphasic inhibition 

and facilitation of nociceptive-evoked motor reflexes as observed in the adult 

(Hathway et al., 2009).  

 

5.2.1 Experimental considerations 

 

As with any in vivo preparation, there are a few considerations when it comes to the 

interpretation of data. The advantage of in vivo recordings from individual neurons is 

that a more detailed analysis of cutaneous tactile or nociceptive responses of spinal 

neurons is possible when compared to reflex responses, which are the result of 

considerable sensory/motor integration. This is especially important when 

investigating developmental changes in nociceptive behaviour; the development of 

motor circuitry alone could confound the results behavioural or electromyographical 

studies without alterations in nociceptive circuitry. Secondly, the animal is intact and 

descending and peripheral influences can be investigated together, which is not 
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possible in in vitro slice preparations. Two disadvantages accompany these benefits: 

firstly, responses of individual neurons will rarely be as uniform as those found in 

behavioural or electromyographic studies, leading to a significant variability in 

response. Secondly, the data is subject to sampling variation and, the possibility of 

identifying the phenotype of recorded neurons in in vivo extracellular recordings is 

limited. Thus, recordings could have been made from projection neurons or 

excitatory/inhibitory interneurons, the activity of each of which would lead different 

outcomes. The data is therefore better viewed as a population of cells all contributing 

to the full functioning of the spinal cord.  

 

The cells used for data analysis in this thesis were characterised and chosen 

according to their responses to cutaneous sensory stimulation of the receptive field, 

and only those responding to both noxious and innocuous stimuli (wide dynamic 

range neurons) were included. This criterion in itself limits the variability of response 

and to a certain degree limits variation in laminar distribution of these cells. 

Although no significant differences in recording depth between ages was noted, it is 

difficult to infer exact laminar position of recorded neurons. Future experiments to 

overcome this could involve the use of juxtacellular labelling of neurons in which 

extracellular recordings are performed using a glass micro-pipettes filled with 

biocityn or Neurobiotin. After recording is complete, low intensity positive-current 

pulses are passed through the pipette and so through the membrane of the recorded 

neuron located nearby. This is turn allows the iontophoresis of the tracer into the 

neuron of interest (Pinault, 1996). The animal can then be perfused, spinal cord 

removed, sectioned and stained in order to identify its laminar location and neuronal 

phenotype, for example by combining immunostaining of neuronal marker NeuN 

with antibodies against glycine, GABA or glutamate. Precise identification of the 

neuronal phenotype of the recorded cell could also be achieved using in vivo whole-

cell patch clamp analysis in conjunction with selective receptor antagonists and 

agonists. Alternatively, intracellular recordings could be performed in genetically 

modified mice in which green fluorescent protein is expressed under the promoter of 

a protein of interest to allow for detailed analysis of a given subset of neurons of 

interest under visual guidance. This has successfully been achieved in in vitro slices 

(e.g. (Harvey et al., 2004)) and could be used in two-photon visually directed in vivo 

patch-clamp studies, which would help answer many unanswered questions 
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concerning the detailed function of selected neurons over the developmental period. 

Furthermore, projection neurons could be identified by means of stimulation of long 

axons or brainstem nuclei (Keller et al., 2007), this has however proved difficult and 

was beyond the scope of this thesis. 

 

Another consideration is the use of anaesthetics in in vivo electrophysiology, which 

exert some of their effects by interfering inhibitory neurotransmission (Leite & 

Cascio, 2001; Lynch, 2004). Although the full impact of this on neuronal responses 

is not clear, the level of isoflurane used in Chapters Two and Four were identical 

between ages, and so comparisons are still valid. Nevertheless it is important to take 

anaesthetic regime into account in the analysis of any in vivo recordings. 

 

5.3 Developmental changes in glycinergic synaptic function 

 

It is important in any developmental study to consider the wealth of changes that 

occur over the postnatal period, the influence of a few of these on pre- and 

postsynaptic glycinergic transmission will be covered in this section, and have been 

summarised in Figure 5. 1.  

 

5.3.1 The influence of glycine transporters on synaptic transmission  

5.3.1.1 Glycine transporters in controlling spillover activation of NMDA 

receptors 

 

In addition to its role as an inhibitory neurotransmitter, glycine is also an obligatory 

co-agonist at the NMDA receptor (Johnson & Ascher, 1987; Kemp et al., 1988; 

Kleckner & Dingledine, 1988). In fact, strong presynaptic activity is sufficient to 

result in a glycinergic release large enough to cause spillover activation of NMDA 

receptors located outside of glycinergic synapses, and so potentiate excitatory 

neurotransmission (Supplisson & Bergman, 1997; Berger et al., 1998; Bergeron et 

al., 1998; Ahmadi et al., 2003; Aubrey et al., 2005). The concentration of synaptic 

glycine, and so the likelihood of spillover activation of NMDA receptors, is 

controlled by the sodium chloride-dependent transporters GlyT1 and GlyT2 (Berger 
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et al., 1998; Bergeron et al., 1998; Roux & Supplisson, 2000; Zafra & Giménez, 

2008). It is therefore tempting to speculate that a lack of GlyT2 in the superficial 

laminae of the neonatal dorsal horn observed in immunohistochemical studies of 

chapter two could lead to NMDA receptor activation by glycine spillover in response 

to low-threshold stimulation, due to decreased clearance of the neurotransmitter. 

However, this specific scenario is unlikely, given that the role of regulation of 

glycine availability to NMDA receptors has been specifically attributed to neuronal 

GlyT1, whereas glial GlyT1 and neuronal GlyT2 are more geared to clearance of 

glycine from glycinergic synapses (Cubelos et al., 2005a; Cubelos et al., 2005b; 

Stevens et al., 2010).  

 

 
Figure 5. 1: Schematic of developmental factors that could affect glycinergic signalling.  

(1) Immature levels of GlyT2 could lead to decreased presynaptic glycinergic recycling in the early 

postnatal period. This could in turn decrease the synaptic availability of glycine. (2) Neonatal α2 

homomeric receptors cannot bind the anchoring protein gephyrin. These are therefore thought to be 

located extrasynaptically and be less available for activation by glycine. (3) Circulating neurosteroids 

selectively inhibit neonatal homomeric receptors over adult heteromeric receptors. (4) High 

intracellular chloride levels in developing neurons can slow glycine receptor kinetics, resulting in 

more ‘sluggish’ inhibition. (5) Descending serotonergic fibres from the brainstem have been shown to 

indirectly result in increased glycinergic transmission. See text for further details. 
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5.3.1.2 Effects of GlyT2 on presynaptic and postsynaptic terminals 

 

The transmembrane gradient maintained by GlyT2 is much steeper than that 

maintained by GlyT1 transporters due to the dependence of an extra sodium ion in 

the actions underlying GlyT2 transport. This has important implications on the 

function of these transporters. Immediately apparent is the fact that lower 

thermodynamic coupling of GlyT1 (two sodium ions to transport one molecule 

glycine) enables this transporter to theoretically function in reverse, allowing glycine 

to be pumped out of the cell (Roux et al., 2001; Aubrey et al., 2005). This could be 

particularly important in pathological pain situations, given that glycine spillover 

could activate excitatory NMDA receptors as mentioned above (Ahmadi et al., 2003) 

and could cause excessive excitation of postsynaptic neurons. Secondly, the high 

thermodynamic coupling of GlyT2 (three sodium ions to one molecule of glycine) 

preferentially leads to the presynaptic accumulation of glycine. This has indeed been 

observed in several reports including whole-cell patch clamp studies on GlyT2 

knock-out mice, which showed a marked reduction in glycinergic IPSCs compared to 

wildtype mice, consistent with decreased presynaptic glycine release (Poyatos et al., 

1997; Roux et al., 2001; Gomeza et al., 2003b). High levels of intracellular glycine 

mediated by GlyT2 function have been shown to be necessary for the functioning of 

the low-affinity vesicular glycine transporter VIAAT (Rousseau et al., 2008), and so 

are critical in both the reuptake of glycine and its packaging for re-release, by 

allowing terminal concentrations of glycine to reach a level high enough to activate 

VIAAT. Consistent with this, blocking the function of GlyT2 has been shown to 

decrease glycinergic transmission (Bradaia et al., 2004).  

 

That GlyT2 regulates the presynaptic accumulation and release of glycine is of 

particular relevance to the studies in Chapters Two and Three of this thesis, given 

that tonic and peripherally-evoked glycinergic inhibition was absent in the neonatal 

dorsal horn at a time when GlyT2 immunostaining was diffuse and unrestricted. 

Lower levels of GlyT2 in the neonatal dorsal horn could therefore result in 

insufficient glycine release, which could in turn explain the lack of mIPSCs in 

neonatal spinal slices seen in in vitro whole-cell recordings (Baccei & Fitzgerald, 

2004). Interestingly, blocking of GlyT2 has been shown to be sufficient to prevent 

the switch in inhibitory phenotype from GABAergic to glycinergic in auditory and 
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motor networks (Kotak et al., 1998; Friauf et al., 1999; Gao et al., 2001a; Nabekura 

et al., 2004; Awatramani et al., 2005). As the apparition of GlyT2 in lamina III by 

P14 outlined in immunohistochemical studies of Chapter Two coincides well with 

the greater weight of glycinergic transmission in the spinal dorsal horn, this could 

therefore underlie the phenotypic switch from GABA to glycine in the spinal dorsal 

horn (Baccei & Fitzgerald, 2004).  

 

Studies have also suggested that postsynaptic receptor clustering requires the 

presence of functional glycinergic neurotransmission, and blockade of glycine 

receptors with strychnine is sufficient to prevent this (Kirsch & Betz, 1998; Levi et 

al., 1998). This could suggest a crucial role for GlyT2 in the functional maturation of 

postsynaptic terminals, through presynaptic glycine accumulation and release. The 

use selective blockade of GlyT2 in the presence of strychnine in the in vivo 

experiments in Chapter Three would help identify the influence of low levels of 

GlyT2 expression on neuronal activity in the neonatal cord. It is logical to predict 

that neonatal neuronal response to brush in the presence of strychnine and GlyT2 

blockade would be identical to that of strychnine alone, whereas the combination of 

strychnine and GlyT2 blockade in the adult would reveal facilitation of brush-evoked 

activity as seen in the neonate. 

 

5.3.1.3 Other glycinergic modulators  

 
- Neurosteroids 

These are of particular relevance in the maturation of the central nervous system, and 

3α5α reduced neurosteroids have been shown to significantly affect the kinetics of 

GABAergic signalling in the neonatal dorsal horn (Keller et al., 2001; Keller et al., 

2004). There is little evidence for the functional influence of steroids on glycinergic 

inhibition in the developmental period, but neonatal α2 homomeric receptors are 

known to be selectively inhibited by both dehydro epiandrosterone sulfates (DHEAs) 

and progesterone over adult heteromeric receptors (Maksay et al., 2001; Lynch, 

2004). This could have a significant relevance in the development of neuronal 

connections depending on the resting levels of these neurosteroids in the developing 

spinal cord. If levels of circulating steroids are high enough under resting conditions, 
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selective blockade of neonatal homomeric receptors could result in the inefficient 

glycinergic inhibition that was observed in the studies of this thesis. 

 

- High intracellular chloride 

A recent in vitro study in P10 spinal slices revealed the surprising role of 

intracellular chloride concentration in the control of glycinergic transmission (Pitt et 

al., 2008). Using recordings from gramicidin-perforated vesicles, the detailed 

kinetics of glycine receptors were examined without artificially altering intracellular 

chloride levels. These studies found that high intracellular chloride significantly 

slows the decay kinetics of glycinergic currents, recently also shown to affect 

cerebellar GABAA receptors (Houston et al., 2009). This is of particular importance 

when interpreting developmental differences in inhibitory neurotransmission given 

the fact that neonatal neurons have higher intracellular chloride levels than in the 

adult (Ben-Ari, 2002). Although developmental levels of chloride are not as high as 

in the experimental conditions tested in the studies above (Pitt et al., 2008; Houston 

et al., 2009), higher intracellular chloride levels in neonatal dorsal horn neurons 

could result in longer decay kinetics of glycinergic currents at this stage of 

development and would allow for longer inhibitory currents and “broader”, or less 

precise, inhibition of fast sensory input. In support of this, glycinergic mIPSCs in the 

neonatal dorsal horn have been shown to display slower kinetics than in the adult, 

which decrease in rise time and duration with increasing age (Keller et al., 2001). 

This is especially relevant in the control of sensory information from fast conducting 

myelinated Aβ fibres transmitting innocuous touch. The slow kinetics of neonatal 

glycinergic currents could therefore account for differential effects of strychnine on 

brush-evoked activity seen in Chapter Three, through high intracellular chloride 

levels. 

 

5.3.2 The influence of maturing descending influences on inhibitory 

signalling 

 

Several studies have shown a crucial link between the development of functional 

descending connections onto spinal neurons and the maturation of spinal inhibition, 

generally focussing on the postnatal maturation of descending serotonergic fibres and 
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their influence on inhibitory signalling in the ventral horn (Branchereau et al., 2002; 

Jean-Xavier et al., 2006; Sadlaoud et al., 2010). These studies could therefore have 

important consequences on the findings of this thesis, which outline the postnatal 

maturation of both local and descending inhibition in the dorsal horn. Interestingly, it 

would appear that serotonergic signalling specifically inhibits GABAergic inhibition 

in the early postnatal period: spinal cord transection in the first week of life does not 

affect the development of glycinergic inhibition, but does prevent the postnatal 

down-regulation of GABAergic receptors (Branchereau et al., 2002; Sadlaoud et al., 

2010). Additionally, studies have shown that severing descending fibres from birth 

prevents the hyperpolarising shift in chloride reversal potential that normally occurs 

over the first week of life (Jean-Xavier et al., 2006). It would therefore appear that 

the serotonergic inhibition of GABAergic inhibition in the spinal cord is sufficient to 

remove inhibitory competition between GABA and developing glycinergic 

transmission and therefore indirectly allows the maturation of glycinergic receptors 

and their postsynaptic clustering. 

 

5.3.3 Potential mechanisms for glycinergic facilitation of brush-evoked 

activity in the neonatal spinal cord 

 

The finding that glycine antagonism in the neonate resulted in facilitation of brush-

evoked neuronal activity is somewhat surprising given the inhibitory action of both 

GABA and glycine from birth (Baccei & Fitzgerald, 2004; Bremner et al., 2006). 

One mechanism that could underlie this effect is outlined in Figure 5. 2. In this figure 

I propose that the broad and unrestricted expression of GlyT2, and so of glycine 

terminals, in the first week of postnatal week could result in the non-selective 

presynaptic release of glycine onto local neurons within the deep dorsal horn. In the 

adult dorsal horn, incoming low-threshold afferents directly facilitate glycinergic 

inhibitory interneurons in deeper laminae, which in turn prevent excessive excitation 

of target neurons by selective inhibition of excitatory interneurons. This inhibition is 

well directed in the adult, and results in selective inhibition of low-threshold tactile 

stimuli. Importantly, GlyT2 immunostaining and c-fos experiments in Chapter Three 

suggest that this targeted inhibition of lamina III neurons is absent in the immature 

dorsal horn. Firstly, glycinergic terminals were diffusely expressed in the deep dorsal 
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horn in the neonatal spinal cord, and secondly, strychnine was found to activate (or 

disinhibit) neurons located in deeper dorsal horn of neonatal rats. I suggest that in the 

neonatal spinal cord, unrestricted inhibition leads to larger probability of glycine-

mediated inhibition of inhibitory interneurons than in the mature system, which 

would remove inhibitory control onto target neurons and lead to glycine-mediated 

facilitation of brush activity. Removal of glycinergic inhibitory block of this 

inhibitory interneuron by administration of strychnine would in turn allow inhibition 

of the target neurons. Within the context of the electrophysiological experiments of 

Chapter Three, this could be seen as a means of strychnine-induced inhibition of 

brush-evoked neuronal activity in the immature spinal cord. This theory could be 

investigated by performing the c-fos experiments outlined in Chapter Three in 

conjunction with a co-stain using an antibody raised against glycine, GABA or 

glutamate to highlight inhibitory or excitatory interneurons. Based on current 

knowledge, the predicted observation would be increased c-fos activation of 

inhibitory interneurons in the neonatal dorsal horn.  

 

Figure 5. 2:  Potential mechanism underlying glycinergic facilitation of low-threshold 

stimulation in the neonatal spinal dorsal horn.  

(Left) In the adult, low threshold afferent input glycinergic interneurons (gly ININ; light green), which 

inhibit excess activity by selective inhibition of excitatory interneurons (EXIN; red) in lamina III. 

(Right) In the neonatal dorsal horn, glycinergic inhibition may less precisely directed leading to non-

selective inhibition of inhibitory interneurons (ININ; dark green). This could result in disinhibition of 

target neurons, leading to excessive excitation and glycine-mediated facilitation of low-threshold 

input. 
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5.4 Integration of sensory inputs in the developing dorsal horn 

 
Inhibition is clearly functional to some degree in the neonatal spinal cord (Baccei & 

Fitzgerald, 2004; Bremner et al., 2006; Bremner & Fitzgerald, 2008) and although 

outside the remits of this thesis, it is important to also note the marked changes in 

excitatory neurotransmission that occur over the postnatal period, not limited to 

changes in both glutamatergic and substance P driven transmission (see (Pattinson & 

Fitzgerald, 2004; Fitzgerald, 2005) for reviews). Thus, the real difference between 

the neonatal and adult dorsal horn neurons is likely to be both in the balance between 

excitation and inhibition and the ability of neuron to integrate information from local 

interneurons, afferent fibres from the periphery and from supraspinal centres. The 

recent advancement in analytical tools has allowed a greater understanding of the 

impact of immature integration on sensory circuits and neuronal activity. 

 

Although single channel kinetics are not direct predictors of neuronal activity within 

a working circuit they can provide important insight into the workings of a single 

cell, and so offer information on how a network of neurons may respond to incoming 

stimuli. The efficacy of an inhibitory signal is dependent on both the amplitude and 

the time course of an IPSC, and so developmental alterations in kinetics and 

presynaptic and postsynaptic receptor function can therefore have profound 

consequences on a neuron’s integrative ability. Indeed, many studies have shown an 

age-dependent decrease in kinetics and increase in amplitude of response of both 

glycinergic and GABAergic mIPSCs and IPSCs (Keller et al., 2001; Baccei & 

Fitzgerald, 2004; Keller et al., 2004; Ingram et al., 2008). Slower kinetics would lead 

to a longer channel opening time, which in turn could mean that inhibition is not as 

precisely tuned to the fast conduction velocities of Aβ fibre innocuous stimuli, 

offering further insight into the brush-specific effects of strychnine outlined in 

Chapter Three.  

 

Studies have also started to shed light on the detailed local anatomical wiring of 

inhibitory and excitatory inputs onto neurons within the dorsal horn. Inhibitory and 

excitatory inputs onto islet cells within lamina II are precisely arranged such that 

inhibitory interneurons synapse in the peri-somatic region of the postsynaptic cell, 

whereas excitatory inputs are primarily focussed to the dendritic tree (Yasaka et al., 
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2007), implying a wider input of excitatory signals and local inhibition (Kato et al., 

2009). The somatic location of inhibitory inputs also suggests an absolute clamp over 

incoming excitation. Conversely, the spread of excitation throughout the dendritic 

tree lends itself to neuronal summation of subthreshold excitatory inputs from 

intralaminar and translaminar cells. The precise arrangement of these synaptic 

associations raises the possibility that imbalanced excitation in the neonate is due to a 

lack of appropriately directed synapses at this stage, especially given the late 

development of inhibitory interneurons (Bicknell & Beal, 1984).  

 

This has been characterised at the postsynaptic level using outside-out patch 

recordings from ventral horn motoneurons of P12-16 (Beato & Sivilotti, 2007). 

Juvenile rat motoneurons were shown to contain a low density of somatic glycine 

receptors, which could result in inefficient glycinergic inhibition and therefore a 

lower probability of coincidental inhibition occurring to outweigh incoming 

excitatory signals. Consistent with this, detailed analysis in neonatal motoneurons 

has shown that the specific location of inhibitory inputs onto a target neurons has a 

profound effect on the neuronal integration of excitatory signals (Jean-Xavier et al., 

2007). The ability of an IPSP to suppress excitatory inputs was largely dependent on 

the location of the inhibitory input and the chloride reversal potential, which has 

again been shown to vary between the soma and dendritic tree of a single neuron 

(Duebel et al., 2006; Jean-Xavier et al., 2007; Glickfeld et al., 2009). Furthermore, 

axo-dendritic inhibitory synapses as described in the immature ventral horn are 

known to preferentially result in local shunting of excitatory signals (Rall, 1959). 

Immature synaptic arrangements in the neonatal dorsal horn could therefore lead to 

glycinergic shunting of afferent input without full hyperpolarisation of the 

postsynaptic neuron. Interestingly, the dendritic localisation of glycinergic receptors 

would in itself account for lower amplitudes and slower decay times of glycinergic 

mIPSCs in the second postnatal week (Lim et al., 1999; Keller et al., 2001; Baccei & 

Fitzgerald, 2004; Keller et al., 2004), at a time when the postsynaptic switch from 

slow α2 homomeric receptors to faster heteromeric glycine receptors has already 

occurred (Malosio et al., 1991).  

 

Several studies have added another level of complexity to spinal networks by 

examining interlaminar differences in glycinergic inhibitory currents. The overriding 
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view appears to follow immunohistochemical studies, whereby glycinergic inhibition 

plays a larger role in the deeper dorsal horn than in superficial laminae (Todd, 1990; 

Poyatos et al., 1997; Spike et al., 1997; Inquimbert et al., 2007; Anderson et al., 

2009). Kinetics of glycinergic currents in the deep dorsal horn are also faster and 

occur at a higher frequency in agreement with its role in the fast inhibition of Aβ 

fibre afferent signals (Inquimbert et al., 2007; Anderson et al., 2009). 

 

5.5 Conclusion 

 

Immature spinal inhibition and dysfunctional descending inhibition have a significant 

influence on the processing of nociceptive stimuli at the level of the dorsal horn. 

Maturation of inhibitory dorsal horn circuitry does not occur for at least two weeks 

after birth, whilst that of descending control upon nociceptive processing appears to 

occur over a much later period. This lack of inhibitory transmission, both from local 

interneurons and from descending fibres of supraspinal sites, leads to an imbalance 

between excitation and inhibition and could be the cause for the characteristic 

sensitivity of neonatal systems. This sensitivity is necessary for the appropriate 

strengthening of synapses within sensory circuits and allows for the appropriate 

reflexes to be mounted in response to noxious stimuli later in life.  

 

Descending facilitation in the early postnatal period may be a means for increasing 

dorsal horn activity to reinforce strengthening synapses within the spinal cord. This 

could also provoke an increase in protein expression over the first three postnatal 

weeks, including that of GlyT2 in lamina III of the dorsal horn. That the maturation 

of descending serotonergic inputs has been shown to promote the phenotypic shift 

from predominantly GABAergic to glycinergic inhibition in other sensory systems 

reinforces the idea of descending control being a key factor in the maturation of 

glycinergic inhibition in spinal sensory circuits (Branchereau et al., 2002; Jean-

Xavier et al., 2006; Sadlaoud et al., 2010). Interestingly, the same has been shown in 

the reverse: strong afferent input into the dorsal horn by means of strengthening C 

fibre mediated input in the neonatal superficial dorsal horn has been shown to be 

integral in the development of descending inhibition. Two separate studies have 

shown that preventing C fibre input by means of neonatal ablation prevents the 
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normal development of descending inhibition to noxious stimuli (Cervero & 

Plenderleith, 1985; Zhuo & Gebhart, 1994). Together, the general facilitatory role of 

glycine in neonatal sensory transduction and the trend towards full facilitation of 

dorsal horn neurons throughout the dorsal horn in the presence of brainstem 

stimulation appear to support the idea of a bimodally-dependent maturation of spinal-

supraspinal connectivity.  

 

An interesting point to consider is the differing roles of spinal and descending 

facilitation. Whereas the role of glycine appears to be in facilitating the transduction 

of innocuous brush - through immature inhibitory networks and perhaps in the lack 

of appropriate synapses - descending facilitation is more tuned towards facilitating 

the transmission of noxious information. Within the first week spinal networks are 

set up to increase activity to non-noxious stimuli in order to strengthen synapses in 

the absence of harmful noxious stimuli at a time when neonates are fragile and 

unable to fend for themselves. Later in the third postnatal week, descending 

facilitation serves as a protector to the young adolescent to draw attention to noxious 

harmful stimuli in order to encourage future avoidance of this stimulus whilst 

strengthening synaptic contacts in the dorsal horn involved in nociceptive 

transmission.  

 

Crucially, in clinics the understanding of neonatal nociceptive processing is still 

lacking and until recently, premature infants were treated as ‘small adults’ as 

opposed to physiologically distinct organisms. Understanding of the details of the 

postnatal maturation of this circuitry will help improve the quality of 

pharmacological treatment of neonatal infants. These could also offer insight into the 

intrinsic plasticity of sensory and nociceptive systems, leading to a greater 

understanding of network changes underlying pain pathologies in the adult. 
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