UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome

Galante, M.; Jani, H.; Vanes, L.; Daniel, H.; Fisher, E.M.C.; Tybulewicz, V.L.J.; Bliss, T.V.P.; (2009) Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome. Human Molecular Genetics , 18 (8) pp. 1449-1463. 10.1093/hmg/ddp055. Green open access

[thumbnail of 20087.pdf]
Preview
PDF
20087.pdf

Download (358kB)

Abstract

Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of human chromosome 21 (Hsa21). Recently, O’Doherty et al. [An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309 (2005) 2033–2037] generated a trans-species aneuploid mouse line (Tc1) that carries an almost complete Hsa21. The Tc1 mouse is the most complete animal model for DS currently available. Tc1 mice show many features that relate to human DS, including alterations in memory, synaptic plasticity, cerebellar neuronal number, heart development and mandible size. Because motor deficits are one of the most frequently occurring features of DS, we have undertaken a detailed analysis of motor behaviour in cerebellum-dependent learning tasks that require high motor coordination and balance. In addition, basic electrophysiological properties of cerebellar circuitry and synaptic plasticity have been investigated. Our results reveal that, compared with controls, Tc1 mice exhibit a higher spontaneous locomotor activity, a reduced ability to habituate to their environments, a different gait and major deficits on several measures of motor coordination and balance in the rota rod and static rod tests. Moreover, cerebellar long-term depression is essentially normal in Tc1 mice, with only a slight difference in time course. Our observations provide further evidence that support the validity of the Tc1 mouse as a model for DS, which will help us to provide insights into the causal factors responsible for motor deficits observed in persons with DS.

Type: Article
Title: Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/hmg/ddp055
Publisher version: http://dx.doi.org/10.1093/hmg/ddp055
Language: English
Additional information: © 2009 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Institute of Cognitive Neuroscience
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
URI: https://discovery.ucl.ac.uk/id/eprint/20087
Downloads since deposit
224Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item