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Abstract

Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor
proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein–protein interaction domains,
thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological
studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that
Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth,
functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in
the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila.
Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival
under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased
metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that
Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies
support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in
both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS
responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions
for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our
findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding
fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism.
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Introduction

SH2B proteins are a recently identified family of intracellular

adaptor proteins that transduce signals downstream of a number

of receptor tyrosine kinases (RTKs). These include the receptors

for insulin, insulin-like growth factor-1, Janus kinase 2 (Jak2),

platelet derived growth factor, fibroblast growth factor and nerve

growth factor [1–5]. Consequently, SH2B proteins have been

shown to function during multiple physiological processes

including glucose homeostasis, energy metabolism, hematopoesis

and reproduction [6–9]. Moreover, mutations in SH2B ortholo-

gues in humans are associated with metabolic disregulation and

obesity. Several SH2B family members have been identified in

mammals so far including SH2B1 (of which there are four splice

variants: SH2B1a, SH2B1b, SH2B1c and SH2B1d), SH2B2

(APS) and SH2B3 (Lnk). They are characterised by a number of

conserved domains including a central pleckstrin homology (PH-)

domain, a C-terminal Src Homology 2 (SH2-) domain, an N-

terminal proline rich region, multiple consensus sites for tyrosine

and serine/threonine phosphorylation and a highly conserved

C-terminal c-Cbl recognition motif [6,10–12]. These domains

function as protein-protein interaction motifs and so allow SH2B

proteins to integrate and transduce intracellular signals from

multiple signaling networks in the absence of intrinsic catalytic

activity [6,10–12].

Biochemical studies have demonstrated that SH2B proteins bind

via their SH2 domains to phosphotyrosine residues within the

intracellular tails of several activated RTKs thereby contributing to

receptor activation [10,13,14]. Once bound, SH2B proteins have

been shown to undergo RTK-stimulated tyrosine phosphorylation

although they might also be serine/threonine phosphorylated in

their basal state as they show anomalous migration on SDS/PAGE

indicative of protein structural modifications [13,15,16]. In vitro

binding assays have identified interactions between SH2B proteins

and a number of other intracellular adaptor proteins including the

insulin receptor substrates IRS1 and IRS2, Grb2, Shc and c-Cbl

[2,17,18]. These interactions may or may not require tyrosine

phosphorylation of SH2B depending on the isoform studied [2,18].

Interactions with IRS proteins promote activation of the phosphoi-

nositol-3 kinase (PI3K) pathway and overexpression in cell culture

has been show to enhance activation of both the PI3K and the Ras/

MapK pathways [17,19]. Binding to the proto-oncogene product,
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c-Cbl, a RING-type E2-dependent ubiquitin protein ligase, may

facilitate either endocytosis or degradation of the receptor through

receptor ubiquitination [16,20]. Thus, SH2B proteins may have

dual functionality in both positively and negatively regulating RTK

signaling.

Mammalian SH2B family members are widely expressed in a

number of tissues suggesting that they may share some overlapping,

redundant functions [13,21,22]. For example, mice carrying a

genetic deletion for SH2B3 show a selective defect in the regulation

of B cell lymphopoeisis. This is consistent with the high levels of

SH2B3 expression observed in hematopoetic organs such as the

bone marrow and lymph nodes [22] and suggests that SH2B3 plays

a specific, non-redundant role in the development of a subset of

immune cells. However, SH2B3 mRNA is also abundant in non-

hematopoetic tissues such as testis, brain and muscle and so

presumably the absence of phenotype in these tissues indicates

redundancy with other SH2B family members [22–24]. Studies into

the physiological functions of SH2B1 and SH2B2 have produced

contradictory results. Genetic deletion of SH2B1 in mice produces

neonatal growth retardation and infertility probably due to

impaired responses to GH or IGF-1 [7]. It was reported that

SH2B1 null mice rapidly increase their body mass and develop

obesity as a result of significantly impaired hypothalamic leptin

signaling resulting in hyperleptinemia and hyperphagia [8,25].

These mice were also shown to have attenuated insulin signaling in

muscle, liver and fat resulting in insulin resistance and diabetes.

More recently, a second model showed that SH2B1 null mice

actually have decreased fat mass possibly caused by a reduction in

adipogenesis as SH2B1 deficiency was associated with reduced

expression of adipogenic genes such as peroxisome proliferator-

activated receptor c (PPARc) and impaired adipocyte differentia-

tion in cell culture [26]. In the case of SH2B2, it was reported that

SH2B2 null mice develop hypoinsulinemia and show increased

insulin sensitivity at young ages [27]. However, more recent reports

saw no effect of SH2B2 deletion on fasted blood glucose, insulin

levels, glucose or insulin tolerance [9]. The reasons for this apparent

discrepancy between studies is unclear but may be confounded by

differences in genetic backgrounds, diet or housing conditions.

Understanding the physiological functions of SH2B proteins in

mammals has therefore been complicated by the presence of

multiple SH2B isoforms and conflicting data from genetic

analyses. The genome of Drosophila melanogaster encodes a single

SH2B homologue (Lnk) that shares a similar domain structure to its

mammalian counterparts, with 36% sequence identity to human

SH2B proteins in its PH-domain and 74% sequence identity in its

PTB domain as well as containing a highly conserved c-Cbl

binding motif. Furthermore, most of the basic metabolic and

signaling pathways that maintain homeostasis are conserved in the

fly providing an ideal context for in vivo studies of SH2B biological

function.

Recent evidence has shown that Drosophila Lnk is a key regulator

of cell growth and proliferation during development [28]. Loss-of-

function mutations in Lnk produce phenotypes reminiscent of

reduced IIS signalling such as growth reduction, developmental

delay and female sterility. Genetic epistasis experiments indicated

that Lnk functions downstream of the Drosophila Insulin Receptor

(dInR) and upstream of PI3K in IIS-mediated growth control.

Genetic epistasis suggested that Lnk may play a similar role as the

insulin receptor substrate, Chico, in the activation of PI3K upon

dInR stimulation during growth [28]. Mutations that reduce IIS

activity in C. elegans, Drosophila and mouse can increase lifespan in

all three organisms, demonstrating that the IIS pathway has

evolutionary conserved roles in the determination of adult lifespan.

In Drosophila, the effects of insulin receptor activity on lifespan

determination are mediated via the Chico/PI3K/forkhead tran-

scription factor [29–32]. Therefore, we investigated whether Lnk

also plays a role in the determination of adult lifespan. Here, we

show that Lnk mutant flies exhibit increased lifespan as well

as improved survival under conditions of oxidative stress and

starvation. We also show that Lnk loss-of-function results in

increased stored energy reserves associated with transcriptional

changes in genes involved in both lipid and carbohydrate

metabolism. Biochemical and genetic data indicate that Lnk

functions within both the IIS and Ras/MapK signaling cascades

and is itself a direct target for transcriptional regulation by the

dFoxo transcription factor.

Results

Lnk mutants have increased lifespan
Novel alleles of Lnk were recently isolated in a genetic screen

looking for new regulators of growth in flies as Lnk loss-of-function

clones were found to cause cell-autonomous growth inhibition

in the developing eye [28]. We have characterised two additional

mutant alleles of Lnk: Lnkd07478 containing a P-element insertion

within the first intron of the Lnk locus and LnkDel29, a small

deletion generated by FLP-FRT recombination between two

pBAC elements that removes the first two exons of Lnk including

the predicted translational start site (Figure 1A). Homozygous

mutants had significantly reduced levels of Lnk transcripts as

measured by quantitative RT-PCR (Figure 1B). Homozygous and

transheterozygous mutants under normal culture conditions were

adult viable but developmentally delayed with an overall reduction

in body size as a result of reduced cell size and cell number

(Figure 1C and 1D). No further reductions in growth were

observed in hemizygous combinations over a deficiency that

removes the entire Lnk locus suggesting that they represent strong

loss-of-function alleles (Figure 1C). In addition, we were able to

fully rescue the growth defects of LnkDel29 homozygotes by

introducing a genomic rescue construct containing the entire Lnk

locus indicating that these growth defects are specific to Lnk

(Figure 1C).

Author Summary

Many human populations are experiencing increased life
expectancy, and as populations age the incidence of age-
related diseases becomes more prevalent. The identifica-
tion of single gene mutations that extend lifespan in
invertebrate model organisms has revealed that several
cellular signaling pathways, including the insulin/insulin-
like growth factor (IGF)-1 signaling (IIS) pathway, play a
crucial role in modulating the ageing process across
multiple species. Thus, studies carried out in yeast, worms,
and flies have revealed evolutionarily conserved mecha-
nisms of ageing, which are likely to be relevant to
mammals, including humans. A recent study in Drosophila
identified the SH2B family adaptor protein, Lnk, as an
important regulator of the IIS pathway during organismal
growth. In this study, we show that Lnk is also required to
determine normal lifespan in Drosophila, as mutations that
disrupt Lnk activity result in increased lifespan. In addition,
these mutants show improved survival under conditions of
stress and metabolic disregulation. Furthermore, we show
that the expression of Lnk is regulated by the IIS
responsive transcription factor, dFoxo. Our data therefore
provide new mechanistic insights into the role of the IIS
pathway in ageing.

Lnk Regulates Lifespan, Metabolism, and Stress
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Figure 1. Lnk loss-of-function mutations reduce body size. (A) Schematic representation of the Lnk locus along with the flanking genes
CG17370, CG5913 and CG5948. The three Lnk transcripts (RA, RB, and RC) are shown along with the positions of the P-element insertion d07478 and
the deletion Del29. Arrows show the position of primers used for the quantitative RT–PCR in (B). (B) Quantitative RT–PCR analysis of Lnk transcript
expression in 7-day old female flies. Lnk transcripts were amplified using the primers indicated in (A) and normalised to actin5C. (C) Mean wing area

Lnk Regulates Lifespan, Metabolism, and Stress
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Both alleles were backcrossed for more than eight generations

into two distinct genetic backgrounds: the inbred w1118 strain and

the outbred wDahomey (wDah) strain. We then assayed heterozygotes

and homozygotes of both alleles for longevity. After backcrossing

into the w1118 genetic background, heterozygosity for either

Lnkd07478 or LnkDel29 did not result in any significant differences in

lifespan in either males or females (Figure 2A, 2B, 2E, and 2F). In

contrast, we observed significant increases in both median and

maximum lifespan in both males and females homozygous mutant

for either allele when compared to wild-type controls (Figure 2A,

2B, 2E, and 2F). Furthermore, the longevity effects of LnkDel29

males and females were fully reproducible after backcrossing into

wDah (Figure 2C and 2G) and the lifespan extension observed in

females homozygous mutant for LnkDel29 was fully rescued by the

introduction of a Lnk genomic rescue construct (Figure 2I), thereby

confirming a role for Lnk in lifespan determination.

In addition to increased lifespan, homozygous Lnk females

produced significantly fewer eggs compared to their wild-type

counterparts, especially LnkDel29 homozygous females, which were

practically sterile (Figure 2D). Furthermore, Lnk mutant ovaries

were dramatically reduced in size and contained immature oocytes

that were arrested in previtellogenic stages of oogenesis (data not

shown) and the egg laying defects observed in LnkDel29 homozygous

females were fully rescued in the presence of a Lnk genomic rescue

construct (Figure 2J). We observed no obvious defects in the

fertility of Lnk homozygous males and females mated to Lnk

mutant males produced comparable numbers of eggs as females

mated to w1118 males (Figure 2H).

Lnk mutants are stress resistant and show metabolic
disregulation

Interventions that extend lifespan are often associated with

enhanced resistance to various stresses [29,33]. We therefore

tested the ability of Lnk mutant flies to survive under conditions of

oxidative stress and starvation. To induce oxidative stress, flies

were starved for 5 hours and then fed 5% hydrogen peroxide in a

sucrose/agar media. Both males and females, homozygous mutant

for Lnk, showed significantly increased median survival times when

fed 5% hydrogen peroxide compared to control flies under an

identical regime (Figure 3A and 3B). Furthermore, this increased

resistance to hydrogen peroxide was fully rescued in both sexes

upon introduction of the Lnk genomic rescue construct (Figure 3A

and 3B). We also observed a significant increase in survival times

when Lnk mutant males and females were maintained on an agar-

only diet to induce starvation (Figure 3C and 3D). Again, the

starvation resistance observed in Lnk mutants was fully rescued in

both sexes in the presence of the Lnk genomic rescue construct

(Figure 3C and 3D). Moreover, resistance to hydrogen peroxide

and starvation were observed with both Lnk mutant alleles and in

both genetic backgrounds (Figure S1).

Enhanced survival under conditions of starvation is often

associated with increased levels of stored energy resources indicative

of a disruption to metabolic homeostasis. In flies, metabolised

nutrients are primarily stored as triglycerides (TAG) and glycogen in

the fat body, the insect equivalent of the mammalian liver and white

adipose tissue. We observed significantly elevated levels of both

TAG and glycogen in whole-fly extracts of both males and females

when we compared Lnk mutants to wild-type controls (Figure 3E

and 3F). These elevated levels of TAG and glycogen were restored

back down to those observed in wild-type flies in the presence of a

Lnk genomic rescue construct (Figure 3E and 3F) Despite the

observed differences in metabolic stores, we did not detect any

obvious differences in the feeding behaviour of Lnk mutant flies

compared to age-matched controls (Figure S2) suggesting that this

increase in metabolic stores is unlikely to be mediated by increased

feeding but by changes in cellular metabolism.

In addition to glycogen, adult insects possess a second metabolic

pool of carbohydrate in the form of the disaccharide trehalose

which is a major sugar in the fat body, thorax muscles and

hemolymph and is rapidly consumed during certain energy-

requiring activities such as flight. We found that whole-body levels

of trehalose were also significantly increased in Lnk mutant males

and females when compared to controls (Figure 3G) and again,

these elevated levels of trehalose were restored to those observed in

wild-type flies by the introduction of the Lnk genomic rescue

construct (Figure 3G). However, when we measured trehalose

levels in hemolymph extracted from either third instar or adult

flies we found no significant differences between Lnk mutants and

controls (data not shown). The total volume of hemolymph in an

adult fly is extremely small (approximately 0.1 ml) and so the

contribution of hemolymph trehalose to the total trehalose content

can be regarded as negligible. Thus, the increase in trehalose

content in whole fly extracts is almost certainly caused by

increased tissue trehalose stores. Insect hemolymph also contains

circulating glucose which is obtained from the diet and again, we

found no significant differences in circulating glucose levels in Lnk

mutants compared to controls (data not shown).

Transcriptional changes in Lnk mutants
In order to investigate further the molecular mechanisms of Lnk

function, we performed microarray studies comparing the

transcriptome of homozygous Lnk mutants to controls. FlyAtlas,

a microarray-based atlas of adult gene expression in multiple

Drosophila tissues (http://www.flyatlas.org; [34]), shows that Lnk

mRNA is widely expressed in the adult fly but that transcripts are

particularly enriched in the central nervous system. We therefore

performed our transcriptome analysis on RNAs extracted from the

heads of control and Lnk homozygous mutant females. After

extraction, RNAs were labelled and hybridised to Affymetrix

Drosophila 2.0 microarrays. All experiments were conducted in

quadruplicate to facilitate statistical analysis. The raw data files

were background corrected and normalised using the R

programming language (see Material and Methods).

Using biological annotation available through the Gene Ontology

(GO), we analysed our dataset using Catmap analysis. Catmap

assigns significance to functional categories based on their represen-

tation within a ranked list of differentially expressed genes. This

generated a list of GO terms associated with genes that show altered

expression in Lnk mutants compared to controls (Table S1). The

majority of the downregulated GO terms are involved in the

metabolism of carbohydrates, amino acids, lipids and fatty acids

suggesting that cellular metabolic processes are downregulated in Lnk

mutant animals. Among the most significant upregulated GO terms

are many linked to signal transduction and transcription indicating

that these processes are upregulated in Lnk mutants compared to

controls.

and body mass for male and female flies of the indicated genotypes. Data are represented as means 6 SEM (n = 10 for each measurement).
Percentage differences compared to w1118 controls are indicated (n.s. = not significantly different). (D) The wings of homozygous Lnk mutant females
contain fewer and smaller cells compared to the w1118 controls. Data are shown as means 6SEM (n = 10). ** denotes statistically significant difference
(p,0.05).
doi:10.1371/journal.pgen.1000881.g001
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We then determined gene expression changes in our data set

using a linear model. This study revealed that 2483 transcripts show

significant differential expression (p,0.05; .0.1-fold) between Lnk

mutants and controls with 1768 genes showing increased expression

and 715 genes with decreased expression (Table S2). We compared

this data set to a previously reported list of 484 transcripts that

function in Drosophila metabolic pathways [35] and found that a

number of genes in our differentially expressed gene list overlap with

genes that regulate carbohydrate and lipid catabolism (Table S3).

Downregulated genes included genes encoding several enzymes of

the glycolytic pathway and the mitochondrial b-oxidation pathway

while genes involved in glycogen synthesis and lipid storage showed

upregulated expression. These changes in gene expression are

consistent with an overall metabolic switch from catabolism to

synthesis/storage and are congruent with our findings that Lnk

mutants show increased levels of metabolic stores.

Interestingly, a number of transcripts that function in the IIS

pathway were found to be upregulated in Lnk mutants compared

to controls. The mammalian SH2B proteins have been shown

biochemically to function as intracellular adaptors for the

mammalian insulin receptor and recent genetic data from

Drosophila has shown that Lnk may play a similar role to chico

during IIS-mediated growth control. We therefore compared our

data set to a comprehensive list of transcripts that function in the

IIS pathway in Drosophila (Figure 4A and Table S4). We found

upregulation of transcripts encoding positive regulators of IIS

including the insulin-like ligands dilp2, dilp3, dilp5 and dilp6 as well

as chico, Dp110, PDK-1 and dAkt. In contrast, we found

downregulation of transcripts that encode negative regulators of

the IIS pathway such as the IGFBP-like, ImpL2, and the PI3kinase

inhibitor, Susi. Several of these IIS gene expression changes were

further confirmed by quantitative RT-PCR (Figure 4B).

Transcriptional outputs of the IIS pathway are mediated via

several downstream effectors including the forkhead transcription

factor, dFoxo, the Ras/MapK signaling pathway and the protein

kinase complex TORC1, all of which have been shown to regulate

gene expression either directly or indirectly. Further examination

of our microarray data set identified four known dFoxo target

genes with upregulated expression: split-ends (CG18497), ches-1-like

(CG12690), eIF-4E (CG4035) and CG9009 (Table S4). In addition,

we observed increased expression of two additional well-char-

acterised dFoxo target genes, 4eBP and dInR by qRT-PCR

(Figure 4C). These data therefore suggest that dFoxo activity is

increased in Lnk mutant flies.

Using EASE analysis followed by Fisher’s exact test for statistical

significance and Bonferroni correction for multiple comparisons,

we found that IIS pathway genes and genes classified by Flybase in

the functional category of Ras signal transduction were over-

represented in our data set (p = 0.002 and p = 0.004, respectively)

(Table S4). In contrast, genes of the canonical TOR signaling

pathway were not significantly over-represented in our data set

(p = 0.784) (Table S4). Taken together, these data suggest

significant transcriptional feedback onto the IIS via dFoxo and

the Ras/MapK pathway but not via TOR signaling in Lnk mutant

animals.

The potential for transcriptional feedback by dFoxo onto

upstream components of the IIS cascade suggested that expression

of Lnk itself may be regulated by dFoxo activity. We therefore

looked for perfect matches to the mouse Foxo1/Foxo4 consensus

binding site (RWWAACA) within 3Kb upstream of the Lnk

translational start site and identified eight putative dFoxo binding

sites in the Lnk promoter. To determine if dFoxo is indeed bound

at the Lnk promoter, we performed chromatin immunoprecipita-

tion (ChIP) using a specific dFoxo antibody [36]. Quantitative

PCR (qPCR) was used to compare the relative DNA binding of

dFoxo at a 59 region of the Lnk promoter to two negative control

genomic regions: a region within the U6 snRNA promoter and a

region 39 to the Lnk locus just downstream of the last exon

(Figure 5A). We observed a significant increase in the relative

DNA binding at the Lnk promoter region compared to the

negative controls (Figure 5B). The magnitude of this increase in

relative DNA binding (approximately 2-fold) was comparable to

that observed for Lk6, a known dFoxo target gene (Figure 5B). In

addition, we observed further increases in dFoxo DNA-binding at

both loci in flies that had been starved or treated with paraquat

prior to chromatin extraction, conditions in which dFoxo is

activated (Figure 5B). Furthermore, quantitative RT-PCR analysis

of Lnk expression in RNA extracts from foxo mutant flies revealed

that Lnk transcript levels are significantly elevated the absence of

dFoxo (Figure 5C) suggesting that dFoxo may normally function to

repress Lnk expression.

Lnk as a component of the Drosophila IIS and Ras/MapK
pathways

To assess the biological significance of a regulatory role for Lnk in

the IIS and Ras/MapK pathways, we examined the effects of

RNAi-mediated knockdown of Lnk expression on insulin-stimulated

Figure 2. Mutation of Lnk extends lifespan in both sexes and reduces female fecundity. (A) w1118-backcrossed females. Median lifespans are:
57 days for w1118 (n = 196), 58 days for Lnkd07478/+ (n = 203) and 65 days for Lnkd07478/Lnkd07478 (n = 163). Log rank test x2 and p-values: w1118 versus
Lnkd07478/+ (x2 = 1.7, p = 0.192) and w1118 versus Lnkd07478/Lnkd07478 (x2 = 90.2 , p,0.0001). (B) w1118-backcrossed females. Median lifespans are 61 days for
w1118 (n = 173), 59 days for LnkDel29/+ (n = 200) and 68 days for LnkDel29/LnkDel29 (n = 182). Log rank test x2 and p-values: w1118 versus LnkDel29/+ (x2 = 2.2,
p = 0.139) and w1118 versus LnkDel29/LnkDel29 (x2 = 65.2, p,0.0001). (C) wDah-backcrossed females. Median lifespans are 63 days for wDah (n = 179), 66 days
for LnkDel29/+ (n = 177) and 68 days for LnkDel29/LnkDel29 (n = 178). Log rank test x2 and p-values: wDah versus LnkDel29/+ (x2 = 4.67, p = 0.03) and wDah versus
LnkDel29/LnkDel29 (x2 = 53.09, p,0.0001). (D) Reduced fecundity in Lnk homozygous mutant females. Index of lifetime fecundity represents the mean
number of eggs laid per female per day at 10 time points during the first 40 days of life. Index of lifetime fecundity in Lnk homozygous mutant females
(white bars) is significantly reduced compared to control flies (w1118; dark grey bars) and heterozygotes (light grey bars). Data are shown as means
6SEM. ** denotes statistically significant difference (p,0.05). (E) w1118-backcrossed males. Median lifespans are 57 days for w1118 (n = 198), 57 days for
Lnkd07478/+ (n = 196) and 67 days for Lnkd07478/Lnkd07478 (n = 190). Log rank test x2 and p-values: w1118 versus Lnkd07478/+ (x2 = 0.1 , p = 0.778) and w1118

versus Lnkd07478/Lnkd07478 (x2 = 107.0, p,0.0001). (F) w1118-backcrossed males. Median lifespans are 63 days for w1118 (n = 192), 63 days for LnkDel29/+
(n = 181) and 71 days for LnkDel29/LnkDel29 (n = 144). Log rank test x2 and p-values: w1118 versus LnkDel29/+ (x2 = 0.5, p = 0.463) and w1118 versus LnkDel29/
LnkDel29 (x2 = 37.0, p,0.0001). (G) wDah-backcrossed males. Median lifespans are 52 days for wDah (n = 169), 52 days for LnkDel29/+ (n = 168) and 61 days for
LnkDel29/LnkDel29 (n = 171). Log rank test x2 and p-values: wDah versus LnkDel29/+ (x2 = 0.24, p = 0.627) and wDah versus LnkDel29/LnkDel29 (x2 = 44.89,
p,0.0001). (H) Mean number of eggs laid per w1118 female crossed to males of the indicated genotype. Data are shown as mean number of eggs laid per
female fly over a four day period 6 SEM. (I) Genomic rescue (GR) of Lnk in wDah-backcrossed females. Median lifespans are 67 days for wDah (n = 151), 74
days for LnkDel29/LnkDel29 (n = 150) and 66 days for LnkGR;LnkDel29/LnkDel29 (n = 92). Log rank test x2 and p-values: wDah versus LnkDel29/LnkDel29 (x2 = 33.87,
p,0.0001) and wDah versus. LnkGR;LnkDel29/LnkDel29 (x2 = 0.71, p = 0.40). (J) Genomic rescue of female fertility defects. Eggs were counted on day 7 of the
lifespan experiment shown in (I). Data are shown as mean number of eggs/female over a 24 hour period 6 SEM. ** denotes statistically significant
difference (p,0.05).
doi:10.1371/journal.pgen.1000881.g002
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signaling in insect cells. Activation of the dInR by insulin triggers

activation of both the PI3K and the Ras/MapK branches of the

insulin signaling pathways resulting in the phosphorylation of

various intracellular effectors, including Akt and the MapK, Erk-A

[37]. RNAi-mediated knockdown of Lnk resulted in reduced levels

of phosphorylated Akt and Erk-A upon insulin stimulation with no

significant change in the levels of total protein (Figure 6). This

reduction in phosphorylated Akt and Erk-A was comparable to that

caused by RNAi-mediated knockdown of either the dInR or its

intracellular substrate, chico, suggesting that Lnk expression is

required for full insulin signaling transduction via both the PI3K

and MAPK branches of the IIS pathway in cultured cells.

Discussion

Our understanding of the physiological roles of the SH2B family

of intracellular adaptors has been complicated by the presence of

multiple family members in mammals. Furthermore, phenotypic

analysis of genetic knockouts in mice has produced contradictory

results. Recent genetic evidence has described a role for the single

ancestral SH2B protein in Drosophila (Lnk) during IIS-mediated

growth control. Here, we have characterised a critical role for Lnk

in the regulation of lifespan, stress responses and cellular

metabolism. Our results support a model in which Lnk functions

as an intracellular adaptor for transduction of the IIS and Ras/

MapK signaling cascades to mediate these physiological processes.

A recent genetic study has shown that mutations in Drosophila

Lnk produce phenotypes reminiscent of reduced IIS during

development including impaired growth, developmental delay

and female sterility. Genetic epistasis experiments placed Lnk

downstream of dInR and upstream of PI3K at the same level as

Chico, the single fly insulin receptor substrate. Mutations in both

chico and Lnk produce similar phenotypes and display similar

reductions in IIS activity. Furthermore, flies homozygous mutant

for both genes are lethal suggesting that they may be functionally

redundant. The precise mechanisms whereby mammalian SH2B

proteins transduce intracellular signaling from the insulin receptor

remain unclear although like the IRS proteins, they have been

shown to bind to multiple downstream mediators such as PI3K

and Grb2 [6]. However, Drosophila Lnk lacks a consensus binding

site for PI3K which is present in Chico so it is unlikely that they

regulate similar downstream mechanisms.

The IIS pathway has an evolutionary conserved role in the

determination of adult lifespan mediated by the Chico/PI3K/

dFoxo branch of the IIS cascade. Previous studies have shown that

flies either homozygous or heterozygous for chico1, a strong loss-of-

function allele of chico, show increased lifespan [38]. We have

shown that Lnk homozygotes also show increased lifespan although

no obvious effects on lifespan were observed in heterozygous

animals. Interestingly, the effects of Lnk mutation on lifespan

extension were similar in both males and females, which is

uncommon in Drosophila, even for IIS mutants. This data therefore

suggests that as during growth regulation, signaling via the

activated dInR during lifespan determination may require a

second intracellular adaptor in addition to the insulin receptor

substrate, Chico, and provides the first evidence of a role for SH2B

proteins in lifespan determination.

Lifespan extension in females was associated with reduced

fecundity as a result of an arrest in oogenesis. However, there were

no visible effects of Lnk mutation on male fertility as measured by

offspring production. As male homozygous mutants were also

long-lived, this suggests that the extended lifespan of Lnk mutant

females is not simply due to reduced fecundity. Genetic knockouts

of SH2B1 in mice also show infertility due to impaired signal

transduction from the IGF-1 receptor resulting in poor gonad

development [7]. The sex-specific differences on fertility observed

in Lnk mutants are probably due to sex-specific differences in Lnk

transcript expression as microarray analyses of Drosophila gene

expression has shown that Lnk transcripts are enriched within the

female ovary but not in the male testis or accessory glands (http://

www.flyatlas.org; [34]).

A comparison of the transcriptomes of Lnk mutant flies to

controls revealed a number of gene expression changes associated

with genes that encode components of the Drosophila IIS pathway.

Hence, we observed upregulation of a number of factors that

potentiate IIS such as the insulin-like ligands dilp2, dilp3, dilp5 and

dilp6, as well as the insulin receptor substrate chico, the Drosophila

class I PI3K, Dp110, phosphoinositide-dependent protein kinase

PDK-1 and dAkt. In contrast, the expression of negative regulators

of IIS such as the IGFBP-like ImpL2 and the PI3kinase inhibitor

susi were downregulated. Several of these changes in expression

were confirmed by qRT-PCR analysis and these data suggest that

IIS transduction is affected by Lnk mutation, further strengthening

the genetic evidence that Lnk is a component of the IIS pathway in

flies. Transcriptional regulation downstream of IIS is in part

mediated by the dFoxo transcription factor which is activated in

response to low IIS by dAkt-mediated phosphorylation. While we

did not observe any differences in dFoxo mRNA or protein levels

in Lnk mutants compared to controls (data not shown), a number

of dFoxo target genes did show changes in expression. Thus, split-

ends (CG18497), ches-1-like (CG12690), eIF-4E (CG4035) and

CG9009 all showed upregulated expression in our microarray

data set. We also observed increased expression of two well-

characterised dFoxo target genes, 4eBP and dInR, by quantitative

RT-PCR. Taken together, these data suggest that dFoxo activity

may be increased in Lnk mutant animals.

Interestingly, we observed a marked difference in the magnitude

of increased expression of both 4eBP and dInR between different

body parts. Thus, for 4eBP we observed a 1.1-fold increase in

expression in head RNA extracts compared to a 3.8-fold increase

Figure 3. Lnk mediates responses to oxidative stress and starvation and is required for metabolic regulation. (A) Survival of male flies
fed 5% hydrogen peroxide. Lnk mutant males live approximately 50% longer than controls and mutants carrying a Lnk genomic rescue (GR) construct
(p,0.001). Median survival times are 2.6 days for wDah (black line; n = 97), 3.9 days for LnkDel29 (blue line; n = 93) and 2.6 days for LnkGR; LnkDel29/
LnkDel29 (green line; n = 100). (B) Survival of female flies fed 5% hydrogen peroxide. Lnk mutant females live approximately 50% longer than controls
and mutants carrying a Lnk genomic rescue (GR) construct (p,0.001). Median survival times are 3.1 days for wDah (black line; n = 93), 5.6 days for
LnkDel29 (red line; n = 105) and 3.1 days for LnkGR; LnkDel29/LnkDel29 (green line; n = 100). (C) Survival of male flies under starvation conditions. Lnk
mutant males live 30% longer than controls and mutants carrying a Lnk genomic rescue (GR) construct (p,0.001). Median survival times are as
follows: 2.0 days for wDah (black line; n = 92), 2.6 days for LnkDel29 (blue line; n = 86) and 1.9 days for LnkGR; LnkDel29/LnkDel29(green line; n = 97). (D)
Survival of female flies under starvation conditions. Lnk mutant females live 35% longer than controls and mutants carrying a Lnk genomic rescue
(GR) construct (p,0.001). Median survival times are as follows: 4.3 days for wDah (black line; n = 94), 5.8 days for LnkDel29 (red line; n = 95) and 4.7 days
for LnkGR; LnkDel29/LnkDel29 (green line; n = 95). (E) Whole-fly content of triglycerides (TAG) per mg of fly (fresh weight). Data are presented as means
(n = 10) 6 SEM. ** denotes statistically significant difference (p,0.05). (F) Whole-fly glycogen content per mg of fly (fresh weight). Data are presented
as means (n = 10) 6 SEM. ** denotes statistically significant difference (p,0.05). (G) Whole-fly trehalose content per mg of fly (fresh weight). Data are
presented as means (n = 10) 6 SEM. ** denotes statistically significant difference (p,0.05).
doi:10.1371/journal.pgen.1000881.g003
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Figure 4. Regulation of signal transduction pathway gene expression in Lnk mutants. (A) Heat map showing expression of genes within
the IIS and Ras/MapK signal transduction pathways that were significantly altered in Lnk mutants compared to controls. Red indicates lower
expression; blue indicates higher expression (scale = log2 fold change). (B) Transcript levels of six IIS pathway genes measured by qRT-PCR and
normalised to actin5C. RNA was extracted from adult female heads. Data are represented as mean normalised transcript level 6 SEM (n = 4; **
p,0.05). (C) 4eBP and dInR mRNA levels measured by qRT-PCR and normalised to actin5C. RNA was extracted from either heads or bodies of adult
females. Data are represented as mean normalised transcript level 6 SEM (n = 4; ** p,0.05).
doi:10.1371/journal.pgen.1000881.g004
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in RNA extracts from bodies. Similarly, for dInR we observed a

1.5-fold increase in expression in head RNA extracts compared to

a 2.6-fold increase in body RNA extracts. These data suggest that

different tissues may exhibit differences in the magnitude of the

transcriptional response to Lnk loss of function. As our microarray

experiments were performed on RNA isolated from adult heads

only, this may explain why 4eBP and dInR were not identified in

the microarray data set as microarray analysis of gene expression is

generally regarded as less sensitive than qRT-PCR especially when

changes in expression are small.

The observations that upstream components of the IIS pathway

show transcriptional upregulation in response to Lnk loss of

function suggest that transcriptional feedback back onto multiple

components of the pathway may play an important regulatory role

in IIS signal transduction. Previous studies have shown that dInR is

itself a direct target of dFoxo so that when IIS levels are low,

Figure 5. dFoxo binds to the promoter of Lnk and regulates Lnk expression. (A) Schematic diagram showing in vivo binding region for
dFoxo at the Lnk locus as detected by chromatin immunoprecipitation (ChIP). Transcriptional start sites and the direction of transcription are
indicated by arrows. The genomic region 39 to the Lnk locus is also marked. (B) Quantitative PCR (qPCR) on the Lnk promoter, a 39 region of the Lnk
gene [as highlighted in (A)], the known dFoxo target gene, Lk6 and the U6 snRNA promoter (-87 to +61 from transcriptional start) to determine the
proportion of DNA recovered after ChIP using anti-dFoxo antibody under normal, starvation and paraquat-treated conditions. Relative DNA binding
was calculated as the proportion of chromatin recovered in the ChIP divided by that in the total chromatin preparation. Data are presented as mean
fold-changes in relative DNA–binding compared to U6 6 SEM of three biological repeats (** p,0.05). (C) Lnk mRNA levels in dFoxo mutant flies
measured by qRT–PCR and normalised to actin5C. Data are represented as mean normalised transcript level 6 SEM (n = 3; **p,0.05).
doi:10.1371/journal.pgen.1000881.g005

Lnk Regulates Lifespan, Metabolism, and Stress

PLoS Genetics | www.plosgenetics.org 10 March 2010 | Volume 6 | Issue 3 | e1000881



activated dFoxo increases dInR expression. In this study, we have

shown that dFoxo also binds to the Lnk promoter in vivo suggesting

that Lnk itself may be a direct target of dFoxo. dFoxo activity may

also regulate transcription of IIS genes under basal conditions.

Previous studies have shown that dFoxo is required for the basal

expression of the dilp3 ligand [39]. In our study, we found that in

the absence of dFoxo, Lnk transcript expression increases

suggesting that dFoxo activity is normally required for Lnk

repression. Thus, regulation by dFoxo may involve both positive

and negative effects on gene expression.

Our microarray data set also contained a number of

differentially expressed genes that function within the Ras/MapK

signal transduction pathway. Previous studies have shown that the

Ras binding domain of Drosophila PI3K is required for maximal

PI3K activity during growth and female egg laying linking Ras/

MapK and IIS during growth and development in Drosophila [40].

Furthermore, we have shown that RNAi-mediated knockdown of

Lnk inhibits insulin-stimulated Erk phosphorylation in insect cells.

We cannot exclude the possibility that Lnk may play an adaptor

function for Ras signaling downstream of other RTKs in addition

to the insulin receptor. However, it should be noted that Lnk RNAi

knockdown has no effect on Spitz-stimulated Erk phosphorylation

via activation of the Drosophila EGF receptor [41].

Despite their small body size, Lnk mutants contain elevated

levels of both lipid and carbohydrate stores. Consistent with their

increased metabolic stores, Lnk mutants also showed increased

survival under starvation conditions. Transcriptome analysis

revealed gene expression changes in a number of components of

metabolic regulation in Lnk mutants compared to controls. Thus,

we observed reduced expression of several enzymes that function

in the glycolytic pathway and upregulation of genes that function

in glycogen synthesis. In addition, several genes in the mitochon-

drial b-oxidation pathway were downregulated whereas genes

involved in the regulation of lipid storage showed increased

expression. Taken together, these changes in gene expression are

consistent with an overall inhibition of catabolic processes and

upregulation of pathways that regulate the synthesis and storage of

carbohydrates and lipids.

Studies on the metabolic defects of SH2B knockouts in mice have

proved inconsistent. One group has shown that genetic deletion of

SH2B1 impairs adipogenesis by downregulating adipogenic gene

expression including PPARc resulting in mice with decreased fat

mass [26]. A Drosophila PPAR homolog has yet to identified but the

closest Drosophila relative is the orphan receptor, E75 [42]. This gene

was not among the differentially expressed gene list from our

microarray data. Other studies have shown that SH2B1 null mice

actually increase their body mass and develop obesity as a result of

hyperphagia [8,9]. In mammals, feeding is regulated by hypothal-

mic leptin signaling. Binding of leptin to its receptor results in

receptor activation which in turn interacts with the non-receptor

Janus kinase (Jak) stimulating downstream signaling events. Leptin

stimulation of Jak is strongly potentiated by SH2B1 binding and so

SH2B1 deletion impairs leptin signaling via Jak [4,43,44]. We did

not observe any obvious differences in the feeding behaviour of Lnk

mutant flies and there is no evidence to date that a leptin-like

hormone exists in Drosophila. A functional Jak has been identified

encoded by the hopscotch (hop) gene that has a well characterised role

in hematopoesis in flies. We did not observe any obvious

hematopoetic defects in Lnk mutants and Lnk was not found to

genetically interact with any of the core JAK/STAT pathway

components (data not shown). Our data therefore suggests that the

increased adiposity in Lnk mutant flies is unlikely to be mediated by

increased feeding or by defects in Jak signaling. In fact, our data

suggest that the ancestral function of Lnk in Drosophila is to regulate

carbohydrate and fat storage by regulating gene expression of

several key metabolic regulatory pathways.

In mammalian cells, SH2B proteins have been shown to have

dual functions during insulin signaling transduction by both

activating and inhibiting downstream intracellular signaling

events. Phosphorylation of SH2B2 by the activated insulin

receptor creates a binding site for the proto-oncogene product

c-Cbl. This promotes the ubiquitination of tyrosine kinase

receptors by functioning as a RING-type E2-dependent ubiquitin

protein ligase facilitating either endocytosis or proteasomal

degradation of the receptor [16,20]. The c-Cbl binding motif is

conserved in Drosophila Lnk and so it will be of interest to

determine whether the interaction with c-Cbl is important for Lnk

function especially during lifespan regulation.

Materials and Methods

Fly stocks and husbandry
w1118 and Lnkd07478 were obtained from the Bloomington

Drosophila Stock Centre. yw, dfoxo21a/TM3 and dfoxo25c/TM3

Figure 6. Lnk expression is required for insulin signaling and Ras/MapK signal transduction in flies. Western blot analysis of Akt and Erk-
A phosphorylation in protein extracts of Drosophila S2 cells after treatment with the indicated dsRNAs before (-) and after (+) stimulation with human
insulin. Knockdown of dInR, chico, or Lnk expression inhibits both Akt and Erk-A phosphorylation after insulin stimulation whereas knockdown of Shc
inhibits phosphorylation of Erk-A only consistent with its role as an adapter for Ras/MAPK signaling. dsRNA against GFP was used as a negative
control. Blots were probed with anti-tubulin as a loading control. Knockdowns of Lnk and chico transcripts were confirmed by Northern blot;
knockdowns of dInR and Shc expression were confirmed by western blot (data not shown).
doi:10.1371/journal.pgen.1000881.g006
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were a gift from the Hafen lab [45]. The dfoxo21a and dfoxo25c

alleles were backcrossed for at least 6 generations into the yw

background before use. The LnkDel29 deletion was generated using

the pBAC insertions Lnke01414 and Lnkf02642 (obtained from the

Exelixis Collection at Harvard Medical School) according to

published protocols [46]. A 6 kb fragment spanning from the 39

end of CG17370 to the beginning of the first exon of CG5913 was

used for the genomic rescue construct. This was inserted by means

of WC31 mediated integration into a landing site on the second

chromosome at 51D [28]. The wild-type stock Dahomey was

collected in 1970 in Dahomey (now Benin) and has since been

maintained in large population cages with overlapping generations

on a 12L:12D cycle at 25uC. The white Dahomey (wDah) stock was

derived by incorporation of the w1118 deletion into the outbred

Dahomey background by successive backcrossing. Both w1118 and

wDah stocks were negative for the endosymbiont Wolbachia as

determined by PCR using primers specific to Wolbachia genomic

DNA. Lnk mutants were backcrossed for at least 8 generations into

both w1118 and wDah genetic backgrounds before phenotypic

analyses. Stocks were maintained and all experiments were

conducted at 25uC on a 12h:12h light:dark cycle at constant

humidity using standard sugar/yeast/agar (SYA) medium [47].

For all experiments including lifespan experiments flies were

reared at standard larval density and eclosing adults were collected

over a 12 hour period. Flies were mated for 48 hours before

sorting into single sexes.

Body size measurements
Body weights of individual male and female 7-day old flies

(n = 10 for each genotype) were measured using a precision

balance. Wing areas, cell numbers and cell sizes were measured as

previously described [48].

Fertility tests
For female fecundity tests, female flies were housed with males

for 48 hours post-eclosion and then separated into vials at a density

of 5 or 10 females per vial. Eggs were collected over two 24-hour

periods per week for 4 weeks. The number of eggs laid per vial at

each time point was counted. For male fertility tests, individual 3

day old males were mated to 30 virgin females, 3 to 5 days of age.

Matings were observed and then females were separated from the

males and housed in vials at a density of 3 females per vial. Eggs

were collected and counted over four consecutive 24 hour periods.

Lifespan experiments
For lifespan experiments, flies were maintained in vials at a

density of 10 flies per vial on standard SYA medium. Flies were

transferred to new vials three times per week.

Stress experiments
For all stress assays, flies were reared and housed as for lifespan

experiments. For oxidative stress assays, 4-day old flies were first

starved for 5 hours on 1% agar and then transferred onto 5%

sucrose/agar containing 5% hydrogen peroxide. For starvation

experiments, 7-day old flies were transferred to 1% agar.

Feeding experiments
Feeding rates of flies were measured using a proboscis-extension

assay in undisturbed conditions as previously described [49] using

7-day-old mated flies. Flies were housed at a density of 5 flies of the

same sex per vial and transferred to new food on the evening

before the assay. Feeding data is expressed as a proportion by

experimental group (sum of scored feeding events divided by total

number of feeding opportunities, where total number of feeding

opportunities = number of flies in vial6number of vials in the

group6number of observations). For statistical analyses, compar-

isons between experimental groups were made on the totals of

feeding events by all flies within a vial, to avoid pseudoreplication.

S2 cell culture and western blots
Drosophila S2 cell culture, dsRNA treatment and insulin

treatment were as described in [37]. For western blots, 40 mg of

total protein were resolved on 10% Tris-Glycine-SDS. Proteins

were transferred to PVDF membranes and probed for total Akt

(1:1000; Cell Signaling), phospho-Akt (1:1000; Cell Signaling), Erk

(1:1000; Cell Signaling), phospho-Erk (1:1000; Cell Signaling) and

tubulin (1:5000; Sigma). Secondary antibodies conjugated to HRP

were purchased from Biorad.

Glucose and trehalose measurements
Hemolymph was collected and pooled from either 5 third instar

larvae or 12 3-day old adult female flies. Glucose and trehalose

levels were measured using the Glucose Infinity Reagent

(ThermoScientific) as described in [33]. Whole fly trehalose in

7-day old adult males was measured as described in [33] and

normalised to body weight.

Glycogen and triglyceride measurements
Glycogen content of 7-day old adult males was measured as

described in [33] and normalised to body weight. Levels of TAG

in 7-day old adult males were measured using the Tryglyceride

Infinity Reagent (ThermoScientific) and also normalised to body

weight.

Transcript expression analysis
Total RNA was extracted from 10 whole adult flies, 10 adult

bodies or 25 adult heads per genotype using standard Trizol

(Invitrogen) protocols. cDNA was prepared using oligod(T) primer

and Superscript II reverse transcriptase according to the

manufacturer’s protocol (Invitrogen). Quantitative RT-PCR was

performed using the PRISM 7000 sequence-detection system and

Power SYBRH Green PCR Master Mix (ABI). Relative quantities

of transcripts were determined using the relative standard curve

method and normalized to actin5C. Three or four independent

RNA extractions were used for each genotype. Primer sequences

are available upon request.

Microarray data analyses
Whole organism microarray experiments are generally only

useful for detecting concerted changes of expression of widely

expressed genes and most tissues will be under-represented in the

array signal from a whole fly. Further complications arise from

whole organism arrays when there are significant structural

differences between treatments. Lnk transcripts are widely

expressed but are particularly enriched within the central nervous

system and as Lnk mutant ovaries show significant structural

differences compared to controls, we restricted our microarray

expression analysis to isolated heads.

Raw data (cel files) were processed to correct for probe-

sequence biases, and R’s implementation of the Affymetrix’s

MicroArray Suite 5.0 software was used to determine present

target transcripts [50]. A transcript was considered present if the p-

value was ,0.111, and absent otherwise. The data was normalized

using loess normalization and a linear model was fitted to identify

a set of differentially expressed genes using the R limma package

[51]. All individual probes have been mapped against all known

Lnk Regulates Lifespan, Metabolism, and Stress

PLoS Genetics | www.plosgenetics.org 12 March 2010 | Volume 6 | Issue 3 | e1000881



and predicted transcripts of the Drosophila melanogaster genome

release version 5.4. Promiscuous (some or all probes within a

probe set map to more than one gene in the genome) and orphan

(no probes in the probe set map to any known or predicted gene in

the genome) probe sets were excluded from further analysis.

FlyBase gene ids were mapped to Gene Ontology (GO) ids

(version 1.107).

For functional analysis using all expressed genes, we used the

Wilcoxon rank sum test implemented in Catmap [52]. Ranks of

genes were based on the Bayes t-statistic for differential expression

and, for a given functional category, the significance of the rank

sum for all genes in the category was calculated analytically based

on a random gene-rank distribution.

Identification of dFoxo binding sites in the Lnk promoter
Sequence analysis was performed using Regulatory Sequence

Analysis Tools [53] looking for perfect matches to the mouse

Foxo1/Foxo4 binding sites [RWWAACA] [54].

Chromatin Immunoprecipitation (ChIP)
Chromatin immunoprecipitations were carried out essentially as

described by [55]. For starvation and paraquat treatments, flies

were either starved for 24 hours or fed 20 mM paraquat for 16

hours. 1000 adult female flies were crushed to a fine powder under

liquid nitrogen and suspended in 6 ml of PBS supplemented with

Protease Inhibitor Cocktail (Sigma). Cross-linking was performed

with 0.5% formaldehyde for 10 minutes and quenched by the

addition of 1.5 ml of 2.5M glycine. The cross-linked chromatin

was recovered by centrifugation and washed twice with FA/SDS

buffer (50 mM Hepes-KOH, 150 mM NaCl, 1 mM EDTA, 0.1%

Na Deoxycholate, 0.1% SDS, 1% Triton-X100 and 1 mM

PMSF). Samples were resuspended in FA/SDS buffer and

incubated for 1 hour at 4C. Chromatin was recovered by

centrifugation and sheared to an average size of 400 bp by

sonication, giving on average 6 ml of chromatin in FA/SDS. For

immunoprecipitations (IPs), 1 ml of affinity purified rabbit anti-

Foxo antibody [36] was bound to Protein-G Dynabeads (Invitro-

gen) and incubated with 450 ml of chromatin for 2 hours at room

temperature. Beads were washed three times with FA/SDS, once

with TE, and once with 10 mM Tris-HCl pH 8, 250 mM LiCl,

1 mM EDTA, 1% NP40, 0.5% Na Deoxycholate. DNA was

recovered, treated with proteases, de-cross-linked, treated with

RNase and purified using the Qiagen PCR purification kit

(Qiagen). For quantitative PCR, a suitable dilution of total

chromatin and IP was used for quantification using the PRISM

7000 sequence-detection system and Power SYBRH Green PCR

Master Mix (ABI). For ChIP analysis, relative amounts of the

target DNA recovered after ChIP compared to total chromatin

were determined using three independent biological replicates.

The relative proportion of DNA binding was calculated by

dividing the proportion of DNA binding in the ChIP for a single

region by the average recovered for all regions for that chromatin

to normalise for plate-plate differences.

Other statistical analyses
Statistical analyses were performed using JMP software (version

4.0.5; SAS Institute). Log rank tests were performed on lifespan

and stress survival curves. Other data were tested for normality

using the Shapiro-Wilk W test on studentised residuals and where

appropriate log-transformed. One-way analyses of variance

(ANOVA) and planned comparisons of means were made using

Tukey-Kramer HSD test.

Supporting Information

Figure S1 Stress resistance of Lnk mutant flies. (A) Survival of

male flies fed 5% hydrogen peroxide. Median survival times are 2.6

days for w1118 (black line; n = 98), 3.7 days for Lnkd07478 (dark blue

line; n = 99) and 4.1 days for LnkDel29 (light blue line; n = 87). (B)

Survival of female flies fed 5% hydrogen peroxide. Median survival

times are 3.5 days for w1118 (black line; n = 98), 4.6 days for Lnkd07478

(dark red line; n = 99) and 5.6 days for LnkDel29 (red line; n = 87). (C)

Survival of male flies under starvation conditions. Median survival

times are as follows: 2.3 days for w1118 (black line; n = 97), 3.6 days

for Lnkd07478 (dark blue line; n = 98) and 3.9 days for LnkDel29 (light

blue line; n = 100). (D) Survival of female flies under starvation

conditions. Median survival times are 3.6 days for w1118 (black line;

n = 93), 5.5 days for Lnkd07478 (dark red line; n = 92) and 5.5 days for

LnkDel29 (red line; n = 88).

Found at: doi:10.1371/journal.pgen.1000881.s001 (0.63 MB TIF)

Figure S2 Feeding behaviour of Lnk mutant flies. Feeding

observations of 7 day old flies housed on standard food at a density

of 5 flies per vial. Flies were left undisturbed for at least 15 hours

before observations were started. Data are presented as the

proportion of feeding events/possible feeding events 6 SEM. No

significant differences were observed in the feeding behavior of Lnk

mutant flies compared to controls (Males: p = 0.132. Females:

p = 0.61. Chi-square test).

Found at: doi:10.1371/journal.pgen.1000881.s002 (0.19 MB TIF)

Table S1 Functional Categories that are significantly down- or

upregulated in Lnk mutant microarrays. Catmap analysis was used

to identify functional categories associated with genes that show

altered expression within Lnk mutants compared to controls. For

brevity, the full hierarchy of the significant Gene Ontology (GO)

categories has not been shown.

Found at: doi:10.1371/journal.pgen.1000881.s003 (1.11 MB TIF)

Table S2 List of differentially expressed genes (p,0.05;

.0.1-fold) in Lnk mutants relative to controls. RNA was extracted

from the heads of 7-day old females homozygous for the

LnkDel29 allele, along with RNA from age-matched controls.

RNA was labelled and hybridised to Affymetrix Drosophila

2.0 microarrays. All experiments were conducted in quadruplicate

to facilitate statistical analysis. The raw data files were back-

ground corrected and normalised by loess normalization and a

linear model was fitted to identify a set of differentially expressed

genes using the R limma package. The columns show the

Affymetrix probe set (A), fold-change in expression level (B),

p-value (C), FBgn identifier (D) and gene name (E). Genes are

sorted by p-value.

Found at: doi:10.1371/journal.pgen.1000881.s004 (0.37 MB

XLS)

Table S3 Metabolic pathways affected in Lnk mutants. Genes

listed in Table S2 were compared to a list of 484 genes that

function in Drosophila metabolic pathways [35]. The overlap is

shown sorted by the metabolic process affected. Red indicates

upregulated genes and blue indicates downregulated genes.

Found at: doi:10.1371/journal.pgen.1000881.s005 (0.04 MB

XLS)

Table S4 Genes in the IIS and Ras/MapK pathways that show

differential expression in Lnk mutants. Genes listed in Table S2

were compared to lists of genes that function in the IIS and Ras/

MapK signal transduction pathways. These lists were compiled

from gene ontology data as listed in Flybase. dFoxo target genes

were previously described (Teleman et al. (2008). Nutritional

control of protein biosynthetic capacity by insulin via Myc in
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Drosophila. Cell Metabolism 7: 21-32). Genes listed in grey were not

reliably detected on the arrays.

Found at: doi:10.1371/journal.pgen.1000881.s006 (0.05 MB

XLS)
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