
Abstract
An approach to reduce visibility index computation time and
measure the associated uncertainty in terrain visibility analy-
ses is presented. It is demonstrated that the visibility index
computation time in mountainous terrain can be reduced sub-
stantially, without any significant information loss, if the line
of sight from each observer on the terrain is drawn only to the
fundamental topographic features, i.e., peaks, pits, passes,
ridges, and channels. However, the selected sampling of tar-
gets results in an underestimation of the visibility index of
each observer. Two simple methods based on iterative com-
parisons between the real visibility indices and the estimated
visibility indices have been proposed for a preliminary assess-
ment of this uncertainty. The method has been demonstrated
for gridded digital elevation models.

Introduction
The visibility index, the amount of the terrain visible from a
location, often computed in terms of the number of visible
targets or related measures, is an important terrain parameter.
Intrinsically, it is an indicator of the visual accessibility and
visual dominance of the location, which are essential factors
in determining the overall accessibility of the location. For this
reason, visibility analysis of terrain is now a multidisciplinary
and fertile topic for many practical applications. Applications
of visibility analysis have varied from the planning of defense
installations (e.g., watch towers, troop movements, flight
paths, and air defense missile batteries—see Franklin et al.
(1994)), communication/facilities allocation (e.g., TV/radio
transmitters—see Lee (1991), De Floriani et al. (1994), and
Kim et al. (2002)), landscape analysis (e.g., visibility graphs—
see O’Sullivan and Turner (2001)), and environmental model-
ing (e.g., terrain irradiation—see Wang et al. (2000a)).

Two critical issues in visibility analyses are visibility
index computation time and accuracy of the viewshed (area
covered by the visible terrain). For simplicity, if we ignore
the algorithmic and implementation-related (e.g., hardware)
dependencies on the performance of a visibility analysis, then
the computation time of visibility analyses is proportional to
O(ot), where o is the number of observers (viewpoints) and t is
the number of targets on the terrain. Therefore, most opti-
mized visibility index computation methods try to reduce the
observer-target pair comparisons. It can be achieved by choos-
ing a polyhedral terrain model (e.g., a triangulated irregular
network or TIN—see De Floriani and Magillo (1994)) instead
of a grid, and by using algorithmic heuristics (Franklin et al.,
1994; Franklin, 2000; Wang et al., 2000b). It is unlike the
exhaustive but time-consuming Golden Case, in which all the

Fast Approximation of Visibility Dominance
Using Topographic Features as Targets

and the Associated Uncertainty
Sanjay Rana

points, n, on the terrain are used as observers and targets. 
In other words, the visibility index computation time in a
Golden Case is on the order of O(n2) because o � t � n. Ac-
cordingly, we regard all optimization approaches that reduce
the Observers part of the computational load as the Reduced
Observers Strategy. Similarly, the optimization approaches
aiming to reduce the number of Targets (e.g., limiting the
maximum visibility distance as in horizon culling) are re-
garded as the Reduced Targets Strategy. The visibility indices
derived in a Golden Case could be referred to as the Absolute
Visibility Indices (AVI) of the terrain points while the visibility
indices based on any approximated and optimized visibility
index computation are the Estimated Visibility Indices (EVI)
of terrain points.

While the methods for modeling viewshed uncertainty are
well known (e.g., see Fisher, 1991; Fisher, 1992; Fisher, 1993),
the search for the optimization of visibility index computation
time still goes on apace. In general, there is a compromise be-
tween performance and accuracy in any practical visibility
index computation (Franklin et al., 1994). In this work, we
propose an optimization of visibility index computation time
by extending the observation of Lee (1992) that the fundamen-
tal topographic features, i.e., peaks, pits, passes, ridges, and
channels, dominate the visibility of other ground locations
and therefore could be good viewpoint sites. Based on this
conclusion, we propose that, due to the exhaustive and opti-
mal visual coverage provided by the fundamental topographic
features, especially in mountainous uplands, they will also be
the ideal set of targets to reduce the targets part of the visibil-
ity index computation load. The optimal nature of the topo-
graphic features is based on the consideration that they are
generally fewer in number and have an objective geographic
definition. In essence, we employ the Reduced Targets Strat-
egy to reduce the visibility index computation time by draw-
ing the line of sight (LOS) from observers to only fundamental
topographic features. For brevity, we will use the term topo-
graphic features in place of fundamental topographic features.
Interestingly, however, the reverse case is not necessarily true.
In other words, the use of topographic features as the only ob-
servers, in order to estimate the overall visibility pattern, will
not always guarantee a reliable visibility index pattern of the
terrain. Another interesting argument is that whether a re-
duced number of random non-topographic feature targets
could also provide reliable EVI (e.g., see Franklin et al., 1994).
We will provide evidence which suggests that the reliability of
the EVI in this case would depend upon the number of random
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non-topographic feature targets and would vary with the
nature of the terrain.

As explained above, our Reduced Targets Strategy re-
duces the visibility index of observers by an amount approx-
imately equal to the non-topographic feature targets poten-
tially visible to them. This kind of uncertainty, arising due to
a sparse targets set, is closely similar to the uncertainties re-
lated to Object Generalization (Weibel and Dutton, 1999). To
our knowledge, this kind of uncertainty has not been widely
addressed in the visibility studies literature. In general, how-
ever, finding the location of visibly dominant observers has
more practical use than their exact visibility indices (Franklin,
2000). Therefore, the aim is to evaluate whether the overall
visibility index pattern is realistic, albeit abstracted. The fol-
lowing section proposes two simple methods based on an iter-
ative comparison between the AVI and EVI of observers for as-
sessing this uncertainty.

Methodology
In visibility analysis, a target is considered visible if an LOS
from an observer can be drawn to it without its being ob-
structed by an intermediate point (an exception is provided
by Wang (2000b), who used reference planes to establish the
visible areas). The most common approach in previous
Reduced Targets Strategy based optimization methods (e.g.,
see Franklin et al. (1994)) has been to draw the LOS from an
observer to an arbitrary small number of randomly located tar-
gets on the terrain (Figure 1). In the current work, we propose
that the visibility index of an observer be computed by draw-
ing the LOS only to a topographic feature (Figure 1). Of course,
the underlying assumption of this proposal is that the terrain
is not devoid of topographic features. This is true for moun-
tainous terrain except in upland plateaus, although in which
case the visibility indices will be mostly similar. Our method-
ology for the computation of visibility indices using topo-
graphic feature targets consists of three steps: (1) extract the
topographic features, (2) compute the visibility index of each
point using the topographic features as targets, and (3) assess
the uncertainty in the visibility index.

An Experiment

Step 1—Extraction of Topographic Features
Many approaches have been proposed for the automated
extraction of topographic features from DEMs and TINs
(Greysukh, 1967; Peucker and Douglas, 1975; Evans, 1979;

Takahashi et al., 1995; Wood, 1998). A detailed treatment of
this topic is beyond the scope of this work. We decided to
use the extraction method of Wood (1998), based on the advan-
tages he outlined against the other methods and partly due to
its easy availability in the user-friendly freeware software
LandSerf.

It is clear that the success of our Reduced Targets Strategy
depends upon the accuracy of the non-trivial topographic fea-
ture classification. It is well known that most automated topo-
graphic feature extraction methods are vulnerable to the noise
in the DEM (Jenson and Domingue, 1988) and, most impor-
tantly, have scale dependency limitations (Wood, 1999). While
smoothing the DEM before extracting the features can elimi-
nate the first limitation, the latter seems to remain a difficult
conceptual problem yet to be completely solved. Due to scale
dependency, the automated feature extraction identifies fea-
tures only at a certain scale (e.g., features of a fixed geographic
extent), while features at other scales remain undetected.
Therefore, the assessment of an appropriate scale for the par-
ticular DEM requires iterating through a number of feature ex-
traction scales (e.g., in LandSerf, one could achieve this by it-
erating with a different window or kernel sizes for the feature
extraction and visual verification).

Finally, although the fundamental topographic features
are a significantly reduced number of targets, there may still
be too many for certain terrains, e.g., large desiccated DEMs,
and thus lead to a long visibility index computation time. Two
simple ways of reducing the number of topographic features
are to (1) resample the topographic features set by a certain
skip interval and (2) limit the topographic features to certain
scales. A detailed treatment of the sampling methods is be-
yond the scope of this paper but we will demonstrate the use
of the first method later.

Step 2—Visibility Analysis
The study areas for the current work are the 100-m resolution
DEMs of the Cairngorms (5548 points) in Scotland (Figure 2a)
and the central part of the Isle of Man (16335 points) (Fig-
ure 3a). Note that this methodology could also be easily ap-
plied to an irregular terrain model such as a TIN. The visibility
analysis was carried out in ArcView GIS developed by ESRI,
and all the parameters were the defaults of the Visibility
Request in ArcView. In the experiment, the observer eye level
is at 1 m above the local ground level and the targets are at
local ground level. The observer is capable of seeing from
ground zero to infinity (i.e., no horizon culling), across the full
range of azimuths, and from the zenith to nadir. The experi-
ments were done on a 1-GHz Intel-Pentium processor-based
personal computer, with 256 MB RAM. We recorded the CPU
time taken by ArcView for each visibility computation.
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Figure 1. Two types of observer-target relationships in the
Reduced Targets Strategy, i.e., line of sights drawn to ran-
dom non-topographic feature targets and line of sights
drawn to topographic features, i.e., peaks, passes, pits,
ridges, and channels.

Figure 2. (a) Hill-shaded DEM of S.E. Cairngorm Mountains,
Scotland. The minimum elevation is 395 m and the maxi-
mum elevation is 1054 m. (b) 910 topographic feature
targets.
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Step 3—Uncertainty Assessment
The only previous example known to us, which dealt with
the estimation of uncertainty in a similar Reduced Targets
Strategy, is that of Franklin et al. (1994). They compared the
visibility indices of an arbitrary number of spatially distrib-
uted points in the terrain, computed from their exhaustive
R2-visibility algorithm (similar to our Golden Case), with
their optimized methods. Though the results are encouraging,
their sampling methods (i.e., the selection of the test points)
could not be regarded as formal and objective for two reasons.
First, because there is no prior knowledge about the statistical
distribution of the visibility pattern, it is not possible to esti-
mate the number of random points required to fully capture
the sensitivity of the visibility index distribution of a terrain.
However, the choice of the number of random points is criti-
cal, because it will dictate our computation time. Second,
because visibility is a directional property, then the spatial
location of random points could bias the uncertainty estima-
tion. Later we provide examples that suggest that the visibility
pattern is highly dependent upon the spatial distribution and
number of the random points.

We propose the following two methods for the uncer-
tainty assessment based on a slight modification of the
Franklin et al. (1994) methods:

Method 1: Spatial Correlation between AVI and EVI
In this method, an assessment of the overall visibility pattern
indicated by the EVI of the terrain points is done in the
following two ways:

Type 1: AVI vs. EVI of the Topographic Feature Observers—

• Compute the AVI of the topographic features by drawing the
LOS from each topographic feature to all the terrain points.
Normalize the AVI and EVI of the topographic features, by scal-
ing them between their respective minimum and maximum
indices, in order to suppress the effect of target sample size on
the indices. The normalization also reveals the visibility
dominance of the observers.

• Calculate the correlation coefficient between the AVI and EVI
of the topographic features. The correlation coefficient should
suggest the similarity between the two visibility patterns. This
method is similar to Franklin et al. (1994) except that the defi-
nition of our test points is objective and more natural. How-
ever, statistically it remains only an approximate test, espe-
cially when using exceptional terrains, where the topographic
features are not distributed uniformly across the terrain. 

Type 2: AVI vs. EVI of Random Observers—
Unlike the Type 1 method, this method is relatively more ex-
haustive but also more time-consuming. It is an abridged form
of the Monte-Carlo method of uncertainty modeling and in-
volves an iterative comparison between the AVI and EVI of a

set of random observers but with the important exception that
no subsequent model parameter estimation is done in this
method. The steps are as follows:

(1) Estimate the number of observers to be distributed randomly
on the terrain: As mentioned before, because there is no prior
knowledge about the AVI distribution, it is non-trivial to deter-
mine the optimal number of random observers sufficient to
capture the visibility pattern. We propose, without formal
proof, that randomly placed observers, equal in number to the
number of unique EVI, would be sufficient if we assume that
• No part of the study area is hidden from the topographic

features. Thus, a histogram of the EVI (computed using
topographic features) represents unique viewsheds, and

• Random observers do not form clusters. 
In other words, with these assumptions, we suppose that
each viewshed will be assigned at least one test-observer site.

(2) Distribute a number of random observers equal to the number
of unique EVI, found in step (1), spatially across the terrain.
We used the Random Point Generator ArcView Extension
developed by Jennes (2001). 

(3) Compute the AVI of the random observers by drawing the LOS
to all the points on the terrain. Normalize the AVI and EVI of
the random observers as previously done.

(4) Calculate the correlation coefficient between the AVI and EVI
of the random observers.

(5) Repeat steps 2 through 4 a number of times. Again, due to the
lack of any prior information about the statistical distribution
of the AVI, statistically it is difficult to decide upon a specific
number of iterations. In a practical exercise, it would
ultimately depend upon the amount of time available to the
researcher for the experiment. 

(6) Choose the lowest and highest correlation coefficient as indi-
cators for the worst- and the best-case approximation of AVI.

Method 2: Error in the Estimated Visibility Indices
In the previous methods, the AVI to EVI correlation coefficients
give an indication of the reliability of EVI in representing the
spatial pattern of visibility dominance. However, these do not
reveal the amount of approximation in the EVI. A simple
method for measuring the uncertainty in the EVI is an average
ratio of EVI over AVI, as follows:

Average Error (%) � � � 100 . . . (1)

where xi� is the normalized EVI of an observer i, xi is the nor-
malized AVI, and n is the number of observers. Note that nor-
malized AVI and EVI are used to ensure that the approximation
in visibility dominance is revealed.

Significance of the Topographic Features
As mentioned in the introduction, a Reduced Targets Strategy
based on a small number of random non-topographic feature
targets could also reduce the visibility index computation
time. Therefore, in order to validate the uniqueness and bene-
fit of our choice of targets, we wanted to ensure that they
would be better than the same number of random targets spa-
tially distributed across the terrain. One of the ways of verify-
ing the significance of the topographic features as targets is to
compare the quality of the visibility pattern produced by an
equal and decreasing number of topographic feature targets
and the random targets. In this work, we used the skip inter-
val method of generalizing our topographic feature set and
gradually kept increasing the skip interval. Some other suit-
able guides for the minimum number of test points could be
the number of point topographic features (peaks, pits, and
passes), a satisfactory level of accuracy, and the maximum
permissible computation time. 

For each set of topographic feature targets, we generated
four sets of equal numbers of random targets. The quality of
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Figure 3. (a) Hill-shaded DEM of Central Isle of Man. The
minimum elevation is 0 m and the maximum elevation is
553 m. (b) 2007 topographic feature targets.
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the visibility dominance pattern produced from the topo-
graphic feature targets was then compared with the one pro-
duced from the random targets. The comparison was based on
the two types of uncertainty estimation methods described in
the previous section.

Results
Automated Extraction of the Topographic Features 
After iterating with various window (kernel) sizes followed by
visual inspection, we found that the 5 by 5 (500 m by 500 m)
window and 3 by 3 (300 m by 300 m) window are suitable for
extracting most linear (ridge, channel) and point (peak, pit,
pass) topographic features, present in the Cairngorm (Fig-
ure 2b) and Isle of Man (Figure 3b) DEM, respectively, where
910 and 2007 topographic features have been extracted as the
optimal targets. However, as mentioned previously, the num-
ber of topographic features extracted from the DEM depends
upon the size of the filter window. Therefore, different win-
dow sizes will produce different numbers of topographic fea-
tures. In future work, it would be interesting to investigate the
change in the EVI pattern and its correlation with the AVI with
varying extraction scales. 

Visibility Analysis and Uncertainty Assessment
Because our study areas are small, we have been able to
obtain the Golden Case visibility patterns of our study areas
(Figures 4a and 5a). These visibility index patterns are now
the ideal standards, i.e., the AVI. The visibility indices have
been normalized (as previously) to assess the relative visibil-

ity dominance of the points in the visibility pattern. Figures
4b and 5b show the pattern of the EVI over the two terrains,
and it is clear from the figures that the overall pattern of the
visibility indices is similar to the Golden Case. In fact, as indi-
cated by the correlation coefficients, there is 97 percent and
82 percent overall correlation between the AVI and EVI of the
Cairngorm and Isle of Man DEMs, respectively (Figures 6a
and 7a). The ridges and peaks have high visibility indices
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Figure 4. Comparison between the (a) Golden case based
visibility dominance and (b) topographic features based es-
timated visibility dominance in the Cairngorm study area.
Darker colored areas have more visual dominance than
lighter colored areas.

Figure 5. Comparison between the (a) Golden case based
visibility dominance and (b) topographic features based
estimated visibility dominance in the Isle of Man study
area. Darker colored areas have more visual dominance
than lighter colored areas.

Figure 6. Uncertainty assessment in the EVI in the Cairn-
gorm study area based on (a) AVI to EVI plot of all Cairn-
gorm points, (b) residuals based on the linear regression
between AVI and EVI, and (c) errors in the EVI.

(a)

(b)

(c)
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compared to the pits, passes, and channels. The plot of the
AVI versus EVI for the Isle of Man DEM (Figure 7a) indicates
that, in the case of some viewpoints, the optimization ap-
proach significantly overestimated their visibility dominance.
A careful analysis of the spatial distribution of Figure 5b data
revealed that these anomalous points are located around the

main ridge structure in the central part of the DEM. The reason
for this lies in the fact that the ridges make up a large propor-
tion of the topographic features and therefore have a signifi-
cantly better view of the topographic features (as also shown
by Lee (1992)) compared to the other parts of the terrain. The
plot of the residuals based on a linear regression supports this
observation by the distinct fork-shape distribution of the
residuals (Figure 7b). At the same time, it is evident from the
range of the EVI that our optimized approach has significantly
underestimated the visibility indices. The average error in the
Cairngorm and Isle of Man DEMs are �16 percent and �33 per-
cent, respectively. Further, Figures 6c and 7c show that the error
varies according to the visibility dominance of the observer
space, with the less dominant points having the bigger errors.
The residuals versus the predicted AVI plots (Figures 6b and
7b) reveal an interesting dichotomy. In the case of the Cairn-
gorm study area, the residuals are uniform but, in the case of
Isle of Man study area, the residuals are strongly related to the
visibility index magnitude. An implication of this observation
is that the regression between AVI and EVI should only be used
as a basis for testing similarity (e.g., using the correlation co-
efficient) but not for modeling visibility magnitudes.
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Figure 7. Uncertainty assessment in the EVI in the Isle of
Man study area based on (a) AVI to EVI plot of all Isle of
Man points, (b) residuals based on the linear regression
between AVI and EVI, and (c) errors in the EVI. Note the dis-
tinct fork in both (a) and (b), indicating that the EVI has over
estimated the visibility dominance of some points.

(a)

(b)

(c)

Figure 8. Uncertainty assessment in the EVI in the
Cairngorm study area based on (a) AVI to EVI plot of the
topographic features, and (b) AVI to EVI correlation
coefficient versus errors at a set of random locations.

(a)

(b)

01-144.qxd  5/29/03  10:44 AM  Page 5

August 2003 885



Based on Method 1 for uncertainty estimation, Figures 8a
and 9a show the relation between the AVI and EVI of the topo-
graphic features in the Cairngorm and Isle of Man DEMs, re-
spectively. The strong correlation coefficients of 0.98 (Cairn-
gorm) and 0.83 (Isle of Man) suggest that the optimization has
successfully achieved representing the overall visibility pat-
tern. To perform a more exhaustive assessment, we generated
16 sets of 414 (unique number of EVI in the Cairngorm study
area) and 19 sets of 479 (unique number of EVI in the Isle of
Man study area) spatially distributed random points in the
Cairngorm and Isle of Man study areas, respectively. We then
calculated the correlation coefficient between the AVI and EVI
for each of these sets of random points. Figures 8b and 9b
show the wide variation in the quality of the estimated visibil-
ity pattern at various points on the terrain, thus supporting
the exercise to validate the quality of the estimated visibility
iteratively.

Significance of the Fundamental Topographic Features 
Figures 10a and 11a show the comparison between the corre-
lation coefficients and average approximation of the AVI and
EVI calculated with the topographic feature targets and the
random targets, at various target numbers. To begin with, note
the considerably small number of targets compared to the
total number of terrain points and yet the high correlation be-
tween the AVI and EVI of the observers. The figures show that

at high target numbers, by virtue of their wider spatial distrib-
ution, random targets could provide a better approximation 
of the visibility pattern than could the topographic features.
However, as the number of targets is decreased, the quality of
the approximation degrades rapidly in the case of random
targets but, on the other hand, topographic features provide a
more consistent and better approximation. This suggests that,
at high target numbers, the better correlation between the AVI
and EVI is a result of both the spatial distribution and the
topographical significance of the reduced number of targets.
However, at low numbers, the topographical significance will
be a more useful basis for placing targets across the terrain.
Therefore, it can be stated that one could reduce the number
of the topographic features for the visibility computation for
large terrains with a large number of topographic features,
without the fear of losing any significant visibility pattern in-
formation. The plot of the errors in each case (Figures 10b and
11b) essentially support the results based on correlation
coefficients.

An interesting aspect of Figures 10a and 11a is the inter-
section of the topographic feature target and random target
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Figure 9. Uncertainty assessment in the EVI in the Isle of
Man study area based on (a) AVI to EVI plot of the topo-
graphic features, and (b) AVI to EVI correlation coefficient
versus errors at a set of random locations.

Figure 10. Validation of the significance of topographic fea-
tures as optimal targets in the Cairngorm study area based
on (a) comparison of the AVI to EVI correlation coefficients
and (b) error in EVI for a decreasing number of topographic
features and random targets.

(a)

(b)

(a)

(b)
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correlation coefficient curves. It may indicate that in each ter-
rain there are target numbers at which both the topographic
feature targets and random targets could provide an equal
level of spatial optimization. While there are situations in
which this insight could be useful, for example, in deciding
the optimal number of viewpoints for solving the time con-
suming minimum number of watchtowers problem (Lee, 1991),
ironically it would not be possible to use this information
without having done this iterative process.

Optimization of Computation Time
Figure 12 shows the linear relation between the CPU time us-
ages versus the various magnitudes of visibility computations
performed in the work. Computations here represent the prod-
uct of the number of observers and the number of targets. The
computation times for extracting the topographic features
from the Cairngorm and Isle of Man DEMs in LandSerf were
less than one second. As can be seen clearly, the time saved is
substantial. However, the CPU time usage could be further op-
timized by combining the current approach with a Reduced
Targets Strategy such as horizon culling.
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Figure 11. Validation of the significance of topographic fea-
tures as optimal targets in the Isle of Man study area
based on (a) comparison of the AVI to EVI correlation coeffi-
cients and (b) error in EVI for a decreasing number of topo-
graphic features and random targets.

Figure 12. Linear relationship between the computa-
tion time and the computations.

(a)

(b)

Conclusion and Future Work
In this work, we have shown that the use of the fundamental
topographic features as targets, as part of the Reduced Targets
Strategy, can be used to decrease the visibility computation
time substantially without any significant visibility informa-
tion loss. This approach is especially useful for a fast approxi-
mation of visibility dominance in mountainous terrain. The
reduced sampling of the targets on the terrain, however, intro-
duces an uncertainty in the visibility indices of the observers
on the terrain.

In the current work, the use of the correlation coefficient
and the simple EVI to AVI ratio as measures of a visibility pat-
tern quality and uncertainty provides only a global pattern
matching, but visibility is a directional property. We antici-
pate developing ways in which we could estimate the visual
integrity in our optimized approach. Although our observa-
tion that, at certain numbers, both topographic features tar-
gets and random targets would produce a similar quality of
visibility estimation is based on thorough experimentation of
the current study areas, experiments with other DEMs will be
useful for fully validating this empirical observation.

The current work has also brought up a number of inter-
esting questions, which could be investigated in future work.
While the residuals between AVI and EVI in the case of the
Cairngorm study area are uniform, in the case of Isle of Man
study area, residuals appear to be dependent upon the visi-
bility index magnitude. There can be many reasons for this
anomaly, and one may even be able to model the non-uniform
residuals in individual cases using a non-linear regression
model. However, we believe it is more important to realize
that visibility, as a property of terrain location, could not be
modeled because it is derived only after an LOS test with other
locations. Therefore, it is invariant of the local properties
(e.g., elevation, slope, aspect) and global properties (e.g., geo-
graphic setting, i.e., faults, etc.) of a location. Thus, based on
the current study, we believe that the regression between AVI
and EVI only provides the information about the similarity or
the amount of approximation. 

Finally, two relatively straightforward extensions of the
current work include (1) the combination of the Reduced Ob-
servers Strategy (e.g., horizon culling) and the proposed Re-
duced Targets Strategy for visibility index computation on very
DEM and (2) the understanding of the effect of the topographic
feature extraction scale on the computed visibility pattern.
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