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Abstract

Purpose: This study investigated whether adults with dyslexia show evidence of a consistent

speech perception deficit by testing phoneme categorization and word perception in noise.

Method: Seventeen adults with dyslexia and 20 average readers underwent a test battery

including standardized reading, language and phonological awareness tests, and tests of speech

perception. Categorization of a ‘pea’/’bee’ voicing contrast was evaluated using adaptive

identification and discrimination tasks, presented in quiet and in noise, and a fixed-step

discrimination task. Two further tests of word perception in noise were presented.

Results: There were no significant group differences for categorization in quiet or noise, for

across- and within-category discrimination as measured adaptively, or word perception, but

average-readers showed better across- and within-category discrimination in the fixed-step

discrimination. Individuals did not show consistent poor performance across related tasks.

Conclusions: The small number of group differences, and lack of consistent poor individual

performance, suggests weak support for a speech perception deficit in dyslexia. It seems likely

that at least some poor performances are attributable to non-sensory factors like attention. It may

also be that some individuals with dyslexia have speech perceptual acuity that is at the lower end

of the normal range and exacerbated by non-sensory factors.
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Introduction

Developmental dyslexia is a specific learning disability that is characterized by difficulties in

reading and writing despite adequate intelligence, cognitive abilities and learning environments

(Shaywitz et al., 1998; Snowling, 2000). Over the last thirty years, deficits in many aspects of

auditory, speech perceptual and phonological processing have been identified in children and

adults with dyslexia (for a review, see Ramus, Rosen, Dakin, Day, Castellote, White, and Frith,

2003). Here, we specifically address claims of a speech perceptual deficit in adults with dyslexia

using a range of tests that tap individuals’ ability to identify and discriminate minimal phonetic

contrasts and their perception of speech in noise.

Developmental dyslexia is a deficit that continues to affect individuals in adulthood, and

investigating the speech and language processing abilities of adults with dyslexia can be

particularly informative as lapses in attention, which can affect performance on repetitive

perceptual tasks in children (Davis, Castles, McAnally, & Gray, 2001; Moore, Ferguson, Halliday

and Riley, 2008), are likely to be less prevalent in adults. In both adults and children, evidence of

poor performance on phonological awareness tasks is rather pervasive (e.g., Elbro, Nielsen &

Petersen, 1994, Snowling, Nation, Moxham, Gallagher & Frith, 1997; Ramus et al., 2003; Ziegler

and Goswami, 2005; Snowling, 2000, although see also Reid, Szczerbinski, Iskierka-Kasperek &

Hansen, 2007 for cases of individuals with dyslexia who have unimpaired phonological

awareness). However, there is increasing debate as to whether poor performance on

phonological awareness tasks reflects impoverished phonological representations or rather

difficulties with the access or manipulation of these representations. For example, Szenkovitz

and Ramus (2008) found that French adults with dyslexia performed well on tasks such as

voicing assimilation, that require underlying phonological processes, even though they performed

poorly at phonological tasks such as nonword repetition or phoneme deletion. They argue that

phonological representations in individuals with dyslexia are in fact intact and that it is the access

to these representations which is impaired, with poor performance exacerbated in tasks that

impose a heavy short-term memory load.

If individuals with dyslexia do have impoverished phonological representations, then it would be

expected that they should show deficits in tasks that require them to consistently assign speech

sounds to phonemic categories, or that require them to determine whether acoustically-similar

speech sounds belong to the same category. Early studies of phonemic categorization in adults

and children with dyslexia were heavily influenced by the work of Tallal which suggested that

children with dyslexia had particular difficulty with rapid temporal processing (Tallal, 1980). These

early studies typically focused on the perception of synthesized phonemic contrasts that were
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cued by rapid formant transitions (e.g. ba/da contrasts), and presented these in identification and

discrimination tasks. Studies with dyslexic adults generally found systematic small differences in

phonetic perception, with the slopes of the identification function, a straightforward index of

consistency in labeling, typically shallower in the dyslexic group (e.g., Steffens, Eilers,

Grossglenn & Jallad, 1992). In discrimination tasks, Steffens et al. argued that adults with

dyslexia lacked the ‘degree of precision’ shown by average readers in controlled laboratory tests.

More recent studies on the categorization of phonemic contrasts in adults with developmental

dyslexia have tended to confirm this pattern of a lower degree of consistency in phoneme

identification, which results in shallower slopes of the identification function (Schwippert and

Koopmans-van Beinum, 1998; van Beinum, Schwippert, Been, van Leeuwen, Kuijpers, 2005).

Many studies of speech perception in children with dyslexia mirror this finding (e.g. Godfrey,

Syrdal-Lasky, Millay & Knox, 1981; Reed, 1989; Manis et al., 1997; Werker and Tees, 1987;

Breier et al, 2001; Boada and Pennington, 2006). However, some studies have failed to find

significant group differences in identification between individuals with dyslexia and average

readers in studies with children (e.g., Mody, Studdert-Kennedy & Brady, 1997; Adlard and Hazan,

1998; Joanisse, Manis, Keating & Seidenberg, 2000; Maassen, Groenen, Crul, Assman-

Hulsmans & Gabreels, 2001; Blomert, Mitterer and Paffen, 2004; Robertson, Joanisse, Desroche

and Ng, in press) and adults (Ramus et al., 2003).

Generally, in the dyslexia literature, it is increasingly recognized that it is not sufficient to show

that significant group differences occur at some level of processing, but that it must also be

shown that a substantial number of individuals show a performance that differs significantly from

the norm (Ramus et al., 2003; Reid et al., 2007; Heath, Bishop, Hogben & Roach, 2006; Ziegler,

Castel, Pech-Georgel, George, Alario & Perry, 2008; McArthur and Hogben, 2001; McArthur,

Ellis, Atkinson & Coltheart, 2008). In studies with dyslexic children and adults that have reported

individual data, there is ample evidence of significant individual differences in performance on

speech perception tasks. For example, Adlard and Hazan (1998) found that only about a third of

the 13 children with dyslexia that they tested showed evidence of consistent ‘perceptual

weakness’ across different perceptual tasks, while the rest performed within norms on a majority

or all of the tasks. Lieberman et al. (1985) found high error rates on a consonant perception task

for 28% of their adults with dyslexia, with 22% performing within norms. Evidence of clear

individual differences in adults with dyslexia was also reported by Steffens et al. (1992). Ramus

et al. (2003) tested dyslexic adults on an extensive range of tasks tapping their phonological,

auditory, visual and speech perceptual abilities, and aggregated performance on related tasks to

obtain scores for ‘rapid’ and ‘slow’ auditory/speech processing and ‘speech’ scores to compare

with ‘nonspeech’ scores. They found no evidence of significant group effects for tasks involving

rapid auditory processing, and the dyslexic group did not perform significantly worse on speech

than non-speech tasks. However, their scrutiny of individual results showed that 7 out of the 16
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dyslexic participants (44%) and one out of 16 controls (6%) showed deviant performance on the

‘rapid’ aggregate scores and 6 dyslexic participants (37%) and one control (6%) on the ‘slow’

auditory/speech tasks. Five participants in the dyslexic group (31%) showed deviant performance

in the ‘nonspeech’ task as opposed to 7 dyslexic participants (44%) and 2 controls (12%) in the

‘speech’ tasks. There was clearly heterogeneity within the dyslexic group and it should also be

noted that some non-dyslexic individuals performed poorly on these experimental tasks, even if in

lower proportion than in the dyslexic group. Ramus et al. (2003) concluded from their study that

the cause of dyslexia is a phonological deficit, and that it may be accompanied in some

individuals by additional visual, auditory or motor deficits.

If poorer performance on categorization tasks in at least some individuals with dyslexia does

reflect poorly-specified phoneme representations, then it would follow that further degradations of

the speech signal, such as that resulting from the addition of noise, should have a particularly

deleterious effect on speech perception for these listeners (Ramus, 2001). Cornelissen, Hansen,

Bradley & Stein (1996) investigated this hypothesis with dyslexic adults using a range of

naturally-produced nonsense syllables covering a range of phoneme contrasts presented in

different levels of white noise. They found similar patterns of consonant confusions across

groups, with more sha/cha confusions made by the dyslexic group than controls. This pattern of

poorer identification of CV items in noise in adults with dyslexia was also replicated in Ramirez

and Mann (2005). A recent study of speech perception in noise also found a deficit in a group of

children with dyslexia relative to reading and age controls using a range of naturally-produced

nonsense syllables presented in different noise conditions (Ziegler, Pech-Georgel, George &

Lorenzi, in press). However, the dyslexic group also showed normal masking release effects (i.e.,

better performance in fluctuating than in stationary noise) which led the authors to suggest that

the poor performance in noise could not be attributed to poor temporal or frequency resolution, or

to deficits in peripheral processing but rather that children with dyslexia are deficient in the

‘simultaneous integration of various speech cues required for robust speech identification’.

One alternative explanation of the heterogeneity seen in studies of the speech perception abilities

of children and adults with dyslexia is that it is does not reflect a specific deficit in auditory or

perceptual abilities but rather ‘errant task performance’, as caused by lapses in attention or

confusion about the task procedure (Roach, Edwards & Hogben, 2004; Heath, Bishop, Hogben &

Roach, 2006). Simulations of performance on adaptive discrimination tasks and categorical tasks

that included errant trials yield patterns of group results that concur with those seen in studies of

perceptual abilities in individuals with dyslexia (Roach et al., 2004;

Davis, Castles, McAnally & Gray, 2001) although Breier et al. (2001) found a deficit in phoneme

categorization in a group of dyslexic children whether or not they were diagnosed with ADHD.

Roach et al. (2004) argue that in order to distinguish poor performance that is due to nonsensory
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factors from poor performance linked to a specific perceptual deficit, it is necessary to determine

whether a task has construct validity, i.e. that it is tapping the dimension that is being

investigated. This can best be done by showing that individuals that perform below norm on a

particular task are also within the lower tail of the normal distribution for another task tapping that

same dimension (Heath et al., 2006). Information about ‘robustness’ of poor performance on a

specific task could also be gleaned by repeating the same task more than once with a given

individual (Skottun and Skoyles, 2007), but this is very rarely done due to learning effects and to

the use of already extensive test batteries in studies of dyslexia. Correlations across tasks

tapping a similar perceptual ability have been examined in some studies of adults with dyslexia

investigating auditory processing abilities (e.g., Talcott et al., 1998; Witton et al., 1998) but

evidence for such construct validity for speech perceptual tasks is much scarcer (Ramus et al,

2003). However, as suggested by Heath et al. (2006), significant correlations across tasks should

be interpreted with caution. Indeed, they argue that failure to find correlations between tasks can

arise because some of the tasks are psychometrically weak. On the other hand, significant

correlations may arise that are linked to task-related skills and abilities. Correlations are therefore

more impressive if found across tasks that use different formats for assessing a given perceptual

ability. However, even there, significant correlations do not imply that all individuals in the group

are showing a consistent pattern of performance across tasks (e.g., Heath and Hogben, 2004).

When considering whether individuals with a specific reading impairment have a perceptual

deficit therefore, especially given evidence of within-group heterogeneity, the most reliable

approach is to look at evidence of consistent poor performance for related tasks within individual

participants rather than at group correlations. We argue that it is not necessarily the case that a

listener who does not have a perceptual deficit will perform well in all related tasks, as all

participants may show lapses in attention related to boredom or fatigue, especially in lengthy

sessions involving a number of repetitive tasks. However, a participant who has a perceptual

deficit should never be able to show within-norm performance on a test which is tapping the

perceptual process that is deficient.

The aims of this study were therefore twofold. First, in order to investigate whether the poor

performance of adults with dyslexia are due to specific perceptual deficits, participants were

tested on both adaptive and fixed discrimination tasks tapping the same perceptual process. If

poor discrimination is due to a specific perceptual deficit, we would expect performance in

specific individuals to be consistently poor across these testing procedures for a given speech

continuum. If it is linked to issues such as task difficulty or memory load, we might expect better

performance in adaptive tasks that track a consistent level of accuracy for each individual than in

fixed-step discrimination tasks which typically include a majority of presentations that are difficult

to discriminate. Second, we hypothesize that if poor performance on identification or

discrimination tasks does truly reflect the fact that adults with dyslexia have poorly-defined
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phonological representations, then performance on these tasks should be severely affected by

the addition of noise, at least for individuals showing poor categorization abilities. A milder

prediction is that if an individual has difficulty with a test in quiet, poor performance should be

exacerbated in noise. To test this hypothesis, identification and discrimination tests for a /pi/-/bi/

(‘pea’/’bee’) voicing contrast were carried out both in quiet and in noise, and two additional tests

of word perception in noise were also presented.

Method

Participants

Thirty-seven monolingual English native speakers aged between 18.02 and 31.11 years

participated in the study. The adults, who were paid for their participation, were recruited through

adverts to the student body at UCL and by contacting several dyslexia centres in London.

Participants included 17 adults (10 men and 7 women) with a mean age of 22;10 years (s.d. 3;6

yrs) who had been diagnosed with dyslexia by a qualified educational psychologist at university

or during their school years (DYS group). The average-reader (AR) group included 20 adults (8

men and 12 women) with a mean age of 23;5 years (s.d. 2.9 yrs) who had normal attainment in

reading.

Adults who agreed to participate in the study were included if they passed a hearing screening

(thresholds of 20 dB HL or better at 500, 1000, 2000 and 4000 Hz) if they were free of other

developmental disorders (SLI, ADHD, autism, dyspraxia). They were required to score within a

standard deviation of the standardized mean for TROG-2, a test of receptive grammar (Bishop,

2003). This criterion was used to exclude participants who might have had a language disability

other than dyslexia or another language disability combined with dyslexia. All participants also

had to score above -1 standard deviation of the standardized mean for verbal IQ (BPVS; Dunn,

Dunn, Whetton, and Burley, 1997) and non-verbal IQ (WAIS- bloc design sub-section, Wechsler,

1997).

The participants’ reading level was assessed using the word and pseudoword reading lists of the

TOWRE – Form A (Torgesen, Wagner, & Rashotte, 1999). Participants were instructed to read

each list as fast as they could. The number of items read in 45 seconds provides a raw score. A

standard score is then derived for the word and pseudoword reading lists, and a combined

standard score is computed. All average readers scored above 90 and dyslexic readers below 90

on the standardized aggregate score of the TOWRE reading test. Mean data for these

standardized tests are presented in Table 1.
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[Table 1 about here]

The DYS and AR groups did not differ in terms of their age, non-verbal IQ and performance on a

test of receptive grammar. As expected, the two groups differed on the word and pseudoword

subtests, and aggregate score for the Test of Word Reading (TOWRE), indicating that the

dyslexic group had a significantly lower reading level. The two groups also differed in terms of

their verbal IQ.

Procedure

Ethical approval was granted by the UCL Research Ethics Committee. Participants were tested

in a sound-treated room. Instructions and testing material were recorded by female native

speakers of British English and were presented to participants through Sennheiser HD25-1

headphones. The sound level at which the stimuli were presented on the laptop computer was

fixed for all listeners and identical to that used in our study with children (Messaoud-Galusi,

Hazan and Rosen, 2007). The experiment took place over two sessions, each of an hour, with,

for the majority of the participants, a few days in between sessions. Due to time constraints, a

small number of participants had to complete the whole test battery in a single session.

Test battery

Standardized tests

Phonological Awareness: Phonological awareness was assessed using the rhyme and

the spoonerism subtests of the Phonological Assessment Battery (PhAB) (Fredrickson, Frith &

Reason, 1997). In the rhyme task, three words are presented orally and participants are required

to repeat the two words that sound the same at the end (e.g., “sail, boot, nail” gives “sail, nail”).

The first three trials are practice items for which feedback is given, followed by 21 test trials. The

total number of correct responses is summed to obtain the final score.

The spoonerism task includes two subtests. In the first, listeners are required to drop the initial

phoneme of a word and blend the resulting sequence with a phoneme or a cluster (“red with a [b]

gives bed”). In the second, two words are presented and listeners are instructed to swap around

the first sound of each word (“daisy log” gives “lazy dog”). Feedback is provided for the first three

practice trials of each subtest. Each subtest contains ten test items, scored following the same

procedure as the rhyme task.

Phonological Short Term Memory: Phonological short-term memory was assessed using

the Nonword Repetition task (Gathercole and Baddeley, 1996). The test consists of 40

nonwords of 2 to 5 syllables in length (e.g , ‘rubid’, ‘sepretennial’) preceded by two practice items.

The final score is the total number of nonwords that were repeated correctly.
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Speech perception tests

Word perception in noise: To assess speech perception in noise, the participants

completed two tasks in which they had to recognize naturally-produced words presented in

background noise.

For the Words in Noise (WiN) test, 25 highly frequent monosyllabic words (e.g., “dog”, “cake”)

were selected so as to correspond to an age of acquisition of no more than 4 years old (de Cara

and Goswami, 2002). Items were presented in random order with multi-talker babble noise in the

background fixed at 65 dB SPL (measured over a frequency range of 100-10Hz) and the Signal-

to-Noise Ratio (SNR) varied by altering the level of the word. As some words are more robust

than others in noise and thus able to tolerate lower SNRs, a preliminary calibration study was

been performed in a previous study in order to determine a ‘correction factor’, uniquely specified

for each word (Kunaratnam, 2003). Through this calibration, the SNR was adjusted to different

values for different words to achieve a consistent baseline performance across words

(Kunaratnam 2003). In the WiN test, the procedure started with an SNR of 12 dB and tracked

50% correct adaptively with a one-up one-down rule. The initial step-size was 6 dB, which

decreased linearly over the first 4 reversals to 2 dB. The test ended after 10 reversals or 25 trials.

Logistic regression was used to estimate the SRT (speech reception threshold – the SNR which

leads to 50% words correct) from all trials run during the adaptive procedure.

The ‘Words in noise in connected speech’ (WiNiCS) task was modelled after the Coordinate

Response Measure (Moore, 1981) as discussed in Brungart (2001). In this test, participants

heard the following carrier phrase: “show the dog where the […] [...] is”, with the gaps filled by a

colour and a number. In a trial, the six symbols on the screen were all the same number and

differed only in colour (black, white, pink, blue, green, and red). Participants were instructed to

click on the symbol that corresponded to the colour they heard. A three-up one-down adaptive

procedure was used to vary SNR and so to track 79.4% correct trials. Unlike the ‘words in noise’

task described above, the total level of the output was fixed at 65 dB SPL. Therefore, as SNR

decreased, the level of the speech decreased while the level of the babble increased. The first

sentence was presented at an SNR of +20 dB, with an initial step-size of 10 dB which decreased

linearly to 5 dB over the first 2 reversals. The test ended after a total of eight reversals or after 30

trials. The threshold for a 79.4% correct level was calculated from the mean of the reversals

excluding the first two.

Categorical perception tasks: Phoneme categorization abilities were assessed by means of

categorical perception tasks involving the identification and discrimination of a /pi/-/bi/ (‘pea’/’bee’)

continuum in quiet and in noise.
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Stimuli were generated by copy-synthesis using the cascade branch of a Klatt synthesizer (Klatt,

1980). The aim of copy-synthesis is to obtain a speech signal which is totally controllable but is

also natural-sounding, as all parameters are copied from a specific utterance produced by a

single speaker. Copy-synthesis was used as it has been suggested that the categorical

perception deficits observed in children with SLI when tested with schematic synthetic speech do

not generalize to tests using edited natural speech (Blomert and Mitterer, 2004). Initial values for

fundamental and formant frequencies, vowel duration, and burst characteristics were measured

from a natural [bi] token recorded by a female native British English speaker. The total syllable

duration was 460 ms. For the first 4 ms, aspiration and friction amplitude were set at 74 and 70

dB respectively to produce a burst. Formant values (F1, F2, F3 and F4) were set at 365, 2000,

2600 and 4252 Hz respectively and reached 167, 2745, 3283 and 4119 Hz at the end of the

syllable. The continuum was generated by delaying the onset of the voicing while concurrently

increasing the aspiration duration, to obtain stimuli differing in Voice Onset Time (VOT) ranging

from 0 ms for the [bi] endpoint to 60 ms at the [pi] endpoint of the continuum, in 1 ms steps (see

Figure 1).

Pilot testing of the stimuli with 4 children and 4 adult monolingual English speakers

indicated that the endpoint stimuli were convincing exemplars of the syllables /pi/ and /bi/.

Responses to the labelling of a subset of 6 steps of the continuum differing in 10 ms VOT,

exhibited the expected s-shaped categorisation function centred around 23 ms VOT, which is

consistent with the location of the phoneme boundary in English (Abramson et al., 1967).

[Figure 1 about here]

Identification tasks: A two-alternative forced-choice task was used to assess category

identification (AdaptID). Participants were instructed to identify the stimulus by clicking on a

picture of a pea or a bee. Pictures were used rather than word labels in order to keep the test

procedure consistent with that used in our study with children (Messaoud-Galusi, Hazan and

Rosen, 2007). Stimuli were presented using an interleaved adaptive procedure as described in

Ramus et al. (2003). The main advantage of an adaptive procedure is that trials are concentrated

in the region most crucial for estimating the phoneme boundary and slope of the function, thus

making an efficient use of a relatively small number of presentations. Another advantage is that

the level of difficulty is consistent across participants as a particular level of performance (71%

‘pea’ or ‘bee’ responses) is tracked for each listener. Catch trials (continuum endpoints) were

randomly interspersed 20% of the time so that participants would not hear an uninterrupted

sequence of ambiguous stimuli. Two independent adaptive tracks were used. Each operated

under identical rules except that they started at opposite ends of the continuum, and were

designed to track 71% of ‘bee’ or ‘pea’ responses using a 2-down/1-up rule (Levitt, 1971). On

any particular trial, the choice of track was made at random. The initial step-size was 10 ms,
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reducing linearly over the first 3 reversals to 3 ms. The initial track ascent/descent used a 1-

down/1-up rule to move quickly into the region of interest, switching to the 2/1 rule after the first

reversal. The interspersed endpoints also provided a measure of response consistency to ‘easy’

endpoint stimuli throughout the task. The task ended after 7 reversals on each track or a

maximum of 50 trials.

For each listener and condition, responses to all test trials (i.e., excluding catch trials) were

aggregated and logistic regression used to obtain a best-fit sigmoid function. Estimates of the

slope and boundary were then obtained from the fitted coefficients. The boundary locates the

point on the continuum at which ‘pea’ and ‘bee’ responses are equally probable, in other words

the point at which the percept changes from one phonemic category to the other (the so-called

phoneme boundary). The slope of the identification function is a measure that reflects the

consistency with which the listener is categorizing the continuum. A shallower slope indicates a

lower degree of consistency in the labelling of the continuum. The interspersed-endpoint trials

were analysed separately and used as a measure of the level of attention maintained through the

task.

The identification task was run in two conditions: in quiet (AdaptID-Q) and in noise (AdaptID-N).

For the noise condition, multi-talker babble was played simultaneously with the word at an SNR

of +6 dB. The total duration of the stimuli was 1000 ms with the noise starting about 315 ms

before the beginning of the word. All other aspects of the stimuli were the same in quiet and in

noise.

Discrimination tasks: Three different discrimination tasks were presented to each

participant, using the same ‘pea’/’bee’ continuum: two adaptive discrimination tasks and a fixed

discrimination task. A three-alternative forced-choice (3AFC) test procedure was used for all

tasks. The task again was designed for use with children but could be run without problem with

adults. Three frogs appeared on the screen with each ‘saying’ one of the stimuli from the

continuum. Participants were told that two of the frogs would say something similar and one

would say something different and were instructed to click on the frog that said something

different. The ISI was set at 300 ms. A 3AFC procedure was preferred over a 2IAX procedure for

the following reasons. First, chance level is lowered to 33%. Second, as discussed by Halliday

and Bishop (2006), given that the odd stimulus can often be inferred by hearing the first two

stimuli in the triplet, the third stimulus presented can provide further confirmation or refutation of

the decision reached. Finally, previous studies with adult dyslexics have suggested that 2IAX

procedures than lead to higher jnds, than 3AFC procedures at least for frequency discrimination

tasks (France et al., 2002).
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The ‘fixed reference discrimination task” (AdaptWC) was used to get a measure of just

noticeable difference (jnd) within category. In this task, the standard stimulus for every test trial

was the ‘pea’ endpoint of the continuum. The test started with the ‘bee’ endpoint as the

comparison stimulus, which was presented for three trials, an easy discrimination for all. A 3-

down/1-up adaptive procedure (Levitt, 1971) was used to choose the comparison stimulus so as

to estimate the stimulus that could be discriminated from the standard 79.4% of the time. As for

the identification task, a 1-down/1-up rule was used prior to the first reversal. Step-size varied

throughout the test, from 12 ms VOT at the start, decreasing linearly over the first 3 reversals to 3

ms VOT. The task ended after 7 reversals on each track or a maximum of 50 trials. This test was

done both in quiet (AdaptWC-Q) and in a background of babble noise of +6 dB SNR (AdaptWC-

N). The jnd (just noticeable difference in VOT) was calculated by taking the mean of the final 4

reversals (i.e., when the minimum step-size had been reached). A jnd of less than 38 ms would

typically indicate that the listener was able to discriminate differences within the [pi] category.

This is because the jnd was with reference to the ‘pea’ endpoint (VOT=60 ms) and the mean

phoneme boundary was at 22 ms VOT (60 ms – 22 ms= 38 ms VOT). As phoneme boundary

points varied across listeners, an evaluation of whether each listener was discriminating within-

category was made by comparing their discrimination threshold to their specific phoneme

boundary point.

The ‘phoneme-boundary centred discrimination task’ (AdaptAC-Q) was used to get a measure of

jnd across category in quiet. This task was essentially identical to the fixed reference

discrimination task except that here, both the comparison and standard stimuli changed as the

adaptive track proceeded, so as to remain centred on a phoneme boundary of 22.5 ms VOT (as

determined in the pretesting of the continuum). Therefore, the standard ‘bee’ was initially set at 0

ms VOT and the comparison ‘pea’ at 45 ms VOT, resulting in jnds that were always across

category and could lie between 1 and 45 ms. For example, the smallest jnd of 1 ms would be

obtained in the final tokens centred on the phoneme boundary at 22.5 ms had VOTs of 23 ms

and 22 ms. For both these tasks, larger jnds indicate poorer discrimination abilities.

In order to assess the consistency of performance in the phoneme discrimination task, and also

to be able to compare our results more easily with previous studies of within- and across-

category discrimination, a further discrimination test was presented in quiet using a fixed

procedure. As for other discrimination tests, a three-alternative forced-choice (3AFC) test

procedure was used, with the participants being asked to indicate which word was the ‘odd one

out’ in the triplet presented. Six stimulus pairs were used: four within-category stimulus pairs (5-

20 ms, 35-50 ms, 40-60 ms and 50-65 ms VOT) and two across-category pairs (20-35ms and 15-

35 ms VOT). Each was presented 6 times in each of the following permutations of the stimuli A

and B in a pair (ABA, ABB, AAB, BAB, BAA, BBA) giving 18 observations per stimulus pair (total:
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108 observations). The proportion of correct responses was calculated for each pair, and mean

scores were also calculated over the across-category pairs (FixedAC-Q) and within-category

pairs (FixedWC-Q). Chance performance is 1/3, i.e. 33%.

Results

Phonological awareness and short-term memory

Mean scores obtained for the subtests of the PhAB task and Nonword Repetition tasks are

presented in Table 2. The two participant groups did not differ significantly on the rhyme subtest

of the PhAB but the DYS group performed significantly worse on the spoonerisms subtest and on

the Nonword Repetition task, which assessed phonological short-term memory.

[Table 2 about here]

Perception of words in noise

The signal-to-noise threshold (dB SNR) for word intelligibility in babble noise was assessed in two

tasks in which either high-frequency words were presented in isolation (‘WiN’ test) or a restricted

set of colour categories had to be recognized within a sentence (‘WiNiCS’ test). Results are

shown in Table 3. As expected, a higher level of noise could be tolerated in the WiNiCS given

the highly-restricted vocabulary set, even in the face of the higher performance level demanded

(79.4% correct tracked in WiNiCS versus 50% correct in WiN). The difference in thresholds

between the DYS and AR groups did not reach significance for either of the two tests.

[Table 3 about here]

‘Pea’/’bee’ identification tasks

Figure 2 shows the summed data across participants in the AR and DYS groups for AdaptID-Q

and AdaptID-N. These graphs show a high level of correct ‘pea’ and ‘bee’ identification for

endpoint stimuli by both groups of listeners, despite claims in some previous studies of less

consistent identification by dyslexic listeners in the endpoint regions of the continuum (e.g., Manis

et al., 1997). To give a sense of individual performance on this task, estimated identification

functions for individual participants (i.e., sigmoid curves from the fitting of individual data points)

are presented in Figure 3. The slope measures were examined for AdaptID-Q and AdaptID-N,

using data which excluded the interspersed endpoint presentations (see Table 3). As the

distribution of slope measures was skewed, the log of the slope was used in order to obtain more

symmetrical distributions. A repeated-measures ANOVA was carried out to evaluate the effect of

participant group and test condition (quiet, in noise). Identification functions were sharper
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(reflecting better categorization) in quiet than in noise [F(1, 35)=63.38; p<0.001] but there was no

significant group effect [F(1, 35)=1.54; p=.223] or group by condition interaction [F(1, 35)=0.076;

p=.784], suggesting no evidence of poorer performance on this task by the DYS group either in

quiet or in noise (see Table 3). The range of slope values was larger for the AR group in quiet

(0.88 for AR group versus 0.77 for DYS group) but in noise, there was greater variance in the

DYS group (range of 1.404 versus 1.295 for the AR group). A similar outcome was found for

boundary measures: the mean phoneme boundary across all participants in the study (n=37)

shifted from 22.0 ms VOT (s.d. 3.7) in quiet to 32.2 ms VOT (s.d. 13.4) in noise but there was no

significant group effect [F(1, 35)=0.079; p=.781] or group by condition interaction [F(1, 35)=0.047;

p=.829]. As the identification of catch trials (interspersed endpoints), which can be interpreted as

an index of attention, was found to be significantly poorer for the DYS group than AR group in our

study with children (Messaoud-Galusi, Hazan and Rosen, under review), this was also examined

here. Both groups were at or near ceiling in quiet (100% for the DYS group and 98.6% for the AR

group).

[Figures 2 and 3 about here]

‘Pea’/’bee’ discrimination tasks

First, consider performance on the adaptive tasks. The outcome measure of the AdaptWC task is

the just-noticeable difference (jnd) in ms VOT from the endpoint ‘pea’ token (+60 ms VOT) which

was the fixed reference. Within-category discrimination would be achieved if the jnd obtained in

the AdaptWC task fell within the voiceless category for each listener. This was calculated in

relation to the phoneme boundary measure obtained for that listener from the AdaptID-Q task. In

quiet, 19/20 participants (95%) in the AR group, and 15/17 (88%) in the DYS group had

thresholds that were within-category. In noise, only 8 participants in the AR group (40%) and 8

participants in the DYS group (47%) achieved within-category discrimination. The increase in

standard deviation in the noisy condition indicates that there was a wider range in performance in

both groups when noise was added (see Table 3). Because of the differences in variance across

conditions, separate ANOVAs were carried out on the quiet and noisy conditions for AdaptWC to

look at the effect of participant group: this was not significant in either condition (see Table 3)

although there was a trend towards better performance by the AR group in clear. In the AdaptAC

discrimination’ task, both adaptive tracks were varying so there was no fixed-reference acting as

anchor. In this condition, the final threshold represents the across-category jnd. Again, the effect

of participant group was not significant (see Table 3).

Second, performance on the fixed-procedure discrimination task was evaluated (see Figure 4).

This test included four within-category pairs and two across-category pairs. First, one-way

ANOVAs were carried out to see if discrimination varied across groups for any of the minimal
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pairs. Only discrimination for the 15-35 ms VOT ‘across-category’ pair was close to reaching

significance even without correction for multiple comparisons [F(1,35)=4.005; p=.053], with better

discrimination shown for the AR group. The scores for individual pairs were then aggregated to

get mean across-category (FixedAC-Q) and within-category (FixedWC-Q) scores, and a

repeated-measures ANOVA was used to evaluate the within-subject effect of type (within, across-

category) and across-subject effect of group. The main effect of type was significant with a better

discrimination of FixedAC-Q pairs [F(1, 35)=120.97; p<0.001]. The effect of group was also

significant [F(1, 36)=4.544; p<0.05] but there was no significant group by type interaction [F(1,

35)=0.0739; p=.396]`. AR participants therefore showed better discrimination for both within-

category and across-category pairs. Finally, the effect of step-size was examined for the two

across-category pairs. A significantly higher score was obtained overall for the 20 ms-step pairs

than for the 15 ms-step pairs [F(1, 35)=23.98; p<0.001] but there was no significant group by

step-size interaction showing that the DYS group was not more affected by the step-size than the

AR group.

This ’pea’-’bee’ discrimination test provides a rare opportunity to evaluate the effect of task

procedure on speech perception tasks as within- and across-category discrimination were both

evaluated using adaptive and fixed procedures with the same set of stimuli. For within-category

discrimination, we compare performance for the 40 vs 60 ms pair in the FixedWC task with

performance for the same interval in the AdaptWC task as estimated from the psychometric

function. Recall that in the AdaptWC task, the fixed standard stimulus was always ‘pea’ at 60 ms,

with the comparison stimulus changing as required by the adaptive procedure. For each set of

data from a single adaptive test (representing performance by one listener), it is possible to plot

performance as a function of the VOT of the comparison stimulus (the psychometric function).

This will vary from chance (⅓) to perfect as the comparison stimulus varies from near 60 ms, to 

low VOT values at the ‘bee’ end of the continuum. Logistic regression (taking chance levels of

performance into account) can then be used to obtain a best-fitting sigmoid curve to this

psychometric function, and hence to estimate performance for the 40 vs 60 ms pair. Similarly,

performance for the across-category pair in the FixedAC task (15 vs 35 ms VOT) can be

compared to that estimated from the psychometric function in AdaptAC. These measures were

calculated individually for each participant, and mean discrimination scores for each group are

given in Table 4. A repeated-measures ANOVA was used to investigate the between-subject

effect of group and within-subject effect of stimulus pair (40 vs 60 ms, 15 vs 35 ms) and test

procedure (fixed, adaptive). The effect of listener group was not significant [F(1,35)= 3.195;

p=0.08]. As expected, higher discrimination scores were obtained for the 15 vs 35 ms than for the

40 vs 60 ms pair [F(1,35)= 83.359; p<0.001]. There was a significant stimulus pair by test

procedure interaction [F(1,35)= 9.603; p<0.005]: discrimination accuracy varied between the fixed

and adaptive procedure for the within-category pair but not for the cross-category pair. The
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perception of within-category differences was therefore enhanced in both listener groups in the

adaptive task in which there was a gradual reduction of the stimulus interval and a consistent

reference stimulus (‘’pea’’ endpoint).

[Table 4 and Figure 4 about here]

Composite scores

As in Ramus et al. (2003), composite z-scores were then calculated to compare performance on

reading tasks, phonological tasks, and speech perception in quiet and in noise. For each

participant, a READING score was calculated by taking a mean of the z-scores for the TOWRE

word and pseudoword subtasks, a PHONOLOGY score was calculated as the mean of the

rhyme, spoonerism and nonword repetition z-scores, a QUIET score was calculated as the mean

of the AdaptID-Q, FixedAC-Q, AdaptWC-Q and AdaptAC z-scores, and a NOISY score was

calculated as a mean of the AdaptID-N, AdaptAC-N, WiN and WiNiCS z-scores (see Figure

5).The data was examined for outliers, defined as scores that were greater than two standard

deviations below the mean for that group. Where outliers were found, statistical evaluations were

carried out with and without outliers. It should be noted that no single individual was an outlier in

more than one of these composite scores. The group effects are reported here with outliers

included but any significant change in effect resulting from the removal of outliers is mentioned

below. As expected, the AR and DYS groups differed in their READING score [F(1,35)=76.95);

p<0.001]. They also differed in their PHONOLOGY scores [F(1,35)=9.027); p<0.01] and this

group difference was even greater when one outlier per group was removed [F(1,33)=11.02;

p<0.005]. The difference in the QUIET score just reached significance [F(1,35)=4.547; p<0.05],

probably due to the poor performance on the fixed-step discrimination procedure by many

individuals in the DYS group but the difference in the NOISY score did not [F(1,35)=0.859;

p>0.05].

Correlations across the composite scores were then examined, for the data aggregated across

the DYS and AR groups after outliers had been excluded. The READING score was significantly

correlated with the PHONOLOGY score (r=.563; p=.001, N=34), QUIET score (r=.464; p=.006,

N=34) and NOISY score (r=.363; p=.03, N=35),. There was a moderate correlation between the

PHONOLOGY score and the QUIET (r=.433; p=.012, N=33) but not with the NOISY (r=.339,

p=.05, N=34) scores. The QUIET and NOISY scores were correlated (r=.343; p=.04, N=34).

When composite scores were examined separately for each group, none of the correlations

reached significance.

[Figure 5 about here]
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Individual differences

Several studies have suggested that only a subgroup of individuals with dyslexia may have

speech perception difficulties (e.g., Lieberman et al., 1985, Adlard and Hazan, 1998; Ramus et

al., 2003). It is therefore important to examine the performance of individual participants in both

the DYS and AR groups to get a better sense of the proportion of individuals showing poor

performance on speech perception tasks, even when group effects are not significant. A further

rationale for this kind of analysis is to ascertain whether any participants are consistently poor at

subtasks that are assessing a given processing ability, or whether poor performance appears to

be more random, and therefore more likely to be due to reasons other than a perceptual deficit

(Roach et al., 2004; Heath et al., 2006). Also, if poor categorization ability is likely to result in

further perceptual difficulties when the speech signal is degraded, we expect to see that

individuals showing poor performance on categorization tasks also show higher thresholds in the

words in noise tasks.

Individual performance on the following eight tasks was examined. The WiN and WiNiCS tests

both address the perception of words in noise, the AdaptID-Q and AdaptID-N both address

phoneme categorization ability and the four scores from the ‘pea’/’bee’ discrimination tasks

(AdaptWC-Q, AdaptWC-N, AdaptAC-Q, FixedAC-Q) all address the ability to discriminate subtle

acoustic-phonetic changes using the same set of speech stimuli.

The method used to identify participants in each task who were performing below norm was as

first described in Ramus et al (2003) and also used by Reid et al (2007). Average readers

performing below 1.65 standard deviation of the mean for the AR group (i.e., 5
th

percentile) were

removed, and the mean and standard deviation for the AR group was then recalculated. Any

participant performing below 1.65 standard deviation of this ‘trimmed’ mean was considered to be

performing ‘below norm’ for that task. This is a more stringent criterion than many studies, as, for

example, Adlard and Hazan (1998) used a criterion of one standard deviation below the mean for

average readers.

Overall, 2 adults from the DYS group (11.7%) and 9 from the AR group (45%) performed within

norm on every one of the eight speech tasks and can be described as ‘good performers’ while 5

adults from the DYS group (29.4%) and 1 from the AR group (5%) performed ‘below norm’ on

three or more of the eight speech tasks, and can be described as ‘poor performers’. The rest of

the participants from the DYS group (58.8%) only fell below norm on one or two tasks. This

analysis shows that despite the lack of a significant group effect for most of the speech tasks

presented in the study, there is evidence of poorer performance by the DYS group, as only two

participants in the DYS group are within norms on all speech tasks whereas half of the AR

participants are.
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Before assigning this poor performance to speech perception deficits, it is important to see

whether those participants who showed poor performance did so consistently across tasks that

were tapping the same level of processing (see Tables 5 and 6). As regards the perception of

naturally-produced words in noise, none of the six participants in the DYS group performing

below norm on one task (either WiN or WiNiCS) also showed below norm performance on the

other. Only three participants in the AR group performed below norm for the WiN test and one for

the WiNiCs test but there again none performed consistently badly for both tests. For the

identification tasks, two participants within the DYS group were below norm for each of the two

tests but none was below-norm for both AdaptID-Q and AdaptID-N. There were three or four poor

performers for each of these tests within the AR group also, but only one participant was below-

norm for both. The discrimination tasks are the most informative in terms of consistency in

performance, as across and within-category discrimination in quiet for the ‘pea’/’bee’ continuum

was tested using both fixed and adaptive tasks. 9/17 participants in the DYS group were below

norm for the FixedAC-Q task and 6/17 for the AdaptAC-Q task, but only 3/17 were below norm for

both. Within the AR group, 3/20 participants performed below norm for FixedAC-Q and 2 for

AdaptAC-Q but only one of these participants was below norm for both. Finally, the individual

data were examined to see whether any of the participants showed consistently poor

performance for tasks presented in noise (fixed-reference discrimination in noise, identification in

noise and two words in noise tasks). This was not the case for any of the AR or DYS participants.

Finally, the profile of the five poor-performers in the DYS group and one poor performer in the AR

group were examined in more detail. The only test for which all six participants were below norm

was the FixedAC-Q discrimination test. The other two tests on which they performed ‘below norm’

varied across the six individuals in this group. Their performance on nonverbal and verbal IQ,

phonological short-term memory and the four composite scores was examined in more detail

(See Table 7). Univariate ANOVAs were carried out to evaluate the effect of group (‘poor

performer’, ‘DYS good performer’ or ‘AR good performer’) on these various scores. The three

groups did not differ in terms of their non-verbal IQ but did in terms of their verbal IQ [F(2,

34)=4.329; p<0.05]. Post-hoc tests (Tukey’s HSD) showed that the poor performer group had a

significantly lower verbal IQ than the AR good performers but that DYS good performers did not

differ significantly from either the poor performers or AR good performers. The same pattern of

post-hoc analyses was obtained for the phonological STM task [F(2, 34)=6.600; p<0.005] and the

PHONOLOGY composite score [F(2, 34)=7.189; p<0.005]. For the READING composite score,

[F(2, 34)=31.750; p<0.0001], the DYS good performer and the poor performer group obtained

lower scores than the AR good performer group. For the QUIET composite score, as expected,

the effect of group was significant [F(2, 34)=8.876; p<0.001]; the poor performer group obtained

lower scores than the AR and DYS good performer groups which did not differ from each other.

This same pattern was also obtained for the NOISY score [F(2, 34)=5.734; p<0.01]. Overall,
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therefore, the DYS good performers, who were within norm on a majority of the speech tasks,

achieved comparable scores to the AR group on non-verbal IQ, verbal IQ, phonological short-

term memory and the PHONOLOGY composite score, and only differed in the READING

composite score. The poor performer group, which included 5 DYS and 1 AR adult, however,

showed poorer performance than the AR good performer group in terms of their verbal IQ,

phonological STM and PHONOLOGY scores. The poor performers only differed significantly from

the DYS good performers for the QUIET and NOISY speech scores.

[Tables 5, 6 and 7 here]

Discussion

This study tested adults with dyslexia and average readers on a range of speech perception

tasks. Some of these tasks tapped the ability to identify speech sounds and discriminate subtle

acoustic-phonetic differences within ’analytic’ tests in quiet and in noise (identification and

discrimination skills). As the ability to discriminate a ‘pea’/’bee’ continuum was tested using two

different methods (fixed or adaptive), it was possible to assess the consistency of any evidence of

poor performance. Such consistency is key to attributing poor performance to a speech

perception deficit rather than to other causes. Other tasks assessed the perception of naturally-

produced words in noise. These more naturalistic tasks did not purely tap the use of acoustic-

phonetic information, as listeners could also use lexical and phonotactic knowledge. It was still

expected that any true deficit in phonemic categorization would lead to poor word perception in

noise (Ramus, 2001).

The first aim of the study was to assess performance on categorical perception tasks, and to

investigate whether the addition of noise in identification and discrimination tasks would lead to a

greater decrease in performance for the DYS than for the AR group. A pattern of poor

performance in quiet that worsens significantly in noise would suggest that phonemic categories

in individuals with dyslexia may be underspecified and easily affected by further degradation of

the signal. Overall, the group data revealed fewer across-group differences than many previous

studies of speech perception abilities in adult dyslexics (e.g., Steffens et al., 1992; Schwippert

and Koopmans-van Beinum, 1998; van Beinum et al, 2005). No significant differences between

the AR and DYS groups were found in the steepness of the identification functions for a

‘pea’/’bee’ contrast both in quiet and in noise, nor for adaptive discrimination tasks for the same

contrast. No group differences were found in the thresholds for the recognition of words in noise,

whether the words were presented in isolation or in context. The only significant group difference

was obtained for a fixed-step discrimination task for the same ‘pea’/’bee’ continuum, where

significantly better discrimination of both within- and across-category pairs was shown for the AR
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group. There was therefore little evidence of consistently poorer categorization in the DYS group

and it did not appear that their perception of speech was particularly affected by signal

degradation.

Given that many studies have suggested that not all individuals with dyslexia may have speech

perceptual processing difficulties, we need to consider whether a link between categorization and

perception of speech in noise may be present at least for those few individuals who are

performing poorly in the categorization and discrimination tasks, whether such individuals are

dyslexic or average readers. However, as shown in the analysis of individual performance, there

was no evidence that individuals who performed below norm on identification and discrimination

tasks in quiet performed particularly poorly for the same tasks in noise or on the natural speech in

noise tasks.

It is important to consider in what ways the speech perception tasks presented in this study

differed from those in studies that did obtain group differences in the identification or

discrimination of phonemic contrasts. This is not an easy comparison as studies differ in so many

aspects of the stimuli and tasks used, and in the characteristics of the participant populations. In

terms of stimuli, studies vary in the specific phonemic contrast used, whether the stimuli are

synthesized or processed natural continua, and whether the target labels were lexical items or

nonwords. Studies also differ in many aspects of task design, such as whether the task was fixed

or adaptive, the step-size used and number of presentations.

One first source of variability is the phonetic contrast that was investigated. Many studies have

tested contrasts in place of articulation (e.g. /ba/-da/), as these are cued by fast formant

transitions, and thus were suspected to be particularly problematic for children with dyslexia or

SLI (Tallal, 1980). The outcome of studies is inconsistent for these contrasts. For example,

Steffens et al (1992) obtained significant group differences for a /ba/-/da/ contrast with adults but

Ramus et al (2003) found no group differences in the identification of a ‘date’-‘gate’ contrast in

their adult study. Results are equally inconsistent for studies investigating voicing contrasts.

Ramus et al. (2003) obtained no significant group differences between dyslexic adults and

average readers in the identification of a ‘coat’-’goat’ continuum, mirroring the result obtained

here for a ‘pea’-‘bee’ contrast. However, Breier et al (2001) obtained a group difference in an

identification task between dyslexic children and controls for a /ga/-/ka/ continuum with the

greatest difference across groups being in the labeling of stimuli at the endpoints of the

continuum. A similar group difference was found by Manis et al. (1997) for a ’path’-‘bath’

continuum, although they also point out that the majority of dyslexic children exhibited normal

categorization, as only 7 out of 25 had abnormal identification functions. In French, poorer

identification and discrimination was found by Bogliotti et al. (2008) for a /do/-/to/ contrast with
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children with dyslexia, and poorer discrimination was also obtained with a similar group for a /ga/-

/ka/ continuum (Serniclaes et al., 2004).

Another source of variability is the method of stimulus construction used. Steffens et al. (1992)

argued that marginally poorer perceptual performance in adults with dyslexia was likely only to be

visible in situations in which linguistic context is absent, or which maximally stress phonetic

perceptual abilities by removing cue redundancy, as occurs in rather schematic synthesized

speech. This view that individuals with dyslexia may benefit from the redundancy of acoustic cues

that is present in natural speech is supported by some studies showing better performance with

natural than with synthetic speech tests (Lieberman et al., 1985; Masterson, Hazan and

Wijayatilake, 1995). However, differences in categorization between DYS and AR groups have

been obtained both for studies using fully-synthetic continua (e.g., Steffens et al., 1992; Breier et

al., 2001) and those using computer-edited natural speech (e.g., Schwippert and Koopmans-van

Beinum, 1998; van Beinum et al., 2005; Manis et al., 1997).

Finally, studies vary in the task procedures used in identification and discrimination tests. Fixed-

step procedures present items that are fully-randomized and presented with equal frequency,

while adaptive procedures track a specific level of performance for each individual, with the level

of ambiguity of the stimuli increasing as the task progresses, at least in the initial stages of the

test (apart from the catch trials). Given the suggestion that individuals with dyslexia have poor

attention and short-term memory, it is conceivable that certain aspects of these procedures may

affect performance. The comparison of within-category discrimination across the fixed and

adaptive tests showed the degree to which performance could be affected by specific aspects of

the test procedure. In this case, although the synthetic stimulus continuum and the 3IFC

procedure used were the same across the two tests, within-category discrimination was better in

both groups of participants for the adaptive procedure (AdaptWC), which used a fixed reference,

tracked a specific level of accuracy and where the physical difference between the stimuli

reduced during the test. When fixed-step discrimination procedures are used, a combination of

task difficulty, longer test duration, and perceptual abilities within the lower range of a normal

distribution could conceivably lead to poorer performance. For identification tasks, it could be

argued that fixed procedures, which present ‘easy’ trials (e.g. tokens from the endpoint regions of

the continuum) distributed throughout the test rather than at the beginning of the task, could be

less difficult than adaptive tasks which focus presentations in the more ambiguous region of the

continuum. However, adaptive procedures counter this by typically interspersing endpoint stimuli

20% of the time, and tend to achieve good estimates of slope and phoneme boundary measures

with a smaller number of presentations so make a more efficient use of limited attention spans. A

comparison of procedures in past studies is not very informative as studies vary in many aspects

other than the task procedure. Most studies with dyslexic adults or children have used fixed-step
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procedures for their identification tasks. To our knowledge, the exceptions are studies by Adlard

and Hazan (1998) with children and Ramus (2003) with adults which included adaptive

consonant place and voicing identification tasks in their test battery. The Adlard and Hazan

(1998) study was not fully adaptive as the stimulus continuum only contained six stimuli, but

presentations were focused in the phoneme boundary region. As in our study, neither of these

two studies obtained significant group differences in the slopes of the identification functions for

any of the contrasts. However, all three studies also differ from other studies in using copy-

synthesized stimuli, in which the syntheses are carefully matched to a natural utterance, rather

than either stylised syntheses or natural edited speech. Both factors could therefore have led to

improved performance in the dyslexic group.

Task-related issues may also partly explain the discrepancy between our results for tests

presented in noise, which failed to show any group differences for phoneme identification,

phoneme discrimination or word identification tasks, and previous studies which suggested that

children or adults with dyslexia perform particularly poorly in noisy conditions. Ziegler et al. (in

press) found no differences between DYS and AR children in the identification of naturally-

produced VCV tokens in quiet, with both groups showing ceiling effects, but they obtained

significant group differences at all noise levels. The seven separate identification tests, presented

using a 16 alternative forced-choice fixed-procedure, were counterbalanced across listeners but

the ‘silence’ condition was always presented first. Fatigue and lapses of concentration could

therefore conceivably have affected the scores for noisy conditions more than the scores in the

‘silent’ condition. No information was provided on the performance of individual participants. In

their study with dyslexic adults, Ramirez and Mann (2005) also showed evidence of a greater

decrease in consonant accuracy in the DYS relative to AR group for nonsense CV syllables.

Here, task difficulty was potentially increased by the use of a fixed procedure and of a full

randomization within a single test of audio-only, visual-only and audiovisual stimuli presented

both in silence and in different noise conditions. Therefore, although both studies may genuinely

reflect difficulties with speech in noise, alternative explanations based on task-related factors are

also plausible.

Our results therefore suggest the following picture. First, any claim of a causal link between

dyslexia and speech perception difficulties seems questionable in the light of so many studies

that show a majority of individuals with dyslexia to be within norms for speech perception tasks

despite poor phonological processing (see also Ramus, White and Frith, 2006). A weaker

proposal is that only a subset of children or adults with dyslexia with poor phonological

processing may have speech perceptual deficits (e.g. Adlard and Hazan, 1998; Manis and

Keating, 2005). Under this view, whether group differences are significant or not would depend

on the proportion of individuals in the dyslexic cohort that happens to have a speech perception
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deficit, thus explaining the inconsistency found across studies. A final view may be that the poor

performance shown by some individuals with dyslexia on speech perception tasks may not be

due to a significant speech perceptual deficit. In our study, a comparison of performance on the

fixed-step and adaptive ‘pea’/’bee’ discrimination tasks, and on the identification of the same

contrast in quiet and in noise, can inform about whether poor performance in individual

participants is consistent across related perceptual tasks. The lack of consistent poor

performance across tasks for ‘poor performers’ provides little support for a specific speech

perceptual deficit in dyslexic adults. On the basis of our data, it is not possible to totally discount

the possibility that certain individuals with dyslexia have poor speech perceptual abilities but the

alternative explanation of poor performance being due to non-sensory factors also seems

plausible. Sutcliffe, Bishop, Houghton and Taylor (2006), for example, found that significant

relationships between frequency discrimination performance and measures of language and reading ‘were

abolished when comorbid attentional difficulties were taken into account’. On the other hand, a study that

compared the performance of dyslexic children with and without ADHD on auditory perception

tasks suggests that attention alone (at least as expressed in ADHD) cannot fully account for poor

performance on these tasks (Breier et al., 2001). It may also be that in some individuals, speech

perceptual acuity in the lower end of the normal range combined with task-related and other non-

sensory factors such as lapses in concentration (e.g., Davis et al, 2001) may be sufficient to lead

to ‘deviant’ performance on some tests in the battery. Further studies could attempt to elucidate

this question by including other measures of attention and short-term memory, and tasks that tap

phoneme categorization indirectly. These could include tests that evaluate the impact of varying

degrees of within- and across-speaker variability on consonant discrimination and identification in

naturally-produced words.
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Figure captions 

 

Figure 1: Waveforms and spectrograms of the ‘pea’ (VOT: 60 ms) and ‘bee’ (VOT: 0 ms) 

endpoints of the speech continuum used to measure categorical perception in quiet and in noise 

 

Figure 2: Summed data across participants in the AR and DYS groups for the AdaptID-Q and 

AdaptID-N tests. The size of the circle at a particular step is related to the total number of 

presentations at that step. Logistic regression was then used to obtain a best-fit sigmoid function 

for each set of data. 

 

Figure 3: Individual identification functions for ‘pea’/’bee’  identification in quiet (AdaptID-Q) 

and in noise (AdaptID-N) for participants in the DYS and AR groups. The curves were 

extrapolated from the individual data points using a best-fit sigmoid function. 

 

Figure 4: Box-plots showing correct discrimination scores for the AR (white boxes) and DYS 

(grey boxes) groups on the six stimulus-pairs, which are labeled as either within-category (WC) 

or across-category (AC) pairs. Boxplots display the first and third quartiles (edges of the box), 

median (horizontal line) and minimum and maximum values that are not outliers (whiskers). 

Outliers, displayed as circles, are cases with values between 1.5 and 3 box-lengths from the 

quartiles. Extremes, displayed as asterisks, are cases with values greater than 3 box-lengths from 

the quartiles. 

 

Figure 5: Box-plots showing the composite z-scores for READING, PHONOLOGY, QUIET 

(speech perception tests in quiet) and NOISY (speech perception in noise) skills for the AR and 

DYS groups.   

 

Figure 6: Individual data points for participants in the AR and DYS groups for the composite z-

scores for READING, PHONOLOGY, QUIET (speech perception tests in quiet) and NOISY 

(speech perception in noise) skills. These z-scores are calculated relative to the means obtained 

for the AR group. The horizontal line represents the point at which scores were 1.65 standard 

deviations below the mean for the AR group. Individual performance below that point is 

considered ‘below norm’. 















Table 1: Mean scores (and standard deviations) for the DYS and AR groups for: age, grammar, 

non-verbal IQ, verbal IQ and reading assessments. The last two columns present the results of 

independent-samples t-tests (with ‘group’ as a between-subject factor). 

 

Group DYS (N=17) AR (N=20)  

 Mean s.d. Mean s.d. t sig. 

Age (months) 273.9 33.7 281.0 42.0 .56 .58 

Grammar (TROG) 98.7 7.5 100.3 5.8 .71 .49 

Non-verbal  IQ (WAIS-III) 116.2 16.0 112.8 12.5 -.73 .47 

Verbal IQ (BPVS) 128.7 20.0 145.5 16.8 2.78 .01 

Word Reading (TOWRE) 77.9 10.7 100.7 10.3 6.57 .00 

Nonword Reading (TOWRE) 79.6 10.2 105.3 10.1 7.70 .00 

Reading (aggregate score) 74.5 10.9 103.7 9.2 8.85 .00 

 

 

 

 



Table 2: Mean standardized scores and standard deviation measures for the average reader 

(AR) and dyslexic (DYS) groups on the Rhyme and Spoonerisms subtests of the PhAB, which 

assess phonological awareness, and on the phonological short-term memory (nonword 

repetition) test. The last two columns present the results of independent-samples t-tests (with 

‘group’ as a between-subject factor). 

 

Group AR (N=20) DYS (N=17)   

 Mean s.d. Mean s.d. t sig.  

Rhyme (PhAB) 88.8 7.0 87.7 7.7 0.70 .49 

Spoonerisms (PhAB) 86.5 10.9 77.4 13.4 2.30 .03 

Phonological STM (nonword 

repetition) 

93.8 5.5 83.5 13.6 2.90 .01 

 



Table 3:  Mean scores and standard deviation measures for the AR and DYS groups for all the 

speech tests presented using an adaptive procedure. Scores for WiN represent dB SNR values 

at the speech reception threshold (SRT), AdaptID measures are the slope value for test items 

only (catch trials excluded) and measures for the PEA-BEE discrimination scores (AdaptAC-Q, 

AdaptWC-Q, AdaptWC-N) are the jnd in ms VOT. The last two columns present the results of 

independent-samples t-tests (with ‘group’ as a between-subject factor).T-tests for the AdaptID 

tests were carried out on the logs of the slope values. 

 

Group AR (N=20) DYS (N=17)  

 Mean s.d. Mean s.d. t sig 

WiN -5.99 1.50 -5.21 1.59 -1.53 .14 

WiNiCS -8.27 1.56 -8.49 2.05 1.45 .16 

AdaptID-Q -0.59 0.28 -0.44 0.18 1.39 .17 

AdaptID-N -0.18 0.11 -0.17 0.13 0.64  .53 

AdaptAC-Q 16.25 9.68 19.82 11.70 -1.02 .32 

AdaptWC-Q 22.85  7.75 27.12 9.17 -1.53 .13 

AdaptWC-N 32.30 14.40 32.70 12.10 -0.08 .93 

 



Table 4: Mean discrimination scores (% correct) for the across-category 15-35 ms VOT pair and 

within-category 40-60 ms VOT pair in the fixed and adaptive tests. For the adaptive tests, the 

discrimination score for the 15-35 ms pair was estimated from the psychometric function for AdaptAC 

and the score for the 40-60 ms pair was estimated from the psychometric function for AdaptWC-Q.  

 

 15-35 ms 
(fixed) 

15-35 ms 
(adapt) 

40-60 ms 
(fixed) 

40-60 ms 
(adapt) 

AR 84.2 (12.7) 84.4 (21.8) 45.6 (15.6) 66.1 (23.7) 

DYS 74.5 (16.7) 78.6 (25.7) 44.1 (11.4) 57.4 (18.5) 

 

 



Table 5:  Z-scores for individual participants within the DYS group on each of eight speech tasks. 
Performance that is below 1.65 standard deviation from the mean for the AR group is indicated in 
bold. The codes for individuals who were ‘below norm’ for three out of the eight speech tasks are 
in bold while the codes for individuals who are ‘within-norm’ on all eight tasks are italicized. 
 

Case FixedAC AdaptAC FixedWC AdaptWC AdaptID-
Q  
  

AdaptID-
N 

WiN WiNiCS 

D1   -4.24 -3.06 -0.28 -4.22 -1.28 0.86 -0.28 -0.68 

D2   -2.08 -0.81 -0.28 -2.44 -2.90 -1.56 0.16 -0.68 

D3     -2.80 0.51 -0.13 0.16 -1.28 -4.39 -1.66 1.12 

D4     -1.72 -0.02 -0.88 -0.66 -3.15 -0.60 -2.50 -1.28 

D5     -2.44 0.77 -1.03 -0.53 -0.54 -4.08 -2.19 -1.28 

D6      -5.68 -2.80 -0.13 -0.53 0.03 -1.25 0.36 -0.68 

D7       -5.32 0.24 -0.58 0.16 -0.96 -1.31 -2.30 1.12 

D8     -2.80 -2.01 0.02 -0.39 -1.02 -0.61 2.54 -0.68 

D9      -1.72 0.77 -1.48 0.16 0.20 1.43 0.40 1.12 

D10      -1.36 -0.81 0.17 -2.17 0.07 -0.39 -1.53 3.64 

D11      -0.64 -2.40 -0.58 0.43 -1.27 1.38 -1.62 -1.28 

D12     -0.64 -2.93 0.32 -1.48 -1.08 -0.74 -0.83 -0.68 

D13      0.50 0.90 0.77 -0.39 0.99 0.56 -1.56 -1.88 

D14      1.16 -2.01 -0.13 -0.39 -1.26 -1.43 -1.13 1.12 

D15     1.52 0.77 -0.58 0.30 -0.16 2.20 -3.39 -0.08 

D16     1.52 1.17 -0.43 0.71 -0.47 -0.01 -0.56 -0.68 

D17      1.88 0.51 -1.33 -0.25 -0.91 0.55 -0.33 2.32 

Total 
below 
norm 

 
9 

 
6 

 
0 

 
3          

 
2 

 
2 

 
5 

 
1 

 



Table 6: Z-scores for individual participants within the AR group on each of eight speech tasks. 

Performance below 1.65 standard deviation from the mean for the AR group is indicated in bold. 

The codes for individuals who were ‘below norm’ for three out of the eight speech tasks are in 

bold while the codes for individuals who are within-norm for all eight tasks are italicized. 

 

Case FixedAC AdaptAC FixedWC 
  

AdaptWC 
  

AdaptID-
Q  

AdaptID-

N 

WiN WiNiCS 

AR1     -3.88 -3.72 -1.18 -0.53 -1.75 0.27 -1.17 -0.68 

AR2    -1.72 0.38 0.32 -1.90 -0.35 -0.69 1.25 -0.32 

AR3      -3.88 0.51 -1.33 -0.12 0.02 0.05 -0.48 -0.68 

AR4   -0.64 -2.67 1.83 -0.94 -0.10 -1.66 0.30 -0.68 

AR5   -1.36 0.64 1.68 0.16 -2.86 -1.66 -1.37 0.22 

AR6      -0.28 -0.68 0.47 0.98 0.36 -4.39 -0.84 1.12 

AR7      0.08 -0.95 0.17 -1.62 -0.20 -0.82 -2.90 0.52 

AR8    0.80 -0.29 -0.28 -0.25 -3.54 -0.33 0.01 -2.48 

AR9     0.80 -1.48 -0.28 0.84 -1.77 1.69 . -0.08 

AR10      0.80 1.57 -1.48 -1.35 1.04 1.52 -2.01 -1.28 

AR11     1.88 -0.68 0.17 1.53 1.14 -0.23 -2.02 1.12 

AR12     -1.36 0.90 0.17 0.43 0.95 -0.43 0.30 1.12 

AR13     -0.64 0.38 -0.58 0.30 1.10 -1.22 -1.53 -0.68 

AR14     -0.64 0.77 -0.28 -1.07 1.13 1.44 1.33 -0.68 

AR15     -0.64 -0.68 1.08 -0.66 -1.35 0.30 0.27 0.22 

AR16    0.44 0.24 0.17 -1.35 -0.55 0.58 1.34 1.12 

AR17     1.16 0.77 -0.88 0.16 -0.06 0.47 1.31 -1.28 

AR18     1.16 0.51 -1.63 0.57 -1.10 -0.22 -1.10 2.32 

AR19    -0.28 -0.02 0.62 1.39 0.47 1.20 0.30 -0.08 

AR20     0.44 0.77 1.23 1.53 1.03 -0.30 0.09 -1.28 

Total 
below 
norm 

 
3 

 
2 

 
0 

 
1 

 
4 

 
3 

 
3 

 
1 

 



Table 7:  Individual scores for adults classified as ‘poor performers’ on the basis of being ‘below norm’ on at least three out of the eight speech tests. Scores 

are given for verbal and non-verbal IQ, phonological short-term memory and composite z-scores for reading, phonology, speech perception in quiet and in 

noise. Means are also given for the DYS ‘poor performer’ group, DYS ‘good performer’ group and for the AR group minus the one AR participant classified as 

‘poor performer ‘.   The composite z-scores for the AR ‘other’ group differ from a mean of  0 (s.d.  1). This is due to the fact that outliers were removed 

before the calculation of the AR mean used in the computing of individual z-scores for  AR and DYS participants, but they are included in the mean scores 

below. 

Case 
 

Group 
 

Verbal IQ 
 

Non-verbal 
IQ 

Phonological 
STM 

READING 
 

PHONOLOGY 
 

QUIET NOISY 

AR1 AR 135 95 90 -0.73 -1.26 -2.47 -0.92 

D1 DYS 135 110 95 -2.05 -0.45 -3.20 -0.06 

D2 DYS 130 115 63  -3.74 -2.95 -2.06 -0.86 

D3 DYS 114 145 65  -3.51 -3.00 -0.85 -1.46 

D4 DYS 126 110 80  -2.88 -1.28 -1.39 -1.28 

D5 DYS 102 115 75  -2.10 -2.98 -0.68 -2.10 

DYS 'poor 
performers' 

n=5 121.4 (13.3) 119.0 (14.7) 75.5 (13.0) -2.9 (0.8) -2.1 (1.2) -1.6 (1.0) -1.2 (0.8) 

DYS 'other' n=12 131.8 (22.0) 115.0 (16.9) 86.9 (12.9) -2.7 (1.1) -1.0 (1.4) -0.6 (1.0) -0.1 (0.6) 

AR ‘other’ n=19 146.0 (17.1) 113.7 (12.1)   93.9 (5.5) -0.1 (0.9) -0.1 (0.9) -0.1 (0.7) -0.2 (0.7) 


