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Abstract

We have carried out a series of ab initio R-matrix calculations at the static exchange and

close-coupling levels of approximation on molecules of astrophysical interest. These in-

clude the polar triatomics HCN and HNC (hydrogen isocyanide) and their isotopologues

DCN and DNC, the diatomics CS (carbon monosulphide) and SiO (silicon monoxide),

the weakly polar CO molecule and the non-polar CH4 molecule.

With the exception of CO, all the calculations presented here were carried out using

the software ‘Quantemol-N’ which provides an intuitive user-friendly interface to the

UK polyatomic R-matrix codes. A chapter is devoted to the discussion on the software:

how to prepare an R-matrix calculation using it, its present capabilities and future

development.

The ultimate aim of this thesis is to demonstrate the need to account for electron-

induced chemistry in any astrophysical model. We seek to show that in the case of

polar molecules, namely, those molecules with large dipole moments, electron collisions

are the dominant mechanism of rotational excitation in comets and other astrophysical

bodies. Specifically, we will show that electron-impact excitation rate coefficients are

several orders of magnitude higher than the corresponding atom-molecule ones.

The thesis concludes with a summary of the key findings and opportunities (and

where necessary improvements) that may arise from them.

All the scattering equations presented here used atomic units.
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Chapter 1
Electron-Molecule Scattering and its

Applications

1.1 Overview

The electron itself is a fundamental particle in physics, and electron collisions with

molecules are not only of great interest from the pure quantum mechanical perspective,

but they have a number of applications. They play a vital role in many environments,

for example, in plasma etching where ions and radicals may be produced from these

collisions (Kimura et al., 2001); in the aurora of the Earth’s atmosphere (Meier, 1991)

and ionosphere of large planets (Broadfoot et al., 1979, 1981).

In considering the biological effects of ionising radiation, Boudäıffa et al. (2000)

found that the majority of energy deposited in cells is channelled into the production

of secondary electrons with kinetic energies between 1–20 eV. They showed that the

reactions of these electrons induce single- and double-strand breaks in DNA, caused

by the rapid decays of transient molecular resonances localised on the DNA’s local

components.

Low-temperature plasmas are used in the semiconductor industry to etch features,

deposit materials and clean reaction chambers. Development of these applications re-

quires a detailed understanding of the physical and chemical processes occurring in the

plasmas themselves. Advances in this requires knowledge of the basic processes taking

place between species in the plasma. Indeed the most fundamental of the discharge pro-

cesses are collisions between electrons and atoms, radicals or molecules. Such collisions

are precursors of the ions and radicals which drive the etching, cleaning and deposition
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processes. Therefore a quantitative understanding of the electron collision processes and

rates is important and the availability of accurate data on such observables is key to the

success of plasma processing technology (Chistophorou and Olthoff, 2004).

In CO2 LASERs, electron-impact rotational and vibrational excitation is necessary

to provide the energy necessary for population inversion (DeMaria, 1973). Detailed

knowledge of electron vibronic cross sections is pivotal in the modelling and performance

optimisation of CO2 LASERs.

Despite the applications of electron-molecule collisions discussed above being impor-

tant, little is known about their physics and chemistry. In order to fully understand

the processes listed above, the scientific community requires detailed knowledge of the

electron-molecule interactions underlying these processes. Sparsity of experimental data,

and in some cases the inability to carry out scattering experiments on some molecules

(e.g. BF3, Z. Lj. Petrovic, private communication), is a great hindrance to plasma

modellers and vice versa.

1.2 Low-Energy Processes

At low energies, defined in this case as all incident electron energies below a molecule’s

ionisation threshold, the following processes are especially important:

1. Elastic scattering

AB + e− → AB + e− (1.1)

2. Inelastic scattering

• Rotational excitation:

AB(j) + e− → AB(j′) + e− (1.2)

• Vibrational excitation:

AB(ν) + e− → AB(ν ′) + e− (1.3)

• Electronic excitation:

AB + e− → AB∗ + e− (1.4)
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3. Fragmentation

• Dissociative Electron Attachment (DEA):

AB + e− → A− +B (1.5)

• Dissociative recombination:

AB+ + e− → A+B (1.6)

• Electron-impact dissociation

AB + e− → A+B + e− (1.7)

At intermediate and higher energies electron-impact ionisation takes place:

AB + e− → AB+ + 2e− (1.8)

1.3 Electron-Molecule Collisions in Astrophysics and Pre-

vious Studies

The importance of electron-molecule collisions in astrophysical environments has been

a major motivation for a number of studies, including this thesis, on astrophysically

important molecules. In this section we shall briefly review the role played by electron

collisions in C-type shocks, comets and planetary atmospheres, and some previous work

carried out on molecules of astrophysical importance.

Electron-impact excitation plays a significant role in astrophysical environments

where the electron fraction is higher than about ∼ 10−5, e.g. diffuse interstellar me-

dia, in shocks and comets. Electrons can dominate the excitation process because the

electron-impact excitation rate coefficients can exceed those for neutrals by about five

orders of magnitude: modelling of the early stages of C-type shocks predicts that the

ion and electron densities are enhanced by the magnetic precursor (Draine, 1980). For

molecules like HCO+, HCN or HNC an electron density enhancement by a factor of

about a hundred (e.g. Flower et al. (1996)) would, according to Jimenez-Serra et al.

(2006), make electron collisions competitive with excitation by H2 collisions.
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Figure 1.1: Electron induced chemistry plays an important role in planetary nebulae. The

image is of the NGC 6543, or ‘Cat’s Eye’ nebula (Credit: J.P. Harrington and K.J. Borkowski

(University of Maryland), and NASA)

Electrons are known to have a profound effect in the rotational excitation of the

polar water molecule. Xie and Mumma (1992) observed that in the case of the 000 → 111

rotational transition, the e-H2O collisional excitation rate exceeds that of neutral-neutral

collisions at distances exceeding 3000 km from the cometary nucleus. Their conclusion

was that the rotational temperature of water in the intermediate coma may be controlled

by collisions with electrons rather than neutrals, and that they may affect the rotational

population of the molecule in the intermediate and outer coma of an active comet such

as Halley. Similar conclusions were drawn by Lovell et al. (2004) in the case of HCN,

which is also very polar (∼ 3 D NIST (2008)). Electron collisions might also contribute

to the pumping of H2O MASERs commonly observed in star forming regions or active

galactic nuclei (Strelnitskii, 1984).

Interest in the electron scattering of SO2 has also been motivated by its detection in
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Figure 1.2: Ring Nebula (M57) (Credit: The Hubble Heritage Team (AURA/STScI/NASA))

planetary atmospheres. It is a major constituent (Pearl et al., 1979) of the atmosphere

of Io, a satellite of Jupiter, and originates from volcanic eruptions. This SO2 ends up as

ions in the ‘plasma torus’ following excitation and dissociation by electron and photon

impact (Kumar, 1979). A means of modelling such a system requires electron-impact

excitation cross sections: this was the motivation for an experimental study by Abuain

et al. (1985).

With the second paragraph in mind, we now state the precise aims of this thesis in

addressing the role of electron collisions in harsh astrophysical environments.

1.4 Objectives

The objectives of the thesis are as follows:

1. to accurately construct quantum chemistry models for HCN, HNC, CO, SiO, CS
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and CH4 with the aim of obtaining electronic excitation channel thresholds and

multipole moments, with special attention paid to the weakly polar CO to re-

produce the experimentally observed sign of the dipole moment (polarity C−O+-

see Harrison (2006)) and its magnitude;

2. using the ab initio R-matrix method, construct highly accurate close-coupling scat-

tering models, incorporating many closed excitation channels to model the polari-

sation interaction and obtain the scattering quantities (R-, K- and T-matrices and

multichannel eigenphase sum) and observables (resonances, elastic and inelastic

(electronic and rotational) and ionisation cross sections);

3. detect and fit any resonances;

4. using the rotationally inelastic cross sections, compute the rotational excitation

rate coefficients and from these the hyperfine excitation ones where it is appropri-

ate. For later use in astrophysical modelling fit the rotational rate coefficients to

a functional form;

5. confirm that the role of electron collisions simply cannot be neglected in astro-

physical modelling (Lovell et al., 2004) by showing that for polar molecules in

particular (SiO, HCN and HNC), the rotational excitation rate coefficients can

be several orders of magnitude higher than excitation induced by collisions with

neutral projectiles.

1.5 Layout of the Thesis

Chapter 2 begins with a discussion of the electron-molecule scattering problem, the

quantum chemistry methods applied to represent the target wavefunctions required in

the close-coupling trial wavefunction, the Born-Oppenheimer approximation and the

fixed-nuclei (FN) approximation which is applied in all the studies presented in the

thesis.

Chapter 3 discusses the scattering method employed to the calculate the scatter-

ing quantities and observables, namely, the ab initio R-matrix method. Here we shall

demonstrate how it is applied to the simple case of scattering by a potential well, whose

equations of motion yield analytical solutions. A derivation of the R-matrix in the case

of multichannel scattering shall be presented as part of a discussion of the internal region
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problem, followed by the equations of motion for the external region and the package

structure of the codes utilised.

The R-matrix package is very difficult for non-specialists to use, and takes many

months of training to be able to use it proficiently. Even then, the user can often

introduce very subtle ‘bugs’ in the data input stage that could result in the calculated

observables being incorrect. Hence Chapter 4 introduces the reader to the new software

‘Quantemol-N’, which provides a JAVA graphical user-interface to the UK R-matrix

codes. The reader is shown how to prepare an ordinary R-matrix calculation by inputting

data into a series of wizard panels, how to set up a batch calculation, where the user is

able run a queue of R-matrix calculations, and some other facilities to aid new users.

Chapters 5–10 present the models and results obtained during the research. For all

the chapters applying the R-matrix method, the close-coupling, or CC level of approxi-

mation was used, and each chapter begins with a motivation for studying the molecule

in question.

Chapter 5 discusses the application of the R-matrix method to the computation

of electron scattering by the polar HCN (hydrogen cyanide) and HNC (hydrogen iso-

cyanide) triatomic molecules.

Chapter 6 discusses the results obtained for the weakly polar CO (carbon monoxide).

For this molecule, care was taken to calculate a dipole transition moment with the correct

magnitude and sign as observed in experimental studies.

In chapter 7 we present, for the first time, electron scattering by SiO (silicon monox-

ide), also a polar diatomic. Here we computed, in addition to the quantities usually

calculated by the (polyatomic) R-matrix codes, the rotational excitation rate coefficients

and rotationally inelastic integral and differential cross sections.

Chapter 8 also presents for the first time a series of R-matrix calculations as a function

of bond to probe dissociative electron attachment to CS (carbon monosulphide). This

study was the first to be carried out using the Quantemol-N batch job system entirely.

CH4 is particularly interesting for theoreticians as the electron scattering integral

cross sections exhibit very interesting features. In Chapter 9 we discuss the various

models tested to reproduce the Ramsauer-Townsend minimum and the cross section

maximum at about 8 eV. In addition, to analyse our models deeply, we also computed

the rotationally-resolved differential cross sections for some selected energies, comparing

them to previous theoretical and experimental data.
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Finally, we present in chapter 10 the rotationally resolved differential and integral

cross sections, rotational and hyperfine rotational rate coefficients for electron scattering

by HCN, HNC and the isotopologues DCN and DNC. These were computed using the

fixed-nuclei T-matrices obtained from the best models constructed in chapter 5. These

observables may be used in astrophysical modelling.

The thesis concludes with a summary of the results obtained, where appropriate a

criticism of them in terms of their quality and any future work that could result from

the research that was carried out here.
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Chapter 2
Theoretical Pre-requisites

2.1 The Electron-Molecule Scattering Problem

Whereas in electron-atom scattering there are only three outgoing channels:

1. elastic scattering

e− +A→ e− +A (2.1)

2. inelastic scattering

e− +A→ e− +A∗ (2.2)

3. electron-impact ionisation

e− +A→ e− +A+ (2.3)

as shown in chapter 1 the electron-molecule scattering problem is much more complicated

because there can be excitation of the nuclear rotational and vibrational degrees of free-

dom with very little electron energy. The electron-molecule interaction is multi-centred

which leads to coupling between states, and there are many fragmentation channels

(dissociation, dissociative electron attachment and dissociative ionisation).

The equation of motion for the scattering process is the Schrödinger equation, but

due to the size of the system often involved, it cannot be solved analytically– even

electron scattering by H2 must be treated numerically. There are different models that
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may be used to solve the electron-molecule scattering problem as accurately as possible.

In treating electronically elastic scattering we will consider some of the models:

1. static: at this level the scattering electron is deemed to be a separate entity from

the target molecule. The exchange is neglected and it is assumed that the target

remains unperturbed by the approaching electron, i.e. the polarization is also ne-

glected. Treating the problem at this level has the advantage that the equations are

easily solved, but it has the disadvantage that the answers may be quantitatively

and qualitatively incorrect, particularly at low collision energies;

2. static exchange (SE): here the exchange interaction is included implicitly or ex-

plicitly. Again, the target is not allowed to be perturbed i.e. the polarisation is

neglected. This and the static approximation are useful for high-energy calcula-

tions;

3. static exchange plus polarisation (SEP): with the inclusion of the exchange, the

target is now allowed to be perturbed by the polarisation and correlation interac-

tions;

4. close-coupling (CC): the scattering wavefunction is expanded in terms of a complete

set of unperturbed eigenstates of the isolated molecule ψi (Lane, 1980):

Ψε = Â
∑

i

Fi(rN+1)ψi (2.4)

where Â is the antisymmetrisation operator and rN+1 is the scattering. electron

position vector. In principle the summation in equation (2.4) can include the

continuum states of the molecule as well. The one-electron scattering function

Fi(rN+1) satisfies the set of coupled equations

[∇2
N+1 + k2

n

]
Fi(rN+1) =

∑

j

[Vij +Wij ]Fj(rN+1) (2.5)

where kn is the channel linear momentum and nabla2
N+1 is the Laplacian operator

for the scattering electron. Fi(rN+1) corresponding to a target state i depend on

the initial target state specified in the asymptotic boundary conditions

lim
r→∞Ψε ∼ Ψinc + Ψscat (2.6)
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where for some initial target state ψ0 and wave vector k0

Ψinc = ei〈k0,r〉ψ0 (2.7)

and

Ψscat =
1
r

∑

j

eikj ·rfj0(kj ,k0)ψj (2.8)

fj0(kj ,k0) is the scattering amplitude for a transition 0 → j. Vij is the electron-

molecule scattering potential and Wij is the exchange matrix. In this thesis, in

outer region, the exchange is considered negligible so the antisymmetrisation op-

erator Â is omitted and Wij = 0 (see chapter 3).

Fi(rN+1) may be expanded in terms of spherical harmonics Y m
l (θ, φ). Equation

(2.5) is then reduced to a set of coupled second order ordinary differential equations

which has to be truncated in order to be soluble.

The method is used in all the chapters presented here to account for electronic

excitation channels, but it can also be used to account for the rotational and

vibrational excitation channels.

5. dipole Born approximation: when a potential contains a long-range dipole potential

the number of partial waves required to converge the total cross section can become

very large. Such systems can treated using the Born approximation (e.g. Chu and

Dalgarno (1974), Altshuler (1957)). Higher partial waves, those above a certain

minimum l0 say, are only weakly scattered and certainly can be treated using

the Born approximation (Chu and Dalgarno, 1974). Those partial waves below l0

can be treated using a scattering theory which models the short-range interactions

more accurately. A Born correction accounting for the higher partial waves (l > l0)

is calculated by computing first the Born cross section for all partial waves and for

the partial waves l ≤ l0:

δσ(E) = σB(E)− σB,l≤l0(E) (2.9)

for some incident energy E and then is added to the cross sections for l ≤ l0.

We applied the Born approximation and correction to electron-impact rotational

excitation of HCN, HNC, DCN and DNC (chapter 10) and SiO (chapter 7). In
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2.2 Born-Oppenheimer Approximation

Figure 2.1: A molecular coordinate system: i, j correspond to electrons and α, β to nuclei (Szabo

and Ostlund, 1996).

both of these calculations we took l0 = 4.

2.2 Born-Oppenheimer Approximation

Consider a molecule with Nn nuclei and Ne electrons. Then the non-relativistic Hamil-

tonian in atomic units is

Ĥt = −
∑

A=1

1
2MA

∇2
A−

∑

i=1

1
2
∇2

i −
∑

A,i

ZA

|ri −RA|+
∑

A>B

ZAZB

|RA −RB|+
∑

i>j

1
|ri − rj | (2.10)

It is clear that the attractive electron-nucleus coulomb potential prevents one from sep-

arating the electronic and nuclear parts of the motion and using the separation of

variables method, which would allow one to write the total molecular wavefunction

Ψ({ri}Ne
i=1, {RA}Nn

A=1) as a product of nuclear and electronic terms ψe({ri}Ne
i=1)Φn({RA}Nn

A=1).

The key idea behind the Born-Oppenheimer approximation is that since the constituent

nuclei are much heavier than the electrons, they move much more slowly. So to a good ap-

proximation, one may consider the electrons in a molecule to be moving in the Coulomb

field of the nuclei. Within this approximation the nuclear kinetic energy term in (2.10)
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2.2 Born-Oppenheimer Approximation

may be neglected and the nuclear repulsion term may be considered a constant with no

effect upon the eigenkets, since the addition of a constant operator (CÎ say, where C is a

constant) only affects the operator eigenvalues. The resulting Hamiltonian is called the

electronic Hamiltonian Ĥe describing the motion of Ne electrons in the Coulomb field of

Nn nuclei:

Ĥe = −
∑

i=1

1
2
∇2

i −
∑

A,i

ZA

|ri −RA| +
∑

A>B

ZAZB

|RA −RB| +
∑

i>j

1
|ri − rj | (2.11)

So the Schrödinger equation for the electronic motion is then

Ĥeψe({ri}Ne
i=1; {RA}Nn

A=1) = Ee({RA}Nn
A=1)ψe({ri}Ne

i=1; {RA}Nn
A=1) (2.12)

Its solutions depend explicitly on {ri}Ne
i=1 and parametrically on {RA}Nn

A=1, the nuclear co-

ordinates, as does the electronic energy eigenvalue Ee({RA}Nn
A=1) of course. Parametric

dependence means that for a given nuclear geometry, the electronic wavefunction ψe

is a different function of the electronic co-ordinates. Equation (2.12) is initially solved

excluding the nuclear repulsion term. The electronic energy eigenvalue εe({RA}Nn
A=1) is

then modified by adding the nuclear repulsion to it to obtain the Hamiltonian eigenvalue

Ee

Ee({RA}Nn
A=1) = εe({RA}Nn

A=1) +
∑

A>B

ZAZB

|RA −RB| (2.13)

In summary equations (2.11) and (2.13) describe the electronic motion entirely.

Having solved for the electronic part of the molecular motion, the nuclear motion

can be solved under the same assumptions as in the electronic one: since the electron

move much faster than the nuclei, to a reasonable approximation, the electronic co-

ordinates of equation (2.10) can be replaced by their averaged values, averaged over the

electronic wavefunctions. Therefore the Hamiltonian operator for the nuclear motion in

the averaged field of the electrons is
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2.3 Hartree-Fock Approximation

Ĥn = −
∑

A=1

1
2MA

∇2
A +

〈
−

∑

i=1

1
2
∇2

i −
∑

A,i

ZA

|ri −RA| +
∑

i>j

1
|ri − rj |

〉

+
∑

A>B

ZAZB

|RA −RB| (2.14)

= −
∑

A=1

1
2MA

∇2
A + εe({RA}Nn

A=1) +
∑

A>B

ZAZB

|RA −RB| (2.15)

= −
∑

A=1

1
2MA

∇2
A + Ee({RA}Nn

A=1) (2.16)

Ee({RA}Nn
A=1) is commonly referred to as a molecule’s potential energy surface (PES)

and provides a potential for the nuclear motion. Thus in the Born-Oppenheimer ap-

proximation the nuclei move on a PES obtained by solving the electronic problem first.

Solutions to a nuclear Schrödinger equation

ĤnΦn({RA}Nn
A=1) = εnΦn({RA}Nn

A=1) (2.17)

describe the vibration, rotation and translation of a molecule, where εn is the Born-

Oppenheimer approximation to the total energy, including the electronic, vibrational,

rotational and translation energy. The total wavefunction solution of equation (2.10) is

then

Φ({ri}Ne
i=1; {RA}Nn

A=1) = ψe({ri}Ne
i=1; {RA}Nn

A=1)Φn({RA}Nn
A=1) (2.18)

An example of the above is given in chapter 8, where we applied the Born-Oppenheimer

approximation to compute the PES for some of the low-lying electronic states of the

diatomic CS.

2.3 Hartree-Fock Approximation

The Hartree-Fock approximation is a simple but powerful approximation in quantum

chemistry, providing an important foundation for much more accurate techniques which

incorporate the effects of correlation.

One can equate Hartree-Fock theory to single determinant theory (Szabo and Ostlund,

1996). Thus one seeks to obtain a set of spin-orbitals χa such that the single determinant

formed from these:

|Ψ0〉 = |χ1χ2 · · ·χaχb · · ·χNe〉 (2.19)
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2.3 Hartree-Fock Approximation

is the best possible representation for the ground state of anNe-electron system described

by an electronic Hamiltonian. By the variational principle, the best spin-orbital set is

that which minimises the electronic energy functional

E0(Ψ0) = 〈Ψ0|Ĥelec|Ψ0〉 =
∑

a

〈a|ĥ|a〉+
1
2

∑

ab

〈aa|bb〉 − 〈ab|ba〉 (2.20)

where

〈ij|kl〉 =
∫
dτ1dτ2χ

∗
i (x1)χj(x1)r−1

12 χ
∗
k(x2)χl(x2) (2.21)

and the one-particle Hamiltonian is

ĥ(1) = −1
2
∇2

1 −
∑

A

ZA

r1A
(2.22)

with the constraint that the spin-orbitals be orthogonal:

〈χi|χj〉 = δij (2.23)

The spin-orbitals are then varied until E0 is minimised. The equation for obtaining the

best possible spin-orbitals set is the Hartree-Fock eigenvalue equation:


ĥ(1) +

∑

b6=a

Jb(1)−
∑

b6=a

Kb(1)


χa(1) = εaχa(1) (2.24)

and where the exchange and Coulomb operator are defined such that

Kb(1)χa(1) =
[∫

dτ2χb(2)∗
1
r12

χa(2)
]
χb(1) (2.25)

Jb(1)χa(1) =
[∫

dτ2χb(2)∗
1
r12

χb(2)
]
χa(1) (2.26)

respectively. From the restricted summation, the operator in the square brackets is

different for every spin-orbital χa. However, if one lets b = a it is clear, from equations

(2.25) and (2.26), that [Jb(1)−Kb(1)]χa(1) = 0 and therefore it is quite possible to add

this term to equation (2.24) with no major effect on the spin-orbitals. Now, we define a

Fock operator f̂

f̂(1) = ĥ(1) +
∑

b

Jb(1)−Kb(1) (2.27)

The Hartree-Fock equation is simplified to
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2.3 Hartree-Fock Approximation

f̂ |χa〉 = εa|χa〉 (2.28)

A full derivation of the Hartree-Fock (HF) equations is presented in Szabo and Ostlund

(1996). Normally, to solve these, basis functions are introduced in the expansion of the

spin-orbitals and one then proceeds to solve a set of matrix equations.

2.3.1 Introduction of a Basis: The Roothan Equations

Spin-orbitals are of course represented by a spatial and spin component:

χi(x) =





ψi(r)|α〉,
ψi(r)|β〉

(2.29)

By eliminating spin, the calculation of the molecular orbitals is equivalent to solving the

f̂(ri)ψi(ri) = εiψi(ri) (2.30)

eigenvalue equation (Szabo and Ostlund, 1996). By introducing a known spatial ba-

sis set (Roothan, 1951) the equations (2.30) may be transformed to a set of algebraic

equations which may be solved by techniques of linear algebra.

In solving for the spatial part of the spin-orbitals one expands the molecular orbitals

as a linear combination of known (atomic) ones:

ψi =
∑

j=1

Cijφj (2.31)

If the basis set were complete then one would have the exact solution to the Fock eigen-

value equation, but this is not possible for computational reasons and one is restricted

to a finite set with B basis function elements.

From equation (2.31) the problem of calculating the HF molecular orbitals reduces

to the problem of solving for the expansion coefficients Cij . By substituting equation

(2.31) into (2.30) one obtains the Roothan equations

FC = SCε (2.32)

where F is the Hermitian Fock matrix,

35



2.3 Hartree-Fock Approximation

Fij = Hij +
Ne/2∑

a=1

∑

kl

CkaC
∗
la[2〈ij|kl〉 − 〈ik|lj〉] (2.33)

= Hij +
∑

kl

Pkl

[
〈ij|kl〉 − 1

2
〈ik|lj〉

]
(2.34)

where C is an B × B matrix of the expansion coefficients in equation (2.31) and S is a

Hermitian overlap matrix with elements

Sij =
∫
dτ1φ

∗
iφj (2.35)

Pij = 2
Ne/2∑

a=1

CiaCja (2.36)

The matrix representations presented here are in the basis of atomic functions. The basis

functions are not in general orthogonal so Sij will have small non-diagonal elements.

But since it is Hermitian it is possible via a unitary transformation to obtain a diagonal

representation of the same.

2.3.2 The Self-Consistent Field Optimisation

The procedure is as follows (Szabo and Ostlund, 1996). A simplified flow diagram is

shown in figure 2.2:

1. specify a molecule (nuclear co-ordinates, proton numbers and electrons)and a basis

set {φi}B
i=1;

2. compute the required molecular integrals Sij , Hij and 〈ij|kl〉;

3. diagonalise the overlap matrix and obtain the transition matrix X such that

ϕi =
∑

j

Xijφj (2.37)

where {ϕi}B
i=1 is an orthonormal basis set;

4. obtain a guess for P, the matrix with elements as given in equation (2.36);

5. obtain the second summation term of equation (2.34) using the two-electron inte-

grals and the P-matrix;
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2.3 Hartree-Fock Approximation

Figure 2.2: Simplified flow diagram for the SCF optimisation procedure (image URL:

http://en.wikipedia.org/wiki/File:Hartree-Fock.png )

6. evaluate the Fock matrix;

7. calculate the transformed Fock matrix F′ = X†FX;

8. diagonalise F′ to obtain C′ and ε;

9. using the transition matrix X obtain C;

10. using C calculate the new density matrix P;

11. confirm whether the procedure has yielded convergence, namely, whether the new

density matrix is the same as that in step 4 within a threshold. If not, then return

to step 5 using the new density matrix;

12. if it has converged then this orbital set may be used elsewhere.
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2.4 Configuration Interaction Method

2.3.3 Basis Sets

In representing these basis sets {φi}B
i=1 there are two particular types of interest: Slater-

type orbitals (STOs) (Slater, 1960)

φs
nlm =

√
(2ζ)2n+1

(2n)!
rn−1
α e−ζrαY m

l (θα, φα) (2.38)

with ζ a constant; and Gaussian-type orbitals (GTOs) (Boys, 1950)

φg
nlm = Nrn−1

α e−ζr2
αY m

l (θα, φα) (2.39)

where rα is the distance of the electron from a nuclear centre α, ζ is again a constant

and N is a normalisation constant.

Although with Slater-type orbitals one can obtain the best possible representation

of the molecular orbitals ψi with the least number of expansion terms, Gaussian-type

orbitals have the advantage that two-electron integrals can be evaluated very fast and

very accurately. By using contracted Gaussian functions one gets the best of both worlds.

A contraction has the form

φcg
i (rα) =

L∑

p=1

dpigp(αpi, rp) (2.40)

where αpi and dpi are the contraction exponents and coefficients and L is the length of the

contraction. Integrals involving such basis functions reduce to sums of integrals involving

the primitive Gaussian functions gp. Although there may be many primitive integrals to

be evaluated for each basis function, the basis function integrals will be rapidly calculated

provided the method of computing primitive integrals is very fast (Szabo and Ostlund,

1996). A library of contracted GTO basis sets may be found in EMSL Gaussian Basis

Set Order Form (2009).

2.4 Configuration Interaction Method

Although the HF approximation has been remarkably successful, it does have limita-

tions. For example the dipole moment is often inaccurate but most importantly the

HF approximation neglects the short-range correlation interaction: it assumes that each

electron interacts with an averaged charge distribution due to the other electrons.
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2.4 Configuration Interaction Method

A much more accurate means of modelling the correlation is the Configuration In-

teraction (CI) method which employs the HF spin-orbitals discussed earlier as its foun-

dation. The underlying principle is to obtain a diagonalised representation of the Ne-

electron Hamiltonian operator in the basis of Ne-electron functions or Slater determi-

nants. We wish to express the exact wavefunction as a linear combination of Ne-electron

trial Slater determinants (more commonly referred to as configuration state functions or

CSFs) by appealing to the principle of variation.

In principle, the CI method can yield an exact solution to the Ne-electron problem

but in practice one can only handle a finite set of Ne-electron trial functions so the

method only provides upper bounds on the exact eigenenergies.

Having determined the Hartree-Fock spin-orbitals from the SCF optimisation pro-

cedure the determinant |Ψ0〉 of the Ne lowest energy spin orbitals is easily formed. In

addition, a large number of other Ne-electron determinants may also be formed from all

the orbitals, occupied and unoccupied. In describing these other Ne-electron determi-

nants it is convenient to compare how they differ from |Ψ0〉, the reference determinant.

Thus in addition to |Ψ0〉 we have singly excited determinants, |Ψr
a〉, which differ by hav-

ing spin orbital χa being replaced by χr, doubly excited determinants |Ψrs
ab〉 which differ

from |Ψ0〉 in that orbitals χa and χb are replaced by χr and χs etc. up to and including

n-tuply excited determinants. These determinants or CSFs may be used as a basis for

the expansion of the exact wavefunction |Φ0〉 say:

|Φ0〉 = |Ψ0〉+
∑
ar

cra|Ψr
a〉+

1
2!

∑

a<b,r<s

crs
ab|Ψrs

ab〉+ · · · (2.41)

and similarly for electronically excited state wavefunctions. cra and crs
ab are variation-

ally determined coefficients, and the summation pre-factor ensures that an excitation is

counted only once. Hence equation (2.41) is the form of the full CI (FCI) wavefunction,

which provides the exact solution to the Ne-electron Hamiltonian eigenvalue problem.

But the size of the Hamiltonian matrix expands with the number of determinants and

the FCI method is only feasible for small molecules e.g. H2 and H+
2 .

By restricting the summation in equation (2.41) to include only singly and doubly

excited CSFs, this elaborate method may be made feasible.

Another possibility is to employ the complete active space CI (CASCI) method,

as has been applied in this thesis, where the spin-orbitals may be divided into a core,

active and virtual orbitals space. The lowest energy core orbitals are fully occupied in
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2.4 Configuration Interaction Method

all orbitals configurations, the highest-lying virtual orbitals remain unoccupied and the

active orbitals vary in occupancy (Shimamura, 1998).

2.4.1 Natural Orbitals

Using Hartree-Fock spin-orbitals in the CI method results in the corresponding expansion

being slowly convergent. Since any one-electron basis may be used to construct the

Ne-electron configurations (Szabo and Ostlund, 1996), one might seek to obtain some

one-electron basis for which a CI expansion is more rapidly convergent than HF orbitals:

the set of natural orbitals, introduced by Löwdin (1955), is one such basis.

In order to define these natural orbitals consider the first-order reduced density ma-

trix of an Ne-electron system

ρ(x1,x′1) = N

∫ Ne∏

i=2

dτiΦ(x1,x2, . . . ,xNe)Φ
∗(x′1,x2, . . . ,xNe) (2.42)

The same may be expanded in the orthonormal basis of Hartree-Fock spin orbitals:

ρ(x1,x′1) =
∑

i,j

χi(x1)γijχj(x′1)
∗ (2.43)

When Φ is the Hartree-Fock ground state wavefunction Ψ0, it can be shown that (Szabo

and Ostlund, 1996)

γ(x1,x′1) =
∑

i

χi(x1)χi(x′1)
∗ (2.44)

If this is not the case, the matrix representation of the first-order reduced density matrix

is not diagonal in the basis of the HF spin-orbitals. γ is Hermitian so it is possible to

define an orthonormal basis {ui} say, related by a unitary transformation to the HF spin-

orbitals, such that γ is diagonalised. The elements ui are called natural spin-orbitals.

The new matrix is then expressed as

γdiag =
∑

i

λiui(x1)ui(x′1)
∗ (2.45)

where λi is the occupation number of ui. Those configurations constructed from nat-

ural orbitals with large occupation numbers make the significant contribution to the

eigenenergy; those natural spin-orbitals with negligible occupation number may be safely

omitted without affecting the accuracy of the calculation.
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2.5 The Fixed-Nuclei Formulation

Figure 2.3: BODY co-ordinate frame in the fixed-nuclei formulation (Lane, 1980)

The natural orbitals employed in this thesis (chapter 5) were computed from approx-

imate wavefunctions hence termed ‘pseudo natural orbitals’. They were generated using

all possible single and double excitations into the high lying virtual orbitals discussed

earlier in this chapter. The pseudo natural orbitals can be averaged by giving different

weightings to target states used in a natural orbitals calculation to give state-averaged

natural orbitals.

2.5 The Fixed-Nuclei Formulation

Suppose the nuclei of a molecule are held fixed in space. Then one need only solve

for the eigenvalues and corresponding eigenvectors of the electronic Hamiltonian (Lane,

1980). An appropriate co-ordinate frame may simplify the equations describing the col-

lision process. Hence define two reference frames: the body (BODY) frame of reference

(figure 2.3) and the laboratory (LAB) frame (figure 2.4) (Lane, 1980). Here the BODY

co-ordinate frame is defined such that the z-axis lies along the vector direction of the

dipole moment while in the laboratory frame it lies along the momentum vector of the

incident electron. In both the origin coincides with the centre of mass of the molecule.

Define {ri}Ne
i=1 and {RA}Nn

i=1 to be the position vectors of the electrons and nuclei

of the molecule respectively and rN+1 the co-ordinates of the projectile electron in the

41



2.5 The Fixed-Nuclei Formulation

Figure 2.4: LAB co-ordinate frame in the fixed-nuclei formulation: i indicates an electron and

the integers 1, 2 and 3 indicate the nuclei (Lane, 1980)

BODY co-ordinate frame. The primed version of these are defined relative to the LAB

frame. Hence the electron-molecule Hamiltonian operator is

ĤN+1,elec = −1
2
∇2

N+1 + ĤN,elec + V̂e−mol (2.46)

where ∇2
N+1 is the electron kinetic energy operator appropriate for the body frame,

ĤN,elec is the electronic target Hamiltonian and V̂e−mol is the electron-molecule interac-

tion potential operator. For a molecule with Ne electrons and Nn electrons these may

be written as

ĤN,elec = −
Ne∑

j=1

1
2
∇2

j −
Ne∑

i

Nn∑

A=1

ZA

|r′i −RA| +
Ne∑

i=1

Ne∑

j>i

1
|r′i − r′j | (2.47)

V̂e−mol = −
Nn∑

A=1

ZA

|r′N+1 −RA| +
Ne∑

j=1

1
|r′N+1 − r′j | (2.48)

The fixed-nuclei (FN) approximation is only valid when the collision time is very much

shorter than the time of nuclear rotation or vibration and corresponds to a ‘fast’ collision.
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2.6 Adiabatic Nuclei Approximation

It is not however applicable to systems where scattering is dominated by a strong

long-range interaction, such as electron scattering by a polar molecule, or when the

incident electron energy is close to a narrow, long-lived resonance, where the collision

time is long.

The fixed-nuclei approximation may be combined with other methods to obtain re-

liable cross sections (Lane, 1980). In the frame-transformation procedure (Fano, 1970;

Chang and Fano, 1972) the FN approximation is only appropriate in the region close

to the nuclei, where the BODY co-ordinate frame is used. Then, a boundary is chosen

such that the nuclear Hamiltonian can be ignored, and where the exchange and electron-

electron correlation interactions are dominant but can be ignored in the outer region.

At this boundary the solutions are transformed to the LAB frame, the nuclear Hamil-

tonian is introduced and the new set of equations solved in the asymptotic region. The

frame-transformation approach underlies the R-matrix method used here and which is

described in the next chapter.

2.6 Adiabatic Nuclei Approximation

In some cases the inner region employed in the frame-transformation approach may

be extended to infinity and the entire problem solved in this region. The actual frame

transformation is carried out at the end of the calculation when the scattering quantities

(T-matrix etc.) have been computed. It is valid under the following conditions– that the

incident electron energy is away from threshold, there are no resonances and absence of

any significant long range interactions.

2.7 Other Methods

All the results presented in this thesis applied the R-matrix method, but there are two

other ab initio variational methods and they are briefly discussed below.

2.7.1 Complex Kohn Variational Method

The complex Kohn variation method (Schneider and Rescigno, 1988) employs a trial

wavefunction of the form

ψΓ1 =
∑

Γ

Â(χΓFΓΓ1) +
∑

µ

dΓ1

µ Φµ (2.49)
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where the first summation runs over the energetically open N -electron target states χΓ

and Φµ are an orthonormal set of antisymmetric, square-integrable (N + 1)-electron

functions used to represent polarisation and correlation effects not included in the sum-

mation. Γ represents the complete set of commuting observables required to represent

the scattering state.

In addition in the formulation developed by Schneider and Rescigno (1988) the chan-

nel continuum functions FΓΓ1 are expanded as

rFΓΓ1 =
∑

l,m

[
fl

Γ(r)δll1δmm1δΓΓ1+T
ΓΓ1

ll1,mm1g
Γ
l (r)

]
Y m

l (r̂) +
∑

k

cΓΓ1

k φΓ
k (r) (2.50)

where fΓ
l (r) and gΓ

l are linearly independent continuum orbitals that are regular at the

origin.

The variation formulation involves obtaining TΓΓ1

ll1mm1 , cΓΓ1

k and dΓ1

µ are determined

from a stationary principle.

The Kohn variational principle (Kohn, 1948) is invoked to characterise the T-matrix

as the stationary value of the functional

[
TΓΓ1

]
= TΓΓ1 − 2〈ΨΓ|Ĥ − E1̂|ΨΓ1〉 (2.51)

The method has been successfully applied to calculate electron scattering by NF3 (Rescigno,

1995), NH3 (Rescigno et al., 1992) and methanoic acid (Trevisan et al., 2006). In the

case of methane (chapter 9) we compare our results with those obtained applying this

principle (Gil et al., 1994).

2.7.2 Schwinger Multichannel Method

The Schwinger multichannel (SMC) method (Takatsuka and McKoy, 1981, 1984) em-

ploys a variational approach to obtaining the multichannel scattering amplitude (equa-

tion (2.12) of Takatsuka and McKoy (1984)). Its computation requires knowledge of

the Green’s function matrix elements and the electron-molecule interaction method it-

self. Winstead and McKoy (2000) have said that computation of the Green’s function

matrix elements are the most difficult and computationally-intensive part of the calcu-

lation; the advantage of the method is that all matrix elements, including those of the

Green’s function, involve the electron-molecule interaction which vanishes at large radial

distances. In contrast in the complex Kohn variation and R-matrix method no boundary
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conditions have to be satisfied by a trial wavefunction since this is the purpose of the

Green’s function.

The SMC method has also been successfully applied to a number of molecules in-

cluding a study of the water molecule (Khakoo et al., 2008, 2009), pryazine (Winstead

and McKoy, 2007) and uracil (Winstead and McKoy, 2006). Details of their theoretical

models may be found in the literature.
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Chapter 3
The ab initio R-matrix method

3.1 Introduction

The R-matrix method was first introduced by Wigner (1946) and Wigner and Eisenbud

(1947) to study nuclear reactions dominated by the formation of a compound state.

The method involves the division of configuration space into two distinct regions: the

internal region contains the compound nucleus and the external region corresponds to

the various possible reactions (or channels) prior to and after the reaction. In the early

1970s the method was extended to treat a number of atomic processes including electron-

atom scattering by Burke et al. (1971), Robb (1972) and Burke (1973) and electron-

molecule scattering by Schneider (1975) and Schneider and Hay (1976). Their ideas

were developed further by Burke et al. (1977) to treat electron-diatomic scattering and

by Morgan et al. (1997) to treat scattering by polyatomic systems. Comprehensive review

articles on the theory were published by Lane and Thomas (1958) for nuclear reaction

theory, and recently by Burke and Tennyson (2005) for electron-molecule scattering

and Burke et al. (2007) for atomic, molecular and optical processes.

The UK R-matrix package has been widely applied to calculate electron scattering for

a number of species, charged and neutral. They include the close-coupling (CC) studies

of ozone O3 (Gupta and Baluja, 2005), F2O (Gupta and Baluja, 2006) and NH3 (Munjal

and Baluja, 2006), the static-exchange-plus-polarisation (SEP) study of HBr (Fandreyer

et al., 1993), and the cations H+
3 and H3O+ (Faure and Tennyson, 2002) also at the

close-coupling level. Recently the package was extended to treat water dimer scatter-

ing (Bouchiha et al., 2008; Caprasecca et al., 2009), much larger systems (uracil, Dora

et al. (2009)), intermediate-energy scattering using pseudo states (MRMPS) (Gorfinkiel
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Figure 3.1: Partition of configuration space in fixed-nuclei R-matrix theory

et al., 2005) and positron scattering (Tennyson, 1986; Baluja et al., 2007).

As well as from the Schrödinger equation, the R-matrix has been derived for the

relativistic case from the Dirac equation, modified using a Bloch operator, by Halderson

(1988).

Adiabatic R-matrix theory is based on the partition of coordinate space into an

internal region and an external region separated by a spherical boundary of radius a. In

the internal region, the short-range electron exchange and electron-electron correlation

effects between the scattering electron and the N target electrons are dominant and

the (N + 1)-collision complex behaves in a similar way to a bound state. Hence a

configuration interaction expansion similar to molecular quantum chemistry calculations

is used to determine the (N + 1)-inner region scattering eigenkets. In the outer region

the electron is assumed to propagate in the multipole potential of the target and the

short-range forces so dominant in the inner region are assumed to be negligible, and a

single-centre expansion of the scattering wavefunction is employed. Thus it is possible to

reduce the scattering problem to a set of coupled ordinary differential equations which

are much easier to solve.

In the discussion that follows the fixed-nuclei approximation is employed, with the

origin coincides with the molecule’s centre of mass.
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3.2 Scattering By a Potential Well

3.2 Scattering By a Potential Well

We begin by demonstrating a simple application of the R-matrix method to scattering

of a particle by a potential well (Lane and Thomas, 1958):

V (r) =





V0, r ≤ a

0, r > a
(3.1)

with V0 < 0 and imposing the zero logarithmic boundary condition on the radial part of

the total wavefunction

a

fl(a)
f ′l (a) = 0 (3.2)

The problem will be solved using spherical polar co-ordinates.

3.2.1 The Inner Region

The time-independent Schrödinger equation for the inner region is

−1
2
∇2ψ + V0ψ = Eψ (3.3)

Let ψ = fl(r)
r Y m

l (θ, φ). Substitution into equation (3.3) yields:

−1
2

{
1
r2

(
d

dr
r2
d(r−1fl)
dr

)
Y m

l − l(l + 1)
r2

fl

r
Y m

l

}
− (E − V0)

fl

r
Y m

l = 0 (3.4)

since ∇2Y m
l = −l(l+1)Y m

l . Then multiplying on the right by Y m∗
l and integrating both

sides with respect to Ω (dΩ = sin θdθdφ) gives

−1
2

[
1
r2

(
d

dr
r2
d(r−1fl)
dr

)
− l(l + 1)

r2
fl

r

]
− (E − V0)

fl

r
= 0 (3.5)

Then multiplying by −2r3 and evaluating the derivative term yields

r2f ′′l − l(l + 1)fl + (Kr)2fl = 0 (3.6)

where K2 = 2(E − V0). Let u = Kr. After some algebra it may be shown that

u2d
2fl

du2
+ [u2 − l(l + 1)]fl = 0 (3.7)

the solution to which is the spherical Riccati-Bessel function ĵl(Kr).
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3.2 Scattering By a Potential Well

Appealing to the standard definition, the R-matrix for the lth partial wave and

arbitrary logarithmic boundary condition b

Rl =
fl(a)

a[f ′l (a)− ba−1fl(a)]
(3.8)

=
ĵl(Ka)

a[Kĵ′l(Ka)− ba−1ĵl(Ka)]
(3.9)

3.2.2 The External Region

By matching to the asymptotic boundary condition

fl(r) ∼ ĥ−l (kr)− sl(k)ĥ+
l (kr) (3.10)

using

f ′l (a)
fl(a)

=
1 + bRl

aRl
(3.11)

where ĥ±l are out-going and incoming Riccati-Hankel functions respectively, the S-matrix

can be shown to be

sl(k) =
ĥ−l (ka) + bRlĥ

−
l (ka)− kaRlĥ

−′
l (ka)

ĥ+
l (ka) + bRlĥ

+
l (ka)− kaRlĥ

+′
l (ka)

(3.12)

• l = 0 and b = 0:

Using

ĵ0(z) = sin z (3.13)
dĵ0(z)
dz

= cos z. (3.14)

substitution into the equation (3.9) for Rl yields

R0 =
tanKa
Ka

(3.15)

Here the poles of this matrix En are easily determined by imposing the zero-

logarithmic (or zero-derivative) boundary condition (3.2)

af ′l (a) = 0 (3.16)

Ka cosKa = 0, (3.17)
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3.2 Scattering By a Potential Well

which implies that

cosKa = 0 ⇒ Ka =
(
n− 1

2

)
π (3.18)

squaring both sides:

(Ka)2 =
[(
n− 1

2

)
π

]2

(3.19)

K2 = 2(E − V0) =
[(
n− 1

2

)
π

a

]2

(3.20)

and therefore

En = 1
2

[
π
a

(
n− 1

2

)]2 + V0 n > 0 (3.21)

In solving for the S-matrix we take the Ricatti-Hankel functions to be

ĥ±0 (z) = e±iz (3.22)

Then, using equation (3.12)

s0(k) = exp
[
2i

(
arctan

[
k

K
tanKa

]
− ka

)]
(3.23)

and by comparing to the standard definition

sl(k) = e2iδl(k) (3.24)

the s-wave phase shift is found to be

δ0 = arctan
(
k

K
tanKa

)
− ka (3.25)

• l = 1 and b = 0:

Here we take

ĵ1(z) =
sin z
z

− cos z (3.26)

dĵ1(z)
dz

=
z cos z − sin z

z2
+ sin z (3.27)
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3.3 The Internal Region for Multichannel Electron-Molecule Scattering

to obtain

R1 =
sinKa−Ka cosKa

(Ka)2 sinKa+Ka cosKa− sinKa
(3.28)

For the Riccati-Hankel functions

ĥ±1 (z) =
(

1± i

z

)
e±i(z−π

2 ) (3.29)

substitution of this and its derivative into equation (3.12) yields

s1 = exp
{

2i
[
arctan

(
(ka)2R1 −R1 − 1

ka(1 +R1)

)
− ka+

π

2

]}
(3.30)

3.3 The Internal Region for Multichannel Electron-Molecule

Scattering

The scattering process is described by the time-independent Schrödinger equation

ĤN+1|Ψ〉 = E|Ψ〉 (3.31)

where ĤN+1 is the molecular Hamiltonian operator:

ĤN+1 =
N+1∑

i=1

(
−1

2
∇2

i −
∑

A

ZA

riA

)
+

N+1∑

i>j=1

1
rij

+
∑

A>B

ZAZB

| ~rA − ~rB| (3.32)

The solution to equation (3.31) in the internal region is of the form:

|Ψ〉 =
∑

k

AEk|ψk〉 (3.33)

where |ψk〉 are energy-independent complete basis kets. Since a finite volume is being

considered non-Hermitian surface terms (due to the kinetic energy operator) appear at

the interaction radius (see appendix A). There are two ways of regaining Hermicity– one

is to impose boundary conditions upon each eigenfunction or to modify the Hamiltonian

operator. For the latter option, a Bloch operator is introduced (appendix A):

L̂N+1 =
N+1∑

i=1

δ(ri − a)
(
d

dri
− b

ri

)
(3.34)

The spherical boundary a is chosen so as to fully contain the electron charge cloud of

the molecule. The eigenbases |ψ∆
k 〉 are now such that:
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3.3 The Internal Region for Multichannel Electron-Molecule Scattering

〈ψ∆
k |ĤN+1 + L̂N+1|ψ∆

k′〉 = Ekδkk′ (3.35)

where ∆ represents the constants of the motion which correspond to the irreducible

representation of the point group of the molecule.

We are now in a position to derive the multi-channel R-matrix R∆
ij . The procedure

adopted here is the derivation of the appropriate Green’s theorem as described by Lane

and Thomas (1958).

3.3.1 Derivation of the R-matrix

Equation (3.31) is solved for a fixed geometry and for each scattering symmetry by

re-writing as follows

(ĤN+1 + L̂N+1 − E1̂)|Ψ∆〉 = L̂N+1|Ψ∆〉 (3.36)

which has a formal solution

|Ψ∆〉 = (ĤN+1 + L̂N+1 − E1̂)−1L̂N+1|Ψ∆〉 (3.37)

Appealing to the eigenket completeness theorem:

∑

k

|ψ∆
k 〉〈ψ∆

k | = 1̂ (3.38)

|Ψ∆〉 =
∑

k,k′
|ψ∆

k 〉〈ψ∆
k |(ĤN+1 + L̂N+1 − E1̂)−1|ψ∆

k′〉〈ψ∆
k′ |L̂N+1|Ψ∆〉 (3.39)

=
∑

k,k′

|ψ∆
k 〉〈ψ∆

k′ |L̂N+1|Ψ∆〉
Ek −E

δkk′ (3.40)

=
∑

k

|ψ∆
k 〉〈ψ∆

k |L̂N+1|Ψ∆〉
Ek −E

(3.41)

Comparing equation (3.41) to equation (3.33) it is clear that

AEk =
〈ψ∆

k |L̂N+1|Ψ∆〉
Ek −E

(3.42)

The channel basis functions |ψN
i Y

mi
li
〉 constitute a complete basis set and the Bloch

operator may therefore be expanded in terms of these:

52



3.3 The Internal Region for Multichannel Electron-Molecule Scattering

1
2

N+1∑

i=1

∑

j=1

|ψN
j Y

mj

lj
〉δ(ri − a)

(
d

dri
− b

ri

)
〈ψN

j Y
mj

lj
| (3.43)

Now let us define the reduced radial function

Fj(a) = 〈ψN
j Y

mj

lj
|Ψ∆〉, (3.44)

the (energy-independent) surface amplitudes

w∆
jk(a) = 〈ψN

j Y
mj

lj
|ψ∆

k 〉 (3.45)

and

w∆
jk(a)

† = 〈ψ∆
k |ψN

j Y
mj

lj
〉 (3.46)

Substituting (3.43) into (3.42) one obtains

AEk =
1
2

∑

j=1

(w∆
jk(a))

†
(
F ′j(a)− ba−1Fj(a)

)

Ek − E
(3.47)

The integrations represented by the Dirac bra-ket notation are carried out over all N+1

electronic spin-space co-ordinates in the internal region except the radial co-ordinate of

the scattered electron.

Hence the total wavefunction Ψ∆ can be simplified to

Ψ∆ =
1
2

∑

k,j

w∆
jk(a)

†
(
F ′j(a)− ba−1Fj(a)

)

Ek − E
ψ∆

k (3.48)

Projecting (3.48) onto the channel ket |ψN
i Y

mi
li
〉 and evaluating the bra-ket at the bound-

ary of the internal region r = a, the R-matrix may then be determined:

R∆
ij (E) =

1
2a

∑

k

w∆
ik(a)(w

∆
jk(a))

†

Ek − E
(3.49)

The R-matrix essentially contains information on the surface value and derivative match-

ing boundary condition to be satisfied by the scattering wavefunction. It provides the

boundary condition for the Schrödinger equation appropriate for the outer region. The

precise structure of the trial wavefunction employed by the UK R-matrix package (Mor-

gan et al., 1998) to represent |ψ∆
k 〉 is discussed below.
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3.3 The Internal Region for Multichannel Electron-Molecule Scattering

3.3.2 The Trial Inner Region Scattering Wavefunction

The following close-coupling trial wavefunction is implemented in the inner region

ψ∆
k (XN+1;R) = Â

∑

i=1

∑

j=1

a∆
ijkΦ

∆
i (XN ; r̂N+1σN+1)η0

ij(xN+1)+
∑

l=1

χ∆
l (XN+1)b∆lk (3.50)

where XN+1 = {xi}N+1
i=1 and xi = riσi is the spin-space co-ordinate of the ith electron.

The channel wavefunctions Φ∆
i , the continuum orbitals η0

ij and square integrable func-

tions χ∆
i depend parametrically on the geometry R, and Â is the antisymmetrisation

operation which is applied to ensure that the wavefunction is antisymmetric with respect

to interchange of any two electrons.

Φ∆
i are formed from fixed-nuclei electronic target states spin-coupled to the angu-

lar and spin functions of the scattering electron (see above). In the polyatomic suite

these channel functions and the quadratically integrable functions χ∆
i are constructed

from GTOs (Gaussian-type orbitals) centred on the nuclei. The target electronic wave-

functions can be represented using the elaborate CI expansion technique or the basic

Hartree-Fock method.

The first summation runs over the electronic target states. It represents a situa-

tion where one electron exists in the continuum states, with the remaining N electrons

remaining in the target state, and is known as a ‘target+continuum’ configuration.

The continuum orbitals are constructed from continuum basis functions, which take

the form fili(r) = 1
ruil(r)Y

mi
li

(θ, φ), and target molecular virtual orbitals. Initially, the

radial wavefunction uil is numerically generated as a solution of a second order ordinary

differential equation:

[
d2

dr2
− l(l + 1)

r2
+ 2V0(r) + k2

i

]
uil(r) = 0 (3.51)

uil is based on expansions of GTOs (Faure et al., 2002; Morgan et al., 1997) and subject

to boundary conditions at r = 0 and r = a:

uij(0) = 0 (3.52)
a

uij(a)
u′ij(a) = b (3.53)

Then, in order to obtain η0
ili

(rN+1), the functions {fil} are first orthogonalised to the tar-

get molecular orbitals using Schmidt orthogonalisation and then amongst themselves us-
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3.3 The Internal Region for Multichannel Electron-Molecule Scattering

ing Löwdin orthogonalisation to remove linearly dependent functions (Tennyson, 2010).

In the polyatomic R-matrix package the above logarithmic boundary condition is

not imposed; instead, as discussed above, the second option of modifying the operator

is adopted. The logarithmic boundary condition is, however, imposed in the diatomic

R-matrix package and results in slow convergence of the R-matrix expansion (equation

(3.49)). The diatomic code thus adds a ‘Buttle’ correction (Buttle, 1967) to the diagonal

elements of the R-matrix. There is no such problem or implementation in the polyatomic

suite.

The second summation in equation (3.50) runs over the χ∆
i configurations where

all the electrons occupy the target molecular orbitals. Since the molecular orbitals are

mutually orthogonal, these L2 functions are required to guarantee that important regions

of configuration space are included. These configurations also account for correlation

effects including virtual excitation to higher electronic states excluded from the first

summation.

Finally, the coefficients a∆
ijk and b∆lk in equation (3.50) are obtained by diagonalising

the operator ĤN+1 + L̂N+1 in the basis of the internal region |ψ∆
k 〉 (equation (3.35)).

It can be shown that the operator ĤN+1+L̂N+1 is Hermitian in the basis of quadrati-

cally integrable functions satisfying arbitrary boundary conditions at r = a. The Hamil-

tonian matrix elements in equation (3.35) can be evaluated using standard molecular

quantum chemistry packages modified to carry out the radial integrals over a finite

range and to treat continuum orbitals in addition to GTOs and STOs. However, it is

possible to exploit the structure of the trial wavefunction given by equation (3.50) to

enhance the efficiency of the scattering calculation (Tennyson, 1996a).

In the polyatomic code the continuum orbitals are employed to calculate the R-matrix

surface amplitudes of equation (3.45):

w∆
ik(a) =

∑

j=1

η0
ij(a)a

∆
ijk (3.54)
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3.4 The Outer Region for Multichannel Electron-Molecule

Scattering

3.4.1 Equations of motion

In the external region the interaction radius is chosen so that the short-range electron

exchange and electron-electron correlation effects between the scattered electron and the

target electrons vanish. The outer region wavefunction is expanded in the basis of the

channel functions ψN
i Y

mi
li

, which are eigenfunctions of the Hamiltonian describing the

projectile and scatterer when they are not interacting:

Ψ∆(XN+1) =
∑

i=1

ψN
i Y

mi
li

F∆
i (rN+1)
rN+1

(3.55)

The wavefunctions ψN
i are formed by coupling the scattered electron spin σN+1 to a

fixed-nuclei target state ΦN
i . Since the scattered electron and target electrons occupy two

distinct regions the antisymmetrisation operator is omitted and the L2 or quadratically

integrable functions χ∆
i vanish in the outer region. The scattered electron may then

be represented by single-centre reduced radial wavefunctions F∆
i (rN+1). Substitution

into equation (3.31) and projecting both sides onto the channel basis leads to a set of

coupled second order ordinary differential equations that are satisfied by the reduced

radial wavefunctions (appendix B):

F∆
λ
′′ − lλ(lλ + 1)

r2N+1

F∆
λ + 2(E − Eλ)F∆

λ = 2
∑

λ′
Vλλ′F

∆
λ′ (3.56)

The radial wavefunctions are then matched to the asymptotic boundary condition, via

the R-matrix, to yield the S-matrix from which the other important scattering quantities

and observables may be determined. In order to fully specify the S- (K- or T-) matrix

one requires all linearly independent reduced radial wavefunctions (Burke et al., 1971).

The system of equations (3.56) are solved over the range [a, ap] where the boundary

r = ap interfaces the external and asymptotic regions. The differential equations are

subject to the boundary conditions at the interaction radius a,

F∆
i (a) =

∑

j

R∆
ij

(
aF ′j(a)− bFj(a)

)
(3.57)

and equation (3.49) (Burke et al., 2007). This may be done using a number of standard

methods (e.g. Burke and Seaton (1971)). In R-matrix propagation techniques, the R-
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3.4 The Outer Region for Multichannel Electron-Molecule Scattering

matrix calculated at r = a may be propagated from there by subdividing the external

region into p sub-regions. Within each sub-region [ai−1, ai], the reduced radial wave-

function is expanded in a basis of shifted Legendre polynomials (Baluja et al., 1982).

Applying this method, the R-matrix is determined on the boundary of the external

region, at ap. Having determined the R-matrix on the subregion boundaries ai, the

reduced radial wavefunction may be obtained across each sector. The boundary ap is

chosen to be large enough that the solution to the coupled differential equations may be

accurately represented by the asymptotic boundary condition for open channels

F∆
ij ∼

1√
ki

[
sin

(
kir − liπ

2

)
δij + cos

(
kir − liπ

2

)
K∆

ij

]
(3.58)

for in-channel i and out-channel j and

F∆
ij ∼ e−|ki|r (3.59)

for closed ones. The no × no K-matrix may then be determined by matching to the

open channel asymptotic boundary condition, where no is the number of open channels

at each incident energy inside the range being considered. The multichannel S- and

T-matrices are defined:

S∆ = (1 + iK∆)(1− iK∆)−1 (3.60)

T∆ = S∆ − 1 = (2iK∆)(1− iK∆)−1 (3.61)

From the T-matrix the excitation cross section for electronic transition i→ i′ is written

as

σ(i→ i′) =
π

k2
i

∑

∆

2S + 1
2(2Si + 1)

∑

lλmλlλ′mλ′

|T∆
λλ′ |2 (3.62)

The importance of the K-matrix in multichannel scattering is its connection to the

eigenphase sum, which can provide information on resonance phenomena and Ramsauer-

Townsend minima. The K-matrix is initially diagonalised to yield a new matrix

diag(K∆
1 ,K

∆
2 , . . . ,K

∆
no

). The arctangent of the diagonal elements are summed over the

channels retained in the outer region to yield a quantity analogous to the phase shift of

potential scattering, the multichannel eigenphase sum:

η∆(E) =
∑

i

arctanK∆
i (3.63)
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3.4.2 Electron Scattering by Polar Molecules

For very polar molecules (large dipole moment µ) the µP1(cos θ)
r2
N+1

term decays very slowly.

Consequently additional partial waves (here l > 4) must be retained in order to con-

verge the integral cross sections. The dipole potential may be treated, for large radial

distance, using first-order Born correction (Clark, 1977) (at the T-matrix, cross section

or scattering amplitude level) for high l-scattering, with the lower partial waves included

via some accurate scattering theory (R-matrix) since the approximation does not fully

account for short-range interactions between the electron and the scatterer. For shorter

distances one has to transform to the laboratory frame as the potential transfers an-

gular momentum outside the validity of the Born-Oppenheimer approximation, so the

body-fixed frame is no longer appropriate (Clark, 1977).

The theoretical treatment of electron scattering by polar molecules is particularly

interesting and has been studied by a number of workers including Altshuler (1957)

and Mittleman and von Holdt (1965), by Garrett (1972), Rudge et al. (1976), Dickinson

and Richards (1975), Collins and Norcross (1978) and Fabrikant (1980). A comprehen-

sive review article on the subject was published by Itikawa (1978).

The basic model initially considered scattering by a stationary dipole. A major find-

ing for scattering using this model was made by Turner and Fox (1966), who observed

the existence of a minimum dipole moment (0.6393 a.u.) required for electron binding.

Their model represented a dipole by charges ±q separated by a distance R, namely the

finite dipole model. This minimum was also independently observed by Mittleman and

Myerscough (1966), Lévy-Leblond (1967), Crawford and Dalgarno (1967) and Coulson

and Walmsley (1967). But, Garrett (1970) and Garrett (1971) stated that any realistic

model of electron scattering by a polar molecule should include the molecular rotational

motion (in the laboratory co-ordinate frame). He showed that if it is indeed taken into

account, a finite number of stable bound states are still possible, whereas there are in-

finitely many bound states in the case of a fixed dipole, that the critical dipole is sensitive

to the molecule’s moment of inertia I and total angular momentum J , and the charge

separation. Indeed, as the moment of inertia tends to infinity, Garrett (1970) and Gar-

rett (1971) demonstrated that this dipole moment for the rotating system converges,

slowly, to the corresponding value for the fixed dipole.

Studies of electron-impact rotational excitation by the polar molecules HCl and CN

were carried out by Itikawa and Takayanagi (1969) using the close-coupling (CC) method.
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In addition, as a test, they compared the CC dipole-allowed rotational excitation cross

section σ(0 → 1) to that obtained using the Born approximation: the latter was found to

be as reliable in producing rotation cross sections for polar systems (see figures 3 and 6

of their paper). We carried a similar exercise for the J = 0− 1 and J = 1− 2 transitions

in chapter 7 and came to the same conclusion. However, Itikawa and Takayanagi (1969)

mentioned that for large dipole moments, the coupling between the molecular rotation

and the projectile electron is strong, so for close encounters the Born correction is not

necessarily reliable.

Similar studies on linear cations (CH+) were carried out by Chu and Dalgarno (1974)

who also included the rotational motion of the molecule.

Finally, an entirely different semi-classical perturbation approach was taken by Dick-

inson and Richards (1975) and Dickinson (1977) to calculate rotational excitation in-

tegral and differential cross sections for the polar CsF, CsCl and KI molecules. They

reported good agreement with beam experiments on these diatomics at higher electron

energies and with the close-coupling and Glauber calculations.

In terms of interesting phenomena Bottcher (1970), Bottcher (1971) and Itikawa

(1978) have predicted and commented on the appearance of resonance phenomena re-

spectively. A much more detailed study on rotational Feshbach resonances was carried

out by Garrett (1975), who considered the problem of electron scattering by a dipolar

system below the first rotational excitation threshold, using the finite dipole model men-

tioned above with R = 0.667 a0. In this energy region he suggested that they must be

Feshbach-type (Feshbach, 1962) rotational resonances, or shape resonances. According

to Garrett (1975) the existence of a Feshbach resonance is guaranteed for certain choices

of the moment of inertia, dipole strength and electron energy. His model study also

found that, associated with a given critical moment, a rotational Feshbach resonance

can occur in a system whose dipole moment lies with a certain range of the critical

value. Experimentally, Rohr and Linder (1976) confirmed the existence of threshold

resonances in the vibrational excitation of the polar molecules HCl, HF and H2O which

have dipole moments comparable to or larger than the above-mentioned critical value.

They commented that these threshold resonances seem to be characteristic of polar

molecules. The experimental data of Frey et al. (1995) suggested that resonances associ-

ated with dipole-supported states can be important in electron-polar molecule scattering

at ultra-low energies.
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Research in this area still continues (Thummel et al., 1992; Gómez-Camacho et al.,

1998).

3.4.3 Multichannel Resonances

Resonances are particularly interesting features in scattering theory generally. In their

most basic form they appear as ‘bumps’ in the cross sections, and are characterised by a

position Er and a width Γr, the latter of which arises from the Heisenberg Uncertainty

Principle.

Resonances correspond, under certain conditions, to poles of the S-matrix in the

unphysical sheet. A detailed discussion of this (and multichannel bound states) may be

found in Taylor (2006) and Mosinsky (1953). In the vicinity of this pole the eigenphase

sum η∆ undergoes a rapid increase by π radians. The parameters of a resonance can be

obtained by fitting to the Breit-Wigner formula (Breit and Wigner, 1936)

η∆(E) = η∆
bg + η∆

res (3.64)

= η∆
bg(E) + arctan

Γr

Er − E
(3.65)

where ηbg(E) is the background phase.

In terms of classification, there are three resonance types: shape, core-excited and

nuclear-excited resonances. Shape and core-excited resonances are observed in electron-

atom and electron-molecule scattering; nuclear-excited resonances are only observed in

electron-molecule scattering.

Shape resonances have the molecular electronic ground state as their parents. They

occur when the electron is trapped by the centrifugal barrier and the attractive polarisa-

tion of the molecule. The latter influences the width (life-time) of the resonance which

is usually large (short). Shape resonances cannot occur therefore for s-wave scattering.

As molecular bond lengths are increased the shape resonance can become bound as the

position decreases and moves to the negative real axis of the energy complex plane,

and the width decreases to zero. In the R-matrix theory a bound state is usually indi-

cated by an R-matrix pole E∆
k that is slightly lower than the ground state energy. A

clear demonstration of this phenomenon is given in chapters 7 and 8 for SiO and CS

respectively.

Core-excited resonances (Feshbach, 1958, 1962) in contrast have (electronically) ex-

cited target states as their parents, consisting of a hole in a normally occupied orbital and
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3.4 The Outer Region for Multichannel Electron-Molecule Scattering

two electrons in normally unoccupied (virtual) orbitals. Depending upon whether they

lie below or above their parent states they may be classified as Feshbach or core-excited

shape resonances respectively.

Feshbach or closed-channel resonances are associated with parent states that exhibit

a positive electron affinity. They are normally found below the excitation threshold of

their parent state and so decay to lower-lying excited states. Such resonances are usually

very narrow or, equivalently, have a long life-time. Fraser and Burley (1982) developed

an analytical model, aimed at students of scattering theory, involving scattering by a

Dirac delta potential to re-produce a Feshbach resonance. An important feature of this

problem is the discontinuity in the radial wavefunction at the boundary. Nevertheless

they were able to obtain the S-matrix and phase shifts from which they probed the

important features.

A core-excited shape resonance, associated with parents of negative electron affinity,

is found lying above its parent state and can therefore decay back to its parent state or

lower-lying ones.

Finally, a nuclear-excited resonance occurs only for molecules. Narrow and with a

very low resonance energy, they occur when the N+1-complex has a weakly bound state.

In this case the nuclear excitation is vibrational excitation or nuclear motion rather than

the excitation of a nucleus. Such resonances appear when the scatterer is a cation and

can only be examined by going beyond the Born-Oppenheimer approximation.

In the UK molecular R-matrix codes RESON (Tennyson and Noble, 1984) is em-

ployed to first detect and then fit those resonances. It does give good results for isolated

resonances that are away from channel thresholds. However, detection and fitting be-

comes more complicated for closely-spaced resonances. As the size of the energy interval

being fitted increases the assumptions to be made concerning the variation of the back-

ground eigenphase polynomial with respect to energy introduce uncertainties. A general

approach is complicated by the fact that the polynomial representation is not applicable

near excitation thresholds (Noble et al., 1993). Instead, Noble et al. (1993) considered

multichannel resonances in complex energy R-matrix theory, where the R-matrix is al-

lowed to take complex energy values, and then determined the zeroes of a descrepancy

function d(E) (equation 22 of their paper) to extract the resonances and bound states

i.e. the S-matrix poles. Their approach yielded many more narrow resonances than

methods using a fitting procedure. Overlapping resonances and double poles can also
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Λ0 mli Λs

2A1

0 2Σ+

2 2∆

4 2Γ

2B1

1 2Π

3 2Φ

Table 3.1: Rule for transforming a C2v T-matrix of symmetry Λ0 to a C∞v one with symmetry

Λs

be detected; this approach is not used in the UK molecular R-matrix codes.

3.4.4 T-matrix transformations

In this thesis electron scattering calculations for linear systems with an X 1Σ+ ground

state were carried out in C2v– the highest Abelian sub-group of the natural group C∞v.

In the course of this study, we sought to compute the rotationally-resolved differential

cross sections and rotationally inelastic integral cross sections for electronically elastic

scattering in the natural symmetry.

Initially the fixed-nuclei (FN) C2v T-matrices had to be transformed to C∞v. Since

the Hamiltonian for linear molecules has C∞v symmetry, the group elements g commute

with the Hamiltonian:

gĤg̃ = Ĥ ∀g ∈ C∞v (3.66)

Specifically, the group element corresponding to infinitesimal rotation about the z

axis commutes with Ĥ hence the z-projection of the angular momentum Λt,s is a constant

of the motion for both the N - and N +1-molecular Hamiltonian respectively. Therefore

in order to obtain a T-matrix in the C∞v representation from the C2v one merely extracts

those T-matrix elements with mli = Λs (Λt = 0 for Σ+ ground state targets). The rule

for the transformation is given in table 3.1.
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3.5 Additional Scattering Quantities Required in Astro-

physics

In chapters 6, 7 and 10 of this thesis rotational integral cross sections were computed in

order to obtain rotational and hyperfine (de)-excitation rate coefficients, so the under-

lying theory is discussed. As tests to confirm the accuracy of the theoretical models, we

also computed the rotationally resolved differential cross sections.

3.5.1 Rotational Cross sections

Electron scattering calculations considered here invoked the fixed-nuclei (FN) approxi-

mation (Lane, 1980). In this approach, the cross sections are expressed as a partial-wave

expansion within the ANR (adiabatic-nuclei-rotation) approximation, which assumes

that the initial and final rotational states are degenerate. For low partial waves (here

taken to be l ≤ 4) the cross section is computed from the FN T-matrices yielded from

the R-matrix method. For the dipole-forbidden transitions (those with ∆J > 1), cross

sections are expected to converge rapidly and can be evaluated using the FN T-matrices

alone. For dipole-allowed transitions (∆J = 1) however, the partial-wave expansion

does not converge due to the long-range nature of the dipole moment. To circumvent

this problem, the standard procedure is to use the dipole Born correction to account

for contributions due to the higher partial waves otherwise not included in the FN T-

matrices (Crawford and Dalgarno, 1971). The final cross section is calculated as the

sum of two contributions and may be regarded as a ‘short-range’ correction to the Born

approximation.

The known unphysical behaviour of the FN cross sections near rotational thresholds,

inherent in the ANR approximation, is corrected using a simple kinematic ratio (Chang

and Temkin, 1970) which forces the excitation cross sections to zero at threshold. In the

case of e-H2 collisions, this procedure has been shown to be accurate down to a collision

energy of E ∼ 2×∆E where ∆E is the rotational threshold (Morrison, 1988). Recently,

experimental data for the scattering of cold electrons by water also confirmed the va-

lidity of the adiabatic ‘threshold-corrected’ approximation to very low incident electron

energies (Faure et al., 2004b). Rotational threshold effects are formally incorporated in

a full rotational close-coupling calculation, which would be impractical for the collision

energies considered in this thesis.
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In order to make comparisons with available experimental data, differential cross

sections were computed using the Born-closure approach for the multichannel scattering

amplitude (Itikawa, 2000) to remedy the slow convergence of the partial-wave expansion.

In addition to the formula for rotational excitation Itikawa (2000) also presented for-

mulae for vibrational excitation. Practical calculations applying their formalism include

CO2 (Takekawa and Itikawa, 1998), HCl (Shimoi and Itikawa, 1999) and this thesis

(HCN, CO and SiO). In this approach the high partial-waves due to quadrupole and

induced-dipole interactions were also included.

3.5.2 Hyperfine Rate Coefficients

The hyperfine interaction arises due to the very weak coupling of the nuclear spin to

the molecular rotation, which to an excellent approximation does not affect the overall

scattering dynamics. In the laboratory, Ahrens et al. (2002) measured ground state rota-

tional transitions of HCN using sub-Doppler saturation spectroscopy in the THz region.

This technique enables features such as hyperfine structures to be revealed, which within

Doppler limits, would remain hidden. Nine consecutive rotational transitions with their

associated hyperfine structures have been partly resolved. Additional studies include

that of Turner (2001): here the transitions J = 1 → 0 and 2 → 1 were observed for the

deuterated molecules N2D+, DCN and DNC, from which molecular constants including

the nuclear quadrupole hyperfine splitting were derived for these species, which are essen-

tial to determine accurate abundances. More recently, the nuclear quadrupole hyperfine

structure of HNC was resolved in the laboratory for the first time using millimetre-wave

spectroscopy (Bechtel et al., 2006). New rest frequencies for the J = 1 → 0, J = 2 → 1

and J = 3 → 2 rotation transitions of the vibrational ground state were determined.

It was found that the hyperfine structure of HNC is dominated by the interaction of

the valence shell electrons with the nuclear spin of the nitrogen atom; the hyperfine

structure of DNC however, was much more complicated due to the additional coupling

of the deuterium nucleus (I = 1). This coupling gave rise to a septet in the J = 1 → 0

transition.

As the hyperfine structure is resolved in some of the astronomical spectra, it is crucial

to know the hyperfine excitation rate coefficients among these energy levels. At high

resolution it is possible to resolve the hyperfine components arising from the nitrogen
14N nuclear spin from transitions arising from low-lying rotational levels. In this thesis,
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for HCN, HNC and their isotopologues, only the nuclear spin I of 14N was considered as

the effects of the spins of the H and D atoms on the collision were assumed negligible,

although they do affect the energy levels of course. The hyperfine states are labelled

by J and F , which is the total angular momentum obtained by coupling J to I (I = 1

for 14N) in the usual way. If one assumes the hyperfine levels to be degenerate, then it

is possible to considerably simplify the scattering problem (Corey and McCourt, 1983).

Within the ANR or IOS (infinite order sudden) approximation (Secrest, 1975; Hunter,

1975) which both ignore the rotational spacings, the scattering equations of motion are

simplified further and the rate coefficients among the rotational and hyperfine levels can

be calculated simply in terms of ‘fundamental’ rotational rate coefficients kIOS(L→ 0):

kIOS(J → J ′) = [J ′]
∑

L

[L]


J J ′ L

0 0 0




2

kIOS(L→ 0) (3.67)

kIOS(J F → J ′ F ′) = [J ][J ′][F ′]
∑

L

[L]


J J ′ L

0 0 0




2 



L F F ′

I J ′ J



 kIOS(L→ 0)

(3.68)

where [x] = 2x+ 1 and


a b c

α β γ


 (3.69)

and 



a b c

d e f



 (3.70)

are Wigner-3j and Wigner-6j symbols respectively. However, as the ANR rotational

cross sections are corrected for threshold effects (see above) equations (3.67) and (3.68)

are only moderately accurate for the actual rate coefficients. Therefore we implemented

the ‘scaling’ method proposed by Neufeld and Green (1994) in which the hyperfine rate

coefficients are obtained as a scaling of the rotational ones:

k(J F → J ′ F ′) =
kIOS(J F → J ′ F ′)
kIOS(J → J ′)

k(J → J ′) (3.71)

using the actual rate coefficients k(L → 0) for the corresponding IOS fundamental

coefficients. For quasi-elastic transitions, that is, J F → J ′ F ′ with F 6= F ′, equation

(3.68) was applied directly. In our study fundamental rate coefficients for downward
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transitions were employed because they yielded better results in the case of He-HCN

scattering for which accurate close-coupling hyperfine collisional rate coefficients are

available (Monteiro and Stustzki, 1986).

Finally, it should be noted that within the IOS approximation, the allowed transitions

or selection rules are determined by the Wigner-6j symbol. The same selection rules

were obtained by Chu (1976) from multipole expansion approaches. Radiative (dipolar)

selection rules are also determined by the Wigner-6j symbol with L = 1.

3.6 UK R-matrix Package Structure and the Computa-

tional Implementation of the Theory

Here the modules constituting the polyatomic R-matrix code (Morgan et al., 1998) are

listed. The package makes use of the Sweden-Molecule suite of quantum chemistry codes

developed by Almlof and Taylor (1984) in order to generate target molecular orbitals

and transformed integrals. Except those otherwise referenced the outer region modules

were programmed by Morgan, who organised this module structure from an earlier, less-

structured, version. The flow charts for running a typical target, inner region scattering

and outer region calculation are given in figures 3.2, 3.3 and 3.4 respectively.

3.6.1 Inner Region

• SWMOL3: generates one and two-electron integrals from the given GTO basis

set;

• GAUSTAIL: evaluates the contribution to each integral from outside the R-

matrix sphere and adds matrix elements of the Bloch operator to the Hamiltonian

ones (Morgan et al., 1997);

• SWORD: orders the atomic integrals evaluated by SWMOL3;

• SWFJK: forms combinations of Coulomb and exchange integrals for the Fock

matrix;

• SWSCF: performs the Hartree-Fock self consistent field (HF-SCF) optimisation

to generate the target molecular orbitals from linear combinations of atomic ones.

Here it employs the integrals obtained from the SWFJK code;
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SWORD

SWTRMO

SWFJKSWSCF

GAUSPROP

SCATCI

DENPROP

SWEDMOS

CONGEN

target properties

NOs

SCF orbitals

target CI vectors

SWMOL3

Figure 3.2: R-matrix inner region flow diagram for the target calculation

• SWEDMOS: constructs molecular orbitals and boundary amplitudes for the con-

tinuum and Gaussian-type orbital (GTO) target wavefunction. It applies Schmidt

orthogonalisation to orthogonalise each continuum orbital to all the target ones

and symmetric orthogonalisation to orthogonalise the continuum orbitals among

themselves. A threshold (typically of order 10−7) is employed for orbital deletion.

Those continuum orbitals with overlap matrix eigenvalues less than this threshold

are deleted;

• SWTRMO: carries out the four-index transformation from atomic orbital to

molecular orbital representation of the ordered integrals obtained from SWMOL3;

• CONGEN: generates the necessary configuration state functions with appropriate

spin and symmetry couplings for performing a configuration interaction (CI) cal-

culation. It generates prototype CSFs for the target molecule and for the (N +1)-
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SCF orbitals

SWTRMO

CONGEN

SCATCI

SWMOL3 GAUSTAIL

SWEDMOS

SWORD

(N+1) CI vectors

Target CI vectors

amplitudesBoundary

NOs

Figure 3.3: R-matrix inner region flow diagram for the calculation of the (N + 1) scattering

eigenket |ψ∆
k 〉 (equation (3.50))

electron system. CONGEN also solves phase factor problems that arise from the

use of CI expansions (Tennyson, 1997);

• SCATCI: performs a CI calculation of the target molecular and the (N + 1)-

complex wavefunctions (Tennyson, 1996a). It employs the CSFs generated earlier

by the CONGEN module. The Hamiltonian is diagonalised to obtain the CI ex-

pansion coefficients (eigenkets) and the corresponding eigenvalues. In the case of

the (N + 1)-complex these are the R-matrix poles of equation (3.49);

• GAUSPROP: generates the property integrals required by DENPROP;

• DENPROP: constructs the transition density matrix from the target eigenvectors

obtained from the CI calculation. From this it then calculates the multipole tran-

sition moments Mm
l (λ → λ′) (appendix B) required for solving the outer region
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Target properties

TMATRX

IXSEC

RSOLVE

SWINTERF

resonance parameters

eigenphase sums

integral cross sections

EIGENP

RESON

(N+1) CI vectors
boundary amplitudes

Figure 3.4: R-matrix outer region flow diagram

coupled equations (3.56), the dipole spherical polarisability α0, and where possi-

ble the diagonalised tensor components αxx, αyy and αzz. These are computed

using second-order perturbation theory and the property integrals evaluated by

GAUSPROP. Only multipole moments up to and including l = 2 are computed,

and together with the target Hamiltonian eigenvalues (figure 3.2), they are saved

to unit 24 (fort.24) for later use in SWINTERF (figure 3.4);

• PSN: generates the pseudo-natural orbitals by diagonalising the density matri-

ces computed by DENPROP. It can generate state-averaged NOs by introducing

different weightings for the target states being considered through the namelist

parameter WGT.
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3.6.2 Outer region

• SWINTERF: interfaces the internal and outer regions. It requires the boundary

amplitudes from SWEDMOS, the N+1-system eigenvectors and their correspond-

ing eigenvalues and the molecule’s multipole moments (figure 3.4). Its output pro-

vides for the target properties and other data necessary to rapidly construct the

R-matrix initially at the interaction radius as a function of energy;

• RSOLVE: constructs the R-matrix at the interaction radius and uses RPROP (Mor-

gan, 1984) to propagate this R-matrix to the asymptotic region for matching to

the boundary condition there (equation (3.58)) by solving the coupled ordinary

differential equations (3.56) in an outer region which is divided into sectors. It

then constructs the fixed-nuclei K-matrices using CFASYM (Noble and Nesbet,

1984). The output of SWINTERF is used as input;

• EIGENP: calculates the multichannel eigenphase sum in the manner discussed

earlier, namely, by diagonalising the K-matrix and summing over channels (equa-

tion (3.63));

• TMATRX: calculates the T-matrix from the K-matrix using equation (3.61). It

uses the channel data in unit LUCHAN (‘fort.10’) and K-matrices in unit LUKMT

(‘fort.19’);

• IXSEC: computes the integral cross sections from the T-matrices (unit LUTMT

or ‘fort.10’);

• RESON: detects resonances and performs a least squares fit of the eigenphase

sums to a Breit-Wigner profile (Tennyson and Noble, 1984);

• TMATSUB: transforms the C2v FN T-matrices to C∞v ones using the algorithm

in table 3.1. The 2A1 T-matrix is used to obtain the 2Σ+, 2∆ and 2Γ matrices,

while the 2B1 T-matrix yields the 2Π and 2Φ ones. This module is intended to be

run independently of the outer region suite of codes;

• ROTLIN: using the ANR approximation it computes, from the C∞v T-matrices,

the rotationally resolved integral cross sections. It computes and includes the

Born correction for |∆J | = 1. It was adapted from the existing ROTIONS

code (Rabadán and Tennyson, 1998), which computes the same for cations, and
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invokes the Coulomb-Born approximation. Like TMATSUB, this module is also

intended to be run independently of the outer region codes;

• DCS: an implementation of the Born completion formalism of Itikawa (2000), this

suite of codes is designed to treat linear molecules. It calculates the differential

cross sections (DCSs) using fixed-nuclei C∞v T-matrices (calculated by TMATSUB

for example). Additional information required includes the dipole and quadrupole

moment, the rotational constant, spherical and non-spherical polarisabilities, the

angular grid, J-transition and incident electron energy. This suite is entirely inde-

pendent of the R-matrix codes.

DCS was developed by Thierry Stoeklin of the Institut des Sciences Moléculaires,

Talence in France;

• POLYDCS: the suite calculates the rotationally elastic and inelastic DCSs for

electron (and positron) scattering by neutral polyatomic molecules of various sym-

metries (including C2v, C3v, Td and C∞v) be they polar, weakly polar or non-polar.

POLYDCS takes a number of inputs including the K-matrices, polarisabilities,

dipole and quadrupole moments, incident electron energies and the desired rota-

tional transition. It also contains 4 examples of DCS calculations– O3, CO, CH4

and NH3. This module is also independent of the R-matrix codes.

The code documentation may be found in Sanna and Gianturco (1998).

3.7 Contributions to the R-matrix package

I have made three contributions to the UK R-matrix package which are listed below. The

first two are both solutions to long-standing computer bugs with some improvements to

how the results (polarisability) are presented. Correct irreducible representation labels

for groups with the same ‘nsym’ were added. Finally I re-wrote an existing FORTRAN

code for the computation of hyperfine transition rate coefficients for linear molecules in

another language, PYTHON, and extended this new version to treat half-integer as well

as integer angular momenta.

3.7.1 SWMOL3

It was found that running the methane molecule in C2v (natural point group Td), after

appropriate spatial transformation, caused the code to fail, with the code stating that the
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symmetrically redundant hydrogen atom was too close to (lying on top of) the original

symmetrically non-redundant one. This occurred for atoms lying on the x-z plane, and it

could be a reason why water calculations were carried out with the plane of the molecule

lying on the σyz mirror plane rather than the σxz one.

SWMOL3 applies a particular symmetry operation depending on the value of the

integer ‘MULK’ the symmetrically non-redundant atom has. The value of MULK that

such an atom has depends upon the plane than it lies on and the number of symmetry

operations the point group of the molecule has. Here the error was due to the symmet-

rically non-redundant hydrogen atom having an incorrect value of MULK that resulted

in its symmetric equivalent partner lying directly on top of the original. That portion

of code has now been re-written so that the correct MULK value is yielded, with care

taken to distinguish between point groups with the same number of generating symme-

try operations– Cs and C2 (one generating symmetry operation) and C2v, C2h, D2 (two

generating symmetry operations).

3.7.2 DENPROP

It has been known for some time that the dipole polarisability for water was much too

low (J. Gorfinkiel, private communication) and that there were problems in other cases

with permanent dipoles of A1 symmetry. Here I used the methane molecule as a test

case because αxx = αyy = αzz and µA1→T2 → µA1→A1 , µA1→B1 , µA1→B2 , in accordance

with the correlation table for Td to C2v. It was found that the A1 →A∗1 dipole transition

moment was much too low (the asterisk implies electronic excitation).

The density matrix is computed for a particular electronic excitation as follows (McWeeny,

1989):

ρΓ→Γ′ = |ΨΓ〉〈ΨΓ′ | (3.72)

=
∑

i,j

CΓ
i D̄

Γ′
j |ΦΓ

i 〉〈ΦΓ′
j | (3.73)

where |ΦΓ
i 〉 is the ith configuration state function (CSF) term for target state Γ and CΓ

i

is the corresponding CI expansion coefficient.

For transitions from an electronic state Γ to itself, for purposes of optimisation one is

justified in computing only the upper-half of the density matrix ρ since it is symmetric.

However a problem arises where one wishes to consider the transition from a state (say
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the ground state) to an electronically excited state of the same irreducible representa-

tion (IR) and spin multiplicity, where the upper triangular and lower triangular half of

the density matrix are distinct and therefore must be calculated. Here the lower half

was never computed because DENPROP incorrectly presumed that wavefunctions with

the same spin multiplicity and IR were identical, resulting in the corresponding dipole

transition moment being too low because the contribution from the lower half of ρ was

neglected. Hence a line was added to check whether two wavefunctions of the same spin

multiplicity and IR are indeed the same by comparing CI expansion coefficients; if they

are not then the lower-half of the density matrix is also calculated.

DENPROP produces a properties file (‘fort.24’) with the target Hamiltonian eigen-

state labels and eigenvalues, the dipole and quadrupole transition moments. It was not

able to distinguish between point groups with the same number of IRs i.e. C2 and Cs,

and C2v, D2 and C2h and so used incorrect IR labels when assigning target states. It used

a parameter ‘nsym’, which is the number of IRs the point group has, as the filter. This

is clearly insufficient since, for example, the point groups C2v, D2 and C2h have the same

number of IRs (4). This problem was solved by simply adding an extra distinguishing

namelist integer parameter to INPUT called ‘ksym’, the assignments of which are given

in table 3.2. The point group filtering takes place in function ‘CMAKSTN’. Now, in

addition to filtering by nsym, ksym is used to distinguish between point groups with the

same number of IRs. The IRs, ksym and nsym for the listed and missing Abelian point

groups were of course added. As a test we calculated the vertical excitation energies

of C2H6 (ethane) in C2h symmetry (natural symmetry D3d). This was the very first

study to use that Abelian point group. We checked them against the ab initio results

of Buenker and Peyerimhoff (1975a) and our energy ordering and spectroscopic assign-

ments of the target states were the same. But our data were consistently much higher

than theirs owing to the fact that our quantum chemistry model did not account for the

Rydberg-like nature of the excited states.

Finally, although the capacity for DENPROP to compute the dipole polarisability

has always existed via subroutine ‘GETPOL’, the components αxx, αyy and αzz of the

(2nd rank diagonalised) polarisability tensor for transitions from the ground state were

never written to file in a simple way. This has now been rectified. In addition, GET-

POL now computes the spherical polarisability α0. For some point group symmetries

however, e.g. Cs, the tensor cannot be diagonalised so the only the spherical compo-
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Point group ksym nsym

D2h 1 8

Cs 1 2

C2 2 2

Ci 3 2

C2v 1 4

C2h 2 4

D2 3 4

Table 3.2: ksym namelist parameter assignments in DENPROP (see also Rmat documentation)

nent is written to file. α0 is particularly important in the SCOP high-energy scattering

formalism (Joshipura, Gangopadhyay and Vaishnav, 2007).

3.8 PythonHyperfines

Originally, a FORTRAN code was written to compute the hyperfine transitions for linear

systems as discussed above, but at present it is restricted to integer nuclear spins (A.

Faure, private communication). I re-wrote the code in the PYTHON scripting language

(platform 2.5.2) so that it could handle half-integer nuclear spins as well (K. L. Baluja

and S. Kaur, private communication) and read input data (molecular formula, rotational

constant, temperature, pure close-coupling rotational rate coefficients) from a text file

rather than the user having to directly edit the source code as is the case with the

FORTRAN version. The code requires the PYTHON scientific libraries ‘numpy’ (1.3.0)

and ‘scipy’ (0.7.0) which are freely available from the web (http://www.scipy.org/).

PythonHyperfines is cross-platform and so can be used on either WINDOWS or LINUX

machines. The structure of the application is as follows:

• io:

‘UnixScript.py’: contains a number of python translations of UNIX commands;

‘RatesDataIO.py’: reads the necessary data– molecular formula, temperate, rota-

tional constant and pure rotational rate coefficients;

• util:

‘FormulaException.py’: exception handling for when a molecular formula is incor-
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rect;

‘Util.py’: contains a range method where the intervals can be varied;

‘HyperfineExcitationThread.py’: thread of execution for computing the hyperfine

rate coefficients from the rotational excitation ones;

‘HyperfineDeexcitationThread.py’: this is the same as HyperfineExcitationThread.py

except it uses the rotational de-excitation rate coefficients;

• science:

‘Wigner.py’: computes the Wigner-3j, Wigner-6j, Clebsch-Gordan coefficients and

Wigner D rotational matrices- here the scipy gamma function is used to compute

the factorial;

‘ExcitationHyperfine.py’: computes the hyperfine rate coefficients from the rota-

tional excitation rate coefficients, as discussed above;

‘DeexcitationHyperfine.py’: computes the hyperfine rate coefficients from the ro-

tational de-excitation rate coefficients, as discussed above;

• Chemistry:

‘Elements.py’: ‘JAVA enum-like’ objects representing the chemical elements;

‘ChemFormula.py’: checks that the chemical formula string conforms to the stan-

dard nomenclature;

• test: this is a comprehensive test suite that checks the code carries out calculations

correctly. It reproduces some of the hyperfine collisional rate coefficients presented

in chapter 10;

‘TestWigner.py’: computes Wigner-3j and 6j coefficients for various arguments

(including non half-integers and complex numbers). Correct answers are given as

comments and were obtained from an online Wigner coefficients analytical calcu-

lator (Stone, 2009). Of course the code confirms a failed result for non half-integer

and complex number arguments;

‘TestChemFormula.py’: checks that some sample chemical formulae valid and that

incorrect ones fail;

‘TestDeexcitationHyperfine.py’: a test script that reproduces the hyperfine rate
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coefficients presented in chapter 10;

3.9 New Developments

Electron-molecule re-collisions take place when a molecule is exposed to a strong LASER

field and consequently ionised. The ionised electron then re-scatters off the resulting

cation. In these experiments it is usual to use aligned molecules. A new module, ALIGN,

has been developed for the R-matrix package by Harvey and Tennyson (2009) to compute

the scattering observables for neutral and charged molecules. The re-scattering process

is especially important in attosecond molecular imaging.

Finally, a new JAVA-based software, Quantemol-N, has been developed to make

the UK polyatomic molecular R-matrix package accessible to non-specialists: this is

discussed in the next chapter.
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Chapter 4
Quantemol-N: An Expert System for the

Calculation of Electron-Molecule

Scattering using the R-matrix Method

4.1 Introduction

For many electron-molecule scattering problems it is difficult to make the relevant mea-

surements in the laboratory. Thus there is an increasing demand for computational pro-

cedures to obtain reliable estimated cross sections and rates for key processes, or to aid

in the interpretation of observations. At present there are three accurate ab initio meth-

ods for treating low-energy electron-molecule scattering including electronic excitation

channels, including the Complex Kohn variational method, the Schwinger multi-channel

method and the R-matrix method. Of these the R-matrix is widely used (Kolorenc et al.,

2005; Izmaylov et al., 2004; Bezzaouia et al., 2004; Huo and Brown, 1999; Pfingst et al.,

1994; Abdolsalami et al., 1994).

The most advanced and widely used R-matrix codes are the UK molecular R-matrix

codes (Morgan et al., 1998), which have been developed over a period of about 30 years by

a number of scientists based at Queen’s University Belfast, Daresbury Laboratory, Royal

Holloway College and University College London. This project has been extensively

supported by the UK Collaborative Computational Project 2 (CCP2) on the continuum

states of atoms and molecules.

The UK R-matrix codes are very flexible. Besides the computation of the basic scat-

tering quantities and observables, the package has been adapted to locate (diffuse) bound
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states (Rabadán and Tennyson, 1996; Sarpal, Branchett, Tennyson and Morgan, 1991),

compute differential and momentum transfer cross sections (Faure et al. (2004b) for ex-

ample), treat rotational (Faure and Tennyson, 2001; Rabadán and Tennyson, 1998; Faure

et al., 2006) and vibrational (Sarpal, Tennyson and Morgan, 1991; Rabadán and Ten-

nyson, 1999) excitation, obtain resonance parameters, quantum defects and branching

ratios (Tennyson et al., 1984; Tennyson and Noble, 1984), treat dissociative recombina-

tion both using a complete non-adiabatic method (Sarpal et al., 1994) and in tandem

with multichannel quantum defect theory (Schneider et al., 2000) and study photoionisa-

tion (Tennyson et al., 1986; Tennyson, 1987). The R-matrix package has been extended

to treat intermediate energies– above the ionisation threshold by Gorfinkiel and Ten-

nyson (2004) and calculate positron collisions (Tennyson, 1986; Danby and Tennyson,

1988). The package is available freely from http://www.tampa.phys.ucl.ac.uk/rmat/,

but can only be used by experienced scientists. Hence the Quantemol-N software system

was developed to especially address this problem: it provides a JAVA swing interface

for the non-specialist to perform ab initio electron-molecule scattering calculations and

also provides training for those wishing to learn about such calculations. We used the

JAVA Development Kit 1.6.0 (JDK 1.6.0).

4.2 The Quantemol-N Approach

4.2.1 Ordinary Calculation Setup

In the practical implementation of the R-matrix method, the user has to make a large

number of choices covering issues such as the implementation of symmetry rules, target

basis set, continuum basis set, the R-matrix interaction radius, type and number of

target orbitals to retain in both the configuration interaction (CI) and as virtual orbitals,

target CI representation, CI model for the inner region scattering problem, reference

configurations for each of these CI expansions, the deletion threshold for the continuum

orbitals, the scattering energy grid, the R-matrix propagation distance, resonance fitting

etc. Combined with an old-fashioned user interface, the package is technically demanding

to use. It is for this reason that the expert system Quantemol-N was developed (Tennyson

et al., 2007), which provides both a friendly and intuitive graphical user interface (GUI),

and a package of classes which takes decisions on the issues listed above or provides a

limited menu of choices for the user. The principal aim of Quantemol-N is to make ab
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initio scattering calculations accessible to the non-specialists, but we have discovered by

experience that Quantemol-N makes it much easier and quicker for specialists to perform

such calculations too.

Quantemol-N is menu driven. Figures 4.1–4.7 show a series of screen panels the

user must complete to initialise and perform the calculation, and at runtime each panel

checks that the inputs are valid, preventing the user from progressing if the inputs are

indeed invalid. The panels also incorporate help buttons if the user is unsure of how to

proceed. The first panel, figure 4.1, is for specifying the molecule’s chemical formula.

The panel checks that the formula is in accordance with the standard way of writing

chemical formulae.

The second panel is shown in figure 4.2 and it deals with the target geometry.

The Cartesian position vectors of the constituent atoms are entered into the table in

Angstroms. This panel checks that the distance between any two atoms is greater than

0.2 Å. The geometry can be obtained from a number of sources: our tutorial provides

a link to the NIST Computational Chemistry Comparison and Benchmark Database

(CCCBDB) (NIST, 2008).

Using the specified the geometry Quantemol-N employs the molecule visualisation

application Jmol (Jmol: an open-source Java viewer for chemical structures in 3D, 2009)

to display the molecule in 3D (figure 4.3). By clicking on the point group menu, the

point group symmetry operations are imposed on the molecule. In the figure the well-

known H2O molecule is displayed and the C2v point group operations σxz, σyz imposed.

Of course the constraint on the point group options available is the same as for the R-

matrix package, namely, the Abelian D2h, D2, C2v, C2h, Cs, C2 and Ci symmetries and

no symmetry. The symmetrically equivalent atoms must be selected in order to proceed.

Here the tutorial furnishes the user with a number of interactive Jmol examples of how

to do this.

The fourth and fifth panels, figures 4.4 and 4.5, deal with the assumptions of the quan-

tum chemistry method used to represent the target wavefunctions and, hence, the scat-

tering calculation. The user can supply the ground state configuration of the molecule,

or if it is not known, an initial guess can be generated which the software optimises using

the Hartree-Fock self consistent field (HF-SCF) method to yield the occupied and virtual

molecular orbitals. These are then employed in the target and scattering calculations.

In the fifth panel one is required to choose the quantum chemistry method (hence the
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scattering method to be employed), between using a HF representation (static exchange)

or complete active space configuration interaction (CASCI) (close-coupled method). Al-

though the number of target states to be computed in a CI calculation may also be

varied, only those states with channel thresholds below (or equal to) the user specified

cut-off are retained in the inner region CC calculation and for the construction of the

R-matrix. The CASCI space is generated automatically by Quantemol-N and may be

varied in size by changing the ‘Number of virtual orbitals’ option in the penultimate

screen.

The target (GTO) basis is selected, usually from the library supplied with the soft-

ware. The current version (3.5.2) library contains 6–31G, 6–31G*, 6–311G, 6–311G*,

DZP, TZ and cc-pVTZ. A user is not necessarily limited to these and an option is avail-

able to import other basis sets from EMSL Gaussian Basis Set Order Form (2009), the

link to which is given in the panel’s tutorial page. The continuum basis set used to

represent the scattering electron (Faure et al., 2002) is automatically chosen according

to whether the species is (positively) charged or neutral and according to the interaction

radius chosen.

The penultimate screen deals with the set up of the outer region calculation, namely

the number of target states per symmetry to be included (default set to one for a CI

target representation), the R-matrix interaction radius, default 10 a0, and the energy

grid, default setting 0.1 eV to 10 eV in steps of 0.02 eV, all of which may be set.

This panel contains an animation of the molecule inside the sphere to give a feel for the

dimensions of the molecule in relation to the size of the R-matrix sphere. The last panel,

figure 4.7, gives the calculation parameters that were chosen by the user in the previous

six panels, which must be saved in order to proceed with the R-matrix calculation.

4.2.2 Batch Calculations

This new feature enables the user to prepare and run a queue of R-matrix calculations,

be it one consisting of several different molecules, or calculations on the same molecule

as a function of geometry, say.

An R-matrix calculation can be added to the summary table simply by pressing

the ‘Import a job...’ button and the user can select one from the examples directory.

In order to edit the calculation, or job parameters one must select/click on the job in

the table and then the ‘Edit selected job’ button, as shown in figure 4.10. The point
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Figure 4.1: Wizard panel 1: molecular chemical formula

Figure 4.2: Wizard panel 2: molecular geometry
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Figure 4.3: Wizard panel 3: molecular symmetry (point group and symmetrically equivalent

atoms)

Figure 4.4: Wizard panel 4: electron configuration
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Figure 4.5: Wizard panel 5: quantum chemistry parameters

Figure 4.6: Wizard panel 6: scattering parameters
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Figure 4.7: Wizard panel 7: saving the calculation definition

Figure 4.8: Batch job setup internal panel
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Figure 4.9: Adding a job

group option, for reasons related to ease of use, is permanently disabled in the latest

version, as is the electron configuration; the other options can be changed, however. In

addition one can create a copy of a selected job by pressing ‘Generate from selected’

button, which augments the copy to the table, a recommended procedure for running

Quantemol-N calculations as a function of geometry or basis set for example. Once the

parameters have been changed they must be saved by clicking on the ‘Save’ button on

the job parameters window. Proceeding in this way a queue of R-matrix calculations can

be created. At runtime each calculation is allocated a calculation directory, so no one

calculation is over-written by another: the directory structure of the software is shown

in figure 4.11.

The queue can be started by either pressing ‘Play’, which runs the entire list of jobs

in the table one at a time to completion, or a subset using the JSpinner components
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Figure 4.10: Editing a job

bin/ doc/

tutorial/

QuantemolN.jar Licence agreeement README.txt

calcDirectory−1/ calcDirectory−2/

project/

Quantemol−N/

examples/workspace/ lib/

calcDirectory−i/

results/

calcDirectory−N/

jobfiles/ matrices/ outputfiles/ qntmp/

Figure 4.11: Quantemol-N directory structure

86



4.2 The Quantemol-N Approach

and then clicking ‘Play selected’. The batch job can be stopped at any time simply

by pressing ‘Stop’. In both the case of setting up an ordinary calculation and batch

calculation, upon successful completion, the user will be prompted to save their project

to a location of their choice. If a calculation terminates with an error the software

proceeds to the next one and the error is documented for purposes of troubleshooting.

At the end of the batch calculation the user is informed that one of the calculations

exited with an error and where the de-bugging file is housed. The file contains the

calculation parameters and the error stack trace.

4.2.3 Results

Quantemol-N generates vertical excitation energies, graphs of eigenphase sums (fig-

ure 4.12), inelastic cross sections (figure 4.13), BEB ionisation cross sections (Kim et al.,

1997) (figure 4.14) and rate coefficients (figure 4.15). Resonances are automatically fit-

ted (Tennyson and Noble, 1984) to yield their parameters. The data are saved to simple

text files to facilitate further analysis.

It is especially important to state precisely the model employed in one’s calcula-

tion in order that the results may be re-produced later by other studies. So during

the Quantemol-N calculation, the key details of a theoretical model (GTO basis set,

geometry, electron configuration, CAS, R-matrix radius etc.) set up by the software are

saved to a text file for the user’s information. In the example for water, the software

employed the DZP basis set, a ground state configuration of 1a2
1 2a2

1 3a2
1 1b2

1 1b2
2 and

a CAS in which only two electrons were frozen and the remaining electrons allowed to

move amongst the 2a1, 3a1, 4a1, 1b1, 1b2, 2b2 occupied and virtual orbitals. One vir-

tual orbital of each of the symmetries A1, B1 and B2 was augmented to the continuum

orbitals for construction of the CC inner region scattering eigenket. The file confirms

that we employed the close-coupling expansion in our R-matrix calculation and that in

the continuum orbitals partial waves up to and including g (l = 4)-wave were retained in

the expansion. Ten target states were included in the inner region CC expansion and for

the construction of the R-matrix at the spherical boundary, with the interaction radius

set to 10 a0, and which was propagated to a distance of 100.1 a0 for matching to the

asymptotic boundary condition. Finally, in the calculation of the BEB cross section, the

orbitals employed by Quantemol-N are shown in table 4.1.
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Figure 4.12: H2O eigenphase sums for a 10-state CC calculation

Figure 4.13: H2O inelastic cross sections for a 10-state CC calculation
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Figure 4.14: H2O BEB ionisation cross section

Figure 4.15: H2O total (elastic+inelastic) rate coefficients for electron-impact scattering
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Orbital |B| U N

1a1 559.42 +794.56 2

2a1 36.61 +70.74 2

1b2 19.32 +48.32 2

3a1 15.66 +56.68 2

1b1 13.67 +61.50 2

Table 4.1: H2O molecular orbitals, where B is the binding energy and U is the average kinetic

energy. The parameters are given in eV

4.3 The Author’s Contribution

A number of additional capabilities were added to the software, including automation

of some important parts of the calculations and improving and augmenting the ‘help’

facility. These are discussed below.

4.3.1 Tutorial facility

In order to make Quantemol-N easier to use, a tutorial system was developed, which

would show the user how to prepare an ordinary R-matrix calculation, one for each

panel, and where appropriate links to other tutorials or external URLs discussing the

underlying theory in a simple way. The tutorial may be started either by clicking on

the ‘?’ button on the displaying panel (figure 4.1 for example) or pressing the ‘F1’ key.

The same was developed for the calculation queuing system. The htm files, which were

written by Salim Damani and Sunil Godhania, are distributed with the software. Sample

screenshots are shown in figures 4.16 and 4.17.

4.3.2 R-matrix calculation queuing system

The system was originally developed at the request of T. A. Field (Queen’s University

Belfast) to allow a series of calculations to be carried out on one molecule as a function

of bond length (see chapter 8). In the process of the development, we extended it to

enable one to run a queue of different molecules, or the same molecule with different

parameters. But in order to make the queuing system possible, we had to make parts

of the software directory structure dynamic, especially the part which houses the useful

scattering data, job files, output files and the R-, K- and T-matrices. Now at runtime

a calculation directory is created each time a new calculation is started. The directory
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Figure 4.16: Quantemol-N tutorial facility

Figure 4.17: Quantemol-N tutorial facility
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structure is shown in figure 4.11. Simplicity of the structure is vitally important in order

that one could find the results required easily and quickly. For ordinary calculations

and entirely new batch calculation projects, however, the calculation directory of any

old calculation(s) is (are) deleted. Once the calculation(s) is (are) finished, the user is

prompted to save.

4.3.3 Automation of the SCF optimisation

The orbitals generated by SCF are employed in the target (CI and HF) and scattering

calculations. However, obtaining the correct ground state configuration (molecular or-

bitals) required the user to input the configuration into panel 3 (figure 4.3). Although

this information is freely available from various literature and the internet (NIST, 1997),

this is quite difficult for the non specialist to carry out. Hence we developed a JAVA

code that would automate the entire process, from the generation of an initial guess to

the determination of the ground state configuration.

Consider the simple case of a closed shell molecule. Here the initial guess distributes

the core electrons across molecular orbitals of all the various symmetries, while the

remaining valence electron pairs are placed into orbitals of the fully symmetric IR label

(A1, Ag, A, A′ etc.). For open shell molecules, the last electron is put into the orbital of

B1, B2u, B or A′′ symmetry. The initial guess is then optimised as follows. The submitted

guess, from which are derived the ifock and iocc parameters, is optimised by the SWSCF

code to yield a new set of occupied and virtual orbitals. The JAVA code proceeds to

sort the orbitals, using the primitive bubble sort algorithm, in order of increasing energy,

and the new configuration fed back into the SWSCF code. This procedure is repeated

12 times. On two separate occasions within the loop, after re-calculating the orbitals,

the configuration is doubly ionised and SWSCF is re-run to confirm that this is the

true ground state. Of course the SCF energy is checked and the electron configuration

corresponding to the lowest SCF energy is retained. The reason for the ionisation is that

some configurations fully converged to excited states (e.g. 1a2
1, 2a2

1, 3a2
1, 4a2

1, 1b2
1,1b2

2, 2b2
2

for HNC; whereas it should be 1a2
1, 2a2

1, 3a2
1, 4a2

1, 5a2
1, 1b2

1, 1b2
2, and O3 1–7a1, 1b1, 1–

4b2, the correct configuration being 1–6a1, 1b1, 1–4b2, 1a2). In the case of open-shell

systems we only singly ionised the molecule. If the initial guess causes SCF divergence

problems, in particular those guesses which have put electrons in a2 orbitals, the error is

captured and an electron pair is moved from an orbital of symmetry A2, the chief source
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of the divergence problems, to an orbital of A1 symmetry and the SWSCF re-run– SiH4

has been such a case. If the error persists a guess where 10 electrons are added to 5 a1

orbitals is used, with surpluses or deficits corrected during sorting.

The algorithm has been successful for closed shell systems, more so than open shell

ones. Interestingly for C2 a ground state electronic structure different from that accepted

in literature was found which yielded an SCF energy much lower than the accepted

configuration.

Systems such as O2, which has an even number of electrons, but is an open shell

system (two singly occupied orbitals) are not treated by this code.

After the calculation has finished, the user is prompted to save the new electron

configuration to file. From then on Quantemol-N uses this configuration in all future

calculations.

4.3.4 Automated Generation of the Target Complete Active Space

A previously programmed algorithm for generating a target complete active space (CAS)

involved comparing orbital binding energies, but often it did not freeze the correct num-

ber of electrons. For example, for SiH4, only two electrons would be frozen, resulting in

more (2377) CSFs being generated than is usually the case if ten electrons were frozen,

or neopentane (2,2-dimethyl propane), where 36 electrons were frozen (all six electrons

in each of the five carbon atoms and one electron in six of the 12 hydrogen atoms).

In the new algorithm, for molecules with less than 25 electrons, the number frozen

per atom is equal to the number of electrons in the noble gas in the preceding period.

The active space is generated as follows. Initially one puts the molecular virtual orbital

energies into a set. One then iterates over the list of unoccupied virtual orbitals and

map the orbital energy (key) to the orbital, or list of orbitals in cases where there is

degeneracy (value). Hence the number of virtual orbitals retained in the active space

is entirely determined by the number of orbital energies, and this is what is meant by

‘Number of virtuals orbitals’ (figure 4.6). Varying this parameter essentially decides the

number of orbitals energies employed as keys, and so allows one to vary the size of the

active space and control the amount of correlation included in the target. Returning to

the case of SiH4, ten electrons (the 1s, 2s and 2p electrons) would be frozen in the target

wavefunction. (1a1, 2a1, 3a1, 1b2 and 1b1) and the remaining eight electrons distributed

in the 4a1, 5a1, 6a1, 2b2, 2b1, 3b1, 3b2 occupied and virtual orbitals. In the case of

93



4.3 The Author’s Contribution

electron rich molecules, those less than about 43 electrons, one is strongly advised to

freeze additional electrons. Here our algorithm determines the atom(s) with the highest

proton number, Zmax say, and freeze an additional electron pair on that (those) and any

atoms with proton number Zmax ± 1 (K. L. Baluja, private communication). This has

been tested on a few molecules with 27 or more electrons successfully. The algorithm

cannot, however, be applied to very electron-rich molecules, such as C5F8 which has 102

electrons.

4.3.5 BEB Electron-Impact Ionisation Cross Section

Electron-impact ionisation cross sections are useful in areas such as atmospheric physics

as well as plasma physics, and all that is required to compute them in the BEB for-

malism (Kim et al., 1997) are the SCF binding energies B, average kinetic energy U ,

occupation number N and the dipole constant Q, which is usually taken to be unity.

Two of the parameters B and N are already obtained from the SCF optimisation pro-

cedure. The orbital kinetic energies are read in by the SCATCI program. These are

then employed in the standard formula to give a cross section for some incident electron

energy for an occupied molecular orbital. The cross sections are then summed over all

the molecular orbitals to give the ionisation cross section. The BEB formalism has been

applied to calculate such cross sections for some new molecules e.g. SiO (see chapter 7).

4.3.6 Theoretical Model Documentation

It is necessary in R-matrix calculations to note the model employed to calculate the

scattering quantities (eigenphase sum, R-, K- and T-matrices) and observables (cross

sections, target dipole transition moments, resonance parameters). Although the infor-

mation is technical, it is still necessary when the user comes to publish their results.

Once the calculation(s) is (are) executed, the key information that would be required

to re-produce the calculation are documented in a single text file which can form the

basis for any report on the work: point group; net molecular charge; atom cartesian po-

sition vectors; basis set name when the user selects one of the basis sets distributed with

the software, or exponents and contraction coefficients in the case of a basis set selected

from the external web-based library; ground state electron configuration; complete active

space (frozen orbitals and the active space itself); virtual molecular orbitals augmented

to the continuum orbitals; scattering method (close-coupling or static-exchange); prop-
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erties of the continuum orbitals (upper limit on the partial wave expansion); number of

target states retained in the N + 1-trial wavefunction and for the construction of the

R-matrix at the spherical boundary; interaction radius; radial distance to which the

R-matrix is propagated (for extraction of the K-matrix); the molecule’s Koopman’s the-

orem ionisation energy; and the assumptions taken to calculate the BEB cross section,

namely that Q = 1, and the orbital parameters used (the binding energy, B, orbital

average kinetic energy, U , and occupation number N).

4.3.7 Current and Future Projects

Some new projects, following discussions with users, have been established. By far our

most important project is to compute the rotationally resolved differential cross section,

where possible, in the natural symmetry of the molecule. From these data we intend for

Quantemol-N to compute the momentum transfer cross section, an observable with great

application in plasma physics. At present we are implementing the BOUND subroutine

into the outer region. Finally, it is also our intention to remove the third panel which

has been the most prohibitive to new users.

4.4 Conclusion

The R-matrix method has proved to be highly successful for treating a variety of collision

problems in atomic and molecular physics (Burke and Berrington, 1993). In particular

the UK molecular R-matrix codes have been widely used for the treatment of low-(and

now intermediate- Gorfinkiel and Tennyson (2004)) energy electron scattering. We have

developed an expert system, Quantemol-N, for running these codes so that ab initio

scattering calculations can be performed by the non-specialist. As we have demonstrated

here in the case of e-H2O the software is capable of setting up a high quality theoretical

model with little more input than a knowledge of the equilibrium geometry of the target

molecule.

A number of new features have been added to make Quantemol-N much more easier

to use, useful and powerful. Additional projects continue to be carried out.

Future projects may include developing an algorithm to construct a feasible complete

active space for molecules with more than 43 electrons. This will be important for

molecules such as SF6 and C5F8, which are being extensively used for plasma etching.
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Chapter 5
Electron Collision with the HCN and

HNC Molecules using the ab initio

R-Matrix Theory

5.1 Introduction

Hydrogen cyanide (HCN) and its isomer hydrogen isocyanide (HNC) are examples of

linear and very polar species, both well-known astrophysically. Indeed, after H2 and

CO, HCN is one of the most abundant molecules in the interstellar medium (ISM).

Although HCN is the significantly more stable, HNC is also well-known in the ISM where

concentrations of HNC often exceed those of HCN (Hirota et al., 1998; Hiraoka et al.,

2006). Recently HNC has been identified in the spectra of cool carbon stars, where HCN

is very well known (Harris et al., 2003) and in comets (Rodgers and Chamley, 1998).

Low-energy electron collisions with these two molecules are of particular interest to

the astrophysical community. Their large dipole transition moments (about 3 Debye)

implies that the electron collision cross sections are expected to be very large. The

computed observables for electron-molecule scattering have many important applications

in astrophysics, including the computation of electron densities in shocked regions of the

ISM (Jimenez-Serra et al., 2006) and population analysis in comets, where electron

collisions can provide a significant excitation mechanism for rotational transitions in the

HCN molecule in comet Hale-Bopp (Lovell et al., 2004).

This chapter will discuss previous quantum chemistry and electron scattering studies,

and the application of the ab initio R-matrix method to electron scattering by HCN and
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HNC at the close-coupling level. This discussion includes the target quantum chemistry

and scattering models we used to construct the target wavefunctions and the R-matrix

respectively.

While most of the calculations reported below used the standard UK R-matrix codes,

we took the opportunity to use the Quantemol-N software (Tennyson et al., 2007): it

was our intention to compare the models automatically generated by it to those of our

own. The defaults which most affect the calculations below are that the orbitals for

the complete active space (CAS) and the number of target states included in the close-

coupling expansion are chosen on energy grounds. Unless stated otherwise, these default

values were all used in the Quantemol-N calculations.

All the calculations reported here invoked the fixed-nuclei (FN) approximation.

5.2 Previous Quantum Chemistry and Electron Scattering

Studies on HCN

The first ab initio quantum chemistry calculation of HCN was carried out by Schwen-

zer et al. (1974), where they sought to reconcile, amongst other things, a discrepancy

between Herzberg (1966) and the Walsh diagram in the B 1A′′ electronic state. They

specifically analysed the ground and 12 lowest-lying electronically-excited states, and

the basis set employed was one of contracted Gaussian-type functions centred upon each

nucleus. Schwenzer et al. (1974) calculated the CH and CN bond lengths and the HCN

bond angle of each electronic state by minimising the total energy with respect to the said

quantities. Their calculations yielded a ground state (X 1Σ+) energy of −92.958 Eh. A

key finding from this study was that the second electronically excited state (B 1A′′) was

not consistent with the previous study of Herzberg and Innes (1957). Instead Schwenzer

et al. (1974) suggested a plausible symmetry assignment of 1A′.

Another study was carried out into the electronically excited states of HCN by Nayak

et al. (2005), chiefly in order to assign labels to a meta-stable form of HCN (HNC or

a triplet state of HCN) and other experimentally observed transitions. But they also

predicted geometries for these states and compared them to previous experimental and

theoretical inquiries and other spectroscopic quantities including ionisation potentials

and adiabatic excitation energies. The model involved using two GTO basis sets, one

for geometry optimisation and another for the computation of the spectroscopic quanti-
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5.2 Previous Quantum Chemistry and Electron Scattering Studies on HCN

ties. For geometry optimisation Nayak et al. (2005) used a (4s, 1p)/[2s, 1p] contracted

Dunning’s basis augmented with an s- and p-function for the hydrogen atom, and a

Dunning’s (9s, 4p, 1d)/[3s, 2p, 1d] contraction augmented with two s-functions, two p-

functions and one d-function for the C and N atoms. For the computation of transition

and dissociation energies, ionisation potentials and dipole moments, a larger basis set

was constructed from Dunning’s (5s, 2p)/[3s, 2p] aug-cc-pVTZ contraction scheme for

the H atom, and Dunning’s (11s, 6p, 3d, 1f)/[5s, 4p, 3d, 1f] aug-cc-pVTZ basis was used

for the C and N atoms. The method employed for their geometry optimisation study

was the complete active space (CAS) SCF method; calculation of the other quantities

was carried out using a coupled cluster based linear response theory.

All the quantities listed were in good agreement with previous experimental and

theoretical studies. The transition energies obtained by the Nayak et al. (2005) study

are compared to the present one. Experimentally measured adiabatic excitations are

only available for a smaller set of target states (Herzberg, 1966; Krishnamachari and

Venkatasubramanian, 1984).

An attempt to compute accurate multipole moments for HCN was carried out using

the self-consistent field and coupled cluster (CCSD(T)) approximations by Maroulis

and Pouchain (1996). The study used a number of very large Gaussian-type functions

(although the effect of a smaller basis set upon the chemical properties was also tested)

and a very weak electric field was applied in the calculation of the dipole moment. The

study involved keeping the two inner most molecular orbitals frozen, while excitations

to the two highest virtual orbitals were not allowed. All calculations were performed

at the experimental equilibrium geometry RCH =1.06549 Å and RCN =1.15321 Å with

the hydrogen atom placed on the positive part of the molecular axis. Their SCF electric

dipole moment was higher than that of experiment, with a value of −1.3 a.u. (expt.:

−1.174 a.u. (NIST, 2008)), whereas the corresponding value calculated at CCSD(T) level

was −1.18 a.u., in very good agreement with the experimental dipole moment.

To date the only detailed theoretical calculations on low-energy electron scattering

by HCN were carried out by Jain and Norcross (1985) and Jain and Norcross (1986) for

incident electron energies 6 meV to 11.6 eV. For calculations that employed a model-

exchange potential, their theoretical target model consisted of a near Hartree-Fock limit

wavefunction. Orthogonality of bound and scattering orbitals was enforced as a con-

straint in some of their calculations, and where the exchange interaction was treated
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exactly, they generated Gaussian-type orbitals (GTOs) using standard molecular struc-

ture codes. For the higher scattering symmetries, a model-exchange potential was em-

ployed. The target observables Jain and Norcross (1985) calculated were the total elec-

tronic energy, dipole and quadrupole moments and, via Koopman’s theorem, the ioniza-

tion energy. In modelling the correlation and polarisation interactions a parameter-free

correlation-polarisation potential was employed. In addition they carried out a detailed

examination of the effects of exchange and polarisation using several models of the in-

teraction potential: static exchange (SE), static exchange-plus-polarisation (SEP), SEP-

plus-orthogonalisation (SEPO), exact static exchange (ESE) and exact static exchange-

plus-polarisation (ESEP). The equation of motion for the scattering electron was set up

using a single centre integral equations approach to the close coupling (CC) calculation,

and solved in the body-fixed co-ordinate frame. Since experimental differential cross sec-

tions are measured much more accurately than integral cross sections, they computed

the rotational excitation differential cross section (DCS) using the multipole-extracted

adiabatic nuclei (MEAN) approximation. Importantly, if scattering equations are solved

in the FN approximation, the DCS diverges in the forward direction. Such divergence

may be removed by accounting for nuclear rotational motion.

All the models discussed predicted the existence of a 2Π shape resonance whose posi-

tion and width parameters were particularly sensitive to the treatment of the polarisation

interaction. The best model was the ESEP which yielded a resonance position of 2.56 eV

and a width of 1.78 eV. No resonance was detected for the 2Σ+ and 2∆ symmetries.

Jain and Norcross (1986) then considered the effect of stretching upon these target

and scattering observables as obtained by the ESEP model. Specifically they computed

first and second derivatives of the target observables with respect to CH and CN stretch.

In the 2Π scattering symmetry when the CN bond was stretched (with CH bond length

fixed), the position and width of the shape resonance decreased; with CN bond contrac-

tion the opposite occurred. With respect to CH bond stretch (CN bond length fixed)

there was no change. At the equilibrium geometry, for the 2Σ+ scattering state no res-

onance was detected. Upon CH or CN bond stretch a shape resonance began to appear

and a 2Σ+ state resonance was detected at 2.3 a0, which disappeared beyond 2.7 a0.

Experimental works include those of Srivastava et al. (1978), Edard et al. (1990)

and Burrow et al. (1992). These studies confirmed the existence of the 2Π shape res-

onance. Edard et al. (1990) also obtained absolute cross sections by comparing, in the
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same experimental conditions, the electron loss spectrum of the isoelectronic species N2.

However, none have considered electron impact excitation of HCN.

5.3 Previous Quantum Chemistry and Electron Scattering

Studies of HNC

Schwenzer et al. (1975) provide a rare theoretical study of electronically excited HNC.

They too reported adiabatic excitation energies. As their calculations used a double zeta

basis set and single excitation CI, their results cannot be regarded as definitive. They

compared their results to the corresponding ones for HCN. The ground state energy of

HNC was predicted to lie 0.76 eV higher than HCN. In addition, although the symmetry

ordering of the HNC electronic states was the same as HCN some of them were found

to be lying below the corresponding states of HCN.

To our knowledge there has been no previous work, either experimental or theoretical,

on electron collisions with HNC. However, HCN and HNC are each predicted to support

an extremely weakly (dipole) bound anion state (Skurski et al., 2001). The only known

experimental quantity is the dipole moment which has a value −1.20 a.u. (NIST, 2008).

5.4 HCN and HNC Quantum Chemistry Model

All the electronic structure calculations were carried out at the experimental equilibrium

geometries (NIST, 2008). We employed two elaborate methods for these calculations–

complete active space configuration interaction (CASCI) using Hartree-Fock molecular

orbitals, and CASCI instead using pseudo natural orbitals. For HCN and HNC the

ground state electronic configuration is 1σ2 2σ2 3σ2 4σ2 5σ2 1π4, namely, both have a

fully symmetric X 1Σ+ electronic ground state. Since the UK R-matrix package only

supports Abelian point groups (Morgan et al., 1998), all calculations discussed here

were computed using the C2v point group for which the ground state configuration then

transforms to 1a2
1 2a2

1 3a2
1 4a2

1 5a2
1 1b21 1b22 (X 1A1).

A number of Gaussian-type orbital (GTO) basis sets of double zeta quality or better

were tested, including 6–31G, 6–31G* and 6–311G. In each case a Hartree-Fock self con-

sistent field (HF-SCF) calculation was performed to obtain a set of occupied and virtual

molecular orbitals. In the subsequent configuration interaction (CI) calculation, a com-

plete active space was employed where the 1a1 and 2a1 orbitals (4 electrons) were frozen
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and the remaining 10 electrons allowed to move freely among the 3a1, 4a1, 5a1, 6a1,

1b1, 2b1, 1b2 and 2b2 active space orbitals. The number of configuration state functions

yielded for the ground state for such a CAS was 328 for both molecules. For calculations

using Quantemol-N the basis set 6–31G was adopted. This software generates its own

quantum chemistry model, subject to the analysis of molecular orbitals obtained from

the SCF computation. Hence the complete active space used by Quantemol-N for the

CI calculation was slightly larger than the study utilising the R-matrix package directly:

(1a12a1)4(3a14a15a16a17a11b12b11b22b2)10 (5.1)

whereas for HNC the Quantemol-N CAS and that of this work coincided.

One problem with representing the target states is the need to utilise a single set

of molecular orbitals for all states. It is possible to improve the general quality of

the target eigenfunction by constructing weighted pseudo natural orbitals (NOs). In

all NO calculations we used the first five lowest states 1A1, 3A1, 3A2, 3B1 and 3B2 to

construct the wavefunctions. Each target state was represented by CI wavefunctions and

all possible single and double excitations to unoccupied virtual orbitals were included.

However, in order to incorporate double excitation and make the calculations feasible,

it was necessary to freeze eight electrons (1s and 2s electrons of the C and N atoms).

For both HNC and HCN, weighting coefficients were biased towards the ground state:

5.75, 1.5, 1.5, 1.5 and 1.5 for 1A1, 3A1, 3A2, 3B1 and 3B2 respectively. Care must be

taken in choosing a target model for a pseudo natural orbitals calculation because it is

often the case that degeneracy between orbitals (e.g. b1 and b2) and hence target states

can be broken. The weighting coefficients used in the present work yielded excellent

degeneracy between the B1 and B2 (Π) and A1 and A2 (∆) electronic states. For our

pseudo natural orbitals study the incorporation of single and double excitations yielded

about 9,000 configurations for the 1Σ+ ground state.

The important observables obtained from this electronic structure calculation were

the target Hamiltonian eigenvalues (hence the vertical excitation energies) and the dipole

(and other higher order moments). For HCN these quantities are reported in table 5.1

and are compared with the adiabatic theoretical study of Nayak et al. (2005) and the

experimental work of Herzberg (1966). In the present study we solved for 24 (C2v) target

electronic states; by default Quantemol-N only considers those states whose excitation
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thresholds are below 10 eV, a typical ceiling for incident scattering electron energies. For

purposes of brevity table 5.1 shows only those (eighteen) electronic states with excitation

thresholds below ionisation together with the above-mentioned quantities. The dipole

moments obtained in our study agree quite well with the more accurate coupled cluster

study of Nayak et al. (2005). In particular, our target models using the 6–31G and 6–

31G∗ basis, and the Quantemol-N model agree very well with the study of Maroulis and

Pouchain (1996), who obtained a value of −1.18 a.u., and the experimental value of NIST

(2008). There is, however, disagreement between the excitation thresholds of the present

study with the data of Nayak et al. (2005) because the latter accounts for the geometric

rearrangement of the nuclei post electronic excitation, and consequent reduction of the

molecular symmetry to Cs. Hence we transformed the state assignments of Nayak et al.

(2005) to C∞v symmetry.

We compare our data to the cruder study of Schwenzer et al. (1975): table 5.2

shows that the data from Quantemol-N and the equivalent R-matrix calculation are in

agreement because, as mentioned earlier the quantum chemistry models are precisely the

same. The ground state dipole moments are all close to the observed value of −1.20 a.u.

We also found that the HNC ground state lies 0.73 eV above that of HCN, close to the

accurate value of 0.65 eV obtained by van Mourik et al. (2001).

5.5 HCN and HNC Scattering Calculation

Accurate computation of the resonance involves improved modelling of the polarisation

interaction, which is achieved by inclusion of energetically closed electronic excitation

channels (hence 24 states were included in the close-coupling expansion). As a result the

eigenphase generally increases and the expected resonance position is lowered, reflecting

the improved modelling. Scattering calculations were performed on all four C2v scat-

tering symmetries 2A1, 2B1, 2B2 and 2A2. The continuum GTOs employed were those

of Faure et al. (2002) with partial wave expansion up to and including g-wave. They

were Schmidt orthogonalised to the target molecular orbitals and then symmetrically

(Löwden) orthogonalised among themselves. Only those continuum orbitals with eigen-

values (of the symmetric orthogonalisation overlap matrix) greater than (2 × 10−7) were

retained. One virtual orbital of each irreducible representation was chosen to augment

the continuum orbital set in the inner region scattering wavefunction where orbitals were

available to do so. The R-matrix sphere radius was set to 10 a0. The scattering model
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5.5 HCN and HNC Scattering Calculation

Target State 6-31G 6-311G 6-31G∗ 6-31G+NO Q-N∗ CCa Expt.b

X 1Σ+ (1A1) -92.902 -92.911 -92.939 -92.939 -92.9109

1 3Σ+ (3A1) 6.87 7.04 6.90 6.63 6.85 6.13

1 3∆ (3A1,3A2) 8.03 8.04 7.98 7.96 8.05 7.00

1 3Π (3B1,3B2) 8.50 8.61 8.89 8.53 8.50 4.44 8.53c

1 3Σ− (3A2) 8.72 8.72 8.67 8.97 5.47

1 1Σ− (1A2) 9.09 9.02 8.98 9.23 9.15 6.48 6.48

1 1∆ (1A1, 1A2) 9.41 9.30 9.26 9.82 6.93 6.77

1 1Π (1B1,1B2) 9.84 9.91 10.18 10.04 9.83 8.10 8.10

2 3Π (3B1,3B2) 11.87 11.69 11.7 6.81

2 1Π (1B1,1B2) 12.17 11.80 11.98 8.64 8.88

2 3Σ+ (3A1) 12.40 12.16 12.61

2 1Σ+ (1A1) 12.53 12.24 12.76 7.79

33Π (3B1,3B2) 7.47

µ/a.u. −1.19 −1.21 −1.17 −1.13 −1.193 −1.26d −1.173e

Table 5.1: HCN vertical excitation energies, in eV, as calculated in this work and compared

to the published adiabatic excitation energies. Also given are the absolute ground state energy

of the target, in Hartree, the ground state dipole transition moment and the number of CSFs

generated by the CAS CI calculation. The state designations are given in C∞v (C2v) point group

symmetry.
∗ Quantemol-N
a Nayak et al. (2005)
b Herzberg (1966)
c Krishnamachari and Venkatasubramanian (1984)
d Jain and Norcross (1985)
e NIST (2008)

used by Quantemol-N was the same as the direct R-matrix study except that only those

electronic target states with excitation thresholds below 10 eV (the ceiling set for the

incident electron energies) were included in the close coupling expansion.

Convergence of the polarisation interaction remains an issue for calculations based

on the close-coupled approximation (Gil et al., 1994; Gorfinkiel and Tennyson, 2004). It

is for this reason that methods were used which differed in the way the target molecular

virtual orbitals were employed, in addition to varying quantum chemistry parameters.

Initial calculations contracted the virtual orbitals with the continuum therefore allow-

103



5.5 HCN and HNC Scattering Calculation

Target State 6-31G 6-311G 6-31G* 6-31G+NO Quantemol-N Theorya

X 1Σ+ (1A1) -92.875 -92.892 -92.909 -92.897 -92.875

1 3Π (3B1,3B2) 6.16 6.40 6.48 6.20 6.16

1 3Σ+ (3A1) 7.88 7.94 7.91 7.45 7.88 4.46

1 3∆ (3A1,3A2) 8.61 8.63 8.65 8.36 8.61 4.60

1 3Σ− (3A2) 8.98 8.99 9.06 8.94 5.22

1 1Π (1B1,1B2) 9.01 9.08 9.313 9.18 9.01 7.34

1 1Σ− (1A2) 9.26 9.25 9.310 9.20 9.26 4.95

1 1∆ (1A1,1A2) 9.27 9.26 9.35 9.38 5.51

2 3Σ+ (3A1) 10.52 10.23 10.66 13.31 5.44

2 1Σ+ (1A1) 10.56 10.25 10.71 13.42 6.22

2 3Π (3B1,3B2) 11.85 11.46 11.67 13.83

2 1Π (1B1,3B2) 12.23 11.71 12.05 8.50

2 3Σ− (3A2) 5.96

2 1Σ− (1A2) 8.17

33Σ− (3A2) 6.09

µ/a.u −1.15 −1.21 −1.16 −1.146 −1.15

Table 5.2: HNC vertical excitation energies, in eV, calculated in the present work compared to

the published adiabatic excitation energy. The absolute ground state, in Hartree and the ground

state dipole moment in a.u. are also given
a Schwenzer et al. (1975)

ing the scattering electron the occupy them, meaning that such CSFs were treated as

arguments of the first summation of the coupled-states (or close-coupled) expansion. To

allow for increased short range polarisation models which treat the CSFs where the scat-

tering electron occupies the virtual MOs separately from when it occupies the continuum

orbital were tested. Such CSFs are therefore uncontracted and analysed as part of the

second L2 summation of the CC expansion. The resonance parameters were obtained

by fitting the eigenphase sum curve to the Breit-Wigner profile (Tennyson and Noble,

1984).

5.5.1 Eigenphase Sums and Resonance Parameters

Figure 5.1 shows the 2Σ+ eigenphase sum curve for HCN which rises sharply as the

scattering energy tends to zero, in accordance with Levinson’s theorem for a system sup-
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Model Er Γr

6–31G 2.83 1.34

6–31Ga 2.46 1.14

6–311G 2.84 1.49

6–31G∗ 3.14 1.59

6–31G + NOa 2.79 1.22

Quantemol-N 3.27 1.64

Theoryb 2.56–2.80 1.78–2.40

Experimentc 2.26

Table 5.3: HCN 2Π shape resonance parameters, in eV, as a function of theoretical model
a uncontracted CSFs employed in N + 1-eigenket close-coupling expansion,
b Jain and Norcross (1985),
c Burrow et al. (1992)

porting a weakly bound state. The 2Σ+ eigenphase for HNC shows a similar behaviour.

Importantly, no resonance structure was observed for this scattering symmetry. Further-

more the structure of the curve at energies below the first excitation threshold (about

6.8 eV) is similar to the curve given by Jain and Norcross (1985). Figure 5.2 which

presents the same data for the 2Π scattering symmetry, shows the clear signature of a

broad low-energy shape resonance. For both scattering symmetries our eigenphases show

considerable threshold structure, associated with the opening of new excitation channels

above 6.8 eV; this structure is not present in the eigenphases of Jain and Norcross (1985)

because they employed a 1-state approximation.

Table 5.3 summarises the results we obtained for the position and width of the 2Π

resonance. These results show considerable sensitivity to the precise model used, with

the position varying by more than 0.5 eV and the width by over 20% between different

calculations. This behaviour is similar to that observed by Jain and Norcross (1985), for

whom the results which explicitly included polarisation effects are quoted. Unsurpris-

ingly their static exchange calculations gave resonances which are systematically higher

and broader.

Our predicted resonances for HCN lie at very similar energy positions to those of Jain

and Norcross (1985), the lowest being 0.2 eV higher than the most precise experimental

measurement of Burrow et al. (1992). However, one should note that this experiment

measures the adiabatic resonance energy, whereas the theoretical values are for the
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Figure 5.1: Comparison of HCN 2Σ+ eigenphase sum curve

Model Er Γr

6–31G 2.77 0.91

6–31Ga 2.57 0.80

6–311G 2.90 1.06

6–31G∗ 3.03 1.10

6–31G + NOa 2.43 0.67

Quantemol-N 3.15 1.15

Table 5.4: HNC 2Π shape resonance parameters, in eV, as a function of theoretical model
a uncontracted CSFs employed in N + 1-eigenket close-coupling expansion

higher vertical energies. The HCN 2Π shape resonance as obtained by our study is quite

broad and systematically lower than the two studies of Jain and Norcross (1985, 1986).

Generally, a narrower resonance corresponds to an improved treatment of short-range

polarisation effects. The widths obtained, which are greater than 1 eV, are consistent

with the experimental findings that the resonance is too broad to support vibrational

structure (Burrow et al., 1992). No Feshbach resonances were detected for HCN. Calcu-

lations predict that HNC also has a 2Π shape resonance- this is to be expected since HNC

is isoelectronic to HCN. The resonance parameters obtained are given in tables 5.4, 5.5

and 5.6.
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Figure 5.2: Comparison of HCN 2Π eigenphase sum curve

Model Er Γr

6–31G

6–31Ga 7.82 2.2× 10−3

6–311G 7.85 3.0× 10−3

6–31G∗

6–31G + NOa 7.43 1.2× 10−3

Quantemol-N 7.84 9.6× 10−4

Table 5.5: HNC 2Σ+ Feshbach resonance parameters, in eV, as a function of theoretical model
a uncontracted CSFs employed in N + 1-scattering eigenket close-coupling expansion

The calculations predict the position of the 2Π shape resonance to be similar to

the corresponding HCN resonance, but narrower with a width of about 60 % of that

computed for HCN.

The chief distinction between electron scattering by HCN and HNC is that the latter

yields a number of narrow resonances which, unlike the shape resonances obtained for

both isomers, appear only in those calculations with an enhanced treatment of polarisa-

tion. Such behaviour is thus characteristic for Feshbach resonances which are absent in

scattering calculations which do not treat polarisation effects adequately.

Tables 5.5 and 5.6 gives parameters for the 2Σ+ and 2∆ Feshbach resonances respec-
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Model Er Γr

6–31G

6–31Ga 8.57 4.0× 10−4

6–311G

6–31G∗ 8.61 5.5× 10−4

6–31G + NOa 8.34 3.5× 10−4

Quantemol-N 8.58 3.4× 10−4

Table 5.6: HNC 2∆ Feshbach resonance parameters, in eV, as a function of theoretical model
a uncontracted CSFs employed in N + 1-scattering eigenket close-coupling expansion
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Figure 5.3: Comparison of HNC 2Σ+ eigenphase sum curve

tively. Observables absent from the tables correspond to models that did not detect a

resonance. The resonance positions in the tables appear to vary by almost 0.5 eV. This is

not actually a property of the scattering calculation but of the underlying representation

of the electronic target states. With reference to table 5.2, it appears that the 2Σ+ and
2∆ resonances appear to be associated with the first excited 3Σ+ and 3∆ states of HNC

respectively. In all cases our calculations found that the resonance appears less than

0.1 eV below their respective channel thresholds. Sensitivity of the resonance position

is therefore directly associated with differences in the target excitation thresholds. The

correlation between which models (those employing uncontracted CSFs to model short-
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Figure 5.4: Comparison of HNC 2Π eigenphase sum curve

range polarisation) predict Fechbach resonances of 2Σ and 2∆ symmetry is not surprising

given that both resonances arise from the addition of a σ electron to target states with

the same configuration (1σ2 2σ2 3σ2 4σ2 5σ2 1π3 2π1); these resonances probably have

the same configuration: 1σ2 2σ2 3σ2 4σ2 5σ2 1π3 2π1 6σ1. Figures 5.3 and 5.4 show the
2Σ+ and 2Π eigenphases. Below the channel excitation thresholds both are similar to

those of HCN as the two species are isoelectronic. Above the thresholds the eigenphases

display considerable structure owing to the opening of new scattering channels.

5.5.2 Electronic Excitation

Electron-impact electronic excitation of either HCN or HNC does not appear to have

been considered previously. Figures 5.5–5.8 give electron-impact excitation cross sec-

tions for excitation to the two lowest electronic states of HCN and HNC respectively.

These observables were calculated using a 6–31G GTO basis set and uncontracted CSFs.

The main variation between theoretical models in the magnitude of the excitation cross-

sections in the near threshold region is due to the location of the excitation threshold.

Hence the resonance energy position is determined by the quality of the quantum chem-

istry model rather than the parameters of the scattering models. Given the absence of

previous studies it is not possible to make any sort of comparison.
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Figure 5.5: Comparison of HCN X 1Σ+ → 3Σ+ electronic excitation cross-sections

5.6 Conclusion

The ab initio R-matrix method has been applied to electron scattering by HCN and

HNC. The present work represents the first study to have been carried out upon elec-

tron scattering by HNC. 24 target states were retained in the inner region (close-coupled

scattering wavefunction) and in the outer region so as to attain an improved model of

the polarisation interaction. They were represented by configuration interaction (CI)

wavefunctions in which four electrons were frozen in all configurations and ten electrons

allowed to move amongst the 3σ, 4σ, 5σ, 6σ, 1π and 2π target virtual orbitals. Of the 24

electronic states 16 were closed channels in the incident scattering energies considered

here. In the best model the target eigenkets were subsequently improved by the use of

pseudo natural orbitals incorporating all the possible single and double excitations to

unoccupied virtual orbitals. For HCN a shape resonance of 2Π symmetry was detected

in all the models that were tested. This has been confirmed experimentally (Burrow

et al., 1992; Srivastava et al., 1978) and theoretically (Jain and Norcross, 1985, 1986),

the results of which are in good agreement with the corresponding observables of this

inquiry. Although the width has not been determined experimentally, the present scat-

tering calculations suggest that the width is narrower than that predicted by Jain and

Norcross (1985). Generally, resonances tend to narrow with the improved treatment of
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Figure 5.6: Comparison of HCN X 1Σ+ → 3∆ electronic excitation cross-sections

polarisation, hence the narrowest width (1.14 eV) may be the upper bound on the true

width.

Electron scattering by the HNC isomer also yields a 2Π shape resonance at a similar

energy to its HCN− counterpart, but with a smaller width. However, unlike HCN,

HNC supports a number of Feshbach resonances. Particularly, the superior calculations

found narrow resonances of 2Σ+ and 2∆ symmetry lying less than 0.1 eV below their

electronically excited parent states respectively. These probably arise from the same

configuration:

1σ22σ23σ24σ25σ21π32π16σ1 (5.2)

Coupled state electron scattering calculations such as those of the present work contain

a wealth of information on various scattering processes. Results on electron impact

excitation have been presented for both isomers. The T-matrices and dipole moment

obtained from the best model for HCN and HNC were employed in the study of electron

impact rotational excitation and de-excitation rate coefficients (chapter 10) which are of

particular importance in astrophysics (Lovell et al., 2004).

Finally, the opportunity was taken to compare the results with those obtained by

the new Quantemol-N expert system. This application yielded similar results to those
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Figure 5.7: Comparison of HNC X 1Σ+ → 3Σ+ electronic excitation cross-sections

obtained using the R-matrix package directly. The most important difference, which

gave rise to higher positions in the shape resonances, is the reduced number of target

states that were used in the inner and outer region in its default model.
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Figure 5.8: Comparison of HNC X 1Σ+ → 3Π electronic excitation cross-sections
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Chapter 6
Electron Collision with the CO Molecule

6.1 Introduction

The species CO is the most abundant molecule in the interstellar medium after H2.

It has been detected in the ISM and, for the first time, in Uranus’ atmosphere using

infrared spectroscopy (Encrenaz et al., 2009) and its bands have been confirmed in M

dwarfs (Pavlenko and Jones, 2002). Consequently, detailed infra-red observations of the

CO 2–0 bands in the 2.297–2.310 µm region of M dwarfs have been made by Jones

et al. (2005). Sensitive measurements of CO and its isotopomers 13CO, C18O and C17O

have been presented by Harrison et al. (1999) in the rotational lines J = 1 → 0, 2 → 1

and 3 → 2. Other astrophysical studies of CO and its isotopologues include Wada and

Tomisaka (2005), Bayet et al. (2006), Paglione et al. (2001), Williams and Blitz (1998)

and Crovisier et al. (1995). It has also been observed in comets (Jewitt et al., 1996)

The high abundance of CO in the interstellar medium has been the motivation for a

number of collision studies, particularly those with atoms: the study of Pestellini et al.

(2002), for example, applied the full close-coupling (CC) method to 4He scattering by

CO. Using the infinite sudden order (IOS) approximation calculations were carried out

of cross sections for energy transfer between vibrational levels of CO. Pestellini et al.

(2002) made two key findings: that vibrational energy transfer was dominated by the

transition ∆ν = 0 and, interestingly, at low energies the scattering was dominated by a

shape resonance.

Electron collisions have also been shown to be important interactions in the interstel-

lar medium. The calculations of DiSanti et al. (2001) in particular strongly suggested

that rotational populations in comets could in fact be controlled by collisions with elec-
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6.2 Previous Quantum Chemistry and Electron Scattering Studies

trons rather than radiative cooling.

Unlike HCN and HNC, CO has a very small dipole moment with an experimental

value of −0.043 a.u. (Muenter, 1975) therefore making it comparatively more difficult

to model in terms of quantum chemistry, and an interesting theoretical property of CO

is that the dipole moment direction yielded by its Hartree-Fock wavefunction has the

opposite sign of the one observed experimentally. This is corrected using a complete

active space configuration interaction (CASCI or CI) wavefunction (Harrison (2006) and

references therein). It is because of the abundance of CO in the ISM and the fact that

CO remains stable after the electron has collided with it that the present study is carried

out.

This chapter will discuss previous quantum chemistry and electron scattering cal-

culations. It presents a new application of the ab initio R-matrix method to electron

scattering by CO. Rotationally summed differential cross sections for a selected range of

incident electron energies (1 eV, 1.91 eV, 3 eV and 5 eV) were also calculated using the

Born closure approach of Itikawa (2000) to confirm the accuracy of the models set up.

The Binary Encounter Bethe (BEB) electron impact ionisation cross sections (Hwang

et al., 1996; Kim and Rudd, 1994) were computed using Quantemol-N (Tennyson et al.,

2007).

All calculations carried out during the present study employed the fixed nuclei ap-

proximation. The positive direction of the dipole moment µ was assigned to the polarity

C+O−. As shall be seen below, a negative sign implies the opposite polarity C−O+.

6.2 Previous Quantum Chemistry and Electron Scattering

Studies

There has been major concern about the disparity between the sign yielded by the ab

initio theoretical value and experimental measurement of the CO dipole moment. An

experimental determination was carried out by Muenter (1975) who obtained a value of

−0.043 a.u. The theoretical calculation of Huo (1965) obtained the opposite polarity to

that observed in microwave experiments (Rosenblum et al., 1958; Burrus, 1958); Billings-

ley and Krauss (1974) carried out a multi-configurational self-consistent field computa-

tion (MCSCF) of the dipole function for CO and obtained a dipole moment −0.0657 a.u.

(−0.167 D).

115



6.2 Previous Quantum Chemistry and Electron Scattering Studies

The work of Harrison (2006) was devoted to the effect of correlations on the direc-

tion of the CO dipole moment as a function of internuclear distance using the aug-cc-

pV5Z basis set and the complete active space self consistent field (CASSCF) and multi-

reference configuration interaction (MRCI) methods. They also corrected the sign of the

dipole moment using these methods. Their study yielded equilibrium dipole moments of

−0.137 a.u. and −0.073 a.u. respectively, a little higher than measured experimentally.

According to Harrison, the sign of the dipole moment changes because there is a distance

R such that the charge contribution q(O)R is negative (q(O) = −0.0733e), and the sum

of the induced atomic dipoles is positive, and they cancel.

Kirby-Docken and Liu (1977) performed detailed electronic structure calculations of

CO. Using CASCI wavefunctions they computed the potential energy curve and dipole

moment function for the ground state X 1Σ+. Kirby-Docken and Liu (1977) focused

on three types of CI calculations and determined the occupied and virtual molecu-

lar orbitals using the multi-configuration self-consistent field (MCSCF) calculation as

a function of internuclear distance. The core 1s electrons of the C and O atoms were

frozen in all configurations. Their first CI wavefunction included all 176 CSFs of 1Σ+

symmetry assignment generated by distributing the 10 valence electrons into the space

(3σ, 4σ, 5σ, 6σ, 1π, 2π); their second CI calculation was a first order configuration

interaction (FOCI) calculation; and the third CI calculation involved incorporating all

possible single and double excitations (CISD). All these calculations exhibited a sign

change at 2.4 a0 (RCO,eq = 2.132 a0 NIST (2008)) and at the equilibrium geometry all

three calculations yielded values of the dipole moment that were higher than experi-

ment (−0.043 a.u. Muenter (1975)). In addition they also analysed the dipole moment

derivatives.

There are a wealth of electron scattering calculations carried out on CO at vari-

ous levels of approximations. Particularly, two fixed nuclei R-matrix calculations have

been carried out by Salvini et al. (1984) at the 1-state static exchange (SE) and static

exchange-plus-polarisation (SEP) approximation. Salvini et al. (1984) used the UK di-

atomic R-matrix package and their calculations were carried out on the 2Σ+, 2Π and
2∆ scattering symmetries using the SCF target wavefunctions of Nesbet (1964) aug-

mented by a δ Slater type orbital. The basis set consisted of 7 σ and 3 π Slater-type

orbitals centred on each nucleus. Salvini et al. (1984) carried out additional work us-

ing the more accurate target function of McLean and Yoshimine (1968). These two
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6.2 Previous Quantum Chemistry and Electron Scattering Studies

wavefunctions yielded ground state eigenvalues of −112.758 Eh and −112.789 Eh and

dipole moments +0.156 a.u. and +0.105 a.u. respectively at the equilibrium geometry

compared to −0.043 a.u (Muenter, 1975). The continuum basis set consisted of a par-

tial wave expansion up to and including l = 6 in order to obtain converged solutions

for all the scattering symmetries considered. In the setup of their SE calculations two

or three square integrable (L2) functions were retained, where the scattering electron

was allowed to occupy the 6σ, 7σ or 8σ, the 2π, 3π or 4π and the 1δ or 2δ virtual

molecular orbitals for the 2Σ+, 2Π and 2∆ scattering symmetries respectively. In their

SEP calculations 2-particle,1-hole correlation functions were also included, where one

electron was excited out of the 4σ, 5σ or 1π occupied molecular orbitals into the 6σ,

7σ, 8σ, 2π, 3π and 4π virtual orbitals. Virtual excitations to the 1δ and 2δ virtual

orbitals were also included for the final converged calculations using the Nesbet target

wavefunctions. Their 2Π eigenphase sum curve was found to be in good agreement with

the previous static exchange studies of Levin et al. (1980) and Collins et al. (1980), and

confirmed the existence of the low-energy 2Π shape resonance. The SEP calculation re-

sulted in the position of the resonance being shifted to lower energies, in good agreement

with the corresponding experimental values. The best SEP calculation gave a position

Er=1.72 eV and a width Γr=0.76 eV compared to Er=1.8 eV and Γr=1.0 eV measured

by Tronc et al. (1980). Salvini et al. (1984) also explored the variation of the resonance

parameters with respect to bond contraction and stretching at both the SE and SEP

approximations. The trend they observed was that with bond contraction the resonance

position shifted to higher energies and broadened, while with bond stretch the resonance

narrowed. Salvini et al. (1984) recommended that further study be carried out on e-CO

scattering using post-Hartree-Fock methods and include nuclear motion.

Other theoretical studies include the R-matrix calculation of Morgan (1991), which

included vibrational excitation channels by non-adiabatic means using the method pro-

posed by LeDourneuf et al. (1979). The occupied and virtual molecular orbitals were

computed by Morgan (1991) using SCF (self-consistent field) optimisation using STO

(Slater-type) atomic basis sets. The CASCI model adopted by Morgan (1991) froze the

8 core electrons (1s and 2s electrons of the C atom and O atom) and the remaining 6

electrons allowed to move among the orbitals 5σ, 6σ, 1π and 2π occupied and virtual

molecular orbitals, which is smaller than the CAS that would normally be used. Nev-

ertheless the model resulted in a dipole moment (−0.049 a.u.) in excellent agreement
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with experiment (Muenter, 1975). The scattering calculations were carried out at the

SE, SEP and close-coupled (CC) levels of approximation and, like Salvini et al. (1984),

a continuum basis set with partial wave expansion up to l = 6 was used as well. The

study analysed scattering for the bond lengths 1.8, 1.9, 2.0, 2.132, 2.25, 2.35, 2.5, 2.65,

2.8 and 3.0 a0. Morgan (1991) observed that the resonance parameters where very sen-

sitive to the precise scattering model employed- in tandem with Salvini et al. (1984)

the retention of δ orbitals had a significant effect upon the parameters. The best model

yielded a position and width of 1.68 eV and 0.95 eV respectively.

Using the R-matrix diatomic code a later ab initio R-matrix study was carried out

by Morgan and Tennyson (1993) at the many-state close-coupling approximation, where

the target electronic states were represented by CASCI eigenfunctions. For the contin-

uum orbitals partial wave expansion was again up to and including l = 6 partial waves.

In the set up of the target wavefunctions Morgan and Tennyson (1993) employed an STO

(Slater-type orbitals) basis set that yielded 12 σ, 8 π, 6 δ and 2 φ occupied and virtual

molecular orbitals. The target wavefunctions were constructed using an active space

consisting of the 5σ, 6σ, 1π and 2π molecular orbitals. Fixed-nuclei calculations were

carried out on the same grid of 10 bond lengths as Morgan (1991). The CC expansion

retained those electronically excited states whose vertical excitation energies were below

12 eV and an R-matrix radius of 10 a0 was used; although a number of sphere radii

were tested, all the scattering observables were found to be insensitive to variation of

radius. Morgan and Tennyson (1993) carried out their calculations for incident electron

energies 6–18 eV and the total scattering symmetries 2Σ+, 2Π, 2∆ and 2Φ. 6 resonances

were detected in total: 3 of 2Π symmetry and one for each of the symmetries 2Σ+, 2∆

and 2Φ. At the larger bond lengths the 2Π shape resonance was observed to become a

bound state, in keeping with the findings of Salvini et al. (1984).

The study of Jain and Norcross (1992) employed an exact-exchange plus parameter

free polarisation model, also in the fixed nuclei approximation, and considered an inci-

dent electron energy range of 5 meV to 10.0 eV. The scattering observables computed

were the rotationally resolved elastic, inelastic, and averaged differential, integral and

momentum transfer cross-sections. In order to overcome poor convergence of the total

and differential cross sections they employed the multipole-extracted adiabatic nuclei

(MEAN) approximation (Norcross and Padial, 1982). Their quantum chemistry model

involved using a near-Hartree-Fock limit wavefunction, and the Gaussian-type orbital
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6.2 Previous Quantum Chemistry and Electron Scattering Studies

basis set for the X 1Σ+ ground state was generated using standard molecular structure

codes. The wavefunctions were hence used to obtain the ground state target Hamil-

tonian eigenvalue (−112.7708 Eh), and the dipole, quadrupole and octupole moments:

the dipole moment (+0.0993 a.u.) was about twice the accepted experimental value of

−0.043 a.u. (Muenter, 1975). Jain and Norcross (1992) solved a set of integral equa-

tions for the radial part of the continuum for a particular scattering symmetry with

the exchange interaction neglected for the higher scattering symmetries. The effects of

polarisation were modelled free of adjustable parameters via a correlation-polarisation

model. The experimental values of the spherical and non-spherical polarisabilities at

the equilibrium geometries (α0=13.34 a3
0 and α2=2.39 a3

0) were substituted into the

correlation-polarisation model. Jain and Norcross (1992) confirmed the conclusions of

the previous studies that low-energy electron collisions with CO are dominated by a low-

energy 2Π shape resonance, whose parameters they predicted to be 3.30 eV and 1.91 eV

in the case of exact static exchange (ESE) and 1.85 eV and 0.95 eV in the case of exact

static-exchange-plus-polarisation (ESEP), in good agreement with previous theoretical

and experimental studies. Their resonances were obtained by fitting to the Breit-Wigner

profile. Jain and Norcross (1992) also observed that the 2Π resonance was sensitive to

treatment of exchange and polarisation effects. Their use of Hartree-Fock wavefunctions

meant they over-estimated forward scattering at very low-energies.

The work of Zetner et al. (1998) measured the differential and integral cross sections

for electron impact excitation of the a 3Π, a′ 3Σ+, d 3∆ and A 1Π electronic target states

of CO at energies very close to the ionisation threshold (10, 12.5 and 15.0 eV) to complete

the missing data occurring between the data of Zobel et al. (1996) and Middleton et al.

(1993).

With respect to the experimental electron scattering studies carried out on CO, work

has been carried out by Tronc et al. (1980) and Buckman and Lohmann (1986), the latter

of which focused on the region around the 2Π shape resonance (0.5–5 eV) using a time-

of-flight spectrometer. Their total cross-section data, computed using the Beer-Lambert

law, predicted the existence of a resonance at about 1.95 eV. In addition there are the

low-energy studies of Kwan et al. (1983) and Zubek and Szmytkowski (1979); finally

there are also the works of Jung et al. (1982) and Furlong and Newell (1993) measured

the rotational-vibrational differential cross section in the energy range 0.5 eV to 6 eV for

∆J=0,+1,+2,+3 and +4. Experimental cross sections at the high end of the incident
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energy spectrum have been measured by Hudson et al. (2004), Freund et al. (1990)

and Orient and Srivastava (1987).

The results of the present study are compared to the works discussed above.

6.3 Quantum Chemistry Model of CO

The quantum chemistry calculations were carried out in the equilibrium geometry of the

CO diatomic (RCO=1.1283Å) in the abelian C2v point group (natural point group C∞v)

using the polyatomic R-matrix package (Morgan et al., 1998).

In carrying out this part of the study, care was taken to try and correct the sign of

the dipole moment yielded by the Hartree-Fock (HF) wavefunction using the configura-

tion interaction (CI) target wavefunction, and ensure that the magnitude of the dipole

moment for the CI calculation was as close as possible to the experimental value for later

use in the differential cross section calculation discussed below. To this end a number

of models were tested which varied the GTO (Gaussian-type orbital) atomic basis sets

and the complete active space (CAS) used to construct the target wavefunction. The

trial calculations used 6–311G, 6-311G with d-polarisation (6–311G*) and DZP basis

sets and the active spaces

(3a1,4a1,5a1,6a1,1b1,2b1,1b2,2b2)10 (CAS-0);

(3a1,4a1,...,7a1,1b1,2b1,1b2,2b2)10 (CAS-1);

(3a1,4a1,...,8a1,1b1,2b1,1b2,2b2)10 (CAS-2);

(3a1,4a1,5a1,6a1,1b1,2b1,3b1,1b2,2b2,3b2)10 (CAS-3);

(3a1,4a1,...,7a1,1b1,2b1,3b1, 1b2,2b2,3b2)10 (CAS-4)

In all of the above configurations the 1a1 and 2a1 molecular orbitals were frozen. The

HF and CI calculations using CAS-0 were carried out using Quantemol-N (Tennyson

et al., 2007) for its ability to set up and perform these calculations with great speed.

In all, six eigenvalues per target state (48 target state eigenfunctions in total) were

computed. For all the dipole moments listed in table 6.1 the positive direction of the

dipole moment vector was taken to be from the carbon atom to the oxygen atom.

The table 6.1 shows the dipole moments obtained using the models listed above.

No change in the dipole moment sign was observed when basis set 6–311G was used.

In contrast, DZP and 6–311G* yielded the required dipole moment sign change. The

model CAS-1 using basis set DZP (hereafter defined by the triple (DZP, CAS-1, 48)

where DZP is the basis set, CAS-1 is the complete active space and 48 is the total
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Model µ a.u.

6–311G DZP 6–311G*

HF +0.19624 +0.0935 +0.10615

CAS-0 −0.0234 −0.0123

CAS-1 +0.0421 −0.0332 −0.0267

CAS-2 +0.0459 −0.0312 −0.0295

CAS-3 +0.05001

CAS-4 +0.01555

Table 6.1: Table of CO permanent dipole moments

number of target wavefunctions) was chosen as the best target model for the scattering

study discussed below as it gave a value of the dipole moment that was also closest to the

absolute experimental value. This model gave the value of the ground state energy as

−112.81096 Eh. The vertical excitation thresholds yielded by target model (DZP, CAS-

1, 48) are given in table 6.2: only those target states with vertical excitation energies

less than the ionisation threshold (for the DZP basis set, 15.01 eV– see table 6.4) are

shown.

It is clear from table 6.2 that the thresholds are systematically higher than experiment

and the study of Morgan and Tennyson (1993) where the latter employed a smaller

complete active space and a different (Slater-type) basis set. Also given in table 6.2

is the spherical polarisability, computed using second-order perturbation theory, which

has a value of just over a half of the accepted experimental value. This observable gives

an indication of how well the polarisation will be modelled in the outer region. For the

present study it is clearly underestimated, but this has been the case historically (Gil

et al., 1994).

6.4 Scattering Model for CO

In the discussion of the scattering model below the present study employed target model

(DZP, CAS-1, 48). The (GTO) continuum orbitals employed by the present study were

those of Faure et al. (2002). These continuum orbitals were then augmented with one

virtual molecular orbital of each symmetry where such orbitals were available to do so.

The partial wave expansion of these continuum orbitals was up to and including l = 4,

or g-partial wave, which was more than sufficient for series convergence given that CO
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Electronic state (C2v) Te (eV) Theorya Experimentb

X 1Σ+ (1A1) 0.0 0.0

1 3Π (3B1,3B2) 7.18 6.43 6.32

1 1Π (1B1,1B2) 9.51 10.03 8.50

1 3Σ+ (3A1) 9.56 9.12 8.58

1 3∆ (3A1,3A2) 10.18 9.74 9.34

1 3Σ−,(3A2) 10.5 10.19 9.86

1 1∆ (1A1,1A2) 10.71 10.37 10.12

1 1Σ− (1A2) 10.73 10.31 10.01

2 3Π (3B1,3B2) 13.68

2 3Σ+ (3A1) 14.29

2 1Π (1B1,1B2) 14.82

2 1Σ+ (1A1) 14.92

µ (a.u.) −0.0332 −0.096 −0.043c

α0 (a3
0) 7.87 13.18d

Table 6.2: CO vertical excitation energies for model (DZP, CAS-1, 48). Also given are the dipole

moment and spherical polarisability in atomic units
a Morgan and Tennyson (1993)
b Tilford and Simmonds (1972)
c Muenter (1975)
d NIST (2008)

is a weakly polar molecule. These orbitals were Schmidt orthogonalised to the target

molecular orbitals and then symmetrically (Löwdin) orthogonalised among themselves.

Only those continuum orbitals with overlap matrix eigenvalues greater than (2 × 10−7)

were retained.

In order to model the polarisation interaction well, the scattering model employed

in the present study retained all 48 target states in the inner region close-coupling ex-

pansion and all 300 of the generated channels for the outer region scattering calculation.

Initially an R-matrix sphere radius of 10 a0 was employed. It was observed however,

that there was some significant orbital amplitude on the sphere surface hence the radius

was increased to 12 a0. As a result the boundary amplitude decreased from order 10−4

to order 10−6.

Finally, calculations were carried out on the 2A1, 2B1, 2B2 and 2A2 scattering sym-
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Model Er eV Γr eV

Present work 2.04 1.27

Morgan (1991) SE using SCF target 3.49 1.91

Morgan (1991) SE using CI target 3.38 1.91

Salvini et al. (1984) SEP 3 partial waves, no δ virtuals 2.15 1.16

Salvini et al. (1984) SEP 6 partial waves, no δ virtuals 2.08 0.91

Salvini et al. (1984) SEP 6 partial waves, δ virtuals 1.72 0.75

Morgan (1991) SEP with 13 virtuals 1.68 0.95

Morgan (1991) SEP with 13 virtuals plus 6 δ virtuals 1.29 0.74

Jain and Norcross (1992) ESEP 1.85 0.95

Morgan and Tennyson (1993) CC 1.8 N/A

Tronc et al. (1980) 1.8 1.0

Kwan et al. (1983) 1.9 N/A

Table 6.3: Comparison of the CO 2Π resonance parameters calculated by the present work to

the theoretical models of Salvini et al. (1984), Morgan (1991) and Morgan and Tennyson (1993)

and the experiments of Tronc et al. (1980) and Kwan et al. (1983)

metries and for the incident energy range 0.02 eV to 10 eV. The R-matrices obtained

at a = 12 a0 for each of the above symmetries were propagated to a radial distance

of 100.1 a0 (Baluja et al., 1982) for matching to the asymptotic form of the reduced

radial wavefunction and the extraction of the fixed-nuclei (FN) K-matrices, T-matrices,

integral elastic and inelastic cross sections.

6.5 Scattering Observables

6.5.1 Eigenphase Sums and Resonances

Given that CO is isoelectronic to HCN one expects their eigenphase sums to be very

similar and this has indeed been confirmed in the present study. The model yielded the
2Π shape resonance predicted by the previous theoretical and experimental works. Ta-

ble 6.3 lists the parameters of this shape resonance. No other resonances were detected,

in contrast to the study of Morgan and Tennyson (1993) which predicted two additional

resonances of 2Π symmetry and one each of symmetry 2Σ+, 2∆ and 2Φ.

Figure 6.1 shows the corresponding eigenphase sum curve. Clearly, the eigenphase
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sum of Salvini et al. (1984) is systematically higher than that of the present work,

resulting in lower resonance parameters.
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Figure 6.1: Comparison of CO 2Π eigenphase sum curve for the 48 state close coupling model
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Figure 6.2: CO 2Σ+ eigenphase sum curve for the 48 close coupling model

Figure 6.2 is quite unlike the corresponding eigenphase sum for HCN and HNC in

that it does not have a sharp upturn at very low incident electron energies. This is due

to its very small dipole moment (−0.0332 a.u.), whereas the dipole moments for HCN

and HNC are large enough to support dipole bound states, as predicted by Levison’s
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theorem.

Salvini et al. (1984) found that the parameters of the 2Π shape resonance were very

sensitive to the target model employed and to the number of partial waves retained in

the continuum orbitals used to represent the scattering electron, and particularly sen-

sitive to the inclusion of δ orbitals in the 2-particle 1-hole term (table 6.3). Indeed at

the static exchange (SE) approximation, using the McLean and Yoshimine (1968) target

wavefunction, three partial waves gave rise to a 2Π resonance with position and width

of 3.47 eV and 2.0 eV respectively, which was lowered to 3.02 eV and 1.61 eV when six

partial waves were retained and the Nesbet (1964) target wavefunction was used instead

(a reduction of about 13 %). In the case of their static exchange-plus-polarisation (SEP)

calculation, which used the Nesbet (1964) target wavefunction, the lowering of the res-

onance parameters was much more pronounced: retaining three partial waves and not

including virtual orbitals in the 2-particle 1-hole configuration markedly lowered the res-

onance parameters to 2.15 eV and 1.16 eV; doubling the number of partial waves alone

reduced the position and width further to 2.08 eV and 0.91 eV respectively. Finally,

inclusion of the virtual orbitals resulted in a decrease to 1.72 eV and 0.75 eV, in agree-

ment with experimental observations. Morgan (1991) also conducted tests to determine,

at the SEP level, the influence of augmenting an increasing number of virtuals to the

continuum orbitals on the 2Π shape resonance. A consistent trend was observed where

the position of the resonance reduced and the width narrowed: Morgan (1991) retained

5, 6, 7,. . .,13 virtuals of each symmetry and the resonance parameters rapidly converged

to 1.68 eV and 0.95 eV (see table 1 of Morgan (1991)). Finally, augmentation of 6 δ

virtuals to the 2-particle 1-hole configurations reduced the position to 1.29 eV and width

to 0.74 eV. Such tests were not conducted in the present study. Instead the lowering of

the parameters was attempted by the retention of all 48 target states in the inner region

CC expansion and all 300 channels for the construction of the R-matrix.

6.5.2 Electron-Impact Excitation and Ionisation

Figure 6.3 shows the inelastic cross section for the excitation from the ground state to

the 3Π state. Most previous studies were only carried out at the static exchange or

static exchange-plus-polarisation level; the only previous study to have carried out a

detailed study of electron-impact excitation was that of Morgan and Tennyson (1993).

Particular features include the observation that the 2∆ resonance produces a peak in
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6.5 Scattering Observables

the excitation cross section for the 3Π; the present model however, did not produce

this 2∆ resonance although it does confirm the existence of a peak in the X 1Σ+→3Π

inelastic cross section (see figure 6.3) at almost exactly the same incident electron energy

(9.52 eV). The inelastic cross section retains the same general shape as the R-matrix

study of Morgan and Tennyson (1993) but is shifted to the right due to the location of

the first inelastic channel threshold being higher.
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X1Σ+  --> 3Π

Figure 6.3: Inelastic cross section for excitation to the 3Π electronic state (48 state close coupling

model)

The present study employed Quantemol-N (Tennyson et al., 2007) to compute the

electron-impact ionisation cross section using the BEB (Binary Encounter Bethe) formal-

ism (Hwang et al., 1996; Kim and Rudd, 1994). The SCF occupied molecular orbitals

calculated and used by Quantemol-N are listed in table 6.4. The same values were

obtained using the R-matrix codes directly.

For all the orbitals Quantemol-N set the dipole constant Q to unity. The software

computed the ionisation cross section for the ith C2v orbital and then summed over all

occupied orbitals to yield a cross section for each energy in the range 15.01 eV to 5 keV.

The cross section is shown in figure 6.5 alongside the experimental measurements of Hud-

son et al. (2004) and Orient and Srivastava (1987), the BEB calculations of Hwang et al.

(1996) and the formulation of Joshipura and Patel (1996). The BEB calculations ob-

tained by the present study are in very good agreement with both of the previous studies.

It is to be noted that the ionisation cross section is sensitive to the ionisation energy and
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Figure 6.4: Inelastic cross section for excitation to the 1Π electronic state (48 state close coupling

model)

Orbital |B| (eV) U (eV) N

1σ (1a1) 562.48 +794.60 2

2σ (2a1) 309.53 +436.44 2

3σ (3a1) 41.44 +78.14 2

4σ (4a1) 21.82 +71.54 2

1π (1b1,1b2) 17.38 +54.18 4

5σ (5a1) 15.01 +42.49 2

Table 6.4: CO molecular orbital binding (B) and average kinetic energies (U) and occupation

numbers (N) for GTO basis set DZP obtained by the present study

the present study is in good agreement with the experimental value of 14.01 eV (NIST,

2008). Studies employing the BEB formalism employ this experimental value in order

to attain improved agreement with experimental measurements. This was the approach

used, and recommended by, Hwang et al. (1996) hence the slight difference between the

data of the present study and Hwang et al. (1996).

6.5.3 Differential Cross Sections

The C2v fixed-nuclei T-matrices computed in the outer region were employed in the

computation of rotationally summed differential cross sections for incident scattering
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Figure 6.5: Comparison of the CO electron impact ionisation cross section

energies 1 eV, 1.91 eV, 3 eV and 5 eV, these being the selected energies of previous

theoretical studies, as a means of testing the electron-molecule collision model because,

experimentally, differential cross sections are much more reliably measured. An impor-

tant reason for calculating an accurate value of the dipole moment is that differential

cross sections are very sensitive to it, and therefore a great influence in attaining good

agreement with available experimental data. The present study employed the Born-

closure method on the scattering amplitude (Itikawa, 2000) to compute this observable.

Comparison is made to the experimental study of Gibson et al. (1996) for all of the

above energies and the theoretical study of Jain and Norcross (1992) for the energies

3 eV and 5 eV.

Initially the T-matrices were transformed to those of the natural symmetry C∞v by

extracting only those channel (defined here by the target symmetry Λi, the projectile

partial wave li and its z-component mli for the ith channel) T-matrix elements that

corresponded to the mapping mli = 0 → Σ+, mli = 1 → Π, mli = 2 → ∆, mli = 3 → Φ

and mli = 4 → Γ for a 1Σ+ molecule.

The set of rotationally summed differential cross sections computed for the above

incident electron energies are shown in figures 6.6–6.9.

The agreement with the Gibson et al. (1996) data at 1 eV is very good and at

1.91 eV, 3 eV and 5 eV for scattering angles between 85o and 125o agreement is fair.

Outside this range however, agreement is poorer, especially at the forward angles. An
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Figure 6.6: Comparison of the CO Rotationally summed differential cross section for incident

energy 1 eV
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Figure 6.7: Comparison of the CO Rotationally summed differential cross section for incident

energy 1.91 eV

important thing to mention in this matter is that experimentally it is difficult to measure

differential cross sections at the forward angle and the experimentalist extrapolates the

DCS data they measure, inaccurately, to the forward angle. Interestingly, the forward

angle data of Gibson et al. (1996) appears to show behaviour that is typical of non-polar

systems, even though CO has a small non-zero dipole moment. The data of the present
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Figure 6.8: Comparison of the CO Rotationally summed differential cross section for incident

energy 3 eV

0 50 100 150 200
Scattering angle (deg)

0

1

2

3

4

5

6

7

8

9

10

D
iff

er
en

tia
l c

ro
ss

 s
ec

tio
n 

(Å
2 sr

-1
)

Gibson et al. (1996)
DZP (48 coupled states, contracted CSFs)
Jain and Norcross (1992)

Figure 6.9: Comparison of the CO Rotationally summed differential cross section for incident

energy 5 eV

study certainly seems to agree well with Jain and Norcross (1992) for angles above 90o,

but below this angle the calculation of Jain and Norcross (1992) exhibits the same trend

as Gibson et al. (1996).
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6.6 Conclusion

The present study has considered electron collisions with the diatomic CO at the close-

coupling approximation, with the CO target being represented by CI (configuration

interaction) wavefunctions. In all the complete active spaces employed to construct

the target wavefunction, four electrons (two 1s electrons in the C and O atoms) were

frozen in all configurations. Particular care was taken to re-produce the small magnitude

of the dipole moment (−0.043 a.u. Muenter (1975)) and the correct sign of the dipole

moment observed by experiments. Of the thirteen models tested two of them re-produced

the required sign, but only the model employing the DZP Gaussian basis set and an

active space consisting of the occupied and virtual molecular orbitals 3a1, 4a1, 5a1,

6a1, 7a1, 1b1, 2b1, 1b2, and 2b2, or (DZP, CAS-1, 48) yielded a dipole moment in good

agreement with experiment (see table 6.1), hence this model was used to set up the

scattering model. The disadvantage of model (DZP, CAS-1, 48) was that the channel

thresholds were systematically higher than the experiment of Tilford and Simmonds

(1972) and the theoretical study of Morgan and Tennyson (1993). This could be due

to the present model employing a CAS which did not incorporate the 3π (3b1 and 3b2)

virtual orbital, which lies lower than the 7σ (7a1) virtual orbital therefore omitting some

short range electron-electron correlation. Morgan and Tennyson (1993) also employed

a CAS that froze more than four electrons, thereby reducing the amount of electron-

electron correlation in the target model. This is indicated by the fact their model had

fewer CSFs. The advantage was that model (DZP, CAS-1, 48) ensured that the N + 1-

Hamiltonian eigenvalue problem was computationally feasible.

The R-matrix studies of Salvini et al. (1984) and Morgan (1991) showed the sen-

sitivity of the resonance parameters to the augmentation of a large number of virtual

molecular orbitals. Such a test was not carried out by the present study. Instead, in or-

der to accurately model the polarisation interaction, the scattering model retained all 48

excited target states for the inner region trial scattering wavefunction and all 300 open

and closed channels in the outer region scattering calculations. This model re-produced

the low-energy 2Π shape resonance observed experimentally and whose parameters were

in good agreement with previous studies (table 6.3).

In the computation of the rotational differential cross sections, initially the C2v T-

matrices obtained by the outer region calculation were transformed to the natural sym-

metry C∞v to yield a new set of T-matrices for the 2Σ+, 2Π, 2∆, 2Φ and 2Γ scattering
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symmetries. This new set was employed to compute rotationally summed differential

cross sections using the scattering amplitude Born closure method (Itikawa, 2000), and

compared to the work of Gibson et al. (1996). Fair agreement was obtained for the

incident energies 1.91 eV, 3 eV and 5 eV, but the data for 1 eV was remarkably well

re-produced. The disagreement in the behaviour of the DCSs at the forward angles will

certainly require additional study. Comparison with the work of Jain and Norcross

(1992) showed good agreement beyond 90o but disagreement below, with their data con-

firming the trend of Gibson et al. (1996). Normally one would expect that given CO does

have a small non-zero dipole moment, that the low angle behaviour would be similar to

that exhibited by this the present study; instead both experiment and theory show low

angle behaviour typical of non-polar systems.

A future study using the observables computed in this study would be in the com-

putation of rotational rate coefficients, which are of great importance in astrophysics

(Tennyson and Faure, private communication). This study is being carried out at

present. Jain and Norcross (1992) also stated that the nuclear vibrational motion plays

an important role in the region of the resonance. The discrepancy between theoret-

ical and experimental scattering results may be resolved, according to Jain and Nor-

cross (1992), by considering a vibrational close-coupling calculation. Accounting for the

vibrationally-averaged nature of the dipole moment may also be considered in the future

for the rotational differential cross sections and rotational excitation problems.
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Chapter 7
Electron Collision with the Silicon

Monoxide (SiO) Molecule

7.1 Introduction

Astrophysicists have had a long-standing interest in SiO and this is reflected by the great

number of studies carried out on this molecule confirming its presence in the interstellar

medium (ISM), e.g. Turner et al. (1992), Pintado et al. (1997), Codella et al. (2002)

and Nisini et al. (2007). Wilson et al. (1971) first reported on the discovery of silicon

monoxide in Sagittarius B2 from line emission spectra and recently Lo et al. (2007)

detected the J = 2− 1 SiO transition from the massive cold dense core G333.125-0.562

and hypothesised that the SiO emission may arise from shocks associated with an outflow

in the cold core. There have also been studies of SiO masers, sources of which have been

detected in the Sagittarius B2 molecular cloud (Shiki and Deguchi, 1997) and galactic

centres (Izumiura et al., 1998). Hence the astrophysical motivation for studying SiO

has produced a number of ab initio quantum chemistry calculations including Cornet

and Dubois (1972), Field et al. (1976), Peterson and Woods (1990), Langhoff and

Bauschlicher (1993) and Muniz and Jorge (2006). Peterson and Woods (1990) carried

out a configuration interaction study on SiO using diffuse basis sets, with the aim of

computing accurate dipole moments and potential energies. Their study employed a CI-

SD (all possible single and double electron excitations) level of theory, which yielded a

dipole moment of +1.2572 a.u., in good agreement with the available experimental value

of +1.219 a.u. (NIST, 2008). Chattopadhyaya et al. (2003) also performed extensive ab

initio calculations which are discussed below.
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This interest has also resulted in collisional studies being carried out on SiO to cal-

culate rotational excitation rate coefficients, which are widely applied in astrophysical

modelling. So far, the majority of research has been focused on atom-SiO collisions:

recently Dayou and Balanca (2006) calculated the rotational excitation rate coefficients

of SiO collisions with the helium atom for all transitions up to J = 26 and kinetic tem-

peratures between 10–300 K. Their ab initio model involved using the coupled-cluster

method at the RCCSD(T) level using a very diffuse (aug-pccVQZ) basis set for the Si,

O and He atoms to obtain an accurate interaction potential for the He-SiO system.

The potential was used to calculate the close coupled (CC) rotational cross sections

and the (de)excitation rate coefficients. The data from their He-SiO study was then

employed to predict rotational de-excitation rate coefficients for impact by para-H2.

Similarly Palov et al. (2006) calculated rate coefficients for rotationally-vibrationally in-

elastic scattering of the hydrogen atom by SiO to specifically model the circumstellar

SiO maser. Their method involved using an approximate quantum scattering calcula-

tion (vibrational close-coupling rotational infinite order sudden (VCC-IOS) method) of

the vibrationally-rotationally inelastic scattering cross sections over a relatively large

range of scattering energies. Additional work on atom-SiO collision calculations has

been carried out by Dickinson and Gottlieb (1970), Bieniek and Green (1981), Bieniek

and Green (1983), Sisak and Secrest (1992) and Gusdorf et al. (2008). However, to

date there has been very little work carried out on electron scattering by SiO in the

low to medium energy range. This is despite the importance of such interactions in

C-type shocks (Jimenez-Serra et al., 2006) and despite sometimes being the most domi-

nant mechanism of molecular rotational excitation in comets for example (Lovell et al.,

2004); the only electron impact study to have been carried out on SiO was a recent

high-energy study by Joshipura, Vaishnav and Gangopadhyay (2007) using a complex

potential formalism for the energy range 10–3000 eV. They were unable to benchmark

their work in anyway precisely because of the lack of electron impact studies.

The present study reports on the application of the ab initio R-matrix method to

low-energy scattering by SiO at the fixed nuclei approximation. In addition to the

scattering quantities normally yielded by the R-matrix method, the rotationally resolved

differential cross sections and the inelastic rotational integral cross sections as a function

of electron energy have been calculated. These integral cross sections were then employed

to calculate the rotational (de)excitation rate coefficients as a function of temperature
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Molecular orbital |B| (eV) U (eV) N

1σ (1a1) 1872.68 +2509.7517 2

2σ (2a1) 558.58 +794.7226 2

3σ (3a1) 167.87 +360.8542 2

1π (1b1,1b2) 116.17 +331.3933 4 (2,2)

4σ (4a1) 116.16 +331.8232 2

5σ (5a1) 34.32 +78.1625 2

6σ (6a1) 16.53 +62.1116 2

2π (2b1, 2b2) 12.78 +52.1095 4 (2,2)

7σ (7a1) 11.85 +44.1967 2

Table 7.1: SiO molecular orbital binding and average kinetic energies for DZP basis set and

equilibrium geometry. The C2v orbitals are given in the parentheses

and their rate fitting coefficients for later use in astrophysical modelling. This is the first

low-energy electron collision study to have been carried out on SiO.

7.2 Quantum Chemistry Model

The present study was carried out using the C2v point group- the highest Abelian sub-

group of the natural point group C∞v and a GTO double zeta-plus-polarisation (DZP)

basis set for the Si and O atoms. The use of more diffuse basis sets is generally discour-

aged as the occupied molecular orbitals so obtained would have significant amplitude

on the R-matrix sphere surface (typical radius 10 a0). The experimental equilibrium

geometry (re = 1.5097 Å) of the SiO diatomic was employed (NIST, 2008). The present

study carried out a self-consistent field (SCF) calculation using the above-mentioned

basis set and geometry to yield the ground state electronic configuration 1a2
1 2a2

1 3a2
1 1b21

1b22 4a2
1 5a2

1 6a2
1 2b21 2b22 7a2

1 (X 1A1) or 1σ2 2σ2 3σ2 1π4 4σ2 5σ2 6σ2 2π4 7σ2 (X 1Σ+) in

the natural point group: the binding energy B, average kinetic energy U and occupation

number N of the occupied molecular orbitals obtained by the present study are listed

in table 7.1. By Koopman’s theorem the first ionisation energy is 11.85 eV which is in

reasonable agreement with the experimental value of 11.49 eV (NIST, 2008).

The occupied and virtual molecular orbitals obtained using HF-SCF optimisation

were then used to set up the SiO electronic target states. The study specifically computed

complete active space configuration interaction (CASCI) electronic target wavefunctions,
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as a means of modelling the correlation interaction between the target electrons. The

complete active space employed by Quantemol-N was automatically generated: (1a1,

2a1, 3a1, 1b1, 1b2, 4a1)12 (5a1, 6a1, 2b1, 2b2, 7a1, 3b1, 3b2, 8a1, 9a1)10, namely, twelve

electrons (1s, 2s and 2p electrons in the Si atom and the 1s electrons in the O atom) were

frozen in all configurations and ten electrons were free to move in the 5–9a1, 2–3b1 and

2–3b2 orbitals. This active space yielded 1,436 configurations for the 1A1 (1Σ+) ground

state. Two target models were analysed: one computed m = 6 target Hamiltonian

eigenvalues per state and the second involved computing m = 3 eigenvalues per state;

where m is the number of eigenvalues per electronic symmetry.

The excitation energies of the present study are compared to those obtained by Chat-

topadhyaya et al. (2003) who reported an extensive configuration interaction study of the

low-lying electronic states of SiO which used ab initio based multireference singles and

doubles configuration interaction calculations including the core potentials of the Si and

O atoms. They also computed the Te, re and ωe spectroscopic constants of the bound

Λ − S states of the molecule, and dipole moment µ of the X 1Σ+, a 3Σ+, b 3Π, A 1Π

and E 1Σ+ target states. Chattopadhyaya et al. (2003) used the same complete active

space as the present study with 10 electrons in the active space. The HF-SCF molecular

orbitals set used in their study were computed as a function of bond length using a very

diffuse basis set. Table 7.2 shows the vertical excitation data calculated by the present

study compared to the adiabatic and vertical excitation energy data of Chattopadhyaya

et al. (2003) and the experimental work summarised by Herzberg and Huber (1979). It

can be seen that the vertical excitation energies of the present work are systematically

higher than the adiabatic data of the two previous studies, as expected, but are in bet-

ter agreement with the vertical excitation energy data of the previous theoretical study

of Chattopadhyaya et al. (2003). There are some notable differences between the present

and the two previous studies: the low-lying 1∆ state predicted by Chattopadhyaya et al.

(2003) and reported by Herzberg and Huber (1979) does not appear in this study; con-

versely, states such as the 2 1Σ− predicted by the present study are not predicted by the

two previous studies. Considering graph (a) in fig. 1 of Chattopadhyaya et al. (2003) it

is interesting to observe that the lowest C 1Σ− and D 1∆ potential energy curves almost

lie on top of each other. At the equilibrium geometry they are indistinguishable. Given

this, it might be the case that the present study has not included a sufficient number

of 1A2 and 1A1 states for the 1∆ state to appear, or that the 1Σ− may in fact be the
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Target State Present work Experimentb Theoryc

Adiabatic Vertical

X 1Σ+ −363.8534

1 3Π (3B1,3B2) 4.64 4.20 4.26 4.29

1 3Σ+ (3A1) 5.11 4.18 4.17 4.74

1 3∆ (3A1,3A2) 5.43 4.53 4.58 5.31

1 3Σ− (3A2) 5.61 4.76 4.70 5.76

1 1Σ− (1A2) 5.81 4.80 4.71 5.98

1 1∆ (1A1,1A2) 4.82 4.84 5.98

2 1Σ+ (1A1) 6.13 6.57 6.58 8.02

1 1Π (1B1,1B2) 6.15 5.32 5.45 5.98

2 1Σ− (1A2) 7.30

2 3Π (3B1, 3B2) 8.03 7.11 7.62

3 1Σ+ (1A1) 8.48

2 3Σ+ (3A1) 8.54 7.15 7.02 7.17

3 3Π (3B1,3B2) 8.93

2 1Π (1B1,1B2) 9.06 7.91 9.15

3 1Π (1B1,1B2) 10.0

2 3Σ− (3A2) 10.1

4 3Π (3B1,3B2) 10.3

4 1Σ+ (1A1) 10.9

5 3Π (3B1,3B2) 11.5

3 3Σ+ (3A1) 11.7 8.45 8.33

4 1Π (1B1,1B2) 11.8

µ/D 2.97 3.1a 3.03

Table 7.2: SiO vertical excitation energies in eV for all states below the ionisation threshold.

The target states are designated in C∞v (C2v) symmetry The electronic states 4 3Π onwards do

not appear in the m = 3 target model. Also shown are the target absolute ground state energy

of the present study in Eh and the dipole moment (1 D : 0.3937 a0).
a NIST (2008),
b Herzberg and Huber (1979),
c Chattopadhyaya et al. (2003),
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1∆ but for the absence of the required degenerate 1A1 electronic state. Chattopadhyaya

et al. (2003) and Herzberg and Huber (1979) only considered states below 9.15 eV, so it

is not possible to confirm the accuracy of those target states computed by the present

study that are above this ceiling, although the general trend observed for states below

9.15 eV suggests that the excitation energies of the present study above this will be

upper bounds on the true values.

The present study has also calculated states at and above the ionisation threshold

(not shown in table 7.2). Such states are useful for representing polarisation effects; they

are better represented using pseudo continuum orbitals (Gorfinkiel and Tennyson, 2004;

Tarana and Tennyson, 2008), which was not attempted here. These high-lying states do

not have any physical significance but were nevertheless included in the present scattering

model as discussed below.

The ground state dipole moment of the present work is in very good agreement with

the experimental value (NIST, 2008) and the theoretical values of Chattopadhyaya et al.

(2003) (3.03 D) and Maroulis et al. (2000) (3.01 D). A Hartree-Fock SiO wavefunction

was also computed, resulting in a much larger dipole moment of 3.7 D.

The polarisability tensor gives a good indication of how well the polarisation interac-

tion will be modelled in the outer region. In the present work, the diagonal components

αxx, αyy and αzz were computed using second-order perturbation theory. From this the

mean spherical polarisability, α0, was found to be 18.5 a3
0 for the m = 6 target model.

The highest value of the polarisability calculated by Maroulis et al. (2000) was 29.67 a3
0,

using the highly accurate coupled cluster CCSD(T) method. There does not appear

to be any experimental value of the mean polarisability to which one might be able to

compare.

7.3 Scattering Model

All scattering models employed the GTO continuum basis set of Faure et al. (2002) to

model the scattering electron and a partial wave expansion up to and including g-partial

wave (l ≤ 4). These continuum orbitals were orthogonalised to the target molecular

orbitals using a mixture of Schmidt and Löwdin symmetric orthogonalisation methods,

and those continuum orbitals with an overlap matrix eigenvalue of less than 2×10−7

were removed. Since SiO is a very polar diatomic, the convergence of the continuum

orbital partial wave expansion is very slow so in the present study the higher partial
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waves that are excluded from the continuum orbitals were accounted for using the Born

correction (Kaur et al., 2008).

By virtue of the two target models investigated, two scattering models were also

studied which varied the number of target states included in the close-coupling expansion

and retained for the construction of the R-matrix at the surface of the sphere. A static-

exchange (SE) calculation was also carried out to determine the nature of any resonances,

whether they were shape resonances or Feshbach ones. For all the studies carried out,

some of the low-lying virtual molecular orbitals calculated from the SCF calculation were

used to augment the continuum basis set. These orbitals allow for high partial waves in

the region of the nuclear singularity; however as they do not extend in the outer region

they do not assist with the slow convergence of the partial wave expansion due to the

effects of the long-range dipole potential.

Initial calculations used a sphere radius of 10 a0. However, it was found that there

was significant amplitude on the spherical boundary (arising from the occupied molecular

orbitals) so this radius was increased to 12 a0 , which reduced the most significant orbital

amplitude from order 10−4 to 10−6.

In order to preserve the balance between the amount of correlation incorporated

in the target wavefunction and in the scattering calculation, 11 electrons (10 target

electrons and 1 scattering electron) were allowed to move freely amongst the 5a1, 6a1,

2b1, 2b2, 7a1, 3b1, 3b2, 8a1 and 9a1 target occupied and virtual orbitals.

Test calculations were carried out which included 24 states (150 channels) in the

close-coupling expansion and retention of the same in the outer region for construction

of the R-matrix on the sphere boundary. In addition calculations were carried out using

48 target states (300 channels). The reason for including so many states was so as

to improve the modelling of the polarisation interaction, which, ab initio , is modelled

by the retention of a large number of closed electronic excitation channels. So far as

computational efficiency is concerned, the computation time for the outer region becomes

longer due to the increased size of the large open-closed portion of the R-matrix. The

computer time for the calculation of the N + 1-trial scattering wavefunction however,

remains unaffected by the inclusion of more target states (Tennyson, 1996b).

Finally all calculations were carried out on the 2A1, 2A2, 2B1 and 2B2 scattering

symmetries and for the incident electron energy range 0.02 eV to 10.0 eV. For matching

to the asymptotic form of the reduced radial wavefunction of the scattered electron,
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and hence the computation of the K-matrix, the R-matrix was propagated to a radial

distance of 100.1 a0.

7.4 Results

The present study computed the multichannel eigenphase sum, the inelastic cross section,

total cross section, rotationally resolved differential cross sections (DCSs) for incident

energies 1 eV, 2 eV, 3 eV and 4 eV, rotationally inelastic integral cross sections and

rotational rate coefficients for all transitions up to J = 40. Here the best model was taken

to be the 48-state CC model, and the results for these are discussed below. Quantemol-

N also computed the Binary-Encounter-Bethe (BEB) ionisation cross section using the

molecular orbitals listed in table 7.1 and a dipole constant, Q, set to unity for each

orbital. A number of interesting phenomena were observed in the low-energy scattering

data which are discussed below. The scattering model employed in the present study has

no influence upon the BEB ionisation cross section calculated by Quantemol-N except

the GTO basis set employed to construct the occupied and virtual molecular orbitals.

7.4.1 Eigenphase Sums, Resonances and Bound States

For both the static exchange calculation and the N-state close-coupling (CC) calcula-

tions, the 2A1 eigenphase sums of the present study in figure 7.1 show a very sharp

upturn as the electron energy tends to zero. This is a characteristic typical of dipole

bound states and is predicted by Levison’s theorem. Some of the structures shown in

the close coupling eigenphase sum curves are absent from the static exchange and this is

because these features represent the opening up of new excitation channels (table 7.2).

Resonances manifest themselves in plots of eigenphase sums as a rapid increase of π in

the eigenphase; given that the eigenphase is arbitrary modulo π, resonances, particularly

when narrow, often actually appear as seeming discontinuities in these plots. Figure 7.1

also appears to show a narrow resonance feature at approximately 4.5–4.7 eV which is

also absent from the static exchange eigenphase, indicating that this may be a Feshbach.

The 2A2 eigenphase sum curve (not shown) also shows a similar resonance feature at

the same position, meaning that this Feshbach resonance has 2∆ symmetry. It is also

to be noted that as more states are included in the CC expansion and retained in the

outer region calculation, the eigenphase sum increases — this is a clear indication of the

improved modelling of the polarisation interaction.
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Symmetry N=48 N=24

Er Γr Er Γr

2Π 5.09 0.0029
2Π 5.53 0.0586
2Π 5.96 0.343 5.72 0.357
2∆ 4.69 0.250 4.82 0.593

2Σ− 8.16 0.411

Table 7.3: Resonances for the 48-state and 24-state SiO close-coupling model. The parameters

are given in eV

The 2B1 eigenphase sums presented in figure 7.2 are also notable in terms of struc-

ture: the SE calculation shows a resonance feature below 1 eV which disappears when

one employs the CC expansion. This behaviour is typical of a weakly bound state. In

addition the R-matrix poles EN+1 were calculated for each scattering symmetry and the
2Π R-matrix pole was found to be −363.8601 Eh, slightly lower than the target ground

state (−363.8534 Eh) and so also corresponds to a bound state of 2Π symmetry. This

and the disappearance of the 2Π SE shape resonance very neatly confirms the density

functional study of Alikhani et al. (1997). The 48-state CC model predicts that this

bound state lies at position −0.12 eV compared to −0.16 eV by Alikhani et al. (1997).

The present study also predicts the existence of very narrow 2Π Feshbach resonances be-

tween 5 and 6 eV. The position Er and width Γr parameters of the Feshbach resonances

yielded by the close-coupled calculations are given in table 7.3. These parameters were

obtained by fitting to the Breit-Wigner profile (Tennyson and Noble, 1984). The pa-

rameters of a Feshbach resonance are very sensitive to the treatment of the polarisation

interaction. Table 7.3 confirms the effect of the improved modelling of the polarisation

interaction, namely the lowering of the position and the narrowing of the width: in the

case of the 2∆ Feshbach resonance, the width is more than halved by the retention of

24 additional states and the position is lowered by about 3 %. It is interesting to note

that the 48-state CC model predicts the existence of three 2Π and one 2Σ− Feshbach

resonances (the latter arising from the 2A2 eigenphase curve) whereas the 24-state model

predicts only one 2Π and does not predict a 2Σ− resonance at all. This may be another

effect of improved modelling, but since no further studies retaining more than 48 states

have been conducted this is difficult to confirm.
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Figure 7.1: Comparison of the SiO 2A1 (predominantly 2Σ+) eigenphase sums
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Figure 7.2: Comparison of the SiO 2B1 (predominantly 2Π) eigenphase sums
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7.4.2 Inelastic and Ionisation Cross Sections

The electronic excitation cross sections show some interesting peak structure. Figure 7.3

shows the inelastic cross sections for electronic excitation to the first four low-lying states
3Π, 3Σ+, 3∆ and 3Σ− (table 7.2) for the 48-state CC calculation. The X 1Σ+ → 3Π

excitation cross section shows a pronounced double peak structure below 5 eV. Analysis

of the partial cross sections suggests that lower peak is caused by the 2∆ Feshbach

resonance shown in table 7.3 whereas the second peak is simply caused by the rapid

rise in the 2Σ+ cross section often found near threshold for spin changing excitations.

There is also a sharp narrow peak at around 5.5 eV in the X 1Σ+ → 3∆ excitation cross

section which might correspond to the second of the three 2Π Feshbach resonances in

table 7.3. A smaller and wider peak appears at about 6 eV in the X 1Σ+ →3 Σ− cross

section which could well correspond to the third of the three 2Π resonances. Finally it

is interesting to note the presence of a broad peak in the X 1Σ+ → 3∆ cross section at

about 8.2 eV which coincides with the position of the 2Σ− resonance.

Figure 7.4 shows the electron impact ionisation cross section of SiO computed by

the present study alongside the complex potential formalism calculations of Joshipura,

Vaishnav and Gangopadhyay (2007). Quantemol-N computed the ionisation cross sec-

tion for the ith C2v molecular orbital (table 7.1) using the standard formula (Kim and

Rudd, 1994) and then by summing over these occupied orbitals. It can be seen from fig-

ure 7.4 that the data of Joshipura, Vaishnav and Gangopadhyay (2007) is systematically

higher than the BEB data computed by the present study over the entire energy range

considered. Given the absence of other high-energy electron collision theoretical or exper-

imental data, it is difficult to draw any sort of conclusion. It is true to say that the BEB

formalism has consistently yielded cross sections that are in very good agreement with

experiment (see http://physics.nist.gov/PhysRefData/Ionization/molTable.html for ex-

ample). The BEB cross section is sensitive to the precise value of the ionisation energy

employed and in nearly all calculations the experimental value has been adopted so as

to attain agreement with experiment. This strategy was tested in the present study and

since the ionisation energy of the present study (11.85 eV) is in good agreement with

experiment (11.49 eV NIST (2008)), little difference in the ionisation cross section was

found.
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Figure 7.3: SiO electronic excitation cross sections to the first four lowest lying electronic exci-

tation channels for the 48-state close coupling model
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Figure 7.4: Comparison of the Quantemol-N SiO BEB ionisation cross section to the calculation

of Joshipura, Vaishnav and Gangopadhyay (2007)
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Figure 7.5: SiO rotationally inelastic cross sections for incident electron energies below 4.6 eV

7.4.3 Rotational Differential Cross Section and Integral Cross Sections

For all the figures shown in this section the 48-state CC T-matrices were employed in

their calculation.

Initially the T-matrices were transformed from their C2v representation to that of

the natural point group C∞v to yield a new set of linear T-matrices for the 2Σ+, 2Π,
2∆, 2Φ and 2Γ scattering symmetries, using the mappings mli = 0 → Σ+, mli = 1 → Π,

mli = 2 → ∆, mli = 3 → Φ and mli = 4 → Γ for a 1Σ+ ground state molecule. Here

mli is the z-projection of the scattering electron partial wave li for the ith channel. This

new set was then employed in the calculation discussed below.

In this approach the cross section is written as a sum over partial waves within

the ANR (adiabatic nuclei rotation) approximation, which assumes that the rotational

excitation channels are degenerate. For low partial waves (here defined as l ≤ 4) T-

matrices computed from the R-matrix calculations are employed to compute the cross

section. In the case of dipole-forbidden excitations (∆J 6= 1) the convergence of the

cross section partial wave expansion is expected to be rapid hence it may be evaluated

using the FN T-matrices alone; in the case of the dipole-allowed excitations (∆J = 1)

the partial wave expansion converges slowly owing to the long-range nature of the dipole

interaction. In order to account for the higher partial waves not included in the FN
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Figure 7.6: SiO rotationally summed differential cross sections for incident energies 1 eV, 2 eV,

3 eV and 4 eV
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Figure 7.7: SiO rotationally resolved and summed differential cross sections for incident energy

1 eV
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T-matrices, the Born correction was applied. Hence the low partial wave contribution

is included via the R-matrix calculation and the Born correction. The low partial waves

contribution arising from the Born contribution is therefore subtracted in order that

the final rotational cross section set only contains those low partial waves due to the

R-matrix calculation. It was found in chapter 10 that quadrupole and induced dipole

Born completion was negligible so it was not included in the present study either. The

restriction of the ANR approximation is that it is only reliable at collision energies where

the collision time becomes appreciable compared to the time period of nuclear rotational

motion (Feldt and Morrison, 1982). SiO has its first inelastic threshold at 4.63 eV so the

computation of the inelastic rotational cross section was restricted to the range 0.02–

4.6 eV. Excitation cross sections were extrapolated at very low energy, down to threshold

as in chapter 10.

For strongly dipolar systems, the differential cross sections (DCSs) are more accu-

rately measured than integral cross sections (Faure et al., 2004b). As a test of the

accuracy of a theoretical model one would usually compare calculated differential cross

sections to those of experiment. The present study cannot carry out this benchmark test

as no such experimental data exist. To confirm the validity of the present treatment, the

ANR integral rotational cross sections obtained using the FN T-matrices were compared

to the cross sections obtained by the angular integration of the DCSs obtained using the

Born closure approach (Itikawa, 2000) and both coincided to within 1 %.

Figure 7.5 shows the rotational integral cross sections as a function of energy and

it may be noticed that the dipole allowed cross sections 0–1 and 1–2 dominate over the

dipole forbidden 0–2 by almost two orders of magnitude, a reflection of the large dipole

moment of SiO. Similar results were observed for HCN (chapter 10). As shown in fig. 7.5,

these ∆J = 1 cross sections are close to but slightly overestimated by the pure dipole

Born calculations.

Figure 7.6 shows the rotationally summed DCSs for incident energies 1 eV, 2 eV,

3 eV and 4 eV. It is interesting to observe the appearance of two shoulder features at

about 60o and 120o which would seem to indicate that for these energies scattering is

chiefly s-, p- and d-wave in nature. The 1 eV DCS in particular is studied in more detail

in figure 7.7 which shows the summed and the J-resolved differential cross sections for

this energy, and a general trend can be inferred. The divergence at the forward angle is

confirmed as being due to the dipole-allowed transition 0–1 dominating the scattering.
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Figure 7.8: SiO rotational rate coefficients obtained for the 48-state calculation

This begins to decline in importance beyond about 50o. The slight shoulder feature at

around 60o appears to be due to the temporarily dominant 0–0 elastic DCS and the

maximum in the 0–2 DCSs between 60o and 70o dominating over the 0–1 DCS. The

shoulder feature at 120o seems to arise due to the slight upturn in the 0–2 differential

cross section and the increased contribution of the 0–3 transition. At the backward

angles the dipole forbidden 0–2 and 0–3 transitions are now dominant, especially 0–

2. The elastic 0–0 differential cross section also exhibits a pronounced dip at around

130o. Such dips were also observed by Allan and Dickinson (1981) for the polar diatomic

CsCl, where a semiclassical approach was employed. They attributed their minima to

an interference effect between two equally weighted classical paths. We seem to observe

the same phenomenon here.

7.5 Rotational Rate Coefficients

Rotational rate coefficients were obtained for the temperature range 5–5000 K for all

rotational transitions up to and including J = 40 using a Maxwellian velocity distribution

for the electron. For use in astrophysical modelling, the temperature dependence of the

downward transition rate coefficients k(T ) (units cm3s−1) was fitted to the analytic form:
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transition Eup(K) a0 a1 a2 a3 a4

(1− 0) 2.1 −7.731 11.928 −22.532 18.395 −5.200
(2− 0) 6.3 −10.395 14.975 −23.728 16.558 −3.819
(2− 1) 6.3 −7.656 11.869 −23.242 20.127 −6.326
(3− 0) 12.5 −11.600 11.999 −6.300 −14.916 14.215
(3− 1) 12.5 −10.178 14.027 −20.606 11.987 −1.533
(3− 2) 12.5 −7.603 11.605 −22.991 20.254 −6.547
(4− 0) 20.8 −0.013 −91.311 293.200 −391.836 187.661
(4− 1) 20.8 −11.386 11.195 −3.625 −18.944 16.301
(4− 2) 20.8 −10.127 13.935 −20.098 10.828 −0.807
(4− 3) 20.8 −7.596 11.643 −23.568 21.388 −7.218
(5− 0) 31.3 0.278 −101.271 306.022 −391.605 181.361
(5− 1) 31.3 0.227 −92.165 295.804 −395.563 189.546
(5− 2) 31.3 −11.255 10.466 −1.111 −22.809 18.348
(5− 3) 31.3 −10.067 13.584 −18.811 8.690 0.371
(5− 4) 31.3 −7.581 11.584 −23.815 22.083 −7.682
(6− 0) 43.8 −1.067 −101.243 292.697 −362.114 163.215
(6− 1) 43.8 0.412 −101.110 305.389 −391.001 181.190
(6− 2) 43.8 0.421 −93.236 298.996 −399.926 191.696
(6− 3) 43.8 −11.182 10.104 0.015 −24.476 19.196
(6− 4) 43.8 −10.036 13.439 −18.270 7.709 0.932
(6− 5) 43.8 −7.583 11.646 −24.360 23.082 −8.256
(7− 0) 58.3 11.481 −239.733 742.962 −980.050 467.243
(7− 1) 58.3 −0.977 −100.479 289.822 −358.180 161.327
(7− 2) 58.3 0.444 −100.663 303.710 −388.754 180.127
(7− 3) 58.3 0.555 −93.980 301.082 −402.672 193.010
(7− 4) 58.3 −11.069 9.271 2.732 −28.409 21.210
(7− 5) 58.3 −10.010 13.327 −17.931 7.135 1.242
(7− 6) 58.3 −7.561 11.498 −24.229 23.190 −8.410
(8− 0) 75.0 −11.286 −8.395 −54.348 142.094 −90.529
(8− 1) 75.0 11.916 −242.005 749.537 −988.557 471.274
(8− 2) 75.0 −1.069 −98.999 285.134 −352.177 158.564
(8− 3) 75.0 0.464 −100.350 302.442 −387.001 179.279
(8− 4) 75.0 0.665 −94.637 302.945 −405.165 194.232
(8− 5) 75.0 −10.985 8.646 4.744 −31.332 22.724
(8− 6) 75.0 −10.000 13.293 −17.720 6.551 1.661
(8− 7) 75.0 −7.579 11.687 −25.112 24.596 −9.162

Table 7.4: SiO rotational rate fitting coefficients obtained for the 48-coupled states calculation.

Coefficients for J > 8 can be obtained upon request from the authors. The energies Eup are from

the CDMS catalogue as given in http://www.strw.leidenuniv.nl/∼moldata/datafiles/sio.dat
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Figure 7.9: Comparison of rate coefficients obtained by the best R-matrix model to the analytical

formula of Dickinson et al. (1977) and the rate coefficients using the Born approximation cross

sections

log10 k(T ) =
N∑

r=0

arx
r (7.1)

where x = (T/K)−1/6 and N = 4. These de-excitation rotational rate coefficients were

obtained using the principle of detailed balance:

kjf→ji(T ) =
2ji + 1
2jf + 1

kji→jf
(T ) exp

(
∆Ejf←ji

kBT

)
(7.2)

where ji and jf are the initial and final rotational quantum numbers and the rotational

energy level spacing is

∆Ejf←ji = B[jf (jf + 1)− ji(ji + 1)] (7.3)

The fitting coefficients are listed in table 7.4 and the graph of the excitation rate

coefficients for the dipole-allowed transitions J = 0 − 1 and J = 1 − 2 and the dipole

forbidden J = 0 − 2 is given in figure 7.8. The global fitting error for the fitting

coefficients in table 7.4 was found to be about 50 %. Following from our experience with

CS (appendix C), we considered a new temperature range 5–3000 K which was split into
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two sub-ranges 5–490 K and 490–3000 K, thus yielding two sets of fitting coefficients

and new lower global fitting errors of 18 % and 2 % respectively. The new sets are given

in tables 7.5 and 7.6.

Although there has been no other study carried out on electron impact rotational

excitation of SiO, the excitation rate coefficients of the present study are compared

to those obtained using the analytic formula of Dickinson et al. (1977) (equation (1)

of that paper), the rate coefficients obtained using only the Born cross sections and

the atom-SiO data of Dayou and Balanca (2006) and Palov et al. (2006). The rate

coefficients obtained for collisions with electrons are typically six orders of magnitude

higher than the He-SiO rate coefficients of Dayou and Balanca (2006), and four to six

orders of magnitude higher than the H-SiO rate coefficients of Palov et al. (2006). One

can conclude from this observation that electron collisions can compete with, if not

dominate over, atom collisions as the chief rotational excitation mechanism of SiO in

astrophysical regions where the ionization degree exceeds ∼10−5 (e.g. diffuse interstellar

clouds, C-type shocks, etc.). Similar conclusions were reached in chapter 10 for HCN. We

note that our rate coefficients compare favourably with both the Dickinson coefficients

at the higher temperatures, but are smaller at the low temperatures. But it is worth

noting though that Dickinson et al. (1977) checked their analytical formula against the

CN close-coupling calculations of Allison and Dalgarno (1971). They suggested, from

this and other checks, that the error was no more than 20% at 100K.

7.6 Conclusion

The present study has applied the ab initio R-matrix method to low-energy electron

impact excitation of SiO, with the aim of calculating quantities of astrophysical interest.

This is the first low-energy electron impact study to have been carried out on SiO. This

study employed the configuration interaction and Hartree-Fock methods to represent the

target for use in close-coupling and static exchange scattering calculations respectively.

Two N-state close coupling calculations were carried out. The first one retained 24

target states (150 channels) and the second retained 48 target states, or 300 channels in

the said expansion and for the construction of the R-matrix evaluated at the surface of

the sphere, the radius of which was taken to be 12 a0 so as to fully contain the target

molecular electron charge cloud.

The scattering quantities computed were the eigenphase sum, the electronic exci-
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Transition E(K) a0 a1 a2 a3 a4

(1− 0) 2.1 −8.130 15.049 −31.456 29.466 −10.228
(2− 0) 6.3 −10.911 19.507 −38.042 35.874 −13.233
(2− 1) 6.3 −7.824 13.131 −26.734 24.329 −8.182
(3− 0) 12.5 −14.058 33.041 −71.496 71.731 −27.501
(3− 1) 12.5 −10.711 18.718 −35.467 32.087 −11.344
(3− 2) 12.5 −7.577 11.333 −22.033 18.864 −5.834
(4− 0) 20.8 −12.986 14.732 −22.763 14.568 −2.782
(4− 1) 20.8 −14.001 33.487 −72.478 72.332 −27.555
(4− 2) 20.8 −10.713 19.033 −36.120 32.364 −11.269
(4− 3) 20.8 −7.479 10.622 −20.378 17.127 −5.160
(5− 0) 31.3 −9.753 −20.607 69.148 −90.760 41.901
(5− 1) 31.3 −12.664 13.204 −18.144 8.238 0.329
(5− 2) 31.3 −13.845 32.572 −69.452 67.853 −25.237
(5− 3) 31.3 −10.598 18.248 −33.559 28.610 −9.344
(5− 4) 31.3 −7.353 9.682 −18.057 14.584 −4.134
(6− 0) 43.8 −7.649 −48.759 139.737 −169.138 74.274
(6− 1) 43.8 −9.396 −22.290 74.073 −97.376 45.141
(6− 2) 43.8 −12.421 11.759 −13.893 2.571 3.067
(6− 3) 43.8 −13.853 32.866 −70.253 68.634 −25.524
(6− 4) 43.8 −10.589 18.263 −33.448 28.129 −8.996
(6− 5) 43.8 −7.138 8.026 −13.622 9.329 −1.835
(7− 0) 58.3 −19.005 12.624 −17.153 6.645 1.324
(7− 1) 58.3 −7.130 −51.411 146.798 −177.717 78.144
(7− 2) 58.3 −9.033 −24.496 80.142 −104.921 48.598
(7− 3) 58.3 −12.197 10.257 −9.498 −3.192 5.812
(7− 4) 58.3 −13.616 31.063 −64.763 61.267 −21.954
(7− 5) 58.3 −10.601 18.460 −34.025 28.732 −9.236
(7− 6) 58.3 −7.111 7.832 −13.353 9.259 −1.906
(8− 0) 75.0 1.186 −106.413 227.555 −209.377 69.795
(8− 1) 75.0 −18.464 9.478 −7.941 −5.294 6.981
(8− 2) 75.0 −6.795 −53.318 151.949 −184.089 81.069
(8− 3) 75.0 −8.657 −27.061 87.372 −114.011 52.795
(8− 4) 75.0 −11.845 7.657 −1.947 −12.894 10.370
(8− 5) 75.0 −13.484 30.071 −61.717 57.080 −19.873
(8− 6) 75.0 −10.598 18.472 −33.932 28.276 −8.868
(8− 7) 75.0 −6.904 6.275 −9.282 4.558 0.100

Table 7.5: SiO rotational rate fitting coefficients obtained for the 48-coupled states calcu-

lation and the temperature range 5–490 K. Coefficients for J > 8 can be obtained upon

request from the authors. The energies Eup are from the CDMS catalogue as given in

http://www.strw.leidenuniv.nl/∼moldata/datafiles/sio.dat
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Transition E(K) a0 a1 a2 a3 a4

(1− 0) 2.1 −8.660 23.827 −79.521 139.417 −101.369
(2− 0) 6.3 29.659 −471.752 2190.351 −4453.020 3375.533
(2− 1) 6.3 −6.798 0.061 37.017 −115.277 106.815
(3− 0) 12.5 97.811 −1302.189 5900.014 −11789.932 8803.382
(3− 1) 12.5 30.089 −474.648 2199.400 −4463.571 3377.818
(3− 2) 12.5 −7.898 14.595 −33.938 37.083 −15.378
(4− 0) 20.8 −23.057 278.654 −1796.677 4635.959 −4209.866
(4− 1) 20.8 98.939 −1314.124 5953.516 −11897.176 8884.145
(4− 2) 20.8 29.911 −472.217 2189.749 −4447.316 3368.057
(4− 3) 20.8 −9.406 34.575 −132.667 252.318 −190.650
(5− 0) 31.3 −11.268 57.985 −496.898 1369.237 −1240.138
(5− 1) 31.3 −20.395 245.377 −1632.659 4277.922 −3918.518
(5− 2) 31.3 99.968 −1326.187 6009.634 −12013.665 8974.893
(5− 3) 31.3 31.354 −490.609 2278.959 −4639.070 3521.941
(5− 4) 31.3 −8.582 23.157 −73.756 117.418 −75.558
(6− 0) 43.8 −8.244 −9.198 −143.373 542.975 −531.643
(6− 1) 43.8 −9.020 30.168 −359.758 1070.600 −998.306
(6− 2) 43.8 −22.526 272.599 −1758.055 4532.138 −4110.454
(6− 3) 43.8 101.081 −1339.692 6073.058 −12146.421 9079.051
(6− 4) 43.8 30.350 −477.051 2211.740 −4491.732 3401.238
(6− 5) 43.8 −6.076 −9.506 85.206 −225.782 201.342
(7− 0) 58.3 −349.365 4561.218 −23000.356 50783.394 −41531.563
(7− 1) 58.3 −6.786 −26.289 −59.298 359.585 −382.814
(7− 2) 58.3 −7.285 7.765 −247.468 822.161 −794.049
(7− 3) 58.3 −23.589 286.203 −1820.237 4656.906 −4203.645
(7− 4) 58.3 99.217 −1314.320 5946.150 −11866.794 8849.594
(7− 5) 58.3 30.587 −480.190 2228.043 −4529.249 3433.252
(7− 6) 58.3 −8.571 23.374 −76.942 128.019 −87.305
(8− 0) 75.0 9.308 −257.364 1067.575 −2091.695 1568.068
(8− 1) 75.0 −348.735 4551.321 −22933.765 50599.832 −41352.479
(8− 2) 75.0 −7.467 −16.467 −107.969 467.883 −474.106
(8− 3) 75.0 −7.890 16.122 −288.080 910.410 −866.833
(8− 4) 75.0 −24.986 304.574 −1908.683 4845.266 −4353.940
(8− 5) 75.0 97.014 −1284.746 5799.357 −11545.433 8587.349
(8− 6) 75.0 30.011 −472.087 2186.350 −4434.775 3353.455
(8− 7) 75.0 −7.728 12.147 −21.256 5.255 13.816

Table 7.6: SiO rotational rate fitting coefficients obtained for the 48-coupled states calcula-

tion and the temperature range 490–3000 K. Coefficients for J > 8 can be obtained upon

request from the authors. The energies Eup are from the CDMS catalogue as given in

http://www.strw.leidenuniv.nl/∼moldata/datafiles/sio.dat
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tation cross section and the Binary-Encounter-Bethe ionisation cross section using the

HF-SCF occupied molecular orbitals. The T-matrices obtained from the R-matrix cal-

culation were initially transformed to the natural symmetry C∞v to yield a new set of

T-matrices for the scattering symmetries 2Σ+, 2Π, 2∆, 2Φ and 2Γ. These were then

employed in the computation of the inelastic rotational cross sections, the rotationally

resolved differential cross sections and rate coefficients and their fitting coefficients for

all transitions up to J = 40, some or all of which may be useful in later astrophysical

modelling.

The present study was able to detect some interesting features of the scattering calcu-

lation, particularly the independent confirmation of a 2Π SiO− bound state at −0.12 eV

which was predicted by the density functional work of Alikhani et al. (1997). The present

work also predicts the existence of low-lying narrow 2Π and 2∆ Feshbach resonances at

5–6 eV and a 2Σ− Feshbach resonance at 8.16 eV. Due to the lack of other low-energy

e-SiO scattering studies this work cannot be benchmarked at present. However, it may

aid in the detailed investigation of electron density enhancements expected during the

first stages of a C-type shock evolution (Jimenez-Serra et al., 2006), or indeed other

astrophysical environments.
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Chapter 8
Electron Scattering by the Carbon

Monosulphide (CS) Molecule

8.1 Introduction

CS, an unstable radical, has been the subject of great study in astrophysics and in plasma

physics: Moltzen et al. (1988) presented a comprehensive review of the molecule’s role

in interstellar chemistry and the importance of its etching properties in plasma physics.

CS has been identified in the interstellar medium (ISM): in carbon rich circumstellar

envelopes (Woods et al., 2003), it has been used to measure isotopic sulphur ratios
32S/34S in the NGC 253 galaxy (Martin et al., 2005) and has been detected in comets

such as C/1995 O1 (Hale-Bopp) by Biver et al. (1997) and Snyder et al. (2001). Addi-

tional detection studies have been carried out by Scappini et al. (2007), Penzias et al.

(1971), Linke and Goldsmith (1980) and Zuckerman et al. (1972).

Atom-CS collisions are very important in astrophysical modelling, particularly those

with H2 and He. Aimed at the modelling observed spectra, following high spatial and

spectral resolution studies at infrared and submillimeter wavelengths by the Alma and

Herschel missions, Lique et al. (2006) calculated rotational excitation rate coefficients

for He-CS collisions for up to J = 31 for kinetic temperatures 10 K–300 K. They used a

new 2D ab initio potential energy surface for the He-CS compound system (here the CS

interatomic bond length was fixed to its equilibrium value), calculated using a super-

molecular approach based on the single and double excitation coupled cluster method

(CCSD) (Hampel et al., 1992) and perturbative contributions from connected triple ex-

citations computed as defined by Watts et al. (1993). The atoms were represented by
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GTO basis sets of quadruple zeta quality (cc-pVQZ), augmented with the diffuse func-

tions of s, p, d, f and g symmetries by Kendell et al. (1992) (aug-cc-pVQZ). This basis set

was further augmented by the optimized functions of Cybulski and Toczylowski (1999).

The scattering calculation of Lique et al. (2006) was carried out using the close-coupling

(CC) approach, and then the thermally averaged rate coefficients were calculated for

kinetic temperatures 10 K to 300 K. The later study of Lique and Spielfiedel (2007)

also considered ro-vibrational excitation of CS by the He atom where they employed

a 3D potential energy surface which was calculated by Lique et al. (2006) but which

took dependence on the CS interatomic distance explicitly into account. The dynamic

calculations were carried out using the vibrational close coupling-infinite order sudden

(VCC-IOS) method (Goldflam, Green and Kouri, 1977; Goldflam, Kouri and Green,

1977). Cross sections among the 38 first rotational levels of ν = 0, ν = 1 and ν = 2

for energies up to 10,000 cm−1 (1.24 eV) were calculated, which after thermal averaging

yielded rate coefficients for temperatures up to 1500 K. Other He-CS calculations were

discussed by Lique et al. (2007).

Green and Chapman (1978) considered H2-CS collisional excitation rate coefficients

in their study. They employed an interaction potential for the H2-CS system adopted

from the electron gas model for He-CS adopted by Gordon and Kim (1972). The final

cross section set was obtained from two types of calculation- a close-coupled and coupled

states calculation. Finally, integration over a Boltzmann distribution of collision energies

yielded rate coefficients for 10–100 K.

Electron-molecule interactions are also important in interstellar physics, as shown,

for example, by the work of Jimenez-Serra et al. (2006) and Jimenez-Serra et al. (2005)

who showed the importance of such collisions in C-type shocks. In diffuse interstel-

lar clouds Drdla et al. (1989) concluded that the large dipole moment of CS aids the

detection of the molecule in diffuse clouds since the dominant excitation mechanism

is collisions with electrons: they obtained rate coefficients for J + 1 → J of 3×10−6

cm3s−1 at 10 K, five orders of magnitude higher compared to typical rate coefficients

of (2–3)×10−11 cm3s−1 for H2-CS. Such collisions favour the dipole-allowed ∆J = 1

transitions so observations of the lowest transitions may be the most useful.

There have been only a few electron collision studies carried out: the two most recent

studies were a low-energy calculation (up to 10 eV) carried out by Carelli et al. (2008)

and the work of Sobrinho and Lee (2005) which considered a wider incident energy
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spectrum, from 1–500 eV. Both are discussed in detail below. In experiment a detailed

study of dissociative electron attachment to CS was carried out recently by Graupner

et al. (2006), a detailed discussion of which is also given below.

This chapter presents electron-impact excitation of CS as a function of bond stretch

and contraction using the ab initio R-matrix method for a grid of 17 bond lengths: 1.1,

1.2, 1.3, 1.4, 1.45, 1.5, 1.52, 1.5349 (equilibrium NIST (2008)), 1.55, 1.6, 1.7, 1.8, 1.9, 2.0,

2.15, 2.3, 2.5 and 2.7 Å. For each geometry the fixed-nuclei (FN) approximation was em-

ployed. All calculations were carried out using the application Quantemol-N (Tennyson

et al., 2007). The purpose of the work was to study the dissociative electron attachment

(DEA) to CS in greater theoretical detail. Results obtained for the equilibrium geometry

of the 1Σ+ target ground state are also presented. To date no other electron scattering

calculation at the close-coupling approximation has been carried out.

8.2 Previous Quantum Chemistry and Electron Scattering

Studies

To date quantum chemistry studies have focused on the (large) dipole moment of CS. The

first experimental determination of the dipole moment was carried out by Winnewisser

and Cook (1968) using a parallel plate Stark modulated spectrometer, and obtained a

value of +0.77 a.u.. It is also interesting to observe that the electronegativity difference

has a different sign depending on the scheme. For example the Pauling difference is

+0.03, the Allen electronegativity difference is +0.045 and the Mulliken difference is

−0.02 (see Pauling (1932), Allen (1989) and Mulliken (1934)).

In addition to CO and SiO, Harrison (2006) analysed the dipole moment of CS

at the CASSCF and MRCI levels of theory, obtaining +0.814 a.u. and +0.796 a.u.

respectively, in good agreement with the experimental value of +0.77 a.u.. Harrison

(2006) commented that CS stood out because it has such a large dipole moment for a

diatomic whose constituent atoms had essentially the same electronegativities. In that

study the dipole moment was written as a sum of a charge and induced atom dipole

contribution and the distance dependence interpreted in terms of these components:

µ = q(S)R+ µ(C) + µ(S) (8.1)

where q(S) is the charge on the S atom (0.119 e for MRCI), R is the position of the S

157



8.2 Previous Quantum Chemistry and Electron Scattering Studies

atom (C was fixed at the origin) and µ(C) and µ(S) are the induced atomic dipoles of the

C and S atoms respectively. Harrison (2006) stated that the large dipole moment was

due to the two components of the dipole moments having the same sign at equilibrium

and reinforcing one another (see table 4 of their paper for example). Harrison assigned

a dipole moment positive sign to polarity C−S+. We adopted the same convention. Like

the present study Harrison (2006) also computed the dipole moment function.

The ab initio study of Botschwina and Sebald (1985) used the SCF (self-consistent

field), CISD (configuration interaction including all possible single and double electron

excitation) and CEPA (coupled electron pair approximation-version 1) (Meyer, 1973)

methods. The SCF (expectation) value for the dipole (0.6336 a.u.) was lower than

experiment, the CI-SD expectation value (0.7755 a.u.) was in excellent agreement with

experiment and the CEPA method yielded a much higher value (0.88 a.u.).

No studies, theoretical or experimental, have been done on the excited states of CS.

The electron scattering calculations of Carelli et al. (2008) used a 1-state single centre

expansion, with the specific aim of locating and characterising the evolution of the 2Π

shape resonance with respect to CS bond contraction and bond stretch. Results for

the equilibrium bond length of the 1Σ+ ground state showed the position of this shape

resonance to be between 0.6–0.9 eV. The major finding of their study was that with bond

length contraction the 2Π shape resonance widened and its position Er increased, whereas

with bond stretch the resonance position decreased and its width narrowed until beyond

about 1.63 Å, where the resonance became a anionic species bound state. The earlier

experiment of Burnett et al. (1982) found that a stable beam of CS− anions corresponded

to a stretched bond length of 1.627 Å. Carelli et al. (2008) did not consider the electron-

impact excitation of CS hence were unable to locate any Feshbach resonances.

Sobrinho and Lee (2005) employed a complex optical potential incorporating static,

exchange, correlation-polarisation and absorption contributions to describe the electron-

molecule interaction dynamics. The Schwinger variational iterative approach and the

distortion approximation were applied to calculate the scattering amplitude, differential,

total integral, momentum transfer and absorption cross section. Sobrinho and Lee (2005)

analysed 2 target models– HF and CI with all possible singles and doubles (SDCI).

The latter model yielded a dipole moment of 0.7596 a.u., in good agreement with the

experimental value of 0.779 a.u. (NIST, 2008), and a target energy of −435.72419 Eh.

They predicted the existence of 2Π and 2∆ shape resonances. They too did not report
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on the existence of any Feshbach resonances.

Electron-impact ionisation of CS has also been studied experimentally by Freund

et al. (1990) and theoretically by Kim et al. (1997) using the BEB (Binary-Encounter-

Bethe) method (Hwang et al., 1996; Kim and Rudd, 1994).

Graupner et al. (2006) carried out a detailed experimental study of the dissociative

electron attachment (DEA) to CS:

CS(1Σ+) + e− → (CS−)∗ → S−(2P ) + C(3P ) (5.43 eV ) (8.2)

→ S−(2P ) + C(1D) (6.70 eV ) (8.3)

→ C−(4S) + S(3P ) (6.40 eV ) (8.4)

Which the exception of channel 8.3, the fragments were all observed to be in their

respective ground states. Graupner et al. (2006) observed that the DEA to CS was

remarkably similar to DEA to the valence isoelectronic CO, however, they were unable to

determine the identity of the attachment resonances responsible for dissociative electron

attachment. They commented that computation of the CS potential energy curves and

core excited (Feshbach) resonance curves would be immensely useful in improving the

understanding of the molecular dynamics. It is the purpose of the chapter to address

this issue.

The results obtained by the present study are compared to the previous ones dis-

cussed above.

8.3 Quantum Chemistry Model

The present study was carried out in the C2v symmetry, the highest Abelian sub-

group of the natural symmetry of CS C∞v. The equilibrium geometry was employed

(RCS=1.5349 Å NIST (2008)– initially with the S atom at the origin and C lying on the

positive z-axis), and the Gaussian-Type orbital double zeta-plus-polarisation (DZP) basis

set to carry out a Hartree-Fock self-consistent field (HF-SCF) calculation, which yielded

a ground-state electron configuration of 1a2
1 2a2

1 3a2
1 4a2

1 1b21 1b22 5a2
1 6a2

1 7a2
1 2b21 2b22

(X 1A1), or 1σ2 2σ2 3σ2 4σ2 1π4 5σ2 6σ2 7σ2 2π4 (X 1Σ+) in the natural symmetry.

The orbital energies are listed in table 8.1. By Koopman’s theorem the ionisation energy

of CS is 12.59 eV, much higher than the experimental value of 11.33 eV (NIST, 2008).

The occupied and virtual molecular orbitals obtained by the HF-SCF optimisation

were then employed to set up complete active space configuration interaction (CASCI)
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Orbital |B| (eV) N

1σ (1a1) 2503.58 2

2σ (2a1) 309.03 2

3σ (3a1) 245.20 2

4σ (4a1) 182.06 2

1π (1b1, 1b2) 182.00 4 (2,2)

5σ (5a1) 30.14 2

6σ (6a1) 18.82 2

7σ (7a1) 12.78 2

2π (2b1, 2b2) 12.59 4 (2,2)

Table 8.1: CS SCF occupied molecular orbitals for the DZP basis set and equilibrium geometry.

The C2v orbitals are given in parentheses

target electronic wavefunctions. The complete active space was generated automatically

by Quantemol-N: (1a1, 2a1, 3a1, 4a1, 1b1, 1b2)12 (5a1, 6a1, 7a1, 2b1, 2b2, 3b1, 3b2, 8a1)10,

namely 12 electrons (the 1s, 2s and 2p electrons of the S atom and the 1s electrons of

the C atom) were frozen in all configurations and ten electrons were allowed to move

freely amongst the 5–8a1, 2–3b1 and 2–3b2 occupied and virtual molecular orbitals. The

complete active space employed generated 328 CSFs (configuration state functions) for

the 1A1 ground state. The vertical excitation energies obtained by the present study are

given in table 8.2.

The present study computed six target Hamiltonian eigenvalues per target state, a

total of 48 target states. This model was employed for all the geometries listed pre-

viously. Target states at and above the ionisation threshold were computed, but are

not shown in table 8.2. Such states are useful in the representation of polarisation ef-

fects in close-coupled scattering studies and are themselves better represented by the

use of pseudo continuum orbitals (PCOs) (Gorfinkiel and Tennyson, 2004; Tarana and

Tennyson, 2008): these PCOs were not employed by the present study. Although these

high-lying states do not have any physical significance, they were nevertheless included

in the scattering model discussed below. The target ground state energy is higher than

the corresponding eigenvalue obtained by Sobrinho and Lee (2005) who employed the

elaborate CISD method.

There are no other data to which the present study might be able to compare so

it is very difficult to draw any conclusion. Historically the vertical excitation energies
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Target state Present work Theory Experiment

X 1Σ+ (X 1A1) −435.3683

1 3Π (3B1,3B1) 3.90

1 3Σ+ (3A1) 5.03

1 1Π (1B1,1B2) 5.53

1 3∆ (3A1,3A2) 5.73

1 3Σ− (3A2) 6.06

1 1Σ− (1A2) 6.34

1 1∆ (1A1, 1A2) 6.37

2 3Π (3B1, 3B2) 8.98

3 3Π (3B1, 3B2) 9.95

2 1Π (1B1, 1B2) 10.03

2 1Σ+ (1A1) 10.14

4 3Π (3B1, 3B2) 10.15

2 3Σ− (3A2) 10.68

2 3Σ+ (3A1) 10.71

3 1Π (1B1, 1B1) 10.80

5 3Π (3B1, 3B2) 10.95

6 3Π (3B1, 3B2) 11.26

2 1∆ (1A1, 1A2) 11.49

4 1Π (1B1, 1B2) 11.63

3 1Σ+ (1A1) 11.92

4 1Σ+ (1A1) 12.42

5 1Π (1B1, 1B2) 12.51

µ 0.7021 0.7755a 0.77b

α0 9.48 28.87c

Table 8.2: CS (RCS = 1.5349Å) vertical excitation energies of all the electronic states below the

ionisation threshold. The C2v target states are given in parenthesis. All results are given in eV.

Also shown are the target ground state in Eh, the dipole moment and spherical polarisability in

a.u.
a Botschwina and Sebald (1985)
b Winnewisser and Cook (1968)
c Maroulis et al. (2000)
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obtained by studies like the present one have tended to be in good agreement with

previous experimental and quantum chemistry studies. The dipole transition moment

however, appears to be in good agreement with the previous ab initio study of Botschwina

and Sebald (1985) and the experiment of Winnewisser and Cook (1968). The dipole

moment of the present study corresponds to the one obtained when the sulphur atom is

at the origin and carbon atom lying on the positive z-axis. The dipole moment function

of CS is shown in figure 8.2 and it follows a similar trend to, but lies lower in magnitude

than, the CASSCF dipole moment function of Harrison (2006) which, like the present

study, found that the dipole also exhibits a minimum at about 2–2.8 Å. The dipole

moment of Harrison (2006) is in excellent agreement with experiment. This ought to

be expected given that Harrison (2006) employed a very diffuse basis set (aug-cc-pV5Z)

and the elaborate CASSCF and MRCI methods.

The vertical excitation energy data obtained by the present study are certainly very

sensitive to the precise quantum chemistry model employed. Generally larger, or dif-

fuse basis sets and use of more sophisticated methods such as MRCI, coupled-cluster

approaches, CASCI incorporating all possible single and double excitations and pseudo-

natural orbitals have been used previously (particularly the latter) to improve the rep-

resentation of the target molecule, and lower the target ground state and excited-state

Hamiltonian eigenvalues, which is important in FN R-matrix calculations, as demon-

strated by the delicate case of CO. This study used Quantemol-N, which at present

does not incorporate any of these methods. Very diffuse basis sets like those employed

by Harrison (2006) are not used as this would yield significant target orbital amplitudes

at the R-matrix boundary.

The potential energy curves are also shown in figure 8.1. The discussion above

suggests that these potential energy curves are probably upper bounds on the true

values.

The present study also computed the spherical polarisability using second-order per-

turbation theory. In this case, the present study expects this polarisability to underesti-

mate the true value, but this has been the case historically (Gil et al., 1994). From ta-

ble 8.2 it can be seen that our value of the polarisability is only about 30% of the coupled

cluster (CCSD(T)) value obtained by Maroulis et al. (2000). Better agreement has been

attained for other molecules with the use of the pseudo continuum orbitals (see Gorfinkiel

and Tennyson (2004) for example). Again this was not attempted by the present study.
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A criticism of the present target model is that the active space is rather small, in-

cluding only three (two) C2v (C∞v) virtual orbitals. This would result in less correlation

being included in the target wavefunction than would otherwise be the case had a larger

active space been employed. Inclusion of more target electron-electron correlation may

improve on the accuracy of the vertical excitation energies. Additional studies, exper-

imental and theoretical, need to be carried out in order to benchmark the accuracy of

the quantum chemistry observables obtained by this study.

8.4 Scattering Model

The scattering calculation employed the target model discussed above, namely the DZP

basis set, the CAS (1a1, 2a1, 3a1, 4a1, 1b1, 1b2)12(5a1, 6a1, 7a1, 2b1, 2b2, 3b1, 3b2, 8a1)10

and six eigenvalues per electronic state (all 48 target states). A series of fixed-nuclei

R-matrix calculations were carried out on the bond lengths 1.1, 1.2, 1.3, 1.4, 1.45, 1.5,

1.52, 1.5349 (equilibrium), 1.55, 1.6, 1.7, 1.8, 1.9, 2.0, 2.15, 2.3, 2.5 and 2.7 Å.

The scattering model adopted by the present study employed the GTO continuum

basis set of Faure et al. (2002), with a partial wave expansion up to and including g-

partial wave (l = 4), to model the scattering electron. These continuum basis sets were

orthogonalised to the target molecular orbitals using a mixture of Schmidt and Löwdin

orthogonalisation techniques. Those continuum orbitals with overlap matrix eigenvalues

less than 2×10−7 were removed. Since CS is a polar diatomic, the continuum orbital

partial wave expansion is expected to converge slowly hence the Born correction was

applied to account for the higher partial wave contribution (Kaur et al., 2008). Some of

the low-lying SCF virtual orbitals obtained by the present study were used to augment

the continuum orbital. These orbitals allow for high partial waves in the region of the

nuclear singularity; however, as these virtual orbitals do not extend into the outer region

they do not assist with the slow convergence of the partial wave expansion due to the

effects of the long-range dipole potential.

Initially, for the equilibrium geometry, the present study used a sphere radius of

10 a0, but there was significant amplitude on the boundary arising from the occupied

molecular orbitals so a radius of 12 a0 was adopted which reduced the surface orbital

amplitude to order 10−6. This radius was then adopted for all the bond lengths listed

above.

In order to preserve the balance between the amount of correlation incorporated in
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the target electronic wavefunction and the scattering wavefunction, the present study

allowed 11 electrons (ten electrons + 1 scattering electron) to move freely amongst the

5–8a1, 2–3b1 and 2–3b2 occupied and virtual molecular orbitals.

The calculations were carried out at the close-coupling (CC) approximation, where

all 48 states (300 channels) were included in the CC expansion and for the construction

of the R-matrix at the sphere surface as, ab initio, the modelling of the polarisation

interaction is improved by the retention of a large number of closed channels.

Finally for each geometry, scattering calculations were carried out on the 2A1, 2B1,
2B2 and 2A2 symmetries for the incident energies 0.02–10.0 eV.

The results obtained are discussed below. Scattering quantities and observables

obtained for the equilibrium geometry of the ground state are also presented.

8.5 Results

8.5.1 Eigenphase Sums, Resonances and Bound States

The 2Π eigenphase sums for the equilibrium geometry static exchange (SE) and 48-

state CC model are shown in figure 8.3. It shows a number of important features.

The low-lying resonance feature seen in the SE eigenphase sum also appears in the

CC eigenphase sum, but at a markedly lower position. This is a clear indication of a

shape resonance, and the fact that the resonance reappears at a much lower position

in the CC eigenphase sum curve confirms the improved modelling of the polarisation

interaction discussed earlier. The 48-state CC calculation also shows the existence of

three additional narrow resonances that are absent from the SE eigenphase curve, which

is an indication that these resonances are Feshbach. The opening up of new excitation

channels results in structures in the close-coupling eigenphase sum curves that are absent

from the 1-state static exchange curves. The parameters for these resonances are listed

in table 8.3 and were obtained by fitting to the Breit-Wigner profile (Tennyson and

Noble, 1984). Some of the resonances were re-fitted using a smaller energy-spacing grid

of 0.002 eV by application of R-matrix outer regions codes directly, using the R-matrix

surface amplitudes and channel files obtained by Quantemol-N.

The present study confirmed the findings of Carelli et al. (2008) that a feature of

e-CS scattering is the existence of a low-lying 2Π shape resonance. The parameters

for the shape resonance obtained by the present study are much lower (by about one-
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Symmetry Type Er Γr

2Π Shape 0.311 0.0131
2Π Feshbach 5.58 0.0678
2Π Feshbach 6.29 0.0596
2Π Feshbach 6.91 0.188
2∆ Feshbach 4.93 0.237

2Σ− Feshbach 9.37 0.120

Table 8.3: CS equilibrium geometry resonance parameters for 48-state CC model. The parame-

ters are given in eV

third) than those obtained by Carelli et al. (2008). The present work has identified

Feshbach resonances for 2Π, 2∆ and 2Σ− scattering symmetries. It is difficult to make

comparisons since no other close-coupling studies have been carried out to date. The ex-

perimental study of Graupner et al. (2006) however, stated that the appearance of three

DEA channels at distinct appearance potentials suggests the occurrence of a number of

Feshbach-type core-excited resonances during attachment.

So far as the quality of the observables is concerned, the inclusion of a large number

of closed channels in the CC expansion may have converged the Feshbach resonance

parameters, since they are very particularly sensitive to the precise treatment of the

polarisation interaction in the outer region. The study therefore anticipates that the

shape and Feshbach resonance parameters will be in good agreement with, but will be

a little higher than, experiment. This is usually expected in ab initio scattering studies

such as the present one. Furthermore, it is true to say that the parameters obtained

by the present study will be sensitive to the precise location of the thresholds of their

parent excited states, but no other excitation threshold data exist either. Experimental

determination of these may help to determine the accuracy of the Feshbach resonance

parameters obtained here. A test target state calculation was carried out which solved

for seven Hamiltonian eigenvalues per electronic state, namely 56 states. This model

yielded a spherical polarisability of 11.9 a3
0 for the equilibrium geometry of the X 1Σ+

ground state, an indication that the present study has not yet attained a converged

treatment of the polarisation interaction.

Figure 8.4 shows the CS potential energy curves for the first six low-lying electronic

states and the curves for the resonances that the present study could fit with confidence.

Considering first the PES for the ground state of the anion, the shape resonance curve
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lies above that of its parent state, the target 1Σ+ ground state. The present study

confirms that the 2Π shape resonance starts to become lower and narrower in width as

the CS bond is progressively stretched, until beyond 1.6 Å when the resonance becomes

an anionic bound state. One means of detecting the bound state is by comparing the

R-matrix pole EN+1 to the target ground state Hamiltonian eigenvalue. The present

study computed the R-matrix poles for all the scattering symmetries and geometries.

The 2Π (2B1 and 2B2) R-matrix pole for bond length 1.7 Å (−435.3647 Eh) was found to

be lower than the corresponding target X 1Σ+ ground state energy for that bond length

(−435.3554 Eh); the ground state energy for 1.6 Å was lower than the corresponding

R-matrix pole (−435.3673 Eh and −435.3642 Eh respectively), so one may conclude

that the bond length at which the 2Π shape resonance becomes bound lies somewhere

between 1.6 Å and 1.7 Å, in agreement with Carelli et al. (2008). Given no additional

calculations were carried out between these two bond lengths it is difficult to ascertain

precisely this bound state CS bond length. No attempt was made to locate the S-matrix

pole corresponding to the 2Π bound state.

Similarly for the excited states the Feshbach resonances also become lower and nar-

rower, beginning to become bound states beyond about 2 Å (see also figure 8.6); the
2Σ− Feshbach width however, increased with increasing bond length. From figure 8.4

the Feshbach resonance curves exhibit much parent swapping, which occurs when a res-

onance tracks a new target state potential energy curve, thus acquiring a new parent

state, as the interatomic bond is stretched– for example between 1.75 Å and about 2 Å,

the highest 2Π Feshbach resonance (north-pointing triangles in figure 8.4) has parent

state 1Π and beyond 2.1 Å the parent state is the 3Π target state. The parent swapping

phenomenon is well-known and was studied by Stibbe and Tennyson (1997) in the case

of e-H2 scattering.

Figure 8.6 shows the position and width of the lowest 2Π Feshbach resonance as a

function of bond length. It is quite interesting to observe that the widths Γr do not vary

smoothly as a function of bond length unlike the 2Π shape resonance width parameter

in figure 8.5. This may be due to the widths being sensitive to the precise details of the

fit, in particular the energy grid spacing, for which the present study employed 0.02 eV.

Also, it is well-known for resonance curves to cross the potential energy curves. Under

these circumstances the resonance width can and does change (Halmova et al., 2006).

Crossings between resonance and target potential energy curves are certainly seen in
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Figure 8.3: CS 2B1 (predominantly 2Π) eigenphase sum for the equilibrium geometry

the present work: at about 1.55 Å the resonance curve corresponding to the lowest 2Π

Feshbach resonance curve crosses the 1 1Π potential energy curve, and one can see a

slight discontinuity in the width curve shown in figure 8.6. Another crossing takes place

at 1.8 Å, where the lowest 2Π Feshbach resonance curve intersects the 3Π potential

energy curve.

8.5.2 Electronic Excitation Cross Sections

The electronic excitation cross sections in figure 8.7 show some interesting structures

which are related to the Feshbach resonances discussed earlier. The peak in the X 1Σ+ →
1 3Π excitation cross section is located at about 4.93 eV which coincides with the 2∆

resonance (table 8.3). Interestingly, there are two prominent peaks in the X 1Σ+ → 1 3Σ+

and X 1Σ+ → 1 1Π cross sections at about 5.58 eV which correspond to the lowest 2Π

Feshbach resonance (see figure 8.3). A narrow peak at about 6.29 eV and a slightly

wider and smaller peak at 6.9 eV were also found in the X 1Σ+ → 1 3∆ excitation cross

section, which correspond to the two higher 2Π Feshbach resonances.
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Symmetry Type Er Γr

2Π Shape 0.260 0.00849
2∆ Feshbach 4.87 0.241
2Π Feshbach 5.42 0.0556

2Σ− Feshbach 5.60 0.00312
2Π Feshbach 6.14 0.0528
2Π Feshbach 6.75 0.178

2Σ− Feshbach 9.20 0.123

Table 8.4: CS Resonances for RCS = 1.55 Å. The parameters are given in eV.

Asymptote Resonance Symmetry Er (eV)

S−+C (6.70 eV)
2Σ− 9.37
2Π 6.75

C−+S (6.40 eV) 2Π 6.14

S−+C (5.43 eV)

2Σ− 5.60
2Π 5.42
2∆ 4.87
2Π 0.260

Table 8.5: CS correlation diagram. The energies in brackets are the appearance potentials

obtained by Graupner et al. (2006)

8.5.3 Dissociative Electron Attachment (DEA)

The study of Graupner et al. (2006) identified three distinct appearance potentials for

the DEA at 5.43 eV, 6.40 eV and 6.70 eV. With reference to table 8.4 which lists

the resonance parameters for the stretching bond length 1.55 Å, the three Feshbach

resonances lie very close to the appearance potentials measured by Graupner et al. (2006)

which would suggest that these Feshbach resonances indeed enable dissociative electron

attachment. The correlation table mapping the peaks identified by their study to the

resonances listed in table 8.4 is given in table 8.5 (T. A. Field, private communication)

A more formal treatment of ab initio R-matrix theory including nuclear motion has

been described by Burke and Tennyson (2005), which would enable a proper treatment

of dissociative electron attachment; the present study did not adopt their approach.
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8.6 Conclusion

The present study analysed electron scattering by CS using the ab initio R-matrix

method at the close-coupling approximation. 17 bond-lengths between 1.1 Å and 2.7 Å were

analysed each at the fixed-nuclei approximation. This is the first such many-state study

to have been carried out.

The CS molecule was represented using CASCI target wavefunctions: the CAS em-

ployed froze 12 electrons in the 1a1, 2a1, 3a1, 4a1, 1b1 and 1b2 bound molecular orbitals

and ten electrons were allowed to move freely amongst the 5a1, 6a1, 7a1, 2b1, 2b2, 3b1,

3b2 and 8a1 occupied and virtual molecular orbitals. The present study solved the

Born-Oppenheimer problem for the 17 bond lengths to yield a potential energy curve

(figure 8.1). The ground state potential energy curve remained the lowest energy one for

the range of bond lengths considered so use of the equilibrium geometry ground state

electron configuration for all geometries was fully justified. For basis set DZP and the

equilibrium geometry, the target model yielded a dipole moment (+0.7021 a.u.), in good

agreement with available experimental data (+0.77 a.u. Winnewisser and Cook (1968)).

It is interesting to observe such a large dipole moment for a diatomic that has a very small

electronegativity difference (χ = +0.02 according to the Pauling scale (Pauling, 1932)).

48 target targets were computed for all the geometries considered. The dipole spherical

polarisability at equilibrium is not known experimentally, however the value obtained

by this study is expected to underestimate the true value: we have certainly confirmed

this to be the case theoretically when one compares to more elaborate techniques such

as that used by Maroulis et al. (2000) (see table 8.2).

The absence of any other vertical excitation data means that the target quantum

chemistry model cannot be benchmarked in any way. The major criticism of the model

is that perhaps there may be an insufficient amount of electron-electron correlation

included in the CASCI target wavefunction owing to the small active space. This could

be remedied by increasing the size of the active space to say 5–9a1, 2–3b1 and 2–3b1,

which was used for the isoelectronic SiO.

In developing the scattering model, the present study sought to ensure that the

polarisation interaction was modelled as accurately as possible so the strategy adopted

was to retain all 48 target states (300 electronic excitation channels) in the inner-region

close-coupling expansion and retention of the same for construction of the R-matrix at

the sphere surface, the radius of which was taken to be 12 a0 so as to fully contain the
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electronic charge distribution within the sphere.

The present study confirmed a number of findings made by the 1-state study of Carelli

et al. (2008). A very low-lying 2Π resonance was detected at 0.311 eV with a narrow

width Γr of 0.0131 eV, much lower than Carelli et al. (2008). As in their study, this

shape resonance was observed to become a bound state beyond 1.6 Å (figures 8.4 and 8.5).

Analysis of the 2Π R-matrix pole indicated that this CS− bound state lies somewhere

between 1.6 Å and 1.7 Å. The present study did not detect any 2∆ shape resonances

predicted by Sobrinho and Lee (2005).

An entirely new finding made by the present study was that CS supports a num-

ber of Feshbach resonances of 2Π, 2∆ and 2Σ− symmetry (tables 8.3 and 8.4). As to

the parentage of some of these Feshbach resonances the lowest 2Π Feshbach resonance

curve, which lies underneath the 3∆ potential energy curve, could arise from the config-

uration 2π−1 3π2. The 2∆ Feshbach resonance curve lies below the 1Π potential energy

curve, suggesting that this target state might be the parent of the 2∆ resonance. The

resonance could arise from a configuration 7σ−1 3π2. However, assigning parents to

Feshbach resonances is quite complicated (Stibbe and Tennyson, 1997). These Feshbach

resonances may be responsible for the dissociative electron attachment asymptotes de-

tected by Graupner et al. (2006). The correlation table predicting which resonances may

be responsible for which DEA asymptotes is given in table 8.5.

So far as the evolution with respect to bond length stretching or contraction is

concerned, the 2Π and 2∆ Feshbach resonances follow a similar trajectory to the 2Π

shape resonance in that their positions become lower and their widths narrower as the

CS bond is progressively stretched, as shown in figure 8.6. As the present study retained

all 300 (open and closed) channels in the outer region for computation of the R-matrix

at the sphere surface, the resonance position and width should be well converged with

respect to the CC expansion. The resonance parameters are expected to be in good

agreement with, but possibly a little higher than experiment.

In future work the R-matrices obtained for the equilibrium bond length will be em-

ployed for the computation of rotationally resolved differential cross sections, rotationally

inelastic cross sections and the rotational excitation rate coefficients, which will be im-

portant in astrophysical modelling (Drdla et al., 1989). From similar studies (e.g. HCN

and SiO) one may predict that the rotational excitation rate coefficients for e-CS colli-

sions will be several orders of magnitude higher that those of H2-CS and He-CS collisions
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owing to the long-range nature of electric dipole moment of CS.

Another candidate for a similar study is CO: Graupner et al. (2006) have proposed

such a study to determine why C− is observed so weakly from CO but more strongly

from CS.
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Chapter 9
Electron collisions with CH4

9.1 Introduction

The non-polar, tetrahedral methane molecule (natural point group Td) is a well-known

green-house gas but it was recently identified in the atmosphere of an extrasolar planet (Swain

et al., 2008). Interstellar methane was discovered by Lacy et al. (1991) who reported the

observation of solid and gaseous methane absorption toward young stars in molecular

clouds. Other observational studies include Boogert et al. (2004) and Boogert et al.

(1996).

Industrial applications of CH4 include chemical vapour deposition for the man-

ufacture of diamonds (Celii et al., 1988) and the development of carbon nanotubes

and nanocrystalline diamond films (Matsushita et al., 2004). The fragmentation chan-

nels of CH4 are important for such applications and electron-impact studies provide

an insight into the underlying chemistry. Hence electron-impact dissociation of CH4

has also been the subject of much investigation and the previous experimental studies

of Makochekanwa et al. (2006) and Nakano et al. (1991) have focused on the dominant

CH3 and CH2 fragmentation channels. Makochekanwa et al. (2006) located the 3T2

threshold at about 7.5 eV, attributing it to the formation of the neutral CH3 fragment,

whereas previous studies attributed it to the CH2 radical.

The major motivation for studying electron scattering by CH4 has been that this

molecule in particular is regarded by theorists as a benchmark system. From a theoret-

ical standpoint the high symmetry and the heavy central C atom makes it an excellent

system for collision methods based on single centre expansions and especially because

of the difficulty ab initio potential-free methods have in reproducing polarisation effects
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in this molecule fully (Gil et al., 1994; Lengsfield et al., 1991; Lima et al., 1990). This

has resulted in extensive theoretical (and experimental) electron collision studies be-

ing carried out. Electron scattering by methane is known to exhibit some interesting

features.

Previous electron collision studies have focused on one important feature, the Ramsauer-

Townsend (R-T) minimum at about 0.4 eV. Theoretically the presence of this minimum

can only be reproduced by the inclusion of the polarisation (it is absent from static

exchange calculations). A pure s-wave low-energy phenomenon, the precise location in

energy results from the balance of the attractive polarisation interaction and repulsive

exchange. As a result the 2A1 eigenphase sum passes through 0c and the electron propa-

gates as a free particle at that energy. Gianturco et al. (1995) devoted their entire study

to re-producing this effect. Their GTO multicentre wavefunction was given by a triple-

zeta expansion plus d-type polarisation function on the C atom and p-type polarisation

on the H atoms. The CH bond length was fixed to 2.063 a.u. and single centre expansion

calculations were carried out on the A1, T2 and E Td scattering symmetries. Convergence

tests on partial-wave expansions were carried out in all the symmetries and Gianturco

et al. (1995) found lmax = 7 to produce fully converged K-matrix elements for each sym-

metry. They introduced the polarisation interaction with two different parameter-free

models: short-range dynamical correlation was treated using density functional mod-

elling (Gianturco and Rodriguez-Ruiz, 1993); short-range correlation was also treated

using a simpler free-electron gas (FEG) model (Padial and Norcross (1984) for example).

Needless to say both of these models accurately re-produced the R-T minimum in their

integral cross sections (they also tested the free-electron gas model using Slater-Type

orbitals). The FEG models were especially able to locate the minimum in the correct

position and were in excellent agreement with the electron scattering experiment of Ferch

et al. (1985).

Nestmann et al. (1994) applied the R-matrix method to elastic electron scatter-

ing by methane at the fixed-nuclei (FN) approximation using the C–H bond length

1.08583 Å and the orientation (a, a, a), (−a, −a, a), (a, −a, −a), (−a, a, a) for the H

atoms. The Td scattering symmetries 2A1, 2T2 and 2E were analysed. To represent the

target states Nestmann et al. (1994) employed the accurate multireference single-double

(MRD) CI approach (Buenker and Peyerimhoff, 1974, 1975b). As their MRD-CI code

employs only Abelian point groups the D2 sub-group of Td was used in their calcula-
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tions. As in the present study GTO continuum basis sets were used to represented the

projectile electron with only the s, p and d angular momenta retained in the partial wave

expansion. Nestmann et al. (1994) carried out calculations at the 1-state static-exchange

(SE) and static exchange-plus-polarisation (SEP) approximations. For the construction

of the R-matrix, the sphere radius was taken to be 10 a.u. and in determining the

reduced radial wavefunction for the scattered electron in the outer region, a spheri-

cal polarisability α0 of 17.5 a3
0 was assumed. Nestmann et al. (1994) commented that

their model yielded integral cross sections in remarkably good agreement with the theory

of Lengsfield et al. (1991) and the measurements of Lohmann and Buckman (1986), Sohn

et al. (1986) and Ferch et al. (1985). The position of the R-T minimum and the broad

structure of the maximum at 8 eV due to the 2T2 symmetry were well reproduced. In-

terestingly, they (Nestmann et al. (1994)) were able to demonstrate sensitivity of the

Ramsauer-Townsend minimum to the position of the energetically lowest 2A1 R-matrix

pole. Nestmann et al. (1994) also computed the differential cross section (DCS) with

the dipole polarisability fixed at 17.5 a3
0. Although they attained good agreement with

the experiment of Sohn et al. (1986) and the calculation of Lengsfield et al. (1991), they

observed a systematic shift of the DCS structures to lower angles.

So far as close-coupling (CC) calculations are concerned, the work of Gil et al. (1994)

carried out 16-channel CC expansion studies invoking the Kohn variational principle.

The main concern that arose out of their study was the validity of such large studies

containing closely spaced Rydberg states, which are very diffuse and accumulate below

the ionisation threshold. They argued that in order to obtain accurate cross sections

for such transitions, one cannot simply include more states– this does not guarantee

successful convergence: for example, they found the inelastic cross sections to the lowest-

lying excited state of the same symmetry as the ground state to be very difficult to

converge and not reliably predicted by close-coupling studies.

Other theoretical studies include the complex Kohn variational calculations of Lengs-

field et al. (1991) and McCurdy and Resigno (1989), the multichannel Schwinger ap-

proach carried out by Lima et al. (1990), the model potential approach of Jain (1986)

which specifically focused on the R-T minimum and the exact exchange study of Mc-

Naughten and Thompson (1988).

A number of experimental studies were also conducted which sought to reproduce the

R-T minimum: Lohmann and Buckman (1986), whose time-of-flight spectrometer study
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measured total integral cross sections for incident energies 0.1–20 eV, reproduced the

R-T minimum at 0.36 eV and a cross section maximum (25.31 Å2) at 8.0 eV; the time-

of-flight spectrometer measurements of Ferch et al. (1985) analysed electron-methane

scattering for the smaller incident energy range of 0.085–12 eV. They located the R-T

minimum at 0.4 eV, in good agreement with the later work of Lohmann and Buckman

(1986). A cross section maximum of 24.7 Å2 was also observed at 8.0 eV.

Other experimental low-energy electron-methane scattering studies include Sueoka

and Mori (1986) and Tanaka et al. (1982).

Studies have not been restricted to low-energies. There have been numerous electron

scattering studies which have considered energies at and beyond the ionisation thresh-

old, for example the calculations of Vinodkumar et al. (2006), Jain and Baluja (1992)

and Hwang et al. (1996) and the electron-molecule crossed beam measurements Stano

et al. (2003).

Jain and Baluja (1992) computed the elastic and inelastic cross section for the scat-

tering of intermediate- and high-energy electrons from a variety of molecules, including

CH4, by computing complex potentials from their target wavefunctions. Its spherical

component was used to yield the cross sections under the phase-shift analysis. For the

non-spherical part of the complex potential Jain and Baluja (1992) employed the first-

order Born approximation and added this contribution incoherently to the spherical part.

For energies at and above 100 eV their computations agreed well with available data.

The recent study of Vinodkumar et al. (2006) found their inelastic cross sections to

peak at 45 eV while the ionisation cross section peaked at about 70 eV. The latter cross

sections agreed well with previous experimental data and their total (complete) cross

section were in good agreement with Jain and Baluja (1992).

Experimental high-energy collision studies have been carried out by Duric et al.

(1991) and Orient and Srivastava (1987). A BEB formalism calculation was carried out

by Kim et al. (1997). These are discussed in more detail below.

This chapter presents the results obtained from a series of fixed-nuclei (FN) R-matrix

close-coupling (CC) calculations for electron-scattering by CH4 using the Quantemol-N

expert system (Tennyson et al., 2007). The GTO target basis set and the number of

states retained in the CC expansion and the number of channels retained in the inner

region for the construction of the R-matrix at the sphere surface were varied. The aim

was to converge the integral cross sections as well as possible with respect to the CC
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Figure 9.1: CH4 in the orientation necessary for a C2v R-matrix calculation

expansion and reproduce the R-T minimum and the broad maximum. Convergence

with respect to partial wave expansion and other aspects of the present calculation

were thoroughly tested by comparing rotationally summed differential cross sections.

These were calculated by the POLYDCS package of Sanna and Gianturco (1998) using

as input the C2v K-matrices obtained by Quantemol-N. Finally, the electron-impact

dissociation cross section and the BEB (Binary-Encounter-Bethe) cross section from

ionisation threshold to 5000 eV were also computed and compared to the dissociation

cross section measurements of Makochekanwa et al. (2006), the ionisation cross section

experiments of Duric et al. (1991), Orient and Srivastava (1987) and the BEB calculations

of Kim et al. (1997).

9.2 Quantum Chemistry Model

In order to optimise the present target (and scattering) calculation we employed the

highest Abelian sub-group of the natural Td point group, C2v. Initially, the four hydrogen

atoms were rotated in such a way that they were lying on the σxz and σyz mirror planes

(figure 9.1). The C–H bond length 1.0940 Å (NIST, 2008) was adopted.

The ground state electron configuration is well-known, 1a2
1 2a2

1 3a2
1 1b21 1b22, or

1a2
1 2a2

1 1t62 in the natural symmetry (X 1A1). A Hartree-Fock self-consistent field

(HF-SCF) calculation was carried out using the above configuration to yield a set of
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Electronic state (Td) Present work Theory1 Theory2 Theory3

6–31G DZP 6–31G*

X 1A1 0.0 0.0 0.0 0.0 0.0 0.0

1 3T2 12.1 13.6 12.2 12.3 9.97 10.86

1 3A1 12.6 14.4 12.7 13.0 11.09

1 1T2 13.7 13.8 13.5 10.24 11.24

2 3T2 14.2 14.6 14.3 13.5 11.59

1 3E 14.7 14.8 13.2 11.59

Table 9.1: CH4 Vertical excitation energies in eV for various basis sets, compared to previous

theoretical works
1 Gil et al. (1994),
2 Williams and Poppinger (1975),
3 Winstead et al. (1993)

bound and virtual molecular orbitals which were then employed to construct complete

active space configuration interaction (CASCI) target wavefunctions. The complete ac-

tive space was automatically generated by the Quantemol-N software:

(1a1)2(2a1, 3a1, 3a1, 4a1, 5a1, 1b1, 1b2, 2b1, 2b2)8, namely, two electrons were frozen in

all configurations with the remaining eight electrons being allowed to move amongst the

2–5a1, 1–2b1 and 1–2b2 occupied and virtual orbitals. This CAS generated 492 configu-

ration state functions (CSFs) for the X 1A1 ground state. The CASCI method yields a

number of excited target states. The lowest-lying of these are known to have Rydberg

character (Pauzat et al., 1972) and studies include the accurate coupled cluster linear

response approach of Velasco et al. (2006) using atomic natural orbitals (ANOs) aug-

mented with a series of 6s 6p 6d Rydberg functions allocated on the carbon atom; we

did not include the Rydberg character of the excited states in the course of this study.

Vertical excitation energies for the lowest of these states (up to the ionisation threshold

of 14.75 eV) are shown in table 9.1 for the GTO basis sets DZP, 6–31G and 6–31G*. Use

of the DZP basis set shifted the energies systematically upwards and the 3E excitation

threshold became higher than ionisation, hence its absence from table 9.1, and the 1T2

state was found instead at 14.93 eV. But Williams and Poppinger (1975) did comment

that the CI method is known to be sensitive to the basis set used.

The present vertical excitation energies are shown to be in reasonable agreement

with Gil et al. (1994) but are systematically higher than the ab initio equations of motion
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(EOM) calculations of Williams and Poppinger (1975) and the Schwinger multichannel

(SMC) calculation carried out by Winstead et al. (1993).

Because the excited states of CH4 are Rydberg-like, the target model of Williams

and Poppinger (1975) employed a basis set including diffuse s and p atomic functions

hence the basis on the carbon atom was modified as 1s, 2s, 2p, 3s and 3p, where each

atomic orbital was expanded in terms of three Gaussian functions STO–3G and where

the 3s and 3p functions were diffuse Rydberg-like with an optimised exponent of 0.6.

For the H atom a single 1s function was expanded in terms of three Gaussians. They

carried out additional calculations at the CI approximation. In analysing their results,

Williams and Poppinger (1975) commented that their (1p-1h+2p-2h) EOM model was in

much better agreement with experiment than their CI one because the former included

more correlation, so it could be that the active space used during the present study is

too small, resulting in less electron-electron correlation being incorporated in the target

wavefunction. Our neglect of the Rydberg character of the low-lying target states may

be a second reason for this work overestimating the excitation thresholds.

Winstead et al. (1993) employed an improved virtual orbitals (IVO) method to cal-

culate the electronically excited states of CH4 and the SCF (self-consistent field) cal-

culation to compute the ground state. Their study only carried out two-, three- and

seven-channel scattering calculations. Gil et al. (1994) also used the IVO approach for

the representation of the excited states but yielded channel thresholds higher than the

earlier study of Winstead et al. (1993).

Finally, it is interesting to observe that the 3A1, 1 1T2 and 2 3T2 states predicted

here are absent from the previous calculation of Winstead et al. (1993) which may be

because the present study solved for more eigenvalues per target state.

The spherical polarisability α0 was calculated using second-order perturbation theory

as a summation over electronically excited states included in the close-coupling (CC)

expansion. The values obtained from the various calculations we performed are shown

in table 9.2.

Following the correction of a computer bug related to like-like transition moments

in DENPROP, which resulted in the αzz (diagonalised) tensor component being smaller

than it should have been, the calculation which yielded the best spherical polarisability

(basis set 6–31G) was re-run using a later version of Quantemol-N (version 3.5.2). The

polarisability was much improved (with a 50% increase for both 6–31G and DZP) and
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9.2 Quantum Chemistry Model

Basis set N α0 (a3
0)

6–31G 32 7.59

6–31G 48 7.62

6–31G* 48 7.43

DZP 48 6.22

DZP (v3.5.2) 48 9.34

6–31G (v3.5.2) 48 11.41

Experiment 16.52

Table 9.2: CH4 spherical polarisabilities obtained by the present work compared to NIST (2008)

better agreement was attained with the experimental value of NIST (2008). Despite

this, it is still lower than experiment, indicating that the polarisation interaction is

underestimated (Gil et al., 1994).

Tong et al. (1991) carried out ab initio polarisability calculations for CH4 at the SCF,

singles and doubles CI (SDCI) and averaged coupled pair functional (ACPF) methods.

Their study sought to compute first and second derivatives in order to calculate the

scattering cross sections for selected overtone and combination bands. The best model

(D&S basis set and the ACPF method) yielded a polarisability of 16.36 a3
0 and 16.23 a3

0

when SDCI was used, in very good agreement with experiment (table 9.2) and higher

than our best value of the same.

Lengsfield et al. (1991) also devoted part of their scattering study to the computation

of the polarisability using polarised orbitals and a full virtual space. Both of these

methods yielded values in accord with experiment. For example, basis B (Core [C: 1p 3d])

of their model using polarised orbitals gave rise to a polarisability of 17.49 a3
0. This would

certainly suggest that the polarisation is being modelled better by Lengsfield et al. (1991).

As mentioned in the introduction, improved modelling of the polarisation interaction is

crucial to reproducing the R-T minimum close to the experimentally observed position.

The target electronic states lying well above the ionisation threshold are useful in

the representation of polarisation in close-coupling studies such as the present work.

These high-lying states are themselves better represented using pseudo continuum or-

bitals (Gorfinkiel and Tennyson, 2004; Tarana and Tennyson, 2008), but these were not

used in the present study. Despite having no particular physical significance these elec-

tronically excited states were nevertheless retained for later use in the scattering model
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and their impact was found to be important as shall be discussed below.

9.3 Scattering Model

The present work tested all the target models discussed earlier, using a CAS (1a1)2(2a1,

3a1, 4a1, 5a1, 1b1, 1b1, 2b1, 2b2)8 and GTO basis sets DZP, 6–31G and 6–31G*.

The scattering electron was modelled using the GTO continuum orbitals of Faure

et al. (2002) which retained up to l = 4 (g-) partial waves. Since methane is a non-

polar system the continuum wave expansion was expected to converge rapidly and no

Born perturbative correction was necessary. The continuum orbitals were augmented

with one low-lying virtual molecular orbital of each irreducible representation and then

orthogonalised to the target molecular orbitals using a mixture of Schmidt and Löwdin

orthogonalisation techniques.

The radius of the spherical boundary separating the inner and outer region was set

to 10 a0 and for matching to the asymptotic boundary condition, the R-matrix was

propagated to a radial distance of 100.1 a0, which proved to be adequate for all the

models considered here.

In order to preserve the balance between the amount of correlation included in the

target wavefunction and the scattering wavefunction, nine electrons (eight target elec-

trons + 1 scattering electron) were allowed to be distributed among the 2a1, 3a1, 4a1,

5a1, 1b1, 2b1, 1b2 and 2b2 occupied and virtual orbitals.

Test calculations were carried out which varied the number of target states retained

in the inner region CC expansion and for construction of the R-matrix at the surface of

the partitioning sphere. These tests included 20, 32, 40 and 48 states in the inner and

outer region and an SE calculation was also carried out as an additional test. The best

model was considered to be the 48-state target model using the GTO 6–31G basis set.

The C2v K-matrices obtained from this model were then used to compute the rotationally

summed DCSs and dissociation cross section and the bound molecular orbitals used to

calculate the BEB electron-impact ionisation cross section.
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Figure 9.2: CH4
2A1 Eigenphase Sum Curves

9.4 Results

9.4.1 Eigenphase Sums, Integral Cross Sections, The Ramsauer-Townsend

Minimum and Resonances

Figure 9.2 shows the 2A1 eigenphase sum for the various models described above. Unlike

the molecules of previous chapters, the eigenphases exhibit no structure due to the open-

ing up of previously closed electronic excitation channels. Given that the first channel

threshold (table 9.1) is outside of the energy range considered, this is not surprising. As

shown in figure 9.2, the retention of an increasing number of states used for the construc-

tion of the R-matrix increases the eigenphase sum over the entire energy range shown.

This is due to the improved modelling of the (attractive) polarisation interaction.

Whereas previous collision studies have confirmed the appearance of a Ramsauer-

Townsend minimum at about 0.4 eV (e.g. Nestmann et al. (1994), McCorkle et al. (1978)

and Lohmann and Buckman (1986)), it is clear from figure 9.2 that the model using

contracted CSFs in the inner region CC expansion cannot reproduce the R-T minimum,

despite increasing the number of target states included to build the R-matrix. The 2A1

eigenphase sum obtained using uncontracted CSFs is compared to that obtained using

contracted CSFs in figure 9.3. Not only did the adoption of uncontracted CSFs lead to
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the corresponding eigenphases lying higher than those calculated using contracted CSFs,

implying that the model had improved the representation of the polarisation interaction

further, it also caused the eigenphase sum to pass through 0c, namely, this technique

was able to reproduce the R-T minimum at about 0.44 eV, confirming the experiments

of Lohmann and Buckman (1986) (0.36 eV) and Ferch et al. (1985) (0.40 eV) and the

Kohn variational study of Lengsfield et al. (1991) (0.40 eV). The SMC SEP calculation

of Lima et al. (1989) however, produced an R-T minimum at much too low a position:

0.1 eV. The calculation using the later version of Quantemol-N also located a Ramsauer

minimum at 0.1 eV, otherwise it reproduced the contracted CSFs calculation exactly.

In spite of this disagreement, one can make some inferences. Most importantly, the

correction to the like-like transition moments in turn corrected the polarisability, the key

difference between the previous models using version 3.2 and the models set up by 3.5.2.

In the R-matrix method polarisation is modelled via the transition moments of the CH4

target, and therefore the representation of the polarisation interaction in the outer region

will have been much improved as well. Particularly, the 48-state CC scattering model

using Quantemol-N version 3.5.2 and the compact 6–31G basis resulted in this interaction

(α0 = 11.41 a3
0) being improved to such an extent that at least the Ramsauer-Townsend

minimum was reproduced, albeit at a lower position. Clearly, further improvement to

our scattering model would be needed in order to reproduce this feature at the observed

position. This certainly confirms the observations of previous theoretical studies, namely

the sensitivity of the R-T minimum to the representation of the polarisation interaction.

A narrow Feshbach resonance feature appears at about 12.1 eV in both eigenphase

sum curves in figure 9.3. For the calculation involving contracted CSFs the position

and width parameters, fitted using RESON (Tennyson and Noble, 1984), are 12 eV and

0.008 eV respectively and the resonance was assigned 2T2 symmetry. The uncontracted

CSFs calculation yielded the resonance at a lower position of 11.86 eV and with a width

of 0.008 eV.

Figures 9.4 and 9.5 show the total integral cross section for electron-methane scat-

tering for all the scattering models tested in this work. The SE calculation, as expected

does not give very good results at all, but the CC calculations show systematic improve-

ment as more target states are retained in the expansion. Indeed one can observe the

R-T minimum feature in the cross section for uncontracted CSFs, whereas the feature is

absent from the calculations employing contracted CSFs, as stated earlier. With refer-
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Figure 9.5: Comparison of CH4 integral elastic cross sections

ence to figure 9.4 the integral cross sections obtained using the uncontracted CSFs are

lower than those obtained by Ferch et al. (1985) and Lohmann and Buckman (1986) for

energies below about 1.2 eV, but higher beyond this point. The uncontracted CSFs cross

sections were found to be in very good agreement with these two previous experiments

for 5 eV and beyond, passing through most of the points of Ferch et al. (1985).

Previous studies also noted the appearance of a broad maximum at around 8 eV: for

example Lengsfield et al. (1991) and Lohmann and Buckman (1986) both yielded their

maxima at 8 eV with cross sections of about 25 Å2. We also reproduced this broad

maximum, at 8.41 eV in the case of uncontracted CSFs, in good agreement with the

previous theoretical and experimental studies, but at a higher incident energy 9.14 eV

for contracted CSFs. The cross section maxima agreed with Lengsfield et al. (1991).

9.4.2 Differential Cross Sections

Differential cross sections (DCS) enable a more sensitive test of the theoretical model

than integral cross sections since they are often more accurately measured experimentally

and are sensitive to effects which can be averaged out in the total cross sections. Hence

we computed the rotationally summed DCSs for incident energies 3 eV and 5 eV using

the POLYDCS package (Sanna and Gianturco, 1998) with the C2v K-matrices obtained
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Figure 9.6: Rotationally Summed Differential Cross Sections for e-CH4 scattering at incident

energy 3 eV

by the best model as input.

Our DCSs are compared to the complex Kohn data of Lengsfield et al. (1991) and

the experiment of Sohn et al. (1986). Using contracted CSFs the present study agrees

well with these previous studies at the high angles in particular. The difference at the

forward angles could be due to the incomplete treatment of polarisation, though it is

not exactly clear what the forward angle behaviour is. Clearly agreement is not as good

when uncontracted CSFs are employed, despite the very good agreement obtained in the

case of the integral cross section.

9.4.3 Ionisation Cross Section

The 6–31G SCF orbital parameters computed here are listed in table 9.3 and were em-

ployed in the computation of the BEB ionisation cross section appealing to the formalism

of Kim et al. (1997). Our data are compared to Kim et al. (1997), whose molecular or-

bital binding and kinetic energies were obtained using the restricted Hartree-Fock (RHF)

method and the GTO basis set 6–311G, and to the experiments carried out by Orient

and Srivastava (1987) and Duric et al. (1991) in figure 9.8. They are certainly in good

agreement with the later theoretical and experimental works. It is important to note that
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Figure 9.7: Rotationally summed differential cross sections for e-CH4 scattering at incident

energy 5 eV

Orbital |B| U N

This work Theory1 This work Theory1

1a1 (1a1) 305.03 290.70 +435.89 +436.07 2

2a1 (2a1) 25.69 25.73 +33.85 +33.05 2

1t2 (3a1, 1b1 1b2) 14.75 14.25 +25.68 +25.96 6

Table 9.3: Td (C2v) occupied molecular orbital parameters. The orbital binding B and kinetic

energies U are given in eV
1 Kim et al. (1997)

the BEB formalism is very sensitive to the ionisation energy employed to compute the

ionisation cross section: Kim et al. (1997) and Hwang et al. (1996) strongly recommend

using the experimental value of the ionisation energy in order to attain good agreement

with experiment. The former used the experimental vertical ionisation potential and a

different basis set which explains the difference between our data and theirs. We used the

ionisation energy obtained by invoking Koopman’s theorem (14.75 eV) which is higher

than observed experimentally (12.61 eV NIST (2008)).
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Figure 9.8: CH4 BEB ionisation cross sections

9.4.4 Electron-Impact Dissociation Cross Sections

The electron-impact dissociation cross sections obtained using contracted CSFs are com-

pared to the recent study of Makochekanwa et al. (2006). Our data are shifted to higher

energies. This shift is attributed to the channel thresholds lying much higher than ob-

served previously (table 9.1). The cross sections are also systematically lower than those

measured by Makochekanwa et al. (2006), but they do exhibit a similar trend, with both

data producing a narrow peak structure at 11.5 eV, which Makochekanwa et al. (2006)

assigned to the lowest 4s Rydberg state, and 14.0 eV for this work.

9.5 Conclusion

We applied the ab initio fixed nuclei R-matrix method to elastic electron scattering by

the non-polar CH4 molecule at the CC approximation.

The CH4 target was represented using CASCI wavefunctions to generate the ground

and electronically excited wavefunctions. For the complete active space the two 1s

electrons of the carbon atom were frozen in all configurations. The remaining electrons

were allowed to move in the 3a1, 4a1, 5a1, 1b1, 2b1, 1b2, 2b2 bound and virtual molecular

orbitals. Target models were tested which varied the number of eigenvalues per target
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Figure 9.9: CH4 dissociation cross sections

state that were solved for and the GTO basis sets used to present the SCF molecular

orbitals (6–31G, 6–31G* and DZP). The best model was one using the 6–31G basis set

and computing for six eigenvalues per target state, or 48 target states in total. This

model yielded a spherical polarisability of 7.59 a3
0 using version 3.2 of Quantemol-N and

11.4 a3
0 using the later version 3.5.2.

An R-matrix sphere of radius 10 a0 was sufficient to fully contain the electron charge

cloud.

Previous studies have discussed the importance of accurately modelling the polari-

sation interaction in order to accurately re-produce the Ramsauer-Townsend minimum.

Ab initio this interaction was modelled by retaining many strongly closed channels in

the inner region close-coupling expansion and for construction of the R-matrix at the

surface of the sphere. The scattering calculations tested retained 1 (a static exchange

calculation) 20, 32, 40 and 48 target states. This study has demonstrated that increasing

the number of coupled states in the CC expansion converges the total cross sections to

values in good agreement with previous theoretical and experimental studies. However

although there is convergence with respect to the CC expansion, this need not imply

that one has achieved a complete converged treatment of the polarisation or the long

range polarisability. Therefore an uncontracted CSFs model, which increases the po-
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larisation effects, was used to enable an improved treatment: it was able to reproduce

the Ramsauer-Townsend minimum at 0.44 eV, in good agreement with the experimental

values of 0.40 eV (Ferch et al., 1985) and 0.36 eV (Lohmann and Buckman, 1986) and

the theoretical value of Nestmann et al. (1994). The cross section maximum observed

by these studies was reproduced at a higher incident energy.

The rotationally summed differential cross sections for incident energies 3 eV and 5 eV

computed for CH4 were in good agreement with previous theoretical and experimental

data, especially for angles greater than 75o when contracted CSFs were employed. The

agreement was not as good when the uncontracted CSFs were used, this despite the

integral cross sections being in excellent agreement across the incident energy range

considered.

We have shown CH4 to support a narrow 2T2 Feshbach-type resonance at about

12 eV. In addition to being sensitive to the treatment of the polarisation, the Feshbach

resonance parameters are also sensitive to the precise location of the excitation threshold

of its parent target state. The energies predicted here are considered to be upper bounds

on the true values as the channel thresholds are systematically too high.

The Binary-Encounter-Bethe formalism was applied to compute the electron-impact

ionisation cross section from the ionisation threshold to 5000 eV. The threshold was

much higher than measured experimentally (12.61 eV NIST (2008)) and resulted in the

present work being lower than previous measurements and being shifted very slightly

to higher incident electron energies relative to the previous studies. Kim et al. (1997)

carried out a similar study using the basis set 6–311G and the experimental vertical

ionisation potential (14.25 eV) which resulted in slight disagreement with the present

calculation.

The dissociation cross section was not in agreement with the previous study of

Makochekanwa et al. (2006), with our data being much lower and shifted by about

3 eV towards higher energies relative to their measurements. However, the present

cross sections followed closely the trend observed by Makochekanwa et al. (2006), both

producing noticeable peaks in the dissociation cross section.

A criticism of the present quantum chemistry model is that the Rydberg character

of the excited states was completely neglected. In addition our complete active space

is smaller than it could have been, producing only 492 CSFs for the X 1A1 target

wavefunction and lacking correlation. Williams and Poppinger (1975) reached similar
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conclusions, even in the case of their CI calculations incorporating all possible single

excitations. Such deficiencies may explain why the channel thresholds were significantly

higher than previous ab initio quantum chemistry studies and, consequently, why our

electron-impact dissociation cross sections were shifted to higher incident energies. We

computed the cross sections by summing all the inelastic cross sections that were open

within the 0.02–15 eV incident energy range. Hence another reason for the general

disagreement in the dissociation cross sections with Makochekanwa et al. (2006) may be

that some of the inelastic cross sections could not be included because their corresponding

channel thresholds were overestimated and outside this energy range thereby producing

lower dissociation cross sections.

We also computed target and scattering observables for C2H6 (ethane) and C3H8

(propane), but these proved much more difficult: in these cases a large number of coupled

states were included in the close-coupling expansion (64 and 72 respectively). Still the

agreement with previous theoretical and experimental studies was very poor (hence the

work is not presented in this thesis at all). Our CASCI target models yielded very

low polarisabilities (5.89 a3
0 and 3.72 a3

0 for ethane and propane respectively compared

to 28.52 a3
0 and 39.26 a3

0 obtained experimentally (NIST, 2008)). Clearly such a large

number of states is still insufficient to attain a converged treatment of the polarisation

interaction.

In conclusion this study has demonstrated the need for accurate target wavefunc-

tions so as to obtain accurate scattering quantities and observables. Therefore a future

study will be to investigate the influence of more accurate ab initio quantum chemistry

methods, perhaps pseudo natural orbitals incorporating all possible singles and dou-

bles excitations and accounting for the Rydberg nature of the low-lying excited states,

and examine their influence upon the vertical excitation energies and the dissociation

cross sections. R-matrix calculations including Rydberg states have been performed

before (Rozum et al., 2003).
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Chapter 10
Electron-impact Rotation and Hyperfine

Excitation of HCN, DCN, HNC and HNC

10.1 Introduction

Hydrogen cyanide, HCN, and its isomer HNC (hydrogen isocyanide) are amongst the

most abundant organic molecules in space, from star-forming regions to circumstellar

envelopes and comets. They also belong to the small class of molecules detected in

high-redshift galaxies, along with CO and HCO+ (Guelin et al. (2007) and references

therein). In addition to thermal emission from various rotational transitions within dif-

ferent vibrational states at (sub)millimetre and far-infrared wavelengths (e.g. Cernicharo

et al. (1996)), a few masering lines have been detected towards several stars (Lucas

and Cernicharo, 1989). Several isotopologues have also been identified, particularly the

deuterated species DCN and DNC (Leurini et al., 2006).

An interesting observation concerning the rotational spectra of HCN is that of the

hyperfine anomalies (Walmsley et al., 1982). At high resolution it is possible to resolve

the hyperfine components arising from the nitrogen 14N nuclear spin from transitions

arising from the low-lying rotational levels. The hyperfine lines have been found in a

number of cases (Izumiura et al., 1995; Park et al., 1999; Ahrens et al., 2002) not to be in

thermal equilibrium with each other. These anomalies have been shown to depend upon

the degree of thermal overlap, on the opacity and on the collisional rates (Guilloteau

and Baudry, 1981).

Thirty years ago it had already been suggested that when the electron fraction ex-

ceeds about 10−5, electron impact excitation of polar molecules may be significant in
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Figure 10.1: Comet C/1995 O1 (Hale-Bopp) where electron collisions play an important role

in the rotational excitation of HCN. Taken on 4th April 1997 (Credit: E. Kolmhofer, H. Raab;

Johannes-Kepler-Observatory, Linz, Austria (http://www.sternwarte.at) )

addition to collisions with neutrals (Dickinson et al., 1977). Such conditions may be

found in interstellar clouds and photon dominated regions, where n(e)/n(H) can reach

a few 10−4. Recently Lovell et al. (2004) devoted their study to the effect of electron

collisions in the rotational excitation of cometary HCN: they showed that electron colli-

sions are the dominant excitation mechanism in the comets Hale-Bopp (figure 10.1) and

Hyakutake (figure 10.2) where the electron fraction n(e)/n(H2O) lies in the range 10−5

to 1. The authors stated that accounting for electron collisions may thus alleviate the

need for large HCN-H2O cross sections in models that neglect effects due to electrons.

Similar conclusions were reached in the case of water by Faure et al. (2004a).

Recently, Jimenez-Serra et al. (2006) used rotational emissions of SiO, HCO+, HCN

and HNC in order to probe electron densities in C-type shocks. In particular, they

ascribed differences in the ambient and precursor components to electron density en-
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Figure 10.2: Ultraviolet Radiation From Hydrogen Atoms in Coma of Comet Hyaku-

take (C/1996 B2)) (Credit: M. Combi (University of Michigan); Image URL:

http://hubblesite.org/newscenter/archive/releases/1998/13/image/a )

hancements during the first stages of the C-type shock evolution. The dipolar HCO+

was found to be a sensitive tracer to this effect.

A theoretical determination of rotational cross-sections and rate coefficients for e-

HCN scattering was carried out by Saha et al. (1981) for the inelastic transitions J =

0 → 1, J = 1 → 2 and J = 0 → 2 using the rotational close coupling method. Their

rate coefficients were obtained in the temperature range 5–100 K. Additional scattering

studies include that of Jain and Norcross (1985), where the adiabatic nuclei rotation

(ANR) approximation was combined with model potentials, and He-HCN scattering

by Green and Thaddeus (1974), Green (1974) and Monteiro and Stustzki (1986). The

latter also computed hyperfine rate coefficients for 0–4 and T = 10− 30 K.

Here we considered the electron-impact rotational and hyperfine excitation of HCN

and HNC and their isotopologues DCN and DNC respectively. The ab initio R-matrix
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method combined with the adiabatic nuclei rotation (ANR) approximation was applied

to calculate the rotationally resolved and summed differential cross sections, rotationally

resolved integral cross sections, rotational and hyperfine excitation rate coefficients for

all levels up to J = 8 and electron temperature range 5–6000 K.

This chapter opens with a brief discussion of the particulars of the R-matrix model

that was used to obtain the required scattering wavefunctions and quantities, especially

the fixed nuclei (FN) T-matrices.

10.2 R-matrix Calculations

The R-matrix calculation was carried out using the highest Abelian sub-group of HCN

and HNC C2v (natural point group is C∞v), at the fixed equilibrium geometry of these

triatomics. An R-matrix sphere of radius 10 a0 was sufficient to contain the electron

charge clouds. The calculation was performed using the UK polyatomic R-matrix pack-

age (Morgan et al., 1998).

HCN and HNC (hence DCN and DNC) were represented using the 6–31G GTO

basis set. The target wavefunctions were calculated using the CASCI method. These

were subsequently improved by use of pseudo natural orbitals which were calculated

using the five lowest-lying C2v electronically excited 1A1, 3A1, 3A2, 3B1 and 3B2 with

all possible single and double excitations to virtual orbitals included. However in order

to include the double excitations, it was necessary to freeze eight electrons (the 1s and

2s electrons of the C and N atoms). For both HCN and HNC the weighting coefficients

for the density matrix averaging procedure were 5.75, 1.5, 1.5, 1.5 and 1.5 for 1A1,
3A1, 3A2, 3B1 and 3B2 respectively. Concerning the quantum chemistry properties, the

dipole moments −2.87 D and −2.91 D were obtained for HCN and HNC respectively

compared to −2.985 D (Ebenstein and Muenter, 1984) and −3.05 D (Blackman et al.,

1976) determined experimentally.

The scattering wavefunctions were determined using a close-coupling (CC) expansion

that retained 24 target states, many of which were strongly closed so as to improve

the modelling of the polarisation interaction, a standard ab initio technique. This was

to ensure that the parameters of the expected 2Π shape resonance were kept as low

as possible. Calculations were carried out on the 2A1, 2B1, 2B2 and 2A2 scattering

symmetries.

The scattering electron was represented by the GTO basis set of Faure et al. (2002)
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with a partial wave expansion up to and including g-wave (l = 4). The continuum

orbitals where augmented with one virtual molecular orbital of each symmetry, where

such orbitals were available to do so. In order to improve the modelling of the polarisation

further, we employed uncontracted CSFs to construct the inner region CC expansion and

thereby reduce the resonance parameters yielded by this model further. Discussion on

the problem of convergence of this interaction in CC methods may also be found in

Gil et al. (1994) and Gorfinkiel and Tennyson (2004). The resulting fixed nuclei (FN),

body fixed (C∞v) T-matrices were used to calculate the pure rotational excitation cross

sections in the energy range 0.01–6.2 eV. The positions of the 2Π shape resonances for

HCN and HNC are inside this interval.

In the fixed geometry approximation the DCN and DNC wavefunctions are identical

to those of HCN and HNC respectively. The chief distinction between the isotopologues

arises, in our treatment, from the different rotational excitation thresholds.

10.3 Results

10.3.1 Differential Cross Sections

Experimental differential cross sections are measured reliably and used to test a theo-

retical scattering model. In the case of polar molecules integral cross sections deduced

from experiments are dependent upon the extrapolation procedure applied to estimate

the small angle scattering that cannot be detected in experiment (Faure et al., 2004b).

Figure 10.3 shows our rotationally resolved and summed differential cross sections

compared to the experiment of Srivastava et al. (1978). Whereas the present calculations

reproduce their results qualitatively, quantitatively our results are larger by a factor of

2 at angles below 100o. As anticipated the dipole-allowed 0→1 transition dominates

over all the other transitions. Sharp dips are also observed at about 20o, 70o and 120o,

and they are not entirely suppressed by the contributions of the other transitions in

the summed curve. We note that Allan and Dickinson (1981) also observed similar

dips in electron scattering by the polar diatomic CsCl using the semiclassical approach.

As stated in chapter 7, these dips were attributed to an interference effect between

two equally weighted classical paths. Clearly, more experimental study is necessary to

interpret the differences observed between theory and experiment, as suggested by Jain

and Norcross (1985).
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Figure 10.3: Differential cross sections for vibrationally elastic scattering (rotationally summed)

of electrons by HCN at 5 eV. The present calculation is given by the thick solid line and the ex-

perimental data (full red circles) are from Srivastava et al. (1978). Other lines denote rotationally

resolved differential cross sections

As expected for very polar species, the Born completion was found to be crucial in

the case of the dipole interaction. The dipole-allowed transitions (∆J = 1) were found

to be dominated by the higher partial waves (l > 4), with a small contribution from

the FN T-matrices. Born completion for the quadrupole and induced dipole interactions

was found to be negligible, with high partial waves only increasing ∆J = 0, 2 by less

than 2%. This clearly shows that cross sections for the dipole forbidden transitions

converge more rapidly with respect to partial wave expansion. Therefore only the Born

closure approximation for the dipole interaction was applied in the computation of the

rotational integral cross section.

In figure 10.4 we compare our integral rotational cross sections with those of Jain and

Norcross (1985) and Saha et al. (1981). Excellent agreement is attained down to 0.01 eV.

At lower energy, the extrapolation formula of Rabádan et al. (1998) (equation 1 of their

paper) was adopted and which was calibrated using the rotational CC results of Saha

et al. (1981). This procedure introduced uncertainties in the computation of the rate

coefficients below about 100 K, in addition to closed channel effects that were ignored

in the present calculation. Consequently those coefficients below 100 K are expected to
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Figure 10.4: Integral cross sections for rotationally inelastic scattering (rotationally summed)

of electrons by HCN. Lozenges and stars denote the results of Saha et al. (1981) and Jain and

Norcross (1985) respectively. The present calculations are given by the thick solid lines

be less accurate than those at higher temperatures.

Figure 10.4 also exhibits a large shape resonance at about 2.8 eV. It is especially

pronounced in the cross sections for transitions ∆J > 2. This 2Π resonance has been

confirmed experimentally (Burrow et al., 1992) and discussed previously in chapter 5. For

HNC it appears at a slightly lower position of 2.5 eV. The dipole-allowed transitions are

much larger than the others owing to the dominance of the long-range dipole interaction

typical of polar molecules.

Finally, to our knowledge there is no data, theoretical or experimental, on the rota-

tional excitation of DCN, HNC and DNC available in literature.

10.3.2 Rotational Excitation Rate Coefficients

HCN and HNC (hence DCN and DNC) have their first inelastic thresholds at 6.63 and

6.20 eV respectively so the rotational cross sections were computed in the range 0.01–

6.2 eV and extrapolated to rotational thresholds, as discussed earlier. The electron

velocity distribution was assumed to be Maxwellian and the rate coefficients were ob-

tained for temperatures in the range 5–6000 K for transitions among all the levels up

to J = 8. The de-excitation rate coefficients were extracted using the detailed balance
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Figure 10.5: Rotational excitation rate coefficients of HCN and DCN by electron-impact.

Lozenges denote the HCN results of Saha et al. (1981). The present calculations are given

by the thick solid lines for HCN and dashed lines for DCN

relation. For use in modelling the temperature dependence of the de-excitation rate

coefficients k(T ), with units of cm3s−1, was fitted to the analytic form:

log k(T ) =
N∑

i=0

aix
i (10.1)

where x = (T/K)−
1
6 , N = 4 and T was restricted to the range 5–2000 K. The coefficients

ai, listed in tables 10.1– 10.4, are such that the unit of k is cm3s−1.

Excitation rate coefficients for HCN and DCN are presented in figure 10.5. The

small differences with the results of Saha et al. (1981) reflect the sensitivity of low-

temperature rate coefficients to the near-threshold cross sections. One can also note that

the smaller rotational thresholds of DCN, with respect to HCN, lead to a significant but

moderate increase in rate coefficients below 100 K. Consequently, rate coefficients for

other isotopologues such as H13CN and H15NC are expected to be similar to those of

HCN and HNC respectively since the rotational thresholds are only slightly different.

In figure 10.6 electron-impact rate coefficients for HCN and HNC are presented along-

side the rate coefficients for excitation of HCN by He atoms. It is quite clear from the

figure that HCN and HNC have similar rate coefficients, with typical differences less

than 50% for the plotted transitions. The J = 0 → 1 curves are almost superposed in
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Transition Eup (K) a0 a1 a2 a3 a4

(1− 0) 4.3 −7.543 10.018 −17.974 14.328 −4.169
(2− 0) 12.8 −10.923 22.212 −52.611 60.265 −26.660
(2− 1) 12.8 −7.552 10.772 −21.515 19.858 −7.067
(3− 0) 25.5 −13.297 30.136 −71.602 79.988 −34.340
(3− 1) 25.5 −10.830 22.286 −52.461 59.201 −25.830
(3− 2) 25.5 −7.589 11.377 −24.257 24.067 −9.239
(4− 0) 42.5 −15.647 35.452 −84.761 94.380 −40.338
(4− 1) 42.5 −13.222 30.599 −73.095 81.660 −35.036
(4− 2) 42.5 −10.827 22.664 −53.590 60.351 −26.259
(4− 3) 42.5 −7.633 11.910 −26.550 27.495 −10.976
(5− 0) 63.8 −17.755 36.842 −88.707 99.539 −42.965
(5− 1) 63.8 −15.718 37.455 −91.762 104.331 −45.407
(5− 2) 63.8 −13.277 31.655 −76.702 86.569 −37.456
(5− 3) 63.8 −10.815 22.782 −53.882 60.382 −26.134
(5− 4) 63.8 −7.677 12.402 −28.613 30.532 −12.492
(6− 0) 89.3 −17.947 22.002 −49.290 54.613 −24.371
(6− 1) 89.3 −18.379 44.219 −114.389 136.990 −62.411
(6− 2) 89.3 −16.049 41.262 −105.105 123.812 −55.550
(6− 3) 89.3 −13.426 33.410 −82.796 95.273 −41.916
(6− 4) 89.3 −10.888 23.601 −56.532 63.817 −27.757
(6− 5) 89.3 −7.737 13.016 −31.039 34.097 −14.297
(7− 0) 119.1 −17.477 2.037 2.640 −10.257 8.971
(7− 1) 119.1 −19.755 39.818 −106.846 130.991 −59.153
(7− 2) 119.1 −20.167 61.606 −172.992 219.967 −103.973
(7− 3) 119.1 −17.003 50.704 −137.567 170.812 −79.770
(7− 4) 119.1 −13.717 36.432 −93.345 110.640 −49.901
(7− 5) 119.1 −10.947 24.277 −58.843 66.970 −29.308
(7− 6) 119.1 −7.791 13.571 −33.249 37.364 −15.963
(8− 0) 153.1 −9.087 −41.736 42.984 14.247 −28.504
(8− 1) 153.1 −14.491 −23.527 84.511 −119.423 58.957
(8− 2) 153.1 −16.613 11.279 −11.836 −2.489 6.619
(8− 3) 153.1 −17.542 36.928 −88.046 95.525 −39.360
(8− 4) 153.1 −18.534 64.949 −184.148 234.228 −109.912
(8− 5) 153.1 −14.334 42.448 −114.006 140.539 −65.328
(8− 6) 153.1 −11.068 25.526 −63.164 73.166 −32.507
(8− 7) 153.1 −7.823 13.903 −34.635 39.376 −16.952

Table 10.1: Coefficients ai of the polynomial fit to the HCN de-excitation rate coefficients. These

coefficients are only valid in the temperature range 5–2000 K. Eup are the upper energy levels
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Transition Eup (K) a0 a1 a2 a3 a4

(1− 0) 3.5 −7.513 9.737 −16.754 12.437 −3.174
(2− 0) 10.4 −10.931 22.292 −52.959 60.944 −27.038
(2− 1) 10.4 −7.527 10.532 −20.385 18.095 −6.144
(3− 0) 20.9 −13.275 29.938 −71.022 79.434 −34.150
(3− 1) 20.9 −10.799 22.009 −51.638 58.299 −25.449
(3− 2) 20.9 −7.561 11.088 −22.909 21.979 −8.157
(4− 0) 34.8 −15.559 34.612 −81.872 90.381 −38.336
(4− 1) 34.8 −13.189 30.289 −72.067 80.410 −34.476
(4− 2) 34.8 −10.794 22.357 −52.623 59.213 −25.753
(4− 3) 34.8 −7.592 11.502 −24.778 24.819 −9.611
(5− 0) 52.1 −17.594 35.278 −83.187 91.562 −38.855
(5− 1) 52.1 −15.554 35.865 −86.214 96.384 −41.332
(5− 2) 52.1 −13.199 30.907 −74.137 83.071 −35.733
(5− 3) 52.1 −10.807 22.701 −53.656 60.318 −26.194
(5− 4) 52.1 −7.643 12.076 −27.155 28.395 −11.451
(6− 0) 73.0 −17.202 14.785 −24.098 17.750 −5.212
(6− 1) 73.0 −17.737 38.047 −92.971 105.803 −46.244
(6− 2) 73.0 −15.705 37.912 −93.299 106.476 −46.487
(6− 3) 73.0 −13.236 31.583 −76.490 86.276 −37.307
(6− 4) 73.0 −10.843 23.178 −55.163 62.141 −27.005
(6− 5) 73.0 −7.677 12.439 −28.711 30.698 −12.601
(7− 0) 97.3 −16.289 −7.875 30.337 −38.294 15.702
(7− 1) 97.3 −18.107 24.976 −59.631 69.686 −32.154
(7− 2) 97.3 −18.405 45.121 −117.556 141.673 −64.869
(7− 3) 97.3 −16.011 41.257 −105.090 123.775 −55.517
(7− 4) 97.3 −13.372 33.096 −81.743 93.795 −41.171
(7− 5) 97.3 −10.838 23.256 −55.432 62.368 −27.064
(7− 6) 97.3 −7.728 12.953 −30.725 33.628 −14.069
(8− 0) 125.1 −9.469 −41.064 53.519 −24.563 5.360
(8− 1) 125.1 −17.037 −1.195 15.814 −33.284 23.214
(8− 2) 125.1 −19.699 39.962 −107.384 131.888 −59.701
(8− 3) 125.1 −19.905 59.603 −166.518 211.269 −99.909
(8− 4) 125.1 −16.738 48.424 −129.770 159.575 −74.013
(8− 5) 125.1 −13.600 35.446 −89.911 105.637 −47.303
(8− 6) 125.1 −10.913 24.049 −58.131 66.107 −28.940
(8− 7) 125.1 −7.765 13.337 −32.316 36.014 −15.296

Table 10.2: Coefficients ai of the polynomial fit to the DCN de-excitation rate coefficients. These

coefficients are only valid in the temperature range 5–2000 K. Eup are the upper energy levels
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Transition Eup (K) a0 a1 a2 a3 a4

(1− 0) 4.4 −7.403 8.926 −14.801 10.563 −2.590
(2− 0) 13.1 −9.639 14.074 −35.391 44.128 −21.007
(2− 1) 13.1 −7.423 9.788 −18.744 16.659 −5.761
(3− 0) 26.1 −12.814 28.897 −74.598 89.274 −40.332
(3− 1) 26.1 −9.592 14.548 −36.465 44.710 −21.001
(3− 2) 26.1 −7.455 10.360 −21.423 20.817 −7.926
(4− 0) 43.5 −15.927 39.571 −100.775 117.735 −52.025
(4− 1) 43.5 −12.763 29.537 −76.487 91.297 −41.134
(4− 2) 43.5 −9.578 14.777 −36.902 44.619 −20.689
(4− 3) 43.5 −7.521 11.100 −24.432 25.262 −10.173
(5− 0) 65.3 −15.764 21.053 −41.693 38.333 −13.813
(5− 1) 65.3 −16.129 42.754 −111.610 133.075 −59.844
(5− 2) 65.3 −12.209 24.827 −61.026 71.672 −32.590
(5− 3) 65.3 −9.621 15.387 −38.753 46.790 −21.638
(5− 4) 65.3 −7.583 11.785 −27.233 29.445 −12.313
(6− 0) 91.4 −15.158 1.477 7.836 −15.293 7.402
(6− 1) 91.4 −16.923 33.431 −84.174 99.707 −45.347
(6− 2) 91.4 −16.830 49.989 −136.387 168.824 −78.263
(6− 3) 91.4 −13.108 33.596 −90.122 110.323 −50.739
(6− 4) 91.4 −9.107 10.635 −23.005 26.473 −12.585
(6− 5) 91.4 −7.668 12.643 −30.602 34.339 −14.756
(7− 0) 121.8 −9.723 −58.673 181.107 −236.439 111.453
(7− 1) 121.8 −12.497 −22.208 88.515 −132.742 68.301
(7− 2) 121.8 −17.644 39.253 −96.958 104.695 −39.340
(7− 3) 121.8 −18.318 64.133 −183.445 234.541 −110.659
(7− 4) 121.8 −13.698 39.371 −109.796 138.629 −65.302
(7− 5) 121.8 −9.814 17.433 −45.443 55.767 −26.026
(7− 6) 121.8 −7.686 12.855 −31.518 35.688 −15.428
(8− 0) 156.6 −12.532 −8.671 −48.477 123.185 −76.018
(8− 1) 156.6 −9.784 −56.529 173.568 −225.735 106.060
(8− 2) 156.6 −12.407 −22.181 87.726 −131.074 67.259
(8− 3) 156.6 −14.860 14.808 −20.242 5.667 3.941
(8− 4) 156.6 −17.161 50.763 −126.624 131.935 −45.525
(8− 5) 156.6 −14.757 49.398 −143.428 186.181 −89.164
(8− 6) 156.6 −10.025 19.503 −52.460 65.752 −31.138
(8− 7) 156.6 −7.546 2.952 7.712 −20.936 12.334

Table 10.3: Coefficients ai of the polynomial fit to the HNC de-excitation rate coefficients. These

coefficients are only valid in the temperature range 5–2000 K. Eup are the upper energy levels
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Transition Eup (K) a0 a1 a2 a3 a4

(1− 0) 3.7 −7.384 8.764 −13.998 9.270 −1.898
(2− 0) 11.0 −9.621 13.929 −35.013 43.803 −20.891
(2− 1) 11.0 −7.388 9.471 −17.374 14.561 −4.671
(3− 0) 22.0 −12.764 28.480 −73.414 87.992 −39.825
(3− 1) 22.0 −9.554 14.223 −35.527 43.683 −20.576
(3− 2) 22.0 −7.415 9.987 −19.843 18.427 −6.694
(4− 0) 36.6 −15.858 38.929 −98.621 114.823 −50.591
(4− 1) 36.6 −12.724 29.182 −75.374 89.958 −40.533
(4− 2) 36.6 −9.556 14.614 −36.544 44.501 −20.775
(4− 3) 36.6 −7.475 10.691 −22.757 22.803 −8.942
(5− 0) 54.9 −15.543 18.882 −34.000 27.004 −7.873
(5− 1) 54.9 −15.904 40.627 −104.370 122.762 −54.559
(5− 2) 54.9 −12.752 29.932 −77.731 92.857 −41.854
(5− 3) 54.9 −9.558 14.818 −36.983 44.601 −20.644
(5− 4) 54.9 −7.533 11.316 −25.280 26.537 −10.839
(6− 0) 76.9 −13.939 −10.066 47.036 −71.217 35.657
(6− 1) 76.9 −15.950 24.200 −52.614 54.255 −22.087
(6− 2) 76.9 −16.211 44.121 −116.306 139.844 −63.333
(6− 3) 76.9 −12.874 31.372 −82.537 99.488 −45.176
(6− 4) 76.9 −9.596 15.308 −38.466 46.324 −21.378
(6− 5) 76.9 −7.577 11.788 −27.254 29.476 −12.326
(7− 0) 102.5 −12.645 −31.579 91.009 −110.232 49.377
(7− 1) 102.5 −15.491 5.896 −6.381 3.094 −0.486
(7− 2) 102.5 −17.326 37.781 −98.624 119.852 −55.263
(7− 3) 102.5 −16.959 51.549 −141.660 176.358 −82.102
(7− 4) 102.5 −13.109 33.807 −90.846 111.375 −51.288
(7− 5) 102.5 −9.671 16.091 −40.984 49.613 −22.945
(7− 6) 102.5 −7.628 12.320 −29.380 32.606 −13.908
(8− 0) 131.8 −13.106 −2.647 −70.842 157.263 −94.056
(8− 1) 131.8 −9.600 −58.397 180.148 −235.148 110.842
(8− 2) 131.8 −12.423 −22.254 88.666 −132.965 68.413
(8− 3) 131.8 −17.403 37.141 −88.825 91.193 −31.327
(8− 4) 131.8 −18.257 63.816 −182.467 233.321 −110.159
(8− 5) 131.8 −13.595 38.537 −106.951 134.530 −63.196
(8− 6) 131.8 −9.779 17.182 −44.598 54.590 −25.434
(8− 7) 131.8 −7.665 12.717 −31.059 35.143 −15.217

Table 10.4: Coefficients ai of the polynomial fit to the DNC de-excitation rate coefficients. These

coefficients are only valid in the temperature range 5–2000 K. Eup are the upper energy levels
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Figure 10.6: Rotational excitation rate coefficients of HCN and HNC as a function of tempera-

ture. The black and red lines denote the present results for electron-impact excitation of HCN

and HNC respectively. The green lines give the results of Green and Thaddeus (1974) and Green

(unpublished data) for the rotational excitation of HCN by He atoms

the entire temperature range, reflecting the dominance of the long-range dipole interac-

tion. Differences larger than a factor of two were found, however, for the smallest rate

coefficients (∆J > 2). The He-HCN rate coefficients are much smaller than the electron-

impact rate coefficients. In particular the J = 0 → 1 rate coefficient is about six orders

of magnitude smaller than the electron one. The propensity rules are very different,

with even ∆J favoured strongly over odd ∆J in the case of He collisions, which reflects

an interference effect related to the even anisotropy of the He-HCN potential energy

surface (McCurdy and Miller, 1977). As a result, the difference between e-HCN and

He-HCN rate coefficients is much larger for dipole-allowed transitions than for others:

as an example, the J = 0 → 4 transition at 1000 K is only a factor of four smaller than

the corresponding electron-impact rate.

These large differences between the He-HCN and e-HCN rotational rate coefficients,

in terms of magnitude and propensity rules, suggest that the modelling of HCN (and

HNC) in astrophysical environments must be sensitive to the relative abundance of

electrons and neutrals.
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10.3.3 Hyperfine Rate Coefficients

We computed the hyperfine rate coefficients from the pure rotational ones in accordance

with the formalism of Neufeld and Green (1994) and only considered the hyperfine effects

due to the N nucleus (angular momentum I = 1). Tables 10.6, 10.7, 10.8 and 10.9 show

the hyperfine transition rate coefficients for HCN, DCN, HNC and DNC respectively.

Table 10.5 shows the relative propensities predicted by our calculations at 20 K for a

few hyperfine transitions induced by electron impact. It may be seen that the present

implementation of the method, based upon the downward fundamental rate coefficients,

yields reasonable agreement with the CC results of Monteiro and Stustzki (1986) for

He-HCN collisions. Errors on the rate coefficient values were thus found to be between

10 % and 50 %, implying that the IOS approximation provides a good description of

hyperfine transition rates. Secondly, it clear that the well-known ∆J = ∆F propensity

rule is much stronger for e-HCN scattering than for He-HCN. This propensity rule was

derived by Alexander and Dagdigian (1985) who stated that this propensity rule is

independent of the scattering dynamics and follows the properties of the Wigner 6j

symbols. It is thus expected to become strong as J and J ′ increase, as can be observed

in tables 10.6–10.9. The fact that it is stronger for electrons than for He atoms is simply

due to the smallness of the ∆J > 2 electron-impact rate coefficients.

It may also be noted that in tables 10.6–10.9 transitions of the type (J, F = J) →
(J ′ = 1, F ′ = 0) are strictly forbidden in accordance with the Wigner-6j symbols. Mon-

teiro and Stustzki (1986) demonstrated that this selection rule only becomes a propensity

one at the close coupling level.

Table 10.6: Hyperfine de-excitation rate coefficients in cm3s−1 for HCN. Where necessary

powers of 10 are given in parentheses

J F J ′ F ′ 10 K 100 K 1000 K

1 0 0 1 0.373(-5) 0.297(-5) 0.173(-5)
1 1 0 1 0.373(-5) 0.297(-5) 0.173(-5)
1 1 1 0 0.0 0.0 0.0
1 2 0 1 0.373(-5) 0.297(-5) 0.173(-5)
1 2 1 0 0.492(-7) 0.277(-7) 0.121(-7)
1 2 1 1 0.111(-6) 0.624(-7) 0.272(-7)
2 1 0 1 0.123(-6) 0.693(-7) 0.302(-7)
2 1 1 0 0.199(-5) 0.164(-5) 0.101(-5)

Continued on to next page
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J F J ′ F ′ 10 K 100 K 1000 K
2 1 1 1 0.149(-5) 0.123(-5) 0.757(-6)
2 1 1 2 0.110(-6) 0.887(-7) 0.533(-7)
2 2 0 1 0.123(-6) 0.693(-7) 0.302(-7)
2 2 1 0 0.0 0.0 0.0
2 2 1 1 0.269(-5) 0.221(-5) 0.136(-5)
2 2 1 2 0.902(-6) 0.740(-6) 0.456(-6)
2 2 2 1 0.615(-7) 0.346(-7) 0.151(-7)
2 3 0 1 0.123(-6) 0.693(-7) 0.302(-7)
2 3 1 0 0.259(-8) 0.165(-8) 0.683(-9)
2 3 1 1 0.518(-8) 0.331(-8) 0.137(-8)
2 3 1 2 0.358(-5) 0.295(-5) 0.182(-5)
2 3 2 1 0.524(-8) 0.297(-8) 0.128(-8)
2 3 2 2 0.504(-7) 0.284(-7) 0.124(-7)
3 2 0 1 0.756(-8) 0.467(-8) 0.182(-8)
3 2 1 0 0.652(-7) 0.398(-7) 0.179(-7)
3 2 1 1 0.652(-7) 0.398(-7) 0.179(-7)
3 2 1 2 0.961(-8) 0.591(-8) 0.264(-8)
3 2 2 1 0.277(-5) 0.232(-5) 0.150(-5)
3 2 2 2 0.516(-6) 0.433(-6) 0.279(-6)
3 2 2 3 0.157(-7) 0.130(-7) 0.826(-8)
3 3 0 1 0.756(-8) 0.467(-8) 0.182(-8)
3 3 1 0 0.0 0.0 0.0
3 3 1 1 0.932(-7) 0.570(-7) 0.256(-7)
3 3 1 2 0.468(-7) 0.286(-7) 0.129(-7)
3 3 2 1 0.260(-8) 0.169(-8) 0.732(-9)
3 3 2 2 0.293(-5) 0.246(-5) 0.159(-5)
3 3 2 3 0.369(-6) 0.310(-6) 0.200(-6)
3 3 3 2 0.353(-7) 0.199(-7) 0.866(-8)
3 4 0 1 0.756(-8) 0.467(-8) 0.182(-8)
3 4 1 0 0.777(-10) 0.554(-10) 0.207(-10)
3 4 1 1 0.146(-9) 0.104(-9) 0.388(-10)
3 4 1 2 0.140(-6) 0.854(-7) 0.384(-7)
3 4 2 1 0.288(-9) 0.188(-9) 0.813(-10)
3 4 2 2 0.240(-8) 0.157(-8) 0.677(-9)
3 4 2 3 0.330(-5) 0.277(-5) 0.179(-5)
3 4 3 2 0.134(-8) 0.759(-9) 0.329(-9)
3 4 3 3 0.286(-7) 0.161(-7) 0.702(-8)
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10.3 Results

J F J ′ F ′ Present He (CC) He (IOS)

1 1 2 1 24.9 21.4 19.2
2 2 74.9 59.7 65.4
2 3 0.2 18.9 15.4

1 1 3 2 33.3 30.0 26.3
3 3 66.6 61.3 60.5
3 4 0.1 8.8 13.2

2 2 3 2 11.2 17.0 16.6
3 3 88.7 69.8 75.8
3 4 0.1 13.3 7.7

Table 10.5: Relative propensities for hyperfine collisional rate coefficients as a percentage of

the total rates for T = 20 K. Present=rates calculated here; He (CC)=close-coupling He−HCN

results of Monteiro and Stustzki (1986); He (IOS)=IOS scaling for He−HCN.

Table 10.7: Hyperfine de-excitation rate coefficients in cm3s−1 for DCN. Where necessary

powers of 10 are given in parentheses

J F J ′ F ′ 10 K 100 K 1000 K

1 0 0 1 0.392(-5) 0.311(-5) 0.179(-5)
1 1 0 1 0.392(-5) 0.311(-5) 0.179(-5)
1 1 1 0 0.0 0.0 0.0
1 2 0 1 0.392(-5) 0.311(-5) 0.179(-5)
1 2 1 0 0.516(-7) 0.281(-7) 0.121(-7)
1 2 1 1 0.116(-6) 0.632(-7) 0.273(-7)
2 1 0 1 0.129(-6) 0.702(-7) 0.303(-7)
2 1 1 0 0.212(-5) 0.172(-5) 0.105(-5)
2 1 1 1 0.159(-5) 0.129(-5) 0.786(-6)
2 1 1 2 0.117(-6) 0.933(-7) 0.553(-7)
2 2 0 1 0.129(-6) 0.702(-7) 0.303(-7)
2 2 1 0 0.0 0.0 0.0
2 2 1 1 0.286(-5) 0.233(-5) 0.142(-5)
2 2 1 2 0.960(-6) 0.780(-6) 0.474(-6)
2 2 2 1 0.645(-7) 0.351(-7) 0.152(-7)
2 3 0 1 0.129(-6) 0.702(-7) 0.303(-7)
2 3 1 0 0.277(-8) 0.170(-8) 0.689(-9)
2 3 1 1 0.554(-8) 0.341(-8) 0.138(-8)
2 3 1 2 0.381(-5) 0.310(-5) 0.189(-5)
2 3 2 1 0.550(-8) 0.301(-8) 0.129(-8)
2 3 2 2 0.529(-7) 0.288(-7) 0.124(-7)

Continued on to next page
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10.3 Results

J F J ′ F ′ 10 K 100 K 1000 K
3 2 0 1 0.798(-8) 0.478(-8) 0.183(-8)
3 2 1 0 0.685(-7) 0.406(-7) 0.180(-7)
3 2 1 1 0.685(-7) 0.406(-7) 0.180(-7)
3 2 1 2 0.101(-7) 0.602(-8) 0.266(-8)
3 2 2 1 0.298(-5) 0.247(-5) 0.156(-5)
3 2 2 2 0.556(-6) 0.459(-6) 0.290(-6)
3 2 2 3 0.169(-7) 0.138(-7) 0.857(-8)
3 3 0 1 0.798(-8) 0.478(-8) 0.183(-8)
3 3 1 0 0.0 0.0 0.0
3 3 1 1 0.979(-7) 0.581(-7) 0.258(-7)
3 3 1 2 0.491(-7) 0.291(-7) 0.129(-7)
3 3 2 1 0.280(-8) 0.175(-8) 0.739(-9)
3 3 2 2 0.315(-5) 0.261(-5) 0.165(-5)
3 3 2 3 0.397(-6) 0.328(-6) 0.207(-6)
3 3 3 2 0.370(-7) 0.202(-7) 0.869(-8)
3 4 0 1 0.798(-8) 0.478(-8) 0.183(-8)
3 4 1 0 0.825(-10) 0.574(-10) 0.209(-10)
3 4 1 1 0.155(-9) 0.108(-9) 0.392(-10)
3 4 1 2 0.147(-6) 0.870(-7) 0.386(-7)
3 4 2 1 0.312(-9) 0.195(-9) 0.821(-10)
3 4 2 2 0.260(-8) 0.162(-8) 0.684(-9)
3 4 2 3 0.355(-5) 0.294(-5) 0.186(-5)
3 4 3 2 0.141(-8) 0.769(-9) 0.330(-9)
3 4 3 3 0.300(-7) 0.163(-7) 0.705(-8)

Table 10.8: Hyperfine de-excitation rate coefficients in cm3s−1 for HNC. Where necessary

powers of 10 are given in parentheses

J F J ′ F ′ 10 K 100 K 1000 K

1 0 0 1 0.388(-5) 0.307(-5) 0.177(-5)
1 1 0 1 0.388(-5) 0.307(-5) 0.177(-5)
1 1 1 0 0.0 0.0 0.0
1 2 0 1 0.388(-5) 0.307(-5) 0.177(-5)
1 2 1 0 0.347(-7) 0.203(-7) 0.115(-7)
1 2 1 1 0.780(-7) 0.456(-7) 0.259(-7)
2 1 0 1 0.867(-7) 0.507(-7) 0.288(-7)
2 1 1 0 0.205(-5) 0.167(-5) 0.103(-5)
2 1 1 1 0.154(-5) 0.126(-5) 0.770(-6)
2 1 1 2 0.111(-6) 0.893(-7) 0.543(-7)

Continued on to next page
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10.3 Results

J F J ′ F ′ 10 K 100 K 1000 K
2 2 0 1 0.867(-7) 0.507(-7) 0.288(-7)
2 2 1 0 0.0 0.0 0.0
2 2 1 1 0.277(-5) 0.226(-5) 0.139(-5)
2 2 1 2 0.928(-6) 0.757(-6) 0.464(-6)
2 2 2 1 0.434(-7) 0.254(-7) 0.144(-7)
2 3 0 1 0.867(-7) 0.507(-7) 0.288(-7)
2 3 1 0 0.199(-8) 0.134(-8) 0.719(-9)
2 3 1 1 0.398(-8) 0.267(-8) 0.144(-8)
2 3 1 2 0.369(-5) 0.302(-5) 0.185(-5)
2 3 2 1 0.373(-8) 0.220(-8) 0.123(-8)
2 3 2 2 0.356(-7) 0.208(-7) 0.118(-7)
3 2 0 1 0.586(-8) 0.381(-8) 0.193(-8)
3 2 1 0 0.459(-7) 0.293(-7) 0.172(-7)
3 2 1 1 0.459(-7) 0.293(-7) 0.172(-7)
3 2 1 2 0.683(-8) 0.438(-8) 0.254(-8)
3 2 2 1 0.284(-5) 0.237(-5) 0.152(-5)
3 2 2 2 0.528(-6) 0.440(-6) 0.282(-6)
3 2 2 3 0.158(-7) 0.131(-7) 0.836(-8)
3 3 0 1 0.586(-8) 0.381(-8) 0.193(-8)
3 3 1 0 0.0 0.0 0.0
3 3 1 1 0.657(-7) 0.419(-7) 0.246(-7)
3 3 1 2 0.330(-7) 0.210(-7) 0.123(-7)
3 3 2 1 0.198(-8) 0.136(-8) 0.767(-9)
3 3 2 2 0.300(-5) 0.250(-5) 0.161(-5)
3 3 2 3 0.378(-6) 0.315(-6) 0.202(-6)
3 3 3 2 0.249(-7) 0.146(-7) 0.827(-8)
3 4 0 1 0.586(-8) 0.381(-8) 0.193(-8)
3 4 1 0 0.699(-10) 0.522(-10) 0.229(-10)
3 4 1 1 0.131(-9) 0.978(-10) 0.429(-10)
3 4 1 2 0.985(-7) 0.628(-7) 0.368(-7)
3 4 2 1 0.220(-9) 0.151(-9) 0.852(-10)
3 4 2 2 0.184(-8) 0.126(-8) 0.710(-9)
3 4 2 3 0.338(-5) 0.282(-5) 0.181(-5)
3 4 3 2 0.952(-9) 0.560(-9) 0.315(-9)
3 4 3 3 0.202(-7) 0.118(-7) 0.670(-8)
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10.3 Results

Table 10.9: Hyperfine de-excitation rate coefficients in cm3s−1 for DNC. Where necessary

powers of 10 are given in parentheses

J F J ′ F ′ 10 K 100 K 1000 K

1 0 0 1 0.408(-5) 0.321(-5) 0.183(-5)
1 1 0 1 0.408(-5) 0.321(-5) 0.183(-5)
1 1 1 0 0.0 0.0 0.0
1 2 0 1 0.408(-5) 0.321(-5) 0.183(-5)
1 2 1 0 0.360(-7) 0.205(-7) 0.115(-7)
1 2 1 1 0.811(-7) 0.462(-7) 0.259(-7)
2 1 0 1 0.901(-7) 0.513(-7) 0.288(-7)
2 1 1 0 0.218(-5) 0.176(-5) 0.106(-5)
2 1 1 1 0.163(-5) 0.132(-5) 0.799(-6)
2 1 1 2 0.118(-6) 0.939(-7) 0.563(-7)
2 2 0 1 0.901(-7) 0.513(-7) 0.288(-7)
2 2 1 0 0.0 0.0 0.0
2 2 1 1 0.294(-5) 0.238(-5) 0.144(-5)
2 2 1 2 0.986(-6) 0.797(-6) 0.481(-6)
2 2 2 1 0.450(-7) 0.256(-7) 0.144(-7)
2 3 0 1 0.901(-7) 0.513(-7) 0.288(-7)
2 3 1 0 0.211(-8) 0.137(-8) 0.726(-9)
2 3 1 1 0.421(-8) 0.274(-8) 0.145(-8)
2 3 1 2 0.392(-5) 0.318(-5) 0.192(-5)
2 3 2 1 0.388(-8) 0.223(-8) 0.123(-8)
2 3 2 2 0.370(-7) 0.211(-7) 0.118(-7)
3 2 0 1 0.614(-8) 0.388(-8) 0.194(-8)
3 2 1 0 0.479(-7) 0.297(-7) 0.172(-7)
3 2 1 1 0.479(-7) 0.297(-7) 0.172(-7)
3 2 1 2 0.713(-8) 0.445(-8) 0.254(-8)
3 2 2 1 0.304(-5) 0.251(-5) 0.158(-5)
3 2 2 2 0.566(-6) 0.467(-6) 0.293(-6)
3 2 2 3 0.170(-7) 0.139(-7) 0.868(-8)
3 3 0 1 0.614(-8) 0.388(-8) 0.194(-8)
3 3 1 0 0.0 0.0 0.0
3 3 1 1 0.686(-7) 0.425(-7) 0.246(-7)
3 3 1 2 0.344(-7) 0.213(-7) 0.123(-7)
3 3 2 1 0.212(-8) 0.140(-8) 0.774(-9)
3 3 2 2 0.321(-5) 0.265(-5) 0.167(-5)
3 3 2 3 0.404(-6) 0.334(-6) 0.210(-6)
3 3 3 2 0.259(-7) 0.147(-7) 0.827(-8)
3 4 0 1 0.614(-8) 0.388(-8) 0.194(-8)

Continued on to next page
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10.4 Conclusion

J F J ′ F ′ 10 K 100 K 1000 K
3 4 1 0 0.737(-10) 0.536(-10) 0.231(-10)
3 4 1 1 0.138(-9) 0.100(-9) 0.432(-10)
3 4 1 2 0.103(-6) 0.636(-7) 0.368(-7)
3 4 2 1 0.235(-9) 0.156(-9) 0.860(-10)
3 4 2 2 0.196(-8) 0.130(-8) 0.717(-9)
3 4 2 3 0.362(-5) 0.299(-5) 0.188(-5)
3 4 3 2 0.990(-9) 0.567(-9) 0.315(-9)
3 4 3 3 0.210(-7) 0.120(-7) 0.670(-8)

10.4 Conclusion

We have computed the electron-impact rotational excitation cross sections, rotation-

ally resolved differential cross sections, rotational and hyperfine (de)-excitation rate

coefficients for the HCN and HNC triatomic molecules and their isotopologues. Our

calculations were based on the ab initio R-matrix method combined with the ANR ap-

proximation. The results hence obtained showed that the collisions are dominated by

the dipolar transitions which was not surprising given the long range nature of the dipole

moment (approximately 3 D). Short-range correlation effects were also found to be im-

portant and were included via the inner region scattering eigenkets as corrections to the

Born approximation. Dipole forbidden transitions therefore have appreciable rate coef-

ficients which cannot be ignored in any detailed population models of the isotopologues

of HCN and HNC. We have shown that electron-impact rate coefficients are crucial for

modelling environments where the electron fraction is greater 10−6. Jimenez-Serra et al.

(2006) suggested using rotational emissions of HCO+, HCN and HNC to probe electron

densities in C-type shocks. The present rate coefficients should help in the investigation

of electron density enhancements expected during the first stages of a C-type shock evo-

lution, and in the modelling of the observed variable HCN/HNC ratio in comets (Biver

et al., 2006).

Since hyperfine structure is resolved in some astronomical spectra, we computed,

using the IOS approximation, the hyperfine rate coefficients, considering only the nuclear

spin of the 14N atom as the effect of the H and D atoms was assumed to be negligible. Our

implementation based on the downward fundamental rate coefficients yielded reasonable
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10.4 Conclusion

agreement with the CC results of Monteiro and Stustzki (1986) for He-HCN scattering.

The hyperfine excitation rate coefficients were obtained by invoking the detailed balance

relation. The major finding was that the ∆J = ∆F propensity rule was much stronger

for electron collisions than for helium ones.
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Chapter 11
Conclusion

The aim of this thesis was to analyse low-energy (< 10 eV) electron scattering by

molecules of astrophysical interest. The focus was particularly on polar molecules includ-

ing HCN, HNC (with dipole moments of about −3 D), the weakly polar CO (−0.043 D),

SiO (about +3 D), CS (+1.98 D) and the non-polar alkane CH4 using the widely ap-

plied ab initio R-matrix method of Wigner (1946) and Wigner and Eisenbud (1947).

We calculated the K-, T- and R-matrix, the eigenphase sums, resonance parameters and

electronically inelastic and BEB ionisation cross sections.

Using the T-matrix we computed: the integrated rotational cross sections using

the adiabatic nuclear rotation approximation (ANR) and the rotationally resolved dif-

ferential cross sections using the Born completion method on the scattering ampli-

tude (Itikawa, 2000). From the integrated rotational cross sections, and by modelling the

electron velocity distribution as Maxwellian, the rotational excitation rate coefficients

were then computed, from which we calculated hyperfine transition rate coefficients us-

ing the formalism of Neufeld and Green (1994). All of these observables are intended

for later use in astrophysical modelling.

This thesis has presented a number of new findings.

For the first time an electron scattering calculation was carried out on HNC (hydro-

gen isocyanide) at the close-coupling (CC) level of approximation, and we were able to

show that electron scattering by HCN and HNC is dominated by a low-lying 2Π shape

resonance, which for the best HNC model was found to lie at 2.43 eV with a narrower

width of 0.67 eV compared to HCN where the resonance was located at 2.46 eV with a

width of 1.14 eV. The chief distinguishing feature of e-HNC scattering was the appear-

ance of 2Σ+ and 2∆ Feshbach resonances, which were entirely absent from scattering by
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HCN.

The T-matrices from the best models were initially transformed to their C∞v repre-

sentation, and then employed in the calculation of the electron-impact rotational exci-

tation cross sections and rate coefficients. They were also used for the calculation of the

same for the isotopologues DCN and DNC.

After H2, CO is one of the most abundant molecules in the interstellar medium.

Hence using the polyatomic codes directly we carried out CC scattering calculations

which retained a large number of open and closed channels (300). Our study confirmed

that scattering is dominated by the appearance of a 2Π shape resonance, which was

located at 2.03 eV, in good agreement with a previous measurement of 1.9 eV by Kwan

et al. (1983) for example. We did not however, detect the additional 2Π, 2Σ+ 2∆ and 2Φ

resonances obtained by Morgan and Tennyson (1993), but given that they were located at

positions outside of the energy range we considered, it is not surprising. Concerning the

quantum chemistry calculations, it was necessary to determine a model that would yield

a dipole moment accurate in terms of magnitude and with the correct experimentally

observed sign. This has been a source of contention in previous quantum chemistry

studies, where the HF approximation has yielded the incorrect sign, which has to be

corrected by more accurate post-HF methods which include correlation. We were able

to obtain good agreement with previous studies and so using this model the rotational

DCSs were computed. Although good agreement was attained with the data of Gibson

et al. (1996), concerns remain as to the correct behaviour at low scattering angles which,

according to the experimental data, has that associated with non-polar systems.

No scattering studies have been carried out on SiO to date. In chapter 7 we presented

for the first time quantities of the eigenphase sum, electronically inelastic cross sections,

rotationally resolved differential and integrated cross sections and the excitation rate

coefficients.

In terms of important features of the calculation, our study was able to independently

confirm the existence of a 2Π anionic bound state at −0.12 eV. Feshbach resonances of
2Σ−, 2Π and 2∆ symmetries were also detected, and whose appearance was sensitive to

the number of target states retained for construction of the inner region wavefunction

and of the R-matrix. Due to the absence of any previous low-energy studies, this study

cannot be benchmarked at present. The BEB ionisation cross section, however, was

compared to the data of Joshipura, Gangopadhyay and Vaishnav (2007) and our data
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were found to be lower than theirs over the entire energy range considered in the study.

It is well-known that the BEB cross section (Kim et al., 1997) is sensitive to the precise

value of the ionisation energy employed, and previous studies have used the experimental

value. Upon adopting this strategy, we observed virtually no change in the cross sections.

Until now, the one-state calculation of Carelli et al. (2008) was the only theoretical

study into electron-scattering by CS to have been carried out. They studied the evolution

of a low-energy 2Π shape resonance as a function of bond stretch and contraction. They

did not study the Feshbach resonances. In chapter 8 we carried out a 300-channel CC

R-matrix study for a range of bond lengths– 1.1–2.7 Å (equilibrium at 1.5349 Å, NIST

(2008)) using the DZP basis set. The existence of a 2Π bound state beyond about

1.6 Å was confirmed, in accordance with the observation of Carelli et al. (2008). A

number of Feshbach resonances of 2Σ−, 2Π and 2∆ scattering symmetries were also

detected, and a correlation table of which resonance corresponds to which dissociation

channel is given in table 8.5.

Unlike SiO and CS there are a multitude of theoretical and experimental electron-

impact studies on CH4. All studies reported on the appearance of a low-energy Ramsauer-

Townsend minimum and a cross section maximum at about 8 eV. We carried out a

detailed study in which it was found that in order to attain good agreement with exper-

iment, it was necessary to improve the modelling of the polarisation interaction, which

was modelled by retaining a large number of closed channels. Convergence of the integral

cross sections was attained when 48 states, or 300 channels, were included for the con-

struction of the R-matrix at the interaction radius, here taken to be 10 a0. However, this

is by no means an indication of a converged treatment of the polarisation interaction and

so a different structure of the trial wavefunction using ‘uncontracted’ configuration state

functions was employed instead. Unlike the studies using the usual contracted CSFs,

the uncontracted CSFs model yielded the Ramsauer-Townsend minimum at 0.4 eV, in

good agreement with previous calculations and experimental observations (experimental

value 0.36 eV (Lohmann and Buckman, 1986)).

Rotationally resolved DCSs for CH4 were calculated to confirm the accuracy of the

best model using POLYDCS (Sanna and Gianturco, 1998).

Despite the successes, there are criticisms of the CH4 study, particularly the channel

thresholds, which were found to be much higher than those measured experimentally. As

a result, our dissociation cross sections were in disagreement with Makochekanwa et al.
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(2006), although the shapes of the two cross section curves were similar, both producing

noticeable peaks.

Nearly all scattering studies mentioned above employed the JAVA-based application

Quantemol-N (Tennyson et al., 2007), which provides a simple, intuitive and user-friendly

expert interface to the UK polyatomic R-matrix codes. The motivation for developing

the software was to enable non-specialists to take full advantage of these codes. In fact

it has proved to be a productive tool even for experienced users.

Additional facilities were added to make the software much more powerful, including

a batch job facility to allow a user to run a queue of R-matrix calculations (T. A. Field,

private communication), a tutorial capability and calculation of BEB ionisation cross

sections.

The software has now branched into two versions– a standard edition (Quantemol-N

(SE)) and an enterprise edition (Quantemol-N (EE)), the latter providing the said job

queuing system. Further information may be found at http://www.quantemol.com.

Quantemol-N is under constant development. There are a number of tasks that

are being carried out at present, including the ability to locate bound states using

BOUND (Sarpal, Branchett, Tennyson and Morgan, 1991; Rabadán and Tennyson,

1996), integration with the application MOLPRO (Werner et al., 2008); calculation of

the differential and momentum transfer cross sections using and extending the formalism

of Itikawa (2000); calculation of the charge density for use in the SCOP method (Jo-

shipura, Gangopadhyay and Vaishnav, 2007); and calculation of cross sections for much

larger molecules: at the moment we are considering 2,2-dimethyl propane, or neopen-

tane, which has a similar structure to the methane molecule (a tetrahedral molecule

hence a member of the Td point group) except that all the hydrogen atoms are replaced

by the methyl functional group.

From the electron-impact rotational excitation studies that were performed on SiO,

HCN, HNC, DCN and DNC, our work has confirmed, without doubt, the need to include

electron-molecule interactions in any astrophysical modelling, such as comets, especially

when the scatterers are very polar molecules as stated previously by Xie and Mumma

(1992) and Lovell et al. (2004). In particular, we have been able to show that in some

cases collisions with electrons can compete with, if not, easily dominate over atom-

molecule collisions.

Future work includes a much more accurate quantum chemistry calculation for CH4
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following the discussion above. For example, it is certainly possible to use a much bigger

complete active space than the one used in this study which generated only 492 CSFs.

The high-lying Rydberg states of CH4 were entirely neglected in our study and should be

included as part of the study to determine the precise impact on the channel thresholds.

It was interesting to note the comment made by Lengsfield et al. (1991) that the

Ramsauer-Townsend minimum moves to higher energies with increasing polarisability

α0. Following a bug fix, two new calculations were performed using a new version of

Quantemol-N (version 3.5.2) with the same number of target states (48), but different

GTO basis sets. Using the DZP basis a polarisability of 9.34 a3
0 was obtained while the

more compact 6–31G basis set yielded a higher value of 11.41 a3
0 (expt. 16.52 a3

0 (NIST,

2008)). The 6–31G basis set calculation did re-produce the Ramsauer minimum but at a

lower energy of 0.1 eV (experimental value 0.36 eV (Lohmann and Buckman, 1986)); the

same could not be said of the DZP calculation. Hence it is certainly true to say that the

position is sensitive to the precise value of the polarisability. It would be interesting then

to confirm the above comment of Lengsfield et al. (1991) using the R-matrix method,

perhaps including pseudo-states (MRMPS) (Gorfinkiel and Tennyson, 2004).

The polarisabilites of C2H6 (5.89 a3
0) and C3H8 (3.72 a3

0) were very low compared

to the experimentally determined ones, which indicated that the modelling of the po-

larisation interaction was being significantly underestimated. Consequently, our cross

sections were found to be in poor agreement with experiments. It would be particu-

larly interesting, therefore, to see whether the bug-fix in DENPROP and application of

the MRMPS method make a difference to the quality of this observable and the other

scattering quantities, especially the eigenphase sums.

CS is also important in astrophysics and at present we are using the model described

in chapter 8 to compute the rotationally resolved integral cross sections and the corre-

sponding excitation rate coefficients.

Graupner et al. (2006) observed dissociative electron attachment to CS to be remark-

ably similar to that for CO. They recommended that theoretical calculations similar to

those presented in chapter 8 be carried out in order to determine why C− is so weakly

observed from CO but strongly from CS. This will be carried out in the near future (T.

A. Field, private communication), in which we shall attempt to confirm the existence of

the high-lying resonances discussed above.

Finally, the PYTHON Hyperfines code (chapter 3), developed to enable hyperfine
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rate coefficients for molecules with half-integer nuclear spin I to be calculated as well

as integer ones, is being applied to AlH at present (S. Kaur, K. L. Baluja, private

communication).

220



Appendix A
Non-Hermiticity of the Hamiltonian: A

Potential Scattering Example

Let the wavefunction of an enclosed system ψi = fi(r)Y mi
li

(θ, φ). Evaluating the Hamil-

tonian matrix element 〈ψj |Ĥψi〉 − 〈Ĥψj |ψi〉 over the interval containing the internal

region yields:

M = −1
2
[〈ψj |∇2ψi〉 − 〈∇2ψj |ψi〉] (A.1)

(the potential matrix elements are assumed to be Hermitian and vanish). Thus the

braket simplifies to a radial integral below

M = −1
2

{∫ a

0
r2drf∗j

1
r2

d

dr

(
r2
dfi

dr

)
−

∫ a

0
r2dr

[
1
r2

d

dr

(
r2
dfj

dr

)]∗
fi

}
(A.2)

(A.3)

Simplifying notation:

M = −1
2
(I1 − I2) (A.4)

I1 =
∫ a

0
f∗j

d

dr

(
r2
dfi

dr

)
dr (A.5)

I2 =
∫ a

0

d

dr

(
r2
df∗j
dr

)
fidr (A.6)

We shall evaluate the integrals I1 and I2 using integration by parts where for I1:

v = f∗j (A.7)
du

dr
=

d

dr

(
r2
dfi

dr

)
(A.8)
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and for I2

v = fi (A.9)
du

dr
=

d

dr

(
r2
df∗j
dr

)
(A.10)

Upon evaluation of these integrals, one obtains non-zero surface terms resulting in

the Hamiltonian not being Hermitian.

M = −a
2

2
(fj(a)∗f ′i(a)− f ′j(a)

∗fi(a)) 6= 0 (A.11)

Define the Bloch operator and the modified Hamiltonian:

L̂ =
1
2a
δ(r − a)

d

dr
r (A.12)

Ĥ = Ĥ + L̂ (A.13)

Computing the modified Hamiltonian matrix elements over the same interval

−1
2
〈ψj |∇2ψi〉+ 〈ψj |L̂ψi〉 − 1

2
〈∇2ψj |ψi〉 − 〈L̂ψj |ψi〉 (A.14)

it may be shown that evaluating those matrix elements involving the Bloch operator

simplify to

1
2a

{
a2

[
fj(a)∗

d

dr
[rfi(r)]a − d

dr
[rfj(r)∗]afi(a)

]}
(A.15)

Finally appealing to the product rule equation (A.15) may be shown to cancel the

kinetic energy surface term (A.11), and Hermicity is regained. Discussion on the above

problem may be found in Lane and Robson (1966).
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Appendix B
The Outer Region Coupled Differential

Equations

B.1 Derivation

Considering

ĤN+1|Ψ∆〉 = E|Ψ∆〉 (B.1)

one may decompose this Schrödinger equation to

−1
2
∇2

N+1Ψ
∆ +

{
−

∑

A

ZA

|rN+1 − rA| +
∑

i

1
|rN+1 − ri|

}
Ψ∆ + ĤNΨ∆ = EΨ∆ (B.2)

Let

V̂1 = −
∑

A

ZA

|rN+1 − rA| (B.3)

V̂2 =
∑

i

1
|rN+1 − ri| (B.4)

In the outer region one may employ the single centre expansion:

Ψ∆ =
∑

λ

F∆
λ

rN+1
ψN

λ Y
mλ
lλ

(B.5)

In evaluating the kinetic energy term of equation (B.2)

∇2Ψ∆ =
∑

λ

[
F∆

λ
′′ − lλ(lλ + 1)

r2N+1

F∆
λ

]
ψN

λ Y
mλ
lλ

rN+1
(B.6)
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B.2 The Channel Coupling Potential

Further manipulation of equation (B.2) and substituting equation (B.6) the coupled

differential equations become:

∑

λ

{
F∆

λ
′′ − lλ(lλ + 1)F∆

λ

r2N+1

+ 2(E − Eλ)F∆
λ

}
ψN

λ Y
mλ
lλ

= 2
∑

λ

V̂ F∆
λ ψ

N
λ Y

mλ
lλ

(B.7)

where

V̂ = V̂1 + V̂2 (B.8)

V̂ = −
∑

A

ZA

|rN+1 − rA| +
∑

i

1
|rN+1 − ri| (B.9)

and projecting on to ψN
λ′Y

mλ′
lλ′

F∆
λ′
′′ − lλ′(lλ′ + 1)F∆

λ′

r2N+1

+ 2(E − Eλ′)F∆
λ′ = 2

∑

λ

Vλ′λF
∆
λ (B.10)

where

Vλ′λ = 〈ψN
λ′Y

mλ′
lλ′

|V̂ |ψN
λ Y

mλ
lλ
〉 (B.11)

B.2 The Channel Coupling Potential

In the outer region the position vector of the scattering electron is greater than those

of the target electrons and the constituent nuclei. Therefore one may appeal to the

Legendre generating function and the spherical harmonic addition theorem to show that:

∑

i

1
|rN+1 − ri| =

∑

l

l∑

m=−l

1
rl+1
N+1

∑

i

Rm
l (ri)Y m

l (θN+1, φN+1) (B.12)

where

Rm
l (ri) =

4π
2l + 1

ri
lY m

l (θi, φi) (B.13)

Furthermore, define

V 1
λ′λ = 〈ψN

λ′Y
mλ′
lλ′

|V̂1|ψN
λ Y

mλ
lλ

〉 (B.14)

V 2
λ′λ = 〈ψN

λ′Y
mλ′
lλ′

|V̂2|ψN
λ Y

mλ
lλ

〉 (B.15)
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B.2 The Channel Coupling Potential

Computing 〈ψN
λ′Y

mλ′
lλ′

|V̂2|ψN
λ Y

mλ
lλ

〉 to begin with, we then obtain

V 2
λ′λ =

∑

l

l∑

m=−l

(−1)mλ′

rl+1
N+1

Mm
l (λ′ → λ)C(lλ′ , l, lλ)


 lλ′ l lλ

−mλ′ m mλ





lλ′ l lλ

0 0 0




(B.16)

where

Mm
l (λ′ → λ) = 〈ψN

λ′Y
mλ′
lλ′

|
∑

i

Rm
l (ri)|ψN

λ Y
mλ
lλ

〉 (B.17)

Let us define

bl,λ′λ =
l∑

m=−l

(−1)mλ′+1
[−Mm

l (λ′ → λ)
]
C(lλ′ , l, lλ)


 lλ′ l lλ

−mλ′ m mλ





lλ′ l lλ

0 0 0




(B.18)

In a similar fashion to the above, we can show that:

V 1
λ′λ =

∑

l

l∑

m=−l

∑

A

ZAR
m
l (RA)(−1)mλ′+1

rl+1
N+1

δλλ′C(lλ′ , l, lλ)


 lλ′ l lλ

−mλ′ m mλ





lλ′ l lλ

0 0 0




(B.19)

Again we let

cl,λ′λ =
l∑

m=−l

∑

A

ZAR
m
l (RA)(−1)mλ′+1δλλ′C(lλ′ , l, lλ)


 lλ′ l lλ

−mλ′ m mλ





lλ′ l lλ

0 0 0




(B.20)

Hence if we let al,λ′λ = bl,λ′λ + cl,λ′λ then

〈ψN
λ′Y

mλ′
lλ′

|V̂ |ψN
λ Y

mλ
lλ

〉 =
∑

l

al,λ′λ

rl+1
N+1

(B.21)

where

C(lλ′ , l, lλ) =

√
(2lλ′ + 1)(2l + 1)(2lλ + 1)

4π
(B.22)

al,λ′λ =
l∑

m=−l

µm
l (λ′ → λ)(−1)mλ′+1C(lλ′ , l, lλ)


 lλ′ l lλ

−mλ′ m mλ





lλ′ l lλ

0 0 0




(B.23)
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B.2 The Channel Coupling Potential

and the molecular multipole moments

µm
l (λ′ → λ) = −Mm

l (λ′ → λ) +
∑

A

ZAR
m
l (RA)δλλ′ (B.24)
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Appendix C
Publications

Electron-impact rotational excitation of the carbon monosulphide (CS) molecule

H. N. Varambhia, A. Faure, T. A. Field, K. Graupner and J. Tennyson

MNRAS (to be published) (2009)

Electron collision with the silicon monoxide (SiO) molecule using the R-matrix method

H. N. Varambhia, M. Gupta, A. Faure, K. L. Baluja and J. Tennyson

J. Phys. B: At. Mol. Opt. Phys. 42, 095204 (2009)

Cross sections For Scattering of Electrons on BF3

M. Radmilović-Radjenović, H. N. Varambhia, M. Vranić, J. Tennyson and Z. Lj. Petrović

Publ. Astron. Obs. Belgrade No. 84, 57 (2008)

R-matrix calculations of low-energy electron alkane collisions

H. N. Varambhia, J. J. Munro and J. Tennyson

Int. J. Mass Spectrom. 271, 1 (2008)

Quantemol-N: an expert system for performing electron molecule collision calculations

using the R-matrix method

J. Tennyson, D. B. Brown, J. J. Munro, I. Rozum, H. N. Varambhia and N. Vinci

J. Phys.: Conf. Ser. 86, 012001 (2007)

Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC

A. Faure, H. N. Varambhia, T. Stoecklin and J. Tennyson
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Mon. Not. R. Astron. Soc. 382, 840 (2007)

Electron collision with the HCN and HNC molecules using the R-matrix method

H. N. Varambhia and J. Tennyson

J. Phys. B: At. Mol. Opt. Phys. 40, 1211 (2007)

228



Bibliography

Abdolsalami F, Abdolsalami M and Gomez P 1994 Phys. Rev. A 50, 360–363.

Abuain T, Walker I C and Dance D F 1985 J. Chem. Soc., Faraday Trans. 81, 1061–1066.

Ahrens V, Lewen F, Takano S, Winnewisser G, Urban S, Negirev A A and Koroliev A N

2002 Z. NaturForsch 57, 669–681.

Alexander M H and Dagdigian P J 1985 J. Chem. Phys. 83, 2191–2200.

Alikhani M E, Tremblay B and Manceron L 1997 J. Mol. Struct. (Theochem) 394, 25–31.

Allan R J and Dickinson A S 1981 J. Phys. B: At. Mol. Opt. Phys. 14, 1675–1694.

Allen L C 1989 J. Am. Chem. Soc. 111, 9003–9014.

Allison A C and Dalgarno A 1971 Astron. Astrophys. 13, 331–332.

Almlof J and Taylor P R 1984 ‘Advanced Theories and Computational Approaches to

the Electronic Structure of Molecules’.

Altshuler S 1957 Phys. Rev. 107, 114–117.

Baluja K L, Burke P G and Morgan L A 1982 Computer Phys. Communs. 27, 299–307.

Baluja K L, Zhang R, Franz J and Tennyson J 2007 J. Phys. B: At. Mol. Opt. Phys.

40, 3515–3524.

Bayet E, Gerin M, Phillips T G and Contursi A 2006 Astron. Astrophys. 460, 467–485.

Bechtel H A, Steeves A H and Field R W 2006 Astrophys. J. 649, L53–L56.

Bezzaouia S, Telmini M and Jungen C 2004 Phys. Rev. A 70, 012713.

229



BIBLIOGRAPHY

Bieniek R J and Green S 1981 Chem. Phys. Lett. 84, 380–384.

Bieniek R J and Green S 1983 Astrophys. J. 265, 29.

Billingsley F B and Krauss M 1974 J. Chem. Phys. 60, 4130.

Biver N, Bockelee-Morvan D, Colom P, Crovisier J, Germain B, Lellouch E, Davies

J K, Dent W R F, Moreno R, Paubert G, Wink J, Despois D, Lis D C, Mehringer

D, Benford D, Gardner M, Philips T G, Gunnarsson M, Rickman H, Winnberg A,

Bergman P, Johansson L E B and Rauer H 1997 Earth, Moon, and Planets 78, 5–11.

Biver N, Bockele-Morvan D, Crovisier J, Lis D C, Moreno R, Colom P, Henry F, Herpin

F, Paubert G and Womack M 2006 Astron. Astrophys 449, 1255–1270.

Blackman G L, Brown R D, Godfrey P D and Gunn H I 1976 Nature 261, 395–396.

Boogert A C A, Blake G A and Oeberg K 2004 Astrophys. J 615, 344–353.

Boogert A C A, Schuttle W A, Tielens A G G M, Whittet D C B, Helmich F B,

Ehrenfruend P, Wesselius P R, de Graauw T and Prusti T 1996 Astron. Astrophys.

315, L377–L380.

Botschwina P and Sebald P 1985 J. Mol. Spectrosc. 110, 1–18.

Bottcher C 1970 Mol. Phys. 19, 193–198.

Bottcher C 1971 Chem. Phys. Lett. 9, 57–61.

Bouchiha D, Caron L G, Gorfinkiel J D and Sanche L 2008 J. Phys. B: At. Mol. Opt.

Phys. 41, 045204.
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Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A,

Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G,

Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas

S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M,

Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A

2008 ‘MOLPRO, version 2008.3, a package of ab initio programs’.

URL: http://www.molpro.net

Wigner E 1946 Phys. Rev. 70, 606–618.

Wigner E P and Eisenbud L 1947 Phys. Rev. 72, 29–41.

Williams G R J and Poppinger D 1975 Mol. Phys. 30, 1005–1013.

Williams J P and Blitz L 1998 Astrophys. J 494, 657–675.

Wilson R W, Penzias A A, Jefferts K B, Kutner M and Thaddeus P 1971 Astrophys. J.

167, 97.

Winnewisser G and Cook R L 1968 J. Mol. Spectrosc. 28, 266–268.

Winstead C and McKoy V 2000 Adv. Atom. Mol. Opt. Phys. 43, 111–145.

Winstead C and McKoy V 2006 J. Chem. Phys. 125, 174304.

Winstead C and McKoy V 2007 Phys. Rev. A 76, 012712.

Winstead C, Sun Q, McKoy V, Lino J L S and Lima M A P 1993 J. Chem. Phys.

98, 2132–2137.

Woods P M, Schoeier F L, Nyman L A and Olofsson H 2003 Astron. Astrophys. 402, 617–

634.

Xie X and Mumma M J 1992 Astrophys. J 386, 720–728.

Zetner P W, Kanik I and Trajmer S 1998 J. Phys. B: At. Mol. Opt. Phys. 31, 2395–2413.

Zobel J, U. Mayer K Y and Ehrhardt H 1996 J. Phys. B: At. Mol. Opt. Phys. 29, 813–

838.

Zubek M and Szmytkowski C 1979 Phys. Lett. A 74, 60–62.

Zuckerman B, Morris M, Palmer P and Turner B E 1972 Astrophys. J 173, 125–129.

246


