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Abstract 

 

The effects of ATM and ATR signalling induced by chromosomal breakage have been 

described extensively in modulating cell cycle progression up to the onset of mitosis. 

However, DNA damage checkpoint responses in mitotic cells are not well understood. 

This thesis reports on the effects of double strand breaks on the progression of mitosis.  

 

We found ATM and ATR activation can occur in mitotic Xenopus laevis egg extract 

and the induction of ATM and ATR by chromosomal breakages inhibits spindle 

assembly in both Xenopus egg extract and somatic cells. The delay in mitotic 

progression induced by ATM and ATR was found not to involve major spindle 

assembly factors activities such as, Cdk1, Plx1 and RCC1/Ran-GTP. However, normal 

anastral spindles formation around linear DNA coated beads, which can activate ATM 

and ATR, linked centrosome-driven spindle assembly to ATM and ATR dependent 

spindle defects. cDNA expression library screening was undertaken to identify novel 

ATM and ATR targets in this mitotic checkpoint pathway, through which the novel 

centrosomal protein XCEP63 was identified as a likely candidate. Data obtained from 

depletion and reconstitution of XCEP63 in Xenopus egg extract established that normal 

centrosome-driven spindle assembly requires XCEP63. Moreover, ATM and ATR 

phosphorylates XCEP63 on serine 560 and promotes delocalisation from the 

centrosome. ATM and ATR inhibition or addition of non-phosphorylable XCEP63 

recombinant protein mutated at serine 560 prevents spindle assembly abnormalities. 

These findings suggest that ATM and ATR regulate mitotic events by targeting 

XCEP63 and centrosome-dependent spindle assembly. This pathway may provide 

support for DNA repair processes or regulate cell survival in the presence of mitotic 

DNA damage. 
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1 Chapter 1 Introduction 

 

1.1 Cell cycle phases 

 

The cell cycle is an orderly progression through phases in which biochemical processes 

and cellular events of cell reproduction take place. The process of cell proliferation 

involves the replication of deoxyribonucleic acid (DNA) followed by the segregation of 

synthesized DNA to form two identical daughter cells. The schematic representation 

shown in figure 1.1 illustrates the cell cycle. The cycle is consists of two main stages: 

synthesis phase also know as S phase and mitosis, which is also termed M phase. S and 

M cell cycle phases are separated by gaps, G1 and G2 respectively. The schematic 

representation of the cell cycle illustrated in figure 1.1 shows the four sequential stages, 

G1 gap phase follows M phase and G2 gap phase follows S phase in preparation for 

entry into mitosis. G1, S and G2 cell cycle phases are collectively referred to as 

interphase. Cells reversibly enter G0 phase when they are non-proliferating, fully 

differentiated, quiescent or senescent (Planas-Silva and Weinberg, 1997). Cells can 

remain in this “resting phase” for lengthy periods of time before re-entering G1 phase. 
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Figure 1.1 Simplified schematic illustration of the vertebrate cell cycle  

The cell cycle is an ordered series of events subdivided into phases. The cell cycle begins at G1, 
following the satisfaction of the G0 restriction point the cell cycle continues into S phase, then G2 and 
completes at the end of M phase. Relative durations of cell cycle phases are represented in the diagram. 
The red arrow indicates the direction of cell cycle progression. 
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The protein family of serine/threonine Cyclin-dependent kinases (Cdk) essentially 

regulate the cell cycle by dictating the timing and order of cellular events. Primarily, 

Cyclins activate Cdks, which are central to the orchestration of specific cell cycle 

phases (Morgan, 1997; Murray, 2004). Cdk control of cellular events relies on 

oscillating Cyclin levels, which are regulated mainly through gene transcription and 

protein degradation by ubiquitin-dependent proteolysis (King et al., 1996; Peters et al., 

2002). CdK activating kinase (CAK) complexes complete Cdk activation by 

phosphorylating conserved Cdk sites (Nigg, 1996; Morgan, 1997). The activities of 

Cdks in association with Cyclins are further modulated by interactions with other 

proteins and phosphorylation modifications. For instance, Cdks can be inactivated or 

activated by Cdk inhibitory subunits (CKIs), which are grouped into protein families 

Cip/Kip (Cdk interacting protein/ kinase inhibitory protein, factors include p21, p27 

and p57) and Ink4 (inhibitors of Cdk4, factors include p15, p16, p18 and p19) (Sherr 

and Roberts, 1999). Further influence on substrate reactions corresponds to cellular 

positioning and activation timing of Cdks (Murray, 2004). Overall, Cdk regulatory 

mechanisms are fast, persistent and heavily reliant on positive feedback. These Cdk 

controls ensure the irreversible commitment to cell cycle transitions. The 

interdependency of Cdk and Cyclin oscillations dictates cellular processes in which the 

completion of an earlier event is dependent on initiation of the later event. Table one 

summarizes the cell cycle specific Cdk and Cyclin associations, these will be discussed 

further in the following cell cycle descriptions. 

 

Cell cycle function Cdk Cyclin partner 

G1 Cdk4 Cyclin D 

G1 Cdk6 Cyclin D 

G1/S transition Cdk2 Cyclin E 

S and G2 phase Cdk1/Cdk2 Cyclin A 

M phase Cdk1 Cyclin B 

 

Table 1 A summary of the Cdk and Cyclin pairing and relative functions in regulating cell cycle 

phases  

The table shows the preferred Cdk-Cyclin associations in the cell cycle. Both Cdck4 and Cdk6 bind 
Cyclin D and regulate events in G1 phase. Cdk2 paired with Cyclin E initiates entry into S phase from G1 
phase. Cdk1 and Cdk2 bind Cyclin A and regulates the progression of S phase into G2 phase. Cdk1 in 
association with Cyclin B functions in mitosis (Murray, 2004). 
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1.2  A brief description of cell cycle progression from G1 and S phase  

 

On completion of the previous cell cycle, the resulting daughter cells enter the first 

phase of a new cycle, G1. Early G1 progression is regulated through the combination of 

positive and negative extracellular signals. At the G1 ‘restriction point’ cells either 

commit to the cell division cycle or alternatively cells in the absence of certain growth 

factor triggers enter a non-proliferate state in G0 phase (Pardee, 1989). Extracellular 

mitogenic activated signalling pathways activate Cyclin D promoters leading to the 

rapid synthesis of Cyclin D subunits during G1 phase (Matsushime et al., 1991; Won et 

al., 1992; Sherr, 1993). Active c-Myc is an example of a Cyclin D promoter binding 

factor, which has been proven to induce Cyclin D expression and is required for cell 

cycle progression (Bouchard et al., 1999; Perez-Roger et al., 1999). Positive growth 

factor signaling is also required in Cyclin D1 mRNA stabilization (Guo et al., 2005). 

Synthesized Cyclin D subunits associate with and activate both Cdk4 and Cdk6 

(Matsushime et al., 1992; Meyerson and Harlow, 1996). Mitogenic signalling pathways 

have also been demonstrated to mediate Cyclin D assembly with Cdk4/Cdk6 and 

prevent Cyclin D degradation (Diehl et al., 1997; Matsushime et al., 1994). Cdk4/Cdk6-

Cyclin D association is thought to be assisted by CIP/KIP CKI interaction and 

consequently Cdk4/Cdk6-Cyclin D mediates G1 progression by sequestering CKIs, 

such as p21 and p27, preventing their inhibition of Cdk2 (Sherr and Roberts, 1999). 

Cdk4/Cdk6-Cyclin D complexes are also critical for entry into S phase by preventing 

the anti-proliferate effect of the retinoblastoma tumour suppressor gene product (pRb) 

(Harbour and Dean, 2000). Cdk4/Cdk6-Cyclin D interacts with, and 

hyperphosphorylates pRb, which leads to the release of tightly bound transcription 

factors belonging to the E2F family (Dowdy et al., 1993; Ewen et al., 1996; Meyerson 

and Harlow, 1996). Inactivation of pRb repression of E2F results in the transcription of 

Cyclin E, and Cyclin A, as well as E2F itself prior to the G1/S transition stage  (Woo 

and Poon, 2003). At the onset of S phase, Cdk2 (Cdc28 in yeast) is activated by 

expressed Cyclin E subunits, which then continues the phosphorylation of pRb (Koff et 

al., 1991; Koff et al., 1992). Accumulating Cyclin A generated from the pRb/E2F 

positive feedback pathway also activates Cdk2 and induces S phase onset (Girard et al., 

1991; Pagano et al., 1992; Ninomiya-Tsuji et al., 1991). In addition, active Cdk2-Cyclin 

A can inhibit E2F-dependent transcription by phosphorylating E2F (Dynlacht et al., 

1994; Krek et al., 1994; Dynlacht et al., 1997). 
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In the most part, control mechanisms and initiation of DNA replication are conserved 

from yeast to human. DNA replication firing initiates from DNA chromosomal 

replication origins loaded with pre-replication complexes (pre-RC). Pre-RC consist of 

regulatory factors that are assembled in G1 including the origin recognition complex 

(ORC), cell division cycle 6 (Cdc6), Cdc10-dependent transcript (Cdt1) and mini 

chromosome maintenance (MCM) proteins (Bell and Dutta, 2003; Takeda and Dutta 

2005). Cdk2-Cyclin E triggers the recruitment and the assembly of pre-RC components. 

The induction of pre-RC factors requires Cdk2 and Cdc7 activities (Woo and Poon, 

2003). However, it has been shown in Saccharomyces cerevisiae (S. cerevisiae) that 

replication initiation requires Cdk activation by Cdc28p catalytic subunit and Cyclin B 

subunits, Clb5,6p (Schwob and Nasmyth, 1993). In turn, Cdc45 is recruited to the pre-

RC, which triggers DNA replication origins. Cdc45 directs DNA helix unwinding and 

RPA (replication protein A) association stabilizes the resulting single stranded DNA 

(Walter and Newport, 2000). At origin sites, polymerase  binds and a bi-directional 

replication fork is generated, to which other polymerases are then recruited to elongate 

DNA.  

 

Once DNA replication origins have been fired, the pre-replication complexes are 

removed and are not reformed until the next round of the cell cycle at G1 phase 

(Prasanth et al., 2004). Therefore, DNA replication is only permitted in cells that have 

already undergone mitosis. Such S-M phase interdependency ensures that the cycle 

events follow in the correct order and DNA is duplicated only once per cell cycle (Rao 

and Johnson, 1970). An example of one regulatory mechanism preventing re-replication 

is the phosphorylation of Cdc6 by Cdk2-Cyclin A, which leads to the displacement of 

Cdc6 from the nucleus to the cytoplasm (Petersen et al., 1999). Once DNA replication is 

completed cells enter G2 phase, during which time cells continue to accumulate Cyclin 

A and B subunits (expression also promoted by E2F transcription factor), which 

prepares the cell for mitosis onset. However, mitotic Cdk-Cyclin complexes are 

maintained in an inactive state until the onset of mitosis (refer to mitosis section below). 
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1.2.1 M phase finalises the cell cycle: A focus on the progression and regulation 

of mitotic events  

 
The last stage of the cell cycle encompasses both mitosis and cytokinesis. Mitosis is the 

process of segregating duplicate chromosomes into two separate nuclei and cytokinesis 

is the process of dividing the mother cell into two daughter cells. Mitosis is a series of 

structural and molecular changes. As shown in figure 1.2, mitotic progression has been 

subdivided into stages: prophase, prometaphase, metaphase, anaphase and telophase 

according to cell morphology. Mitosis begins with prophase in which chromosomes 

become condensed. In prometaphase the nuclear envelope disintegrates, in metaphase 

chromatids are first aligned along the methapse plate and then segregated in anaphase. 

Mitosis ends with telophase in which nuclear envelope re-forms around the separated 

daughter nuclei. The correct progression of mitotic events ensures the proficient 

execution of cell division and ultimately the integrity of the genome. For instance, the 

mis-segregation of sister chromatids can lead to an incorrect number of chromosomes in 

a cell (aneuploidy) (Chi and Jeang, 2007). Cancer cells often display aneuploidy, a 

phenotype that is considered both to drive and to result from Tumourigenesis.  
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Figure 1.2 The stages of mitosis 

During prophase chromosomes condense, the nuclear envelope breaks down and centrosomes separate to 
opposite sides of the cell. At prometaphase, kinetochores capture microtubules connecting chromosomes 
to the spindle. At metaphase, chromosomes are bi-orientated and have congressed to the metaphase plate 
in the centre of the spindle. During anaphase, sister chromatids are separated and are segregated towards 
opposite poles, which are moving further apart. At telophase, nuclear envelope re-forms around separated 
sets of chromosomes. Adapted from Gadde and Heald, 2004 (Gadde and Heald, 2004).  
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The accurate separation of chromosomes is dependent on the correct assembly and 

functioning of bipolar spindles (Gadde and Heald, 2004). Centrosomes are described as 

microtubule-organising centres (MTOC), acting as dominant sites in spindle assembly 

(by regulating the formation of spindle poles, which orientates the mitotic bipolar 

spindle) (Schatten, 2008). Centrosomes are small cytoplasmic organelles made up of a 

pair of perpendicular centrioles embedded in pericentriolar material. The pericentriolar 

material within centrosomes is a scaffolding lattice made up numerous coiled-coiled 

proteins and includes the ring complex around centrioles consisting of 13 -tubulin 

molecules ( -tubulin ring complexes, -TuRC) (Zheng et al., 1995; Anderson et al., 

2003). Further pericentriolar factors are recruited to centrosomes in preparation for 

mitotic spindle assembly (centrosome maturation). Many of the centrosomal core 

proteins, in addition to -tubulin, have been shown to function in spindle formation, 

which includes pericentrin and ninein with roles in microtubule organisation and 

anchoring respectively (Doxsey et al., 1994; Mogensen et al., 2000). Whereas, other 

non-centrosomal proteins involved in spindle assembly associate only temporary to 

centrosomes during mitosis, such as Nuclear Mitotic Apparatus protein (NuMA), which 

has multiple functions in spindle assembly including cross-linking microtubules 

(bundling) into the correct organization (Sun and Schatten, 2006). Particularly 

noteworthy is the presence of Cdk1–Cyclin B, Plk1 (Polo-like kinase-1) and Aurora A 

mitotic cell cycle regulatory proteins within mitotic centrosomes (Jackman et al., 2003; 

Golsteyn et al., 1995; Tsvetkov et al., 2003; Barr and Gergely 2007). These 

centrosomal factors play important roles in spindle formation. 

 

It has been well documented that abnormal centrosomes structure and number leads to 

aberrant spindle formation that can lead to genetic instability. Within normal cells, tight 

control mechanisms across the cell cycle ensure the correct duplication of centrosomes. 

The centrosome cycle itself also has control over cell cycle progression (Hinchcliffe and 

Sluder, 2001; Rieder et al., 2001; Stearns, 2001). During S phase, centrosome 

duplication takes place and at the onset of mitosis centrosomes separate forming two 

centrosomes, containing one mother and one daughter centriole (Crasta and Surana, 

2006). However, the process of segregating centrosomes to opposite ends of the 

polarized cell is not well understood.  

 

After the separation of centrosomes, nuclear envelope breakdown and chromosome 
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condensation, microtubule spindles begin to form in prometaphase. Within 

centrosomes, the -TuRC nucleates microtubules promoting polymerisation of  and  

tubulin subunits; the formed microtubule prolifaments are then bundled together into the 

tubular microtubule fibre (Zheng et al., 1995; Moritz et al., 2000; Job et al., 2003; Desai 

and Mitchison, 1997; Nogales, 2000). Microtubule fibres are polar, the negative ends 

reside at centrosomes and the positive ends project outwards. In association with 

microtubules are a vast number of proteins, which are thought to facilitate microtubule 

regulation. Microtubules constantly shrink (depolymerise) and grow (polymerise). Such 

microtubule dynamics provide the continuous movement of microtubules towards the 

pole known as “Microtubule flux” (Mitchison, 1989). In addition, motor proteins 

associated with microtubules, which include minus-end directed dynein and negative 

and positive-end directed kinesins, drive microtubule movements by utilizing ATP 

hydrolysis. The functions of microtubule associated motor proteins are massively 

diverse, these include the promotion spindle bi-polarity (Heald and Walczak, 1999; 

Gadde and Heald, 2004). Further spindle bi-polarity arises from overlapping antiparallel 

microtubule fibres derived from the cytoplasm and the interaction of centrosomal aster 

microtubules with the cell cortex (Tulu et al., 2003; Gadde and Heald, 2004).   

 

In prometaphase, kinetochores, a protein structure formed at the centromere of each 

sister chromatid, ‘capture’ and interact with microtubules projecting from centrosomes 

(search and capture model) (Rieder and Salmon, 1998; Hayden et al., 1990; Tanaka et 

al., 2005; Tanaka et al., 2008). Kinetochores are then moved along the length of the 

attached microtubules toward the spindle pole promoted by kinetochore associated 

minus-end motor proteins (dynein in metazoans and kinesin-14 in budding yeast) 

(Rieder and Alexander, 1990; Yang et al., 2007b; King et al., 2000; Tanaka et al., 

2007). Finally, chromosome bi-orientation is achieved when kinetochores on both sister 

chromatids are attached to microtubules originating from opposite spindle poles. At this 

point, kinetochores are attached to the positive ends of microtubules and chromosome 

movement is thought it be coupled directly with microtubule dynamics. The turnover of 

kinetochore-microtubule interactions promoted by Aurora B has been proposed as a 

mechanism to ensure chromosome bi-orientation (Tanaka et al., 2002; Hauf et al., 2003; 

Dewar et al., 2004; Lampson et al., 2004). It is generally thought that only when bi-

orientation is achieved, the process that is referred to as chromosome congression takes 

place, in which chromosomes are directed towards the central metaphase plate (Rieder 

and Salmon, 1994). Although, it has been shown in metazoans that kinetochore 
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localized CENP-E (kinesin) can transport mono-orientated chromosomes away from 

spindle poles along microtubules with already bi-orientated/congressed chromosomes 

(Kapoor et al., 2006).  

 

Metaphase is the stage where kinetochores are all attached to microtubules and 

chromosomes are centrally aligned along the metaphase plate. Anaphase onset is not 

only dependent on spindle assembly checkpoint inactivation, but also on reliant on the 

completion of DNA decatenation (disentanglement of chromomsomes), which is 

performed predominantly by Topisomerase II (Nasmyth et al., 2002; Damelin and 

Bestor, 2007; Nitiss, 2009). At this stage, cohesin connecting the two sister chromatids 

is cleaved. Following which, the combined mechanisms of microtubule shortening by 

depolymerisation at kinetochores and utilisation of “microtubule flux” are thought to 

separate chromatids towards opposite spindle poles in anaphase (Nasmyth, 2002; 

Maddox et al., 2002). In late anaphase, both positive and negative end-directed motors 

proteins are proposed to force the centrosomes further apart by pulling and pushing non-

spindle microtubules. Following the separation of sister chromatids, a nuclear envelope 

re-assembles around each set of segregated chromatin (telophase). The cell cycle is 

terminated after the evolutionally conserved process of cytokinesis, which comprises 

the following major events (Guertin et al., 2002; Barr and Gruneberg, 2007). 

Cytokinesis begins with the formation of a contractile ring, which provokes the growth 

of the cleavage furrow assembled from recruited membrane proteins. On the completion 

of cleavage furrow formation the contractile ring disintegrates. Finally, the cleavage of 

the plasma membrane (abscission) at the adjoining midbody structure separates the two 

daughter cells.  

 

Mitotic entry, progression and exit are controlled by complex mechanisms. The mitotic 

entry mechanism consists of interconnected positive feedback mechanisms, shown in 

figure 1.3. Mitotic entry is dependent on activation of Cyclin-dependent kinase 1 

(Cdk1, also alternatively named Cdc2), in association with Cyclin B (Nurse, 1990). 

Cdk1-Cyclin B complex is also known as M-phase promoting factor (MPF). During 

G2, Cyclin B accumulates leading to the assembly of Cdk1-Cyclin B complex (Murray 

and Kirchner, 1989). At this time, Cdk1-Cyclin B is maintained in an inactive state by 

inhibitory phosphorylation additions by Wee1 and Myt1 (Dunphy, 1994; Parker and 

Piwnica-Worms, 1992; Liu et al., 1997; Mueller et al., 1995). Towards the end of G2 

phase, Cdk1 in association with Cyclin B is activated following Cdc25 phosphatase 
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dependent removal of these inhibitory phosphorylations (Lee et al., 1992). The 

elimination of Cdk1 phosphorylation modifications at threonine (Thr) 14 and tyrosine 

(Tyr) 15 enables CAK complex to phosphorylate Cdk1 at Thr161 (Fesquet et al., 1993; 

Poon et al., 1993; Solomon et al., 1993; Fisher and Morgan, 1994). In the G2/M 

transition, Cdk1-Cyclin B essentially promotes its own activation. Induced Cdk1-Cyclin 

B activates Cdc25, which in turn promotes Cdc25 dephosphorylation of Cdk1 at Thr14 

and Tyr15. Consequently, this Cdk1-Cyclin B/Cdc25 positive feedback loop leads to the 

rapid rise in active Cdk1-Cyclin B levels (Hoffmann et al., 1993). This mechanism 

promotes the full activation of Cdk1-Cyclin B, which is required in order to enter 

mitosis (Izumi and Maller, 1993). In Xenopus, active Plx1 has been shown to participate 

in the Cdk1-Cyclin B amplification loop by activating Cdc25 (Kumagai and Dunphy, 

1996). At the onset of mitosis, Cdk1-Cyclin B activates Plk1, which suggests Cdk1 and 

Plk1 mutually sustain one another through the Cdk1-Cyclin B/Cdc25 positive feedback 

amplification loop (Abrieu et al., 1998; Qian et al., 1998). In addition, both active Cdk1 

and Plk1 kinases have been shown to promote Wee1 degradation, thus depleting Cdk1 

inhibitory phosphorylation at Thr14 (Watanabe et al., 2004).  
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Figure 1.3 Cdk1 activation pathway 

Cdk1 in association with Cyclin B is maintained in an inactivated state by Wee1 and Myt1 inhibitory 
phosphorylations at Thr14 and Thr15. Activated Cdc25 phosphatase then removes Cdk1 inhibitory 
phosphorylations, following which, CAK complex activates Cdk1-Cyclin B. Activation of Cdk1(-Cyclin 
B) initiates a positive feedback amplification loop by phosphorylating Cdc25. Active Cdk1 activates 
Plk1, which leads to further activation of Cdc25. In this mechanism of Cdk1 activation, it is thought that 
both active Plk1 and Cdk1 prevent Wee1 and Myt1 inhibitory phosphorylations on Cdk1. Adapted from 
Barr et al., 2004 and van Vugt and Medema, 2005 (Barr et al., 2004; van Vugt and Medema, 2005). 
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Mitosis onset is signified by active Cdk1-Cyclin B translocation from the cytoplasm to 

the nucleus, which is regulated by a phosphorylation event on Cyclin B (Li et al., 1997; 

Hagting et al., 1999). It is postulated that nuclear translocation is mediated by Plk1 

phosphorylation of Cyclin B (Toyoshima-Morimoto et al., 2001; Yuan et al., 2002). 

Nuclear Cdk1-Cyclin B activities aid chromosome condensation and nuclear envelope 

breakdown, required for mitosis progression. Centrosomal Cdk1-Cyclin B activation 

has a role in the process of centrosome separation (Blangy et al., 1997; Crasta et al., 

2006; Jackman et al., 2003; Lindqvist et al., 2005). Interestingly, Kramer et al., 

determined that Cdk1 is prevented from premature activation by Chk1 at centrosomes 

(Kramer et al., 2004). The increasingly popular hypothesis is that controlled activation 

of Cdk1-Cyclin B at centrosomes ensures the timely initiation of cytoplasmic Cdk1-

Cyclin B activation and therefore mitosis onset. 

 

From the G2/M transition both Plk1 and Cdk1-Cyclin B kinase activity escalates during 

mitosis (Golsteyn et al., 1995). As well as mitotic entry, active centrosomal Plk1 also 

functions in the formation of spindle arrays (van Vugt and Medema, 2005; Golsteyn et 

al., 1995). Early Drosophila melanogaster (Drosophilia) polo-like kinase (gene product 

polo) mutation studies showed embryos with irregular spindle formation resulting from 

aberrant centrosomes (Sunkel and Glover, 1988). Investigations into human Plk1 have 

described Plk1 functions in centrosome maturation and separation in late G2/early 

prophase, which is required for normal spindle formation (Lane and Nigg, 1996; van 

Vugt et al., 2004b). Importantly, Plk1 role in centrosome maturation includes the 

recruitment of additional -tubulin to centrosomes (Lane and Nigg, 1996; Feng et al., 

1999). Further studies have shown that Plk1 regulates many factors involved in 

microtubule nucleation and microtubule stabilization (Casenghi et al., 2003; Budde et 

al., 2001; do Carmo Avides et al., 2001; Yarm, 2002). Plk1 is important in normal 

mitotic progression as shown by the interference of Plk1 function, which leads to 

abnormal spindle formation and mitotic arrest (refer to section 1.4.1 on the spindle 

assembly checkpoint) (Lane and Nigg, 1996; van Vugt et al., 2004b; Seong et al., 

2002). However, the understanding of how mitotic progression is driven by rising 

Cdk1-Cyclin B activity is limited. Several studies have indicated that Cdk1-Cyclin B 

regulates microtubule dynamics (Verde et al., 1990; Fourest-Lieuvin et al., 2006). It is 

proposed that the gradual increase in Cdk1-Cyclin B activity prepares the cell to exit 

mitosis and the absence of high Cdk1-Cyclin B activity levels are thought to cause a 
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delay in mitosis (Lindqvist et al., 2007). 

Ran, (Ras-like nuclear protein) a small GTPase, also functions in spindle assembly and 

regulating mitotic progression (Ciriarello et al., 2007). Ran associated GTP (guanosine 

triphosphate) molecules are hydrolysed to GDP (guanosine diphosphate) by RanGP1 

(Ran-GTP hydrolysis-activating protein-1) (Bischoff et al., 1994).  Ran bound GDP is 

replaced with GTP by RanGEF (Ran guanine nucleotide exchange factor), RCC1 

(regulator of chromosome condensation-1) (Bischoff and Ponstingl, 1991a; Bischoff 

and Ponstingl, 1991b). RanBP1 (Ran-GTP binding protein-1) prevents GTP 

dissociation from Ran and regulates Ran-GTP/GDP turnover (Bischoff et al., 1995). 

Ran-GTP is thought to competitively bind to importin  and , which in turn leads to an 

increase in unbound aster/spindle promoting factors, TPX2 and NuMA respectively 

(Gruss et al., 2001; Wiese et al., 2001). Research has determined that a Ran-GTP/GDP 

concentration gradient exists, which is proposed to drive chromatin induced spindle 

assembly (Carazo-Salas et al., 1999; Kalab et al., 2002). Chromatin bound RCC1 

concentrates Ran-GTP in the proximity of chromatin, the amount of Ran-GTP lessens 

with distance away from chromatin. It is thought that this Ran-GTP gradient restricts 

the initiation of aster assembly around the chromosomes and hence helps positioning of 

asters (Hetzer et al., 2002; Quimby and Dasso, 2003). However, Ran-GTP is also 

required in centrosome-driven spindle assembly and functions in microtubule 

stabilization and dynamics (Carazo-Salas et al., 2001). Mitotic progression and exit has 

been proposed to rely on mechanisms directed by Ran, including the regulation of 

spindle assembly checkpoint factor localization at kinetochores, sister chromatid 

separation and nuclear envelope re-formation (Ciriarello et al., 2007).  

 

The E3 type ubiquitin ligase, Anaphase-Promoting-Complex or cyclosome (APC/C), 

plays a fundamental role in driving mitotic progression, exit and cytokinesis (van 

Leuken et al., 2008). Active APC adds poly-ubiquitin chains on targets, these are 

recognised by proteasomes leading to rapid proteolysis of mitotic factors (Peters, 2006; 

King et al., 1996). From prometaphase until the end of metaphase, APC activity is 

induced by associated co-factor Cdc20 (Fizzy) and from anaphase onwards APC is 

activated by associated co-factor Cdh1 (Visintin et al., 1997; Fang et al., 1998; Kramer 

et al., 1998). Association of Cdc20 or Cdh1 alters APC substrate specificity, the switch 

involves the dephosphorylation of Cdh1 and APC/Cdh1 targeting of Cdc20, which in 

turn inactivates APC/Cdc20 (Peters, 2002). Furthermore, APC activity is enhanced by a 

number of phosphorylation events, Cdk1-Cyclin B phosphorylations are established to 
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be most important, whereas Plk1 phosphorylations are of secondary importance (Golan 

et al., 2002; Kraft et al., 2003). Active APC/Cdc20 operates in the process of separating 

sister chromatids (Nasmyth, 2002). APC ubiquitylates securin and the resulting 

degradation of securin releases the associated protease, separase (Peters, 2006). 

Separase cleaves cohesin, which breaks the link between sister chromatids (Uhlmann et 

al., 1999; Hauf et al., 2001). Plk1 is also thought to play a role in priming sister 

chromatids for separase cleavage by phosphorylating the SCC1 cohensin subunit after 

spindle assembly checkpoint inactivation (van Gugt and Medema, 2005). During 

metaphase APC/Cdc20 also ubiquitylates Cyclin B, the following destruction of Cyclin 

B inactivates Cdk1 (Glotzer et al., 1991; Sudakin et al., 1995; Peters, 2006). 

Phosphatases dephosphorylate many Cdk1 targets, these factors then participate in 

processes such as chromosomes segregation, spindle disassembly and nuclear envelope 

re-formation (Sullivan and Morgan, 2007). In addition, preparation for the next cell 

cycle, such as for the re-loading of Pre-RC on DNA replication origins requires low 

Cdk1 activity (Prasanth et al., 2004; Noton and Diffley, 2000; King et al., 1996). In late 

anaphase, Plk1 localized to the centre of the spindle array phosphorylates a number of 

substrates, which function in cytokinesis (Golsteyn et al., 1995; van Yugt and Medema, 

2005). Active APC/Cdh1 during anaphase promotes Plk1 degradation, which mediates 

cytokinesis execution (Lindon and Pines, 2004). Mitotic progression is reliant on 

secruin and Cyclin B destruction, however, activation of APC by Cdc20 or Cdh1 targets 

different mitotic factors in a timely and orderly fashion, which contributes to the 

progression of mitotic exit (Sullivan and Morgan, 2007; Pines, 2006). The order of APC 

directed substrate degradation is illustrated in figure 1.4. Firstly, APC/Cdc20 targets 

Cyclin A in prometaphase, Cyclin A destruction is thought to be a required step in the 

onset of anaphase (Geley et al., 2001; Sigrist et al., 1995; den Elzen and Pines, 2001). 

However, it still remains unclear how APC/Cdc20 targets Cyclin A as the active spindle 

assembly checkpoint blocks APC. The last APC/Cdh1 target is Aurora B at the 

anaphase to telophase transition, which continues into G1 of the next cell cycle (Lindon 

and Pines, 2004). It has been proposed that ubiquitylated Aurora B, which promotes 

chromosome decondensation and nuclear envelope re-assembly, is displaced from 

kinetochores  (Ramadan et al., 2007). APC/Cdh1 remains active during G1 phase, and 

then downregulated in S phase by an autonomous mechanism, which is thought not only 

to mediate the accumulation of mitotic Cyclins A and B, but also factors required for 

DNA replication (Petersen et al., 2000; Araki et al., 2003; Rape and Kirschner, 2004). 
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Figure 1.4 APC directed destruction in mitosis 

The order in which APC targets mitotic proteins for degradation is shown. APC/Cdc20 during 
prometaphase directs Cyclin A proteolyisis, which is not subject to spindle assembly checkpoint (SAC) 
inhibition. Once sister chromatids are bi-orientated (metaphase), the SAC is satisfied and APC/Cdc20 is 
activated. During metaphase APC/Cdc20 activity promotes securin and Cyclin B destruction. Following 
chromatid separation and Cdk1 inactivation, APC association switches to Cdh1. APC/Cdh1 directs the 
orderly destruction of Cdc20, Plk1, Aurora A and Aurora B providing the mechanism to exit mitosis and 
re-entry into the next cell cycle. The dashed lines signify the stage transitions. Adapted from Sullivan and 
Morgan, 2007 (Sullivan and Morgan, 2007).  
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1.3 Signalling networks in response to DNA damage  

  
Genomic DNA damage can occur through a variety of sources, including intercellular 

metabolic by-products, incomplete replication, or exposure to radiation and chemicals. 

DNA damage is detected and mechanisms are activated that maintain genomic stability 

and preserve the genetic material transferred into progeny cells. Failures or defects in 

DNA damage signalling pathways may lead to genetic instabilities that are frequently 

found in cancer cells (Lengauer et al., 1998). As summarised in figure 1.5, DNA 

damage signalling pathways have been traditionally organised into the following 

classifications; sensors, mediators (adaptors), transducers and effectors (Niida and 

Nakanishi, 2006). DNA damage response pathways provoke downstream effectors that 

regulate specific cellular endpoints, cell cycle arrest, DNA repair and apoptotic cell 

death (Zhou and Elledge, 2000). The signalling pathways that regulate cell cycle 

progression are termed ‘checkpoint responses’. Checkpoints are vital in supporting 

DNA repair processes and initiating apoptosis when DNA damage is extensive and 

irreparable. Checkpoints will be discussed in more detail in section 1.4. 
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Figure 1.5  Schematic representation of vertebrate DNA damage induced signalling networks  

The DNA damage response pathway is organised into sensors, mediators, transducers and effectors. 
Sensor proteins recognise DNA damage, which then activate transducers ATM and ATR and downstream 
checkpoint response kinases, Chk1 and Chk2. Mediator proteins facilitate transducer activation. Once 
transducers are active they target downstream effector substrates, which lead to the cellular endpoints: 
Cell cycle arrest, DNA damage repair and apoptosis. Adapted from Niida and Nakanishi, 2006 and Zhou 
and Elledge, 2000  (Niida and Nakanishi, 2006; Zhou and Elledge, 2000). 
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Signalling cascades are orchestrated through DNA damage recognition by DNA 

surveillance sensory proteins. The recruitment of sensor complex 9-1-1 (consisting of 

Rad9, Rad1 and Hus1) to single strand DNA (ssDNA) damage is mediated by Rad17 

(associated with replication factor c (RFC) subunits) (Jones et al., 2003). Whereas, at 

the sites of double strand breaks (DSB) the DNA damage sensor complex, MRN 

(Mre11-Rad50-Nbs1) assembles (van den Bosch et al., 2003; Petrini and Stracker, 

2003). In addition, there is evidence that supports ATRIP (ATR interacting partner) 

being a DNA damage sensory protein, which specifically recognises RPA coated 

ssDNA independently of Rad17 and 9-1-1 complexes (Zou and Elledge, 2000; Cortez et 

al., 2001). Another proposed sensory protein is Claspin (although it shows mediator 

properties), which is also found to associate with ssDNA created by stalled replication 

forks independently of RPA and Rad17 (Kumagai and Dunphy, 2000; Lee et al., 2003). 

 
Sensor protein accumulation at sites of DNA damage leads to signalling to downstream 

transducer proteins. Mediator proteins facilitate the initiation of transducer activities. A 

number of mediator proteins in human cells can be distinguished by consensus breast 

cancer 1 (BRCA1) C-terminus repeat (BRCT) protein-protein interaction domain  (Bork 

et al., 1997; Niida and Nakanishi, 2006). Examples of mediator proteins include: p53 

binding protein 1 (53BP1) mediator of DNA damage checkpoint 1 (MDC1) and 

Topisomerase binding protein 1 (TopBP1) (Schultz et al., 2000; Wang et al., 2002; 

Stewart et al., 2003; Yamane et al., 2002). BRCA1, H2AX and structural maintenance 

of chromatin 1 (SMC1) have important roles in DNA damage repair or chromosome 

segregation, but they also function in activating transducers (Sancar et al., 2004; Niida 

and Nakanishi, 2006). 

 

Within DNA damage response networks there are two main conserved protein kinase 

transducers, Ataxia-Telangiectassia-mutated (ATM) and ATM and Rad3- related  

(ATR). These conserved protein kinases will be described in more detail in section 

1.3.1. DNA-dependent protein kinase (DNA-PK) is also a transducer kinase that 

responds less stringently to the presence of DSB DNA damage and is thought to be 

involved in early response signalling that, in turn, orchestrates DNA damage repair and 

cell cycle arrests (Lee and Kim, 2002; Gottlieb and Jackson, 1993). Active ATM and 

ATR trigger downstream effector kinases Chk2 and Chk1 respectively, which are 

essential to DNA damage checkpoint responses (Chaturvedi et al., 1999; Rhind and 

Russel, 2000; Capasso et al., 2002). Furthermore, ATM/ATR transducer kinases 
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phosphorylate a vast number of effector proteins, which provoke the DNA damage 

cellular endpoints. Some of the extensively investigated key ATR/ATM targets include 

p53, BRCA1 and Nbs1 (Nijmegen breakage syndrome 1) (Banin et al., 1998; Tibbetts 

et al., 1999; Cortez et al., 1999; Tibbetts et al., 2000; Lim et al., 2000). There is 

growing evidence to suggest that DNA damage response pathways are extremely 

complex and are not constrained to this linear organisation. Instead, it is proposed that 

spatial and temporal restrictions order DNA damage signal transductions (Lukas et al., 

2004; Bekker-Jensen et al., 2006). However, it is clear within these extensively 

branched complex DNA damage response signalling networks that key roles are played 

by ATM and ATR, which are conserved from yeast to humans. 

 

1.3.1 ATM and ATR are key regulators of DNA damage response networks  

 

ATM and ATR are well-documented signalling regulators of DNA damage response 

networks that are fundamental to checkpoint control of the cell cycle (Shiloh, 2003; 

Abraham, 2001; Cimprich and Cortez, 2008). ATM (350 KDa) and ATR (303 KDa) 

both belong to the Phosphatidylinositol 3’-kinase (PI3K) related kinase (PIKK) family 

of proteins (Savitsky et al., 1995; Cimprich et al., 1996). Similarly, ATM and ATR 

associate with DNA and preferentially phosphorylate target substrates on 

serine/threonine-glutamine (S/T-Q) consensuses motifs (Abraham, 2001; Kim et al., 

1999; Matsuoka et al., 2007). In the literature ATM and ATR have been separated by 

their response to different types of DNA damage lesion and by the difference between 

in protein related disease states.   

 

1.3.1.1 ATM activation in response to double strand break DNA damage  

 

Primarily, ATM reacts to DSBs resulting from exposure to Ionising Radiation (IR) or 

chemotoxic agents, such as etoposide, camptothecin or doxorubicin (Canman et al., 

1998; Banin et al., 1998; Shiloh, 2003). The presence of a DSB causes distal chromatin 

structure alterations that activate ATM by means that are not completely understood. 

ATM exists under normal circumstances as a homodimer, in a confirmation that 

obscures the kinase domain. ATM activation causes a conformational change that leads 

to autophosphorylation of serine 1,981 and dissociation of the dimer (Bakkenist and 

Kastan, 2003). Phosphorylation of Histone H2X variant H2AX, is implicated as a very 
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early response to DNA damage. Followed by the formation of H2AX foci at damage 

sites within 1 minute and continuing to increase for 10 to 30 minutes (Rogakou et al., 

1998).  H2AX foci disappear in a comparable rate to repair of DNA damage. H2AX is 

thought to aid the assembly and retention of other repair factors at sites of DNA breaks, 

such as 53BP1, MRN complex, MDC1 and BRCA1 (Celeste et al., 2003). Targeting of 

activated ATM to sites of damage is thought to be dependent on the signalling 

generated by the sensory MRN complex (Niida and Nakanishi, 2006; Costanzo et al., 

2004a). It has been shown that the MRN complex not only regulates ATM activity, but 

also enhances ATM substrate phosphorylations (Lee and Paull, 2004). ATM is 

connected to DNA repair processes by MRN complex functions in unwinding the DNA 

helix and cleaving the hairpin loop in preparation for repair (Paull and Gellert, 1999). 

 
In humans, ATM mutations leads to the condition Ataxia-Telangiectasia (A-T), a rare 

autosomal recessive human disorder hallmarked by hypersensitivity to IR (Savitsky et 

al., 1995; Lavin and Shiloh, 1997; Shiloh, 1997). Clinical manifestations of A-T 

include: cereberalller degeneration (ataxia), dilation of blood vessels (telangiectasia), 

growth retardation and immune deficiency (Jason and Gelfand, 1979). A-T is described 

as a ‘genomic/chromosome instability syndrome’, patients show signs of premature 

aging and predisposition to cancers. On a cellular level, A-T leads to a failure of G1 and 

G2 checkpoint induced cell cycle arrest (described in more detail in section 1.4) and 

sensitises cells to the cytotoxic effects of DNA damage (Shiloh, 1997; Kastan et al., 

1992; Paules et al., 1995). Interestingly, A-T sufferers retain intact mechanisms to 

repair single strand breaks, to remove base damage and perform DSB end joining 

(Fornace and Little, 1980; Shiloh, 1997). The lack of cell cycle arrest does not allow for 

the appropriate repair mechanisms to correct DNA lesions. Therefore, A-T cells 

undergo radio-resistant DNA synthesis leading to chromosomsal instability (Painter and 

Young, 1980; Kojis et al., 1991).  

 

1.3.1.2 ATR activation in response to single strand DNA damage 

 
It has been well established that ATR (Mec1 in S.cerevisiae) signalling is activated in 

the presence of single stranded DNA resulting from replication stress, such as 

replication fork stalling (Abraham, 2001). ATR signalling is also induced by bulky 

DNA adducts, lesions resulting from ultraviolet radiation (UV), such as pyrimidine 

dimers and the 6-(1,2)-dihydro-2-oxo-4-pyrimidinyl-5-methyl-2,4-(1H,3H)-
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pyrimidinediones (Unsal-kacmaz et al., 2002). In humans, ATR is stably associated 

with ATRIP (ATR/ATRIP), this is also the case in yeast (Mec1/Dcd2 in S.cerevisiae 

(budding yeast) and Rad3/Rad56 in Schizosaccharomyces Pombe (S.pombe, fission 

yeast) (Cortez et al., 2001; Unsal-kacmaz and Sancar, 2004; Paciotti et al., 2000; 

Edwards et al., 1999). ATR is thought to be constitutively active during unstressed 

DNA replication, thus it is believed that during S phase substrate reactions are reliant on 

cellular localisation (Niida and Nakanishi, 2006). It is thought that ATR-ATRIP, as part 

of the DNA replication machinery, associated with RPA, monitors single stranded DNA 

damage during the progression of DNA replication fork elongation (Niida and 

Nakanishi, 2006; Shechter et al., 2004b). In addition, ATR functions in both S and M 

phases include regulating late DNA replication origin firing, replication fork elongation, 

restarting stalled replication forks and involvement in centrosome stability (Shechter et 

al., 2004a; Cha and Kleckner, 2002; Sorensen et al., 2004; Friedel et al., 2009; Alderton 

et al., 2004; Smith et al., 1998). 

 

ATR is essential in development and somatic cell growth. ATR indispensability is 

thought to revolve around ATR’s multifaceted roles in monitoring the progression of 

DNA replication (Brown and Baltimore, 2000). Similarly, Chk1 (ATR downstream 

target) knockout mice are embryonic lethal (Takai et al., 2000; Liu et al., 2000). Seckel 

syndrome is an heterogenous rare genetic disorder associated with impaired ATR 

function and defects in downstream ATR DNA damage response signalling pathways. 

The basis of Seckel syndrome remains largely undefined, many susceptibility loci have 

been identified, however, only one specific ATR hypomorphic mutation has been 

uncovered (O’Driscoll et al., 2003). Seckel syndrome is clinically characterised by 

dwarfism, abnormal brain development and microcephaly (Majewski and Goecke, 

1982). Seckel cells show higher sensitivity to replication fork stalling agents and 

illustrate defects in downstream ATR DNA damage responses exemplified by impaired 

H2AX, Rad17, Nbs1 P53, and Chk1 phosphorylation (O’Driscoll et al., 2003; Alderton 

et al., 2004). In addition, Seckel cells exposed to UV were unable to execute the G2/M 

checkpoint (the G2/M checkpoint is described in section 1.4.3) (Alderton et al., 2004). 
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1.3.1.3 The interconnectivity between ATM and ATR DNA damage response 

kinases 

 

Specific types of DNA damage have been shown to activate either ATM or ATR. A 

growing number of studies are demonstrating that ATM and ATR work in a partnership 

(Hurley and Bunz, 2007). Complementary functions of ATM and ATR redefine the 

long-lived paradigm of distinctly separate molecular functions. S and G2/M phase ATM 

and ATR independent Chk1 checkpoint signalling was disregarded through the 

discoveries made by Jazayeri et al., (Jazayeri et al., 2006). In this study, it was unveiled 

that the reaction convergence occurs through ATM processing of DBSs (end resection) 

mediated by Mre11 to form ssDNA. The resulting ssDNA coated by RPA, then initiates 

ATR signalling (Jazayeri et al., 2006). Studies by Cuadrado et al., Yoo et al., and 

Adams et al., have provided further experimental evidence to support ATM dependent 

activation of ATR is required in double strand break DNA repair (Cuadrado et al., 

2006; Yoo et al., 2007; Adams et al., 2006). Importantly, ATR has also been shown to 

activate ATM in response to the presence of ssDNA damage (Stiff et al., 2006). It is 

becoming clear that ATM and ATR activation as well as function, are connected in 

response to DNA damage. 

 

1.4 DNA damage checkpoint responses control cell cycle progression into mitosis 

 
ATM and ATR signal transductions are critical in maintaining genomic stability by 

arresting cells that are progressing through the cell cycle with damaged DNA 

(Abraham, 2001). These cell cycle checkpoints are feedback mechanisms induced by 

genotoxic stress that govern the pace of cell cycle progression, ensuring the timely and 

precise completion of critical cell phase events (Hartwell and Weinert, 1989). Overall, 

checkpoints are surveillance pathways that ensure the success and fidelity of important 

cellular processes and prevent cells from entering mitosis with DNA damage. The in 

depth understanding of checkpoints has come about through extensive studies in a 

number of species, particularly in S.pombe, S.cerevisiae and Xenopus laevis. The 

importance of checkpoint integrity is highlighted by checkpoint defects in a number of 

cancers (Kastan and Bartek, 2004). DNA damage induced checkpoints relate to G1/S, S 

and G2/M cell cycle phases, which are described in the following sections (1.4.1-1.4.3). 

Following which, the spindle assembly checkpoint and the potential of M phase DNA 
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damage induced checkpoints are then discussed in section 1.5. Figure 1.6 summarises 

the checkpoint targets that provoke cell cycle delay/arrest at the different phase 

transitions. It should be noted at this point that the discussed checkpoint factors, in 

many cases, have more than one function within DNA damage induced checkpoints.  
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Figure 1.6 Mammalian G1/S transition, S and G2/M transition DNA damage checkpoints  

In the G1/S checkpoint response to DNA damage, active ATM and ATR phosphorylate downstream 
Chk1/Chk2 and p53. Checkpoint initiation involves down-regulation of Cdc25A, which leads to the 
accumulation of inactive Cdk2, which cannot induce Cdc45 required for replication initiation. p53 
phosphorylation induces expression of p21, which then maintains the checkpoint by preventing Cdk4-
Cyclin D from provoking release of pRb bound S phase transcription factor, E2F. Cdk4-Cyclin D 
destruction provoked by ATM/ATR facilitates the inhibition of S phase Cyclin transcription and releases 
p21, which inhibits Cdk2-Cyclin E. The S phase checkpoint is dependent on ATM/ATR (Chk2/Chk1) 
initiation of Cdc25A degradation, resulting in Cdk2-Cyclin E inactivation, which prevents Cdc45 loading 
onto replication origins. Alternative pathways prevent replication origin firing, including ATM 
phosphorylation of SMC1 (not shown) and ATR down-regulation of Cdc7. The G2/M checkpoint 
involves Chk1 phosphorylation of Cdc25 phosphatases leading to their nuclear export and degradation, 
which in turn increases the levels inhibitory phosphorylations on Cdk1-Cyclin B.  The G2/M checkpoint 
also involves Chk1/Chk2 stabilisation of p53, which leads to Cdk1-Cyclin B activity inhibition through 
p21 and by increasing expression of 14-3-3 . Furthermore, Wee1 is up-regulated, which increases Cdk1-
Cyclin B inhibitory phosphoryation levels. Adapted from Sancar et al., 2004 (Sancar et al., 2004). 
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1.4.1 G1/S transition checkpoint  

 

DNA damage induced G1/S checkpoint prevents damaged genetic templates from being 

replicated until the defects have been resolved. The initiation of the G1/S checkpoint 

involves Cyclin D degradation, inhibition of Cdk2 through phosphorylation, CKI 

interaction and Cdc25 phosphatase inactivation (Agami and Bernards, 2000). In the 

presence of DNA damage, ATM or ATR phosphorylates Cyclin D at Thr286, which 

promotes Cyclin D proteasomal degradation (Hitomi et al., 2008). In cells with 

proficient p53 activation, between 30 % and 50 % of G1 cell cycle arrest is related to 

Cyclin D1 suppression in response to ATM activation (Hitomi et al., 2008; Agami and 

Bernards, 2000).  It is possible that if DNA damage is incurred prior to the G1 phase 

“restriction point”, ATM/ATR activation suppression may lead to entry into G0 phase. 

This would potentially allow for a longer period of DNA damage repair before re-

entering the cell cycle and committing to cell proliferation (Hitomi et al., 2008). It has 

been postulated that ATM and ATR can indirectly aid DNA repair by promoting Cyclin 

D destruction, leading to the release of PCNA (proliferating cell nuclear antigen), thus 

increasing the availability of PCNA for repair processes (Hitomi et al., 2008; Pagano et 

al., 1994; Xiong et al., 1992). 

  

An additional pathway is initiated by the destruction of Cyclin D; CDK inhibitor p21 

(CIP) is released, preventing Cdk2-Cyclin E activity. In addition, the destruction of 

Cyclin D inactivates Cdk4, which is then unable to phosphorylate pRb required to 

release the associated S phase Cyclin transcription factor E2F. Furthermore, active 

ATM-Chk2/ATR-Chk1 targeting of Cdc25A leads to the rapid destruction of 

phosphatase activity and consequently the levels of Cdk2 inhibitory phosphorylation 

increase (Molinari et al., 2000; Falck et al., 2001; Mailand et al., 2000). In combination, 

the negative regulation of Cdk2 contributes to G1 cell cycle arrest by preventing Cdk2 

phosphorylation of Cdc45 and therefore, its loading onto orgins, which is required in the 

initiation of DNA replication (Costanzo et al., 2000; Broderick and Nasheuer, 2009). 

 

The initiation of G1/S phase cell cycle arrest is rapid, but a slower increase in p53 

stability within the nucleus maintains the arrest (Agami and Bernards, 2000). Many 

studies have demonstrated that G1/S checkpoint arrest in response to DNA damage 

requires functioninal p53 (Kuerbitz et al., 1992; Lakin and Jackson, 1999). ATM and 

ATR directly, or indirectly through Chk2/Chk1, phosphorylate p53 (Hirao et al., 2000; 
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Kuerbitz et al., 1992). Phosphorylation of p53 at Ser20 (Chk1/Chk2) leads to the release 

of associated Mdm2 ubiquitin E3 ligase, which then renders p53 stable (Ashcroft and 

Vousden, 1999). The resulting P53 up-regulation in turn activates transcription of genes 

involved in maintaining the cell cycle arrest. For example, p53 increases the expression 

of factors including p21, which continues the inhibition of Cdk2-Cyclin E that prevents 

S phase onset (Harper et al., 1993). 

 

1.4.2 S phase checkpoint 

  

The S phase checkpoint is activated in response to DSBs created by collapsed 

replication forks or the presence of DNA lesions that block DNA replication. S phase 

checkpoint slows cell cycle progression to mitosis by controlling the DNA replication 

machinery at stalled replication forks (Nyberg et al., 2002; Sancar et al., 2004). In 

contrast to the G1/S transition checkpoint, S phase checkpoint activation does not lead 

to a full cell cycle arrest (Rowley et al., 1999). Instead, the S-phase checkpoint 

decreases the rate of DNA synthesis by preventing the elongation of replication forks 

and inhibits late replication origin firing. S phase checkpoint initiation relies on both 

ATM and ATR kinase activities (Yoo et al., 2004b). ATM and ATR targets include 

BRCA1 and Nbs1, these and many more coordinate the replication fork inhibition, 

DNA repair and also replication fork recovery (Flack et al., 2001; Sancar et al., 2004).  

 

In the event of stalled replication forks, partially repaired DSBs or replicated DNA 

damage, the primary signal for checkpoint activation is thought to be the coating of 

RPA on exposed ssDNA (Branzei and Foiani, 2005). ATR binds to RPA and promotes 

factors that stabilize the halted replication forks. Furthermore, the RPA-ATR-Chk1 

signaling pathway prevents the replication of damaged DNA by blocking the initiation 

of replication origins. RPA-ATR-Chk1 signalling inhibits Cdk2 (-CyclinE) activity by 

inactivating and down-regulating Cdc25A phosphatase (Sancar et al., 2004). Another 

ssDNA induced ATR checkpoint has also been described in which ATR targets Cdc7 

activity and thus prevents Cdc45 loading onto replication origins (Costanzo et al., 

2003). In response to DSBs, two ATM dependent mechanisms delay S phase; the ATM-

Chk2-Cdc25A-Cdk2 pathway and ATM phosphorylation of structural maintenance of 

chromosomes protein, SMC1 (aided by BRCA1/FANCD2 (Fanconi’s anemia complex 

D2) and Nbs1) (Yazdi et al., 2002). 
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1.4.3 G2/M phase transition checkpoint 

 
The G2/M checkpoint prevents cells that have damage DNA or that have not completed 

replication, from entering mitosis and segregating their chromosomes. Original data 

obtained from S.pombe revealed that blocking replication through Hydroxyurea (HU) 

treatment led to the maintenance of the Tyr15 phosphorylation on Cdc2, which prevents 

the progression of S phase and entry into mitosis (Gould and Nurse, 1989; Nurse, 1990) 

It has also been shown that unphosphorylatable Cdc2 mutants inappropriately enter 

mitosis in the presence of unreplicated DNA (Gould and Nurse, 1989). This G2/M 

checkpoint is an important mechanism in maintaining the S-M cell cycle phase 

interdependence.  

 

As previously mentioned in section 1.2.1, Cdc25 phosphatases dephosphorylate Cdk1 

(Cdc2) required for full Cdk1-Cyclin B activation. Mitosis onset is prevented in 

response to DNA damage through the stabilisation of the inhibitory phosphorylation on 

Cdk1-Cyclin B (Dasso and Newpot, 1990; Jin et al., 1996). Activated ATM and ATR 

induce Chk1 and Chk2, which initiates Cdc25 inhibition and/or degradation (Matsuoka 

et al., 1998; Sanchez et al., 1997; Kastan and Bartek, 2004). For example, in fission 

yeast, Chk1 kinase phosphorylation of Cdc25C at Ser216 enables 14-3-3 proteins to 

bind, which leads to nuclear displacement of Cdc25C, preventing dephosphorylation of 

Cdk1-Cyclin B1 (Peng et al., 1997). The maintenance of the G2/M checkpoint is 

thought to involve p53 activities. It has been shown that p53 levels are up-regulated, 

which can inhibit Cdk1 activity in two ways, by inducing p21 (CIP) and by increasing 

expression of 14-3-3  protein (Bunz et al., 1998; Chan et al., 1999). P21 can 

specifically inhibit nuclear activity of Cdc2-Cyclin B, whereas 14-3-3  sequesters 

Cdc2-Cyclin B preventing it from entering the nucleus. The G2/M checkpoint also up-

regulates Wee1, which leads to an increase in inhibitory phosphorylation on Cdk1-

Cyclin B (Yarden et al., 2002). Furthermore, ATM and ATR dependent Plk1 

inactivation has been shown, which most likely prevents activation of Cdc25C by 

phosphorylation (Smits et al., 2000; van Vugt et al., 2001).  

 

The resulting arrest allows for the proficient repair of DSBs in cells by utilizing the 

duplicated chromatid as a template in homologous recombination (HR) (Haber, 2000). 

Once DNA damage response signaling discontinues after DNA has been repaired, Plk 

mediates the recovery of cell cycle, potentially through inducing degradation of Wee1 
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(van Vugt et al., 2004a). In addition, active Plk1 is also thought to participate in Cdk1-

Cyclin B activation after checkpoint inactivation (Watanabe et al., 2004). 

 

1.5 The current understanding of mitotic checkpoints 

 
As described in the previous section, the presence of DNA damage provokes an ATM 

and ATR dependent checkpoint, which delays the onset of mitosis. However, if DNA 

damage is left unchecked in mitosis this could potentially lead to the loss of genetic 

information or alternatively chromosome rearrangement. Ultimately, the presence of 

mitotic DNA damage could jeopardise the next generation of cells. Research efforts are 

now being directed towards determining the cellular responses to DNA damage 

exposure during mitosis. There is relatively little data in this field compared with other 

stages of the cell cycle.  

 

1.5.1 The spindle assembly checkpoint  

 
During mitosis, the spindle assembly checkpoint (SAC) monitors the proper alignment 

of chromosomes along the central metaphase plate. This checkpoint pathway is 

intrinsically active and prevents anaphase onset until the last kinetochore attaches to the 

spindle (Musacchio and Salmon, 2007). Studies undertaken in yeast have contributed 

vastly to SAC understanding. S.cerevisiae mutation screens originally uncovered SAC 

proteins mitosis arrest deficient (Mad1, Mad2 and Mad3 (or BubR1 in humans)) and 

budding uninhibited by benomyl (Bub1) as essential factors in maintaining normal cell 

division and preventing mitotic progression in the presence of abnormal spindle 

assembly (Li and Murray, 1991; Hoyt et al., 1991). These identified yeast SAC genes 

are highly conserved in all eukaryotes and studies have shown that they are universally 

essential for SAC function. Similarly to yeast, the loss of SAC function in higher 

eukaryotes leads to inaccurate chromosome segregation (Wassmann and Benezra, 

2001). It is widely considered that SAC proficiency is strongly involved in preventing 

errors in chromosome segregation leading to aneuploidy (Kops et al., 2005). The 

importance of the SAC to the integrity of the genome has been made evident by cancer 

links to defects in the spindle assembly checkpoint mechanism. As illustrated by Bub1 

and BubR1 mutations identified in colon and colorectal cancers respectively (Cahill et 

al., 1998).  
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The current basic model describing the complex SAC pathway activation and 

inactivation is illustrated in figure 1.7. Prior to chromatin attachment, after nuclear 

envelope breakdown, SAC factors including Mad1, Mad2, Mps1 (multipolar spindle-1), 

Aurora B, Bub1, BubR1 and Bub3 as well as APC cofactor Cdc20 are recruited to 

phosphorylated kinetochores. In higher eurakoyotes other SAC regulatory elements 

including motor proteins CENP-E (kinesin) and dynein are also concentrated at 

kinetochores (Musacchio and Salmon, 2007; Cheeseman and Desai, 2008). Following 

the recruitment of factors to kinetochores, the mitotic checkpoint complex (MCC) 

forms, consisting of activated Mad2, activated BubR1 and Bub3, which associates 

strongly with APC co-factor Cdc20 (Sudakin et al., 2001). MCC-Cdc20 binds to APC 

and blocks its activation, therefore preventing securin and Cyclin B degradation, 

necessary for sister chromatid separation and mitotic exit respectively (refer to section 

1.2.1) (Yu, 2002; Hagting et al., 2002). The additional SAC components also recruited 

to kinetochores have multiple functions including aiding the assembly and signal 

transmission of MCC, recruiting SAC factors to kinetochores and regulating SAC 

activity (Musacchio and Salmon, 2007). In turn, the bi-orientation of chromosomes 

along the central metaphase plate, made possible by microtubule-kinetochore 

attachment, satisfies the SAC. At which point MCC releases sequestered Cdc20, which 

enables APC activation. The mechanism that discontinues the checkpoint is subject to 

ongoing discussion, the checkpoint inactivation pathways proposed involve dynein 

transportation of SAC proteins away from kinetochores, CENP-E “silencing” of BubR1 

or instead p31Comet blocks Mad2 activity (Howell et al., 2001; Mao et al., 2005; Xia et 

al., 2004; Yang et al., 2007a). 
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Figure 1.7 The spindle assembly checkpoint prevents mitosis progression with unattached 

kinetchores by regulating APC activity 

Spindle assembly checkpoint (SAC) is activated by unattached kinetochores in prometaphase. SAC 
factors are recruited to kinetochores, activated BubR1, activated Mad2, Bub3 assemble to form the 
mitotic checkpoint complex (MCC), which associates with Cdc20 and blocks APC activation. SAC 
inactivation occurs when chromosome bi-orientation is achieved in metaphase (both sister kinetochores 
are attached to microtubules from opposite poles). MCC complex disassembles releasing Cdc20, which 
then associates with and activates APC. Ubiquination of securin and Cyclin B by active APC leads to 
their degradation required for sister chromatin separation and mitosis exit respectively. Adapted from 
Kops et al., 2005 (Kops et al., 2005). 
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SAC activity is “switched on” with the treatment of microtubule inhibiting agents, 

which cause errors in chromatin attachment to microtubule spindles and the failure in 

spindle tension (Zhou et al., 2002). In this situation, SAC activity is retained and 

inhibition of Cdc20 is prolonged, thus continuing the block on APC activity required in 

the metaphase to anaphase transition. The maintenance of SAC activity leads to a delay 

in mitosis progression that allows for chromosome realignment through microtubule 

kinetochore re-attachment and spindle tension correction.  

 

Early investigations into the effects of UV radiation described a mitotic arrest resulting 

from spindle assembly abnormalities and chromatin-kinetochore attachment failure or 

dis-attachment (Carlson, 1950; Zirkle, 1970). These early studies, and many others 

since, have shown that mitotic DNA damage mediates a slowing of phase progression 

by activating, or delaying the inactivation, of the SAC. Recent research in a number of 

species has determined that the incorporation of mitotic DNA damage leads to the 

activation of SAC component BubR1, which is thought to be vital in the mitotic delay 

(Royou et al., 2005; Fang et al., 2006; Choi and Lee, 2008). It is generally believed that 

widespread DNA damage or structural changes to chromatin affect the centromere 

region, which results in the disruption of kinetochore structure/function (Garber and 

Rine, 2006). Mikhailov et al., demonstrated that extensive DNA damage incurred by 

laser microbeam treatment led to a mitotic arrest in cells specifically through damage 

acquired in the kinetochore region. However, the presence of DNA damage at 

kinetochores was found to prolong SAC activity by a pathway independent of ATM 

(Mikhailov et al., 2002). Interestingly, Kim and Burke very recently demonstrated in 

yeast that DNA damage away from the proximity of kinetochores can initiate a Mec1 

(ATR) and Tel1 (ATM) dependent pathway that elicits the SAC and consequentially 

restrains anaphase onset (Kim and Burke, 2008). This potential cross over of DNA 

damage response signalling with SAC is supported further by the identification of 

essential SAC components in the recent large-scale proteomic analysis of ATM and 

ATR substrates (Matsuoka et al., 2007). It has been postulated that downstream of the 

SAC, a post mitotic checkpoint prevents DNA reduplication in the next cell cycle. The 

trigger of this checkpoint is thought to be the failure of p53 localisation to centrosomes 

in association with active ATM during mitosis (Tritarelli et al., 2004; Oricchio et al., 

2006). 
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1.5.2 The potential existence of DNA damage mitotic checkpoints  

 

In the field of mitotic research there is much controversy over whether mitotic delay can 

also be caused by DNA damage checkpoints. To date there is contradicting research, 

which indicates that mitotic DNA damage induces no affect on mitotic progression 

versus that which shows a delay in mitosis exit.  

 

Within the previously mentioned studies undertaken by Mikhailov et al., (section 1.4.3) 

it was found that early mitotic human cells treated with low levels of DNA damage 

progressed and successfully completed cell division (Mikhailov et al., 2002). Similarly, 

research undertaken by Skoufias et al., established no detectable mitotic delay in human 

cells in response to DNA DSBs induced during metaphase, although cells presented 

abnormalities in chromatin separation and a phenotype similar to mitotic catastrophe  

(Skoufias et al., 2004). This study contributed to the uncertainty of whether DNA 

damage can induce a durable mitotic arrest and instead concluded DNA decatenation 

rather than DNA damage was the cause. Interestingly, DNA decatenation invoked a 

prolonged mitotic delay that was directly associated with Mad2 with Cdc20 spindle 

assembly checkpoint factors away from kinetochores (Skoufias et al., 2004). In contrast, 

Smits et al. showed that Polo-like kinase activity is inhibited in the response to DNA 

damage during mitosis (Smits et al., 2000). Importantly, this investigation showed that 

mammalian cells have mitotic DNA damage checkpoints as well as yeast (Yang et al., 

1997; Tinker-Kulberg and Morgan, 1999; Liang and Wang, 2007). 

 

It has been made clear by the consistent observations of H2AX foci formation that 

ATM and ATR DNA damage response kinases can be activated in mitosis. There is 

insufficient evidence to support the notion that G2 DNA damage checkpoints also 

function during mitosis (Morrison and Rieder, 2004). However, other potential 

mechanisms have been proposed which describe DNA damage checkpoints that slow 

the progression of mitosis independently from the activation of the SAC. For instance, 

Smits et al. showed that DNA damage induces Plk1 inhibition, which prevents APC 

activation required in mitotic exit (Smits et al., 2000). This pathway was substantiated 

as a specific DNA damage response by a subsequent report by van Yugt et al., which 

showed ATM/ATR dependent Plk1 inactivation in mitosis (van Yugt et al., 2001). In 

agreement, there is growing evidence for Plk1 and Chk2 interaction in this mitotic 

checkpoint response (Tsvetkov et al., 2003; Seo et al., 2003; Jang et al., 2007). A report 
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by Chow et al. showed exposure of mitotic cells to DNA damage leads to ATM 

dependent destruction of Cdc25A phosphatase, inactivatation of Cdk1-Cyclin B and cell 

cycle reversal into G2 phase (Chow et al., 2003). An alternative mitotic DNA damage 

checkpoint mechanism was devised from studies in Drosophila embryos in which ATM 

(Mei-41 in the fly) induction is thought to cause a mitotic delay by stabilising Cyclin A, 

which prevents anaphase onset (Su and Jaklevic, 2001; Laurencon et al., 2003). It has 

also been shown in Drosophila embryos that DSBs, away from kinetochore regions, 

retard mitosis progression through activation of a Chk1 signalling pathway (Royou et 

al., 2005). Works by Huang et al., have demonstrated that DNA damage in human cells 

elicits a mitotic exit blockade dependent on BRCA1 and Chk1 (Huang et al., 2005). 

This checkpoint mechanism was proposed to prevent cells from dividing normally and 

also to take part in terminating mitosis by inducing mitotic catastrophe. Further to these 

mentioned findings, there are several studies that are now implicating centrosomes as an 

organelle that monitors DNA damage and regulates mitosis progression.   

 

1.5.3 Growing evidence of centrosomal checkpoints responding to DNA damage 

 

As previously described in section 1.2.1 centrosomes key regulators for mitotic spindle 

organisation. However, mitotic spindles can form in the absence of centrosomes through 

actions of motor proteins and structural elements (Theirkauf and Hawley, 1992; 

Bartolini and Gundersen, 2006; Walczak et al., 1998; Compton, 1998; McKim and 

Hawley, 1995; Matthies et al., 1996; Heald et al., 1997). It is commonly believed that 

centrosome functions have not been fully elucidated. The interconnection between cell 

cycle progression and the centrosome cycle is substantiated by the centrosomal presence 

of cell cycle and checkpoints proteins. Furthermore, connections have lately been made 

between DNA damage response S and G2/M checkpoint elements and their control over 

the centrosome cycle and centrosome integrity (Löffler et al., 2006). This relationship 

was confirmed in a recent study, which demonstrated DNA damage response elements 

MDC1 and BRIT1 localise at centrosomes and have respective roles in centrosome 

duplication and mitotic spindle assembly (Rai et al., 2008). 

 

It has already been made clear that centrosomes act as “command centres for cellular 

control”, which does not exclude their direct involvement in checkpoint responses to 

DNA damage (Doxsey, 2001; Doxsey et al., 2005; Reider et al., 2001; Löffler et al., 
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2006). For instance, G2/M transition checkpoint activation in response to the 

incorporation of DNA damage in S phase is regulated by centrosomes. It is thought that 

active Chk1 accumulation at centrosomes prevents mitosis onset by inhibiting Cdc25B 

and Cdc2 activation, in addition to which, centrosomal Chk1 activity correlates to 

centrosome amplification (Cazales 2005; Löffler et al., 2007; Bourke et al., 2007). 

Centrosome structural protein pericentrin could be part of this G2/M arrest pathway, as 

suggested from the identification pericentrin mutations causing Seckel-syndrome 

(Griffith et al., 2008). Although the function of pericentrin in this checkpoint 

mechanism has not been established, it was posited that either pericentrin could aid 

Chk1 recruitment to centrosomes or alternatively assist in downstream signalling to 

centrosome components involved in the arrest.  

 

There is mounting evidence within the context of mitosis that the presence of DNA 

damage perturbs centrosome integrity (Sibon, 2003). These DNA damage invoked 

pathways interfere with centrosome-dependent mitotic processes, which can prevent the 

division of cells with damaged DNA. Originally, a report by Sibon et al., showed that 

unreplicated DNA or incorporation of DNA damage can induce the loss of centrosome 

function in Drosophila embryos in mitosis. This loss of centrosome function was 

associated with the displacement of -TuRCs, which led to the formation of insufficient 

spindle structures that were unable to segregate chromosomes (Sibon et al., 2000). In 

this situation centrosome inactivation occurs after checkpoint failure in response to 

DNA damage at the point of mitosis onset. These findings were followed by another 

study in Drosophila embryos, which showed Chk2 dependent destruction of centrosome 

function induced by the presence of DNA damage (Takada et al., 2003). It is generally 

thought that defective mitotic cells undergo mitotic catastrophe, which in turn leads to 

their elimination from the cell population by cell death (Schatten et al., 1999; Roninson 

et al., 2001). This promotion of mitotic catastrophe could be a means of rendering cells 

non-viable in order to avoid aneuploidy. However, mitotic cells have been described to 

respond differently to incomplete DNA replication. Research performed by Hut et al., 

described the induction of centrosome fragmentation leading to the formation of 

aberrant multipolar spindle structures that inappropriately divide chromosomes (Hut et 

al., 2003). The abnormal cells derived from failed mitosis can arrest in G1 in the next 

cell cycle, or alternatively die following mitotic catastrophe. It is possible, however, that 

this process may be detrimental to the cell population by causing the formation of viable 

aneuploid cells. It is believed that this proposed DNA damage induced pathway of 
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inhibiting normal mitosis progression is also likely to be controlled by checkpoint 

factors.  

 

It has been noted that many DNA damage response factors and cell cycle checkpoint 

proteins co-localise with centrosomes specifically during mitosis in addition to Chk1 

and Chk2. Particularly of interest is the proposal that in human mitotic cells ATM and 

ATR kinases are found at centrosomes (Shen et al., 2006; Zhang et al., 2007). In the 

research performed by Zhang et al., DNA damage led to ATM and ATR delocalisation 

from centrosomes. Interestingly, this shift in localisation was shown to coincide with an 

increase in -tubulin nucleation (Zhang et al., 2007). However, it is possible that these 

ATM/ATR observations could be related to the SAC induced activated by perturbed 

mitotic spindle assembly. At this point, there is no clear model for ATM/ATR activation 

status, localisation or potential movement away from centrosomes in mitosis. Tumour 

suppressor proteins including BRCA1 and p53 have also been found to co-localize with 

centrosomes in mitosis, although how these proteins participate in centrosome 

regulation it is not known. It is also unknown if they impact on centrosome stability in 

the context of mitotic DNA damage (Hsu and White, 1998; Kais and Parvin, 2008; 

Shinmura et al., 2007; Fukasawa, 2007). 

 

As the mitotic responses to DNA damage are poorly elucidated, it is feasible that the 

mentioned checkpoint factors and potentially others could participate in these described 

mechanisms of enhancing chromosome instability through provoking centrosome 

instability. This process of orchestrating mitotic errors could be representative of a 

safety net for mitotic cells with persistent DNA damage. Alternatively, 

compartmentalisation of cell cycle machinery, for example within centrosomes, may 

provide a platform in which checkpoint reactions can occur (Löffer et al., 2006). This is 

in alliance with the hypothesis that complex DNA damage response networks are 

organised temporally and spatially rather than a linear orientation (Lukas et al., 2004). 

Within the confinement of centrosomes DNA damage checkpoint components could 

plausibly regulate mitosis without imposing on centrosome integrity by pathways that 

were discussed in section 1.5.2. Furthermore, this proposed model for inducing mitotic 

arrest provides a possible explanation to why Plk1, Cdk1-Cyclin B and other mitosis 

regulation factors are also found at centrosomes during mitosis (Jackman et al., 2003; 

Golsteyn et al., 1995; Tsvetkov et al., 2003). The two posited mitotic arrests pathways 
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orchestrated by centrosomal checkpoint signalling in response to DNA damage are 

depicted below in figure 1.8. 
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Figure 1.8 The proposed mitotic arrest models involving centrosomal checkpoint signalling elicited 

in the presence of DNA damage 

This diagram illustrates the two potential centrosome related pathways that affects mitotic progression in 
cells containing damaged DNA. The presence of mitotic DNA damage could induce checkpoint 
interactions within centrosomes that target centrosome integrity leading to their inactivation. 
Alternatively, checkpoint interactions within centrosomes may in turn regulate factors such as Cdk1-
Cyclin B involved in mitotic transit. Adapted from Löffler et al., 2006 (Löffler et al., 2006). 
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1.6 Xenopus laevis as a model system 

 

The amphibian Xenopus laevis is a popular research model that has proven very useful 

to a wide variety of structural and functional analyses. Xenopus shows a good homology 

with human genes and the knowledge gained through using this system has contributed 

vastly to the understanding of complex biochemical processes. The Xenopus egg 

contains an abundance of components required for rapid cell divisions without the 

requirement for transcription (Smythe and Newport, 1991; Laskey et al., 1977; Lohka et 

al., 1983). Xenopus eggs crushed by centrifugation provide a cytoplasmic extract that 

can be used as a cell-free biochemical system. Xenopus egg extract allows 

investigations into cellular mechanism outside the limitation of the cell environment, 

which often hinders experiments. A particularly useful quality of Xenopus egg extract is 

the synchronous progression through multiple rounds of the cell cycle, driven by 

oscillations in Cdk activities (Murray, 1991). In addition, Xenopus egg extract has been 

shown to recapitulate cellular processes including semiconservative DNA replication 

and mitotic spindle assembly (Blow and Laskey 1986; Blow et al., 1987; Lohka and 

Maller 1985). This extract system is also enhanced by the ease of protein depletions and 

reconstitutions. The examination of biochemical reactions are straightforward, avoiding 

the limitations often found associated with other systems. For these reasons, Xenopus 

extracts are widely considered as a useful biochemical tool.  

 

Research focussing on DNA damage response signalling has been mostly performed in 

yeast and mammalian cells. Genetic mutant screens in yeast have been critical to the 

identification of important DNA checkpoint response genes including Rad family and 

Mec1-3, mad1-3 and bub1-3 (Murray, 1995; Longhese et al., 1998). However, more 

complex mechanisms functioning in vertebrates are absent in yeast (Zhou and Elledge, 

2000). The extensive mammalian cell based research has provided much information on 

DNA damage responses (Sancar et al., 2004). However, the use of mammalian cells is 

disadvantaged by cell line diversity and the complexity of DNA damage response 

defects (Beamish et al., 1996). Furthermore, yeast and mammalian cell research can be 

limited by the intricate biochemistry behind cellular endpoints. Typically, Xenopus egg 

extract has been applied in developmental and cell cycle control studies, in recent years 

it is being used increasingly to investigate DNA damage responses (Murray et al., 1989; 

Murray and Kirschner 1989; Gautier et al., 1990; Costanzo et al., 2004b; Garner and 

Costanzo, 2009). It has been shown that Xenopus egg extract can reproduce several 
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aspects of DNA damage response and has provided significant insights into checkpoint 

mechanisms (Costanzo et al., 2000; Costanzo et al., 2003). Importantly, ATM/ATR 

have been isolated and found to function in regulating DNA damage checkpoint 

pathways within Xenopus egg extract (Robertson et al., 1999; Costanzo et al., 2000; 

Hekmat-Nejad et al., 2000; Guo et al., 2000). In using this system, chemicals can be 

added to interfere with biochemical processes. For example, extract can be 

supplemented with aphidicolin, which is a DNA polymerase inhibitor that blocks DNA 

replication enabling investigations into the effects of incomplete DNA replication 

(Dasso and Newport, 1990; Guo et al., 2000). In the most part, DNA damage 

checkpoint studies in Xenopus egg extracts have concentrated on control of DNA 

replication and entry into mitosis. 

 

A very useful aspect of Xenopus egg extract is the ability to undertake experiments at 

isolated cell phases. Xenopus egg extract is maintained in an arrested state through the 

activity called Cytostatic Factor (CSF) (Masui and Markert, 1971). The presence of 

sperm during fertilisation, triggers a calcium spike that is required in inducing events 

that lead to CSF and Cyclin degradation required to drive entry into mitosis (Maller et 

al., 2002). In Xenopus egg extract calcium is required to provoke mitosis exit, 

mimicking sperm entry into the egg (Lindsay et al., 1995). CSF arrested Xenopus egg 

extract has been extensively applied to understanding mitotic processes, such as spindle 

assembly and microtubule dynamics (Sawin and Mitchison, 1991; Verde, 1990; 

Belmont et al., 1990). The amount of detail gained from vertebrate studies is unlikely to 

have been unveiled in lower eukaryotes. In combining the two areas of research, DNA 

damage and mitosis, investigations centred on mammalian cells have provided a limited 

understanding of this field. Due to Xenopus extract attributes and its ability to 

recapitulate cellular events this system is appropriate to study the effects of DNA 

damage during the cell cycle stage of mitosis.  

 

1.7 This Thesis 

 
This introduction has described the mechanisms of cell cycle control and the cellular 

process during each phase of the cell cycle. It was emphasised that in response to 

chromosomal breakages there are complex signalling networks in which ATM and ATR 

kinases play key roles. Then described are the DNA damage induced checkpoints that 

maintain genome stability by regulation of the cell cycle during interphase and 
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preventing progression up to the point of mitosis. The focus of this thesis is on the cell 

phase of mitosis and determining the effects of DNA damage during this stage of the 

cell cycle. Mitosis, although short lived, is the finial stage in the process of cell 

reproduction and may have DNA damage checkpoint controls to maintain genome 

stability. Although the mitotic spindle assembly checkpoint is activated in the presence 

of DNA damage that breaks the spindle tension or causes the detachment of chromatin 

from spindles, it seems likely that other mechanisms exist to sense DNA damage away 

from the kinetochores. As reviewed, the investigations undertaken so far, have been 

insufficient to fully understand the effects of DNA damage and the checkpoint 

mechanism(s) activated during mitosis. The contradictory lines of evidence have led to 

much controversy in this field and therefore further works are required in a system other 

than in cultured mammalian cells.  

 

Firstly, we addressed whether ATM and ATR can be activated in mitosis by the 

presence of DNA damage in Xenopus egg extract. We then continued by investigating 

whether spindle assembly is perturbed in the presence active ATM and ATR. Strikingly 

we found that ATM/ATR activation leads to inhibition of centrosome-dependent 

spindle assembly. Instead, spindles assembled in the absence of centrosomes were 

resistant to ATM/ATR activation. Upon finding that ATM and ATR activation leads to 

inhibition of normal spindle formation, we then tried to identify the substrate 

responsible for the observed phenotype. We tested the major mitotic pathways such as 

Cdk1-Cyclin B, Plx1 and Ran-GTP/GDP and found the chosen candidates were not the 

target of this ATM and ATR pathway. We next applied a Xenopus cDNA library 

screening procedure to identify candidates for ATM and ATR targets within the 

physiological context of Xenopus egg extract. We identified a likely substrate XCEP63, 

which was in line with experimental evidence that suggested the ATM and ATR target 

lies within centrosome-driven spindle assembly. In characterisation studies we unveiled 

the role of XCEP63 in regulating normal spindle assembly. Finally, we identified 

XCEP63 phosphorylation at serine 560 by ATM and ATR and found that this 

phosphorylation correlates with XCEP63 displacement from the centrosome. XCEP63 

phosphorylation, upon ATM/ATR activation, corresponds to abnormal spindle 

formation. 
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2 Chapter 2 Materials and Methods 

 

2.1 General reagents and enzymes 

 

General reagents were of the highest grade available, commonly purchased from 

Sigma–Aldrich or Fisher Scientific unless otherwise stated. All enzymes used were 

obtained from New England BioLabs unless otherwise stated.  

 

Ultra-pure Acrylagel Acrylamide (30 %) and ultra-pure Bis-Acrylagel (2 %) were 

‘electrophoresis grade’ and obtained from National Diagnostics. Acrylamide solution 

(40 %), Bis-acrylamide solution (2 %) and 40 % Acrylamide/Bis-acrylamide Solution 

(37:5:1) were from Bio-Rad Laboratories. Stacking buffer (0.5 M Tris-HCl pH 6.8) and 

Resolving Gel buffer (1.5 M Tris-HCl pH 8.8) were also purchased from Bio-Rad.  

 

Nitrocellulose membrane for immunoblotting was Protran Nitrocellulose with 0.2 M 

and 0.45 M pore size manufactured by Whatman, supplied by GE Healthcare. 

‘Marvel’ dried skimmed milk used in immunoblotting protocols was made by ‘Premier 

Beverages’. Immunoblots were exposed to ECL (enhanced chemiluminescence) 

Western-Blot detection reagents from GE Healthcare. ELC chemiluminescence and MP 

autoradiograph hyperfilms were from GE Healthcare. 

 

2.2 Donated reagents  

 

ATM Inhibitor, Ku55933 was initially donated by KuDOS pharmaceuticals and later 

supplied by Calbiochem. Xenopus laevis cDNAs expression library was a gift from 

Tony Hyman (Max Planck Institute of Molecular and Cellular Biology and Genetics, 

Dresden, Germany). Histidine-tagged Xenopus Plx1 recombinant protein, as described 

in Trenz et al., 2008, was kindly provided by Kristina Trenz within the DNA Damage 

and Genomic Stability Laboratory, CRUK Clare Hall Laboratories (Trenz et al., 2008). 

Flag-ATM and Flag-ATR purified recombinant proteins, described in Trenz et al., 

2006, were also provided by Kristina Trenz (Trenz et al., 2006). Simon Boulton (DNA 

Damage Response Laboratory, CRUK Clare Hall Laboratories) kindly provided the 

pMAL vector. 
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2.3 Donated antibody  

 

Howard Lindsay (University of Lancaster) kindly donated anti-Cds1 (Chk2). Xenopus 

Plx1 polyclonal antibody for egg extract immunoprecipitations was provided by 

Kristina Trenz (Trenz et al., 2008). Polyclonal antibody recognizing green fluorescent 

protein (GFP) was a gift from Julian Gannon (Cell Cycle Control Laboratory, CRUK 

Clare Hall Laboratories). 

 

2.4 Oligonucleotides 

 

Oligonucleotides used for molecular biology techniques were synthesised and purified 

by Sigma–Aldrich custom oligonucleotides service.  

 

2.5 Buffers, solutions and media 

 

Commonly used buffers, solutions and media were prepared by CRUK Clare Hall 

Laboratories in house research services as described here. More specialized buffers, 

solutions and media will be described in corresponding methods.  

 

TBE:  90 mM Tris-borate, 2 mM Ethylene Diaminetetraacetic acid 

(EDTA) 

TAE:   40 mM Tris-acetate, 2 mM EDTA 

TBS:   10 mM Tris-HCl pH 8.0, 150 mM EDTA 

TE:   10 mM Tris-HCl pH 8.0, 1 mM EDTA 

PBSA:   170 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 

L-broth (LB):   10 g Bactotryptone, 5 g yeast extract, 10 g NaCl per litre 

SOC: 20 g Bactotryptone, 5 g yeast extract, 0.6 g NaCl, 0.2 g KCl, 2 g 

MgCl2 , 2.5 MgSO4 , 3.6 g D-glucose per litre 
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2.6 Antigen preparations and polyclonal antisera production  

 

2.6.1 XCEP63 recombinant protein for antibody production 

 

Histidine (6xHis) tagged XCEP63 fusion recombinant protein was generated for 

antibody production using the following protocol. Full-length XCEP63 open reading 

frame (ORF) was amplified by PCR (polymerase chain reaction) from cDNA contained 

within pCS2 library expression vector. XCEP63 PCR amplification used the following 

oligonucleotides: forward primer 5’ CAACCCGTAGCCTCACGCTTCCTC 3’ and 

reverse primer 5’ CTAAAATGTGCAGAACATTTC 3’ (incorporating a stop codon 

shown in bold). XCEP63 ORF was cloned into Invitrogen Gateway ® pDEST™17 

vector via pENTR™/D-TOPO® as described in manufacturers manual using Gateway® 

LR Clonase™ II Enzyme Mix. The resulting amino-terminal (N-terminal) 6xHis tagged 

XCEP63 plasmid construct was transformed into BL21-AI™ One Shot® cells 

(Invitrogen) and then grown in LB medium at 37 ºC with shaking for one hour. Cells 

were spread onto LB plates supplemented with 100 g/ml ampicillin (prepared by 

CRUK Clare Hall Laboratories in house research services). Individual colonies were 

used to inoculate ampicillin-supplemented LB medium and these cultures were grown at 

37 ºC overnight with shaking. Small glycerol (30 %) stocks were made, and plasmid 

DNA from the remainder of the culture was isolated by Qiaprep Spin Miniprep kit 

(Qiagen). The XCEP63 DNA insert sequence was then checked by DNA sequencing 

(2.9.8.3).  

 

XCEP63-GFP was grown up from glycerol stocks in ampicillin-supplemented LB 

medium at 37 ºC until the optical density at 600 nm (OD600) reached approximately 

0.4. 6xHisXCEP63 recombinant protein expression was induced with 0.2 % w/v L-

arabinose at 37 ºC for four hours with shaking. Cells were lysed in denaturing buffer (8 

M Urea, 10 mM Tris-HCl pH 8.0, 100 mM NaH2PO4) supplemented with 5 mM 

imidazole for 40 minutes at room temperature with gentle vortexing. Cell lysate was 

then clarified by centrifuging at 10,000 x g for 20–30 min at room temperature. 

Recombinant XCEP63 was purified using Nickel (Ni) agarose beads (Qiagen) based on 

descriptions in manufacturers handbook. In brief, clarified cell lysate was incubated 

with nickel agarose beads for one hour at 4 ºC with rotation. The lysate- Ni Bead mix 

was transferred to a column and washed with denaturing buffer supplemented with 
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increasing concentrations of 5 mM to 10 mM imidazole. Purified XCEP63 was eluted 

from the Nickel beads by 250 mM imidazole. Purified protein was then boiled in Bio-

Rad sample buffer and loaded onto 10 % polyacrylamide with a large sample well. The 

polyacrylamide gel was stained with Coomassie Blue (2.10.2) and the band 

corresponding to recombinant 6xHisXCEP63 protein was sliced into ten pieces for 

polyclonal antibody generation. 

 

2.6.2 Peptide synthesis for antibody production  

 

Lyophilised peptides powders were produced by CRUK in-house protein and peptide 

chemistry service using a solid phase standard synthesis protocol suitable for antibody 

production. A 20 mer XCEP63 peptide with an N-terminal cysteine residue and 

containing a phosphorylated serine at position 10, corresponding to XCEP63-S560 

(XCEP63-PS560), was prepared by the protein and peptide chemistry service for 

antibody production by coupling to Keyhole Limpet Haemocyanin (KLH) (Pierce). 

Equivalent non-phosphorylated XCEP63-S560 peptide was also produced for affinity 

purification of XCEP63-PS560 antibodies (2.6.4). 

 

2.6.3 Antibody production  

 

Four rabbits were injected with purified 6xHisXCEP63 full-length recombinant protein 

to obtain XCEP63 whole protein antibodies. XCEP63 phosphorylated serine 560 

specific antibodies were raised by injecting eight rabbits with KLH conjugated 

XCEP63-PS560 peptide. Antigens were given to Del Watling in the Biological 

Resources Unit within CRUK to be injected into New Zealand white rabbits 

(HsdIF:NZW) at Harlan UK, Hillcrest (Harlan Serum) following standard protocol as 

described by Harlow and Lane (Harlow and Lane, 1988). Whole protein 6xhisXCEP63 

antibody was used at 1/1000 v/v dilution for immunoblotting in PBS (phosphate buffer 

saline), 0.1 % Tween 20 v/v with 5 % bovine serum albumin (BSA) and used at 1/300 

v/v for immunofluorescence in standard blocking buffer (2.10.6). XCEP63-PS560 

peptide raised antisera were affinity purified as follows. 
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2.6.4 Affinity purification of XCEP63-PS560 antibodies 

 

Affinity chromatography procedure was performed as outlined in GE healthcare CnBr 

(cyanogen bromide)-sepharose 4B product handbook. Dry CnBr-sepharose was 

suspended and pre-activated with 1 mM HCl for 30 minutes and packed into Econo-Pac 

Columns (Bio-Rad). The resulting swollen sepharose was washed with 200 ml of cold 1 

mM HCl. XCEP63-PS560 peptide (5 mg), was dissolved in 5 ml of coupling buffer 

(100 mM NaHCO3, 500 mM NaCl pH 8.3) and rotated with prepared resin at room 

temperature for two hours. Excess peptide was removed from the beads by washing 

with 30 ml of coupling buffer. CnBr uncoupled beads were blocked by washing with 

200 ml of 100 mM Tris-HCl pH 8.0. 

 

Peptide coupled to CnBr-sepharose resin was washed with 200 ml of wash buffer 

containing 100 mM Tris-HCl pH 8.0 and 500 mM NaCl. Rabbit sera were filtered 

through 0.22 um Millex GP filter unit (Millipore). 20 ml of filtered sera was then 

applied to the column and reloaded ten times. The resin was then washed with 200 ml of 

wash buffer (100 mM Tris-HCl pH 8.0, 500 mM NaCl). Bound antibodies were eluted 

from the column with 100 mM glycine, 500 mM NaCl pH 2.5 and collected in 500 l 

fractions in Eppendorf tubes containing 50 μl of 1 M Tris-HCl pH 8.0. The fractions 

containing antibodies were determined by Nanodrop ND-1000 spectrophotometer at 

OD280 nm. Non-phospho-specific IgGs were eliminated from antibodies fraction(s) by 

passing them through a non-phospho XCEP63-S560 peptide column. Affinity purified 

XCEP63-PS560 antibody was used at 1/1000 v/v dilution in PBS, 0.1 % Tween 20 v/v 

with 5 % BSA w/v for immunoblotting and used at 1/300 v/v in standard blocking 

buffer for immunofluorescence. 

 

2.7 Other antibodies used for immunoblotting  

 

ATM (phospho S1,981) antibody was obtained from Abcam and used at the 

concentration of 0.2 g/ml in Tris-buffered saline (TBS), 0.1 % Tween 20 v/v with 5 % 

milk w/v. Anti-ATM/ATR substrate, phospho-serine/threonine antibody (L(S*/T*)Q) 

was purchased from Cell Signaling Technology and used as suggested by the 

manufacturers at a 1/1000 v/v dilution in TBS, 0.1 % Tween 20 v/v with 5 % milk w/v. 

Chk1 antibody was purchased from Santa Cruz Biotechnology and used at a 
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concentration of 0.2 g/ml in TBS, 0.1 % Tween 20 v/v with 5 % milk w/v. Xenopus 

Cds1 (Chk2) antibody (kindly given by Howard Lindsay) was used at an approximate 

concentration of 0.8 μg/ml in PBS, 0.1 % Tween 20 v/v with 5 % milk w/v anti-

RanGEF (RCC1) antibody was obtained from Millipore and used at a suggested dilution 

of 1/1000 in PBS, 0.1 % Tween-20 v/v and 3 % milk w/v. Histone H3 antibody was 

purchased from Millipore and used at suggested concentration of 0.5 μg/ml in PBS, 0.1 

% Tween 20 v/v with 5 % milk w/v.  

 

Secondary immunoblotting antibodies were anti-rabbit or anti-mouse IgG Horseradish 

peroxidase (HRP) linked to whole antibody from sheep (compatible with ECL detection 

reagents) obtained from GE Healthcare. In general, secondary antibodies were used at 

recommended dilution of 1/10,000.  

 

2.8 Other antibodies used for immunofluorescence  

 

Anti-gamma ( ) tubulin and anti-alpha ( ) tubulin antibodies were obtained from 

Sigma–Aldrich and used in cell and spindle immunofluorescence at an approximate 

concentration of 3 g/ml in blocking buffer. Anti-phospho Histone-H3 (phospho-serine 

10) mitosis marker was acquired from Abcam and used in cell immunofluorescence at 

approximate concentration of 3 g/ml in blocking buffer. GFP recognizing antibody 

was at a diluted as recommended at 1/400 in blocking buffer. 

 

Secondary anti-mouse and anti-rabbit IgG (H + L) antibodies Alexa Fluor® red- 

fluorescent dye (594) and Alexa Fluor® green-fluorescent dye (488) obtained from 

Invitrogen were used at an approximate concentration of 5 g/ml. 
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2.9 Standard Molecular Biology Techniques  

 

Most protocols followed methods published by Sanbrook et al., 1989 and Ausubel et 

al., 1991 (Sanbrook et al., 1989; Ausubel et al., 1991). More details are given if 

modifications were undertaken and for more specialised methods.  

2.9.1 Preparation of Plasmid DNA 

 

Plasmid DNA was purified using Qiaprep Spin Miniprep kit (Qiagen) and using 

Eppendorf table-top microcentrifuge as described in kit protocol. In general, plasmid 

DNA was prepared from transformed Escherichia coli (E. coli) grown from a single 

colony overnight at 37 °C in 1ml of supplemented LB medium. DNA was eluted from 

spin column by 50 μl of provided EB buffer (10 mM Tris·HCl, pH 8.5). XCEP63-GFP 

fusion DNA was isolated by Qiagen plasmid midi kit according to the provided 

protocol. DNA concentration was measured using Nanodrop ND-1000 

spectrophotometer at OD260 nm. Samples were blanked against EB buffer provided in 

Qiagen miniprep kit. 

 

2.9.2 DNA analysis by agarose gel 

 

Horizontal agarose gels (Invitrogen, electrophoresis grade) containing 0.4 g/ml 

ethidium bromide solution (Bio-Rad) were run in TAE (Tris/acetate/EDTA) 

electrophoresis buffer as based on descriptions in Maniatis et al., 1982 (Maniatis et al., 

1982). DNA markers were from New England BioLabs (50 bp ladder, 1 kb ladder 

and/or lambda DNA) and samples were mixed with Gel loading buffer from 

Calbiochem. Within Bio-Rad Gel doc system, DNA was visualised and images were 

acquired with ultra violet (OD302 nm) illumination. Alternatively, agarose gels were 

fixed in 30 % v/v trichloroacetic acid (TCA) for 20 minutes, prepared for and then 

exposed by autoradiography phosphoimaging (2.10.4).  

 

2.9.3 Purification of DNA from agarose gels 

 

DNA fragments of interest were excised from the agarose gel and underwent Qiaquick 

gel extraction as described in Qiagen Kit manual.  
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2.9.4 DNA Digestion with restriction enzymes  

 

Typically 100 g/ml DNA was treated with the presence of an excess of enzyme, 

generally 1-2 units of enzyme were applied per g of DNA. Samples were incubated 

with corresponding recommended reaction buffer for one to two hours usually at 37 ºC. 

Enzyme treatments included, BamHI and SalI digestion linearised pMal–c2X vector and 

created compatible blunt ends of amplified XCEP63 DNA insert (2.11.2). PcDNA3 

plasmid was prepared for association with chromatin beads by digesting with NotI and 

EcoRI (2.9.4). PcDNA3 plasmid DNA was linearised with EcoRI as a control for 

chromatin-coated bead investigations into ATM and ATR activity (2.15.1). XCEP63 

fusion/tagged plasmids constructs were also restriction enzyme digested and then 

separated by agarose gel (2.9.2), from which the presence and orientation of XCEP63 

DNA insert were determined. XCEP63 mutant DNA was digested with 1 l of 10 U/ l 

DpnI after PCR site directed mutagenesis procedure (2.9.8.4). 

 

2.9.5 Ligation of DNA fragments  

 

For ‘blunt end’ ligations, 20 ng of prepared DNA fragments were mixed with 40 ng of 

digested vector and heated for five minutes at 45 ºC. DNA was then ligated by T4 DNA 

Ligase in provided T4 DNA ligase buffer at 16 ºC for two hours or overnight.  

 

2.9.6 Screening E. coli colonies for the presence of plasmid DNA  

 

Following transformation of E. coli with plasmid DNA, a number of colonies were 

picked and grown in supplemented LB at 37 ºC overnight with shaking. DNA was 

extracted as previously described with Qiagen miniprep kit (2.9.1). DNA was 

sequenced (2.9.8.3) to check the presence and quality of plasmid DNA. Bacterial stocks 

were made by addition of 30 % glycerol and stored at – 80 ºC.  

 

2.9.7 Preparation of chromatin-coated beads 

 

Chromatin coated beads were prepared for anastral spindle assembly in Xenopus egg 

extract (2.14.4.5). Biotinylated pcDNA3 plasmid DNA (Invitrogen) was coupled to 
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streptavidin beads through Dynal Kilobinder kit (Invitrogen) incorporating a few 

modifications to protocol described by Heald et al., (Heald et al., 1996). In more detail, 

pcDNA3 5.4 kb plasmid DNA was prepared by digesting with NotI and EcoRI creating 

GC and AT overhanging ends respectively. DNA was ethanol precipitated and 

resuspended in TE buffer. DNA was subjected to a fill-in reaction performed in 80 μl 

volume containing 35 μg DNA, 50 μM biotin-dATP, 50 μM biotin-dUTP (Invitrogen), 

50 μM thio-dCTP, 50 mM thio-dGTP (Tebu-Bio) and 20 U Klenow (Roche 

Diagnostics) in supplied Klenow buffer. Reactions were incubated for two hours at 37 

°C and then applied to G-25 spin columns (Pharmacia) to remove unincorporated 

nucleotides.  

 

Biotinylated pcDNA3 plasmid DNA was coupled to streptavidin Dynal beads using 

Kilobase Binder kit (Invitrogen) according to manufacturer instructions. In brief, 4 μl 

beads per μg of DNA were coupled in 1 ml final volume of binding buffer overnight at 

16°C with rotation. The approximated amount of DNA immobilized was determined by 

comparing the concentration of DNA in the buffer before and after coupling. The beads 

were washed with washing solution (Invitrogen) and then with bead buffer (1.5 M 

NaCl, 10 mM Tris pH 7.6, 1 mM EDTA). Beads were re-suspended in bead buffer at a 

final concentration of 1 μg DNA/10 μl beads.  

 

2.9.8 Polymerase Chain Reaction (PCR) based techniques 

 

All PCR reactions were carried out on a Peltier Thermal Cycler, DNA engine Tetrad 2 

manufactured by MJ Research, USA. Primer annealing temperatures were calculated 

using the formula described by Baldino (Baldino et al., 1989). When oligonucleotide 

pairs annealing temperatures differed significantly, the lower one was applied.  

 

2.9.8.1 Amplification of DNA by PCR 

 

PCR reactions usually performed as outlined by Stratagene with 2.5 U of Pfu/Pfu 

Ultra/Pfu Turbo DNA polymerase. In a volume of 50 l reactions contained provided 

reaction buffer with 200 ng of each oligonucleotide primer, 100 ng of DNA template, 
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25 mM of each deoxynucleotide (dNTPs, purchased as a set from GE Healthcare). The 

usual PCR program applied followed this three step program. 

 

1) Denaturing step:  95 °C for 1 minute 

2) Annealing step: 44 °C to 60 °C depending on annealing temperature of individual 

primers for 30 seconds 

3) Elongation step: 75 °C for 1 minute 

Product was usually amplified for 30 cycles and finally incubated at 4 °C.  

 

2.9.8.2 Annealing of poly A and poly T (pA/pT) oligomers  

 

Annealed poly-deoxy-(A)70 and poly-deoxy-(T)70 oligomers formed DNA linear 

molecules (pA/pT), which were applied to Xenopus egg extract experiments. 3 g/ l 

poly A and 3 g/ l poly T oligomers were annealed in PK buffer provided by New 

England BioLabs either by incubating at a constant 16 °C for one hour or alternatively 

underwent the following PCR program (Costanzo et al., 2000; Guo and Murphy, 2000; 

Kumagai and Durphy, 2000). 

 

1) Denaturing step: 95 °C for 3 minutes 

2) Annealing steps: 65 °C for 10 minutes 

   37 °C for 10 minutes 

   23 °C for 10 minutes  

 

2.9.8.3 DNA sequencing 

 

Plasmid DNA for automatic cycle sequencing was prepared using the Bigdye  

terminator v1.1 cycle sequencing kit as outlined in the manufacturer’s protocol (Applied 

Biosystems (Applera UK). Dye terminators were introduced into the DNA sequence 

during repeated cycles of linear PCR. In short, 8 l terminator ready reaction made up 

of BigDye  terminator sequencing mix and BigDye  terminator reaction mix was 

mixed with 3.2 pmole of primer, and 500 ng of plasmid DNA template in a total volume 

of 20 μl. Samples were subjected to the following PCR program:  
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1) Initial denaturing step: 96 oC for one minute 

2) Denaturing step:  96 oC for ten seconds  

3) Annealing step: 44 °C to 60 °C depending on annealing temperature of 

individual primers for five seconds  

4) Elongation step:  60 oC for four minutes 

 

In general, the product was amplified for 25 cycles from step two and then finally 

incubated at 4 °C.  

 

PCR extension products were purified through Qiagen DyeEx  2.0 spin kit as outlined 

in the DyeEX handbook. Drying of samples and DNA capillary sequencing (Applied 

Biosystems 3730 DNA analyser) was undertaken by the CRUK in house sequencing 

service.  

 

2.9.8.4 Quickchange Site Directed Mutagenesis  

 

XCEP63 mutants were generated using PCR based Stratagene Quickchange Site 

Directed Mutagenesis Kit. XCEP63 serines (S) and threonines (T) of candidate and 

speculative ATM and ATR phosphorylation sites were converted to alanines (A) in 

XCEP63 cDNA contained within pCS2 library expression vector. Mutagenesis was 

performed as outlined by the manufacturer protocol. In brief, XCEP63 oligonucleotide 

primers were designed with a melting temperature of greater than or equal to 78 °C 

between 25 and 45 bases in length with base change corresponding to the alanine 

mutation in the centre. The oligonucleotide sequences described in XCEP63 ATM and 

ATR phosphorylation site investigations are shown in table two. 
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Serine/  

Threonine 

Mutation 

Mutagenic Oligonucleotide (5’to 3’) Coordinates Direction  

(-/+) 

S41 ATGCTGGATCACAAGAGGGCACAGTGGGAAGCAGAGA
CAG 

103-142 + 

S41 CTCTGTCTCTGCTTCCCACTGTGCCCTCTTGTGATCCAG
C 

1977-2016 - 

S135 GAGGAGGAAAGAGCCGAGGTCAGCCGTCTG 391-420 + 
S135 CAGACGGCTGACCTCGGCTCTTTCCTCCTC 1701-1730 - 
S202 CCTAGTCGGCCGTGCTGAACTTCAGAACCTCAG 591-623 + 
S202 CTGAGGTTCTGAAGTTCAGCACGGCCGACTAGG 1498-1530 - 
S353 AGTGTTGAGTCTGTGACAGCCCAGTGTCAACTGCTGGC

AAAG 
1039-1080 + 

S353 CTTTGCCAGCAGTTGACACTGGGCTGTCACAGACTCAA
CACT 

1041-1082 - 

S391 * CTGAAAGGCCAGCTCGCACAGGCTGAGCTGACCCAC 1156-1191 + 
S391 * GTGGGTCAGCTCAGCCTGTGCGAGCTGGCCTTTCAG 930-965 _ 

S409 and 
T412 

AGGAAGGAGATCGCACAGCTCGCTCAGGAGTTACACCA
G 

1211-1253 + 

S409 and 
T412 

CTGGTGTAACTCCTGAGCGAGCTGTGCGATCTCCTTCCT 868-910 - 

T471 GTTATCGGAACTCCTTCAGGCGCAAGAGCCGGATGTGG
CG 

1392-1431 + 

T471 CGCCACATCCGGCTCTTGCGCCTGAAGGAGTTCCGATA
AC 

609-729 - 

S497 GCAGAGGGAGCTGCTACAGGCACAGGAGAAACTGGAG
CTGATAGCG 

1470-1515 + 

S497 CGCTATCAGCTCCAGTTTCTCCTGTGCCTGTAGCAGCTC
CCTCTGC 

606-651 - 

S520 CCAGAATGCAGTGGATAGTATAGCTCAAGAGCTGTTGA
ATAAACAGG 

1536-1582 + 

S520 CCTGTTTATTCAACAGCTCTTGAGCTATACTATCCACTG
CATTCTGG 

539-585 - 

S550 CAGGAGATGCAGACTTTTAGGGCCCAACAAGATGCAGC
TTCAAGTGG 

1627-1673 + 

S550 CCACTTGAAGCTGCATCTTGTTGGGCCCTAAAAGTCTGC
ATCTCCTG 

488-494 - 

S560 (1) * TGCAGCTTCAAGTGGAAGCGCACTGGAGTCTATATTCT
CTG 

1659-1699 + 

S560 (1) * CAGAGAATATAGACTCCAGTGCGCTTCCACTTGAAGCT
GCA 

422-462 - 

S560 (2) * TGCAGCTTCAAGTGGAAGCGATCTGGAGTCTATATTCT
CTG 

1659-1699 + 

S560 (2) * CAGAGAATATAGACTCCAGATCGCTTCCACTTGAAGCT
GCA 

422-462 - 

S603 * TTCCACCCACCGCCCCAGCAAATGC 1796-1820 + 
S603* GCATTTGCTGGGGCGGTGGGTGGAA 301-325 - 

 

Table 2. A list of Oligonucleotides used in examples of XCEP63 serine/threonine site directed 

mutagenesis  

Mutated base residues are shown in red (refer to Appendix one for XCEP63 amino acid sequence). 
XCEP63 DNA sequence primer coordinates are also indicated, as well as the direction of the primers (+ 
indicates binding to coding strand and – indicates binding to complementary strand). Serine 560 requires 
two oligonucleotides (1 and 2) in order to convert amino acid to alanine. * indicates the potential 
phosphorylation sites identified by Mass Spectrometry analysis. 
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In general, 50 l of reaction mixtures contained provided reaction buffer supplemented 

with 20 ng of XCEP63 plasmid DNA, 125 ng of both primers, 1 l of provided dNTP 

mix and finally 1 l of PfuTurbo DNA polymerase 2.5 U/ l. Samples were applied to 

the following PCR Cycling parameters. 

 

1) Initial denaturing step: 95 oC for 30 seconds 

2) Denaturing step:  95 oC for 30 seconds  

3) Annealing step: 55 °C for one minute  

4) Elongation step:  68 oC for ten minutes 

 

Amplification reactions were cycled in general 18 times from step two and then cooled. 

Reactions then proceeded to enzyme digestion with DpnI (2.9.4). The mutated XCEP63 

plasmid DNA was transformation into E. coli cells (DH5  or One Shot  TOP10 cells 

(Invitrogen) following manufactures guidelines. Cells were grown at 37 oC in LB 

medium for one hour and then spread on LB plates supplemented with 100 g/ml 

ampicillin which were inverted overnight at 37 oC. Colonies were picked and grown at 

37 oC in LB medium with 100 g/ml ampicillin for one hour. Plasmid DNA was 

isolated by Qiaprep spin miniprep kit (2.9.1) and incorporation of alanine mutation was 

checked by DNA sequencing (2.9.8.3). Mutants were then screened following the 

procedure described in 2.15.5. 

 

2.10  Separation and detection of proteins 

 

2.10.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Standard polyacrylamide resolving gels was based on descriptions by Laemmli, which 

were outlined within Bio-Rad solution manual (Laemmli, 1970). Unless otherwise 

stated standard 10 %, resolving SDS (Sodium dodecyl sulphate) gels were usually used, 

made up with Bio-Rad 37:5:1 Bis-Acrylamide solution, 375 mM Tris-HCl pH 8.8 and 

0.1 % SDS (Sodium dodecyl sulphate) w/v. For assessment of Chk1 in treated Xenopus 

egg extract, samples underwent electrophoresis on an 8 % SDS ultra pure Bis-

Acrylamide gel. The ratio of acrylamide to bisacrylamide was 37.5.1 made from 30 % 

Acrylagel Acrylamide and 2 % ultra pure Acrylagel Bis-Acrylamide in 375 mM Tris-

HCl pH 8.8 with 0.1 % SDS w/v.  
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Anderson SDS-PAGE was also used to resolve proteins, particularly in Xenopus egg 

extract shift assays. Anderson gels were prepared based on descriptions by Anderson 

(Anderson et al., 1973). 10 % Anderson resolving gels were prepared with 40 % 

Acrylamide solution (with a finial of 10 v/w) and 2 % Bis-Acrylamide solution (with a 

finial of 0.13 % v/v), 375 mM Tris-HCl resolving buffer and 0.1 % w/v SDS.  

 

Typically, acrylamide gels were made up using Bio-Rad stacking buffer (0.5 M Tris-

HCl pH 6.8) and resolving gel buffer (1.5 M Tris-HCl pH 8.8). Stacking gels topping 

resolving gels were 4 % acrylamide and made up with Bio-Rad 37:5:1 Bis-Acrylamide 

solution in 120 mM Tris-HCl pH 6.8. Ammonium persulphate (0.05 % w/v) and 

N,N,N ,N -Tetramethylethylenediamine (TEMED, 0.05 % v/v) were used to polymerise 

acrylamide. Gels were made up and assembled within the Bio-Rad mini system 

apparatus or in Sigma–Aldrich vertical electrophoresis unit for medium or large gels. As 

indicated in the figure legends, Bio-Rad medium Criterion 4-12 % pre-cast gels were 

also used to separate proteins, samples underwent electrophoresis in Bio-Rad XT-

MOPS running buffer within Bio-Rad Criterion gel apparatus. 

 

Reaction samples were prepared for electrophoresis by addition of Bio-Rad sample 

buffer prepared with 5 % -mercaptoethanol, which were then boiled for four minutes 

unless otherwise stated. Bio-Rad Precision plus dual colour marker was loaded adjacent 

to samples. Electrophoresis was performed in 1 x running buffer (24 mM Tris base, 193 

mM glycine and 0.1 % w/v SDS). In general, small and medium gels underwent 

electrophoresis at a constant voltage of 200 V and for larger gels a constant voltage of 

280 V (Bio-Rad power pack) was applied. Electrophoresis was stopped once the front 

dye had reached the bottom of the gel or alternatively gels were left running for longer 

if a greater protein separation was required.  

 

2.10.2 Detection of proteins by Coomassie Blue staining  

 

Polyacrylamide gels were rotated for one to two hours with Coomassie Blue stain at 

room temperature or alternatively incubated for a few minutes in pre-warmed staining 

solution. Coomassie Blue stain contained 0.1 % w/v Coomassie Blue, 30 % v/v 

methanol, 10 % v/v acetic acid. The stain was removed from gels in a destain solution 
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containing 30 % v/v ethanol, 10 % v/v acetic acid rotating for a minimum of one hour at 

room temperature. 

 

2.10.3 Detection of proteins by SYPRO  Ruby staining 

 
All fixation and staining steps were performed with gentle agitation at room 

temperature following the long procedure described in Invitrogen manufacturers 

protocol. In summary, polyacrylamide gels were fixed twice for 30 minutes with 100 ml 

of 50 % v/v methanol, 7 % v/v acetic acid solution at room temperature. SYPRO  

Ruby stain was applied overnight and finally washed with 100 ml of 10 % v/v 

methanol, 7 % v/v acetic acid. Fluorescent images of gels were acquired on GE 

Healthcare Typhoo Trio variable mode imager using florescence excited by Green laser 

source at 532 nm and emission recorded at 610 nm. Gel were visualised on a blue light 

transilluminator (Clare Chemical Research, Dark Reader) and protein bands of interest 

were excised with clean scalpel. 

 

2.10.4 Autoradiography 

 

Gels to be fluorographed were dried on Whatman 3MM Chromatography paper in a 

Bio-Rad gel dryer for two hours with heat curve cycle program reaching 90 °C. 

Radioactive gels were placed in intensifying exposure cassettes (Sigma–Aldrich) and 

exposed to Kodak biomax MR-1 film or MP autoradiography hyperfilm for between 

one and three days (35S radioactive labelling) stored at -80 °C as specified by Laskey 

(Laskey, 1980). Alternatively, 32P radioactive labelling gels were exposed to a 

phosphoscreen (GE Healthcare) for approximately 12 hours or for a longer time 

depending on radioactive signal.  The recorded radioactive signal was monitored within 

a phosphoImager (GE Healthcare, Typoon Trio variable mode imager) and measured by 

ImageQuant software. 

 

2.10.5 Immunoblotting 

 

Immunoblotting or Western blotting was based on procedure outlined by Towbin et al., 

1979 (Towbin et al., 1979). Polyacrylamide gels were stacked between 3 M Whatman 
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filter paper, 3 mM Chromatography paper and nitrocellulose transfer membrane 

(Protran  0.45 or 0.2 μM pore size). All constituents were pre-soaked in transfer buffer 

(24 mM Tris base, 193 mM glycine, 10 % v/v methanol, 0.01 % v/v SDS), then 

assembled in the Bio-Rad mini or larger gel blot transfer system, which was filled with 

transfer buffer. In the mini system, proteins were transferred at 30 mA (milliamp) 

overnight or 200 mA for two hours. For larger blots proteins were transferred at 200 

mA overnight or 400 mA for two hours. All transfer systems were prevented from 

overheating by stirring at 4 °C. 

 

Nitrocellulose membranes were blocked with 5 % BSA w/v or 5 % milk w/v in PBS 

with 0.1 % TWEEN 20 v/v (PBST) for one hour rotating at room temperature or 

overnight at 4 °C. An appropriate dilution of antibody was prepared in PBS or TBS, 

BSA or milk and 0.1 % TWEEN 20 v/v (refer to 2.6.3, 2.6.4 and 2.7). Antibody 

solution immersed the membrane and was rotated at room temperature for one hour or 4 

°C overnight. The membrane was rinsed once briefly with PBS and three times for 20 

minutes with PBST to remove unbound primary antibody. HRP conjugated anti-rabbit 

or anti-mouse secondary antibody (2.7) was applied generally in 3 % BSA or 3 % milk 

w/v PBST for one hour rotating at room temperature. The membrane was rinsed as 

previously to remove non-specifically bound antibody. ECL detection reagents were 

mixed and applied to the blot for one minute and chemiluminescence was detected by 

exposure to ECL hyperfilms.   

 

2.10.6 Immunofluorescence  

 

Cells were cultured or spun on precoated poly-L-lysine 12 mm2 coverslips and then 

fixed with room temperature 3 % paraformaldehyde for 10 minutes. Xenopus egg 

extract assembled spindle assembly reactions were spun onto poly-L-lysine–coated 

coverslips as described in 2.14.4.6 and then fixed with –20 °C methanol for two 

minutes. Coverslips were processed essentially as described by Walczak (Walczak et 

al., 1996). Fixed coverslips were rehydrated twice for five minutes in TBS-TX (TBS, 

0.1 % Triton X-100 v/v) and then blocked for 30 minutes at room temperature in a 

standard blocking buffer containing TBS-TX and 2 % BSA w/v. Coverslips were rinsed 

three times with TBS-TX and immersed in an appropriate dilution of primary antibodies 

(2.8) in blocking buffer for one hour at room temperature. Unbound antibody was 
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removed in three five-minute washes with TBS-TX. Secondary Alexa Fluor® 

fluorescent antibodies in blocking buffer were applied for one hour at room 

temperature. Coverslips were rinsed again three times with TBS-TX and then immersed 

in 2 μg/ml Hoechst 33342 or DAPI in TBS-TX. Coverslips were mounted onto 

microscope slides using ProLong® Gold antifade reagent (Invitrogen) or 90 % glycerol, 

1 mg/ml p-phenylenediamine, 20 mM Tris-HCl, pH 8.8 and sealed with nail varnish. 

All images were acquired at room temperature using a DeltaVision RT Olympus 1 x 70 

(DV 41040) microscope from Applied Precision  using softWoRx suite 3.5 software. 

 

2.11  XCEP63 construct fusions  

 

2.11.1  GFP tagged XCEP63: XCEP63-GFP 

 

XCEP63 ORF was amplified by PCR from cDNA contained within pCS2 library 

expression vector by forward oligonucleotide 5’ CAACATGGAAGCTTTGTT 

ACAAGG 3’ (incorporation start codon shown in bold) and reverse oligonucleotide 5’ 

AAATGTGCAGAACATTTCTTC 3’. XCEP63 DNA was cloned into Invitrogen 

Gateway® pcDNA™-DEST47 vector via pENTR™/D-TOPO® to incorporate 

carboxyl-terminal Green Fluorescence Protein (GFP) fusion as described in 

manufacturers manual using Gateway® LR Clonase™ II Enzyme Mix. XCEP63-GFP 

DNA was transformed into One Shot® TOP10 E. coli (Invitrogen) grown in LB at 37 

ºC with shaking for one hour. Cells were spread onto LB plates supplemented with 100 

g/ml ampicillin and inverted overnight at 37 ºC. Clones were checked by restriction 

enzyme digestion (2.9.4) and DNA sequencing (2.9.8.3) for the presence of plasmid 

DNA and XCEP63 DNA insert orientation and quality.  

 

XCEP63-GFP plasmid DNA was transfected into Xenopus Tissue Culture (XTC) cells 

(2.16.3) or alternatively transcribed and translated in TnT  T7 Quick Control Coupled 

translation/transcription System (Promega) in the absence of [35S]-methionine as 

described in 2.12 for use in Xenopus egg extract spindle assembly assay  (2.14.4.1).  
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2.11.2 MBP fused XCEP63: XCEP63-MBP  

 

XCEP63-MBP (Maltose binding protein) fusion was constructed following the 

procedure outlined by New England BioLabs instruction manual for pMAL™ protein 

fusion and purification system. pDEST-MAL (pMAL–c2X) construct was originally 

custom made and donated by Simon Boulton, which then became commercially 

available as pMAL-c2X. XCEP63 was amplified by PCR using Pfu Ultra DNA 

polymerase purchased from Stratagene. The forward primer was 5’ 

GGATCCGAAGCTTTGTTACAAGGGCTTCAACG 3’ incorporating BamHI 

restriction enzyme digestion site (shown in red). The reverse primer 5’ 

GTCGACCTAAAATGTGCAGAACATTTCTTCTTTG 3’ contained a stop codon 

(shown in bold) and incorporated a SaI1 restriction digestion site (shown in red). Both 

pMAL–c2X vector and XCEP63 PCR product were digested by BamHI and SalI 

restriction endonucleases (2.9.4). Digestion products were checked by separating on an 

agarose gel, then excised and isolated using Qiaquick Gel Extraction Kit (2.9.3). 40 ng 

of prepared vector and 20 ng of XCEP63 insert were ligated. 5 l of the ligation 

reaction was transformed into OneShot® BL21 Star™ (DE3) chemically competent    

E. coli, which was then spread on a LB plate containing 100 g/ml ampicillin as 

described in Invitrogen product manual. Plates were inverted overnight at 37 °C. A 

number of clones were checked for the presence of plasmid, and the orientation and 

quality of the XCEP63 insert by restriction enzyme digestion (2.9.4) and DNA 

sequencing analysis (2.9.8.3). For mutant studies, XCEP63-MBP construct at serine 560 

was converted to alanine (XCEP63-MBP- S560A) by site directed mutagenesis 

(2.9.8.4). 

 

2.11.2.1 Expression and purification of XCEP63-MBP recombinant proteins 

 

E. coli transformed with XCEP63 pMAL-c2X vector construct were grown in LB 

supplemented with 50 g/ml carbenicillin and 0.2 % v/v glucose at 37 °C. Once the 

OD600 nm measured 0.5-0.7, the expression of XCEP63-MBP recombinant protein was 

induced with addition of 0.3 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) 

obtained from Promega at 25 °C for five hours.  E. coli were harvested at 4,000 rcf 

(relative centrifugal force) for 15 minutes in Beckman J6-MC in JS-4.2 swing bucket 

rotor at 4 °C, washed with PBS and then re-pelleted under the same conditions.  
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Purification of XCEP63-MBP fusion protein was undertaken as follows. Pelleted E. coli 

were re-suspended in column buffer (20 mM Tris-HCl, 200 mM NaCl, 1mM EDTA 

pH7.4) containing a complete protease inhibitor cocktail tablet (Roche Diagnostics). 

Lysate was passed through a pressurised Cell Disruptor from Constant System Ltd at 25 

kpsi (Knots per square inch). Lysate was clarified at 20,000 rpm (revolutions per 

minute) for 30 minutes in a Sorvall fixed angle rotor SS-34 at 4 °C. The supernatant 

was transferred to fresh tubes and then centrifuged at the same conditions for a further 

20 minutes. MBP amylose bead slurry obtained from New England Biolabs was 

equilibrated three times by column buffer and spun at 4,000 rpm for five minutes in a 

Sorvall RT7 centrifuge. Clarified extract and equilibrated amylose beads were coupled 

by rotating for a minimum of two hour or 4 °C overnight. The extract/beads mix was 

then transferred to a column and unbound lysate was drained. The column was washed 

with 12 column volumes of column buffer and then eluted with 25 ml of elution buffer 

(20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA pH 7.4 and 10 mM maltose) collected 

in 500 l fractions. Fractions containing XCEP63 protein MBP fusion were pooled and 

concentrated in Amicon ultra centrifugal filter device from Millipore. XCEP63-MBP 

protein was transferred to Dialysis cassette purchased from Perbio and dialysed in 150 

mM KCl, 20 mM Hepes pH 7.5, 1 mM 1,4-Dithio-DL-threitol (DTT) at 4 °C overnight.  

 

2.12 Coupled transcription and translation of cDNAs 

 

cDNAs from pooled expression library (2.14.5) and XCEP63 site directed 

phosphorylation mutants (2.9.8.4) were transcribed and translated by TnT  SP6 Quick 

Control Coupled Translation/Transcription System (rabbit reticulocyte lysate) obtained 

from Promega following the protocol provided. In brief, 20 μl reactions contained 1 μl 

(100 ng/μl) of cDNA pool, 19 μl of translation mix diluted with provided nuclease free 

water and 0.5 μCi/μl of [35S]-methionine (Promix, GE Healthcare). Translation was 

allowed to proceed for 90 minutes at 30 °C. Translated cDNAs were then exposed to 

Xenopus egg extract. XCEP63-GFP construct was also transcribed and translated 

similarly but within TnT  T7 Quick Control Coupled Translation/Transcription System 

(Promega) in the absence of [35S]-methionine. Translated XCEP-GFP was used in 

Xenopus egg extract spindle assembly (2.14.4.4). 
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2.13  Xenopus laevis egg and sperm nuclei preparation 

 

Cytostatic factor (CSF) arrested Xenopus egg extract and sperm nuclei were prepared in 

the most part as described by Murray, 1991 (Murray, 1991). 

 

2.13.1 Xenopus egg extract  

 

Female Xenopus were injected with 50 units of pregnant mare serum gonadotrophin 

within six days prior to requirements. On the day before (ideally day six) egg collection, 

females were induced to ovulate by injection of 400 units of human chorionic 

gonadotrophins. Eggs were laid and collected in MMR buffer (100 mM NaCl, 2 mM 

KCl, 1 mM MgCl2, 0.1 mM EDTA and 5 mM Hepes pH 7.8). Some alterations were 

made to CSF egg extract protocol described by Murray 1991, changes to method are 

detailed in chapter 3, section 3.3 and the procedure used is described below. Throughout 

the procedure, eggs and extracts from different frogs remained separated. In short, eggs 

were de-jellied by washing two to three times in 2 % w/v L-cysteine in salt solution 

(100 mM KCl, 5 mM ethylene glycol-bis (2-aminoethyether)-N,N,N’,N’-tetraacetic 

acid (EGTA), 0.1 mM CaCl2, 2 mM MgCl2 at pH 7.8) for approximately five minutes 

in total. Eggs were washed three to four times in chilled XB containing salt solution 

with 10 mM HEPES pH 7.8 and 50 mM sucrose. Eggs were transferred to 14 ml 

polypropylene tubes (Falcon 2059) in minimal volume buffer with 10 g/ml LPC 

protease inhibitor mix (leupeptin trifluoroacetate salt, pepstatin A, chymostatin) and 10 

g/ml cytochalasin B. Eggs were packed at 1,200 rpm in Sorvall RT7 centrifuge at 4 ºC 

for 1 minute and excess XB buffer was removed from above the eggs. Eggs were then 

crushed at 4 °C by centrifuging for 20 minutes at 12,000 rpm in a Sorvall swing out 

HB-4 rotor. The cytoplasmic layer was collected into a tube at 4 °C using a syringe and 

needle through the side of the tube avoiding top lipid layer and debris pellet. Collected 

extract was supplement with energy mix (7.5 mM creatine phosphate (Calbiochem), 1 

mM ATP, 0.2 mM EGTA, 1 mM MgCl2), 10 g/ml LPC protease inhibitor mix and 10 

g/ml cytochalasin B, then transferred into 5 ml polypropylene tube (Falcon, 2063) 

inserted into a 14 ml polypropylene tube (Falcon, 2059) containing 1 ml of water. In the 

same conditions of the first spin, extract was clarified to remove residual debris for a 

further 10 minutes. The cytoplasmic fraction was again collected and used immediately 

for spindle assembly assays. Alternatively, extract was supplemented with 200 mM 
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sucrose and then aliquoted in liquid nitrogen for long-term storage in liquid nitrogen 

cryostats. In some experiments, CSF egg extracts were induced to enter interphase by a 

final concentration of 0.4 mM CaCl2 and supplemented further with 0.2 mg/ml 

Cycloheximide (Calbiochem).  

 

2.13.2 Xenopus sperm nuclei  

 
Male frogs were primed with 50 units of Folligon five to nine days before the testes are 

removed. Testes were cleaned in EB buffer (50 mM KCl, 50 mM Hepes KOH pH 7.6, 5 

mM MgCl2, 2 mM -mercaptoethanol) and finely chopped with a scalpel. The EB 

buffer and testes suspension was homogenised, then filtered through 25 μM Nitex 

membrane (Nybolt, UK) and centrifuged at 3,400 rpm for five minutes at 4 °C in a HB-

4 Sorvall swing out rotor.  The pellet was resuspended in 2 ml of SuNaSp (250 mM 

sucrose, 75 mM NaCl, 0.5 mM spermidine, 0.15 mM spermine) and recentrifuged as 

previously. Again, the pellet was resuspended in SuNaSp to give a total volume of 2 ml 

to which 40 μg/ml lysolecithin was added and incubated for five minutes at room 

temperature. The integrity of sperm membranes were checked by Hoescht staining (1 

μl/ml). Sperm preparations with greater than 95 % demembranation proceeded, 

otherwise pelleting and lysolecithin treatments were continued. Demembraned sperm 

suspension was centrifuged at 3,000 rpm for five minutes. Pelleted sperm was 

resuspended in 2 ml of SuNaSp containing 3 % BSA and then centrifuged as previously. 

The pellet was washed with EB buffer twice and finally resuspended in 500 μl EB 

buffer supplemented 30 % glycerol. Small aliquots of prepared sperm nuclei at a density 

of 1-5 x 107 were frozen in liquid nitrogen and stored at -80 °C. 

 

2.14  Techniques involving Xenopus egg extract  

 

2.14.1 ATM and ATR activation and inhibition  

 

CSF egg extract were then treated with 5 ng/μl linear DNA (pA/pT) usually for 30 

minutes at 20 °C as described in Costanzo et al., 2004 (Costanzo et al., 2004a). 

Alternatively, extract was supplemented with 1,000 sperm nuclei/μl and treated with 

0.25 U/μl EcoRI to induce chromosomal breakage usually for 30 minutes at 20 °C based 



 80 

on descriptions by Grandi et al., 2001 and Yoo et al., 2004 (Grandi et al., 2001; Yoo et 

al., 2004b). ATM and ATR were inhibited by the addition of 2 mM caffeine or 20 μM 

Ku55933 (ATM inhibitor) (Hickson et al., 2004). Investigations into XCEP63 

phosphorylation by ATM and ATM, extracts were supplemented with 50 ng/μl 

recombinant XCEP63-MBP recombinant protein (2.11.2.1) or left un-supplemented 

(endogenous XCEP63). 

 

2.14.2 Chromatin binding  

 

Chromatin isolation was based on previous description in Costanzo et al., 2003 with 

some modifications (Costanzo et al., 2003). CSF egg extracts were treated in 50 μl 

aliquots in the absence or presence of 3,000 sperm nuclei/μl. Samples with sperm nuclei 

were treated with and without 0.25 U/μl of EcoRI. At time points, 0, 30, 60 and 90 

minutes after incubation at 23 °C, extracts were mixed with 500 μl of cold buffer (100 

mM KCl, 50 mM HEPES pH 7.5, 2.5 mM MgCl2) with 0.25 % Ipegal v/v and kept at 4 

°C. The control sample without sperm nuclei was diluted at 90 minutes. Reactions were 

under-layered with 200 μl of buffer with 20 % w/v sucrose and spun at 10,000 rpm for 

five minutes at 4 °C in a Sorvall adapted HB-6 rotor. Supernatants were removed 

leaving approximately 100 μl, washed with 500 μl of buffer and spun in a table-top 

Eppendorf centrifuge at 13,000 rpm for five minutes at 4 °C. Supernatants were 

removed leaving approximately 20 μl and Bio-Rad sample buffer was added. Samples 

were boiled for 4 minutes and then underwent SDS-PAGE (2.10.1).  

 

2.14.3 Immunoprecipitation of Plx1  

 

Trenz et al., 2008 previously described Plx1 antibody and application in precipitating 

Plx1 (Trenz et al., 2008). Plx1 was precipitated from 20 μl of pre-treated extract by 

incubation with 5 μl of anti-Plx1 serum in 200 μl of PBS. Reactions were rotated for 

one hour at 4 °C and then protein A sepharose beads were added. After an additional 

hour of incubation, Plx1 immunoprecipitates were washed in PBS containing 0.2 % 

Ipegal v/v. Immunoprecipitates proceeded to Plx1 activity assessment with Caesin 

recombinant protein (2.15.2). 
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2.14.4 Spindle assembly in Xenopus egg extract 

 

Spindle assembly assays were performed in manipulated fresh CSF Xenopus egg 

extracts. The procedure of spindle assembly in Xenopus egg extract was essential as 

described by Sawin and Mitchison, 1991 and reviewed in more detail by Desai et al., 

1999 (Sawin and Mitchison, 1991; Desai et al., 1999). Spindle assembly and the 

isolation of samples onto coverslips were originally described by Evans et al., 1985 

(Evans et al., 1985). 

 

2.14.4.1 Half spindle assembly 

 

CSF extract was supplemented with 1,000 sperm nuclei/μl and, unless otherwise stated, 

further supplemented with 50 μg/ml rhodamine labeled tubulin (Universal Biologicals 

Ltd). Extracts were subdivided into 20 μl and incubated for 90 minutes at 20 ºC.  

Spindles were then isolated as described in 2.14.4.6.  

 

2.14.4.2 Bipolar spindle assembly  

 

CSF extract was supplemented with 1,000 sperm nuclei/μl and induced into interphase 

with addition of CaCl2 to a finial concentration of 0.4 mM and further supplemented 

with Cycloheximide (0.2 mg/ml). Extract was incubate for two hours at 20 °C and after 

which a half volume of CSF extract was added. Extracts were supplemented with 50 

μg/ml rhodamine-labeled tubulin and incubated for 60 minutes at 20 °C in 20 μl 

reactions. Similarly spindles were then isolated as described in 2.14.4.6. 

 

2.14.4.3 Spindle assembly in the presence of active ATM and ATR 

 

ATM and ATR activation was induced in spindle assembly extracts by introducing 

EcoRI (0.25 U/μl), NotI (0.25 U/μl), linear DNA (pA/pT 5 ng/μl) or doxorubicin (5 

μM). To inhibit ATM and ATR, caffeine (2 mM) or Ku55933 (ATM inhibitor 20 μ ) 

were added. CSF-XB extract preparation buffer was used to compensate for volume 

changes. 
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2.14.4.4 Protein additions to spindle assembly  

 

In spindle assembly assays with or without ATM and ATR activating treatments, 

proteins were added as follows (2.14.4.3). Again, CSF-XB extract preparation buffer 

was used to compensate for volume changes. As described by Carazo-Salas et al., 1999, 

2.5 μl of constitutively active RanQ69L recombinant protein (Jena Bioscience) was 

added to spindle assembly assay (Carazo-Salas et al., 1999). Excess Plx recombinant 

protein was introduced at 80 ng/μl. XCEP63-GFP transcribed/translated protein (2.12) 

from DNA construct (2.11.1) was added to extracts at a ratio of 1/5 respectively. 

XCEP63 immunodepleted spindle assembly extracts were reconstituted with 50 ng/μl 

XCEP63-MBP (WT) or XCEP63- MBP-S560A recombinant proteins (2.11.2.1).  

 

2.14.4.5 Anastral spindle assembly  

 

Anastral spindles formation in Xenopus egg extract was undertaken as essentially 

described by Heald et al., (Heald et al., 1996). CSF extract was supplemented with 5 

ng/μl chromatin-coated bead (2.9.7) or beads alone and induced into interphase with 

addition of CaCl2 to a finial concentration of 0.4 mM and further supplemented with 

cycloheximide (0.2 mg/ml). Extracts were incubated for two hours at 20 °C and after 

which a half volume of CSF extract and 50 μg/ml rhodamine-labeled tubulin were 

added. Extracts were incubated for 45 minutes at 20 °C in 20 μl reactions. Spindles 

were then isolated for analysis as described below (2.14.4.6). 

 

2.14.4.6 Isolation of spindles onto coverslips  

 

5 ml snap-cap tubes (Falcon) were prepared with 1 ml of dilution buffer containing 

BRB80 (80 mM Pipes (Piperazine-N,N’-bis [2-ethanesulfonic acid]), pH 6.8, 1 mM 

MgCl2, 1 mM EGTA) supplemented with 30 % glycerol and 1 % Triton X-100 and 

spindles assembly extract reactions were transferred then mixed gently. Samples are 

further mixed and incubated for five minutes at room temperature with 1 ml of fixation 

buffer containing BRB80 with 30 % glycerol, 1 % v/v Triton X-100 and 4 % 

formaldehyde solution.  Adapted Corex centrifuge tubes were assembled with a 12 mm2 

coverslip pre-coated with poly-L-lysine placed on top of a removable plastic disc at the 
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bottom of the tube. 5 ml of 40 % glycerol BRB80 cushion was added to tubes onto 

which the fixed samples were layered. Samples were centrifuged in a HB-6 Sorvall 

rotor at 5500 rpm for 20 minutes at 18 °C.  Samples were aspirated below the sample-

cushion interface and rinsed with BRB80. The remaining solution was aspirated and the 

coverslip was removed. As described in 2.8, coverslips were methanol fixed and were 

either mounted face downwards in mounting medium onto microscope slides or 

alternatively underwent immunofluorescence (2.10.6). 

 

2.14.5 Xenopus cDNA library screening for ATM/ATR substrates  

 
A screen based on a Xenopus cDNA expression library was developed from 

methodology described by (Lustig et al, 1997) to identify novel ATM/ATR targets 

(Lustig et al., 1997). The cDNA library, kindly donated by Tony Hyman, consisted of 

full-length normalized Xenopus laevis egg cDNAs containing 7296 clones within a 

modified pCS2 expression vector arrayed individually into 384-well plates. cDNAs 

were pooled in rows and columns from plates, then transformed into E. coli, which were 

then cultured. DNA pools were obtained by Qiagen miniprep kit and then transcribed 

and translated by TnT  SP6 Quick Control Coupled translation/transcription System 

(Promega) in the presence of [35S]-methionine (2.12). Xenopus interphase egg extract 

pre-treated for 30 minutes at 20 °C with and without 50 ng/μl pA/pT. Translated cDNA 

pools (2 μl) were mixed with 2 μl of pre-treated extract and incubated for 30 minutes at 

20 °C. Reactions were mixed with Bio-Rad sample buffer and then boiled for one 

minute and then separated on a standard large 10 % SDS-PAGE gel (2.10.1). 

Polyacrylamide gels were incubated with fixative (20 % v/v methanol, 15 % v/v acetic 

acid) for 20 minutes and then 100 mM sodium saliatate for ten minutes with agitation. 

Gels then underwent autoradiography (2.10.4).  

 

Shifts in gel migration patterns in the presence of pA/pT were pursued as possible 

candidates for ATM/ATR substrates. Intersecting rows and columns of cDNA arrayed 

in 384 well-plates were pooled, and transformed in into E. coli strain DH5  

(Invitrogen). In order to isolate the clone of interest, DNA from cultures was purified 

using Qiagen Miniprep kit, then translated as previously and re-screened. Each cDNA 

was represented twice, comparisons were made between ‘row’ and ‘column’ of 

translated cDNAs to isolate the well with the clone containing the cDNA encoding the 
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protein of interest. The proteins were then identified by DNA sequencing (2.9.8.3). 

Isolated translated proteins of clones were then re-tested with Xenopus egg extract in the 

absence and presence of 5 ng/μl pA/pT with and without 5 mM caffeine.  

 

2.14.6 Immunodepletion of XCEP63  

 

Depletion of XCEP63 from Xenopus egg extracts was undertaken with polyclonal 

antibody sera raised against full-length 6xHisXCEP63 based on protocol detailed in 

Desai et al., (Desai et al., 1999). Anti-XCEP63 sera (100 μl) and 25 μl Protein A 

sepharose beads (GE Healthcare) were coupled in EB buffer (25 mM Hepes pH 7.8, 15 

mM MgCl2, 20 mM EGTA, 10 mM DTT, 80 mM beta-Glycerophosphate) at room 

temperature for two hours or overnight at 4 ºC with rotation. Unbound IgGs were 

removed by washing twice with 400 μl of EB buffer and twice with 400 μl of CSF egg 

extract XB preparation buffer (100 mM KCl, 0.1 mM CaCl2, 10 mM HEPES (N-[2-

Hydroxyethyl] piperazine-N’-[2-ethanesulphonic acid] pH 7.7, 50 mM sucrose, 5 mM 

EGTA, 2 mM MgCl2). 50 μl of extracts were rotated at 4 ºC for one hour in the 

presence of prepared IgG-resins. XCEP63 extract depletions were preformed with one 

or two incubations with coupled beads. Mock depletion was performed using Protein A 

sepharose alone. Samples (2 μl) were mixed with Bio-Rad sample buffer, boiled and 

separated by SDS-PAGE (2.10.1) and the remaining sample was used in DNA 

replication experiment (2.14.7) or spindle assembly assay (2.14.4.1). 

 

2.14.7 DNA replication  

 

DNA replication was monitored in Xenopus egg extract as described in Costanzo et al., 

2001 and more recently in Trenz et al., 2008 (Trenz et al., 2008; Costanzo et al., 2001). 

In short, mock and XCEP63 depleted interphase egg extracts were supplemented with 

2,000 nuclei/μl and 10 μCi of [ 32P]-dATP. Samples were treated in the absence or in 

the presence of 0.1 U/ μl EcoRI or 0.1 U/ μl EcoRI with 3 mM caffeine and incubated 

for two hours at 23 °C. Reactions were stopped with stop buffer (8 mM EDTA, 80 mM 

Tris pH 8. 0, 1 % w/v SDS), supplemented with 1 mg/ml Proteinase K and incubated at 

37 °C for one hour. Genomic DNA was extracted by phenol-chloroform-isoamyl 

alcohol mixture and precipitated with ethanol. Samples were mixed with gel loading 
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dye and then separated on agarose gels. Radioactivity incorporation was analysed by 

autoradiography phosphoimaging (2.10.4). 

 

2.15 Protein phosphorylation 

 

2.15.1 Histone H2AX Kinase assay  

 
Monitoring phosphorylation of human Histone H2AX carboxyl-terminal peptide 

containing serine 139 (Sigma-Genosys) was performed as described by Costanzo et al., 

2004 with some modifications (Costanzo et al., 2004a). CSF Xenopus egg extract were 

left untreated or were treated with pA/pT or sperm nuclei with 0.25 U/μl EcoRI in the 

absence and presence of 2 mM caffeine or 20 μM Ku55933. Alternatively, anastral 

spindle assembly extracts were treated with Dynal streptavidin beads, or 5 ng/μl 

pcDNA3 plasmid linearised with EcoRI 5 ng/μl biotinylated DNA bound to straptavidin 

beads (chromatin beads) in absence and presence of 2 mM caffeine or 20 μM ku55933 

(2.14.4.5).  

 

In order to eliminate DNA-PK activity pre-treated egg extracts were pre-incubated 

twice with Dynal streptavidin-coated beads (Invitrogen) coupled to 5' biotinylated linear 

DNA for 20 minutes at 4 °C. After which 2 μl of extract was mixed with 20 μl of EB 

kinase buffer (20 mM HEPES pH 7.5, 50 mM NaCl, 10 mM MgCl2, 1 mM DTT, 1 mM 

NaF, 1 mM Na3VO4, and 10 mM MnCl2) supplemented with 50 μM ATP, 1 μl of [ -
32P]-ATP 10 mCi/μl (greater than 3,000 Ci/mmol) and 0.5 mg/ml of Histone H2AX 

peptide. Samples were incubated for 20 minutes at 30 °C. Reactions were spotted on 

p81 phosphocellulose filter paper (Upstate) and then air-dried. Unincorporated [ -32P]-

ATP was removed by washing three times with 5 % orthophosphoric acid. Radioactivity 

was quantified in a scintillation counter (Perkin-Elmer, Tri-Carb 1500 Liquid 

Scintillation Analyzer) 

 

2.15.2 Monitoring Cdk1 and Plx1 activity  

 

Histone H1 and Caesin kinase assays were performed based on descriptions by 

Costanzo et al., 2004 (Costanzo et al., 2004a). Fresh CSF extract was supplemented 



 86 

with 1,000 sperm nuclei, then treated with 0.25 U/μl EcoRI, 5 ng/μl pA/pT, CSF-XB 

preparation buffer or left untreated. Extract was incubated for 180 minutes at 23 °C, 2 

μl or 20 μl were taken every 30 minutes. At 90 minutes CaCl2 was added to a finial 

concentration of 0.4 mM to induce mitosis exit.  

 

For monitoring Cdk1 activity 2 μl samples were mixed with 20 μl EB kinase buffer (20 

mM HEPES pH 7.5, 50 mM NaCl, 10 mM MgCl2, 1 mM DTT, 1 mM NaF, 1 mM 

Na3VO4, and 10 mM MnCl2) supplemented with 50 μM ATP, 1 μl of [ -32P]-ATP 10 

mCi/μl (greater than 3,000 Ci/mmol) and 0.5 mg/ml histone H1 recombinant protein 

(Sigma–Aldrich). Reactions were incubated for 20 minutes at 30 °C and then spotted 

onto p81 phosphocellulose filter paper (Upstate). Papers were air-dried, washed three 

times with 5 % orthophosphoric acid and then measured by a scintillation counter. 

 

For monitoring of Plx1 activity, Plx was immunoprecipitated from the 20 μl aliquots of 

treated extracts (2.14.3). Imunoprecipitates were mixed with 20 μl of EB kinase buffer 

supplemented with 50 μM ATP, 1 μl of [ -32P]-ATP 10 mCi/μl (greater than 3,000 

Ci/mmol) and 0.5 mg/ml Caesin recombinant protein (Sigma–Aldrich). Samples were 

incubated for 20 minutes at 30 °C and then separated on a standard SDS-PAGE. Gels 

were stained with Coomassie Blue (2.10.2), dried and underwent autoradiography 

(2.10.4). Radioactive bands corresponding to Casein were excised and radioactivity 

monitored with a scintillation counter. 

 

2.15.3 XCEP63 dephosphorylation 

 

Lambda protein phosphatase treatment was performed following New England BioLabs 

guidelines. In brief, 2 l of pA/pT treated extract was incubated at 30 ºC for 30 minutes 

with provided reaction buffer alone or supplemented with 2 l (16 U/ l) of Lambda 

phosphatase. Samples then underwent SDS-PAGE (2.10.1). 

 

2.15.4 XCEP63-MBP recombinant protein phosphorylation 

 

Amylose beads (40 l) were pre-bound with 5 g MBP recombinant protein or 5 g 

XCEP63–MBP recombinant protein in 250 l EB buffer (25 mM Hepes pH 7.8, 15 mM 
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MgCl2, 20 mM EGTA, 10 mM DTT, 80 mM beta-glycerophosphate) rotating at 4 ºC for 

two hours. Beads were washed three times with 500 l of EB buffer. Beads were 

supplemented with 50 l of Xenopus egg extract, 50 l of EB buffer, 1 l [ -32P]-ATP 

10 mCi/μl (greater than 3,000 Ci/mmol) in the absence and presence of 5 ng/ l pA/pT. 

Extract was gently agitated at 23 ºC for 60 minutes. Beads were washed three times 

with EB buffer supplemented with 0.2 % Ipegal v/v. Reactions were boiled in 30 l of 

Bio-Rad sample buffer for four minutes. Eluted proteins were run on a large 10 % 

Anderson SDS-PAGE gel (2.10.1). Gels were stained with Coomassie Blue (2.10.2) and 

then underwent autoradiography (2.10.4).  

 

2.15.5 Screening for XCEP63 ATM and ATR phosphorylation site 

 

XCEP63 cDNA within original library expression vector underwent site directed 

mutagenesis at candidate and speculative ATM and ATR phosphorylation sites as 

described in 2.9.8.4. XCEP63 mutated DNA was transcribed and translated as described 

in 2.12. Similarly to cDNA expression library screening (2.14.5), translated XCEP63 

mutants were exposed to Xenopus egg extract in absence and presence of 5 ng/μl pA/pT 

and then underwent SDS-PAGE analysis. Isolation of the correct XCEP63 

phosphorylation site would result in abolished changes in gel migration pattern in the 

presence of pA/pT. Similarly, potential XCEP63 phosphorylation sites identified by 

Mass Spectrometry analysis underwent a similar mutation screening process.  

 

2.15.6 Mass Spectrometry identification of XCEP63 ATM/ATR phosphorylation 

site  

 
The identification of XCEP63 ATM/ATR phosphorylation site was undertaken by 

Alessandro Vindigni and Martin Hampel at ICGEB (International Centre for Genetic 

Engineering and Biotechnology) Padriciano 9934012 Trieste, Italy and Christof Lenz at 

Applied Biosystems, Frankfurter Darmstadt, Germany Strasse 129 B, 64293.  
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2.15.6.1 Treatment of XCEP63-MBP for Mass Spectrometry analysis 

 

Samples for Mass Spectrometry were prepared as follows: 20 μl of 1 mg/ml MBP or 

XCEP63-MBP recombinant proteins were incubated at 23 °C for 60 minutes with 50 l 

of CSF egg extract with and without 5 ng/μl pA/pT. Samples were diluted with 1:2 with 

EB buffer (25 mM Hepes pH 7.8, 15 mM MgCl2, 20 mM EGTA, 10 mM DTT, 80 mM 

beta-glycerophosphate) and 50 l of amylose resin was added. Reactions were 

incubated for two hours at 4 ºC with rotation. Beads were washed three times with 400 

l EB buffer 0.2 % Ipegal v/v and XCEP63-MBP was eluted from beads by boiling 

with Bio-Rad sample buffer. Samples were separated on a Bio-Rad 4-12 % Criterion 

XT 4-12 % Bis Tris pre-cast gel (2.10.1). The gel was subsequently stained with 

SYPRO  Ruby stain (2.10.3) and protein bands were made visible by a blue light 

transilluminator. Protein bands corresponding to MBP and XCEP63-MBP were excised 

with a clean scalpel. Samples were then sent to Alessandro Vindigni for Mass 

Spectrometry analysis. 

 

2.15.6.2 Trypsin digestion of XCEP63-MBP 

 
Excised gel bands were cut roughly into 1 mm pieces, washed with distilled water and 

then 50 % CH3CN, 20 mM NH4HCO3. The resulting dehydrated gel pieces were 

reduced in 10 mM DTT, 100 mM NH4HCO3 for 60 minutes at 56 °C and then alkylated 

in 55 mM iodoacetamide, 100 mM NH4HCO3 for 45 minutes at room temperature in the 

dark. The gel pieces were washed with 50 % CH3CN, 20 mM NH4HCO3 and 

dehydrated with CH3CN. Sequencing grade porcine trypsin (Promega) was added at a 

concentration of 10 g/ l in 20 mM NH4HCO3 and incubated at 4 °C for 45 minutes. 

The excess buffer and trypsin was discarded and the gel pieces were covered with 20 

mM NH4HCO3 and incubated overnight at 37 °C. The supernatant was collected and 

additional peptides were extracted from the gel pieces with 50 % CH3CN / 0.1 % TFA. 

Gel extraction and collected supernatant were pooled together and dried in a Speedvac 

(Eppendorf concentrator). 
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2.15.6.3 Mass Spectrometry analysis on XCEP63-MBP 

 

The ATM phosphorylation site on XCEP63 was determined using the following 

strategy. Tryptic peptides were separated by reversed phase-C18 chromatography on a 

Tempo 1D nanoLC system (Applied Biosystems, Foster City, CA, USA). The eluted 

peptides were analysed on a 4,000 Q TRAP hybrid triple quadrupole/linear ion trap 

Mass Spectrometer equipped with a nanoDCI source (Applied Biosystems) in an 

information-dependent acquisition mode. An electrospray voltage of 2800/-2800, an 

interface heater temperature of 150 ºC was used for positive mode analysis and a cone 

voltage of 60/-85 was used for negative ion mode analysis. Depending on to the charge 

state and molecular weight (Mr) of the precursors, the collision energy was extensively 

adjusted.  

 

Three different types of LC/MS/MS Mass Spectrometry (Liquid Chromatography/ 

Tandem Mass Spectrometry) XCEP63 phosphorylation investigations were performed 

as follows. Firstly, standard LC/MS/MS analysis was performed to establish protein 

identity at high sequence coverage. A linear ion trap MS full scan, a high resolution 

linear ion trap experiment of the five most abundant MS precursors determined the 

charge state and molecular weight, and up to five linear ion trap product ion spectra per 

cycle (in positive ion mode).  

 

Secondly, in order to selectively identify phosphorylated peptides LC/MS/MS analysis 

was undertaken consisting of a Precursor Ion Scan for mass to charge ratio (m/z) 79 (in 

negative ion mode) followed by a high-resolution linear ion trap experiment on the two 

most abundant precursors (in negative ion mode). After a polarity switch, up to two 

linear ion trap product ion spectra per cycle were undertaken (Williamson et al., 2006).  

 

Thirdly, the identified phosphopeptide candidates were confirmed or rejected by 

semiquantitative LC/MS/MS analysis consisting of Multiple Reaction Monitoring 

(MRM) (Cox et al., 2005; Unwin et al., 2005). Experiments for both observed and 

predicted ion fragmentation reactions were performed in positive ion mode and 

followed by up to two linear ion trap product ion spectra in positive ion mode per cycle.  
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2.15.7 ATM and ATR in vitro XCEP63 phosphorylation  

 

We proceeded with ATM and ATR in vitro XCEP63 phosphorylation assay based on 

description by Costanzo et al., 2004 as follows (Costanzo et al., 2004a). XCEP63 

peptides (50 mer) wild type (XCEP63-S560) or XCEP63 serine 560 mutated to alanine 

(XCEP63-S560A) at position 25 were produced by CRUK in house protein and peptide 

chemistry service. Kindly donated recombinant Flag-ATM and Flag-ATR proteins were 

and purified as described in Trenz et al., 2006 (Trenz et al., 2006). XCEP63-S560 and 

XCEP63-S560A at 0.5 mg/ml were incubated with and without Flag-ATM or Flag-ATR 

in 20 μl of EB kinase buffer (20 mM HEPES pH 7.5, 50 mM NaCl, 10 mM MgCl2, 1 

mM DTT, 1 mM NaF, 1 mM Na3VO4, and 10 mM MnCl2) supplemented with 50 μM 

ATP and 1 μl of [ -32P]-ATP 10 mCi/μl (greater than 3, 000 Ci/mmol). Samples were 

incubated at 30 °C for 20 minutes and then spotted onto P81 phosphocellulose filter 

paper. Papers were air-dryed and then washed three times with 5 % orthophosphoric 

acid. Radioactivity was quantified in a scintillation counter. 

 

2.16  Techniques involving Xenopus tissue culture 

 

2.16.1 XTC cell culture 

 

XTC (Xenopus Tissue Culture), adherent Xenopus fibroblast cell line was kindly 

provided by CRUK Clare Hall Laboratories cell culture facility and maintained as they 

advised. Cells were grown as monolayers at 24 °C in 70 % Leibovitz L-15 medium 

(Gibco) or modified eagle's medium (MEM) with 10 mM Hepes (prepared by cell 

culture facility). Media was supplemented with antibiotics (100 U/ml penicillin, and 100 

g/ml streptomycin) and 10 % fetal bovine serum (FBS) (Gibco). 

 

2.16.2 XTC cell passage 

 

XTC cells were detached by trypsin EDTA (versene) solution containing 0.25 % w/v 

trypsin and 0.02 % w/v versene was provided by CRUK Clare Hall Laboratories cell 

culture facility. After less than one minute cells were detached and then growth medium 
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was added. Cells were passaged at a 1:2 dilution every three days in order to maintain 

ideal growth conditions.  

 

2.16.3 XTC transient transfection with XCEP63-GFP construct 

 

XTC cell culture were transfected with XCEP63-GFP fusion plasmid DNA by lipid-

based FuGENE® 6 Transfection Reagent (Roche Diagnostics) as described in 

manufacturers protocol. In brief, asynchronous XTC cells were plated at 50 % 

confluency and cultured on sterilised pre-coated poly-L-lysine 12 mm2 coverslips for 24 

hours. For each well, 2 ml of medium and 1.8 l FuGENE® 6 reagent were mixed and 

incubated at room temperature for five minutes.  0.4 g of XCEP63-GFP fusion 

plasmid DNA was mixed with transfection reaction and incubated for a further 30 

minutes at room temperature. The transfection reaction was added to XTC culture well 

and incubated at normal conditions for 24 hours. Coverslips were recovered and 

proceed to immunofluorescence as described in 2.10.6.  

 

2.16.4 XTC Synchronization  

 

XTC cells were synchronized in mitosis by a double-thymidine block (Rao and 

Johnson, 1970). XTC cells at 50 % confluency were seeded and incubated for 24 hours. 

Cells were treated for 12 hours in medium supplemented with 2 mM thymidine (first 

block) and released into normal medium without thymidine for nine hours. Cells were 

treated again with medium supplemented with 2 mM thymidine for an additional 12 

hours (second block) and then released for eight hours into medium with 25 μM MG-

132 (Potapova et al., 2006). Mitotic cells then underwent treatments as described below.  

 

2.16.5 XTC cells treatments activating ATM and ATR 

 

XTC cells synchronized in mitosis by a double-thymidine block entered mitosis were 

left untreated or irradiated with 10 Gy (Grays) performed with a source of 137Cs (CIS 

Biointernational, 1BL 437C) in the absence or in the presence of 5 mM caffeine. XTC 

cells were spun onto coverslips and immunofluorescence was performed as described in 

2.10.6. 
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In general, asynchronous XTC cells were seeded at 4 x105 onto sterile poly-L-lysine 

coated 12 mm2 coverslips and allowed to adhere overnight and reach sub-confluency. In 

localisation studies of XCEP63, cells were untreated, incubated with 400 nM 

camptothecin (CPT) with and without 5 mM caffeine. Cells were treated for four hours 

under normal growth conditions. Coverslips were recovered and underwent 

immunofluorescence as described in 2.10.6. 
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3 Chapter 3 ATM and ATR activation in mitosis 

 
DNA damage, such as double strand breaks (DSBs) and various DNA lesions, induce 

ATM and ATR kinase phosphorylation of downstream factors. Complex ATM and 

ATR checkpoint signalling prevent the initiation of DNA replication (G1/S phase 

transition), inhibit DNA replication progression (S phase) and halt cells at mitosis 

transition (G2/M phase transition) (Abraham, 2001). In addition to cell cycle arrests, 

ATM and ATR response networks coordinate the repair of damaged DNA or induce 

apoptotic cell death (Sancar et al., 2004). It has been shown extensively that ATM and 

ATR DNA damage response mechanisms ensure genomic stability (Shiloh et al., 2003; 

Cimprich and Cortez, 2008). However, there is little understanding of DNA damage 

responses during the mitotic cell phase. It seems a likely hypothesis that ATM and ATR 

kinases are also triggered during mitosis in response to DNA damage. We suspect that 

ATM and ATR responses play an additional role in maintaining genomic stability at the 

mitotic cell phase. This chapter focuses on establishing the status of ATM and ATR 

activity with the occurrence of DNA damage during mitosis in the Xenopus laevis 

model system. In this context, we aimed to examine the effects of mitotic DNA damage 

on spindle assembly and consequently identify a possible mechanism targeted. 

 

3.1 ATM and ATR activation in mitotic Xenopus egg extracts 

 

Xenopus egg extract as a biochemical system recapitulates several physiological aspects 

of DNA damage responses (Garner and Costanzo, 2009).  This cell free system has been 

applied extensively to research ATM and ATR response networks. However, these 

works have mainly furthered the understanding of ATM and ATR checkpoint signalling 

in the setting of DNA replication. Typically, ATM and ATR activation has been 

prompted in egg extracts by the addition of DNA linear molecules mimicking DSBs 

(Costanzo et al., 2000; Guo and Murphy, 2000; Kumagai and Durphy, 2000; Costanzo 

et al., 2004a). ATM and ATR induction (as well as DNA-PK induction) in egg extract 

are sensitive to the presence of caffeine (Sarkaria et al., 1999; Blasina et al., 1999; Zhou 

et al., 2000). Alternatively, a novel ATM inhibitor, 2-morpholin-4-yl-6-thianthren-1-yl-

pyran-4-one termed Ku55933, specifically inhibits Xenopus ATM activation in egg 

extract (Hickson et al., 2004). The addition of restriction endonucleases induce double 

strand breaks (DSBs) in sperm chromatin as indicated by the localisation of Replication 
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Protein A (RPA) foci  (Grandi et al., 2001). ATM and ATR activation has also been 

illustrated in the presence of restriction endonuclease treatment by the detection of 

replication protein substrate, Mcm2 phosphorylation (Yoo et al., 2004b). 

 

Under specific conditions Xenopus egg extracts are capable of maintaining a specific 

cell cycle status rather than Cycling from interphase to metaphase. Xenopus eggs are 

naturally arrested in metaphase of meiosis II through CSF activity (Masui and Markert, 

1971; Maller et al., 2002). In calcium chelating conditions the cytoplasm from crushed 

eggs retains this CSF arrest, (Murray, 1991), CSF arrest can be monitored by checking 

sperm morphology in the nuclear disassembly assay, in which mitosis is defined as 

combined events of nuclear envelope breakdown and chromosome condensation (data 

not shown) (Lohka and Maller, 1985; Smythe and Newport, 1991). Or alternatively, 

CSF arrest can be determined through the detection of Cyclin B (data not shown). The 

presence of low calcium concentration activates Cyclin B destruction driving mitosis 

exit (Murray et al., 1989; Kobayashi et al., 1992; Lorca et al., 1993). It is worth 

reiterating at this point that CSF arrested extracts are meiotic (meiosis II), but enable 

relevant insights by mimicking mitosis. Moreover, due to the ability of CSF arrested 

extract to induce mitosis when mixed with interphase extracts, CSF egg extracts are 

commonly described as mitotic (Sawin and Michison, 1991). Xenopus CSF arrested 

extracts have been widely used to examine many of the events involved in cell division 

and provide in depth understanding of numerous vertebrate mitotic processes and 

morphological changes. However, little investigation has been undertaken to determine 

the effects of DNA damage during mitosis.  

 

In order to investigate ATM and ATR activity in arrested Xenopus egg extracts, we 

introduced linear DNA molecules or added restriction endonuclease EcoRI together 

with sperm nuclei. Synthetic linear DNA fragments consisted of annealed poly-deossi-T 

and poly-deossi-A 70 mer oligonucleoides (pA/pT) (Costanzo et al., 2000; Guo and 

Murphy, 2000; Kumagai and Dunphy, 2000). We applied restriction endonuclease and 

pA/pT to Xenopus egg extract based on previous findings, at doses that efficiently 

induce ATM and ATR activation (data not shown). 

 

We firstly analysed whether ATM and ATR are activated in CSF Xenopus egg extract 

by measuring Histone H2AX serine 139 carboxyl-terminal peptide phosphorylation 

(Costanzo et al., 2004a). In figure 3.1a, we show strong incorporation of radiolabelled 
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phosphate into H2AX peptide treated with egg extracts in the presence of pA/pT and 

EcoRI. Treatments with pA/pT and EcoRI indicate an approximate 12 and 9 fold higher 

extent of H2AX phosphate labelling, respectively, compared to the absence of 

treatments. H2AX radiolabelled phosphate incorporation was abolished by the addition 

of caffeine and by ATM inhibition. We found the phosphate incorporation in inhibition 

treatments remained at similar levels to the extract without DNA damage conditions. 

These initial findings suggest that ATM and ATR kinases activate within the context of 

mitosis, stringently in the presence of pA/pT treatment and highly with EcoRI 

treatment. The evidence is substantiated by caffeine and ATM inhibitor sensitivity, 

abolishing ATM and ATR response to DNA damage conditions.  

 

Through determining the changes in H2AX modification levels, we had a basis on 

which to continue research into mitotic ATM and ATR activation. Figure 3.1b is an 

immunoblot detection with antibodies recognising ATM 1,981 phosphorylation. Within 

CSF egg extract we directly confirm ATM activation by pA/pT addition, which is not 

detectable in the presence of inhibition or in absence of treatment. Figure 3.1c shows an 

immunoblot detection with antibodies recognising ATM and ATR substrate 

phosphorylation on consensus SQ/TQ motif. The immunoblot shows strong bands 

detected in the presence of pA/pT, which are absent in untreated extract and attenuated 

by inhibitors, caffeine and Ku55933. The occurrence of downstream ATM and ATR 

substrate phosphorylation suggests active DNA damage responses regulated by ATM 

and ATR inductions. 
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A) Quantification of Histone H2AX kinase assay 

             
 

B) Immunoblot detection of ATM serine 1,981 phosphorylation 

 

 

 

 

 

C) Immunoblot detection of ATM and ATR substrate SQ/TQ site phosphorylation 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.1 ATM and ATR activation in mitotic Xenopus egg extract 

(a) CSF egg extracts were supplement as indicated and incubated at 20 °C for 30 minutes. Treatments 
included, linear DNA (pA/pT) at 5 ng/μl, sperm at 1,000 nuclei/μl, EcoRI at 0.25 U/μl, Ku55933 (ATMi) 
at 20 μM and caffeine (Caff) at 2 mM. Extracts were pre-cleared twice with 5' biotinylated linear DNA 
coupled streptavidin beads. Kinase assays were performed at 30 °C for 20 minutes with treated extracts (2 
μl) and 0.5 mg/ml histone H2AX carbossi-terminal peptide in 20 μl of EB kinase buffer supplemented 
with 50 μl ATP and 1 μl of [ -32P]-ATP (10 mCi/μl). Labeled samples were spotted on phosphocellulose 
filter paper, washed and then quantified by a scintillation counter. The amount of radioactivity 
incorporated on H2AX peptide was reported in the graph. Error bars indicate standard deviation (s.d.).     
(b) CSF arrested egg extract was treated in the absence (-) and presence of 5 ng/μl linear DNA (+ pA/pT) 
with (+) or without (-) 20 μ  ATMi (Ku55933). Samples were incubated at 20 °C for 30 minutes, 1 μl 
was then boiled in Bio-Rad sample buffer and separated by electrophoresis on a standard 7 % SDS-PAGE 
gel. Immunoblot detection was performed with antibody recognizing ATM phospho serine 1,981. (c) CSF 
arrested egg extract was treated and processed as in part b, with an additional extract treatment with 5 ng/μl 
linear DNA (+ pA/pT) and caffeine (Caff) at 2 mM. Samples were separated on a standard 10 % SDS-
PAGE gel. Immunoblot detection was performed with antibody recognizing ATM/ATR substrates SQ/TQ 
phosphorylation. Data shown is representative of three separate experiments. 

 

   -          +           +          pA/pT 
   -          -            +          ATMi Mr (kD) 

250 

 

  -     +    +     +         pA/pT 
           Caff ATMi 

Mr (kD) 

250 
 
 

 

150 
 

 

100 
  75 
 
 
  50 
 
 
 

  37 
 



 97 

3.2 Downstream Chk1 and Chk2 activation in mitotic Xenopus egg extract 

 
We continued by ascertaining whether ATM and ATR activation orchestrates the 

induction of downstream DNA damage checkpoint effector kinases, Chk1 and Cds1 

(Chk2). In vertebrates, active ATM and ATR directly phosphorylates Cds1 and Chk1 

respectively which contribute to cell cycle arrests (Abraham, 2001; Zhou and Elledge, 

2000) Within Xenopus interphase egg extract Chk1 phosphorylation has been described 

in response to DNA replication blocks or UV irradiation (Hekmat-Nejad et al., 2000), 

Guo et al., 2000). Whilst, Cds1 rapid phosphorylation and activation within Xenopus 

interphase egg extract has been shown in response to DNA molecules with double 

strand ends (Guo et al., 2000). However, in interphase Xenopus egg extracts it has been 

found that Cds1 full activation requires sequential phosphorylations by DNA-PK, ATR 

and ATM (McSherry and Mueller, 2004). 

 

In order to gain more information on ATM and ATR responses in the presence of 

activating conditions in CSF arrested Xenopus egg extract, we performed immunoblots 

with antibodies detecting the targets, Chk1 and Cds1 (figure 3.2a and figure 3.2b 

respectively). Both Chk1 and Cds1 immunoblots show band mobility shifts indicative 

of phosphorylation in the presence of pA/pT. Chk1 and Cds1 phoshorylation is not 

apparent on the addition of caffeine or in the absence of any treatment.  

 

In figure 3.2a, the data shows that DNA linear molecules induce Chk1 phosphorylation, 

indirectly inferring ATR induction. However, the caffeine sensitive nature of the Chk1 

phosphorylation does not discount a possible interconnecting role of ATM kinase in 

contributing to Chk1 modification in the setting of mitotic egg extract. Outside the 

context of DNA replication checkpoint responses, these data suggests that perhaps 

ATM, but most likely ATR kinase phosphorylates Chk1 in response to DSBs. In figure 

3.2b, Cds1 phosphorylation in the presence of linear DNA molecules, indirectly 

suggests ATM activation. However, ATM inhibition affected Cds1 phosphorylation 

only partially. The caffeine sensitive nature of Cds1 phosphorylation suggests a possible 

activation of alternative DNA damage response kinases, such as ATR and/or DNA-PK. 

In the context of mitosis, it remains unclear if Cds1 phosphorylation is dependent on 

ATM kinase activation in response to DSBs. Taken together, these data show a 

contribution of ATM and ATR with respect to downstream DNA damage response 

activation in phosphorylating Chk1 and Cds1.  
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A) Immunoblot detection of Chk1  

 

 

 

 

 

 

 

 

 

 

 

B) Immunoblot detection of Chk2 (Cds1)  

 

 

 
 
 
 

 
 
 
 

 

Figure 3.2 Downstream Chk1 and Chk2 phosphorylation in the presence of ATM and ATR 

activation in mitotic Xenopus egg extract 

CSF egg extracts untreated and treated with 5 ng/μl linear DNA (pA/pT) in the absence or presence of 20 
μM Ku55933 (+ ATMi) or 2 mM caffeine (+ Caff) as indicated. Extracts were incubated at 20 °C for 30 
minutes and 1 μl of extracts were boiled in Bio-Rad sample buffer. (a) Samples underwent 
electrophoresis on a small 8 % ultrapure bisacrylamide gel. Immunoblot detection was performed using 
Chk1 specific antibodies. (b) Samples underwent electrophoresis on a small 10 % Anderson gel. 
Immunoblot detection was performed using Cds1 (Chk2) specific antibodies. Data shown is 
representative and typical findings of three separate experiments. 
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3.3 Spindle assembly in Xenopus egg extract  

 
To investigate the effects of ATM and ATR activation during mitosis we analysed 

spindle assembly. Half spindle arrays form in CSF arrested extract with the addition of 

sperm nuclei. The process of spindle assembly occurs as follows: each sperm nucleus 

drives aster formation, from which half spindles then assemble and finally two half 

spindles fuse to form a polar mitotic spindle (Sawin and Mitchison, 1991; Desai et al., 

1999). Figure 3.3a is a schematic representation illustrating the progression of spindle 

assembly in Xenopus egg extracts. 

 

Unfortunately, frozen extracts were found to be inefficient in spindle assembly. 

Therefore, all assays were performed in fresh extract. The quality of Xenopus eggs 

determined the ability of extracts to form spindles. We encountered egg quality 

differences associated with batch-to-batch variations. Extracts that failed to progress 

into mitosis and self-activating, non-arrested extracts were discarded. Poor performing 

extracts arose from eggs that were not uniform in appearance, showed some 

spontaneous activation or any degree of lysis during preparation. We also established 

that isolating batches of eggs from individual frogs rather than pooling led to a higher 

probability of obtaining a good extract (data not shown). We reduced variability further 

by optimising the preparation of CSF arrested extracts in several ways. We exchanged 

the egg laying buffer to MMR, eliminated the mineral oil packing of eggs before 

crushing and ensured meticulous collection of cytoplasmic layers by syringe needle 

extraction. In addition, the final extract clarification spin was reduced from a lengthy 

high-speed ultra centrifugation to that of the first clarification centrifugation conditions. 

Other factors also strongly influenced the proficiency of spindle assembly, including the 

length of time before extracts were used, avoidance of vigorous physical perturbations, 

the quality of and freeze-thawing of sperm nuclei. It was noted that more spindles were 

assembled after longer incubation times, therefore we extended incubation from 60 to 

90 minutes. 

 

The technique applied to isolate assembled spindle in CSF Xenopus egg extract was first 

described by Evan et al, 1985 (Evan et al., 1985). Figure 3.3b shows a schematic 

representation illustrating Evan’s devised protocol. We have modified the procedure in 

order to isolate spindle formations in the presence of ATM and ATR activation.  
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A) Schematic representation of spindle assembly in CSF Xenopus egg extract 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B) Schematic representation of spindle assembly assay and isolation for analysis 

 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
  
  
 
 
 

 
 
 
 

Figure 3.3 Schematic representations of mitotic Xenopus egg extract spindle assembly and 

procedure of ATM and ATR activation in spindle assembly with isolation onto coverslips 

(a) Sperm nuclei addition to CSF arrested Xenopus egg extract drives centrosome dependent aster 
formation, over time microtubules attach to assembled chromosome, half spindles form, two of which 
fuse together forming a bipolar spindle. (b) Sperm nuclei and rhodamine tubulin were added to CSF egg 
extract. Extracts were supplemented with CSF-XB buffer or treated with EcoRI in the absence and 
presence of caffeine (Caff) or ATM inhibitor (ATMi). Samples were incubated at 20 °C for 90 minutes, 
diluted in BRB80 buffer and then fixed with BRB80 formaldehyde solution. Spindles were centrifuged 
onto coverslips in a specialised corex tube through a BRB80 glycerol cushion. Retracted coverslips were 
fixed in methanol, DNA stained and then mounted onto slides for microscopic analysis. 
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3.4 ATM and ATR activation inhibits spindle assembly in Xenopus egg extract  

 

Optimisation of the Xenopus egg extract spindle assay allowed us to investigate the 

effects of chromosomal breakage induction of ATM and ATR on spindle assembly. 

Strikingly, we observe ATM and ATR activation leads to the formation of large 

aggregated microtubule structures with chromosomes associated throughout (figure 

3.4a). Normal spindle formation, demonstrated by pole orientation and DNA centrally 

aligned along the metaphase plate, is observed in extracts left untreated and in EcoRI 

treated extracts supplemented with inhibitors, caffeine or ATM inhibitor (Ku53933) 

(figure 3.4a). Images of aster morphology also shown in figure 3.4a, illustrate normal 

aster assembly and microtubules polymerization in the presence of EcoRI. These data 

suggests we can rule out ATM and ATR checkpoint induction impeding regulation or 

processes involved in aster formation. 

 

Figure 3.4b shows the quantification of the microtubule structures observed in samples. 

Spindle assembly defects are observed at high levels in EcoRI supplemented extracts. 

An approximate 30 % increase in aggregated microtubule structures occurs in DNA 

damaging EcoRI conditions compared to untreated extracts. Spindle assembly rescue is 

observed in the presence ATM inhibitor or to a higher extent with caffeine addition, 

returning normal spindle formation to similar levels of untreated extract. The reversal of 

spindle aberrancies suggests that ATM and ATR are responsible for checkpoint 

induction leading to spindle morphology changes. We observe an increase in aster 

number with ATM and ATR activation, which suggests spindle assembly is abolished. 

Aster frequency returns to normal levels by incorporation of ATM and ATR inhibitors. 

Again, high aster abundance suggests that spindle defects result from perturbation of 

aster maturation to spindles.  
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A) Fluorescent images of spindle assembly in Xenopus egg extract   
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
B) Quantification of spindle assembly structures observed in treatments 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.4 ATM and ATR activation perturbs spindle assembly in Xenopus egg extract 

Spindles and asters were formed in mitotic arrested CSF extract incubated at 20 °C for 90 minutes with 
the addition of 1,000 sperm nuclei/μl and 50 μg/ml rhodamine tubuin. Extracts were treated with CSF-
XB buffer (Un) or supplemented with 0.25 U/μl EcoRI (EcoRI) with and without 20 μM Ku55933 (EcoRI 
+ ATMi) or 2 mM caffeine (EcoRI + Caff). Extracts were diluted in BRB80 buffer and fixed in BRB80 
formaldehyde solution and then spun onto polylisine coverslips through a glycerol cushion as described in 
material and methods. DNA was stained with DAPI. Images were acquired and quantification performed 
on a Deltavision microscope. Data is representative and typical findings of three separate experiments (a) 
Images of spindle assembly, microtubules are shown red and DNA in blue. Scale bars indicate 10 μm. (b) 
Quantification of DNA associated microtubule structures with treatments as above.  Microtubule 
structures were qualified as bipolar spindles, asters, abnormal spindles (spindles without poles + spindles 
with dispersed chromosomes) and aggregates (large disorganized microtubules with DNA dispersed 
throughout). Percentages are relative to 100 structures counted for each treatment. 
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3.5 Activation of ATM and ATR perturbs spindle assembly at all stages of 

formation in Xenopus egg extract 

 
 
On showing that ATM and ATR activation severely perturbs spindle assembly from the 

onset of spindle formation, we then asked whether checkpoint activation by ATM and 

ATR during spindle assembly also leads to spindle defects. As shown in 3.3a, the 

schematic representation of spindle formation in CSF arrested Xenopus egg extract, 

asters form between 5-15 minutes after sperm addition, half spindle assembly at 30 

minutes and fusion occurs at 60 minutes onwards. To determine whether the spindle 

assembly defects dependent on ATM and ATR induction correlate with aster formation, 

half spindle assembly or fusion, we introduced treatments at specific time points during 

mitotic progression. 

 

The EcoRI time course in figure 3.5, shows chromosomal breakage introduction at each 

time point leads to the formation of aggregated microtubule structures with DNA 

dispersed throughout. Consistent spindle assembly irregularities suggests ATM and 

ATR signaling affects a spindle formation in early and late stages. These data, in 

combination with normal aster morphology determined previously in figure, 3.4a, 

suggests a dissociation of ATM and ATR induction specifically affecting aster 

formation. Furthermore, observations of defective spindle formation in extracts with 

introduction of ATM and ATR activation at later time points 30 and 60 minutes, 

suggests that ATM and ATR target mechanism involves processes of spindle 

maturation, microtubule dynamics or array maintenance.    
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Figure 3.5 ATM and ATR activation perturbs spindle formation during assembly in Xenopus egg 

extract 

Spindles were formed in CSF extract with 1,000 nuclei/μl and supplemented with 50 μg/ml rhodamine 
tubulin. Extracts were treated with EcoRI at 0.25 U/μl added at times points: 0, 7, 30 and 60 minutes 
(EcoRI) and untreated (Un) supplemented with CSF-XB buffer at 60 minutes. Extracts were incubated at 
20 °C for 90 minutes, then diluted and fixed in formaldehyde in BRB80 buffer. Samples were spun onto 
polylysine coverslip through a glycerol cushion as described in material and methods. DNA was stained 
with DAPI, shown in blue and microtubules are shown in red. Images were acquired on a Deltavision 
microscope, scale bar indicates 10 μm. Data is representative of three separate experiments.  
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3.6 Abnormal spindle assembly is dependent on active ATM and ATR signaling 

in Xenopus egg extract  

 
In the previous figures, we show evidence that ATM and ATR activation mediated by 

the addition of EcoRI to spindle assembly samples leads to spindle defects. Since EcoRI 

restriction endonuclease frequently induces DNA double strand breaks, we questioned 

whether the involvement of physical chromatin damage or kinetochore disruption plays 

a role in the disruption of normal spindle formation. Primarily to eliminate these factors, 

we induced ATM and ATR by supplementing extracts with linear DNA (pA/pT) (figure 

3.1). To further extend this analysis, alternative ATM and ATR activating DNA 

damaging agents were also applied: restriction endonuclease NotI, which induces fewer 

DNA cuts and therefore is less likely to impact kinetochores and Doxorubucin, a 

topoisomerase poison producing DSBs (Grandi et al., 2001; Zunino et al., 1977; Cliby 

et al., 2002; Siu et al., 2004).  

 

In figure 3.6, we show that DNA associated microtubule aggregates form in response to 

alternative ATM and ATR activating agents, pA/pT, NotI and Doxorubicin. We observe 

spindle assembly inhibition is similar to that after ATM and ATR activation induced by 

EcoRI restriction endonuclease treatment. Consistently, spindle assembly defects in the 

presence of DNA damaging conditions were rescued by caffeine addition, indicating a 

reliance on ATM and ATR signal induction. Taken together, these data suggest 

defective spindle assembly is independent of physical perturbation of chromatin and/or 

kinetochores and dependent on ATM and ATR checkpoint induction.  
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Figure 3.6 Alternative DNA damage ATM and ATR activating conditions perturb spindle assembly 

in Xenopus egg extract 

Spindles were formed in CSF extract with 1,000 nuclei/μl in the presence of 50 μg/ml rhodamin tubulin.  
Extract was left untreated (Un), supplemented with 5 ng/μl linear DNA (pA/pT), 5 mM Doxorubicin or 
0.25 U/μl restriction endonuclease, NotI (NotI). Extracts were also treated with CSF-XB buffer (Buff) or 
2 mM caffeine (+ Caff). Samples were incubated at 20 °C for 90 minutes, then diluted and formaldehyde 
fixed in BRB80 buffer. Spindles were spun onto coverslips through a glycerol cushion as described in 
materials and methods. Images were acquired on a Deltavision microscope and represent a typical finding 
of three separate experiments. DNA was stained with DAPI, shown in blue and microtubules are shown 
in red. Scale bar indicates 10 μm.  
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3.7 ATM and ATR activation perturbs bipolar spindle assembly in Xenopus egg 

extract 

 
To this point of investigations, we have established that ATM and ATR activation 

affects normal half spindle assembly in mitotic extracts. The question arose whether 

bipolar spindle assembly, formed in the presence of replicated DNA, is similarly 

disrupted in the presence of ATM and ATR activation. Bipolar spindle assembly in 

cycled (interphase-to-mitosis) extract, differs distinctly from previously the described 

CSF egg extract half spindle assembly (figure 3.3a). Within Xenopus interphase egg 

extracts sperm nuclei undergo one round of DNA replication, after which the addition 

of CSF arrested extract drives extract into mitosis and bipolar spindles assemble. The 

process of cycled bipolar spindle assembly in Xenopus egg extract is illustrated in figure 

3.7a schematic representation (Sawin and Mitchison, 1991; Desai et al., 1999).  

 

Images of cycled bipolar spindle assembly are shown in figure 3.7b. As expected, we 

find abnormal bipolar spindle formation in the presence of ATM and ATR activation 

and rescue of normal bipolar spindle assembly with caffeine addition. These data 

indicate ATM and ATR dependent induction of bipolar spindle assembly defects. 

Irregularities in bipolar spindle assembly closely resemble abnormalities in half spindle 

formation around non-replicated DNA. Therefore these results suggest bipolar spindle 

assembly around replicated DNA also undergo active ATM and ATR checkpoint 

inhibition. 
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A) Schematic representation of bipolar spindle assembly in cycled Xenopus egg 

extract  

 

 

 

 

    

 

 

 

 

 

 

  

 

 

B) Fluorescent images of bipolar spindle assembly in cycled Xenopus egg extract  

 
 
 
  
 
 
 
 
 
 
 

Figure 3.7 Defects in cycled bipolar spindle assembly in the presence of ATM and ATR activation 

(a) Schematic representation of bipolar spindle assembly in Xenopus egg extract. Sperm nuclei undergo 
DNA replication in CSF egg extract supplemented with calcium, then subsequently driven into metaphase 
with addition CSF arrested egg extract, forming bipolar spindles around replicated chromosomes. (b) 
Bipolar spindle assembly obtained by incubation at 20 °C for 120 minutes of 20 μl untreated CSF 
Xenopus egg extracts with 1,000 sperm nuclei/μl, 0.2 mg/ml Cyclohexamide and 0.4 mM CaCl2 followed 
by incubation at 20 °C for 60 minutes with 10 μl addition of CSF egg extracts supplemented with 50 
μg/ml rhodamine tubulin. On CSF addition extracts were untreated (un) and supplemented with CSF-XB 

buffer (+ Buff), or treated with 0.25 U/μl EcoRI (EcoRI) in the absence or presence of 2 mM caffeine (+ 
Caff). Extracts were diluted and formaldehyde fixed in BRB80 buffers, then spun onto coverslips as 
described in materials and methods. DNA was stained DAPI, shown in blue and microtubules shown in 
red. Images were acquired on a Deltavision microscope. Scale bar indicates 10 μm. Images shown are 
representative and typical findings of three separate experiments.  
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3.8 ATM and ATR activation inhibits spindle assembly in XTC cells 

 
To further the evidence shown in Xenopus egg extracts, although such a cell free system 

is representative of intact cells, we investigate the effects of ATM and ATR activation 

on spindle assembly in somatic Xenopus tissue culture (XTC) cells. We tested the 

effects of Ionizing Radiation during mitosis. Immuno-staining for a mitotic marker, 

Histone H3 phosphorylation at serine 10, identifies cells in M phase, whilst alpha 

tubulin staining allows the visualization of microtubules and elucidates the morphology 

of spindle assembly.  Cells are typically synchronized through antimitotic agents, such 

as nocodozol, which block cells at M phase by inhibiting microtubule dynamics (Jordan 

et al., 1992; Vasquez et al., 1997). Such synchronization methodology may influence 

microtubules organization observations in the context of ATM and ATR activation. 

Instead, we achieved XTC cells synchronization through a double thymidine treatment, 

an inhibitor of DNA synthesis. Cells were released from early S phase thymidine arrest 

and in turn coordinately entered mitotic phase (Rao and Johnson, 1970). Subsequently, 

we prevented exit from mitosis through addition of a proteasome inhibitor, MG-132 

which inhibits proteasome-dependent Cyclin B degradation transition from M phase to 

G1 (Potapova et al., 2006). Without preventing mitotic exit, the detection of ATM and 

ATR activation effects on spindle formation would potentially be masked. The mitotic 

index in figure 3.8a shows cells released from thymidine treatments are synchronized in 

S phase, which then enter into mitosis and subsequently exit shortly. We observe that 

the cell population is retained in mitosis when treated with MG-132. Preventing cells 

from exiting mitosis with MG-132 treatment ensures cells are specifically held in 

mitosis for investigations into the effects of ATM and ATR on spindle assembly.  

 
Mitotic XTC cells maintained in the presence of MG-132, were treated in the absence 

and presence of Ionizing Radiation (IR) with and without caffeine. The results obtained 

from this experiment are shown in figure 3.8b.  Representative fluorescent images show 

abnormal spindle assembly in the presence of IR, compared to normal spindle assembly 

in untreated cells. Spindles structures in cells exposed to IR show a lack of pole 

orientation and DNA dispersed away from the central metaphase plate. Spindle defects 

in IR treated cells were abolished by caffeine addition. These data suggests that severe 

perturbation of spindle assembly in cells is dependent on the presence of active ATM 

and ATR.  

 

Quantification of experiment in figure 3.8c indicates a 7-fold increase in abnormal 
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spindle assembly in the presence of IR compared to the absence of treatment.  We 

observe that normal spindle formation is rescued in treated cells supplemented with 

caffeine. These data suggest spindle assembly inhibition is dependent on active ATM 

and ATR also in XTC cells. These findings are in agreement with Xenopus egg extract 

data, once again highlighting the striking disruption of spindle assembly by an ATM 

and ATR checkpoint induction.  
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A) Mitotic index of XTC cells                                         

 

 

B) Fluorescent images of spindle assembly in XTC cells   

 

 

 

 

 

 

 

 

 

 

 

 
C) Quantification of observed aberrant spindle assembly in XTC cells 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Spindle assembly defects in the presence ATM and ATR activation in vivo 

XTC cells were synchronized in mitosis with 25 μM MG-132 for eight hours following a double 2 mM 
thymidine S-phase block for 12 hours with a nine hours interim release. Immunofluorescence staining 
was performed on collected cells as described in material methods with antibodies detecting alpha tubulin 
( -tubulin) and mitotic chromosome marker histone H3 phospho serine 10 (H3 pS10). Cells were counted 
and images were acquired on a Deltavision microscope. (a) Mitotic index of XTC cells with and without 
thymidine synchronization released in the presence or in the absence of MG-132. Mitotic index graph 
shows the percentage of mitotic cells (positive for H3 pS10 staining). (b) MG-132 treated synchronised 
XTC cells were untreated (Un) or irradiated with 10 Gy (IR) in the absence (- Caff) or in the presence (+ 
Caff) of 5 mM caffeine. Images show immunofluorescence antibody detection, H3 pS10 in green and -
tubulin in red. Images of spindle assembly are representative of three separate experiments. Scale bar 
indicates 10 μm. (c) Quantification of defective spindle morphology determined by -tubulin staining, 
200 mitotic H3 pS10 positive cells were counted for each indicated treatments. Percentages represent the 
average number of defective spindles observed from three independent experiments. Error bars indicate 
standard deviation (s.d.).  
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3.9 Activation of ATM and ATR shows no affect on Cdk1 and Plx1 mitotic 

kinase activities  

 
After ascertaining that ATM and ATR activation inhibits spindle assembly in both 

Xenpous egg extract and XTC somatic cell, we went about identifying the 

corresponding target mechanism. We monitored the mitotic status of Xenopus egg 

extract in the presence of ATM and ATR activation by measuring the activities of two 

major mitotic kinases, Cdk1-Cyclin B and Plx1, described in chapter one (1.2.1). Cdk1-

Cyclin B (MPF) functions in mitosis onset and mitotic events, whilst Cdk1 inactivation 

promotes mitotic exit (Murray et al., 1989; Nurse et al., 1990; Verde et al., 1990; 

Fourest-Lieuvin et al., 2006; Glotzer et al., 1991; Sullivan and Morgan, 2007). Plx1 

kinase also displays multiple functions in entry, progression and exit from mitosis (Qian 

et al., 1998; van Yugt and Medema, 2005; Liu et al., 2005). Plx1 and Cdk1-Cyclin B 

sustain one another through a Cdc25 amplification feedback loop (Hoffmann et al., 

1993; Kumagai and Dunphy 1996; Abrieu et al., 1998; Qian et al., 1998). Cdc25 

phosphatase, is essential in initiating the transition from G2 phase to M phase, which is 

down-regulated by ATM and ATR checkpoint targeting (Sancar et al., 2004).  

 
Mitotic Xenopus egg extracts samples were tested to establish Cdk1 and Plx1 kinase 

activities in the presence of activated ATM and ATR. We performed kinase reactions 

with substrates of Cdk1 and Plx1 kinases, Histone H1 and Caesin respectively. We 

show in figure 3.9a and figure 3.9b that ATM and ATR activation introduced by EcoRI 

or linear DNA (pA/pT) did not impose any detectable disruption of Cdk1 and Plx1 

activities. These data show Cdk1 and Plx1 kinases, in mitotic egg extract, do not 

undergo ATM and ATR checkpoint inhibition. Within mitotic Xenopus egg extracts, 

calcium addition inactivates Cdk1-Cyclin B which promotes mitotic exit (Maller et al., 

2002). These data also suggests, the presence of ATM and ATR activation has no affect 

on calcium inactivation of Cdk1 or interconnected Plx1. Mitotic exit consequentially 

was induced in a similar manner to extract without ATM and ATR induction. In 

conclusion, figure 3.9a and 3.9b results show neither Cdk1 nor Plx1 mitotic kinase 

activities are target mechanisms of the ATM and ATR dependent defects in spindle 

assembly.  
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A) Quantification of Histone H1 in vitro kinase assay  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) Quantification of Casein in vitro kinase assay  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 ATM and ATR induction shows no affects on mitotic kinases, Cdk1 and Plx1 activities  

CSF extracts were supplemented with 1,000 sperm nuclei/μl and treated with CSF-XB buffer (Buff), 0.25 
U/μl EcoRI (EcoRI), 5 ng/μl linear DNA (pA/pT) or left untreated (No add). After 90 minutes incubation 
at 23 ºC, CaCl2 was added to samples and incubated for a further 90 minutes. Kinase reactions were 
performed at 30 °C for 20 minutes in 20 μl of EB kinase buffer supplemented with 50 μM ATP and 1 μl 
of [ -32P]-ATP (10 mCi/ml). Radioactivity incorporated was quantified by a scintillation counter and 
reported as a mean of three separate experiments in the graphs. (a) Cdk1 kinase assay was performed with 
2 μl of extracts taken at indicated times in kinase reaction supplemented with 0.5 mg/ml histone H1 
recombinant protein. Labeled samples were spotted on phosphocellulose filter paper, washed and then 
quantified. (b) Plx1 was immunoprecipitated from 20 μl of extracts taken at indicated times, as described 
in materials and methods. Plx1 kinase assay was performed in kinase reaction supplemented with 0.5 
mg/ml Casein recombinant protein. Reactions were separated by electrophoresis on a small standard 
SDS-PAGE gel, stained with Coomassie Blue and then underwent autoradiography. Bands 
corresponding to Casein were excised and radioactivity quantified. 
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3.10 Plx1 kinase activity elimination from ATM and ATR spindle assembly 

inhibition in Xenopus egg extract 

 

We observe in the previous figure (3.9), endogenous Plx1 kinase activity in mitosis is 

unaffected by the presence of active ATM and ATR. We extended Plx1 investigations 

by attempting to rescue ATM and ATR dependent abnormal spindle formation by 

addition of excess Plx1 recombinant protein. Potentially, a higher abundance of Plx1 

kinase could overcome possible ATM and ATR inhibition affects. 

 

Spindle assembly in Xenopus egg extract after the introduction of Plx1 recombinant 

protein and EcoRI treatment is shown in figure 3.10. We observe excess Plx1 has no 

affect on ATM and ATR dependent spindle abnormalities. The quantification shown in 

figure 3.10b, confirms ATM and ATR disrupted spindle formation is not prevented by 

supplementing with excess recombinant Plx1.  

 

Taken together with figure 3.9, these data consistently suggest the activity of Plx1 

kinase is not contributing to ATM and ATR dependent spindle defects. These data 

indicate that ATM and ATR are not inhibiting Plx1 mechanisms in spindle assembly. 

The ATM and ATR checkpoint target in spindle assembly inhibition still requires 

identification.  
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A) Fluorescent images of Xenopus egg extract spindle assembly 

 

 

 
 
 
 
 
 
 
 
 

 

B) Quantification of observed spindle structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Absence of Plx1 role in ATM and ATR induced spindle assembly defects  

Spindle assembly was obtained in CSF egg extract supplemented with 1,000 sperm nuclei/μl and 
rhodamine tubulin 50 μg/ml incubated at 20 °C for 90 minutes. Extracts were untreated (Un) with 
recombinant protein buffer and CSF-XB buffer, or supplemented with 0.25 U/μl EcoRI (EcoRI) and 
recombinant protein buffer or with 0.25 U/μl EcoRI and 80 ng/μl purified recombinant Xenopus Plx1 
(Plx1). Spindles were spun onto coverslips as described in materials and methods. Spindle assembly 
images were acquired and quantified on a Deltavision microscope, data is representative of three separate 
experiments. (a) Images of spindle assembly, DNA is shown in blue and microtubules shown in red. 
Scale bar indicates 10 μm. (b) Quantification of different DNA associated microtubule structures found in 
treatments. Microtubule structures were identified as bipolar spindles, asters, abnormal spindles (spindles 
without poles + spindles with dispersed chromosomes) and aggregates (large disorganized microtubules 
with DNA dispersed throughout). Percentages are relative to 100 structures counted for each treatment.  
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3.11 RCC1 chromatin association remains unchanged by ATM and ATR 

activation in Xenopus egg extract 

 
Following the elimination of both mitotic kinase, Plx1 and Cdk1, the target in ATM and 

ATR spindle assembly disruption remains unidentified. Further experiments were 

necessary to attempt to isolate the ATM and ATR checkpoint mechanism involved in 

the spindle assembly abnormalities. As discussed in chapter one (1.2.1), it has been 

shown that RCC1 is the guanine-nucleotide exchange factor for RanGTPase required 

for Ran-GDP conversion to Ran-GTP (Bischoff and Ponstingl, 1991a). Carazo-Salas, et 

al. proposed that Ran-GTP is an essential factor in microtubule nucleation regulation, 

with additional functions in spindle array organisation and dynamics (Carazo-Salas et 

al., 2001). Initiation of spindle assembly has been determined to be dependent on 

concentrated RCC1 chromatin association leading to the generation of localised Ran-

GTP (Carazo-Salas et al., 1999). RCC1 has been implicated in regulating the amount of 

microtubule nucleation through controlling the conversion of Ran-GDP to Ran-GTP 

(Carazo-Salas et al., 1999). ATM and ATR inhibition of RCC1 chromatin association 

would consequently affect RCC1 capacity in localised Ran-GDP conversion to Ran-

GTP. Potentially ATM and ATR targeting of RCC1 function may disturb control 

mechanisms of spindle assembly. 

 

Due to the major contribution of RCC1 function in the spindle assembly pathway 

described, we next carried out an investigation into the effects of ATM and ATR 

activation on RCC1 binding to chromatin. In figure 3.11 (top panel) we show RCC1 

immunoblot detection of isolated chromatin at time points across mitosis progression, in 

the absence and presence of EcoRI within Xenopus egg extract. RCC1 immunoblot 

detection reveals that ATM and ATR induced by chromosomal breakage appears not to 

impair endogenous RCC1 binding to sperm chromatin compared to the absence of DNA 

damage. Histone H3 immunoblot detection of the time course is shown below in figure 

3.11 (bottom panel) as a loading control.  

 

These findings indicate RCC1 chromatin binding, necessary for initiation of spindle 

formation, is not perturbed by ATM and ATR activation. We therefore can argue that 

RCC1 mechanism is not the target of ATM and ATR in generating spindle assembly 

abnormalities.  
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Figure 3.11 Unperturbed RCC1 association with chromatin in the presence of ATM and ATR 

activation in mitotic Xenopus egg extract 

Chromatin binding was performed in 50 μl of CSF arrested Xenopus egg extracts, left untreated (no 
nuclei) or supplemented with 3,000 nuclei/μl.  Extracts were treated with (+) or without (-) of 0.25 U/ml 
EcoRI and incubated for 90 minutes at 20 °C. At indicated time intervals, extracts reactions were stopped 
by addition of cold EB buffer. Samples underwent chromatin isolation through a series of centrifugation 
steps and washed as described in materials and methods. Finally, samples were boiled in Bio-Rad sample 
buffer, separated by electrophoresis on a standard 10 % SDS-PAGE gel and proceeded to immunoblot 
detection with antibodies recognising RCC1 (top panel) and Histone H3 (bottom panel).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 30                60                   90         minutes 

 

     No  
  nuclei 

 -         +  -         +  -         + 

RCCI 

  HISTONE H3 

EcoRI 

Mr (kD) 

50 

 

 

15 



 118 

3.12 Absence of Ran-GTP role in ATM and ATR dependent spindle assembly 

inhibition in Xenopus egg extract 

 

As we have previously described in figure 3.11, an important pathway of spindle 

assembly involves initiation by localised RCC1 chromatin association, which in turn 

gives rise to localised generation of Ran-GTP. Ran-GTP gradient generation in 

proximity to chromatin is required for coordinating regulation of microtubule nucleation 

and dynamics of spindle formation (Carazo-Salas et al., 1999). In the previous figure, 

we found RCC1 association to chromatin was unaffected by ATM and ATR activation. 

We continued by exploring the possibility that ATM and ATR targets a downstream 

factor, Ran within the spindle assembly pathway. For this purpose, we obtained 

constituently active RanQ69L recombinant protein, a mutant form of Ran loaded with 

GTP and unable to hydrolyse GTP (Bischoff et al., 1994; Carazo-Salas et al., 1999). We 

performed the spindle assembly in the absence and presence of ATM and ATR 

activation, with and without the addition of RanQ69L. Fluorescent images in figure 

3.12a show in the presence of RanQ69L and absence of EcoRI treatment spindles form 

with and without associated chromatin (panel one and three). These findings are in 

agreement with those of Carazo-Salas et al., 1999, where they demonstrated that excess 

Ran-GTP induced a partial uncoupling of spindle assembly from chromatin (Carazo-

Salas et al., 1999). We also show in figure 3.12a that addition of constitutively active 

Ran to EcoRI also generates not only typical DNA associated aggregated abnormal 

spindle (panel two), but also spindle-like-structure independent of DNA (panel four). 

This observation suggests Ran-GTP displays some degree of ATM and ATR dependent 

spindle assembly defect rescue, whilst being unable to fully recapitulate normal spindle 

assembly.  Further confirmation of Ran-GTP insufficiency in restoring normal spindle 

assembly is highlighted by figure 3.12b. The quantification of structures associated with 

DNA revealed that supplementing RanQ69L in the presence of EcoRI does not rescue 

defective spindle structures compared with EcoRI treatment alone.  

 

In light of these data and previous findings of preserved RCC1 chromatin binding 

(figure 3.11), we draw the conclusion that RCC1/Ran-GTP spindle assembly pathway is 

unaffected by active ATM and ATR. We can state that ATM and ATR do not target 

RCC1 and Ran-GTP spindle assembly mechanisms. Therefore, at this point, the ATM 

and ATR checkpoint inactivating spindle assembly remains undetermined.  
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A) Fluorescent images of spindle assembly in Xenopus egg extract  

 
 
 
 
 
 
 
 
 
 

 
 
B ) Quantification of spindle structures associated with DNA 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 ATM and ATR dependent spindle defects in the presence of Ran-GTP  

Spindle assembly was obtained in CSF egg extract supplemented with 1,000 sperm nuclei/μl and 50 
μg/ml rhodamine tubulin. Extract was treated with CSF-XB buffer (Buff) or 0.25 U/μl EcoRI (EcoRI) 
both in the absence and presence of 2.5 μM recombinant RanQ69L (Ran-GTP). Samples were incubated 
at 20 °C for 90 minutes, diluted and formaldehyde fixed in BRB80 buffer and spun onto coverslips 
through a glycerol cushion as described in materials and methods. DNA was stained with DAPI. Images 
were acquired and counting was undertaken on a Deltavision microscope. Data is representative and 
shows typical findings of three separate experiments. (a) Images of treatments show DNA in blue and 
microtubules in red, scale bar indicates 10 μm. Fields showing DNA associated microtubule structures 
(panels one and two) and DNA independent spindle structures (panels three and four). (b) Quantification 
of different DNA associated microtubule structures found in isolated treatments: (Un), extracts treated 
with 0.25 U/μl EcoRI (EcoRI) or 0.25 U/μl EcoRI + 2.5 μM recombinant RanQ69L (EcoRI + Ran-GTP). 
Microtubule structures were identified as bipolar spindles, asters, abnormal spindles (spindles without 
poles + spindles with dispersed chromosomes) and aggregates (large disorganized microtubules with 
DNA dispersed throughout). Percentages are relative to 100 structures counted for each treatment. 
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3.13 Chromatin-coated bead in anastral spindle assembly induce ATM and ATR 

activation in Xenopus egg extract 

 
In figures 3.9-3.12, we investigated some of the central factors involved in mitosis 

progression and spindle assembly pathways in the context of ATM and ATR activation.  

Research undertaken so far suggests a lack of ATM and ATR influence on functions 

and activities of the major spindle assembly elements tested. Through these studies, we 

had gained no further insight into the basis of spindle inhibition nor did we ascribe a 

mechanism engaged in spindle perturbation. Previous experiments have been based on 

centrosome-directed spindle assembly. To determine the pathway corresponding to 

defective spindle assembly, we turned our focus to acentrosomal or anastral self-

ordering spindle assembly mechanism. An important distinction between spindle 

assembly mechanisms is that the presence of sperm nuclei promotes the formation of 

aster/centrosome structures, which act as dominant sites for spindle assembly and 

organization (Heald et al., 1997). Whereas, anastral spindles formation relies on self-

assembly. Anastral spindle assembly is prevalent in higher plants, meiotic cells and in 

some other cell types (Theirkauf and Hawley, 1992; Bartolini and Gundersen, 2006). In 

the process of spindle self-assembly, chromatin promotes microtubule polymerisation 

and actions of motor proteins aid sorting and organisation of microtubules into a bipolar 

spindle array (McKim, and Hawley, 1995; Heald et al., 1997; Theurkauf and Hawley, 

1992; Matthies et al., 1996; Khodjakov and Rieder, 2001).  

 

In Xenopus egg extract, chromatin-coated beads can promote the assembly of spindles 

in the absence of centrosomes and kinetochores (Heald et al., 1996). Figure 3.13a, a 

schematic representation illustrates anastral spindle assembly in Xenopus egg extract. It 

was very apparent that the platform of anastral spindle assembly is based on linear DNA 

molecules, which potentially could activate ATM and ATR. We tested the capability of 

spindle promoting chromatin-coated beads in inducing ATM and ATR through 

monitoring downstream H2AX phosphorylation. We observe an approximate 11-fold 

increase in H2AX radiolabelled phosphate incorporation in the presence of chromatin-

coated beads compared to beads alone. Figure 3.13b also shows similarly high levels of 

H2AX phosphate incorporation in the presence of chromatin-coated beads to that of 

linear DNA plasmid (DSB) alone. Moreover, we observe H2AX modification levels in 

the presence of chromatin-coated beads were reduced by over 2-fold with incorporation 
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of ATM and ATR inhibitors. As expected, we determined the presence of DNA beads 

does indeed induce ATM and ATR activation (figure 3.13b). 

 

We examined the formation of anastral spindles and questioned whether chromatin-

coated bead induction of ATM and ATR inhibits their assembly. In agreement with 

previous published data, we show polar spindles correctly assemble in Xenopus egg 

extracts around the platform of chromatin-coated beads (Heald et al., 1996). We 

counted an average number of 16 anastral spindles in the three microscope fields 

examined from three separate experiments. This is a remarkable phenomenon, as in 

these conditions active ATM and ATR do not perturb anastral spindle assembly. These 

experiments indicate that in contrast to sperm driven spindle assembly DNA beads 

induced spindle are insensitive to DNA damage response pathways. A major difference 

between beads and sperm induced spindles is that the former lack centrosomes and 

mostly rely upon pathways emanating from chromatin induced gradients to coordinate 

microtubule polymerization and spindle formation. Since the basic mechanisms are the 

same for the two spindle assembly pathways we thought that the effect of ATM and 

ATR on centrosome-driven spindle assembly was due to a target present on 

centrosomes. Therefore we set out to investigate possible centrosome targets of ATM 

and ATR. This strategy will be described in the next chapter. 
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A) Anastral spindle assembly in Xenopus egg extract 

 
 
 
 
 
 
 
 
 
 
B) Quantification of Histone H2AX kinase assay  

C) Fluorescent image of Anastral spindle formation in Xenopus egg extract 
 
 
 
 
 
 

Figure 3.13 Anastral spindle assembly in Xenopus egg extract in the presence ATM and ATR 

activating chromatin-coated beads 

(a) A schematic representation of anastral spindle assembly in Xenopus egg extract. Chromatin-coated 
beads undergo interphase DNA replication in CSF egg extract with calcium addition. Subsequently driven 
into metaphase with CSF extract addition, microtubule polymerise and organise into anastral spindles 
around chromatin-coated beads. (b) Chromatin-coated beads were prepared as described in materials and 
methods. CSF extracts were supplemented with 0.4 mM CaCl, 0.2 mg/ml Cyclohexamide in the presence 
of beads alone (Beads) or 5 ng/μl DNA-coated beads (DNA beads) or 5 ng/μl linear plasmid DNA (DSB). 
Extracts were incubated for two hours at 20 °C, then supplemented with half volumes of CSF extract 
supplemented with 50 μg/ml rhodamine tubulin. Extracts in the presence of chromatin-beads were left 
untreated (DNA beads), or treated with 20 μM Ku55933 (DNA beads + ATMi) or 2 mM caffeine (DNA 
beads + Caff). Samples were incubated for a further 45 minutes at 20 °C. Kinase assay was performed at 
30 °C for 20 minutes with 2 μl of extracts and 0.5 mg/ml histone H2AX peptide in 20 μl of EB kinase 
buffer containing 50 μl ATP and 1 μl of [ -32P]-ATP (10 mCi/μl). Labeled samples were spotted on 
phosphocellulose filter paper, washed and then quantified by a scintillation counter. The mean values 
radioactivity incorporated on H2AX peptide from three separate experiments reported in the graph. Error 
bars indicate standard deviation (s.d.). (c) Untreated anastral spindles extracts were diluted and 
formaldehyde fixed and spun onto coverslips through a glycerol cushion as described in material and 
methods. Image was acquired on a Deltavison microscope and representative of anastral spindle 
assembly. Microtubules shown in red and DNA in blue. Scale bar indicates 10 μm. 
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3.14  Summary 

 
In this chapter, we have demonstrated that ATM and ATR activate in mitotic Xenopus 

egg extract in response to linear DNA molecules (pA/pT) and restriction endonucleases 

(EcoRI) together with sperm nuclei (figures 3.1 and 3.2). Strikingly, we found spindle 

assembly was perturbed following ATM and ATR activation in CSF and cycled 

Xenopus egg extracts and in somatic XTC cells (figure 3.4, 3.7 and 3.8). Consistently, 

spindle assembly abnormalities were directly associated with ATM and ATR activation, 

as spindle defects were prevented in the presence of ATM and ATR inhibitors (figure 

3.4, 3.6 and 3.7). Furthermore, we showed the application of alternative DNA damage 

conditions such as pA/pT, Doxorubicin and restriction endonuclease NotI similarly 

resulted in perturbed spindle assembly in Xenopus egg extract (figure 3.6). These 

treatments discounted the involvement of chromosomal or kinetochore physical damage 

in spindle assembly abnormalities. Collectively, these data showed ATM and ATR 

dependent checkpoint signalling leads to spindle formation defects.  

 

Interestingly, in the presence of ATM and ATR activation in Xenopus egg extracts the 

number of asters increased, although their morphology remained normal (figure 3.4). 

We propose that activated ATM and ATR targets a pathway involved in aster 

maturation into maintained spindle arrays. This idea was further supported by the 

observation of spindle assembly aberrancies induced by the induction of ATM and ATR 

activation during spindle assembly progression and once spindles were formed (figure 

3.5). We then aimed to identify the corresponding ATM and ATR target mechanism. In 

contrast to its effect on mitotic onset, ATM and ATR activation did not influence 

mitotic kinases, Cdk1-Cyclin B or Plxl activities in mitotic progression or mitosis exit 

(figure 3.9). Furthermore, Plx1 excess was unable to rescue ATM and ATR spindle 

assembly inhibition (figure 3.10). We also eliminated spindle assembly dependent 

pathway RCC1 and Ran(GTP) as targets of active ATM and ATR. We found that RCC1 

binding to chromatin was not impaired (figure 3.11) and inhibition of spindle assembly 

remained in extracts supplemented with constitutively active excess Ran-GTP (figure 

3.12).   

 

In attempts to uncover the mechanism responsible for spindle assembly abnormalities, 

we investigated the formation of anastral spindles induced by chromatin-coated beads in 

Xenopus egg extract. We established that chromatin-coated beads, made up of linear 
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DNA molecules, activate ATM and ATR. However, we showed normal anastral spindle 

assembly occurs (figure 3.13). These observations were crucial to this research, as 

anastral spindle formation and centrosome-driven spindle assembly depend on many 

common mechanisms, excluding their potential as ATM and ATR targets. Normal 

anastral spindle assembly in the presence of ATM and ATR activation indirectly 

elucidates the ATM and ATR checkpoint target to centrosome-driven spindle assembly. 

We posit that ATM and ATR target a spindle assembly regulatory element within 

functional centrosomes. On this basis, we concentrated on isolating ATM and ATR 

target candidates. 
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4 Chapter 4 Identification of ATM and ATR target in 

spindle assembly 

 

In the previous chapter, we showed ATM and ATR activation in mitotic Xenopus egg 

extract strongly impairs normal spindle assembly. Through testing the major 

mechanisms required for spindle assembly we eliminated these spindle formation 

pathways as targets of mitotic ATM and ATR activation. Importantly, we observed 

anastral spindle formation around linear DNA coated beads that activate ATM and 

ATR. These data uncovered a possible dependency of abnormal spindle formation on 

the presence of sperm nuclei and subsequent aster-centrosome driven assembly. On this 

basis, we proceeded by directing research towards discovering a novel centrosome 

related target mechanism. In this chapter, we address the identification of ATM and 

ATR targets by developing a screening method utilizing a Xenopus cDNA expression 

library. 

 

4.1 Isolation of ATM and ATR substrates by screening Xenopus cDNA 

expression library 

 

We deviated from traditional methods of isolating substrates, which utilized direct in 

vitro kinase assays with recombinant proteins; the substrate candidate approach. We felt 

such an approach would be somewhat cumbersome and an unlikely means to identify 

the target. Other techniques were discounted, such as the isolation of substrates by two-

hybrid hybridisation, which were deemed to be potentially limited due to the transient 

or unstable nature of interactions, which in turn may mask potential candidates.   

 

We wanted to apply a method that would isolate ATM and ATR kinase targets in the 

physiological context of egg extract, which would allow the entirety of Xenopus egg 

proteins to be screened as potential targets. We adopted and modified an expression 

screening method described by Lustig et al., using a full length, normalised Xenopus 

laevis maternal cDNA library donated by Tony Hyman (Max Planck Institute of 

Molecular and Cellular Biology and Genetics, Dresden, Germany) (Lustig et al., 1997). 

Lustig et al., describe a functional assay that rapidly and systematically identifies 

cDNAs on the basis of protein biochemical activities or properties. This technique relies 
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on protein postmodifications, such as phosphorylation, which alter electrophoretic 

mobility. We adapted the screening procedure by introducing translated proteins into 

the biochemical setting of Xenopus egg extract with activated ATM and ATR, which 

would enable dependent DNA damage response interactions to occur with their natural 

partners and protein complexes. 

 

A schematic illustration of the experimental procedure applied to screen cDNA 

expression library for ATM and ATR targets is shown in Figure 4.1a. In brief, pools of 

Xenopus plasmid cDNA under the control of the SP6 promoter were transcribed and 

translated in reticulate lysate Promega TnT system in the presence of [35S]-methionine. 

Labelled lysates were mixed with Xenopus egg extracts supplemented with or without 

linear DNA (pA/pT) and run on a 10 % SDS-PAGE gel. Through this technique we 

scored translated proteins for changes in migration patterns in the presence of linear 

DNA addition compared to its absence. ATM and ATR activation or other DNA 

damage response kinases, modify proteins substrates by phosphorylation, leading to 

slower migrating forms. In performing the described screening experiments, SDS-

PAGE gels and electrophoresis conditions were optimised to maximise the separation of 

translated proteins and enhance visibility of mobility shifts.  

 

Using the assay described above, figure 4.1b shows examples of four cDNA pools (C, 

K, F and M) of labelled translated proteins containing different shifting clones (C9, F3, 

K11, M6 and M7). Both mitotic and interphase extracts were able to initiate 

phosphorylation of translated cDNAs to a similar level (data not shown), the assay in 

shown in figure 4.1b was conducted using interphase egg extract. The majority of 

translated clones showed no apparent gel shift in the presence of DNA damage. We 

observed a good overall representation of pooled clones amplified in standard E. coli 

strains, from which we identified on average, only one to three clones changed in gel 

mobility with ATM and ATR activation per 384 well plate.  

 

The clones showing gel mobilitiy changes in Figure 4.2b were isolated by intersecting 

pools from rows and columns, cDNAs were then identified by DNA sequencing of both 

strands. Through sequencing we established: C9 as XCEP63; F3 as Gemmin coiled-coil 

containing protein (XGEMC1); K11 as Xenopus ortholog of cytoplasmic 

activation/proliferation-associated protein-1, Caprin-1 (XRNG-105); M6 as 

transcription factor Homobox-6 and M7 as Interferon regulatory factor-6 (XIRF-6). We 
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also ascertained from DNA sequencing analysis that the donated library was of a high 

quality and contained full-length cDNA inserts. 

 

In combination with low frequencies of candidate ‘hits’, we were further reassured 

regarding the experimental set up as the data the obtained from the screening procedure 

indicates collectively a strong relevance to cell cycle regulation and/or checkpoint 

response networks. XGEMC1, Caprin-1 (XRNG-105) and XIRF-6 are particularly 

noteworthy examples identified in the screen. However, these ATM and ATR potential 

target candidates have not been previously described specifically in relation to mitotic 

process and no indications of involvement in centrosome-driven spindle assembly has 

yet been shown. 
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A) Schematic representation of experimental set up to identify ATM and ATR 

targets in Xenopus egg extract 

 
 
 
 
 
 
 
 
 
 
B) Autoradiographs of cDNA expression screening in Xenopus egg extract 

 
 
 
 
 
 
 
  
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.1 Small pool cDNA expression library screening for ATM and ATR substrates in Xenopus 

egg extract  

(a) Schematic representation of screening protocol. Row and columns of cDNA library were pooled and 
then transcribed and translated in a reticulocyte lysate system (TNT, Promega) in the presence of [35S]-
methionine. Labelled proteins were exposed to interphase extracts treated with or without linear DNA 
(pA/pT). Samples were separate by electrophoresis on a SDS-PAGE gel and audioradiography films were 
analysed for shifts in migration patterns (band migration change shown in red and indicated by arrow). 
(b) Pools of cDNA library were transcribed and translated in 20 μl of TnT coupled Promega system 
containing [35S]-methionine at 30 °C for 90 minutes. Interphase Xenopus egg extract was pretreated for 20 
minutes at 23 °C with (+) or without (-) 50 ng/μl linear DNA (pA/pT). Labelled transcribed proteins (2 
μl) were mixed with treated extracts 2 μl and incubated for a further 30 minutes at 23 °C. Samples were 
diluted in Bio-Rad sample buffer, boiled and separated by electrophoresis on a large 10 % SDS-PAGE 
gel. Gels then underwent audioradiography. Indicated are examples of pools: C, F, K and M showing 
shift in migration in the presence of pA/pT treatments of labeled proteins derived from clones C9, F3, 
K11, M6 and M7. 
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4.2 XCEP63 as an ATM and ATR target of interest 

 
 
We described in the figure above the isolation of clones endoding potential ATM and 

ATR targets. The identified proteins beliefly mentioned, although verifying the cDNA 

expression screening approach, it does not imply any connection to centrosomes or 

relations specifically to mitotic processes. However, we did identify XCEP63, contained 

within pool C, isolated from clone C9 (GenBank accession number: FJ464988). 

Andersen et al. originally identified CEP63 in a proteomic analysis of the human 

centrosome and confirmed centrosomal localisation by expressing GFP construct in 

cells (Andersen et al., 2003). At the time we isolated XCEP63, no CEP63 

characterization studies had been published and consequently no function had been 

ascribed. The probable association to the centrosome distinguishes XCEP63, showing 

promise as a target of ATM and ATR that maybe linked to centrosome-driven spindle 

assembly.  

 

In figure 4.2a, we show again XCEP63 translated protein molecular weight shift with 

introduction of pA/pT treatment. We determined the mobility shift of XCEP63 in the 

presence of pA/pT constituently in both interphase and mitotic egg extracts (data not 

shown). The prevention of XCEP63 gel mobility shift on caffeine addition is shown in 

figure 4.2a. Caffeine sensitivity indicates a dependency of XCEP63 gel mobility 

alteration on active ATM and ATR. These data confirm possible centrosomal XCEP63 

targeting by ATM and ATR, raising interest in a possible role for XCEP63 in spindle 

assembly. 

 

XCEP63 as a centrosome protein candidate was of high interest. We applied NCBI 

BLAST programs to analyze XCEP63 sequences. XCEP63 DNA and amino acid 

sequence is shown in Appendix one. Sequence analyses revealed XCEP63 is a coiled-

coil protein that contains a large domain present in the SMC (structural maintenance of 

chromosomes) coiled coil protein superfamily of ABC-like ATPases, highly conserved 

from bacteria to humans (Hirano, 2005). XCEP63 SMC domain is depicted in Appendix 

two.  
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A) Audioradiograph of XCEP63 in Xenopus egg extract 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

Figure 4.2 XCEP63 modification in the presence of active ATM and ATR in Xenopus egg extract  

(a) Clone  C9 plasmid cDNA encoding XCEP63 was transcribed and translated in the presence of [35S]-
methionine with Promega TnT system as previously decribed. Interphase extract was pretreated with 
(+pA/pT) and without (Un) 50 ng/μl of pA/pT in the absence (- Caff) or presence (+ Caff) of 2 mM 
caffeine for 20 minutes at 23 °C. Translated XCEP63 (2 μl) was mixed with treated extract (2 μl) and 
incubated for a further 30 minutes at 23 °C. Samples were suplemented with Bio-Rad sample buffer, 
boiled and underwent gel eletrophoresis on a large 10 % SDS-PAGE followed by audioradiography.  
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4.3 CEP63 conservation in vertebrates  

 

Importantly for the significance of Xenopus CEP63 studies and the relevance of 

Xenopus CEP63 analyses to other species, we find that CEP63 is conserved among 

vertebrates. Figure 4.3a shows Xenopus laevis CEP63 amino acid sequence alignment 

with it’s putative orthologs Mus musculus (M.Musculus), Gallus gallus (G.gallus) and 

Homo sapiens (H.Sapiens). CEP63 sequences were obtained from NCBI database and 

aligned using CLUSTALW multiple sequence alignment program. Textshade on the 

alignments shows identity highlighted in green, similarity in yellow and blue. The 

sequence alignment reveals CEP63 homology across species. All CEP63 orthologs 

carry the SMC domain architecture, shown by line mark within sequence alignment 

(figure 4.3). Isolated BLAST protein sequence comparison of Xenopus CEP63 aligned 

with human CEP63 indicates 38 % identity and 59 % similarity, verifying a significant 

level of homology. CEP63 conservation across species suggests CEP63 role is less 

likely to be evolutionarily redundant and its preservation indicates importance of 

functional purpose. 

 

The commercially available gene expression profile of human CEP63 is shown in figure 

4.3b. These data indicates CEP63 is expressed throughout the majority of tissues and 

suggests CEP63 plays a housekeeping role within all cells types. Of particular interest, 

expression levels are increased in highly replicating tissues such as the testis, which 

implies a potential importance of CEP63 function in cell proliferation.  
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A) Sequence alignment of XCEP63 and putative orthologes  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

B) CEP63 gene expression profile 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Homology of CEP63 in vertabrates and widespread human CEP63 gene expression  

XCEP63 alignment with its putative orthologs in M.Musculus, H.Sapiens and G.gallus species. Amino 
acid sequence identity is highlighted in green, similarity in yellow and blue. The line mark shows the 
SMC domain. Sequences for CEP63 orthologs were obtained from NCBI databases and multiple 
alignment with CLUSTALW program. (b) Normalised Gene expression profile for human CEP63 
generated by OriGene using OriGene's original Human "Major-Tissue" RapidScan (OriGene 
Technologies, www.origene.com). 
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4.4 Summary 

 
The application of Xenopus expression cDNA library circumvented the downfalls of 

traditional techniques and enabled a high-throughput in vitro screening for DNA 

damage response factors. The developed screening assay showed a good level of 

specificity as relatively few translated proteins gel mobility’s were modified in the 

presence of DNA damage mimicking conditions. Although considerable time was spent 

screening the cDNA library, we were very successful in identifying potential targets of 

DNA damage response kinases within the physiological framework of Xenopus egg 

extract. The potential targets identified include XCaprin-1, XGEMC1 and XIRF-6.  

 

Within the realms of our research, we most interestingly identified novel XCEP63 

protein containing an SMC domain. We were particularly encouraged by XCEP63’ 

potential centrosome localisation. We showed that XCEP63 translated protein 

undergoes post-translational modification dependent on the presence of active ATM and 

ATR.  Our interest in XCEP63 candidate rose when sequence analysis revealed CEP63 

conservation across vertebrate species, suggesting CEP63’ role may be of universal 

importance. CEP63’ possible functional significance was also highlighted with 

commercial available data that shows human CEP63 is expressed in most cell types and 

highly expressed in replicating tissues. At this point, we believe we have compiled 

enough reasoning to warrant the continuation of XCEP63 investigations as a target of 

ATM and ATR in spindle assembly inhibition. We characterise XCEP63 and its 

function in the next chapter. 
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5 Chapter 5 Characterisation of XCEP63  

 
 
In the previous chapter we describe the isolation of XCEP63 in a cDNA expression 

screen developed to identify ATM and ATR targets in Xenopus egg extract. It became 

clear that further XCEP63 investigations were warranted particularly as human CEP63 

has been localized to the centrosome. XCEP63 has no ascribed function, with likely 

XCEP63 positioning at centrosomes it is possible XCEP63 could be the ATM and ATR 

centrosome target in spindle assembly defects. In this chapter we characterise XCEP63 

and examine its function in spindle assembly. 

 

5.1  XCEP63-GFP localisation at centrosomes 

 
We began to characterise Xenopus CEP63 through protein localisation studies. For this 

purpose, we fused XCEP63 open reading frame (ORF) into green fluorescent protein 

(GFP) plasmid construct. XCEP63-GFP was transcribed and translated in reticulocyte 

lysate coupled system and added to Xenopus egg extract spindle assembly assays. 

Alternatively, we transfected XTC cells with XCEP63-GFP construct to confirm 

cellular localisation of XCEP63.  

 

The XCEP63-GFP signal is seen at the spindles poles, where centrosomes are located in 

Xenopus egg extract spindle assembly (figure 5.1a). Furthermore, we also detected 

expressed XCEP63-GFP fusion protein co-localised with gamma tubulin ( -tubulin) 

staining at the centrosomes in XTC cells (figure 5.1b). Thus, similarly to human CEP63, 

GFP tagged Xenopus protein localises to the centrosomes (Anderson et al., 2003). 
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A) Fluorescent images of spindle assembly in Xenopus egg extract 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

B) Fluorescent images of XTC cells 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.1 In vitro and in vivo XCEP63-GFP localisation to centrosomes 

Representative images shown were acquired on a Deltavision microscope. Scale bar indicates 10 μm. (a) 
XCEP63-GFP fusion construct was transcribed and translated within Promega coupled reticulocyte lysate 
system as described previously. Spindles were formed in CSF egg extract with the addition of 1,000 
sperm nuclei/μl, 50 μg/ml rhodamine tubulin in the presence of 1/5 retic or XCEP63-GFP reticulocyte 
lysates. Extract was incubated at 20 °C for 90 minutes, then diluted and formaldehyde fixed in BRB80 
and spun onto coverslips through a glycerol cushion as described in material and methods. 
Immunofluorsecent was performed with antibody detecting GFP, shown in green. Microtubules are 
shown in red and DNA in blue (DAPI). (b) XTC cells were transfected in FUGENE6 reagent with empty 
GFP plasmid DNA or XCEP63-GFP construct DNA. Cells were harvested 24 hours after treatment and 
immunofluorescence was performed with antibodies recognizing GFP (GFP-XCEP63), shown in green, 
gamma-tubulin ( -tubulin), shown in red and DNA was stained with DAPI, shown in blue. 
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5.2 Immunoblot detection of endogenous XCEP63  

 
Up to this point we have evidence of XCEP63 localisation by using in vitro translated 

protein and an overexpressed XCEP63-GFP construct. It was also necessary to 

investigate the characteristics of endogenous XCEP63. We generated full-length 

recombinant 6xHisXCEP63 protein under denaturing conditions to be used in antibody 

production. Four rabbits were injected with recombinant XCEP63 protein following the 

standard protocol at Harlan UK (Harlan serum). We tested sera by immunoblot 

detection comparing pre-bleeds, interim bleeds and terminal bleeds (data not shown). 

Conditions were optimised for recognition of endogenous XCEP63 in immunoblot 

experiments. Figure 5.2a shows immunoblot detection with the selected rabbit 

polyclonal antibody recognising the presence of endogenous XCEP63 in Xenopus egg 

extract. XCEP63 antibodies detect a band corresponding to XCEP63 with a molecular 

weight of 71 kDa. Also, in figure 5.2a we determined endogenous XCEP63 antibody 

detection increased in proportion to amount of egg extract loaded. It is approximated 

within Xenopus egg extract that there is endogenous 50 nM XCEP63 (data not shown). 

To determine XCEP63 maintenance stability in Xenopus egg extract, we collected 

samples at 30 minute intervals across a two and half hour incubation time. In untreated 

egg extract XCEP63 was not degraded and remained stable (figure 5.2b). 

 

Consistently, the antibody raised against 6xHisXCEP63 recognised a second cross-

reacting band in Xenopus egg extract, indicated by asterisk in figure 5.2a and 5.2b. We 

determined this protein detection is non-specific band recognition, as the protein is 

retained in immunodepleted extracts indicated later in figure 5.5. We also show in 

figure 5.5 the detection of translated XCEP63 protein, confirming antibody recognition 

of band thought to be XCEP63 endogenous protein.  
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Immunoblot detections of XCEP63 in Xenopus egg extract 
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Figure 5.2 Antibody detection of stable endogenous XCEP63 in Xenopus egg extract  

Shown are representative findings of immunoblot detections using polyclonal antibody serum raised 
against denaturated 6xHisXCEP63 recombinant protein. (a) Increasing amounts of untreated CSF arrested 
Xenopus egg extract, 0.5, 1 and 2 μl were added to Bio-Rad sample buffer, boiled and then separated on a 
standard 10 % SDS-PAGE gel by electrophoresis. (b) Untreated egg extract was incubated at 20 ° C for 
150 minutes, 2 μl were taken at indicated times. Samples underwent gel electrophoresis as above. 
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5.3 Immunofluorescence detection of endogenous XCEP63 

 
 
We next used the four rabbits’ XCEP63 antibodies to detect endogenous XCEP63 by 

immunofluorescence. We established the same antibody selected for immunoblots was 

also the most efficient in recognising XCEP63 in fluorescence studies. Some 

optimisation of immunoflorescence conditions were devised, including modifications to 

the blocking and washing procedures. In turn, we obtained proficient recognition of 

endogenous XCEP63 in Xenopus egg extract and Xenopus culture cells.  

 

In figures 5.3a and 5.3b, we show endogenous XCEP53 co-localises with the poles of 

spindles assembled in Xenopus egg extracts and the centrosomes in XTC cells 

respectively. Taken together, these data strongly support XCEP63-GFP studies, which 

similarly determined XCEP63 centrosome association. In addition, the endogenous 

centrosome positioning of XCEP63 was found to be identical to the predetermined 

localisation of human CEP63 (Anderson et al., 2003). In establishing CEP63 

centrosome linkage between human and Xenopus we uncover another conservational 

aspect, in addition to previously described sequence similarities. Thus, it is possible that 

there may also be conservation of CEP63 function. Later on in this chapter in figure 5.8 

we explore the possible XCEP63 involvement of XCEP63 centrosome-dependent 

spindle assembly on the basis that XCEP63 is appropriately compartmentalised to play 

a regulatory role. 
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A) Fluorescent images of spindle assembly in Xenopus egg extract  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
B) Fluorescent images of XTC cells  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Immunoflorescence detection of endogenous XCEP63 in Xenopus egg extract and XTC 

cells 

Images of fluorescence XCEP63 endogenous recognition are representative findings of three separate 
experiments. Images were acquired on a Deltavision microscope. Scale bars indicate 10 μm. (a) Spindles 
were assembled in CSF egg extracts supplemented with 1,000 sperm nuclei/μl and 50 μg/ml rhodamin 
tubulin. Extracts with incubated at 20 °C for 90 minutes, then diluted and formaldehyde fixed in BRB80 
buffer and spun onto coverslips through a glycerol cushion as described in materials and methods. 
Immunofluorescence was performed as described in materials and methods, with antibodies recognising 
rabbit IgG or XCEP63 polyclonal antibody serum. XCEP63 is shown in green, microtubules are shown in 
red and DNA shown in blue (DAPI). (b) Asynchronous XTC cells were isolated on to coverslips as 
described above and then underwent immunoflorescence staining with antibodies recognising -tubulin 
and XCEP63. Centrosomes are shown in red, XCEP63 shown in green and DNA shown in blue (DAPI). 
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5.4 ATM and ATR phosphorylation of XCEP63 in Xenopus egg extract  

 

We established in chapter four, reticulocyte lysate translated XCEP63 protein undergoes 

retardation in SDS-PAGE when ATM and ATR is activated in Xenopus egg extract. 

The XCEP63 gel migration shift was prevented in the presence of caffeine, thus 

attributing ATM and ATR activation to the observed XCEP63 alteration. We now 

questioned whether ATM and ATR activation similarly leads to gel mobility change of 

endogenous XCEP63 in Xenopus egg extract. The addition of pA/pT to Xenopus egg 

extracts prompted endogenous XCEP63 mobility retardation, as shown in figure 5.4a. 

We also show in figure 5.4a, when treated extracts were supplemented with caffeine and 

ATM inhibitor, the migration difference was somewhat lessened. These results suggest 

endogenous XCEP63 also undergoes at ATM and ATR dependent modification.  

 

ATM and ATR are well-established DNA damage response signalling regulators, 

targeting network substrates through their kinase activity. ATM and ATR adaptation of 

XCEP63 is suggestive of a controlling phosphorylation event. We suspected 

phosphorylation of XCEP63 corresponds to the observed change in molecular weight. 

Thus, we tested the affects of phosphate removal by lambda phosphatase on XCEP63 

gel migration patterns. Immunnoblot detection of XCEP63 in figure 5.4b, shows lambda 

phosphatase treatment eliminates the migration alteration. These data confirm that 

active ATM and ATR phosphorylates endogenous XCEP63. It is noteworthy that 

XCEP63 antibody recognises both non-phosphoylated and phosphorylated XCEP63 

forms. In addition, the second band recognised by XCEP63 antibody does not show a 

gel migration shift with pA/pT treatment indicating again this protein detection is non-

specific. 

 

Interestingly, we observe a faster gel migrating form of untreated XCEP63 when 

exposed to lambda phosphatase. These data indicate a basal level of phosphorylation 

that is constitutively present on endogenous XCEP63 in Xenopus egg extract, which is 

removed by lambda phosphatase treatment. XCEP63 phosphorylation sites and levels 

are investigated in chapter six. 
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Immunoblot detections of XCEP63 in Xenopus egg extract 
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Figure 5.4 ATM and ATR dependent  phosphorylation of endogenous XCEP63 in Xenopus egg 

extract 

 

Immunoblot detection was performed with XCEP63 polyclonal antibodies. Data is representative of three 
separate experiments. * indicates nonspecific band. (a) CSF arrested egg extract was exposed to the 
presence (+) and absence (-) of 5 ng/μl of pA/pT, with and without 2 mM caffeine (Caff) or 20 uM 
Ku55933 (ATMi) for 30 minutes at 20 °C. Extracts (1μl) were mixed with Bio-Rad sample buffer, boiled 
and then underwent electrophoresis on a standard 10 % SDS-PAGE gel. (b) CSF egg extract was 
untreated and treated with 5 ng/μl pA/pT for 30 minutes at 20 °C. Extracts (2 μl) were exposed to 
Lambda phosphatase buffer alone (Buffer) or 2 μl Lambda phosphatase (Phosphatase) in 50 μl reaction 
volume for 30 minutes at 30 °C.  Samples were separated as above. 
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5.5 Immunodepletion of endogenous XCEP63 from Xenopus egg extract 

 

We set up an experiment that would enable investigations into the physiological 

relevance of XCEP63 function. Xenopus egg extract, as a cell free biochemical system, 

allows specific proteins to be depleted by antibodies. Immunodepletion of Xenopus egg 

extract is a useful tool in establishing protein roles. Furthermore, in this system 

recombinant protein can be added back, which should reverse the effects found in the 

absence of protein and provide confirmation of protein function.  

 

We were able to achieve efficient antibody depletion of XCEP63 protein in Xenopus 

egg extract after minimal optimisation of conditions. In figure 5.5, we show XCEP63 

antibody dramatically depletes XCEP63 protein from Xenopus egg extract. Immunoblot 

detection with the same XCEP63 antibody shows the presence of XCEP63 in untreated 

and mock depleted extract, which is not detectable in immunodepleted extracts. As 

previously mentioned, we confirm band marked with an asterisk is a non-specific 

protein detection, remaining unaffected from mock to immunodepleted egg extracts. 

The inclusion of translated XCEP63 protein in this immunoblot confirms antibody 

recognition of XCEP63. 

 

As previously mentioned, Xenopus egg extract immunodepletion of proteins a very 

powerful technique, however the efficacy of depletion rarely meets 100 %. The 

maximal reduction of XCEP63 levels is imperative, as later experiments demands 

efficient XCEP63 knock down to determine the effects of protein absence. For this 

reason, we also performed a second antibody incubation to ensure the highest possible 

depletion of XCEP63 from extracts (figure 5.5). 
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Figure 5.5 Immunodepletion of endogenous XCEP63 in Xenopus egg extracts  

Xenopus eggs extracts were untreated (Un), mock depleted (mock) or XCEP63 immunodepleted 
(XCEP63).  sepharose protein A beads were coupled with no antibody (mock) or 6xHisXCEP63 antibody 
overnight at 4 °C with rotation. 20 μl of extract was incubated once (1x) or twice (2x) with pre-bound 
beads at 4 °C for one hour with rotation. Extract was removed from beads and 1 μl of samples were 
separated on a standard small 10 % SDS-PAGE gel by electrophoresis and then underwent immunoblot 
detection with the same XCEP63 antibody. *  indicates  non-specific band. Immunoblot results shown are 
representative of all experiments based on XCEP63 immunodepletions.  
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5.6 The absence of XCEP63 functional role in interphase Xenopus egg extract 

 

Previously, in chapter four figure 4.2, we mentioned XCEP63 undergoes ATM and 

ATR dependent gel migration shift in both interphase and mitotic Xenopus egg extracts. 

We were keen to ascertain whether XCEP63 functions specifically within processes of 

interphase or mitosis and to determine the physiological relevance of the 

phosphorylation.  

 

To characterise the role of XCEP63 in interphase, we monitored DNA replication in the 

absence of XCEP63, with and without ATM and ATR induction. Quantification of 

DNA replication in XCEP63 depleted extract is shown in figure 5.6. The recorded 

levels of DNA replication were normalised to 100 % DNA replication in untreated 

extract. These data indicate that DNA replication is unaffected by the absence of 

XCEP63 protein. The XCEP63 immunodepleted sample shows a similarly high level of 

DNA replication as untreated or mock-depleted extracts. As expected, chromosomal 

breakage by EcoRI treatment led to an approximately 75 % reduction in DNA 

replication, a reduction which was prevented by the addition of caffeine. XCEP63 

protein depletion did not mitigate on the low percentage of DNA replication found in 

the presence of EcoRI nor affect the rescue observed on caffeine addition.  

 

In conclusion, we can argue that XCEP63 does not influence DNA replication 

regulation. We also can state that XCEP63 phosphorylation holds no direct functioning 

role in DNA damage hindrance of DNA replication progression within interphase egg 

extract. These results may imply a redundancy in XCEP63 function in interphase, or 

alternatively promiscuous activity of ATM and ATR. Further to this, these findings 

encourage the notion that XCEP63 may have a restricted role within mitosis.  
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Figure 5.6 XCEP63 lacks interphase function in Xenopus egg extract  

Interphase Xenopus extract was untreated (Un), or incubated twice with mock depleted (mock) or 
XCEP63 immunodepleted (XCEP63) pre-prepared sepharose beads, as described previously. Extracts 
were supplemented with 2,000 nuclei/μl and 10 μCi of [ 32P]-dATP in the absence and presence of 0.1 
U/μl EcoRI or 0.1 U/μl EcoRI and 3 mM caffeine. After a two hour incubation at 20 °C, reactions were 
stopped with stop buffer and incubated at 37 °C for one hour. DNA was isolated by phenol-chloroform-
ethanol extraction, run on agarose gels, and then proceeded to phosphoimaging monitoring. The 
percentage of DNA replication reported in the graph shows the quantification of radioactivity 
incorporation measured on a phosphoimager. Data shown is representative and shows typical findings of 
three separate experiments. 
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5.7 Purification of recombinant XCEP63-MBP protein 

 

In the previous figure the data showed that XCEP63 function does not impact DNA 

replication in interphase egg extract (figure 5.6). We now investigated the possible role 

of XCEP63 within the context of mitosis.  

 

One possibility is that spindle morphological changes may occur from the absence of 

XCEP63. For this purpose, we required recombinant protein to reconstitute spindle 

assays to substantiate any findings. The 6xHisXCEP63 recombinant protein used for 

antibody production was purified under denaturing conditions, but add back extract 

experiments demand correctly folded protein in a biologically active form. We selected 

the protein tag, maltose binding protein (MBP), which unlike many partner fusions has 

a reputation for solubility enhancement and reasonable yields of protein (Kapust and 

Waugh, 1999).  

 

We inserted the XCEP63 ORF DNA into a PMAL construct and optimised expression 

parameters (data not shown). We obtained soluble XCEP63-MBP recombinant protein 

with protocol including the following modification: lowering of IPTG inductions levels, 

reduction of expression temperature to 25 °C and shortened the expression time to five 

hours. A Coomassie Blue stained gel of purified MBP and XCEP63-MBP recombinant 

proteins is shown in figure 5.7a. As expected, higher yields of soluble MBP 

recombinant protein control were obtained in comparison to XCEP63-MBP. 

Consequently, we concentrated pools of eluted XCEP63-MBP recombinant protein for 

further experiments. 

 

We next asked whether recombinant XCEP63-MBP protein was correctly formed into 

its active conformation. We exposed XCEP63-MBP to Xenopus egg extract in the 

presence of ATM and ATR induction and monitored for changes in electrophoretic 

mobility compared to the absence of treatment. As shown in figure 5.7b, XCEP63-MBP 

underwent the signature ATM and ATR dependent gel migration alteration. These data 

suggest that the purified recombinant protein is active, retaining its potential biological 

function and is not hindered by the attachment to fusion partner, MBP.  

 

We performed a further check on recombinant protein by illustrating again the 

phosphorylation modification. Recombinant XCEP63-MBP was shown to be highly 
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radio-labelled by [ -32P]-ATP in the presence of induced ATM and ATR, as illustrated 

in figure 5.7c autoradiograph. These data also confirm the XCEP63-MBP 

phosphorylation modification observed on endogenous protein in figure 5.4b. As 

previously thought, low levels of basal phosphorylation are apparent, indicated by 

comparatively very low levels of radio-labelled XCEP63-MBP in the absence of ATM 

and ATR triggering pA/pT treatment.  
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A) Coomassie Blue stain of purified MBP and XCEP63-MBP recombinant protein 
 

 
 
 

 

 

 

 

 

 

 
 

B) SYPRO  Ruby stain of XCEP63-MBP in Xenopus egg extract 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

C) Autoradiograph of XCEP63 in Xenopus egg extract 

 

 

 

 

 

 

 

 

 
 
 

Figure 5.7 Purified biologically active recombinant XCEP63-MPB fusion protein  

(a) As described in more detail in materials and methods, XCEP63 DNA was inserted into pMAL–c2X, a 
MBP tag plasmid construct. Both XCEP63-MBP fusion and MBP plasmid without insert were expressed 
in  E. coli and then proceeded to be purified through amylose beads coupling and detachment protocol. 
Purified proteins were separated on a standard 10 % SDS-PAGE gel by electrophoresis and then 
proceeded to Coomassie Blue staining. (b) Recombinant proteins, MBP and XCEP63-MBP (5 μg) were 
pre-coupled to amylose beads then incubated for one hour at 20 °C with CSF arrested Xenopus egg 
extract in the absence and presence of 5 ng/μl pA/pT. Beads were boiled in Bio-Rad sample buffer, then 
samples were separated on a medium Bio-rad precast 4-12 % bis-tris PAGE gel proceeded to SYPRO  
Ruby staining. (c) Recombinant proteins, MBP and XCEP63-MBP (5 μg) underwent treatments as above 
in the presence of [ -32P]-ATP. Samples were separated on a large standard 10 % SDS-PAGE gel and 
proceeded to autoradiography. 
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5.8 XCEP63 functions in Xenopus egg extract spindle assembly  

 

To detect the function of XCEP63 in mitosis, we applied immunodepletion and 

reconstitution with XCEP63-MBP to the spindle assembly assays in Xenopus egg 

extracts. Figure 5.8a shows spindle assembly in the absence of XCEP63 is perturbed. 

Without XCEP63, spindles are lacking in pole orientation and DNA is dispersed. 

However, in reconstituting depleted samples with recombinant XCEP63 protein, spindle 

formation is rescued to that of untreated or mock depleted extracts. We also show that 

microtubule polymerisation and overall aster formation appears normal, remaining 

unaffected by knock down of XCEP63 (figure 5.8a, aster panel). The quantification of 

spindle structures is shown in figure 5.8b. These data show in the absence of XCEP63 

normal spindle assembly is almost completely abolished with an approximate 8-fold 

reduction in spindle formation compared mock depleted extract. Furthermore, in the 

XCEP63 depleted extracts aberrant spindles structures are prevalent. Particularly 

apparent are the heightened numbers of asters present in the absence of XCEP63 

compared to control extracts. This increase in aster frequency suggests XCEP63 has a 

role in a pathway involved in aster maturation into spindles. Quantification of spindle 

structures in the presence of recombinant XCEP63-MBP reconstitution suggests 

XCEP63 is required in normal spindle assembly. Reconstitution of XCEP63 in depleted 

extracts overcomes spindle defects and normal spindle formation returns to levels of 

control extracts.  

 

Taken together, experimental data illustrates the absence of XCEP63 has a striking 

inhibitory affect on normal spindle assembly in Xenopus egg extract. XCEP63 

importance in regulating normal spindle formation was confirmed when defective 

spindle formation was rescued with XCEP63 protein reconstitution. In establishing 

XCEP63 functioning in centrosome-driven spindle assembly, we were encouraged to 

explore whether XCEP63 spindle assembly regulation may be affected by 

phosphorylation modification by active ATM and ATR. 
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A) Fluorescent images of spindle assembly in Xenopus egg extract 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

B) Quantification of spindle assembly structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 XCEP63 is required for spindle assembly in Xenopus egg extract 

CSF extract was untreated (Un), mock depleted (Mock dep) or XCEP63 immunodepleted (XCEP63 dep), 
supplemented with buffer (Buffer) or 50 ng/μl recombinant XCEP63 (rXCEP63-MBP). Spindles were 
formed with 1,000 sperm nuclei/μl and addition of 50 μg/ml rhodamine tubulin, Extracts were incubated 
at 20 °C for 90 minutes and isolated onto coverslips as described in material and methods. Data shown is 
representative and shows typical findings of three separate experiments. (a) Images of spindles and asters 
were acquired on a Deltavision microscope, microtubules are shown red and DNA in blue (DAPI). Scale 
bar indicates 10 μm. (b) Quantification of DNA associated microtubule structures obtained under the 
conditions indicated above. Microtubule structures were qualified as: spindles, asters, abnormal spindles 
and aggregates. Percentages shown are relative to 100 structures were counted for each treatment.  
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5.9 ATM and ATR activation displaces XCEP63 centrosome localisation  

 
In the last section, we determined that XCEP63 has a function within the pathway of 

centrosome dependent spindle assembly. If XCEP63 phosphorylation by ATM and 

ATR has a physiological relevance we would expect to observe a change in XCEP63 

localisation and/or activity. Here, we wished to establish whether phosphorylation 

might result in an alteration in the previously determined centrosome localisation of 

endogenous XCEP63. We attempted this by performing a series of immuofluoresence 

analyses with previously used XCEP63 antibody, which we showed in figure 5.4 detects 

both non-phosphorylated and phosphorylated forms of XCEP63. 

 

We first assessed the localisation of XCEP63 in Xenopus egg extract spindle formation 

in the absence and presence of activated ATM and ATR. Fluorescent images in figure 

5.9a show XCEP63 positioning at the centrosomes of spindles assembled in extract 

lacking ATM and ATR induction, confirming figure 5.3 data. In the presence of ATM 

and ATR activation XCEP63 immunofluorescent detection shows a striking dispersion 

of XCEP63 throughout the ATM and ATR induced abnormal spindle structures. Whilst 

spindle assembly rescued by caffeine indicate an absence of XCEP63 staining diffusion, 

caffeine inhibition of ATM and ATR activation shows a preservation of XCEP63 

centrosome localisation. The dramatic diffusion of XCEP63 away from centrosomes 

was confirmed by immunoflorescence observations in XTC cells. In figure 5.9b, we 

show XCEP63 displacement away from -tubulin centrosome staining in the presence 

of ATM and ATR activation by camptothecin treatment. Whereas XCEP63 co-localises 

with -tubulin staining of centrosomes in untreated cells and treated cells supplemented 

with caffeine.  

 

Taken together, figure 5.9a and 5.9b data can be interpreted to mean that ATM and 

ATR phosphorylation of XCEP63 provokes XCEP63 displacement away from 

centrosomes. Whereas, in the absence of ATM and ATR triggering conditions, XCEP63 

in non-phosphorylated form only localises to centrosomes. However, XCEP63 

antibodies recognise both XCEP63 forms and therefore we need to confirm these 

findings with antibodies that only recognise phosphorylated XCEP63. 
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A) Fluorescent images of spindle assembly in Xenopus egg extract 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B) Fluorescent images of XTC cells 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9 ATM and ATR dependent XCEP63 diffusion away from centrosomes in Xenopus egg 

extract and XTC cells  

Images were acquired on a Deltavision microscope and are representative of three separate experiments. 
Scale bar indicates 10 μm. (a) Spindles were formed in CSF egg extract with the addition of 1,000 sperm 
nuclei/μl. Extracts were treated with CSF-XB buffer (Un) or 0.25 U/μl EcoRI (EcoRI) with and without 2 
mM caffeine (EcoRI + Caff). Samples were incubated at 20 °C for 90 minutes, then fixed and spun onto 
coverslips as described in material and methods. Immunofluorescence was performed with antibodies 
recognizing XCEP63 and -tubulin. XCEP63 is shown in green, microtubules are shown in red and DNA 
is shown in blue. (b) XTC cells were untreated (Un), treated with 400 nM camptothecin (CPT) or 400 nM 
camptothecin and 5 mM caffeine (CPT + Caff), cells were collected four hours incubation. Alternatively, 
XTC were untreated (Un) or treated with 10 Gy of Ionising Radiation (IR) in the absence and presence of 
5 mM caffeine (IR + Caff), cells were collected 30 minutes after exposures. XTC cells underwent 
immunofluorescence with antibodies detecting XCEP63, shown in green and -tubulin, shown in red. 
DNA was stained with DAPI, shown in blue. 
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5.10  Summary 

 
This chapter describes the characterisation of XCEP63, a protein up to this point with 

no ascribed function in any of the conserved vertebrate orthologes. Initial XCEP63-GFP 

investigations showed XCEP63 is localised to centrosomes both in cells and spindles 

assembled in Xenopus egg extract (figure 5.1). The indications that XCEP63 is a 

centrosome protein promoted the continuation of studies into endogenous XCEP63. We 

obtained polyclonal antibodies with efficient recognition of XCEP63 and through 

immuoblot detection we verified the presence of endogenous XCEP63 in Xenopus egg 

extract (figure 5.2). XCEP63 antibody also detected endogenous XCEP63 

immunoflorescently, confirming co-localisation with centrosomes in both cells and in 

spindles assembled in Xenopus egg extract (figure 5.3). In continuing studies we 

verified endogenous XCEP63 undergoes a gel migration change dependent on ATM 

and ATR activation (figure 5.4a). Through treatment of extracts with lambda 

phosphatase we established ATM and ATR phosphorylates XCEP63 (figure 5.4b). In 

addition, we showed purified recombinant protein was also highly phosphorylated by 

active ATM and ATR in extract (figure 5.7). Collectively, data suggests that XCEP63 is 

indeed targeted by active ATM and ATR.  

 

Within Xenopus egg extract system we were able to achieve efficient immunodepletion 

of XCEP63, which allowed studies into XCEP63 function (figure 5.5). We established 

no apparent role of XCEP63 or XCEP63 phosphorylation in the process of DNA 

replication (figure 5.6). It remains unclear why XCEP63 undergoes ATM and ATR 

phosphorylation in interphase extract. Instead, we have uncovered XCEP63 functions 

within mitosis. We found in the absence of XCEP63 spindle assembly was inhibited 

(figure 5.8). XCEP63 role in the formation of normal spindle was confirmed when 

reconstitution of XCEP63 recombinant protein restored spindle assembly. The 

outcomes of theses experiments elucidate XCEP63 as an essential factor in regulation of 

centrosome-driven spindle assembly. 

 

Finally, we showed the displacement of XCEP63 centrosome localisation dependent on 

active ATM and ATR (figure 5.9). Immunofluorescent evidence from cells and Xenopus 

egg extract spindle assembly suggests that XCEP63 phosphorylation by active ATM 

and ATR affects XCEP63 protein behaviour. Although we can only speculate at this 

point, phosphorylation by ATM and ATR may de-localise XCEP63 away from 
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centrosomes, which may in turn lead to the disruption of XCEP63 role in regulating 

spindle assembly. 

 

Within this chapter, we have not been able to determine whether XCEP63 is the ATM 

and ATR target involved in perturbation of centrosome-driven spindle assembly. The 

progression of XCEP63 functional analyses is limited without establishing the site of 

XCEP63 phosphorylation. Therefore, we continue in the next chapter by isolating the 

ATM and ATR phosphorylation position on XCEP63. 
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6 Chapter 6 Identification of XCEP63 phosphorylation site 

 
In order to proceed with studies into the functional role of ATM and ATR XCEP63 

modification in spindle assembly, we needed to identify the XCEP63 phosphorylation 

site. In isolating the XCEP63 target site we would be able to generate experimental aids, 

such as phospho-specific antibodies and recombinant XCEP63 non-phosphorylatable 

mutant protein.  

 

We established, in the previous chapter, XCEP63 undergoes a phosphorylation 

modification in the presence of activated ATM and ATR in Xenopus egg extract 

(chapter five, figure 5.4a and 5.4b). Data collected also shows a stringent XCEP63 

phosphorylation caffeine sensitivity, suggesting that both ATM and ATR separately or 

together could be responsible for the modification. We could argue that ATM is in part 

responsible for the phosphorylation event on XCEP63, as we have shown ATM 

inhibitor reduces XCEP63 phosphorylation (chapter five, figure 5.4a). Moreover, DNA 

damage reactions undertaken typically provoke ATM responses. However, as we 

discussed in chapter one (section 1.3), ATM and ATR phosphorylate a complex 

network of proteins with no clear demarcations, high numbers of common substrates 

and extensive pathway cross-overs (Abraham, 2001; Sancar et al., 2004). Due to the 

present incomplete understanding of DNA damage response occurrence in mitosis, we 

are unable to discount the possibility that double strand break DNA damage is 

processed by and undergoes repair in a manner similar to other cell phase mechanisms 

that may employ ATR reactions (Hurley and Bunz, 2007; Jazayeri et al., 2006). To date 

ATM and ATR substrate targets have been shown to have similar substrate specificity. 

In most reported cases the amino acid sequence serine-glutamine (Ser-Gln, SQ) and 

threonine-glutamine (Thr-Gln, TQ) is a minimal essential requirement for ATM and 

ATR phosphorylation (Abraham, 2001; Kim et al., 1999; Matsuoka et al., 2007). 

However, in this chapter, we make the discovery that ATM and ATR potentially 

recognises serine-leucine-glutamate (Ser-Leu-Glu, SLE) motif, phosphorylating serine 

560 of XCEP63.  
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6.1 XCEP63 mutations of ATM and ATR candidate phosphorylation sites 

 
As a first step in finding the phosphorylation site, we performed a very crude phosphate 

radiolabelling assay on a spotted peptide array (data not shown).  Peptide array data 

failed to highlight the putative phosphorylated region. Similarities in spot intensity 

patterns between samples suggested insufficient experimental sensitivity to allow the 

differentiation from basal levels of phosphorylation. Alternatively, the lack of signal 

may be due to ATM and ATR targeting dependency on XCEP63 protein conformation. 

Because the XCEP63 peptide array provided inconclusive information we concentrated 

our efforts to a more standard approach of phosphorylation identification by mutation of 

consensus sites SQ and TQ motifs. In figure 6.1a, we show XCEP63 amino acid 

sequence on which ATM and ATR potential phosphorylation sites are highlighted in 

red. Through site directed mutagenesis, we eliminated possible phosphorylation sites by 

exchanging nucleotide(s) within the XCEP63 DNA sequence that encode for amino 

acids, serines (S) and threonines (T), to non-phosphorylatable alanine (A). The XCEP63 

DNA mutants were transcribed and translated within the Promega reticulate lysate 

system labelled with [35S]-methioine and then exposed to Xenopus egg extract in the 

absence or presence of pA/pT, ATM and ATR activation treatment. Autoradiographs of 

mutants separated by SDS-PAGE were analysed for changes in gel migration in the 

presence of ATM and ATR activation. Identification of a correct XCEP63 converted 

phosphorylation site would be represented by eradication of the signature gel shift. 

 

We spent a considerable amount of time generating and testing XCEP63 SQ/TQ 

candidates mutants indicated in figure 6.1a in order to uncover the corresponding 

ATM/ATR phosphorylation site. Representative autoradiograph results of XCEP63 

mutants are shown in figure 6.1b (panel one). S41 and T471 XCEP63 alanine mutants 

showed no difference in gel migration in the presence of ATM and ATR activation to 

that of wild type XCEP63. Similarly, the remaining 11 mutants showed no alterations 

on alanine substitution (data not shown). We then changed tactics and combined 

mutations, due to the possibility that the absence of a primary phosphorylation target 

site may lead to phosphorylation of a secondary site, or alternatively that ATM and 

ATR may phosphorylate more than one site. A representative autoradiograph of the 

SQ/TQ alanine multiple mutations is shown in figure 6.1b (panel two) and still we 

determined no change in migration pattern compared to wild type. Although particularly 

puzzling, all combinations of SQ/TQ conversions tested were found to be negative for 
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imposing an effect on ATM and ATR mediated phosphorylation. On discounting all 

S/TQ candidate sites present on XCEP63, we considered XCEP63 may hold an 

alternative or novel ATM/ATR target sequence. There is some evidence that suggests 

the residue prerequisite of ATM/ATR kinase substrate recognition is glutamate at 

position N+1 and this provides enrichment of serine and threonine phosphorylations 

(Kim et al., 1999; Matsuoka et al., 2007). With this in mind and since we were unable 

to identify a standard ATM and ATR phosphorylation site, we reasoned that we had 

some rational to test phosphorylation of serine-glutamate (Ser-Glu, SE) and threonine-

glutamate (Thr-Glu, TE) motif sites. SE and TE sites are indicated on the XCEP63 

amino acid sequence in figure 6.1a, labelled in green. We again applied the previously 

described site directed mutagenesis screening technique. In the autoradiograph in figure 

6.1c, we show a typical SE/TE XCEP63 mutation of S/T to alanine exemplifying here 

conversions of S135 and S202. These findings are representative of all SE/TE 

containing mutants, all showing a lack in phosphorylation alterations of the 

electrophoretic mobility. We combined many of the sites and similarly established no 

effect on gel migration in the presence of ATM and ATR activation (data not shown).  

 

In conclusion, we were unable to identify the ATM and ATR dependent 

phosphorylation site through candidate or speculative site directed mutagenesis. 

Consequently, no further efforts were made with this approach and we realised we 

needed to focus on a different means in order to find the XCEP63 modification site(s). 
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A) XCEP63 amino acid sequence  
 

 

 

 
 

B) Autoradiograph of SQ/TQ XCEP63-A mutants in Xenopus egg extract 
 

 

 

 
 
 
 
 
 

 

 

C) Autoradiograph of SE XCEP63-A mutants in Xenopus egg extract 

 

 

 

 

 

 

 

Figure 6.1 XCEP63 alanine mutants of candidate and speculative ATM and ATR phosphorylation 

sites in Xenopus egg extract 

 

(a) XCEP63 amino acid sequence, ATM and ATR candidate SQ/TQ motifs are labelled in red and 
speculative ATM and ATR SE/TE motifs are labelled in green. Corresponding serine and threonine 
amino acid numbers are also shown. (b) XCEP63 alanine mutants were incorporated by site directed 
mutagenesis within the original C9 XCEP63 cDNA plasmid. XCEP63-A mutants were transcribed and 
translated in the presence of [35S]-methionine within Promega reticulocyte lysate system. Translated 
XCEP63 proteins were incubated for 30 minutes at 20 °C with CSF egg extract which had been pretreated 
for 20 minutes at 20 °C with (+) or without (-) linear DNA (pA/pT). Samples were separated on a 
standard large 10 % SDS-PAGE by gel electrophoresis and proceeded to audioradiography. 
Autoradiograph in panel one shows wild type XCEP63 (WT) along side SQ/TQ XCEP63-A S41 and 
S471 mutants. Autoradiograph in panel two shows wild type XCEP63 (WT) along side SQ/TQ XCEP63-
A combined mutants S497/S520/S550 and S41/S353/S409/S412/S497. (c) The same technique was 
performed as above. Autoradiograph shows wild type XCEP63 (WT) along side SE XCEP63-A S135 and 
S202 mutants. 
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6.2 Mass Spectrometry identification of XCEP63 phosphorylation sites 

 
At this point we decided to employ Mass Spectrometry analysis. We prepared 

recombinant MBP and XCEP63-MBP protein for Mass Spectrometry examination by 

exposing protein to mitotic Xenopus egg extracts in the absence and presence of pA/pT 

oligos, which induce ATM and ATR activation. Figure 6.2a shows SDS-PAGE 

separation of exposed recombinant proteins, stained with SYPRO  Ruby. Mass 

Spectrometry analysis on samples was undertaken by Alessandro Vindigni and Martin 

Hampel, at ICGEB (International Centre for Genetic Engineering and Biotechnology) in 

Italy and Christof Lenz, at Applied Biosystems in Germany.  

 

Investigators prepared gel pieces by performing a trypsin digest followed by reversed 

phase-C18 chromatography separation. Samples were applied to 4000 Q TRAP hybrid 

triple quadrupole/linear ion trap Mass Spectrometer. Initially, two types of LC/MS/MS 

analyses were performed. Firstly, a regular LC/MS/MS (Liquid 

Chromatography/Tandem Mass Spectrometry) procedure was undertaken at high 

sequence coverage to determine peptide identities. Secondly, LC/MS/MS analysis to 

selectively identify phosphorylated peptides, consisting of a Precursor Ion Scan for m/z 

79 followed by polarity switching ion trap experiments (Williamson et al., 2006). The 

combined results obtained showed unequivocally the presence of three phosphorylated 

peptides. The peptides isolated were, SQQDAASSGSSLESIFSEVWK, 

GQLSQAELTHK and EQATGSPISAASVDSAIEPVEDLASSLPVPPTSPANAVASR. 

The Mass Spectrometry specialists also found in the presence of ATM and ATR 

activation an additional 252 Dalton possible post-modification on peptide 

EQATGSPISAASVDSAIEPVEDLASSLPVPPTSPANAVASR, in the position 

highlighted in green on table one shown below, but unfortunately the analysers could 

not explain this addition. Also featured within table one, are the assigned peptide 

numbers, the mass to charge ratios (m/z) of the phospho-peptides, the phosphorylation 

positions within peptide sequences and the corresponding XCEP63 serine amino acid 

number. The isolated peptide positions are marked within figure 6.2b XCEP63 amino 

acid sequence and the contained serine phosphorylation sites are labelled accordingly. 
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Peptide 

number 

assigned 

m/z 

 

Peptide amino acid sequences 

 
XCEP63 

amino acid 

position 
1 1162.122 SQQDAASSGSpSLESIFSEVWK S560 

2 646.302+ GQLpSQAELTHK S391 

3 1441.23+ EQATGSPISAASVDSAIEPVEDLASSLPVPPTpSPA
NAVAS(252)R 

S603 

 

Table 2 Summary of phosphorylated peptides isolated by Mass Spectrometry 

Within the table are the phosphorylated peptides identified in Mass Spectrometry analysis along with 
their established mass to charge ratios (m/z). Peptides isolated were assigned numbers 1-3 as indicated. 
Sites of phosphorylation are marked with a p shown in red within the isolated peptide amino acid 
sequences. Corresponding XCEP63 amino acid sequence positions of serine phosphorylations are shown. 
The site of 252 Da sized unknown addition is indicated in green on peptide three. 
 

Interestingly, the signals for phosphorylation were observed in both the absence and 

presence of active ATM and ATR. This information is in agreement with previous 

indications that a basal level of phosphorylation is present under untreated 

circumstances (chapter five, figures 5.4 and 5.7). In light of the phospho-peptide 

representation in the absence and the presence of ATM and ATR induction, the groups 

applied another type of LC/MS/MS analysis to confirm phospho-peptide identifications 

and obtain semiquantitative information about the phosphorylation levels. A series of 

multiple reaction monitoring (MRM) traces followed by product ion trap spectra were 

performed (Cox et al., 2005; Unwin et al., 2005). Multiple reaction monitoring 

LC/MS/MS analysis outcomes confirmed previously identified sites of phosphorylation. 

MRM traces were then integrated and compared to establish the relative amounts of 

phosphorylated peptides in untreated and treated XCEP63-MBP samples. Ratios 0.17, 

0.91 and 1.02 were determined for phospho-peptides one, two and three respectively. 

These data indicates peptides one and two undergo increased phosphorylation in the 

presence of active ATM and ATR, whilst peptide three shows equal phosphorylation to 

that in the absence of ATM and ATR induction. In particular, ratio information shows 

the highest phosphorylation level is achieved on peptide one. In conclusion, 

quantification data suggests a heightened phosphorylation status of peptide one in ATM 

and ATR activated sample. Due to this we show analysis data mentioned above in more 

detail in the next figure, specifically for peptide one.  
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A) SYPRO  Ruby stain of MBP and XCEP63-MBP in Xenopus egg extract  

 
 
 
 
  
 

 

 

B) XCEP63 amino acid sequence  

 

 
 

Figure 6.2 Mass spectrometry identification of XCEP63 phosphorylation sites  

 

(a) Recombinant MBP and XCEP63-MBP protein were incubated in egg extract treated with or without 
pA/pT for one hour at 23 ºC. MBP-XCEP63 was purified using amylose resin and separated by SDS-
PAGE electrophoresis and subsequently stained with SYPRO  Ruby stain. Gel slices containing MBP-
XCEP63 were subjected to Mass Spectrometry analysis. (b) XCEP63 amino acid protein sequence with 
phosphopeptides in bold and marked by lines. Corresponding phoshorylated serines are labelled, 
highlighted in red. 
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6.3 Mass Spectrometry identification of potential ATM and ATR of XCEP63 

phosphorylation site at serine 560 

 

As described in the previous section, peptide one SQQDAASSGSpSLESIFSEVWK 

identified by Mass Spectrometry is likely to contain the main site of XCEP63 

phosphorylation by ATM and ATR. Here we show in more detail the Mass 

Spectrometry data of XCEP63 phosphorylation at site serine 560. In figure 6.3a panel 

one, we show the LC/MS/MS product ion spectrums in the absence of pA/pT treatment, 

SQQDAASSGSSLESIFSEVWK peptide was observed at m/z 1122.02+ at a retention 

time of 30.9 minutes. In figure 6.3b panel two we show LC/MS/MS Product Ion 

Spectrum in the presence of pA/pT treatment, SQQDAASSGSSLESIFSEVWK peptide 

was observed at m/z 1162.12 + at a retention time of 32.0 min. These data confirmed 

the phosphorylation at serine 560, SQQDAASSGSpSLESIFSEVWK on peptide was 

determined through Y ions undergoing serial neutral loss of phosphoric acid at 98 

Daltons down to ion position Y11. 

 

In figure 6.3b, top and bottom panels we show Multiple Reaction Monitoring traces for 

the m/z peptide transition, 1162.1>795.4 observed in the absence and the presence of 

pA/pT treatment respectively. Heighten intensity levels observed at a retention time of 

32.0 minutes clearly implicate a prevalence of phosphorylation at serine 560 in the 

ATM and ATR activated sample compared to untreated sample. As previously 

mentioned the comparison of Multiple Reaction Monitoring traces revealed a ratio of 

0.17 phosphorylation amount on peptide one between untreated and treated XCEP63. In 

conclusion, quantification data suggests a heightened phosphorylation status of serine 

560 in ATM and ATR activated sample, which most likely can be attributed to XCEP63 

gel migration shift. 
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A) Product Ion Spectrums of XCEP63 SQQDAASSGSSLESIFSEVWK peptide  

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

B) Multiple reaction monitoring (MRM) traces of XCEP63 

SQQDAASSGSSLESIFSEVWK peptide  
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Mass Spectrometry analyses of SQQDAASSGSSLESIFSEVWK peptide 

phosphorylation 

 

(a) Product Ion Spectrum of the doubly charged non-phosphorylated peptide, 
SQQDAASSGSSLESIFSEVWK observed in the sample containing XCEP63-MBP isolated from egg 
extract treated with no pA/pT at m/z 1122.02+ with a retention time of 30.9 min. Product Ion Spectrum of 
the doubly charged phosphorylated peptide, SQQDAASSGSpSLESIFSEVWK observed in the sample 
containing XCEP63 isolated from egg extract treated with pA/pT at m/z 1162.12+ with a retention time of 
32.0 min. Y ions marked with an asterisk have undergone neutral loss of 98 Da, indicating the loss of 
phosphoric acid. Y ions down to y11 exhibit this neutral loss, indicating that S560 is indeed a site of 
phosphorylation. (b) Multiple reaction monitoring (MRM) traces observed in XCEP63 – pA/pT (top) and 
XCEP63 + pA/pT (bottom) for the transition m/z 1162.1>795.4 specific for the phosphopeptide sequence 
SQQDAASSGSpSLESIFSEVWK. Integration of the traces revealed a phosphopeptide ratio of 0.17 
between samples - and + pA/pT.  
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6.4 Confirmation of XCEP63 serine 560 phosphorylation site 

 

We set out to verify the Mass Spectrometry analysis findings by converting serines to 

alanines at XCEP63 amino acid sites: 560 (peptide one), 391 (peptide two) and 603 

(peptide three). Similarly to the rationale of candidate phosphorylation studies in figure 

6.1, we tested site directed XCEP63-S560A mutants singly and in combination in 

Xenopus egg extract with and without ATM and ATR activation. Again, we assessed 

alterations in ATM and ATR dependent gel mobility of XCEP63-S560A mutant 

compared to XCEP63 wild type using autoradiography.  

 

In figure 6.4a, we show autoradiographs of XCEP63 mutant shift assays. We observe 

that combinations of S391 and S603 double mutations and S560 single mutant gel 

mobilities are comparative to XCEP63 wild type in the absence of ATM and ATR 

activation. But in the absence of ATM and ATR activation XCEP63 containing a 

combination of all three serine conversions shows an increase in gel migration. These 

observations can be explained by a likely suppression of XCEP63 lower levels of 

constituent phosphorylation modifications. In agreement with Mass Spectrometry MRM 

trace phosphorylation ratios (figure 6.2), these data suggests S560, S391 and S603 

attribute to a basal level of phoshorylation present on XCEP63 protein within Xenopus 

egg extract.  

 

We show in figure 6.4a, XCEP63 serine 560 site mutation alone specifically abolishes 

XCEP63 gel mobility change in the presence of active ATM and ATR. We repeated the 

shift assay in isolation to check that serine 560 is indeed the site ATM and ATR 

phosphorylates XCEP63. Figure 6.4b autoradiograph clearly shows XCEP63 serine 560 

mutation prevents ATM and ATR signature gel migration change. These data confirm 

serine 560 is the site at which active ATM and ATR phosphorylates XCEP63.  
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Autoradiographs of XCEP63-A mutants in Xenopus egg extract 

 

 
A)  

 
 
 
 
 
 
 
 

 
 
B) 

 
 
 
 
 
 
 
 

 

Figure 6.4 ATM and ATR phosphorylates XCEP63 at serine 560 

 

XCEP63 (WT), XCEP63 S603A/S391A/S560A combined serine mutant and single XCEP63 S560A 
mutant were transcribed and translated in the presence of [35S]-methionine in promega reticulate lysate 
coupled system. Transcribed proteins were exposed for 30 minutes at 20 °C to CSF arrested egg extract, 
pretreated for 20 minutes at 20 °C with (+) or without (-) linear DNA (pA/pT). Samples were separated 
by SDS-PAGE electrophoresis and then underwent audioradiography. (b) XCEP63 (WT) and single 
XCEP63-S560A mutant experiment was performed in isolation as above. 
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6.5 Summary 

 

In this chapter we describe the phosphorylation modifications present on XCEP63-MBP 

recombinant protein. Initially, Mass Spectrometry analysis identified three sites of 

phosphorylation on XCEP63 in the absence and presence of ATM and ATR activation. 

Gel mobility analysis of site directed mutants verified preliminary Mass Spectrometry 

data. Combined serine 560, 139 and 603 XCEP63 alanine mutations show faster gel 

mobility to that of wild type protein in the absence of ATM and ATR inducing 

treatment. The collective evidence suggests XCEP63 is constituently phosphorylated at 

a low level in the presence of untreated Xenopus extract. 

 

Furthermore, sophisticated Mass Spectrometry methods generated semi–quantitative 

information on the phosphorylation sites in untreated and treated XCEP63 samples 

(figure 6.2). Through integration of Mass Spectrometry MRM traces, the peptide 

containing serine 560 was isolated with a heightened phosphorylation ratio of 0.17 with 

regard to the absence and presence of treatment (figure 6.3). By testing of XCEP63 

serine 560 conversion to alanine alone, we established the signature ATM and ATR gel 

migration change was abolished (figure 6.4). We therefore attribute XCEP63 ATM and 

ATR phosphorylation site to serine 560.  

 

In the light of this finding it was not surprising that we were unsuccessful in our initial 

XCEP63 phosphorylation search attempts by site directed mutagenesis screening of 

ATM/ATR candidate SQ/TQ sites and speculative SE/TE sites. In ascertaining ATM 

and ATR phosphorylation at serine 560, we uncovered a novel ATM and ATR 

recognition motif of Ser-Leu-Glu (SLE) potentially present in other substrates. Previous 

ATM and ATR substrate studies described putative recognition site of SQ/TQ(E) motifs 

(Kim et al., 1999; Matsuoka et al., 2007). Although SLE phosphorylation motif requires 

further confirmation, in the case of XCEP63 we have potentially disregarded for this 

particular target the requirement for SQ/TQ(E) motif. In the next chapter we 

characterise ATM and ATR phosphorylation of XCEP63 at serine 560 and distinguish 

any XCEP63 functional changes in regulating spindle assembly. 
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7 Chapter 7 Characterisation of XCEP63 phosphorylation 

 
In earlier characterisations, we ascribed to XCEP63 a role in regulating normal spindle 

assembly. We ascertained that in the absence of XCEP6 spindle assembly was 

perturbed. Furthermore, immuofluorescence data showed that XCEP63 diffuses away 

from centrosomes in the presence of active ATM and ATR. This dispersion of XCEP63 

suggests its modification changes the behaviour of the protein. In order to characterise 

the physiological relevance of XCEP63 adaptation in spindle assembly, we undertook 

the identification of XCEP63 phosphorylation site. Strong evidence indicates XCEP63 

phosphorylation by ATM and ATR at serine 560. In this chapter, we first confirm the 

isolated phosphorylation site on XCEP63. We then aimed to differentiate between non-

modified and modified XCEP63 positioning in relation to the centrosomes. Finally, we 

wished to address XCEP63 role in centrosome-driven spindle assembly defects in the 

presence of ATM and ATR.  

 

7.1 XCEP63 serine 560 phosphorylation in the presence of activated ATM and 

ATR in Xenopus egg extract 

 

We sought to confirm XCEP63 serine 560 phosphorylation by active ATM and ATR. 

For this purpose, we required phospho-specific antibodies. Eight rabbits were injected 

with XCEP63 peptide antigen conjugated to KHL containing phosphorylated serine 

560. Polyclonal antibodies were generated at Harlan UK using their extended standard 

protocol. Collected production sera were affinity purified against the same 

phosphorylated peptide and then with equivalent non-phosphorylated peptide. Purified 

antibodies and pre-bleed sera were tested and compared in immunoblot detections of 

Xenopus egg extract treatments (data not shown). The purified antibodies with the most 

stringent XCEP63 serine 560 phosphorylation recognition were selected for further 

experiments. Serine 560 phospho-specific immunoblot detections are shown in figure 

7.1a and 7.1b. Blots of Xenopus egg extract reactions show strong band detection upon 

ATM and ATR activation treatments. Phospho-specific antibodies recognize both 

recombinant XCEP63-MBP protein and endogenous XCEP63 in the presence of ATM 

and ATR activating conditions, pA/pT or EcoRI with sperm nuclei. Very faint XCEP63 
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immuoblot detections are apparent in the absence of ATM and ATR activation. These 

data suggests a very low basal level of XCEP63 phosphorylation at serine 560 in 

comparison to the large increase observed in the presence of active ATM and ATR. 

 

We continued by verifying the phosphorylation specificity of XCEP63 serine 560 

polyclonal antibodies. We show complete eradication of XCEP63 immunoblot band 

detection observed in ATM and ATR active samples when treated with lambda 

phosphatase (figure 7.1c). The removal of XCEP63 phosphates by lambda phosphatase 

in the presence of ATM and ATR activation directly confirms that these phospho-

specific antibodies are detecting only phosphorylated XCEP63. We confirm through 

these immunoblot detections with phospho-specific antibodies that ATM and ATR 

activating treatment dramatically increases phosphorylation levels of XCEP63 at serine 

560.  
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Immunoblot detection of XCEP63 phosphorylation of endogenous and added 

recombinant protein in Xenopus egg extract 

 
A)   

 
 
 
 
 
 

 
 
 
 
 
B) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
C) 

 

 

 

 

 
 

 

Figure 7.1 Immunoblot detection of serine 560 phosphorylation in the presence of ATM and ATR 

activation 

All samples were separated by electrophoresis on standard 10 % SDS-PAGE gels. Immunoblot 
detections were performed with XCEP63 phospho serine 560 polyclonal antibodies Immunoblot 
detections show endogenous XCEP63 (eXCEP63) and recombinant XCEP63-MBP (rXCEP63-MBP). 
(a) CSF arrested Xenopus egg extract was incubated in the absence (-) and presence (+) 50 ng/μl pA/pT 
supplemented with 50 ng/μl XCEP63-MBP recombinant protein for 30 minutes at 20 °C. (b) CSF 
arrested Xenopus egg extract supplemented with 1,000 sperm nuclei/μl and 50 ng/μl recombinant 
XCEP63-MBP protein in the presence (+) or absence (-)  of 0.25 U/μl EcoRI. Extracts were incubated for 
30 minutes at 20 °C. (c) CSF arrested egg extracts were treated in the absence (-) and presence (+) of 
pA/pT linear DNA for 30 minutes at 20 °C. 2 μl of extracts were exposed to 2 μl lambda phosphatase 
(phosphatase) or lambda phosphatase buffer (Buffer) for 30 minutes at 30 °C. 
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7.2 XCEP63 serine 560 phosphorylation dependent on active ATM and ATR in 

Xenopus egg extract  

 

We continued by attempting to confirm that the phosphorylation of XCEP63 at serine 

560 corresponds directly to active ATM and ATR. We prevented ATM and ATR 

activity by chemical inhibition and monitored the levels of XCEP63 serine 560 

phosphorylation by immunoblot detection. Figure 7.2a shows immunoblot detection of 

XCEP63 serine 560 phosphorylation diminished with caffeine or ATM inhibitor 

additions in the presence of pA/pT treatment.  

 

Interestingly, in figure 7.2b, the immunoblot shows that XCEP63 serine 560 

phosphorylation by ATM and ATR occurs within five minutes of activating treatment in 

Xenopus egg extract. In addition, we establish XCEP63 phosphorylation is consistently 

caffeine sensitive. Again, data suggests XCEP63 modification dependency on active 

ATM and ATR. We also show in figure 7.2b, the maintenance of XCEP63 serine 560 

phosphorylation across the time of incubation, suggesting XCEP63 modification is 

stable. Furthermore, phosphorylation at serine 560 shows no indications of rendering 

XCEP63 susceptible to degradation.  

 

Here, we have compiled evidence to suggest we have indeed isolated the correct site on 

which ATM and ATR modifies XCEP63. Overall, findings imply ATM and ATR 

targeting of centrosome protein, XCEP63, in a constant manner, thus indicating a 

possible importance of XCEP63 role in mitotic DNA damage responses. 
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Immunoblot detections of XCEP63 phosphorylation in Xenopus egg extract 
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Figure 7.2 Serine 560 phosphorylation of XCEP63 by active ATM and ATR 

Immunoblot detections were performed using antibodies recognizing XCEP63 phosphorylated serine 560. 
Typical detections are shown of two separate experiments. (a) CSF egg extract was treated in the absence 
(-) and presence (+) of 50 ng/μl linear DNA (pA/pT) with 2 mM caffeine (Caff) or 20 μM Ku55933 
(ATMi). Samples underwent gel electrophoresis on a standard 10 % SDS-PAGE gel. (b) CSF arrested 
egg extract was treated with 50 ng/μl linear DNA (+) and without (-) pA/pT and 2 mM caffeine (Caff). 
Samples were collected at indicated incubation times after linear DNA addition. Samples were run on a 
medium pre-cast Bio-Rad 4-12 % Bis/Tris acrylamide gel. 
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7.3 XCEP63 serine 560 peptide phosphorylation by ATM and ATR kinases 

 

At this point we decided to perform in vitro kinase assays to verify ATM and ATR 

phosphorylation of XCEP63 at serine 560. We applied phosphorylatable peptides 

containing XCEP63 serine 560 and non-phosphorylatable peptides containing serine to 

alanine mutation to reactions containing ATM or ATR kinases. We measured outcomes 

of reactions by monitoring radioactive phosphate incorporation. Quantification of in 

vitro assays are shown in figure 7.3. We found serine 560 peptide undergoes 

phosphorylation modification by ATM or ATR kinases. We observed the radioactive 

phosphate labelling increases by approximately 4-fold in the presence of ATM and over 

3-fold with ATR addition in comparison to levels of incorporation in the absence of 

kinase activity. Thus, these data indicate a lower level of radioactive phosphate addition 

on serine 560 peptide in the presence of ATR compared to ATM in an in vitro assay. 

We suspect that ATM may preferentially targets and modifies XCEP63 although we 

have no data to show this is the case in Xenopus egg extract.  

 

These data unveil in a non-physiological in vitro context that ATM and ATR 

specifically phosphorylates serine 560 containing XCEP63 peptide. These data, taken 

with the similar Xenopus egg extract experimental findings establish that XCEP63 

serine 560 phosphorylation is dependent on ATM and ATR activity. The XCEP63 

modification at serine 560 is linked directly to ATM/ATR kinase activities. Therefore, 

we can discount the possibilities of XCEP63 phosphorylation by alternative DNA 

damage kinases, for example, DNA-PK or downstream ATM/ATR factors, such as 

Chk1 or Chk2. Furthermore, we confirm the identification of the novel ATM and ATR 

SLE recognition motif.  
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Figure 7.3 In vitro ATM and ATR phosphorylation of XCEP63 serine 560 containing peptide  

 
XCEP63 50 mer peptides containing central serine 560 (XCEP63-S560) or substituted alanine 560 
(XCEP63-S560A) were added at 0.5 mg/ml to 20 μl EB kinase buffer in the presence of 1 μl of [ 32P]-
ATP (10 mCi/ l). Samples were further supplemented without and with donated recombinant Flag-ATM 
(+ATM) or recombinant Flag-ATR (+ATR) proteins and then incubated at 30 °C for 20 minutes. Kinase 
reactions were spotted onto phosphocellulose filter paper and processed to be measured by a scintillation 
counter, as described in material and methods. The average of three independent experiments of 
radioactivity incorporation is reported in the graph. Error bars indicate standard deviation (s.d.). 
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7.4 Displacement of phosphorylated XCEP63 away from centrosome localisation 

 
Previously in chapter five, figure 5.9, XCEP63 immunofluorescence detection 

experiments indicated XCEP63 dispersion away from centrosomes which is dependent 

on the presence of ATM and ATR activation. These characterisation studies uncovered 

a potential activity change in modified XCEP63. We continued to investigate 

phosphorylated XCEP63 positioning in both Xenopus egg extract spindle assembly and 

in cells. We aimed to determine any behaviour alteration caused by ATM and ATR 

modification by assessing XCEP63 localisation by immunofluorescence.  

 

Immunofluorescent images of XCEP63 serine 560 phosphorylated protein detections in 

Xenopus egg extract spindle formation and XTC cells are shown in figures 7.4a and 

7.4b respectively. We find undetectable immunofluorescence staining with serine 560 

phospho-specific antibodies in both untreated and caffeine treated spindle assembly 

extracts. Likewise, immunofluorescent images of tissue culture cells show no visible 

detection of modified XCEP63 in samples that were untreated and in the two treatments 

supplemented with caffeine. Thus, immunofluorsecent images of untreated and caffeine 

inhibition of ATM and ATR triggering treatments show no modified XCEP63 

localisation at centrosomes. 

 

As we expected from previous immunoblot studies, we determine XCEP63 serine 560 

phosphorylation is present at disguishable levels dependent on ATM and ATR 

induction. We establish XCEP63 phosphorylated protein does not reside at centrosomes 

in Xenopus egg extract. Figure 7.4a shows phosphorylation by ATM and ATR disperses 

XCEP63 localisation throughout defective spindle structures. Furthermore in XTC cell 

we observe XCEP63 serine 560 phosphorylated protein diffusion by ATM and ATR 

activating treatment, camptothecin (CPT) (figure 7.4b). In XTC cells, displacement of 

XCEP63 phosphorylated protein immunofluorescence indicates no residual staining co-

localising with centrosomes.  

 

In light of these XCEP63 studies, we can conclude that ATM and ATR dependent 

phosphorylation of XCEP63 changes centrosome positioning. These findings are 

indicative of a physiological behaviour alteration in modified XCEP63.   
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A) Fluorescent images of spindle assembly in Xenopus egg extract  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) Fluorescent images of XTC cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 7.4 Absence of phosphorylated XCEP63 protein at centrosomes in Xenopus egg extract and 

XTC cells 

Images were acquired on a Deltavision microscope and are representative of three independent 
experiments. Scale bar indicates 10 μm. (a) Spindles were formed in CSF egg extract with the addition of 
1,000 sperm nuclei/μl. Extracts were treated with CSF-XB buffer (Un) extract or 0.25 U/μl EcoRI 
(EcoRI) with and without 2 mM caffeine (EcoRI + Caff). Samples were incubated at 20 °C for 90 
minutes, then formaldehyde fixed and spun onto coverslips as described in material and methods. 
Immunofluorescence was performed with antibodies recognizing phosphorylated XCEP63 at serine 560 
and -tubulin. XCEP63-S560 is shown in green, microtubules are shown in red and DNA is shown in 
blue. (b) XTC cells were untreated (Un), treated with 400 nM camptothecin (CPT) or 400 nM 
camptothecin and 5 mM caffeine (CPT + Caff), cells were collected after four hours. XTC cells 
underwent immunofluorescence with antibodies detecting XCEP63-S560, shown in green and -tubulin, 
shown in red. DNA was stained with DAPI, shown in blue. 
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7.5 Purification of non-phosphorylatable recombinant XCEP63 alanine 560 

mutant protein 

 
At this point we wished to move forward with XCEP63 phosphorylation 

characterisation in the context of spindle assembly. We aimed to determine whether 

ATM and ATR phosphorylation of XCEP63 is the mechanism by which ATM and ATR 

dependent defects in spindle assembly occur. In order to provide a definitive answer to 

this question experiments required XCEP63 recombinant protein containing alanine 

conversion of serine 560 ATM and ATR phosphorylation site. We therefore needed to 

purify XCEP63-MBP alanine 560 recombinant protein (S560A).  

 

We applied previously used techniques in producing recombinant XCEP63-MBP 

protein. In figure 7.5a we show the gel of purified XCEP63-MBP S560A mutant along 

side previously purified XCEP63-MBP wild type recombinant protein (chapter five, 

figure 5.7). We show XCEP63-MBP S560A and XCEP63-MBP wild type recombinant 

proteins have similar gel migrations.  

 

In figure 7.5b, we show XCEP63-S560A mutant recombinant protein exposure to 

Xenopus egg extract. XCEP63-S560A does not exemplify XCEP63 wild type signature 

shift in gel migration in the presence of ATM and ATR. In resolving the absence of the 

typical XCEP63 gel mobility alteration, these data indicate XCEP63-S560A mutant 

recombinant protein phosphorylation is prevented. These findings are in consistent with 

previous data in establishing ATM and ATR phosphorylation targeting at serine 560 

site. In obtaining recombinant non-phosphorylatable XCEP63-S560A, we had a reagent 

to distinguish ATM and ATR phosphorylation effects on XCEP63 spindle assembly 

regulation function.  
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A) Commassie Blue staining of XCEP63 recombinant proteins 

 
 
 
 
 
 
 
 
 
 

B) SYPRO  Ruby staining of XCEP63 recombinant proteins in Xenopus egg 

extract 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.5 Purified XCEP63-S560A mutant recombinant protein is not phosphorylated in the 

presence of active ATM and ATR in Xenopus egg extract  

 
(a) XCEP63 DNA pMAL–c2X, a MBP tag plasmid was altered by site directed mutagenesis 
incorporating alanine conversion of serine 560 site. XCEP63- MBP S560A mutated DNA was expressed 
in E. coli and the protein was purified through amylose beads as described in materials and methods. 
XCEP63 wild type (WT) and newly purified XCEP63-S560A proteins were separated on a standard 10 % 
SDS-PAGE gel by electrophoresis and then Coomassie Blue stained. (b) Recombinant proteins, XCEP63-
MBP (WT) and XCEP63-S560A (S560A) were pre-coupled to amylose beads then incubated for one 
hour at 20 °C with CSF Xenopus egg extract in the absence and presence of 5 ng/μl pA/pT. Beads were 
boiled in Bio-Rad sample buffer and then samples were separated on a standard 10 % SDS-PAGE gel by 
electrophoresis and processed by SYPRO  Ruby staining. 
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7.6 ATM and ATR phosphorylation of XCEP63 inhibits spindle assembly in 

Xenopus egg extract  

 
We previously established XCEP63 is a factor required in assembly of spindles with 

correct spatial orientation (chapter five, figure 5.8). Interestingly, abnormal spindle 

assembly morphology, in the absence of XCEP63, resembled spindle defects found in 

ATM and ATR activated extracts (chapter three, figures 3.4-3.7). We propose that non-

modified centrosome XCEP63 regulates spindle assembly, a mechanism that is 

inactivated by ATM and ATR targeting. To examine this hypothesis we used XCEP63-

S560A mutant recombinant protein. We set up XCEP63 immunodepleted spindle 

assembly assays in the presence of ATM and ATR activation, supplemented with wild 

type or mutant XCEP63. If XCEP63 modification does lead to spindle assembly 

abnormalities, we would expect to observe spindle formation rescue with the 

introduction of non-phosphorylatable XCEP63-S560A. 

 
Fluorescent images in figure 7.6a show Xenopus egg extract spindle assembly in 

depleted extract in the presence of EcoRI with reconstitution of wild type XCEP63 and 

mutant XCEP63-S560A.  Similar spindle organisation irregularities are present in ATM 

and ATR activated extract without endogenous XCEP63 protein and in extract with 

excess wild type XCEP63. As we proposed, we observed rescue of normal spindle 

formation with addition of excess non-phosphorylatable XCEP63-S560A mutant 

protein to ATM and ATR induced extract. Therefore, these data clearly indicate that 

XCEP63 regulation of spindle assembly is preserved when phosphorylation of added 

XCEP63 is prevented. 

 

Experimental quantification of DNA microtubule structures is shown in figure 7.6b. In 

comparing EcoRI treatment alone with XCEP63 wild type introduction, there is a 

doubling in number of normal spindle assembly. However, we similarly observe high 

levels of aggregate DNA structures in both treatments. Wild type XCEP63 data 

indicates a very partial recovery effect on spindle assembly. This phenomenon is most 

probably due to an excess of XCEP63 protein compared to normal physiological levels 

of endogenous XCEP63. A slight rise in normal spindle assembly possibly illustrates 

that increasing XCEP63 abundance slightly overcomes ATM and ATR spindle 

assembly inhibitory affect. Most prominently, quantification data shows ATM and ATR 

spindle assembly defects correspond directly to XCEP63 modification. On addition of 

XCEP63-S560A mutant, we see normal spindle assembly similar to levels of untreated 



 179 

extracts in the absence of ATM and ATR activating treatment. We observe an 

approximate 8-fold recovery in spindle formation with reconstitution of XCEP63-

S560A mutant compared to activated ATM and ATR extract. Wild type XCEP63 

retains the serine 560 ATM and ATR modification site, whereas XCEP63-S560A is 

unable to undergo active ATM and ATR targeting. These data suggest again, XCEP63 

modification disrupts XCEP63 regulation in spindle organisation, whilst non-modified 

XCEP63 maintains a role in normal spindle array formation.  

 

We can conclude from these experiments that XCEP63 serine 560 site is required for 

ATM and ATR targeting in defective spindle assembly. Consequently, ATM and ATR 

modification of XCEP63 inhibits regulatory function in spindle formation. We have 

determined that XCEP63 is a central mechanism by which ATM and ATR perturbs 

spindle assembly.  
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A) Fluorescent images of spindle assembly in Xenopus egg extract  
 

 
 
 
 

 

 

 

 

 

 

 

 

 
 
 

B) Quantification of spindle assembly structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 XCEP63-S560A protein reconstitution abolishes perturbed spindle formation in the 

presence of ATM and ATR activation in Xenopus egg extract 

 
(a) XCEP63 was immunodepleted from CSF egg extract as previously described by two sequential 
incubations with 6xHisXCEP63 whole protein antibodies pre-bound in sepharose protein A beads. 
Spindles were assembled in untreated non-immunodepleted extract (Un) and immunnodepleted extract 
with 1,000 nuclei/μl and 50 μg/ml rhodamine tubulin. Immunodepleted extracts were treated with 0.2 
U/μl of EcoRI (EcoRI) and further supplemented with recombinant protein buffer (Buffer), 50 ng/μl 
recombinant wild type XCEP63 –MBP protein (rXCEP63) or 50 ng/μl recombinant serine 560 to alanine 
mutant XCEP63-MBP protein (rXCEP63-S560A). Samples were incubated at 20 °C for 90 minutes, then 
formaldehyde fixed and spun onto polylysine coverslips through a glycerol cushion as described in 
material and methods. Microtubules are shown in red and DNA was stained with DAPI, shown in blue. 
Images shown were acquired on a Deltavision microscope and representative findings of three separate 
experiments. (b) Quantification of DNA associated microtubule structures obtained under the conditions 
indicated above. Microtubule structures were categories as: spindles, abnormal spindles, asters and 
aggregates Percentages shown are relative to 100 structures counted for each treatment. Data is 
representative and shows typical findings of three independent experiments. 
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7.7 Modified XCEP63 localisation alterations correspond to spindle assembly 

defects in Xenopus egg extract 

 
We finalised the XCEP63 characterisation studies by determining localisation of mutant 

XCEP63-S560A on recovered spindle assembly. In ascertaining the position of 

XCEP63 in spindle formation in the presence of ATM and ATR, we can outline 

XCEP63 mechanism in spindle defects. We propose that phosphorylated XCEP63 

diffusion prevents XCEP63 function in regulating spindle assembly at the centrosomes. 

 

We performed spindle assembly in Xenopus egg extract as in figure 7.6. We used whole 

protein XCEP63 antibodies used in chapter five, recognising both non-modifed and 

modified XCEP63 forms for immunofluorescent detection of the proteins. Figure 7.7 

shows the presence of XCEP63 at the spindle poles of untreated extracts and the 

absence of XCEP63 staining in XCEP63 immunodepleted aberrant spindle structures. 

Unsurprisingly, we find XCEP63 wild type dispersed throughout defective spindle 

structures. ATM and ATR phosphorylation of XCEP63 wild type protein occurs on 

retained serine 560 modification site. Finally, we observe that added recombinant 

XCEP63-S560A, in the presence of ATM and ATR, localises specifically to the poles of 

rescued normal spindle assemblies. XCEP63 mutant, non-modifiable protein remains 

positioned at the centrosomes. 

 

In conclusion, these data tie XCEP63 centrosome localisation with the absence of 

XCEP63 serine 560 ATM and ATR phosphorylation. Furthermore, these data suggest 

centrosome positioning is required for XCEP63 to fulfil its role in normal spindle array 

assembly.  
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Figure 7.7  XCEP63-S560A, non-phosphorylatable protein in the presence of active ATM and ATR 

localises to poles of rescued spindles assembly in Xenopus egg extract  

 

Extract was left untreated (Un) or underwent two sequential rounds of XCEP63 immuodepletion. 
XCEP63 depleted extracts were supplemented with EcoRI (EcoRI) in the presence of recombinant protein 
buffer (Buffer), 50 ng/μl recombinant wild type XCEP63 (rXCEP63) protein or 50 ng/μl recombinant 
alanine 560 mutant protein (rXCEP63-S560A). Spindles were formed with the addition of 1,000 sperm 
nuclei/μl at 20 °C for 90 minutes. Samples were diluted, then formaldehyde fixed in BRB80 solutions, 
and spun onto polylisine coverslips through a glycerol cushion as described in material and methods.  
Immunofluorence was performed with antibodies recognizing -tubulin and XCEP63. Microtubules are 
shown in red and XCEP63 is shown in green. DNA was stained with DAPI, shown in blue. Analysis was 
undertaken on a Deltavision microscopy and images presented are representative of three separate 
experiments. 
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7.8 Summary 

 
In this chapter we have strong evidence that shows XCEP63 undergoes ATM and ATR 

phosphorylation at serine 560. In more detail, immunoblot detections with XCEP63 

serine 560 phospho antibody recognised XCEP63 phosphorylation specifically at serine 

560 site in the presence of active ATM and ATR in Xenopus egg extracts (figures 7.1 

and 7.2). These findings were confirmed by undertaking in vitro ATM and ATR kinase 

assays with peptides containing XCEP63 serine or alanine 560 (figure 7.3). We 

established serine 560 peptide was phoshorylated by both ATM and ATR, whereas 

alanine mutant peptide indicated an absence of phosphate addition by either kinases. In 

isolating ATM and ATR reactions, we disregarded the possibility XCEP63 

phosphorylation by alternative DNA damage response kinases. Furthermore, we showed 

that active ATM and ATR did not phosphorylate XCEP63 recombinant protein 

containing serine 560 conversion to alanine in Xenopus egg extract (figure 7.5b). In 

turn, we have validated ATM and ATR novel SLE recognition motif on XCEP63. 

 

Previously, we showed XCPE63 localisation at centrosomes and potential dispersion of 

XCEP63 away from centrosomes in the presence of activated ATM and ATR (chapter 

five, figures 5.3 and 5.9). The continuation of these investigations in figure 7.4 

established a lack of inflorescence staining with serine 560 phospho-specific XCEP63 

antibody in both Xenopus egg extract and XTC cells in the absence of active ATM and 

ATR. As expected, we found phosphorylated XCEP63 dispersion in the presence of 

induced ATM and ATR. Interestingly, immunofluorescence data showed no staining of 

phosphorylated XCEP63 at centrosomes. Theses data allowed the distinction of 

localisation differences between non-phosphorylated XCEP63 and phosphorylated 

XCEP63.  

 

We established that ATM and ATR phosphorylation at serine 560 disrupts XCEP63’ 

regulation role in centrosome-driven spindle assembly leading to the formation of 

abnormal spindles (figure 7.6). We showed in the presence of activated ATM and ATR 

the reconstitution of non-phosphorylatable XCEP63-S560A mutant protein strikingly 

recovered spindle assembly at centrosomes (figure 7.7). These findings indicated that 

normal spindle assembly relies on XCEP63 regulation function at centrosomes. 

Furthermore, data suggests that ATM and ATR dependent checkpoint targeting disrupts 
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XCEP63 function at centrosomes, the likely mechanism by which spindle assembly is 

inactivated. 
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8 Chapter 8 Discussion 

 

ATM and ATR checkpoints have been extensively shown to prevent cell cycle 

progression up to the point of mitosis onset (Sancar et al., 2004). Prior to this study, 

DNA damage responses within the setting of mitosis were poorly understood. In this 

thesis, we have investigated ATM and ATR DNA damage responses during mitosis 

using Xenopus laevis as a model system. We have established a novel ATM and ATR 

dependent checkpoint that inactivates spindle assembly by targeting centrosomal protein 

XCEP63 (Smith et al., 2009). XCEP63 shows potential as a tumour suppressor protein, 

which safeguards the genome against mitotic DNA damage by blocking normal spindle 

assembly.   

 

8.1 ATM and ATR activation during mitosis inhibits normal spindle assembly 

 

In this body of research, we approached investigations in most part by manipulating the 

biochemical system provided by crushed Xenopus eggs. The use of Xenopus egg 

extracts has enabled insightful investigations into ATM and ATR key roles in activating 

G1/S, S phase and G2/M checkpoints recapitulated by the introduction of reagents that 

mimic DNA damage (Garner and Costanzo, 2009). These checkpoints support the 

process of DNA damage repair by modulating DNA replication onset, progression of 

DNA replication or entry into mitosis (Sancar et al., 2004).  

 

Although the time cells are in M phase is very short compared to other cell cycle 

phases, DNA damage could still occur. Genotoxic stresses resulting from endogenous 

and/or exogenous sources could have detrimental consequences at the critical stage of 

genetic transference to daughter cells.  As described in chapter one (section 1.5) mitotic 

DNA damage checkpoint responses have remained under dispute, mainly due to mixed 

and contradictory published data. In general, it is thought that ATM and ATR dependent 

pathways most likely exist which impact on mitosis progression. It should be noted that 

a particular problem encountered by researchers is that the mitosis in the cell cycle is 

short in duration. For this reason, investigations have relied on microtubule 

depolymerising treatments to synchronize and arrest cells in mitosis, methods that could 

potentially influence findings.   
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Previous uses of the Xenopus egg extract cell free system have enabled valuable studies 

into cell cycle progression. We exploited this capability of Xenopus egg extract in order 

to investigate the effects of ATM and ATR signalling responses on mitotic processes. In 

these studies, we have demonstrated that mitotic Xenopus egg extract also recapitulates 

DNA damage responses. In chapter three, we demonstrated the mitotic induction of 

ATM and ATR in response to linear DNA molecules and in response to chromatin 

breakages by treatment of EcoRI restriction endonuclese together with sperm nuclei 

(chapter three, figures 3.1 and 3.2). This research revealed that DSBs either created by 

restriction enzyme or alternative treatment by DNA damage inducing or mimicking 

agents led to defects in spindle assembly in Xenopus egg extract (chapter three, figures 

3.4-3.7). Spindle defects were also found in cells treated with IR (chapter three, figure 

3.8). In the presence of activated ATM and ATR, we observed spindles lacking in polar 

orientation and large aggregated microtubule structures with DNA dispersed 

throughout. Interestingly, we recorded an increased number of structurally normal asters 

dependent on ATM and ATR activation in Xenopus egg extract (chapter three, figure 

3.4). The defects in spindle assembly were found to be dependent on ATM and ATR 

signalling activation, as they were reversible by caffeine inhibition (chapter three, figure 

3.4-3.8). The combined evidence from these experiments suggests that active ATM and 

ATR target an early event in spindle formation, deregulating operations from aster 

maturation to organised spindle array. These data also attribute spindle assembly 

abnormalities directly to ATM and ATR signalling. 

 

8.2 The search for the ATM and ATR dependent spindle assembly inactivation 

factor  

 

In order to establish the spindle assembly inhibition mechanism initiated by ATM and 

ATR, we monitored Cdk1 and Plx1 kinase activities in the presence of mitotic DNA 

damage (chapter three, figure 3.9). We established that activated ATM and ATR 

signalling had no affect on Cdk1 or Plx1 activities in egg extracts progressing through 

mitosis or in the process of mitotic exit (chapter three, figures 3.9). Furthermore, in 

establishing that the addition of excess Plx1 to Xenopus egg extract was unable to 

overcome spindle assembly defects confirmed the independence of ATM and ATR 

signalling from Plx1 spindle assembly function (chapter three, figure 3.10). 
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Consequently Cdk1-CyclinB and Plx1 factors were eliminated as downstream ATM and 

ATR checkpoint targets.  

 

Cdk1 (-Cyclin B) and Plx1 activities are sustained within the Cdc25 amplification loop, 

which reaches a peak in mitosis (Hoffmann et al., 1993; Kumagai and Dunphy 1996; 

Abrieu et al.,1998; Qian et al., 1998). As we established by monitoring Cdk1 and Plx1, 

both kinase activities were unaffected by ATM and ATR activation. This suggests 

checkpoint induction has no inhibitory affect on Cdc25 dependent amplification loop 

once at heightened levels during mitosis (chapter three, figures 3.8-3.10). We believe 

that the resistance of mitotic kinases to ATM and ATR dependent down-regulation once 

mitosis has been fully established prevents premature exit of mitosis in the presence of 

DNA damage. However, we have not defined in this thesis the mechanism behind the 

resistance to DNA damage during mitosis. Although it seems reasonable that in 

maintaining mitotic state and prevention of mitosis exit could be a mechanism by which 

cell division in the presence of damaged DNA is controlled.  

 

We also discounted RCC1 and Ran-GTP spindle assembly factors as targets of ATM 

and ATR. In the presence of ATM and ATR activation there was no effect on RCC1 

chromatin association in Xenopus egg extract (chapter 3, figure 3.11) If RCC1 binding 

was affected by ATM and ATR activation this would have potentially altered the RCC1 

generation of localised Ran-GTP/Ran-GDP gradient required for spindle assembly 

(Carazo-Salas et al., 1999; Carazo-Salas et al., 2001). Ran-GTP, which promotes 

microtubules nucleation was found not to be targeted in ATM and ATR dependent 

spindle assembly inactivation, as the addition of constitutively active Ran-GTP in 

excess was unable to rescue spindle formation abnormalities in egg extract (chapter 

three, figure 3.12). 

 

We made great advances in studying the formation of anastral spindles (chapter three, 

figure 3.13). We established that chromatin-coated beads the platform on which anastral 

self assemble induce ATM and ATR activity. Anastral spindles form in Xenopus egg 

extract in the absence of sperm nuclei whose basal body carries a centriole that matures 

into a centrosome (Heald et al., 1996). Heald et al., determined that centrosomes are not 

a necessary requirement for spindle assembly, however when present they act as 

dominant microtubule organisation centres (Heald et al., 1997). The distinctions of 

normal anastral spindles assembly in the presence of active ATM and ATR provided the 
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focus for an ATM and ATR target within a centrosomes-dependent spindle assembly 

pathway (Khodjakov and Rieder, 2001). The lack of an active ATM and ATR 

physiological effect on anastral spindle assembly suggests that in acentrosomal plant 

cells and meiotic cells may not have this checkpoint. The question arises, how do cells 

dependent on spindle self-assembly respond to the occurrence of mitotic DNA damage? 

It is possible that an alternative mechanism may exist to prevent these cells progressing 

to cell division with unchecked chromosomal breakages.  

 

8.3 ATM and ATR substrates identified during adapted cDNA expression 

library screening in Xenopus egg extract 

 

The cDNA small pool expression screening procedure developed to identify ATM and 

ATR checkpoint target(s) potentially involved in regulation of centrosome-driven 

spindle assembly was found to be highly effective, with a low ‘hits’ rate suggesting a 

less likely occurrence of false positives. A number of other interesting ATM and ATR 

potential substrates asides XCEP63 were also isolated, some of which have been 

associated with cell cycle control. These factors included XGEMC1, Caprin-1 and IRF-

6 (chapter four, figure 4.1). 

 

XGEMC1 (Geminin coiled-coil containing protein) identified from the cDNA 

expression library screen as a target of DNA damage responses, created a new research 

field. To date, experimental evidence indicates XGEMC1 is a novel protein required for 

initiation of chromosomal DNA replication (thesis of Alessia Balestrini, Genomic 

Stability Laboratory, Clare Hall Laboratories). Interestingly, data indicates that 

XGEMC1 interacts with Cdc45. Cdc45 loading is essential for the assembly of 

replication machinery, which is dependent on S-phase promoting Cdk2-Cyclin E 

activity (Mimura and Takisawa, 1998). Investigations show that in the absence of 

functional XGEMC1 Cdc45 chromosome loading onto replication origins is prevented 

and DNA replication is inhibited. In addition, XGEMC1 shows a direct role in the DNA 

replication checkpoint by association with and phosphorylation by Cdk2-Cyclin E. As 

described in chapter one (section 1.4) Cdk2-Cyclin E activity is also a downstream 

target of ATM/ATR DNA damage G1/S and S phase checkpoints  (Sancar et al., 2004). 

It is possible that DNA damage checkpoints may also affect Cdk2-Cyclin E interaction 
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with XGEMC1, which then potentially could prevent DNA replication by dissociating 

XGEMC1 and Cdc45. 

 

Caprin-1 (cytoplasmic activation/proliferation-associated protein-1), also isolated from 

the cDNA screening for ATM and ATR targets, is a factor of great interest in cell cycle 

regulation. Interestingly, Caprin-1 is a conserved protein exhibiting RNA binding 

protein properties (Grill et al., 2004). Caprin-1 is expressed in most tissue types. Its 

expression is increased on entry into cell cycle and decreased on cell division 

completion (Grill et al., 2004). Wang et al., showed that the absence of Caprin-1 retards 

cell phase progression from G1 to S and defined Caprin-1 as an essential factor in 

normal cell proliferation (Wang et al., 2005). Studies undertaken by Solomon, et al. 

showed that Caprin-1 binds with another RNA binding protein, RasGAP SH3-domain 

binding protein-1 (G3BP-1) (Solomon et al., 2007). Caprin-1/G3BP-1 complex was 

shown to co-localize with microtubule associated “stress granules” (Solomon et al., 

2007). Stalled pre-initiation translation complexes induce formation of stress granules in 

cells, a consequence of various stress imposing conditions such as UV irradiation. 

Subsequently, mRNAs are recruited to these stress induced structures, where they are 

monitored and then sorted for translation or degradation (Anderson and Kedersha, 2002; 

Anderson and Kedersha, 2009).  

 

Interestingly, Solomon et al. unveiled selective binding of c-Myc and Cyclin D2 

mRNAs to Caprin-1 (Solomon et al., 2007). As described in chapter one (section 1.4), 

in the cell phase transition from G1 to S, c-Myc has an important regulatory function 

and Cyclin D2 is the regulatory subunit of Cdk4/6 activity (Bouchard et al., 1999; 

Perez-Roger et al., 1999; Matsushime et al., 1992; Meyerson and Harlow, 1996; Sherr, 

1993; Ekholm and Reed, 2000). The role of Caprin-1 direct binding to c-Myc and 

Cyclin-D2 RNA transcripts is unknown, this binding may promote or repress 

translation, determine stability, localization and/or associated proteins (Palacios and 

Johnston, 2001). It is proposed that Caprin-1, through binding of c-Myc and Cyclin-D2 

mRNA, is involved in G1/S transition regulation (Grill et al., 2004). In cDNA 

expression screening, we determined a possible Caprin-1 modification in the presence 

of active DNA damage responses. DNA damage induces a modification that may 

impose an effect on Caprin-1 mRNAs binding and/or the effect Caprin-1’ possible 

regulation role in cell proliferation.  
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Transcription factor, XIRF-6 (Interferon regulatory factor-6) was also isolated in the 

cDNA expression screening for ATM and ATR targets. IRF-6 mutations have been 

identified in developmental defect conditions, Van der Woude syndrome and popliteal 

pterygium syndrome (Kondo et al., 2002). These congenital disorders are distinguished 

by an epidermal hyperproliferation deficient in terminal differentiation, resulting in 

tissue fissions such as cleft lip and palate. Richardson et al., established IRF-6 as a 

central factor in epidermal proliferation-differentiation switching (Richardson et al., 

2006). Investigations performed by Bailey et al., revealed IRF-6 phosphorylation aided 

interaction with tumor suppressor protein, Maspin (mammary serine protease inhibitor) 

in breast epithelial cells  (Bailey et al., 2005; Zhou et al., 1994). It has also been shown 

that early cell cycle dependent phosphorylation events regulate IRF-6 expression by 

targeting IRF-6 for degradation. Baliey et al., hypothesize that accumulation of non-

phosphorylated IRF-6/Maspin coordinates cell cycle exit into G0 phase and therefore 

may regulate cellular differentiation (Bailey et al., 2008; Bailey and Hedrix, 2008). 

Further involvement of IRF-6 in cell cycle control function were revealed by 

Richardson et al., research findings that indicated a potential IRF-6 interaction with 

Stratfin (Sfn/14-3-3 ) gene, a regulator of Cdk1-Cyclin B1 activity (Richardson et al., 

2006). In most breast cancers, IRF-6 (as well as Maspin) is found to be absent or at low 

levels (Bailey et al., 2005). Bailey et al., postulates a promotion of breast 

transformations through the loss of IRF-6 interaction with Maspin, thought to lead to 

the deregulation of proliferation and differentiation controls (Bailey et al., 2005). 

Although not proven, IRF-6 shows some properties of a tumor suppressor. Within the 

cDNA screening undertaken in this study we isolated IRF-6 as a transcription factor 

potentially modified in the presence of active DNA damage responses. This possible 

DNA damage induced modification could have an effect on IRF-6 functioning in 

control of the cell cycle. 

 

We have shown that the application of cDNA expression library screening in Xenopus 

egg extract is a very powerful technique, particularly successful when compared to 

more traditional approaches of identifying kinase substrates. Xenopus egg extract 

contains an abundance of proteins allowing physiological interactions that otherwise 

may have been missed in isolated in vitro kinase assays. cDNA expression screening in 

Xenopus egg extract has the potential to be developed further and to identify more 

substrates of ATM and ATR or other DNA damage response kinases. As mentioned 

previously, most importantly we identified XCEP63 from the cDNA expression 
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screening. Without this screening assay it is very unlikely that we would have isolated 

ATM and ATR centrosomal substrate candidate XCEP63 with no ascribed function. 

 

8.4 Screening candidate, centrosomal protein XCEP63 regulates spindle 

assembly 

 

The background research into CEP63 revealed a coiled-coil structural domain that is a 

common feature of centrosome proteins. To date, the vast majority of the proteins 

identified by the human centrosome study undertaken by Anderson et al., have no 

defined functions (Anderson et al., 2003). On analysis of CEP63 DNA sequence we 

found that it has a conserved domain resembling SMC architecture (chapter four, figure 

4.3 and appendix 2). SMC proteins are ABC-like ATPases, which typically associate 

with chromatin and contain a central coiled-coil and a dimerisation region. Examples of 

SMC heterodimers complexes include SMC1/SMC3 (cohesin) and SMC2/SMC4 

(condensin), which are essential in sister chromatid attachment and chromosome 

assembly/segregation respectively (Losada and Hirano, 2005; Haering, and Nasmyth. 

2003; Hirano, 2005). SMC protein functions have been strongly implicated in DNA 

damage responses and DNA repair processes. It has been shown that cohesin, 

SMC5/SMC6 and Rad50 (another SMC protein) all localize to sites of DSBs, directing 

homologous recombination DNA repair and inducing S phase checkpoint (Lehmann, 

2005; Kim et al., 2002; Yazdi et al., 2002; Kitagawa et al., 2004; Harvey et al., 2004). 

In XCEP63 characterisation studies we were unable to detect XCEP63 chromatin 

binding capacity in interphase or in mitotic egg extracts (data not shown). Many reports 

have revealed that SMC proteins tend to have multiple and diverse functions. 

Interestingly, cytoplasmic SMC1 protein of the cohesin complex, was found to localise 

to centrosomes (Gregson et al., 2001; Guan et al., 2008; Kong et al., 2009). In 

vertebrates a cohesin function was shown to be necessary in aster assembly and required 

in microtubule spindle organisation (Kong et al., 2009). Cohesin has been shown to 

interact with NuMa prior to mitosis, it is hypothesized that NuMa transports cohesin to 

spindle poles in a dynein dependent manner (Gregson et al., 2001; Kong et al., 2009; 

Merdes et al., 2000).  

 

As shown in chapter five, figures 5.1 and 5.3 XCEP63 localisation to the centrosome 

was confirmed by GFP and endogenous XCEP63 immunofluorescence analyses. We 
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were satisfied that XCEP63 is a true centrosomal protein as it co-localised with gamma-

tubulin staining in a manner similar to that of the previously determined human CEP63 

(Anderson et al., 2003). The centrosomal position of XCEP63 was a good indication of 

a potential involvement in spindle assembly. In further XCEP63 characterisation 

studies, we showed that XCEP63 function is essential in regulating centrosome-driven 

normal spindle assembly (chapter five, figure 5.8). The immunodepletion of XCEP63 

from Xenopus egg extracts led to the formation of DNA associated microtubule 

aggregates. Importantly, in the absence of XCEP63, spindle assembly was inhibited as 

demonstrated by an increase in aster numbers, whereas aster morphology was normal. 

By establishing that spindle assembly is restored by reconstitution with recombinant 

XCEP63, we reasoned that XCEP63 protein functions directly in the assembly of 

normal spindle arrays and not via an interacting partner. The outcome of these 

characterisation investigations is to show that XCEP63 centrosome dependent 

regulation of spindle arrays most probably contributes to the organisation of 

chromosomes and potentially aids their correct segregation into daughter cells.  

 

Unfortunately, we were unable to determine the mechanism by which XCEP63 

functions regulate spindle assembly. Since asters formed normally in XCEP63 depleted 

extracts, this suggests that XCEP63 function does not relate specifically to microtubule 

polymerisation or to an integral centrosome structure component. It has been 

hypothesised that cohesin functions in spindle assembly through SMC domain 

dependent bundling and stabilisation of fibres, albeit microtubules instead of chromatin 

fibres (Kong et al., 2009). The probable functional importance of the SMC domain 

within XCEP63 is supported by the fact that it is maintained across vertebrate species. 

Furthermore, it remains intact in the identified alternatively spliced transcript variants of 

human CEP63 (NCBI database). It is possible that the function of XCEP63 in regulating 

normal spindle organisation may relate to its contained SMC domain.  

 

8.5 XCEP63 basal level phosphorylations and the identification of ATM and 

ATR target site  

 

Mass Spectrometry analysis pinpointed the XCEP63 ATM and ATR phosphorylation 

site to serine 560 (chapter six, figures 6.2-6.4), which was later confirmed by a series of 

phospho-specific antibody immunodetections (chapter seven, figure 7.1). We verified 
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by using an XCEP63 peptide in in vitro kinase reactions that ATM and ATR directly 

phosphorylates serine 560 (chapter seven, figure 7.3). It was not surprising that previous 

attempts had failed to identify the XCEP63 phosphorylation site through residue 

mutation and screening of potential ATM and ATR consensus motif sites (chapter six, 

figure 6.1). XCEP63 phosphorylation at serine 560 specifies that ATM and ATR 

recognises a novel SLE motif, although the presence of glutamate (E) within the motif 

is in line with previous general scheme of S/TQE (Kim et al., 1999; Matsuoka et al., 

2007). In XCEP63 case residue glutamate adjacency may similarly enrich 

phosphorylation. The identification of this novel motif is of great interest to the ATM 

and ATR research field. This potentially opens an exciting new direction in ATM and 

ATR substrate studies. It is possible that other ATM and ATR targets with the SLE 

recognition motif may exist. Also, in establishing one novel ATM and ATR 

phosphorylation site it is conceivable that there may be more alternative motifs.  

 

We considered the significance of the basal level of phosphorylation present on 

XCEP63 at serine 560 in the absence of ATM and ATR activation that was highlighted 

by Mass Spectrometry data (chapter 6, figure 6.2). It is possible that the low levels of 

XCEP63 phosphorylation at serine 560 could possibly represent an artefact of the assay 

conditions i.e. the Xenopus egg extract. Basal phosphorylation may be attributed to 

localised and minimal ATM and ATR induction, perhaps corresponding to the physical 

stress incurred during extract preparations. However, in previous spindle assembly 

isolation from non-treated extracts, with likely low level of XCEP63 phosphorylation at 

serine 560, we showed no noticeable widespread affects on spindle assembly regulation 

in Xenopus egg extract (chapter three, figure 3.4). It is probable that XCEP63 

phosphorylation at basal levels does not alter overall XCEP63 role in spindle assembly.  

 

Another line of investigations provided by XCEP63 Mass Spectrometry analysis is the 

unidentified modification of 252 Da molecular weight assigned to XCEP63 Carboxyl 

terminus (chapter six, figure 6.2). Although outside the scope of this thesis, it is very 

intriguing what this modification is and whether it is a required element in XCEP63 

function or perhaps for partner or structural interactions.  
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8.6 ATM and ATR inhibition of XCEP63 regulatory role in spindle assembly 

 

In chapter seven, we determined that XCEP63 serine 560 phosphorylation by ATM and 

ATR coincided with the delocalisation of XCEP63 away from centrosomes (chapter 

seven, figures 7.4). We hypothesise that this displacement is reliant on a serine 560 

phosphorylation threshold above that of basal phosphorylation levels, which is 

dependent on active ATM and ATR targeting. We observed that in the presence of 

DNA damage, XCEP63 phosphorylation and XCEP63 delocalisation also coincided 

with spindle assembly abnormalities. These findings were verified following 

reconstitution of depleted extract with XCEP63-S560A non-phosphorylatable 

recombinant protein which remained localised to centrosomes of normal spindles 

unaffected by active ATM and ATR (chapter seven, figures 7.6 and 7.7).  In this 

manner, we established that XCEP63 is the major target of ATM and ATR checkpoint. 

From the experimental evidence, we posit that XCEP63 spindle assembly regulation 

function is inactivated as a consequence of ATM and ATR serine 560 phosphorylation. 

This suggested localisation dependency of XCEP63 spindle assembly regulation is 

required for functioning of centrosomes as dominant centres of microtubule 

organisation.  

 

ATM and ATR targeting of spindle assembly regulation is in agreement with the theory 

that centrosomes are a “command centre for cellular control” for mitotic events 

(Doxsey, 2001; Doxsey et al., 2005; Reider et al., 2001; Löffler et al., 2006). These 

studies show that ATM and ATR target centrosomes which influences the progression 

of mitotic events, in which ATM/ATR control of centrosome-driven spindle assembly 

factor XCEP63 seems to be critical. An increasing number of reports also discuss the 

potential compartmentalisation of proteins in the context of DNA damage responses 

(Lukas et al., 2004; Löffer et al., 2006). Centrosomes are becoming key structures of 

interest, containing an abundance of mitotic control and DNA damage response factors 

(Takada et al., 2003; Löffer et al., 2006; Jackman et al., 2003; Golsteyn et al., 1995; 

Tsvetkov et al., 2003). This thesis shows evidence correlating with previous 

investigations in other systems, in which centrosomes were inactivated as the end-result 

of DNA damage induced pathways in mitosis (Sibon et al., 2000; Sibon, 2003; Takada 

et al., 2003; Löffer et al., 2006). Furthermore, it is possible that the control of CEP63 

centrosome function by ATM and ATR could potentially participate in preventing 
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genomic instability and cellular transformations, in which centrosomes role has been 

proven (Basto et al., 2008).   

 

There is published evidence to suggest that ATM and ATR are localised to centrosomes 

in mitosis (Shen et al., 2006; Zhang et al., 2007). Considering the ATM and ATR are 

nuclear, the question arises how do they phosphorylate centrosomal CEP63 in the 

presence of mitotic DNA damage? However, there are many non-nuclear ATM and 

ATR substrates that have been identified (Matsuoka et al., 2007). Although we were 

able to verify ATM/ATR phosphorylation of XCEP63 peptide in vitro, we were unable 

to show a direct interaction with ATM and ATR kinases in egg extract. This could be 

attributed to a fast rate of association and disassociation. We were notified by Óscar 

Fernández-Capetillo, group leader of the Genomic Instability at the Spanish National 

Cancer Center (CNIO), that two-hybrid screening of ATM revealed a consistent CEP63 

interaction in the C terminal ATM kinase region (unpublished communication). This 

substantiates the data on XCEP63 direct phosphorlylation by ATM/ATR, but also 

encourages the possibility that ATM CEP63 spindle assembly inactivation pathway may 

exist in other species due to this conserved interaction. However, as XCEP63 

phosphorylation site of serine 560 is not conserved in vertebrates it raises the question 

of whether CEP63 phosphorylation is a universal ATM and ATR DNA damage 

response kinases regulated checkpoint mechanism. 

 

The mechanism behind XCEP63 delocalisation still remains unknown. Although we 

have shown that XCEP63 participates directly in spindle assembly regulation, the 

displacement of XCEP63 from centrosomes may disrupt XCEP63 association with a 

centrosomal binding partner, which in turn could contribute to the inactivation of 

spindle assembly. However, this would most likely be secondary to XCEP63 functional 

importance in normal spindle assembly at the centrosome, as was shown when the 

addition of non-phosphorylatable XCEP63 recombinant protein rescued normal spindle 

assembly. It is noteworthy that centrosomes in cells remained intact when XCEP63 was 

delocalised in the presence of active ATM and ATR (chapter seven, figure 7.4). We 

therefore can eliminate the requirement for centrosome localised XCEP63 in the 

scaffolding of the centrosome structure. If XCEP63 is necessary for maintaining 

centrosomes we might expect to observe disruption such as centrosome fragmentation.  
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In efforts to extend our understanding of XCEP63 actions, extensive work was 

undertaken to identify XCEP63 interactions with other cellular factors, which may 

facilitate XCEP63 spindle assembly regulatory function. We used many experimental 

approaches in our attempts to identify XCEP63 binding partners. These investigations 

included pull-down experiments with recombinant XCEP63 and immunoprecipitation 

with phospho-specific and whole XCEP63 antibodies (data not shown). Despite 

extensive assays, including Mass Spectrometry, no conclusive data was obtained. 

However, it is worth mentioning that there was some evidence to suggest that non-

phsophorylated and also phosphorylated XCEP63 protein is associated with gamma 

tubulin. This preliminary data suggests that XCEP63 may have a microtubule-binding 

site through which XCEP63 directly binds to spindle fibres. In contrast, as many 

cenrosomal protein are transported towards the centrosomes via actions of motor 

proteins, XCEP63 could also be transported in this manner and this could be prevented 

by phosphorylation. We had some inconsistent results that also indicated a possible 

interaction with dynein and/or dynactin, which suggested that XCEP63 may bind to an 

alternative matrix in order to be transported. However, we were unable to show whether 

these potential weak interactions were specific or whether they changed with XCEP63 

phosphorylation status. An alternative mechanism could be possible in which 

phosphorylated XCEP63 may  ‘piggy-back’ a protein that is being transported away 

from centrosomes. At this stage this question remains open.  

 

Interestingly, published data determined that human DISC1 (Disrupted-In-

Schizophrenia 1, gene mutations of which are associated with hereditary schizophrenia) 

potentially interacts with CEP63 (Morris et al., 2003). DISC1 is localised to 

centrosomes and its interaction with dynein has been shown to be necessary in 

maintaining dynein at centrosomes in normal spindle assembly (Morris et al., 2003; 

Kamiya et al., 2005). Therefore, it is possible that CEP63 interaction with DISC1 may 

be important in dynein function in centrosome-dependent spindle assembly. Moreover, 

another study has revealed that DISC1 may have a role in specifically regulating 

neuronal progenitor cell proliferation (Mao et al., 2009). As many DNA damage 

pathway defects often exemplify impaired brain development, this DISC1 connection is 

fitting as a potential element in this ATM and ATR dependent pathway (Frappart and 

Mckinnon, 2006). Due to the absence of commercially available Xenopus cross-reacting 

DISC1 antibodies, we were unable to validate a XCEP63-DISC1 interaction and 
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therefore we were unable to determine its significance in the context of spindle 

assembly regulation. This question therefore remains speculative. 

 

8.7 Supporting findings from avian CEP63 research  

 

Although not presented in this thesis, CEP63 avain orthologue investigations were 

undertaken in collaboration with Donniphat Dejsusphong from Kyoto University 

Graduate School of Medicine, Japan. Investigations using genetically modifiable DT40 

chicken cells were performed to establish whether CEP63 has similar mitotic functions 

in another vertebrate species (Smith et al., 2009). Studies in the most part used DT40 

GCEP63 knock out cells (GCEP63-/-) generated by target inactivation of the GCEP63 

gene locus (Zachos et al., 2007). Interestingly, cell cycle and cell proliferation analyses 

of GCEP63-/- cells indicated an increase in G2/M cell population, impaired cell 

duplication and raised levels in apoptosis. Investigations into the effects of CEP63 

knock out in mitotic cells revealed an accumulation of cells in prophase and the 

formation of various aberrant and multipolar spindle structures with irregularities in 

chromosome segregation and microtubule attachment. The slow mitotic progression of 

GCEP63-/- cells was attributed to spindle assembly delay combined with spindle 

assembly defects. Similarly to the Xenopus findings, GCEP63-/- data illustrated a CEP63 

functional role in early mitosis. GCEP63-/- spindle assembly aberrancies were in 

accordance with the spindle formation inhibition found in Xenopus egg extract lacking 

XCEP63 protein. However, in contrast in GCEP63-/- cells spindle assembly eventually 

recovered. It was proposed that factors crucial to spindle assembly recapitulation in 

GCEP63 knock out cells are absent from Xenopus egg extract, which are retained in a 

mitotic arrest. It was postulated that GCEP63-/- spindle recovery possibly involves 

spindle pole rearrangement reliant on microtubule self-reorganisation mechanisms or on 

a mitotic progression event (Khodjakov et al., 2000). 

 

The effects of chromosomal breakage on GCEP63 positioning verified XCEP63 

delocalisation findings (chapter five, figure 5.9 and chapter seven, figures 7.4 and 7.7). 

Immunofluorescent data indicated GCEP63-GFP displacement away from centrosomes 

was dependent on ATM and ATR induction. Importantly, the treatment of cells with 

camptothecin showed an immediate displacement of CEP63 from centrosomes, 

suggesting the delocalisation was not caused by centrosome amplification that requires 
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longer treatment incubations (Matsumoto and Maller, 2002; Dodson et al., 2004). 

Investigations into the effects of ATM and ATR activating treatment on GCEP63+/+ and 

GCEP63-/- cells in mitosis unveiled a transient mitotic delay in wild type cells that was 

absent in knock out cells. In agreement with Xenopus data, spindle assembly 

abnormalities observed in wild type DT40 cells were rescued with caffeine addition, 

suggesting spindle formation defects reliance on active ATM and ATR. Also in 

alignment with XCEP63, GCEP63 data also showed a caffeine sensitive DNA damage 

induced phosphorylation adaptation. However, Xenopus serine 560 ATM and ATR 

phosphorylation site is not conserved on GCEP63. ATM and ATR kinases may not 

phosphorylate GCEP63 and therefore it is possible that alternative DNA damage 

kinases such as Chk1 or Chk2 may target avain CEP63 spindle assembly function. From 

avian studies, CEP63 function in regulating of spindle assembly shows preservation 

between Xenopus laevis and Gallus gallus, however we have not ascertained whether 

this distribution holds in other species. 

 

8.8 Proposed model of ATM and ATR checkpoint spindle assembly inactivation 

 

The mitotic ATM and ATR checkpoint mechanism described in the model in figure 8.1 

potentially prevents the transference of damaged genetic information to daughter cells 

via centrosomes. This checkpoint may provide an alternative means of detecting DSB 

DNA damage when other mechanisms such as the G2/M transition checkpoint 

preventing mitosis entry have failed. It has been shown in S.cerevisiae that cells can 

enter mitosis with un-repaired chromosomal breakages originating from S phase 

(Sandell and Zakian, 1993; Toczyski et al., 1997; Lee et al., 2000). Although not fully 

characterised this DSB adaptation pathway, which enables cells to overcome the G2/M 

checkpoint was only thought to exist in unicellular organisms. However, there is 

evidence in pluricellular organisms that checkpoint responses are also terminated after a 

period of arrest, which leads to the recovery of cell cycle progression in the presence of 

DNA damage (Andreassen et al., 2003; Yoo et al., 2004; Syljuåsen, 2007) Recently, it 

has been determined in checkpoint proficient cells that have defects in DSB DNA repair 

enter into mitosis with a low number of chromosomal breakages (Deckbar et al., 2007; 

Krempler et al., 2007). It has been proposed that the G2/M checkpoint may have a low 

sensitivity and that DNA DSBs can escape this damage surveillance mechanism 

(Löbrich and Jeggo, 2007). For this reason, it is possible that another monitoring 
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checkpoint pathway, such as ATM/ATR-CEP63 may recognise un-repaired DSBs 

before cell division is completed. Such a pathway therefore could be the cell’s “safety 

net” in detecting chromosomal breakages and prevent unequal segregation of DNA to 

daughter cells.   

 

In figure 8.1 we show a model for chromatin breakage induced ATM and ATR 

mediated checkpoint control of centrosome dependent spindle assembly. This pathway 

inactivates early mitosis stages without affecting major mitotic kinase Cdk1 or Plx1 

activities. Instead, active ATM and ATR phosphorylates CEP63 and displaces CEP63 

centrosome position. CEP63 localisation disruption inactivates CEP63 regulation role, 

which in turn inhibits normal spindle assembly. Consequently, this pathway of spindle 

assembly inactivation leads to a transient delay in mitosis progression, possibly induced 

by activating indirectly the spindle assembly checkpoint (SAC) or alternatively may in 

turn result in cell death. The transient mitosis arrest depicted in the model was 

highlighted in analysis of DT40 cells with chromatin breakage (Smith et al., 2009). It is 

possible that this ATM/ATR dependent CEP63 checkpoint disrupts spindle assembly, 

which leads to mitotic progression delay that allows DNA damage repair to take place. 

Alternatively, persistent DNA damage may prolong ATM/ATR-CEP63 pathway 

activation, which may lead to cell death.  
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Figure 8.1. A symmetric representation of the proposed model devised for ATM and ATR 

dependent regulation of spindle assembly 

 

ATM and ATR target CEP63 regulatory spindle assembly function in the presence of chromatin 

breakages. ATM and ATR phosphorylation of CEP63 leads to the delocalisation of CEP63 away from the 

centrosomes, a mechanism of inhibiting CEP63 regulation in assembly of organised spindles. The 

resulting defective spindles cause a mitotic progression delay by activation of SAC most likely leading to 

cell death. Adapted from Smith et al., 2009 (Smith et al., 2009). 

 

 

 

 

 

P 

CyclinB 

  Mitotic progres sion delay, SAC 

Plk

Cdk

CEP63 

 DNA repair 

?  
Cell death 

Aster/ 
Centrosome 

ATM/ATR activation in response to 
mitotic DNA damage 

Normal 
spindle 

Defective  
spindle 

Mitosis exit 

ATM

ATR 

CEP63 



 201 

8.9 Potential downstream events and effects on the mitotic ATM and ATR 

checkpoint inactivation of spindle assembly 

 

To account for previous research in detecting inconsistencies DNA damage induced 

mitotic arrest, it is probable that the response to chromosomal breakages varies 

depending timing and extent (Morrison and Rieder, 2004). It is also likely that a 

threshold level of DNA damage is required to provoke an effect. Cellular responses to 

DNA damage under different condition may be further complex due to the contribution 

of non-centrosomal chromatin dependent spindle assembly pathways (or cells with 

compromised centrosome function), as we demonstrated ATM/ATR resistance in the 

absence of centrosomes (chapter three, figure 3.13). The complexity and heterogenous 

effects of treatments with mitotic inhibitors was highlighted in a recent study that was 

performed with various cell lines, which exemplified differences in mitotic fates across 

cell populations and between individual cells within a population (Gascoigne and 

Taylor, 2008). The endpoints recorded included mitotic arrest, DNA endoreduplication 

and apoptosis (Gascoigne and Taylor, 2008). Much of the past research into mitotic 

DNA damage was performed using more traditional population-based experiments 

analysed by methods such as flow-cytometry. In light of Gascoigne and Taylor’s 

publication describing the complexity of cellular responses to anti-mitotic agents, 

previous studies perhaps need revisiting with more sensitive automated time-lapse light 

microscopy. Such an application of monitoring DNA damage effects will facilitate a 

clearer understanding of the responses during mitosis.  

 

In utilising Xenopus egg extract cell-free system in this investigation we have gained 

great understanding into the effects of mitotic DNA damage and the potential 

mechanism that prevents the segregation of damaged chromosomes. The evidence 

provided by CEP63 Xenopus and Gallus experiments suggests that DNA damage results 

in a delay in mitosis progression (Smith et al., 2009). The halt in mitosis progression 

provoked by DNA damage does not resemble that of durable metaphase arrest described 

by Skoufias et al., in response to DNA decatenation (Skoufias et al., 2004). A less 

stringent mitotic delay suggests indirect activation of SAC checkpoint. Interestingly, 

Brown and Costanzo following up the research presented in this thesis showed the 

presence of DNA damage induced upstream SAC factors in Xenopus egg extract, 

suggesting the convergence of this XCEP63 checkpoint pathway (Brown and Costanzo, 

2009). Although, the common theory is that DSB DNA damage at kinetochore regions 
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activates the spindle assembly checkpoint, this study suggests an independence of SAC 

activation to the disruption of kinetochores. However, this was not verified and 

therefore there could be unattached kinetochores due to the disruption of spindle 

assembly by active ATM/ATR. These preliminary findings are in agreement with a 

study in yeast in which ATM/ATR activation of SAC was shown to be independent of 

kinetochores status (Kim and Burke, 2008). These findings collectively substantiate the 

link between DNA damage checkpoint and indirect SAC activation. Furthermore, the 

regulation of mitosis progression by ATM and ATR dependent CEP63 pathway may 

support repair of mitotic damaged DNA.  

 

The possibility of DNA damage repair of mitotic chromatin remains undetermined and 

is either presumed unlikely or inefficient compared to that in S phase. The main 

consideration is that the mitotic DNA is highly condensed and therefore inaccessible to 

repair factors. However, a mechanism may exist in mitosis similar to that illustrated on 

heterochromatin where ATM locally relaxes DNA to allow repair processes to proceed 

(Goodarzi et al., 2008). In the event of damage, potentially ATM dependent signalling 

promotes remodelling and de-condensation of chromatin allowing the accessibility of 

DNA repair complexes to the site of damage. However, in the circumstances where 

there are higher levels of chromosome breakages or the presence of un-repaired DNA 

damage it is probable that sustained ATM and ATR checkpoint inactivation of spindle 

assembly may lead to mitotic catastrophe that prevents survival of cells with persistent 

DNA damage.  

 

Importantly, these studies have substantiated further the link between centrosomes and 

genomic stability. The ATM/ATR CEP63 checkpoint pathway could sense and respond 

to double strand breaks (DSBs) and in turn might prevent genomic instability and the 

dangerous outcomes of the loss of genetic information. It is quite possible that ATM 

and ATR checkpoint control over XCEP63 regulation factor in spindle assembly could 

avoid the transference of these genomic defects to the next generation of cells. 

Potentially, such un-repaired lesions in mitosis could contribute to the development of 

cellular transformations. The conservation of CEP63 across species suggests that this 

DNA damage checkpoint response that inactivates spindle assembly may have retained 

its function through evolution. 
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In cancer cells, centrosomes are often altered in quantity, structure and/or defective in 

function. Such phenomena in cancer cells may be adopted to evade this ATM and ATR 

dependent CEP63 checkpoint pathway in response to damaged DNA. Cells with 

centrosome abnormalities may be impaired in this mitotic DNA damage checkpoint and 

consequently cells survive with damaged chromosomes, which could potentially 

jeopardise the genome. However, reports have described DNA damage activated 

pathways that result in the amplification of centrosomes, which in turn contribute to the 

elimination of cells with DNA damage (Hut et al., 2003; Takada et al., 2003). 

Centrosome supernumeracy is most likely attributed to centrosome or centriole 

fragmentation, which leads to the formation of multipolar spindles. In this situation 

normal cells are unable to undergo cytokenesis and do not survive. It is possible that 

this is an alternative mechanism of maintaining genomic stability in mitosis to that 

which we have described in this investigation. 

 

A study undertaken by Buim et al., describes a down-regulation of human CEP63 

transcript in invasive bladder tumours (Buim et al., 2005). These findings implicate 

CEP63 protein aberrancies in potentially contributing to tumorgenesis. Although not 

confirmed normal CEP63 functioning may prevent the genomic instability that is 

strongly associated with aggressive cancers. Individuals with congenital defects in 

CEP63 spindle assembly regulation pathways have not been identified as yet, it would 

be probable that they may suffer from brain developmental problems and would most 

likely be highly susceptibility to developing cancers. It is likely that the complete loss of 

CEP63 gene function would be lethal to embryos. 

 

8.10  Future directions of XCEP63 research  

 

In these studies we have made great progress in characterising XCEP63 and we have 

gained much understanding of XCEP63’ role within the novel ATM and ATR 

dependent checkpoint inactivation of spindle assembly. However, there are still many 

aspects of XCEP63 that remain undefined and many questions that are unanswered, 

particularly in reference to the biochemical activities of XCEP63 pathway. In order to 

further understand XCEP63 role further, assays are required to dissect XCEP63 

function at the centrosomes and how XCEP63 controls spindle assembly. It would be 

interesting to determine whether XCEP63 is localised to particular centrosomal 
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structure(s). Further studies are required to determine whether XCEP63 interacts with 

other factors, which may aid or inhibit XCEP63 function. More experiments are also 

needed in order to ascertain specifically the effects XCEP63 phosphorylation event on 

its function in regulating spindle assembly. Although there is some previous evidence to 

suggest that ATM and ATR, predominantly nuclear proteins are localised to 

centrosomes in mitosis, this process still remains quite unclear and requires further 

investigation into how ATM and ATR phosphorylates XCEP63. It is also important to 

establish the mechanism by which XCEP63 is delocalised away from centrosomes. 

 

It is possible that as XCEP63 contains an SMC domain, that CEP63 may have 

alternative functions, which we have not found in this investigation. XCEP63 may also 

hold a role during interphase, perhaps with an involvement in interphase centrosome 

structural duplication or assembly. As many ATM and ATR checkpoint are not 

dependent on one substrate, it is very possible that there may be more targets of this 

novel ATM and ATR mitotic checkpoint. Although there has been one screening of 

cancers published that reveal irregularities in CEP63 expression, it is necessary to 

determine whether CEP63 is also deregulated in other cancer cells and whether their 

affect cell cycle progression is affected. For this purpose, commercially available 

antibody will soon be available, production which was provoked by the publication of 

these studies (Smith et al., 2009). 
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Appendix 1:   XCEP63 DNA and translated amino acid sequences  
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Appendix 2:  XCEP63 reprentation of structure showning N-terminal SMC 

domain in yellow  
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