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Abstract

Molecular Dynamics simulations using the polarisable ion model (PIM), which accounts 

for many-body ion polarisation in addition to short-range repulsion and simple 

Coulombic interaction between ions, are undertaken in a study of the structure of molten 

network-forming liquids. The primary focus is the investigation of the structural origin of 

intermediate range order (IRO), the ordering of atoms beyond the nearest-neighbour in 

liquids and glasses often highlighted by the presence of a first sharp diffraction peak 

(FSDP) in total and partial structure factors. Two primary modelling approaches are 

applied. In the first, specific systems of MX2 stoichiometry are targeted (ZnCl2, MgCl2 

and GeSe2) allowing for direct comparison with the results from scattering experiments. 

An ionic description for GeSe2 represents a stern test as this system is often described as 

having considerable metallic character. In the second approach, key system parameters 

are systematically varied in order to control the network topology and examine the 

evolution of IRO. A key structural property, the presence of a FSDP in the concentration-

concentration structure factor, SCC(kFSDP), is observed and structure factors, “coloured” 

according to network connectivity, show its presence to be dependent on the percolation 

of edge-sharing units disturbing the corner-sharing tetrahedral network. The effect on the 

network topology and IRO of varying both temperature and pressure, properties often 

difficult to obtain experimentally, are observed. The inherent structure of the systems 

studied shows the presence of newly resolved features, including a distortion of 

constituent polyhedra. Homopolar bonds are induced by combining Morse and Born-

Mayer potential and their effect on the underlying IRO examined. 
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Chapter 1
Introduction 

1.1 Early models of liquid structure 

The early study of liquid properties was dominated by thermodynamical and 

electrochemical analysis through measurement of quantities such as melting temperatures 

and ionic conductivities.1-4 In comparison, the relative weakness in understanding the 

structure of amorphous substances was highlighted by Zacharisen5 stating (on the 

structure of glasses) in 1932: "It must be frankly admitted we know nothing about the 

arrangement of atoms”. A number of experimental techniques have since been developed 

to probe the structure of liquids; complementing experimental advances has been the use 

of modelling in understanding existing experimental data and elucidating details which 

are beyond experimental scope. Initial theories concerning the structure of liquids, based 

on the loss of order that results from fluidity and diffusion of atoms took a quasi-gaseous 

approach: in 1873, Van der Waals constructed an equation of state for liquids and gases.6 

Its applicability to gases is stronger and is limited to liquids such as n-alkanes.7 The 

opposite approach of treating liquids as quasi-crystalline4, due to liquid's solid-like 

properties of compactness and cohesion, has wider applicability to this day. This was 

supported by analysis of early X-ray diffraction experiments of liquids by Zernike and 

Prins8 which pointed to the similarity between the peak positions in the crystal and liquid 

structure factors. The existence of positional defects in solids4 has also been applied to the 

understanding of the melt structure: domain models4 envisage the structure of liquids 

featuring remnants of crystal structures, which, although considered thermodynamically 

unstable in the crystalline state, are stabilised with increasing temperature into the liquid 

phase. One model which combines these different approaches is the significant structure 

model proposed by Eyring.9 Liquids are split into sections where molecules have solid-

like degrees of freedom and another which have gas-like degrees of freedom. Another 

approach was the geometric analysis of hard-sphere liquids by Bernal10 where liquids are 

defined as “homogenous, coherent and essentially irregular assembly of molecules 

containing no crystalline regions, nor in their low temperature form, holes large enough 

to accept another molecule”. From these studies it was noted that a significant property of 
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liquids, exhibited in contrast to solids and gases, was the variety of coordination 

displayed by the constituent atoms. In network melts4,11, the focus of this thesis, charge 

ordering has a dominating effect on structure with packing of anions around cations and 

vice-versa. Within these systems lies a variety of bonding and structure, controlled 

through variation of the anion polarisability, αX, which will be explored through 

computational study.

1.2 Network forming liquids

Network melts, in general, have high melting temperatures and ionic conductivities of the 

order of 1 Ω-1 cm-1
.
3  As well as established uses in electronic storage11, molten salts have 

potential uses in the nuclear fuel industry11, in areas such as the process of separating 

actinide material for recycling. SiO2 
12, archetypal glass-formers, are termed strong 

liquids for their near Arrhenius behaviour with regards to viscosity changes against Tg/T, 

where Tg is the glass transition temperature. Compounds which deviate away from this 

behaviour, such as heavy metal halides are termed fragile. A numerical relation of glass-

forming strength is given by calculation of the fragility index given by: 

              m= d log
d T g /T 

where η is the viscosity and Tg is the glass transition temperature. The related values for 

the ZnCl2
13

 and GeSe2
14

, where m=30-60, indicating that its behaviour is between that of 

'strong' liquids such as SiO2
15, GeO2

15 and BeF2
15, where m=20-28, and 'fragile' heavy 

metal halides16 (where m~200), and is therefore considered as displaying intermediate 

behaviour.12 Across these compounds there is a sharp difference in the range of melting 

temperatures. Liquids such as SiO2 (1996K) and GeO2 (1389K), which consist of a strong 

three dimensional network, have relatively high melting points compared to ZnCl2 

(591K). ZnCl2  is used industrially as a catalyst in the hydrocracking of coal slurries and 

activation of charcoal from coconut shell.17,18  GeSe2  also has a wide variety of uses 

including optical recording19, photoresistors20 and antireflection21 coatings. 
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1.3 Intermediate range order: Origin in experimental studies. 

The information obtained from a number of experimental probes into the liquid structure 

of systems concerned is outlined below:

1.3.1 Extended X-RAY Absorption Fine Spectroscopy(EXAFS): EXAFS gives 

information about the first coordination shell of a liquid through studying the effect of 

backscattering on the absorption coefficient, μ(k). From the oscillations in the absorption 

coefficient, μ(k),  ~30 e.V past the absorption edge, information concerning the local 

coordination shell of atoms22 is obtained through equation 1.1 where EXAFS scattering χ 

is measured as a function of the wavenumber of the photonelectron, k:

k =∑
i

N i f i k 
k⋅r i

2 ⋅e−2k2i
2

e−2 ri /sin 2kr ii k                                 (1.1)

Ni is the coordination number, ri is the interatomic distance, σi  is the Debye-Waller term 

related to the fluctuations in bond length, fi(k) is the backscattering amplitude, αi is the 

phase function and λ  is the mean-free path of the photoelectron. From EXAFS 

experiments, for example, information about bond lengths in ZnCl2 and their variation 

with pressure has been obtained.23,24

1.3.2 Mössbauer Spectroscopy: The Mössbauer effect is the recoilless emissions of a 

gamma ray by a neutron and resonance with an absorbing nucleus.25 The effect is 

stabilised in the condensed state and gives information on the coordination environment 

of the atom. Due to limiting factors such as the lifetime and the linewidth of the excited 

nuclear state, such phenomena are limited to certain isotopes of particular elements i.e for 

the study of GeSe2, the cation sites have to be doped with 119Sn24 whilst anion sites are 

doped with 128Te.25  The cations sites highlighted are corner-sharing tetrahedra and 

ethane-like Ge2Se6 units26
 while the anion sites highlighted are as bridging GeSe4 

tetrahedra27 or part of a Se-Se homopolar bond and with another connection to a GeSe4 

tetrahedra.26 Further information is inferred from ratios of the intensities of different 

sites: the presence of Se-rich clusters of 60-70Å in length are predicted from Mössbauer 

spectroscopy on GeSe2 glass, supporting a domain model interpretation of the structure.27
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1.3.3 Raman Spectroscopy: Raman spectroscopy highlights vibrational modes of 

compounds which effect changes in molecular polarisability.28 A low frequency 

vibration, referred to as the boson peak28,29,30, is found in the spectra of compounds 

displaying IRO such as ZnCl2.
28 Bands associated with the corner- and edge-sharing 

tetrahedra are present and changes can be observed with increasing temperature, such as 

the increase in the presence of corner-sharing modes in ZnCl2.28  

      The experimental methods highlighted above generate information concerning the 

short-range scale: i.e information concerning the geometry and coordination of the first 

coordination shell. As such, order in liquids is recognised over a length scale of a few 

atoms i.e short-range order (SRO). The existence of ordering on longer length scales was 

discovered in neutron diffraction work pioneered by Enderby and co-workers31,32.  

1.3.4 X-Ray and neutron diffraction:

Neutron and X-Ray diffraction experiments32-35 entail the observation of the properties of 

compounds through the scattering characteristics of the nucleus and electrons 

respectively. The former method requires a source of neutrons which are either nuclear 

reactors, where neutrons are produced by nuclear fission, or spallation sources. The 

resulting neutron beam then has to be attuned by several processes; the first is 

moderation, where the neutrons are slowed down by hydrogenous materials. The neutron 

beams, which initially emerge from the moderator in all directions are then collimated by 

a series of apertures. The beam is then monochromatised through Bragg reflection by a 

single crystal. Diffraction experiments are carried out at range of temperature and 

pressures and recent improvements in technology have extended the real space 

resolutions for determining correlations up to 60Å.30 The differential scattering-cross 

section  d 
d  gives the fraction of neutrons scattered into d in the direction (θ,φ).

 d
d tot

= d
d incoh

 d
d coh

self

 d
d coh

dist

                                    (1.2)

The total scattering cross-section (equation 1.2)  in multicomponent systems is comprised 
of the incoherent scattering contribution,  d

d incoh
, which arises from random 

distributions of scattering lengths and spins,  d
d coh

 , which describes scattering of 
atoms with the same spin and isotope and coherent scattering with a further division into 
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the self term,  d
d coh

self

, and the distinct term,  d
d coh

dist

 which describes scattering from 

single atoms and between distinct atoms respectively.
      There are a number of formalisms by which the total structure factor can be 

deconvoluted. In our calculations, we shall, unless stated otherwise, use the Ashcroft-

Langreth formalism36 which is described using terms with the square-root of the species 

concentration. 

1
N

d 
d 

=∑
i=1

n

c b
2−b

2 ∑
 , =1

n

cc 
1 /2 bbS 

AL Q                             (1.3)

The quantities obtained from the scattering intensity for such experiments are total 

structure factors, which may be expressed  in terms of the partial structure factors,

         
F k =cb

2 Sk −1cb
2 S  k −12c c

1 /2 bbS k 
        

                                                                                                                                        (1.4)

where bα is the coherent scattering length which describes the scattering properties of the 

ion a, cα is the concentration of a given ion and Sαβ are the partial structure factors for a 

ion pair. Note that, if we consider a typical MX2 system, the experimentally available 

information on the cation-cation term can be limited both by the concentration weighting 

of cMcM in equation 1.4 as well as by the possibility of low scattering power. In X-Ray 

diffraction experiments the scattering coefficient b is replaced by the k-dependent form 

factor f.

                       f  sin
  =∑i=1

4

a i exp[−bi sin 
 

2]c                                         (1.5)

where coefficients ai and bi are dependent on the electron properties of each ion. The 

Faber-Ziman35 structure factors are related to the Ashcroft-Langreth structure factors by 

the following relationship:

                      S
FZ k =1

S  k −
c c

1/2                                                                         (1.6)
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      Neutron diffraction experiments performed on a range of molten halides show large 

variations in the experimental total structure factor depending upon the system. The 

partial structure factors were isolated by using the method of isotopic substitution37,38: in 

NaCl and ZnCl2, for example, the stability and significant difference in scattering 

properties of  37Cl, 35Cl and natCl , where the scattering length is proportional to the natural 

isotopic mix of 37Cl and 35Cl. By performing separate experiments at the same state point 

of temperature and pressure, but where the isotopic contribution differ, the respective 

weightings of the three terms in equation 1.4 can be varied and, as a result, three partial 

structure factors (SNaNa(k), SNaCl(k) and SClCl(k) and SZnZn(k), SZnCl(k) and SClCl(k) for NaCl 

and ZnCl2 respectively) can be extracted.37,38

For example, figure 1.1 shows the partial structure factors for ZnCl2
37 and NaCl38

. The 

long-range ordering of the atoms in typical crystalline environments is not present, as 

indicated by the increased width of peaks compared to the sharp Bragg peaks observed 

for crystals. The partial structure factors for NaCl show all three principal peaks are in a 

similar position, with the cation-anion function, SNaCl(k), showing a valley in contrast to 

Figure 1.1: Experimental partial structure factors for NaCl (left) and ZnCl2 (right) from experiments by 

Edwards et al38 and Biggin and Enderby37. A First Sharp Diffraction peak is observed in SZnZn(k) and 

SZnCl(k).



Chapter1. Introduction                                                                                                       26 
the peaks of SNaNa(k) and SClCl(k).38  In ZnCl2, the cation-cation function, SZnZn(k), shows 

significantly different behaviour from SClCl(k) with a significant peak at k~1Å-1.  This 

results in a peak at 1Å-1 in F(k) known as the First Sharp Diffraction Peak (FSDP).37 The 

presence of such a peak in F(k) is taken to be a signature of intermediate range order  

(IRO), that is ordering of atoms beyond the nearest neighbour. The position of the FSDP, 

kFSDP, is associated with a real space periodic distance of d≈2/k FSDP  and width is 

related to a correlation length of 2/k FSDP . Computational analysis can provide an 

effective complement to experimental data here in two respects. Firstly, as diffraction 

experiments are often performed at a single state point, calculations can provide 

information as to the effect of changes in temperature and pressure. Secondly, in those 

experiments where the temperature and pressure are varied, it is solely the changes in the 

total structure factor, F(k), which are extracted: computational analysis can be used to 

provide information on changes at the partial structure level. Between diffraction 

experiments there are disagreements about the role of particular contributions. In ZnCl2, 

the dominance of the SZnZn(k) contribution, emphasised by Enderby37 and Salmon in a later 

neutron diffraction experiment39, is contradicted by a recent High Energy X-Ray 

diffraction experiment by Neuefeind which states that SZnCl(k) is the dominant 

contributor.40

     Table 1.1 shows that the position and intensity of the FSDP varies from one compound 

to another and that there are number of classes of compounds which display a FSDP. The 

position of the FSDP in MX2 sytems varies from 1.63Å-1 in BeF2
41 to 0.99Å-1 in GeSe2

42. 

IRO is present for a number of different stoichiometries for systems MXn where n=2-4. 

However, the absence of a FSDP in systems with a MX stoichiometry38,43,44, irrespective 

of cation size, suggests that IRO is related to directional bonding.45 A FSDP  is observed 

in systems with a range of bonding from ionic systems such as ZnCl2  to molecular 

systems46,47 such CCl4. In the case of CCl4, the total structure factor, F(k), is deconvoluted 

into an intramolecular form factor, fm(k), and  Dm(k), the intermolecular form factor, 

describing the interaction between the tetrahedral units47:

F k = f mk Dmk                                                                            (1.7)

The appearance of a FSDP across a wide range of compounds, as highlighted in table 1.1, 

has elicited a number of general formulae (equations 1.8-1.11) which aim to give a 

prediction of the position of the FSDP according to quantities such as bond lengths. 
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Wright et al48 highlighted the similarity in position of the FSDP, kFSDP, in several glasses 

(SiO2, GeSe2, B2O3, and As2S3)  if scaled according to cation-anion bond distance, rMX,  by 

calculating the product, kFSDPrMX. (equation 1.8). A notable deviation from this 

relationship occurs for As2Se3 where the product, kFSDPrMX, is 3.10. Using a wider set, 

Moss and Price41 introduce different ranges for glasses and amorphous metals 

respectively (equations 1.9 and 1.10 respectively). A relationship proposed between the 

position of the FSDP and void diameter (where the void is defined as the separation 

between the cation centres, rMM) by Bletry49 is shown in equation 1.12. At present, there is 

no analogous formula which attempts to predict the intensity of the FSDP.

kFSDPrMX≈2.5                                                                                            (1.8)

kFSDPrMX≈2.14-3.10                                                                                  (1.9)

 kFSDPrMX≈4.3-5.3                                                                                     (1.10)

kFSDP =3π/2d   where d=rMM                                                                    (1.11)

System kFSDP(Å-1) rMX(Å) kFSDPrMX

Oxide and Halide 
Glasses

BeF2 1.63 1.54 2.51

SiO2 1.55 1.61 2.50

ZnCl2 1.09 2.29 2.49
Chalcogenide 
glasses

P40Se60 1.16 2.29 2.66
GeSe2 1.01 2.37 2.39

As2Se3 1.27 2.44 3.10
Elemental 
semiconducting 
glasses

Se 1.88 2.37 4.56
As 1.03 2.49 2.56
Ge 1.89 2.46 4.43

Metallic glasses Co80P20 2.30 2.34 5.38
Ni35Zr65 1.62 2.66 4.30
Ni40Ti60 1.90 2.60 4.94

Equi-atomic 
liquid alloys

NaPb** 1.25 3.19 3.99

KPb*** 0.96 3.12 3.00

RbPb** 0.93 3.10 2.88
Table 1.1: The positions of the FSDP across several groups of compounds. All data unless stated from 

Moss and Price41 **, Saboungi et al50
.***,  Saboungi et al 51.
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1.4 Dynamical Properties associated with IRO and the FSDP 

The presence of IRO has a number of effects on dynamical properties. A low-frequency 

feature which appears in Raman spectra is termed the boson peak28,29,30. The frequency of 

the boson peak has been linked30,31 with the correlation length, R, obtained from the width 

of the FSDP, Δq, by R=4π/Δq: 

m ~ 0.9 v t /c R = 0.9 v tk FSDP /4 c                                                  (1.12)

A similar relationship was put forward by Sugai30:

k FSDP r 1=m c /v                                                                                   (1.13)

where ωm is the boson peak energy, vt  is the sound velocity and c is the speed of light. 

A significant criticism of this relation is that correlation length is not related to the 

position of the experimental FSDP where the scattering length, depending on the 

diffraction technique used, may affect the FSDP position differently52: in 

(AgI)0.75(Ag2MoO4)0.25 , the scattering lengths affect the FSDP so that in neutron 

diffraction patterns, the position is at 0.65Å-1 and for X-Ray the position is larger at 

0.95Å-1
.
53

 Other dynamical effects exhibited by systems such as GeSe2  include a 

companion mode observed in Raman spectroscopy.54 A companion mode, AC
1 , observed 

close to the A1 vibrations for tetrahedral units, is also a feature of compounds displaying 

IRO and has been attributed either to the presence of Se-Se homopolar bonds54 or the 

vibrations of anions across each other in edge-sharing chains.55

      Although there is no direct correlation between the presence and intensity of FSDP 

and glass-forming ability56, computational studies have shown that the ion dynamics on 

the intermediate length scale may slow down more dramatically than those associated 

with the nearest-neighbour length scale.57 Long time scale dynamics have shown that it is 

this length scale which dominates the relaxation phenomena around the glass transition 

temperature.57
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1.5 Concentration fluctuations in MX2 systems

The total structure factor, F(k), can be deconvoluted in more than one manner. In the 

Bhatia-Thornton formalism,58  for example, fluctuations in the number density, v , and 

concentration density , c , are considered, utilising the weak scattering approximation 

and the Van-Hove correlation function59
. The weak scattering equation approximation is:

k ,= 1
2 N ∫ e−i t dt 〈A.∗.k ,0Ak , t 〉 ,                           (1.14)

where

Ak , t =∑
i

W i k e
i k⋅R j t 

                                                               (1.15)

A*(k, 0) is the conjugate of the operator A(k, 0), N is the total number of atoms, Rj(t) the 

position operator of the atom j at time t, and <....> denotes ensemble average in the 

equilibrium state of the alloy. 

W, is the pseudopotential matrix element is given by, 

W jk =∫e ik⋅r−R jV j r−R jd
3 r                                                    (1.16)

if V j r−R j , is the effective potential of ion j in the alloy.

k ,=∣W k ∣2 S k ,                                                              (1.17)

where S k , is the dynamical structure factor                                                          

                        I k =∫
−∞

∞ 
e−1

k ,d ,= ℏ
k B T                                          (1.18)

where kB is the Boltzmann constant and T is the temperature. I(k), related to the 
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resistivity of the alloy, is the function to be derived in terms of the number-number, 

concentration-concentration and  number-concentrations interactions.

For a two component system, the fluctuations in density are given by:

v A r =v A r −n A=∑
k
r−R k

A −nA                                           (1.19)

vA and nA are instantaneous and average number densities and where the Fourier 

component, v A r  , is defined by:

v A r =V−1∑
k

v Ak e
i k⋅r 

                                                               (1.20)

then

N Ak =∫e i k⋅r v A r d r

=∑
k

e i k⋅Rk
 A−n A∫

v
e i k⋅r d r

                                          (1.21)

Similarly N Bk =∑
k

e i k⋅Rk
 B−nB∫

v
e i k⋅r d r                                                       (1.22)

and N k ≡N Ak N B k =∑
j=k ,l

e i k⋅R j−n0∫
v

e i k⋅r d r                            (1.23)

                           =N 1k , t N 2 k , t                                                                 (1.24)

Local deviations from the mean concentration are given by:

c r ≡V / 〈N 〉cB v A r −c Av B r                                          (1.25)

c  is an expression of the concentration fluctuations within V. 

c r =∑
Q
c k e −i k⋅r 

                                                             (1.26)

and setting C(k) as c k , the Fourier transform of c r   is

 

C k =V−1∫
V
c r e−i k⋅r 

                                                                  (1.27)
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=N−1[1−c N 1q , t −cN 2q ,t ]   

C=〈N 〉−1[cBN A−〈N A〉 −c AN B−〈N B 〉]                                      (1.28)

Utilising 1.22, 1.25 and 1.28, 1.15 can now be written as

Ak ,t =W 1 N 1k , t W 2 N 2k , t                                                 (1.29)

or as 

Ak ,t = W N k , t W 1−W 2NC k , t                                      (1.30)

where 

W≡W 1q , etc ,                                                                              (1.31)

and 
W=cW 11−c W 2                                                                        (1.32)

If we replace 1.32 into 1.14 then:

k ,= 1
2 N ∫ e−i t dt 〈A.∗.k ,0Ak , t 〉 ,                           (1.33)

k = W 2 S NN k ,W 1−W 2
2 S CCk ,2 W W 1−W 2S NC k ,  

                                                                                                                                      (1.34)

SCC k ,= N
2 ∫ e−i t dt 〈C .∗.k ,0C k , t 〉 ,                           (1.35)

 S NN k ,= N
2 ∫ e−it dt 〈N .∗. k ,0N k , t 〉 ,                          (1.36)

                     2 S NC k ,= 1
2 ∫ e−i t dt 〈N .∗. k ,0C k ,t C .∗.k ,0N k ,0〉

                                                                                                                                      (1.37)

If the following equation is introduced (and similar expressions for SNC(k) and SCC(k)

                       S NN k =∫ [e−1]S NN k ,d                                          (1.38)

The expression for I(k) becomes,

I k = W 2 S NN k W 1−W 2
2 SCC k 2 W W 1−W 2S NC k   (1.39)
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As high temperatures are involved the scattering is elastic and  (= ℏ/k BT )<<1 

for all  which for S NN k , are far from zero. The factor, e−1−1 ,  may 

be replaced by unity. As

           ∫e−i t d =2t  ,                                                                      (1.40)

then using 1.35-1.37 and 1.38, SNN(k), SNC(k) and SCC(k) can be written as 

S NN k =
1
〈N 〉

〈N k .∗. N k 〉
                                                            (1.41)

SCC k ≡〈N 〉〈C k 
.∗.C k 〉                                                                (1.42)

S NC k ≡ℜ〈N 〉 〈N k 
.∗. C k 〉                                                           (1.43)

                                        

The Bhatia-Thornton (BT) partial structure factors [SCC(k), SNN(k), and SNC(k)] may be 

expressed in terms of the Faber-Ziman functions as 

 SCC  k =cM c X {1c M c X [[S MM
FZ  k −S MX

FZ  k  ][ S XX
FZ  k −S MX

FZ  k  ]]}  

                                                                                                                                     (1.44)

S NN  k =cM
2 S MM

FZ  k c X
2 S XX

FZ  k 2 cM cX S MX
FZ  k  ,

                                                                                                                                      (1.45)

S NC  k =c M c X {cM [S MM
FZ  k −S MX

FZ  k  ]−c X [ S XX
FZ  k −S MX

FZ  k  ]}

                                                                                                                                      (1.46)

or from the Ashcroft-Langreth structure factors using

SCC k / cM c X =c X S MM k cM S XX k −2  cM cX S MX k               (1.47)

S NN k =cM S MM k cX S XX k 2  c M c X S MX k                            (1.48)

S NC k /cM c X =S MM k −S XX k −cM c X 
−1/2×cM−c X S MX k    (1.49)

      The number-number structure factor describes the topological structure of the liquid, 

ignoring the separate identity of the ions; therefore, if bM=bX, then SNN(k) would be equal 

to the total structure factor, F(k). In systems which display IRO, the FSDP is intense in 
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SNN(k), indicative of IRO inherent in the network topology. The number-concentration 

term, SNC(k), describes the occupation of these sites with reference to ion character while 

the concentration-concentration term describes the ordering of atoms with each other 

based on atom identity; if M and X were of equal molar volume and similar shape then 

SNC(k) would be zero. SCC(k) observes a k-dependence if there is a preference for 

homopolar or heteropolar bonding. A FSDP in SCC(k) has been observed experimentally 

in a range of MX2 systems.60 In a fully ionic system, SCC(k) is related to the charge-charge 

structure factor, SZZ(k):2 

SCC k =cM c X S ZZ k                                                                           (1.50)

The absence of a FSDP in SZZ(k) was taken to be a signature feature of MX2 

compounds.61  Electronic structure calculations show that significant differences between 

SZZ(k) and SCC(k), particularly in the region of the FSDP where a FSDP is present only in 

the latter function. The conclusion was that charge correlations in the region of IRO are 

absent and coordination defects were responsible.62 Replication of the FSDP in SCC(k) has 

proved problematical in computational methods.63,64

Figure 1.2:The experimental partial radial distribution functions of ZnCl2 by Biggin and Enderby37. Full 

line, gZnCl(r), half-line, gZnZn(r); dotted line,gClCl(r).
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1.6 Real space representation of liquid structure.

Zernike and Prins8 showed that partial radial distribution functions, which describe the 

correlation of pairs of atoms in real space, can be calculated from diffraction patterns. 

The partial structure factors obtained from experiments are Fourier transformed to obtain 

the partial radial distribution function where gαβ(r)={g--(r), g++(r), g+-(r)} which gives a 

measure of the probability of finding atom α from β at distance r:

g r =1 1
22 nr

∫0

∞
[S  k −1]k sin kr dk                                 (1.51)

where n is the total number density of atoms. 

The main features of the radial distribution function are highlighted in the experimental 

functions for ZnCl2  shown in figure 1.2. The major peak occurs close to atomic 

separations, while at larger r, g(r) damps to a value of 1, indicating the lack of long-range 

correlations. Inaccuracies in the experimental radial distribution functions are highlighted 

at very low r where the excluded volume effect sets g(r)≡0. Unphysical oscillations 

observed at low r are often the result of truncation effects in the Fourier transformation 

procedure arising from the finite k-range probed in obtaining the structure factors.12 Early 

studies noted than upon an increase in the temperature, the principal peak weakened in 

intensity and displayed an increase in the FWHM corresponding to higher amplitude 

molecular vibrations as the temperature is increased.65,66 Furthermore, it was noted that 

the coordination number derived from the principal peak of the radial distribution 

function showed a decline from that observed for the  respective crystalline states. Whilst 

such statements are relatively easy to understand in terms of the underlying ionic short-

range ordering, analogous arguments focusing on the IRO are more difficult to construct. 

The oscillations in the ion density responsible for IRO cannot be related simply to radial 

distribution functions due to low k weighting of the FSDP in the Fourier transform. One 

association observed is the position r of a peak in real space and the position k of a 

corresponding peak in Fourier space is kr≈7.7. This identifies the location of the first 

maximum of the spherical Bessel function, j0(kr).  Salmon showed another relationship by 

constructing the function, I(r), which is the real space Fourier transform of the H(k), 

which is the FSDP with the rest of the structure factor excluded.45 Where the FSDP was 

strong in intensity, such as in ZnCl2, the oscillations in I(r), dominated the IRO region, 
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and the similarity between gMM(r) and I(r) is strong. In NiI2, where the IRO is absent, and 

MgCl2 , where the FSDP intensity is weak, I(r) shows no similarity with gMM(r) over this 

range.45  

1.7 Theoretical approach for the origin of IRO.

Wilson and Madden highlighted three mechanisms for the formation of a FSDP67; an 

induction mechanism, a size-ratio mechanism and Coulombic ordering. In the induction 

mechanism, an anion with a large anion polarisability situated in a site of low symmetry, 

results in a large dipole being formed which stabilises the relatively close separation of 

neighbouring cations: the larger the dipole present, the smaller the separation of cations. 

Similarly, for an anion of a given polarisability, smaller or intermediate-sized cation 

results in a larger dipole and similar stabilisation or relatively close cation-cation 

separation. This is shown by the similarity in principal peak position of gMM(r) and gXX(r) 

in MX2 systems with small or intermediate sized-cations37, contributing to an excess of 

positive charge on the local scale which is offset by a depletion over a longer-length 

scale. These two length scales are observed as the FSDP and principal peak. A size-ratio 

mechanism highlights the importance of the tetrahedrally coordinated structures, as 

highlighted by the larger FSDP observed for ZnCl2 compared to compounds of larger-

sized cations such as BaCl2
68. Iyetomi and Vashishta observed a dependence of the FSDP 

intensity on the atomic radius ratio using Hypernetted Chain Calculations69. The height of 

the FSDP in the simulated AX2 glasses decreased with increasing radius ratio, R=(σA/σX), 

where σA and σX are the respective cation and anion sizes, from 0.25 to 0.5. At higher 

values, the systems exhibited markedly less tetrahedral behaviour and the FSDP 

disappeared.69 However, as later noted by Salmon, the radius ratio for ZnCl2  is 0.41, 

which displays a stronger FSDP than NiI2, where it is 0.31. Salmon included the effect of 

cation mobility in controlling the intensity of the FSDP.43  Where the cation mobility is 

high, the clusters comprising a network structure will be short lived (less than the time 5 x 

10-12 s predicted for IRO to be present), leading to a less intense FSDP  as in the case of 

NiI2 compared to ZnCl2.  Additionally, the separation between tetrahedral centres can be 

varied by changing the anion, X, in ZnX2, where X=Cl, Br or I. This results in the 

function, I(r), with oscillations with increased amplitude which decay more gradually, 

correlating with the shift in the position of the FSDP to lower k and an increase in the 

FSDP sharpness.45 The third mechanism, Coulombic ordering, is highlighted in systems 
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such as YCl3 where IRO is present due to the separation of highly charged Y3+  cations, 

with a FSDP present despite the radius ratio of 0.56 for σY/σCl.. 

      There have been a number of structural theories put forward concerning the origin of 

IRO. Cervinka suggested the presence of well-defined clusters as responsible for 

intermediate-range ordering.70,71 A quasicrystalline interpretation, similar to those 

proposed by Zernike and Prins (1927), was implied for systems such as As2Se3 
72 and 

GeSe2
73

 
 and generalised over a range of systems by Gaskell and Wallis74, stating that 

quasilattice planes (distinct from 2D layers observed in crystals) in the liquid are 

responsible for the FSDP in the F(k). Similarities between the positions of peaks in 

crystalline structure factors and those in the melt supports this theory although the 

appearance of FSDP in SiO2 
75, which has no layer structure in the solid phase, 

contradicts this. 

      The presence of layering can be detecting theoretically using a hypothetical scattering 

experiment.76 The effect of layering is given by calculating the second moment, M 2k  , 

which correspond to discrete wave vectors of the form ki =2 /L (li, mi, ni), where L is the 

cell length and li , mi, and ni are integers:

M 2k =N k
−1 ∑

i=1,N k

[ 〈∣A k i , t ∣2〉−S k 2]/S k 2                                 (1.52)

where the sum runs over Nk wavevectors with ∣k i∣=k and:

Ak i , t =N−1 ∑
p , q=1, N

exp[ i k i⋅r
pqt ]                                                  (1.53)

where M 2k  =1 for Gaussian statistics. Figure 1.3 (right panel) shows the time 

evolution of A(k,t) for a simulation of ZnCl2
74 for six k-vectors with |k|=(2π/L){440}. The 

continuous “specking” of the intensities along different directions in the simulation cell is 

indicative of directional structural ordering.



Chapter1. Introduction                                                                                                       37 

Other evidence supporting the quasi-crystalline interpretation is the effect of positional 

disorder. In a simulation77, atoms of a crystalline lattice were displaced at distances 

greater than would occur at usual thermal temperatures. The peak in the total structure 

factor, F(k), that showed the most resilience in terms of decline in intensity was the peak 

with the lowest wavevector.77 Also, experimental information on ethyl alcohol78 shows 

the similarity in position and width of the FSDP in several different phases, from 

crystalline to rotator-phase crystals: a crystalline state with high amplitude vibrations, 

and into the liquid state, whilst the peaks at higher k decline in intensity. .

Another approach proposed by Elliot is based on the conception of a liquid stabilising 

large voids in a 3-dimensional network.79,80,81 The influence of voids in producing a FSDP 

was demonstrated earlier in 2D models and Dense Random Packing structure with voids 

progressively incorporated.49,82 According to the Bhatia-Thornton representation of a 

system comprised of voids and atoms, the FSDP is solely derived from the FSDP in 

SCC(k): i.e, the chemical ordering of cation-centred clusters and voids. This relationship 

was highlighted in theoretical calculations where the structure factors of a hypothetically 

scattering correlation of voids, SVV k , was calculated using :

Figure 1.3 Indications of void ordering and layering76 in ZnCl2. (left) Dotted line, RIM model; solid line, 

PIM (right) Fluctuations in A k i , t  with time for [440] wavectors corresponding to the FSDP indicating 

presence of layering. 
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SVV k =〈N V
−1∑

i , j=1

N V

exp i k⋅R ij 〉                                                          (1.54)

where Rij represents the distance between void centres. This theory is supported by 

calculations which observe an in-phase relationship, in terms of presence and position of 

both a principal peak and a FSDP, between S VV k  and the structure factors describing 

the cation-cation correlation, S ZnZn
PIM k  , as highlighted in figure 1.3. In BeCl2, where edge-

sharing is more prominent, a FSDP appears in SVV k attributed to inter-chain separation, 

while the principal peak was absent due to absence of intra-chain void ordering. This was 

attributed to the absence of voids across the edge-sharing chains present.82 In contrast to 

the simulated ZnCl2 PIM model highlighted above, electronic calculations by Massobrio 

et al83 have highlighted simulated systems where a FSDP is observed, but with no 

crystalline ordering, and another system where void-ordering is present without an 

accompanying FSDP.83

1.8 Modification of FSDP position and intensity

In addition to the variation of the position and intensity of the FDSP between compounds 

there are a number of ways of modifying IRO within a given compound. There are 

several methods where the stoichiometry is modified: 

1. Templating: The introduction of an alkylammonium template introduces voids 

into a ZnCl2 "array" with accompanying length scales, as indicated by the 

presence of FSDP at values smaller than 1Å-1
.  The templating mixture consists of 

CuCl and an ACl templating salt of ZnCl2 (in a 1:1:5 ratio) to form  

[CunZnm-nCl2n]n- templated networks through reaction with the appropiate 

alkyammonium salt of the templating cation [A]. The templating cation, [A], vary 

in size from trimethylammonium ([HTMA]+), tetrapropylammonium ([TPMA]+) 

and methylammonium ([MA]+); these templates correspond to sizes of 10, 4 and 1 

anion respectively. The FSDP in F(k) of ZnCl2 is varied in the range 0.75Å1 for 

[TPMA]+ to 1.40Å-1 for [MA]+.83

2. Cation substitution by addition in MX2 by addition of MX : The addition of 

different sized cations can be achieved by mixing ZnCl2 with an alkali halide such 
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as KCl or LiCl.85,86 With addition of LiCl, there is an increase in FSDP intensity is 

present up until 67% LiCl after which the FSDP disappears. The intensities of the 

FSDP in ZnCl2/LiCl mixtures are smaller than that predicted by utilising the 

partials (weighted appropiately to the mixture) of the pure LiCl and ZnCl2 

liquids.85 For KCl86 there is an increase in intensity of the FSDP from 0-67%, show 

an enhancement in FSDP intensity compared to that predicted by a comibination 

of weighted partial strucure factors from the pure substances. The FSDP sharply 

collapses at the next recorded value of 81%. The origin of this difference can be 

understood in terms of the formation of well-defined MX4
2- molecular anions in 

the KCl/ZnCl2 mixtures which are not present in the corresponding LiCl 

substituted systems. 

3. Anion addition: For systems such as MXSe1-X, where M=Ge or Si,  a change in 

stoichiometry can be achieved through the addition of Se2 to the existing mixture. 

Neutron diffraction experiments on GeXSe1-X at values of x=0.33, 0.4, 0.5, and 1.0 

showed a decline in the FSDP of SNN(k).87

1.9 Polyamorphism

Another method for potentially varying IRO is achieved through variations in temperature 

and pressure. With increasing temperature, the intensity of the FSDP displays 

considerably different behaviour to other peaks in the structure factor: in As2Se3 
88, the 

FSDP intensity anomalously increases, whilst in GeSe2  it collapses sharply.87 Variations 

of structural properties such as the FSDP within the amorphous state have been 

considered as indicative of underlying change in the potential energy surface and as a 

possible indicator of different polymorphs in the liquid state. The presence of such 

transitions in the liquid state has been of recent interest.90-93 Many of the possible 

candidate structures for such a transition (and that are systems of interest in our study), 

such as GeSe2, ZnCl2  and oxides such as SiO2 and GeO2, possess IRO.91 High pressure 

experiments on liquid ZnCl2  and GeSe2  show changes in structure, particularly on the 

IRO scale. In recent experiments by Brazkhin94,95, two phases were highlighted as 

occurring in the pressure range of 0-3GPa. In the first phase, a molecular-network is 

identified with significant IRO present highlighted. At the higher pressure of 3GPa, a 

sharp change in structure is highlighted as the molecular network changes to a more ionic 
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CdCl2 type structure and the collapse of intensity in the FSDP. Recently, computational 

studies have been carried out on this behaviour in systems such as SiO2, indicating a 

change in local ion coordination implying the presence of low and high density states.96 

ZnCl2  is understood to be less open as a network than SiO2  whilst changes in structure 

have been observed at relatively lower pressures97.

1.10 Structure of Liquids. 

The work highlighted so far indicates the presence of three major types of ordering 

present in liquids:

Short Range Ordering (SRO): SRO describes the geometry and coordination of

            a constituent unit, (i.e MX4 tetrahedra) as well as the bond lengths of the        

            constituent polyhedra. Information about short-range order can be derived from a

             number of experiment sources highlighted earlier.  

Intermediate Range Ordering (IRO): Information about IRO is obtained 

primarily from diffraction experiments and is highlighted by the presence of a

            FSDP. Although the existence for IRO in MX2 systems  is well established, 

            information on the atomistic origins of IRO, as well as explanations of how the

            intensity and position of the FSDP changes is less understood. Intermediate-range 

            order can be defined as structural ordering on typical length-scales of 5-10Å, 

            characterised by the presence of a feature in the static structure factor (the

             prepeak) at k~1-1.5Å-1. The presence of such a feature is indicative of ordering

             on a length-scale beyond that imposed by the typical ion diameters (packing  

            effects).

Extended Range Ordering (ERO): The development of third generation

            radiation sources have improved the real space resolution obtainable so that  

            radial distribution functions can be resolved to distances of 60Å.39 The frequency

            of such oscillations have been linked to the position of the principal peak rather 

            than the FSDP. 

Early interpretations of the relationship with IRO postulated a large contribution of ERO 

to the intensity of the FSDP: an investigation using a large cell size for a-Si concluded 

that the correlations at r >15Å contributed 50% of the intensity of the FSDP.98 A later 

diffraction investigation concluded that there is no such relationship with IRO.99 The 

interdependence between these orderings is not yet fully understood, but an important 
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observation is that SRO and ERO are ubiquitous features of a liquid originating in the 

principal peak  which occurs ~2Å-1 in F(k), whereas IRO depends on features at lower k: 

MX systems, highlighted as systems where IRO is absent, would observe both SRO and 

ERO.99

      Diffraction experiments showed that systems such as ZnCl2 are comprised primarily 

of tetrahedral units.100 The network topology, described by how the tetrahedral units are 

connected to each other, has profound implications for the material properties. In a 

network system, there are three possible connections between tetrahedral units (figure 

1.4):

Corner Sharing: The tetrahedra are linked at the vertices by one bridging anion.

            This structural feature is associated with systems such as SiO2 and BeF2  and are

characterised by relatively obtuse M-X-M bond angles (>140o). Pure corner-

sharing  produces a three-dimensional network of strong bonds.  

Edge-Sharing: Cations are bridged at the edge of tetrahedral units by two anions.

            Edge-sharing tetrahedra are a feature of the crystal structures of compounds such

            as GeSe2 and SiSe2.. Raman spectra for BeCl2 
101 highlights the edge-sharing nature

            of  liquid BeCl2 and feature prominently in models of chalcogenides such as

             SiSe2
102

. The structure is comprised of chains of edge-sharing tetrahedra with

             relatively acute M-X-M bond angles (~80o). The relatively low melting points for

            these systems result from the weak inter-chain forces of these charge-neutral

            units. 

Figure 1.4: Possible connections of tetrahedral units. The central cation  is blue and the surrounding 

anions are red. 
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Face-Sharing: Three anions are bridging across cations. Here, the cation-cation 

separation is smaller than the anion-anion separation; in MX2 compounds where 

            the cations are charged this is highly unlikely and so far there is no evidence of

            their presence in molten network-forming salts.

An archetypal three-dimensional MX2  network could be described as consisting of 

corner-sharing (MX4)2- tetrahedra where ideal coordination numbers for the ion pairs XM, 

MX, XX and MM are 2, 4, 12 and 8. Departures from this network are highlighted by 

systems such as ZnCl2 and GeSe2 which display a network topology derived from a 

mixture of both corner and edge-sharing tetrahedra with accompanying M-X-M bond 

angles between 90o and 120o. The effect of this variation in inter-tetrahedral coordination 

on structure, specifically IRO, is not yet well understood. Also observed, is the 

destabilisation of chemical ordering: in systems such as GeSe2, homopolar bonds, that is 

bonding of like atoms, are observed. 

      The main focus of this study is the analysis and reproduction of IRO in MX2 

compounds with a focus on the effect of different tetrahedral linkages. To study the effect 

of varying inter-tetrahedral connections a range of systems will be studied with the 

relative concentrations of the inter-tetrahedral  linkages controlled by varying a single 

parameter (the anion polarisability). The use of a simple potential model enables a wide 

search of structural features. In addition to the variation of tetrahedral linkages, other 

factors studied include the effect of temperature and pressure.

1.11 Outline of study

Chapter 2 details the methodology behind the polarisable ion model (PIM) and the 

analytical methods used in studying liquid structures. Chapter 3 focuses on the halides of 

intermediate-sized metal cations. An improved model for ZnCl2  is produced and the 

interpretation of several different experiments are examined for this system. A potential 

is produced for MgCl2 and a comparison with the structure of ZnCl2 is made as well as 

comparing the structures of MnCl2 , ZnCl2 and MgCl2. The effect of increasing anion 

size, through increasing the effective anion-anion separation is examined. Chapter 4 deals 

with the application of the PIM to GeSe2.  This  involves the use of a larger anion 

polarisability than that previously used. Comparisons of the resulting structure with 

results from experiment and electronic structure calculations are made. Chapter 5 is a 

comparison of ZnCl2 and GeSe2 with regards to the chemical ordering present. A peak is 
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observed in SCC(k) for ZnCl2 and a novel analysis is presented in which the cation 

structure is decomposed according to network connectivity. A wider study of the 

function, SCC(k), is made with a range of other systems which represent candidate systems 

which may possess a FSDP in SCC(k), including low-density ZnCl2 system,  an amended 

potential for BeCl2 and BeF2. Chapter 6 extends the study to a generalised MX2 structure 

where the network topology is controlled by varying the anion polarisability. The FSDP 

intensity and position are recorded as a measure of changes in inter-tetrahedral 

connectivity. The variation in properties of the partial network-connectivity structure 

factors of SMM(k) including FSDP presence and variable intensity are described. Chapter 

7 studies the effects of temperature and pressure on the model for ZnCl2 , with particular 

emphasis on the changes in partial structure factors which, as yet, are unavailable from 

experiment. Chapter 8 highlights the changes with pressure and for the generalised MX2 

model using high and low anion polarisabilities. The focus in this chapter is the effect of 

polarisability dependence on the changes of the tetrahedral network in terms of the 

variations in the underlying network topology and coordination at different densities. 

Chapter 9 is an inherent structure analysis of the liquid systems studied previously. 

Steepest-descent calculations are applied on melt configurations to locate the potential 

energy minima and the inherent structure quantities are analysed. In Chapter 10 we 

observe the effect of inducing homopolar bonds into a predominantly tetrahedral MX2 

network and the effect on IRO. 
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Chapter 2
Computational Methods

2.1 Introduction.

Computational simulations in chemistry are important in complementing information 

gathered from experiments, particularly in the determination of structure of liquids. An 

advantage of simulation methodologies with respect to experiments is that positions and 

velocities are known precisely so we are able to highlight the microscopic structural 

features which comprise amorphous systems. Early liquid models were built on hard-

sphere packing systems of Bernal1, initially with hand-built ball and spoke 

representations.2,3 As we have seen in Chapter 1, experimental results on MX2 systems 

have shown that they possess complex ordering on intermediate-length scales. The use of 

computers, enabling construction of a large number of configurations, provides an 

effective method for constructing models for these systems.4,5,6 There are a variety of 

computational techniques which are used to model the systems of interest in this study:

2.2 Electronic structure methods.

Electronic structure methods attempt to solve the Schrődinger equation for a given 

compound. In density functional theory (DFT), electrons are represented by functions in 

terms of single particle electron density, rather than many-body wave functions. Ab initio 

molecular dynamics developed by Car and Parrinello7 adapts the electronic structure 

problem so that it can be solved by the steepest-descent method and Newtonian equations 

of motion, and has been used to model systems in this study such as GeSe2. Due to 

computational expense, the array size is ~100 atoms and time scales of tens of 

picoseconds are available. The method by which electron correlations are accounted for 

has a significant impact on the structure calculated as it affects the electronic distribution 

around an atom. In the local density approximation (LDA)8, which treats a bond as highly 

ionic, the simulated GeSe2 system does not exhibit a FSDP; however, when the 

generalised-gradient approximation (GGA)9, which results in a covalent description of 
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the bond, is applied, a FSDP appears. 

2.3 Methods using experimental data directly in parameterisation.

There are several modelling techniques which use experimental data directly. Reverse 

Monte Carlo10  (RMC) iterates towards  a configuration which matches a set of 

experimental data, such as the total structure factors, FE(k), through a series of small 

random movements of a single atom from an initial configuration which, if accepted, 

provide the starting configuration for the next step. This process is repeated until the 

experimental data is matched to a degree of precision. Whether a step is accepted or not 

depends on the following cost function (equation 2.1), which measures the difference 

between the changes of the structure factor calculated from the configurations, FCo(Qi), 

and those determined experimentally:

2=∑
i=1

m

F CoQi−F EQi
2/2Qi                                                  (2.1)

where m is number of experimental data points and σ is the experimental error. A move 

is accepted if n
2o

2 , where the subscripts refer to results from the new (n) and old 

configurations(o), or if it increases it with probability exp −n
2−0

2/2. Monte Carlo 

(MC) methods utilise a potential model in conjunction with random displacements to 

generate configurations which are then compared to an experimental quantity. In a MC 

model of ZnCl2
 by Bassen et al11, the longer range correlations between zinc ions are 

forced by an oscillating function, ZnZn
osc :

                         ZnZn
osc =AZnZn sin 2 rZnZn−BZnZn

CZnZn  exp[ − r ZnZn

DZnZn
]                          (2.2)

                         ClCl
osc =ZnCl

osc =0                                                                                   (2.3)

AZnZn, BZnZn, CZnZn and DZnZn are variable parameters. Another potential based method of 

fitting configurations to data, empirical structure refinement (EPSR)12
, 

 utilises an 



Chapter 2. Computational Methods                                                                                  51 

empirical potential, with an adjustable set of parameters which feed into the modelling of 

experimental data, also taking into account the confidence in the reliability of the 

experimental data from a scale of 0 (no confidence) to 1(full confidence). It is shown that 

the cation-cation correlation, for which there is a low weighting in ZnCl2, is reproducable 

over a wide confidence scale.12 

2.4 Integral equations.

In integral theory, the energy functional of a compound is linked to the pair distribution 

function, gαβ(r),  through two-body additive potentials, u r. The pair distribution 

function is split, through the Ornstein-Zernike relation (equation 2.4)13, into a direct 

correlation, cαβ(r), which includes the atom pair and an indirect correlation term 

describing the effect of other particles on the pair-wise interaction.

hr =cr ∑


n∫d r ' h∣r−r
'∣c r

'd r                           (2.4)

 The effective pair potential can be calculated by: 

u r=k BT [h r−c r−ln g r B r]                            (2.5)

Bαβ(r) is a bridging function which describes the sum of the contribution of all elementary 

graphs in the cluster expansion. It is difficult to solve analytically and, as a result, an 

approximation is usually made. The hypernetted chain approximation14 solves this by 

setting Bαβ(r) to 0. The former expression has been used for modelling the systems we are 

using whilst the Percus-Yevick closure15 has had greater success in modelling Lennard-

Jones systems. Integral equations on ZnCl2
 and GeSe2

 by Ballone16 and Iyetomi17 

respectively, where the former calculation dealt with Coulombic repulsions with 

distance-dependent dielectric screening and the latter treated the atoms as firstly neutral 

hard spheres and secondly charged hard spheres. They produced FSDPs at ~1.3Å-1 and 

~1.4Å-1 for ZnCl2 and GeSe2 respectively. This was somewhat higher than the 

experimental values of ~1Å-1. Once a potential model with bond bending constraints was 

implemented, the FSDP moved closer to ~1Å-1 for GeSe2. 
17
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2.5 Classical potential models.

Classical potential models rely on the application of simple energy functions to describe 

certain properties of a given compound. The choice of energy functional can vary from 

the hard-sphere model18, which deals only with the short-range repulsion of atoms to 

more complex functions which incorporate many-body effects.19 The advantages of such 

methods is that the relative simplicity of the model compared to ab initio electronic 

structure methods allows faster computation, enabling longer time-scales and larger 

systems to be studied. However, in order to maintain flexibility the potential models 

should be transferable in the sense that the models should be applicable, without 

parameter change, across a wide range of state-points. In addition, potential parameters 

for a given model should be physically transparent and transfer between systems in terms 

of well-defined quantities (such as ion radii).  For the purposes of our investigation, we 

will use molecular dynamics using a simple classical-MD potential, which, as well as 

accounting for coulombic ordering, short-range repulsion and dispersion, also includes a 

representation of polarisation effects.

 

2.6 Molecular dynamics.

Molecular dynamics6 involves the modelling the time evolution of a system of N particles 

with their trajectories determined through integration of Newton's equations of motion, 

the atom forces being obtained from the potential energy function. The first step of a 

molecular dynamics simulations is the inputting of parameters, where quantities such as 

the number of particles, time step, length of run and temperature are specified. Initial 

coordinates are then inserted into the system. The coordinates chosen are such that 

overlap of the atomic or molecular core is prevented. The forces are then computed on 

the particles. The system energy can be written as a function of the atom positions [U(Ri)] 

and, as a result, the pairwise force acting between a pair of atoms ij can be calculated 

from the simple derivative:

 

f ij=−
∂U
∂ r ij

                                                                                            (2.6)
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where rij is the separation of atoms i and j. Depending on the complexity of the ionic 

potential, this is the most computationally expensive stage of the run as all the forces 

affecting an ion have to be considered. Coulombic energetics require careful 

consideration as the interactions are relatively long range with respect to the simulation 

cell size. Newton’s equations of motion are then integrated. 

                        F i=mi a i=m⋅
d v i

dt
=m⋅

d 2 ri
d t 2                                                                   (2.7) 

where ri and vi are the position and velocity vectors of particle i respectively. Fi is force 

exerted on particle, mi is mass of particle and ai is acceleration of particle. These 

equations of motion are then integrated using a finite difference method. In the present 

case we use the Verlet leap-frog algorithm6 to solve the equations of motion. This 

algorithm generates the particle velocities and positions at each time step. The particular 

form we use is the velocity-verlet algorithm developed by Swope et al23. The velocity 

Verlet algorithm computes the particle velocity v t t  and particle position

r t t  as follows:

                       r t t =r t  t v t 1
2
 t 2at                                                    (2.8)

                       v t t =v t 1
2
 t [a ta  t t ]                                               (2.9)

, where δt is the finite time step, in the present work δt=25 a.u. (equivalent to 6.047 x 10-

15 s). For this investigation, simulations of ~60 ps will be used to generate the 

configurations from which structural data including radial distribution functions and 

structure factors are obtained. 

2.7 Potential models: rigid ion model.

The form of the energy function has to effectively describe the interactions in the system 

so it can replicate known properties and elucidate other structural quantaties unobtainable 
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from experiment. In addition, it has to be computationally tractable for the system sizes 

and length scales dealt with in this investigation. The rigid ion model24 treats ions as 

charged spheres, neglecting many body effects on the ion caused by the environment and 

as a result are computationally inexpensive compared to models that do. They account for 

the static structures of systems such as SiO2 and BeF2, where the M-X-M bond angles are 

of the order of 140o, but fair less well for systems such as ZnCl2, GeSe2 or BeCl2, where 

the M-X-M bond angles are more acute.21 The Born-Huggins-Mayer potential24 used can 

be expressed as the following sum:

               U ij=U ij
CoulU ij

srU ij
disp                                                                              (2.10) 

   

                U ij=
Q iQ j

rij
Bij e

−a ijrij−∑
n=6,8.

Cn
ij

rij
n f n

ij                                                              (2.11)

The first term on the right in 2.11, U ij
Coul ,  represents the coulombic interaction between 

the two species i and j, with separation rij.  The second term, U ij
sr , represents the (short 

range) repulsion arising from the overlap of the atomic electron densities. In this potential 

function this interaction is controlled through two parameters, aij and Bij. Bij is related to 

the respective radii of ions i and j, whilst aij controls the hardness of the repulsive wall 

acting between an ion pair. The final term, U ij
disp , describes the dispersive interactions 

which arise from electron correlation effects. C6 and C8 represent the van der Waals 

dipole-dipole and the dipole-quadrupole interactions respectively (in this investigation, 

we consider the dipole-dipole interactions only). These dispersion coefficients can be 

related to the ion polarisabilities using the Slater-Kirkwood25 and Starkschall-Gordon 

formulae26 respectively:

C ij
6=

3
2
i j

 i

P i


1
2
  j

P j


1
2

                                                                                 (2.12)
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C ij
8=

3
2

Cij
6 〈r j

4〉

〈r j
2〉

                                                                                             (2.13)

where the 〈r y
n 〉 terms are ground-state expectation values of even powers of ri, the 

electron distance in the isolated atom. αi and Pi represent the polarisability and effective 

electron number of the ions. The effective electron number has been shown to apply over 

an isoelectronic series.27 These relations are extremely useful as ion polarisabilities may 

be readily obtained from both experimental studies (from the measurement of refractive 

indices) and by direct electronic structure calculations28. The damping functions f ij
n 29 in 

equation 2.11 are required to correct the intrinsic overestimation of the dispersion energy 

arising from the overlap of ionic electron densities at short separation. Here, a function of 

the form suggested by Tang and Toennies29 is utilised. 

           f ij
n=−e−bn r ij∑

k=0

4 bnr ij
k

k !
                                                                                (2.14)

Parameter bn controls the r damping length scale, k=6 for C6 and 8 for C8 respectively. 

2.8 “Extended” ionic models.

As alluded to earlier with the varying success of integral equation methods, the concept 

of ionicity plays an important role in determining the structure of MX2 systems. It was 

initially considered that a purely ionic potential could reproduce the structural features of 

ZnCl2.30 Similarly, covalent representations of systems such as GeSe2 
31 have shown less 

success in reproducing elements of intermediate-length structure whilst those with a more 

ionic description of bonds have had more success in reproducing the associated FSDP.31 

The concept of extended ionicity32, where polarisation is accounted for, in addition to 

Coulombic effects and short-range repulsion, is a relevant one for constructing models 

for these systems. There have been a number of methods used in modelling systems 

which include a description of polarisation. In the Shell Model33, the charge of the ion is 

split between the core with the mass of the ion and a shell with no mass. The shell is 

bound to the core by a harmonic potential. This model was shown to be deficient for 

describing systems such as MgCl2, where the crystal exhibits a layer structure of MX2 
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triplets of ions where layers of anions of adjacent triplets partner each other contrary to a 

simple ionic model. The polarisable ion model (PIM)21 develops earlier ideas of Sprik 

and Klein34 used in polar liquids, and accounts for large deviations from ionic compounds 

in an extended ionic framework. 

2.9 Environmental effects due to polarisation.

The electron density of a given anion may display considerable environmental 

dependence in the condensed state. The spherical confining potential32 describes the 

potential energy well arising from placing a free ion into a crystalline environment and is 

an indication of the overlap of both the formal ion charges and the anion and cation 

electron densities (as shown in figure 2.2a). It compresses the charge density relative to 

the free ion (illustreated in figure 2.2b) and is responsible for stabilising the oxide ion in 

condensed matter. The polarisable ion model20 utilises an 'extended' description of the ion 

interactions in which the electric fields, which arise from the movement of ionic charges, 

distort the ion electron density resulting in induced moments. The anion electron cloud 

may be distorted by interactions with other ions. For example, figure 2.1 shows the 

movement of a nearest-neighbour cation in the first coordination shell about a central 

anion.20 The movement of the cation charge results in an electric field at the anion site 

which induces a charge distortion (dipole moment). The induction of a dipole, µi, on 

species i by a permanent charge from surrounding species j is represented as follows:

  i=i E i                                                                                            (2.15)

                                                     

where αi is the ion polarisabililty and Ei is the electric field at site i.

The formation of an induced dipole may be understood in terms of two contributions, as 

shown in figure 2.2. A displacement of a cation charge will create an electric field at the 

anion site, resulting in electron displacement in the anion, termed an asymptotic dipole.20 

Ab initio electronic structure calculations35 indicate the presence of an additional 

contribution to the induced dipole moment, which acts to oppose that induced by the 

movement of formal (point) charges. The movement of electron density of the disturbed 

anion reduces the effect of the confining potential. As a result of the induced dipole the 

anion electron density relaxes, allowing one side of the confining potential wall to push 
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out. This enables a flow of electrons in the opposite direction, termed a short-range 

dipole effect. The short-range dipole20 can decrease the effect of the asymptotic dipole by 

as much as 50% and can be modelled by applying a damping function of the same form 

as that deployed earlier to account for the damping of the dispersive interactions at short 

range. 

 short range
i =∑

i≠ j
i f ij Q j r ij

∣rij
3∣

                                                                   (2.16)

This short-range damping function is modelled using a Tang-Toennies damping 

function29:                                    

                                         

f  rij =−c∑
k=0

k max  br i k

k !
e−br ij                                                                                                          (2.17)

where b is termed the short-range damping parameter. The parameter c is included to 

allow for the possibility of the short-range term exceeding in magnitude the asymptotic 

dipole, as highlighted by electronic calculations36. The parameter set {b,c} may be 

obtained by reference to high level electronic structure calculations in which the nearest-

neighbour cation shell is systematically distorted. Furthermore, these calculations indicate 

Figure 2.1: Shift of cation in cubic lattice. The resulting effect on the spherical confining potential is 

shown in Figure 2.2.
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that the parameter b should scale between systems as a function of the ion radii,  ,

b=d / −                                                                               (2.18)

where d is a constant for a series of linked compounds, and σ+ and σ- are the respective 

cation and anion radii. As a result, parameters may be obtained for systems currently 

beyond the scope of the electronic structure calculations themselves.

      In the condensed phase the evolution of the induced dipoles is complicated by the 

many-body nature of the interaction (a dipole induced on one ion affects that on another 

which in turn affects the dipole on the original ion). As a result, obtaining the self-

consistent dipole moments on the ions (the dipole which include the results of all many-

body interactions) requires the iterative solving of coupled equations of the form:

 asymptotic
i =i

∑
i≠ j

Q j r ij

rij
3 −∑

i≠ j [  j

r ij
3 −

3 r ij  r ij . j 
rij

5 ]                                 (2.19)

Figure 2.2a:Origin of spherical confining potential, Vo, acting on electrons around an anion in a cubic 

crystal. Dashed line show Madelung contribution, associated with point ionic charges, to spherical 

potential. V0 compresses the free anion charge density (lightly shaded) to in crystal charge density (darkly 

shaded)

Figure 2.2b:Origin of asymptotic and short-range contribution to the dipole moment when cation is 

displaced. The dashed line represents the undistorted potential. With the shift of the anion highlighted in 

figure 2.1, the floor of the potential has acquired a gradient (and an associated aymptotic dipole) with the 

wall pushing out (an associated short-range dipole). The arrows represent  the flow of electron density and 

are antiparallel to the associated dipole.   
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or, included the short-range interactions:

coulombic
i =i{∑i≠ j

Q j r ij 1 f 4
ij  r ij

r ij
3 −∑

i≠ j [  j

r ij
3 −3 r ij

 rij . j
rij

5 ]}          (2.20)

The possibility of having to solve these iterative equations at each molecular dynamics 

time step is a significant potential barrier to the effective employment of potential models 

of this type. To circumvent this problem, the PIM20 exploits a Car-Parrinello7 method for 

maintaining self-consistent values of the induced multipoles without explicit 

minimisation at each time step. To achieve this, the dipoles are included as additional 

degrees of freedom in an extended Lagrangian formalism, which allows for the 

construction of Newtonian equations of motion which govern the time-evolution of the 

dipoles (in an analogous fashion to the equations of motion for the motion of the ions 

themselves). 20 The equation of motion of ions in Lagrangian form is 

 
d
dt ∂L

∂ ṙi
 − ∂ L

∂ r i

=0                                                                            (2.21)

, where L=T-U, where T and U are the system kinetic and potential energies respectively. 

The analogous equation of motion for the dipole time evolution, in Lagrangian form, is 

given by 

           
d
dt ∂L

∂̇i
− ∂L

∂i

=0                                                                            (2.22)

                                                                                                                                            

this reduces to 

                                                                                                                                      (2.23)

mi
 ̈i

=∑
j≠i

N.

−T ij
Q jT ij

 j
−2ki



 

where T ij  is the interaction tensor given by   

T ij
=∇ ∇∇  .... 1

r ij

                                                                      (2.24) 
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When the dipole acceleration, ̈i ,  is zero, the dipoles obtained are self consistent. The 

derivation of equations of motion in this form leads to the generation of the so-called fake 

kinetic energy, associated with the rate of change of the dipole moment (the dipole 

velocity). As a result, the total kinetic energy becomes

 
T= 1

2∑i=1

N

mi ṙ i
21

2∑i=1

N

mi
̇2

                                                                                                         (2.25)

 where the two summations represent  separate kinetic energy contributions from ionic 

and dipole motions and mi
  is the associated 'mass' of the dipoles. The fake kinetic 

energy20, represented in the second half of equation 2.25, represents the sum total of the 

extra kinetic terms generated in the CP method due to the motion of the additional 

degrees of freedom. Once the initial self consistent dipole moments have been obtained 

(see below) the self consistent dipoles at the following time step can be determined by 

integrating the dipolar equations of motion in parallel with the standard ion equations of 

motion.

      In order to determine the initial dipoles, an annealing process is used in which the 

dipoles are re-orientated in order to reach a local minimum when the fake kinetic energy 

is zero. This procedure is carried out using a steepest descent algorithm. The dipolar 

equations of motion are integrated for fixed ion positions and the fake kinetic energy is 

periodically quenched in order to locate the local energy minimum. Self-consistent 

dipoles are obtained when the dipole velocities are zero in all directions. 

2.10 Origin of polarisability values used. 

In tetrahedral systems, the cations are situated in high symmetry sites and, as a result, the 

resulting electric fields at the cation sites are small and so cation polarisation effects are 

expected to be small and hence are not considered in this investigation. Conversely, the 

anions are typically found in lower symmetry sites (often with a coordination number of 

two) which may result in large electric fields present at the anion sites and hence the 

potential for the induction of large dipole moments. As a result, it is critical to have an 

understanding of the anion polarisabilities. Experimentally, anion polarisabilities can be 
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obtained from refractive investigations on related crystals, where the link with 

polarisabilty is made through the Clausius-Mossotti relation:

−1
2

=
N Am

3M                                                                                                                                     (2.26)

where M is the molecular weight, ε is the permittivity (related to the refractive index by 

ε=n2), NA is Avagadro's number, ρm is the mass density, α is the molecular polarisability 

(the weighted sum of the anion and cation polarisabilities in a single formula unit). In 

addition, ion polarisabilities may be obtained from high level electronic structure 

calculations, for example utilising coupled Hartree-Fock calculations and Möller-Plesset 

theory to the second order to deal with correlation effects.37 In these calculations, a central 

anion is surrounded by nearest-neighbour cations and point charges to imitate an ideal 

crystalline environment. These calculations indicate that the anion polarisability 

decreases from the free ion values when confined in a crystal, as would be expected for 

placing an anion in a potential well of the form shown in figure 2.2. Conversely, cation 

polarisability increases, but only by a small amount, typically ~1%38,39. The anion 

polarisabilites display a strong environmental dependence, varying both between crystal 

structures and as a function of the crystal lattice parameter. The most dramatic 

environmental dependencies are observed for chalcogenide anions such as O2- and Se2-. 

These anions are unstable as free ions (positive second electron affinity) and are 

stabilized in the condensed phases by the confining effect of the ionic

environment40.

2.11 Ewald summation.

The present work utilises Ewald summation to calculate long range contributions in the 

potential energy.41 In this method the charge-charge energy in the infinitely periodic 

system comprised of the simulation cell and all its images is written as a sum of three 

terms for ion pairs, ij:

U ij
coul=1

2 ∑i , j , l

' 1
rij

Qi Q j=U ij
realU ij

recipU i
const                                     (2.27)
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The term l denotes all periodic images of the simulation cell with the prime indicating 

that terms where i=j if l=0 (i.e an interaction with itself) are excluded. The real space 

term, Ureal, is given by

U real=∑
i
∑
j≠i

Q iQ j

erfc ' r ij 
r ij

                                                         (2.28)

where erfc(n'rij) is the complementary error function which ensures that all the real space 

interactions die away to zero within the simulation cell. The longer ranged contributions 

are calculated in the reciprocal space term, Urecip
, given by:

 U recip=∑
i
∑
ji

Qi Q j

r ij
1−er fc' rij                                              (2.29)

                         = 1
2V

∑
i
∑
ji
∑
k≠0

Qi Q j

k 2 e
−2 k2

' 2

cos k⋅rij                                    

                                                                                                                                      (2.30)

which involves the sum over all the vectors kn in the reciprocal lattice of the periodically

replicated system. The constant term, Uconst, arising from the interaction of the ions with 

all their periodic images, is given by

U const=−∑
i

Q i
2'

1 /2                                                                         (2.31)

The parameter ' determines the rate of convergence of the real and reciprocal space 

parts. A value corresponding to half the cell length is used so that both terms converge 

reasonably quickly. In the case of the PIM, where the charge-dipole and dipole-dipole 

terms are also sufficiently long-ranges to require treatment via the Ewald summation 

method, we replace the U ij
RIM= 1

r ij
Q i Q j  term from equation 2.27 with the new long range 

interaction term, U ij
PIM which is given by 

U ij
PIM=T ij Qi Q jT ij

Q ji
−Qi j

−T ij
i

 j
                             (2.32)
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2.12 Central cell. 

Computational expense limits the central cell size to around 1000 ions where, if applied 

in isolation, around 50% of the ions would occupy the surface. To produce quantities 

which relate to the bulk rather than the surface, periodic boundary conditions (shown in 

figure 2.3) are applied. The simulation cell is replicated in all directions with the longest 

distance of interaction between two ions at L/2, where L is the box length, limiting the 

interaction of two ions i and j to the distance of  i and the nearest periodic image of j. 

Whilst the system now pertains to the bulk, it is necessary to make sure that when 

modelling structural properties which exist beyond the short-range of the first-

coordination sphere, the central unit cell is of sufficient size. Alternative procedures such 

as "multiplying cells" can lead to an inherent long range ordering outside of the predicted 

Figure 2.3:  Illustration of periodic boundary conditions. If an atom leaves one side of the box its periodic 

image re-emerges on the other side. 
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structure.42 The cell size for modelling systems IRO has varied for systems 120 atoms in 

electronic structure calculations42 to 13 824 atoms in a MD simulation of a-Si.43 One 

prediction of a sufficient cell size is made by stating that the diffraction pattern should be 

continuous over the FSDP within experimental resolution44
. This method for determining 

the minimum cell length of reproducing the FSDP intensity assumes extended range 

correlations are significant in reproducing IRO. In a cubic-unit cell the Bragg peaks are 

given by:

 Qhkl=
2
a0

h2k 2l21 /2=
2
a0

m1/2                                                 (2.33)

where Qhkl is the position of the Bragg peak and where integers h, k and l are integers. 

Differentiating and taking finite elements of the minimum lattice parameter amin becomes

                               

  amin=

Q1 2m

Q /Q
1/2

                                                                (2.34)

This would give amin as 44-29Å for FSDP peaks at ~1Å-1 and ~1.5Å-1. Another prediction 

involves multiplying the distance that extended range oscillations are present by 2 so for 

ZnCl2 and GeSe2 which have observed ERO oscillations to 60-80Å this would be upto 

120-160Å. As highlighted in chapter 1, recent works45 on ZnCl2 and GeSe2 indicate that 

such ERO derives from the principal peak and that the FSDP is dominated strongly by 

interactions in the region 7-10Å. Previous calculations using the PIM of a systems size of 

999 atoms46, and where the correlation length ~15Å, have been able to show a observable 

FSDP in the relevant structure factors.



Chapter 2. Computational Methods                                                                                  65 

2.13Structural quantities

2.13.1 Radial distribution functions
The radial distribution describes the distribution of ion density around a given ion. It is 

defined by, 

g r =
n r
n id  r 

                                                                              (2.35)

where nαβ  gives number of  β ions surrounding a central ion α in the interval, r → r + Δr, 

and where nid, the normalisation term, is the number of ions of the ideal gas over the same 

distance. In computational simulation, the distances between pairs of atom are calculated, 

accounting for periodic boundaries, and then placed in bins of a width 0.05 a.u. building 

up a histogram.  

2.13.2 Structure factors

The partial structure factors are calculated directly from the ion positions, {ri}, by  

S k =〈Ak A
∗ k 〉                                                                  (2.36)

Ak =[1/  N ]∑
i=1

N 

ei k⋅r i                                                                (2.37)

The wavevector k is of the form k=(2π /L)(m, n, p) where m, n and p are integers and L is 

the cell length. The k vectors are consistent with periodic boundary conditions and the 

average of those k vectors of equal length produces Sαβ(k) . Unless stated otherwise, the 

structure factors displayed in this thesis will be derived from the Ashcroft-Langreth 

formalism.47 
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2.13.3 Network connectivity statistics

The prevalence of edge-sharing units in the structure of compounds described has been 

highlighted in Chapter 1. The assumption that there are no face-shared tetrahedra is made 

and so the limit is two 4-membered rings. In a classification derived by Celino and 

Massobrio48 in calculations on liquid SiSe2, the cations are coloured “0”, “1” or “2” 

depending on whether the cation-centred tetrahedra are linked to nearest-neighbour 

tetrahedra with 0, 1 or 2 edge-sharing connections (equivalently, the number of four-

membered rings bonded to) respectively. Figure 2.4 shows a possible configuration of 

connected tetrahedra which include all three types of cation. These quantities are 

calculated by extracting pairs of cations which are bridged by two anions, as highlighted 

in figure 2.5. From these pairs of cations, the percentages of those which are “0”, “1” or 

Figure 2.4: Graphical representation of the different network connectivities of a cation in a tetrahedral 

network.Red circles, X anions; black circles, “0” M cations; green circles, “1” M cations; blue circles, “2” 

M cations
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“2” are calculated. The cutoffs used in the calculation are taken from the minima of the 

principal peaks in the respective radial distribution functions.

In a purely 4-coordinate system, changes in En, ( where n={0,1,2}) the percentage of 

cations with n number of 4-membered rings, would represent changes in the underlying 

network topology. In liquid systems, the cation coordination number is likely to exhibit 

variation in the first coordination shell, and so the relationship of changes in network 

topology with changes in E0, E1, E2 may be obscured by the degree to which departures 

from 4-coordination are present.  

2.13.4  Coordination number distributions.

In experimental studies the coordination is calculated by integration of the first peak in 

the radial distribution function for the appropriate interaction. Deciding where the cut-off 

point for the first coordination sphere is the source of the most inaccuracy, magnified by 

r2 in the integration. Computational analysis has the advantage of knowing the location of 

Figure 2.5:Unit defined as "edge-sharing": two cations (red circles) within a given cut-off radius which 

share two common anion neighbours (blue circles), where bond lengths are related to the minima of gZnZn(r) 

and gZnCl(r) respectively.
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the exact ion positions. The coordination number distribution was calculated by 

identifying, within a given radius,  the number of anions X within the first coordination 

cell of the cation, M. In this study the cutoff was selected by locating the first minima in 

gMX(r), for calculating M-X and X-M coordination number and  gMM(r) and gXX(r) for the 

XX and MM coordination pairs. 

The average coordination number for an ion pair, Mij, is calculated by:

M ij=∑l

m
N ij

                                                                                 (2.38) 

where l to m is the range of coordination number for ion pair, ij, considered and N ij
 is 

the fraction of coordination number α. 

2.13.5 Bond angle distributions. 

In this investigation, we shall focus on the bond angle distributions for ion triplets which 

give an indication of how the constituent polyhedral units of a liquid connect with one 

another. Experimentally, they have been obtained in vitreous silica using Magic Angle 

Spinning NMR49 although there are no recorded experimental distributions for the 

systems of particular interest in this study, GeSe2 and ZnCl2. Bond angle distributions are 

generated computationally by extracting triplets through identifying nearest neighbours of 

a given ion using the same cutoff used to identify the coordination environments, and 

calculating the angle between them. In MX2 systems, the distributions calculated are 

MMM, MMX, MXM, XMX, XXM and XXX. 

2.13.6 Coloured structure factors and radial distribution functions. 

Total structure factors, obtainable from diffraction experiments, are illuminated once they 

are broken down to the respective partial structure factors. For example, the relative 

contributions to the FSDP are highlighted, with the cation-cation contribution usually 

being the strongest. In this thesis, we extend this principle to the partial structure factor 

and radial distribution function, by breaking down these functions according to certain 

“coloured” properties, either the network-connectivity as calculated by the number of 
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four-fold rings a cation is bonded to or by the coordination number. Previous calculations 

of the partial cation-cation coordination number structure factors in Al2O3, showed 

features such as phase separation, as indicated by a rise when k→0, which indicated a 

clustering of such species.50 This analysis is focused on the cation-cation and cation-anion 

functions which are the main contributors to intermediate range order. 

S
ab =〈A

a∗ k ⋅A
b k 〉                                                                      (2.39)

Three MX network connectivity functions (equation 2.40) and six MM network-

connectivity functions (equation 2.41) are defined as 

S MX
ab k =〈AM

a∗⋅AX k 〉                                                                    (2.40)

S MM
ab k =〈AM

ȧ k ⋅AM
b k 〉                                                                 (2.41)

 

where ab ={0,1,2) , the number of four-membered rings a cation is bonded to. 

The partial cation-anion structure factor can be reconstituted according to the Ashcroft-

Langreth formalism47 by 

                                    

                        
S MX k =c0 S MX

0X k c1 S MX
1X k c2 S MX

2X k 
                             (2.43)

Similarly, the partial cation-cation structure factor can be reconstituted by 

                      

                        S MM k =c0 S MM
00 k −1c1S MM

11 k −1c2S MM
22 k −1            (2.44)

                                      2c0 c1 S MM
01 k 2c0 c2 S MM

02 k 2c1c2 S MM
12 k 

The corresponding equations according to the Faber-Zeeman formalism51 are 

                        
S MX k =c0 S MX

0X k c1 S MX
1X k c2 S MX

2X k 
                                    (2.45)

                        S MM k =c0
2S MM

00 k −1c1
2 S MM

11 k −1c2
2 S MM

22 k −1         (2.46)

                                     2c0 c1 S MM
01 k 2c0c2 S MM

02 k 2c1 c2 S MM
12 k 
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2.14 Thermostats.

In this investigation, calculations are performed both in the isobaric-isothermal (NPT) 

and constant volume (NVT) ensembles. To keep constant temperature Nose-Hoover 

thermostats52, later extended by Martyana,53 are implemented. The required additional 

parameters are M thermostat variables ζ1.......ζM, with conjugate momenta, p1
.... pM

.

The implementation of the thermostats modifies the standard Newtonian equations of 

motion: 

ṙi=
pi

mi
                                                                                             (2.47)

ṗ i=−
∂U  r 
∂ r i

−
p1

Q1
p i                                                                     (2.48)

̇k=
pk

Qk
                                                                                           (2.49)

ṗk=G k−
pk1

Qk1
pk                                                                         (2.50)

ṗ M=GM                                                                                          (2.51)

where the thermostat forces, Gk, are 

G1=∑
i=1

N pi
2

mi
−g k B T                                                                           (2.52)

Gk=
pk−1

2

Qk−1
−k BT for k=2. ... M ,                                                    (2.53)

where g is the number of degrees of freedom. Qk is the effective mass which relates the 

magnitude of each thermostat force to its acceleration, and which determines a

characteristic "relaxation" time scale over which the thermostat acts through a parameter

τ:

Q1=g k B T 2                                                                                    (2.54)
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Qk=k B T 2 for k≠1

                                                                       (2.55) 

The term
p 1

Q1
is a friction coefficient acting on all particle momenta, which has the 

effect of coupling the system to a heat bath at the target temperature. This thermostat is 

then thermostatted itself by the action of p2 , which is thermostatted by p3 and so 

on (a chain thermostat). In all simulations, τ is maintained at 10000 a.u. 

2.15 Isobaric molecular dynamics.

The technique implemented for simulating constant pressure simulations using the PIM 

was that developed by Wilson et al.54 The constant pressure method of Andersen55 was 

extended by Parrinello and Rahman56 to allow the simulation box to change shape as well 

as size. We have implemented the equations of motion as given by Martyna et al53. The 

ions and the barostats are both coupled to Nosé-Hoover chains of length 5. 

The total stress tensor is given by 


tot=

1
V ∑i

M i ˙r i , ˙ri , ,                                                           (2.56)

where the configurational part of the tensor,  ,  is obtained by:

−
∂U
∂h ,

=∑


V h
−1

                                                                   (2.57)

Here U is the total potential energy, V the cell volume, and h is the cell matrix, whose 

elements are the components of vectors along the simulation cell edges. The rate of 

change of the energy is highlighted by variation in h: in addition to the motion of ions are 

the changes observed in the dipoles. 

U≡U {r i}i=1, N , {i}i=1, N                                                                 (2.58)
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As the dipoles are calculated to their adiabatic value, the Hellman-Feynman theorem is 

utilised to write:

∂U
∂h

=∑
j

∂U
∂ r j {r

i}i=1, N ,{
i}i=1, N .

∂ r i

∂h
                           (2.59)

allowing the derivative of the dipoles with respect to the change in cell shape to be 

ignored. The long-range interactions are described by the Ewald method with a 

convergence parameter,η, set at ηrc=5.6. In the Ewald construction the interaction energy 

is decomposed into real-space and reciprocal-space components where Ureal, in the PIM, 

is a sum of pairwise addititive terms, which coverage at a range shorter than the 

simultation cell length, plus a Drude-like self-energy, which depends only on the dipoles 

and not on the ionic positions. Consequently, the real-space contributions to the stress 

tensor can be expressed in the standard virial form (i.e ~ ∑ij , pairs r
ij f 

ij , where fij is the 

real space contribution). The reciprocal-space contribution was derived by developing the 

Appendix of Nose and Klein's paper which gives the reciprocal-space energy expression 

for a system of molecules with internal charges to charged, dipolar species. Expressions 

for the charge-charge, charge-dipole and dipole-dipole contributions are given in 

equations 2.61, 2.62, and 2.63 respectively.

U {ri }i=1, N ,{i}i=1, N =U real {r i}i=1, N , {i}i=1, N 
U recip {ri}i=1, N , {i}i=1, N 

                      (2.60)

Charge-charge

                                                                                                              (2.61) 

where Q k n=e−
2∣k n∣

22

/∣kn∣
2 with η the Ewald parameter, taken to be 5.0/L, where L is 

the shortest simulation length.
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Charge-dipoles                                      

                                                                                                                                      (2.62)

Dipole-dipole

     

{∑j
2k n⋅ j sin 2k n⋅r j}

 

                                                                                                                                      (2.63)
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Chapter 3
Intermediate-range order in metal halides

3.1 Experimental background.

Zinc chloride possesses a number of interesting properties including high viscosity of the 

melt1,2, low electrical conductivity1, 'intermediate' strength glass-forming ability3 and the 

presence of intermediate-range order (IRO) in the molten state.4 Neutron diffraction 

experiments by Biggin and Enderby4 in the early 1980's indicated the presence of IRO 

through the appearance of a first sharp diffraction peak (FSDP) at k~1Å-1 in the total 

structure factor. This peak is widely attributed to density fluctuations in the Zn-Zn spatial 

correlations in the same region due to the FSDP observed in the cation-cation partial 

structure factor, SZnZn(k)4,5. This conclusion has been disputed in X-ray diffraction 

experiments by Neuefeind et al6,7, claiming that the Zn-Cl correlation is primarily 

responsible for the FSDP. 

      Another notable feature is the similarity in the position of the principal peak for 

gZnZn(r) and gClCl(r) at ~3.7Å. This contradicts the spatial ordering expected following 

simple Coulombic arguments where the nearest neighbour Zn-Zn separation would be 

larger than the corresponding anion-anion separation. Such ordering is observed in 

systems with larger cations8 such as in BaCl2. Table 3.1 shows the experimental 

information of the local coordination environments. X-ray diffraction experiments by 

Allen et al9 indicate that molten ZnCl2  is mainly comprised of ZnCl4
2−  tetrahedra and 

that the presence of these units persist to high temperatures. Extended X-ray absorption 

fine structure (EXAFS) studies by Wong and Lytle10 and later by Fillaux et al11 yielded 

values for the Zn-Cl separation in liquid ZnCl2 of 2.36Å and 2.29Å. The discrepancy 

between the two EXAFS experiments can be explained by the use of a six-coordinate 

reference crystal structure for the earlier experiment, the latter experiment using GNXAS 

data analysis program12 requiring no such crystal reference. The liquid Zn-Cl coordination 

number varies depending on the experimental method, 5.1 for EXAFS10 down to 3.9 for 

neutron scattering experiments9 and between neutron diffraction experiments there is a 

variation of 0.7.6,9
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Table 3.1 :Experimental results concerning the first coordination shell of ZnCl2. 

Raman spectroscopy studies on the divalent halides17-23  show several key features with 

regards to structure, by linking specific Raman modes with particular structural 

arrangements. They have supported diffraction experiments in asserting that ZnCl2 is 

primarily composed of tetrahedral units which persist into the liquid phase. The boson 

peak, a low-frequency peak linked with intermediate range-order, is found in crystalline 

(39cm-1), glassy (25cm-1) and liquid (10 cm-1 
 at 450oC) ZnCl2

23, although over this range it 

weakens as temperature rises and disappears at 800oC. The nature of the temperature-

dependent deterioration of the boson peaks has been suggested as an indicator of 

fragility.24 The range of structures linked to the Raman modes found are based on:

1. Tetrahedral units linked through corner-sharing with modes attributed to isolated 

tetrahedral units ((MX4)2- , vTd
=275 cm-1), units which form part a network ((MX4/2)M),

v1a
B =232 cm-1) and larger structural units comprised of four interconnected corner-

sharing tetrahedral units ((M4X6X4/2M), v1b
B =265 cm-1).23

2. Edge-sharing modes are also located, with peaks linked to units which form part of an 

edge-sharing chain ((M2X2X4/2)M), v1
E =300 cm-1), designated "weak" for ZnCl2, 

compared to "strong" for BeCl2
25 

. This links with theoretical work26 on BeCl2 and the 

experimental crystal structure for BeCl2  which consists of edge-sharing chains.27,28

3. Terminal units such as (MXX2/2)M which signify the presence of 3-coordinated M 

cations.23

First author (Reference) Material Technique Separation Coordination
Zn-Cl Cl-Cl Zn-Zn Zn-Cl Cl-Cl Zn-Zn

Å Å Å
Imakoa (13) Glass X-ray 2.32 3.82 3.8 6 1.65
Desa (14) Glass Neutron 2.29 3.72 3.72 3.8 9.5 4 1.62
Wong (10) Glass EXAFS 2.34 5.2 N/A
Salmon(15) Glass Neutron 2.28 3.70 3.75 3.9 12 4 1.62
Wong (10) Liquid EXAFS 2.35 5.1 N/A

Fillaux  (11) Liquid EXAFS 2.29 N/A
Triolo (16) Liquid X-ray 2.29 3.85 3.66 4 12 4 1.68
Biggin (4) Liquid  Neutron 2.29 3.71 3.8 4.3 8.6 4.7 1.62
Allen (9) Liquid Neutron 2.29 3.79 3.9 1.66

Neuefeind (6) Liquid Neutron 2.33 3.77 3.8 4.6 1.62

R=r--/r+-
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The width of the Raman peaks (indicated by the full width half maximum-FWHM) for 

the vTd
vibrations appear significantly narrower (3.0cm-1) for ZnBr2 compared to ZnCl2 

(9.9cm-1). This suggests a more open network for the latter which enables large amplitude 

vibrations. Neutron diffraction experiments6 show that ZnBr2 has a more intense FSDP 

than ZnCl2. Whether this is due to significant structural differences or the smaller 

scattering length of Br (6.79 fm) compared to Cl (9.58 fm), resulting in a greater 

weighting of the SZnZn(k) term (and, concomitantly, a larger contribution to FSDP) in F(k), 

is not known. 

      Magnesium chloride is a compound which contains a cation of similar ionic radius to 

zinc (0.86Å compared to the value of 0.88Å respectively) but displays vastly different 

properties such as weak glass forming ability, greater conductivity (2.0 Ω-1  cm-1 compared 

to 1 x 10-3 Ω-1 cm-1  for ZnCl2)29 and lower viscosity (2.2 cp against 4 x 103 cp).29 Neutron 

diffraction30,31 on molten MgCl2 show a departure from tetrahedral coordination, as shown 

by the relative positions of the first peaks in the Mg-Cl and Cl-Cl partial radial 

distribution functions (R=r--/r+-), where R=1.47, (a true tetrahedral value would be 

R=1.63). The difference in local coordination environment mirrors the observed ambient 

pressure, thermodynamically stable crystal structures. The predominant crystal phase for 

MgCl2 is the six-coordinate CdCl2.structure32, whilst that for ZnCl2  is the four-coordinate 

δ-ZnCl2 structure.33 Raman studies for liquid MgCl2 emphasises the presence of [MgCl6]4- 

units18, where the basic lattice structure is predicted to persist into the liquid state, while 

Huang observes19 smaller coordinated [MgCl4]2- species.

      Manganese chloride is another compound with an intermediate-sized cation whose 

structure has been studied by diffraction.31,34 The results of the neutron diffraction 

experiment carried out by Biggin and Enderby31 disagree significantly with an earlier X-

ray diffraction experiment carried out by Ohno34: a Cl-Cl separation of 3.58Å31  is 

obtained compared to the earlier value from X-ray diffraction of 4.10Å.34 One notable 

feature of manganese chloride is the negative scattering length, b, of the cation and the 

effect this has on the total structure factor and the subsequent extrapolation of the partial 

quantities. For manganese, b=-3.73 fm, which results in the following weightings for the 

neutron total structure factor.31

F(k) = 0.015[SMnMn(k)-1]+0.408[SClCl(k)-1]-0.159[SMnCl(k)-1]                 (3.1) 
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This expression shows that the FSDP may be absent due to the near-negligible 

contribution of SMnMn(k) to F(k), because of the small magnitude of b for manganese. The 

negative sign of the scattering length for manganese results also results in a negative 

contribution by SMnCl(k)  to the FSDP in F(k). The corresponding equation for the total 

radial distribution G(r):

                    G(r) = 0.015[gMnMn(r)-1]+0.408[gClCl(r)-1]-0.159[gMnCl(r)-1]                      (3.2) 

gMnMn(r) is unable to be extracted from the G(r) due to its low weighting, and as a result 

there is no recorded experimental function for the Mn-Mn spatial correlations. 

3.2 Computational studies.

Early experiments4 suggested the use of ionic rigid-ion model potential(RIM) with no 

reference to polarisation effects would be satisfactory in modelling ZnCl2. Early 

molecular dynamics simulations of zinc chloride used various forms of the Born-

Huggins-Mayer potential35-38. They sought to reproduce such quantities as the total 

energy, ion separations and the partial radial distribution functions. In the work of 

Woodcock, Angell and Cheeseman (WAC)35 only the Zn-Cl and Cl-Cl nearest neighbour 

separations could be reproduced to good accuracy. The nearest-neighbour Zn-Zn 

separation was significantly larger than that observed experimentally, fully consistent 

with simple Coulombic ordering. The models of Gardner and Hayes36, in which partial 

charges were used, also failed to reproduce these features. Kumta et al36 produce closer 

Zn-Zn separations using a rigid-ion model utilising an enormously large dispersion 

coefficient for the Zn-Zn interaction (CZnZn=7200 a.u).37 compared to the range provided 

by electronic structure calculations38,39 of 7.32-20.34 a.u. Abromo and Consolo40 later 

adapted RIM potentials to the study of the structure of liquid ZnBr2 and ZnI2; 

unsurprisingly, the same deficiencies highlighted in the RIM models of ZnCl2, such as an 

incorrect FSDP position and too large a zinc-zinc separation, were also present. It is 

apparent that these various attempts at closing the Zn-Zn separation are a substitution for 

some critical underlying physics which are inadequately represented by the RIM.  

      The polarisable-ion model (PIM)41 devised by Wilson and Madden represented a 

significant improvement in modelling the ZnCl2 structure, reproducing the closer zinc-
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zinc separation and explaining the mechanistic origin of the FSDP.42,43 Where the anion 

coordination is two (as expected for tetrahedral systems) then, as a consequence of the 

relatively high chloride ion polarisability (20 a.u)44 and occupation of low symmetry sites, 

a large dipole will form. Neighbouring zinc ions are then able to move closer together, 

due to the shielding of their Coulombic charges by the presence of anion electron density. 

The reduction of Zn-Zn separation leads to the formation of two different length scales, 

observed in the SZnZn(k) structure factor as a principal peak (at kPP~2Å-1) and a FSDP at 

kFSDP~1Å-1
.
42,43 The shift of the principal peak to higher scattering angles (a small shift 

expected of in the principal peak position of ~0.1Å-1 compared to a much larger changes 

in FSDP peak position) is indicative of the increase in density of the Zn-Zn correlation, 

due to the reduction of the Zn-Cl-Zn bond angle by anion polarisation, while the 

emergence of the FSDP is indicative of a decrease in Zn-Zn correlations over the longer 

range associated with intermediate range order in the region of 5-10Å.42,43  

      The representation of SZnZn(k), and its relationship to SZnCl(k) has shown significant 

differences in computational work, in addition to the variations observed experimentally. 

Implementation of the Monte-Carlo method on ZnCl2  resulted in a strong FSDP in 

SZnZn(k).45 This was achieved by implementation of subsidiary potential forcing Zn-Zn 

correlation on a longer length scale.45 A recent shell-model parameterisation of ZnCl2 

resulted in good agreement with, in contrast to other models, the Zn-Zn separation.46 In 

reciprocal space, a shoulder rather than a FSDP appears in SZnZn(k) while a clearer FSDP 

is observed in SZnCl(k). 

      Reverse Monte-Carlo simulations by McGreevy and Pusztai47 have reproduced the 

experimental structure factors and radial distribution functions for molten magnesium 

chloride. They also show important differences between the two- and three-body 

correlations of MgCl2 and ZnCl2. The Zn-Cl-Zn bond angle distribution is closer to 

tetrahedral values, while the corresponding distribution for MgCl2 is closer to octahedral 

geometry around the cation. While the calculated radial distributions of both systems 

display glassy behaviour with many peaks observed, in gMM(r) and gMX(r) for both 

systems, it is noticeable that substantially smaller minima are observed between the 

principal and second peaks in ZnCl2, although not for gXX(r) where it is similar to that 

observed in MgCl2. As yet, no effective ionic pair potential has been reported for 

magnesium chloride. 

      The p6 configuration of the lighter magnesium ion is more conducive to the use of 
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electronic crystal structure calculations compared with the heavier d10 zinc. Calculations 

by Harrison and Saunders48 showed the importance of including Cl-Cl dispersion in 

stabilising the layer structure in the crystal state. Theoretical studies concerning the liquid 

structure for MnCl2 have not been reported.

3.3 Simulation details

The central cell used in all calculations in this chapter consists of 999 ions (333 cations 

and 666 anions). The initial configuration for the ZnCl2 PIM parameterisation was 

obtained from a previous set of calculations using the model of Wilson and Madden43 

with the parameters given in table 3.3. The advantage of using a related liquid 

configuration is that there is a greater certainty in maintaining liquid-like properties over 

melting from a crystal structure. MD simulations were carried out at elevated 

temperatures of 1500K, well above the melting temperature, to equilibrate the 

configuration for the respective ZnCl2, MgCl2 and ZnX2 models dealt with in this chapter.

       For each run involved in the parameter search of ZnCl2 and MgCl2, smaller time-scale 

simulations of 30 ps were carried out. The efficacy was determined by observing changes 

in density and radial distribution function peak positions. Structural quantities were 

obtained from a MD run of 60 ps at zero pressure and a temperature of 800K using an 

NPT ensemble and are discussed in sections 3.5-3.6. The average cell size in the 

simulation was 31.36Å corresponding to a liquid density of 2.42 g/cm3, within 1% of the 

experimental liquid density of 2.436 g/cm3.53

      The initial configuration for the parameter search for the MgCl2 potential was taken 

from the final configurations from the simulations run on the new ZnCl2 PIM model. To 

compare the structural properties of the new MgCl2 PIM model with the experimental 

total structure factors, the temperature was set at 1000K and the average cell size was 

31.50Å, matching experimental density (1.67 g/cm3). An equilibration run of 30 ps was 

carried followed by a simulation of 60 ps under NPT conditions from which structural 

quantities were extracted and discussed in section 3.7.

      For the calculations on ZnX2 materials discussed in section 3.8, the starting 

configuration was derived from the ZnCl2 PIM model developed in section 3.3. The cell 

size was fixed at 31.36Å and the temperature maintained at 800K. Simulations were 

carried out increasing values of the short-range repulsion parameter BXX,  increased, 



Chapter 3. Intermediate-range order in metal halides                                                     82

stepwise from 107 a.u to values of 147 a.u, 207 a.u, 307 a.u, 407 a.u and 607 a.u. Starting 

from BXX=107 a.u and ending with BXX=607 a.u, effective anion-anion separations, 

measured by the position of the principal peak in gXX(r), of 3.67Å, 3.76Å, 3.79Å, 3.81Å, 

3.83Å and 3.84Å were produced. At each effective anion-anion separation, an 

equilibration run was undertaken for 30 ps and a further simulation runs of 60 ps 

undertaken under NVT conditions from which structural data was collected.

3.4 Construction of ZnCl2 and MgCl2 PIM potentials.

The potential models used in this investigation were derived from a previous 

parametrisation of the PIM for ZnCl2.43 There were several deficiencies with the old 

parameter set. For example, the ambient pressure experimental density was only obtained 

at simulation pressures of ~2 GPa. When taken down to lower pressures, as well as the 

expected decrease in density, peaks signifying a separate edge-and corner sharing in 

gZnZn(r) were present. This contrasts with radial distribution functions in experiment ZnCl2 

where a single peak defines the cation correlation over this range. Furthermore, at 

simulation pressures lower than ~1.5 GPa the model became unstable. The initial 

parameter search focussed on two aspects: controlling the stability of the model at lower 

pressures and matching experimental density. The stability of the model at lower 

pressures was controlled by the short range damping parameter, where c was amended 

from a value to c=1.0 to c=1.4. Although the model was stabilised at zero pressure, the 

density of the model was significantly lower than that observed experimentally. Initial 

attempts at reducing the density by perturbing the short-range parameters failed to 

increase the density by a suitable amount. Experimental density was achieved by basing 

the Fumi-Tosi parameters on those used by Woodcock, Angell and Cheeseman, as shown 

in table 3.2. The initial values of the dispersion coefficients were derived from the Slater-

Kirkwood formula (equation 3.3), which link the dispersion coefficients with ion 

polarisabilities49: 

                                                     
C ij

6
=

3
2
i j


i

pi


1
2

 j

p j


1
2                                           (3.3)

α and p represent the polarisability and effective electron number of the ions. The 

effective electron number has been proved to be constant over an isoelectronic series.50    
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These parameters were perturbed until the closest match with experimental radial 

distribution peak positions and experimental density at 800K (2.412 g/cm6) could be 

obtained. The final, old and Woodock, Angell and Cheeseman (WAC) parameter sets35 

are listed in table 3.3. 

                                                  

ij αi  (a.u) αj  (a.u) pi pj C ij
CALC (a.u) C ij

PIM (a.u)

ClCl 20 20 5.90 5.90 163 183
ZnCl 2.85 20 4.12 5.90 32.00 80
ZnZn 2.85,

5.5
2.85,
5.5

4.12 4.12 7.32,
20.34

40

MgCl 0.49 20 4.449 5.90 0.54 18.94
MgMg 0.49 0.49 4.449 4.449 2.26 2.2

Table 3.2: Related values in calculation of dispersion coefficients through the Slater-Kirkwood formula. 

pi are obtained from Koutselos50. Polarisabilities: Cl-  ( from Fowler and Madden]; Zn2+ (2.85 a.u) from 

Mahan38, Zn2+  (5.5 a.u) from Pyper39; Mg2+ (0.49a.u) from Mahan52. C ij
CALC and Cij

PIM refer to the 

dispersion coefficient values obtained from calculation from quantities in columns 1-4 and those obtained 

after the parameter search respectively.  

One advantage of using simple potential models is the ease of transferability. A MgCl2 

potential model was produced by adjusting the FT parameters from the new ZnCl2 PIM to 

better correlate with the radial distribution function peak positions obtained in neutron 

diffraction experiments.31 The parameters controlling polarisability {b,c, α} were 

maintained due to the similar size of the cations used and the presence of the same anion. 

Zn2+ is a d10 cation while Mg2+ is p6. Electronic structure calculations have shown the 

environmental dependence of the cation polarisability51 in Zn2+, greater than that for 

magnesium. The value of the zinc dipole polarisability is calculated as 5.5 a.u39 (in 

addition, there is an older calculated value of 2.85 a.u38) far exceeding the value of 0.49 

a.u52 for magnesium, and results in differences for the dispersion coefficients involving 

the metal ion (table 3.2).
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PIM (new) PIM(old) WAC
ij Bij aij Bij aij Bij aij

ClCl 87 1.5564 8.00 1.00 63.00 1.5664
ZnCl 43.71 1.6000 48.00 1.56 43.17 1.5664
ZnZn 27 1.5564 27 1.60 27 1.5664
ClCl 63 1.5564
MgCl 51.72 1.6000
MgMg 27 1.5564  

Table 3.3: Parameters for ZnCl2 and MgCl2 potentials (Columns 2-3). Columns 4-5 and 6-7 show the 

different parameters, obtained respectively from a previous PIM used and the Woodcock, Angell and 

Cheeseman (WAC) potential to describe the short-range Zn-Cl and Cl-Cl interactions. All values are in 

atomic units.

Figure 3.2: Calculated and experimental  (from 

Biggin and Enderby31 ) total structure factors of 

ZnCl2.,  Colour code: black data points, 

experimental; red line, calculated. 

Figure 3.1: Simulated total and partial structure factors 

for ZnCl2.  Black line; SClCl(k); red line, SZnCl(k); green 

line, SZnZn(k); blue line, F ZnCl2
. For figures 3.1 and 

3.2 the isotopes from top to bottom are; (a) natCl (b) 
35Cl (c)  37Cl. 
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3.5 Total and partial structure factors of ZnCl2.

Figure 3.1 shows the experimental1 and calculated F ZnCl 2
 k  . The peak around the 

region 3.5Å-1  represents the short range topological order associated with excluded 

volume effects. At lower k values, the peak at k ~2 Å-1  indicates nearest neighbour bond 

ordering in real space. The characteristic FSDP, indicating intermediate range order, is 

observable in the k~1 Å-1 region . 

      The calculated total structure factors in figure 3.2 are in excellent agreement with the 

investigation carried out by Biggin and Enderby.4 Figure 3.1 shows the breakdown of the 

three isotopically weighted total scattering factors, into the three individual weighted 

partial factors. The different weightings of the structure factors (given in table 3.4) are a 

result of the relative scattering properties of 35Cl, 37Cl and natCl (coherent neutron 

scattering lengths of 2.6, 11.8, 9.58 fm respectively) which explain the very different 

shapes of the experimental total scattering functions. The principal peak at  2 Å-1 is 

relatively strong for F Zn35 Cl 2
k   as it is dominated by SClCl(k), whereas in F Zn37 Cl2

 k  this 

peak is largely suppressed by competition between SClCl(k) and SZnCl(k). Where the 

calculated F(k) differs from the experimental F(k) is in failing to replicate the deep trough 

in-between the FSDP and the principal peak in F Zn37 Cl2
 k   (conversely, for F Zn35 Cl2

k  ,  

the intensity becomes too large here). Furthermore, the FSDP in F Znnat Cl 2
k   is discernibly 

larger than that observed in F Zn35 Cl2
 k   suggesting the model overemphasises the 

contribution of SZnCl(k) to the FSDP. 

Individual PSF weighting factors (barns/sr/atom)

Isotope Zn-Zn Zn-Cl Cl-Cl
35Cl 0.0358 0.2929 0.5982
natCl 0.0358 0.2253 0.3541
37Cl 0.0358 0.0837 0.0489

Table 3.4: Partial structure factor weightings for different isotopic combinations of ZnCl2.

      The contribution of SZnCl(kFSDP) to the FSDP in F(k) is stronger than that of SZnZn(kFSDP). 

This interpretation falls in between the conclusions of  experimental observations of 

Neuefeind6,7  and Biggin and Enderby4 which display a dominant SZnCl(kFSDP) and 
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SZnZn(kFSDP) contribution to F(kFSDP) respectively. In the next section, we will highlight the 

methods used by Neuefeind6,7 to extract the partial structure factors for ZnCl2.

3.6   Extraction methods of partial structure factors for ZnCl2.

Early neutron diffraction experiments on molten salts showed that the partial structure 

factors could be extracted through the method of isotopic substitution. This method 

requires for n number of experiments to extract n(n+1) partial structure factors for a n-

component liquid. Early neutron diffraction experiments were limited to momentum 

transfers of ~10Å and errors attributed to water contamination. High energy X-ray 

diffraction experiments7 enable greater real-space resolution but have to be combined 

with neutron-diffraction experiments to extract partial information due to the invariability 

of form factors with changes in isotope identity. Due to the higher energy used (around 

100 keV, far above the K edge) absorption is predicted to be reduced by three orders of 

magnitude compared to earlier X-ray diffraction experiments.16 As neutron diffraction 

experiments are costly and certain isotopic mixtures may be hard to obtain, methods of 

combining X-ray and neutron diffraction studies have been utilised to extract information 

on the underlying partial pair structure with combine fewer than n neutron diffraction 

experiments and increased accuracy. The first method7 combines X-ray and neutron 

diffraction data to eliminate one partial structure factor as described by the function 

d j' k ' k  . d j' k ' k  is the linear combination of the scattering functions obtained from X-

ray and neutron scattering functions, i(k) and S(k) which are defined as:

 

   i k =
∑i∑ j

uc
f i f j sij

∑i

uc
f i

2                                                   (3.4)

                  S k =
∑i∑ j

uc
bib j s ij

∑i

uc
bi

2                                                   (3.5)

where fi and bi are the form factors and coherent neutron scattering lengths respectively. 

Linear combinations of i(k) and S(k) eliminate one of the partial structural correlations 

(defined by the ion pair j'k').
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d j ' k ' k = f j ' f k '{∑i

uc

bi}
2

S k −b j ' bk '{∑i

uc

f i}
2

i k 

                       

 

= f j' f k '∑
i
∑

j

uc

bib j S ij k −b j ' k '∑
i
∑

j

uc

f i f j S ijk 

                         (3.6)

 
= ∑

jk≠ j' k '
{ f j ' f k ' b j bk−b j' bk ' f k f j}S jk k 

                                    (3.7)

                                                                                                                                        (3.8)

Note that the jk=j'k' term could be kept from the last equation, but is zero. 

Now, define 

                                                    

  d j ' k '
j ' ' k ' ' k =

d j ' k ' k 
f j ' f k ' b j ' ' bk ' '−b j ' bk ' f j ' ' f k' '

                                      (3.9)

which effectively normalises d j ' k '
j ' ' k ' ' k 

As an example, d ZnZn
ClCl k  ( j ' k '=ZnZn and j ' ' k ' '=ClCl ):

d ZnZn k ={ f Zn f Zn bZn bCl−bZn bZn f Zn f Cl }S ZnCl k { f Zn f Zn bCl bCl− f Zn f Zn bCl bCl }SClCl k 
                                                                                                                                      (3.10)

d ZnZn
ClCl k =

{ f Zn
2 bZn bCl−bZn

2 f Zn f Cl }SZnCl k { f Zn
2 bCl bCl−bZn

2 f Cl f Cl }SClCl k 
f Zn

2 bCl
2 −bZn

2 f Cl
2       (3.11)

            ={ f Zn
2 bZn bCl−bZn

2 f Zn f Cl

f Zn
2 bCl

2 −bZn
2 f Cl

2 }S ZnCl k SClCl k                                            (3.12)

In summary, the three functions considered are

d ZnZn
ClCl k =A S ZnCl k SClCl k                                                                                  (3.13)

d ZnCl
ClCl k =B S ZnZnk S ClCl k                                                                                  (3.14)

d ClCl
ZnZn k =C S ZnCl k S ZnZnk                                                                                 (3.15) 
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In our calculations, we replicate the derivation of these terms using our configurations 

from a similar temperature run of 600K. Figure 3.3 shows these three functions along 

with the (weighted) breakdowns in terms of respective pairs of partial structure factors. 

Both d ZnZn
ClCl k  and d ZnCl

ClCl  k  appear similar to those obtained from experiment (figure 

5 in [7]). For d ZnCl
ClCl  k  the simulated function shows a small indentation at k ∼ 1Å-1, 

reflecting the negative contribution of SZnZn(kFSDP), whilst the experimentally-obtained 

function (natCl) shows a small maximum at the same scattering angle. It is clear, however, 

that these features arise from the subtle interplay of the two underlying partial structure 

factors, shown in figure 3.4, which near-cancel in this k region. Analogous comments 

apply to d ZnZn
ClCl k  , which shows a significant difference between the simulated and 

experimental functions at k ∼ 2Å-1 (i.e. in the region associated with the principal peak). 

Figure 3.3: Difference functions, d j' k ' k  , obtained by equations 3.13-3.15. The variation of d j' k ' k 

with isotopic substitution is highlighted; black line, 37Cl; red line, natCl; green line, 35Cl. For both figures 3.3 

and 3.4: Top, d ZnZn
ClCl k  ; middle, d ZnCl

ClCl k ; bottom, d ClCl
ZnZn k  .  

Figure 3.4: Breakdown of difference functions, d j' k ' k  , into the constituent partial structure factors. 

Red line, weighted structure factor (with coefficients A, B and C given in table 3.5 used in equations 3.13-

3.15) terms; green line, partial structure factor with the full weighting respectively. 
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In the experimentally-obtained function the feature at k ∼ kPP  appears as a trough whilst in 

the simulated function it appears as a peak. Again, however, this feature arises from the 

near cancellation of the principal peaks in SZnCl(k) and SZnZn(k).

Figure 3.3 shows that that the form of d j ' k ' k  depends heavily on the isotope used in 

the neutron diffraction experiment. d ZnCl
ClCl k  displays a significantly different form with 

the 37Cl isotope where there is an inversion of the principal peak and it displays a strong 

inverted FSDP. When the 37Cl isotope is used, the weighting (given in table 3.5), B, in 

equation 3.14 becomes strongly negative, leading to SZnZn(k) dominating the d ZnCl
ClCl k 

term.

Weighting factors

Isotope A d ZnZn
ClCl k  B d ZnCl

ClCl k  C d ClCl
ZnZnk 

35Cl 0.391 -0.861 0.454
natCl 0.452 -1.045 0.433
37Cl 0.868 -3.568 0.288

Table 3.5: Weighting factors for difference functions d j ' k ' k  for coefficients A, B, C in equation 3.13-

3.15. 

The second method Neuefeind used6 assumes a detailed knowledge of one partial 

structure factor, SZnCl(k), claimed to be of greater accuracy than that derived from the 

Biggin and Enderby experiment,to produce the other two with knowledge of X-ray and 

neutron diffraction experiments. The equations derived by Neuefeind for SClCl(k) and 

SZnZn(k) respectively are:

S ClCl=

 d /d  x

f Zn
2 −

 d/d n

bZn
2 −S ZnCl[ 4 f Cl

f Zn
−

4bCl

bZn ]
[ 4 f Cl

2

f Zn
2 −

4bCl
2

bCl
2 ]

                                        (3.16)

S ZnZn=

 d/d x

f Cl
2 −

 d/d n 

bCl
2 −S ZnCl[ 4 f Zn

f Cl
−

4bZn

bCl ]
[ f Zn

2

4 f Cl
2 −

bZn
2

4 bCl
2 ]

                                       (3.17)
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Here, we shall define both these functions by the methods they are obtained 

experimentally (by Neuefeind6) and computationally (in this study). The neutron 

scattering function is defined as:

                                                  SnQ=

d
d

−∑
i

v i bi
2

∑
i

vi bi
2 1                                   (3.18)

and the X-ray scattering function is defined as:

                                        S X k=  d 
d X /el−∑i vi f i

2

∑i v i f i
2 1=i k 1                           (3.19)

where k=4/sin  ,  d 
d   is the coherent differential cross section per unit of 

composition, bi is the coherent scattering length, f i is the X-ray form factor, el is 

the scattering cross-section of the free electron, v i is the stoichiometric coefficient of 

the atom i, and N uc is the number of distinct atoms in the unit of composition, ZnCl2. 

                                        S n/X k =∑
ij
ij k S ij k  ,                                      (3.20)

                              where ij=
vi v j f ik  f jk 

∑i
vi f i

2 2−ij  for X-rays                        (3.21)

                                  and ij=
vi v j bi b j

∑i
vi b i

2 2−ij  for neutrons.                              (3.22)

Equation 3.18 rearranges to 

                                        S nk −1∑
i

vi bi
2
= d

d 
n

−∑
i

v i bi
2                          (3.23)

Expand the summation 

                                      S nk −1vCl
2 bCl

2 vZn
2 bZn

2 = d 
d 

n

−vCl bCl
2 −vZn bZn

2 ,      (3.24)

giving, 

                                           Snk =
 d 

d  
n

−2bCl
2 −bZn

2

4bCl
2 bZn

2 
1                                      (3.25)
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Equation 3.20 leads to:

                                         Snk =∑
ij

v i v j bi b j

∑i
vi f i

2 2−ij , S ijk  ,                            (3.26)

                          =
bZn

2 vZn
2 S ZnZn k bCl

2 vCl
2 S ClCl k 2bCl bZn vCl vZn S ZnCl k 

4bCl
2 bZn

2            (3.27)

                          =
b2 S Zn Znk 4bCl

2 SClCl k 4bCl bZn S ZnCl k 
4bCl

2 bZn
2                               (3.28)

      d 
d 

n

−2bCl
2 −bZn

2

4bCl
2 bZn

2 1=
bZn

2 SZnZn k 4Cl
2 S ClCl k 4bCl bZn S ZnCl k 

4bCl
2 bZn

2
               (3.29)

  d 
d  

n

−2 bCl
2 −bZn

2 4 bCl
2 bZn

2 =bZn
2 SZnZn k 4 bCl

2 S ClCl k 4 bCl bZn S ZnCl k  ,     (3.30)

  d 
d  

n

2bCl
2 =bZn

2 S ZnZnk 4bCl
2 SClCl k 4bCl bZn S ZnCl k  ,                               (3.31)

and so, 

SZnZn k =
 d 

d  
n

2bCl
2 −4bCl

2 S ClCl k −4bCl bZn SZnCl k 

bZn
2

                                     (3.32)

with the X-ray equivalent

SZnZn k =
 d 

d  
X

2 f Cl
2 −4 f Cl

2 SClCl k −4 f Cl f Zn S ZnCl k 

f Zn
2

                                 (3.33)

So, we are now in a position to eliminate SZnZn(k) by subtracting equation 3.32 from 

equation 3.33, giving

bZn
2  d

d  
X

2 f Cl
2 bZn

2 −4 f Cl
2 bZn

2 S ClCl k −4 f Cl f Zn bZn
2 S ZnCl k = f Zn

2  d 
d


n

2bCl
2 f Zn

2 −4bCl
2 f Zn

2 SClCl k −4bCl bZn f Zn
2 S ZnCl k 

         (3.34)

Make SClCl(k) the subject, 
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S ClCl k {4 f Cl
2 bZn

2 −4bCl
2 f Zn

2 }=bZn
2  d

d  
X

2 f Cl
2 bZn

2 −4Cl f Zn bZn
2 SZnCl k 

− f Zn
2  d

d  
n

−2bCl
2 f Zn

2 4bCl bZn f Zn
2 S ZnCl k 

     (3.35)

To retain consistency with Neuefeind, notice that

4 f Cl
2

f Zn
2 −

4bCl
2

bZn
2 =4 f Cl

2 bZn
2 −

4 bCl
2 f Zn

2

f Zn
2 bZn

2                                                                           (3.36)

which allows equation 3.35 to be written as 

f Zn
2 bZn

2 4 f Cl
2

f Zn
2 −

4bCl
2

bZn
2 SCl Cl k =bZn

2  d 
d 

X

2 f Cl
2 bZn

2 −4 f Cl f Zn bZn
2 S ZnCl k 

− f Zn
2  d 

d 
n

−2bCl
2 f Zn

2 4bCl bZn f 2 S ZnCl k 

        (3.37)

 and so 

4 f Cl
2

f Zn
2 −

4bCl
2

bZn
2 S ClCl k =

 d 
d 

X

f Zn
2 

2 f Cl
2

f Zn
2 −

4 f Cl f Zn bZn
2

f Zn
2 bZn

2 S ZnCl k 
                          (3.38)

                                          
−
 d

d  
n

bZn
2 −

2bCl
2

bZn
2 

4bCl bZn f Zn
2

f Zn
2 bZn

2 S ZnCl k 
                        (3.39)

=  d 
d 

X

f Zn
2 −

 d 
d 

n

bZn
2 

2 f Cl
2

f Zn
2 −

2bCl
2

bZn
2 −

4 f Cl

f Zn
S ZnCl k 

4bCl

bZn
S ZnCl k 

                        (3.40)

=  d 
d 

X

f Zn
2 −

 d 
d 

n

bZn
2 −S ZnCl k {4 f Cl

f Zn
−

4 bCl

bZn }2 f Cl
2

f Zn
2 −

2 bCl
2

bZn
2

                                  (3.41)

which is equivalent to equation 16 in the paper6 (equation 3.16 here) except for the 

constants at the end. Neuefeind starts from an experimental perspective and hence has to 

get to the total functions starting from the coherent differential cross sections. We get the 

total structure factors directly, defining the total neutron (3.42) and X-ray diffraction 

(3.43) experiments:
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Fn k =c
2 b

2 S k −1c
2 b

2S k −12c cb b S k −1                   (3.42)

F X k =c
2 f 

2 Sk −1c
2 f 

2 S  k −12c c f  f S k −1              (3.43)

As a result,

Fn k −F X k =S k −1b
2− f 

2c
2S  k −1b

2− f 
2c

2

2 S k −1bb− f  f c c
                        (3.44)

Rearrange equations 3.42 and 3.43 to make S k  the subject.

                                                            

Sk =1F nk 
c

2 b
2 −

c
2 b

2

c
2 b

2 [S  k −1]−
2ccbb

c
2 b
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Equating two expression for Sk  gives
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and so, 
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and
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Now, note that
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For example, MX2, cα=1/3, cβ=2/3 gives
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                                     (3.54)

      Equation 3.54 is essentially the same as Neuefeind's. Calculations show that this 

equation is able to eliminate one partial (say SClCl(k)) and hence get SZnZn(k) in terms of 

the two total scattering functions and the SZnCl(k) partial. The latter is the function the 

Neuefeind claims to improve from Biggin and Enderby. Figure 3.5 shows the partial 

structure factor derived by Neuefeind which shows and inverted FSDP in SZnZn(k), with a 

rise as k→0. Such a feature is likely to be an artefact from the extraction procedure rather 

than a true indication of the IRO ordering in SZnZn(k). 
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3.7 Structure of molten MgCl2.

Figure 3.5: Diagram of SZnZn(k) and SClCl(k) obtained by Neuefeind6 and Biggin and Enderby4 taken from 

Neuefeind6. The structure factors obtained by Neuefeind6 are full lines and Biggin and Enderby4 are dot 

and line with error bars. 

Figure 3.6: Simulated total and partial structure 

factors for MgCl2. Black line; SClCl(k); red line, 

SMgCl(k); green line, SMgMg(k); blue line, F MgCl 2
.  

For both figures the isotopes from top to bottom are; 

(a) natCl (b) 35Cl (c)  37Cl. 

Figure 3.7: Calculated and experimental31 total 

structure factors of MgCl2., Colour code: black 

data points, experimental; red line, calculated.  
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The calculated structure factors in figure 3.7 show good agreement with the experimental 

values in reproducing the peak positions and intensities. In contrast with ZnCl2 (figure 

3.2) is the lack of a prominent FSDP in F Mg37 Cl 2
k   corresponding with experimental 

data. In the experimental F(k) for F Mg35 Cl 2
k  , 29 the principal peak at 2Å-1 is considerably 

smaller than the ZnCl2 equivalent and there is no discernible FSDP, which the calculated 

F(k) reproduces to a good degree. Figure 3.6 shows that the FSDP is dominated by the 

contribution from SMgCl(k). The largest difference between the experimental and 

calculated functions occurs in F Mg37 Cl 2
k  where the FSDP is significantly larger than the 

experimental value. Other differences occur in between the peaks, for instance the trough 

which occurs at ~2.7Å-1 in F Mg natCl 2
k   as well ~1.5Å-1 in F Mg37 Cl 2

k  ,  where the 

calculated intensity is too large. In F Mg35 Cl 2
k  ,  the calculated trough at ~1.5Å-1 is too 

shallow. 

      Figure 3.8 shows the partial structure factors of MgCl2 and ZnCl2 simulated at the 

same temperature (800K). The FSDP present in SZnZn(k) is stronger than SMgMg(k) at 0.85 

compared to 0.66, while the positions are similar at 1.027Å-1 and 0.98Å-1 respectively. For 

the cation-anion partial structure factors, the difference in the position of the FSDPs are 

smaller at the slightly lower scattering angles of 0.95Å-1 and 0.94Å-1 for ZnCl2 and MgCl2 

respectively while the intensity is slightly greater. The principal peaks show subtle 

changes: in SZnZn(k) and SZnCl(k), the intensities are slightly smaller than for the related 

functions in MgCl2, at 1.64 to 1.79 and -1.06 to -1.23 respectively. For SClCl(k), the 

intensity is slightly larger for ZnCl2 at 2.42 compared to 2.29. The position of the 

respective principal peaks show a slight decline from ZnCl2 to MgCl2 of 2.06Å-1 to 2.01Å-

1, 2.09Å-1 to 2.00Å-1 and 2.09Å-1 to 2.07Å-1 for the anion-anion, cation-anion and cation-

cation functions respectively. At scattering angles greater than the principal peak, the 

cation-anion and cation-cation functions for ZnCl2, relative to MgCl2, is shifted to slightly 

to higher values, while the anion-anion function is shifted slightly to lower scattering 

angles. 
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Figure  3.8: The partial structure factors of ZnCl2  and MgCl2. From top to bottom; SMM(k), SMX(k), 

SXX(k),where M=Zn (black line) or Mg (red line). 

Figure 3.9: Partial radial distribution functions for ZnCl2 and MgCl2. Black line, gClCl(r); red line, gMCl(r); 

green line, gMM(r). 
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      Figure 3.9 shows the radial distribution functions for ZnCl2 and MgCl2. The 

characteristic feature of the close proximity of gZnZn(r) with gClCl(r) is reproduced 

accurately. The nearest-neighbour principal peak positions of 2.26Å , 3.63Å and 3.77Å 

for the Zn-Cl, Cl-Cl and Zn-Zn separations are accurate to 0.03Å, 0.08Å and 0.03Å 

compared to the Biggin and Enderby experiment.4 The related values for magnesium 

chloride; 2.43Å, 3.56Å and 3.86Å correlate well with the experimental results of Biggin 

and Enderby31 and are accurate to 0.01Å, 0.00Å and 0.05Å. Observing the minima of the 

principal peak of gMgCl(r) gives some indication of the exchange between ions in the first 

coordination shell. The intensity of this minima in gMgCl(r) is almost double (0.40) 

compared to the corresponding value of 0.23 for gZnCl(r). This indicates that in zinc 

chloride there is a cation-anion coordination shell more stable to exchange than in MgCl2. 

The intensity and FWHM of the second peak in gZnZn(r) and gMgMg(r) are similar, with the 

most significant difference being the sharper ordering between the principal peak and 

second peak observed in gZnZn(r) with a sharper minima.   

      One noticeable difference between the experimental and calculated results is the 

intensity of the peaks. In MD simulation, the radial distribution functions are calculated 

directly from the coordinate positions, whereas experimentally a Fourier transformation 

of the structure factors is undertaken. Truncation errors in the latter process  may affect 

the height and width of the peak, whilst maintaining their positions. For example, the 

neutron study by Allen et al9  was undertaken at an upper k limit of 28Å-1 compared to 

10Å-1 for Biggin and Enderby4, leading to a more intense and narrower peak. A similar 

peak of  the same distance and height was achieved by Triolo and Narten16 by 

extrapolating the experimental structure factor to a longer k range of 100Å-1
.
  This is of 

particular relevance to the calculation of coordination numbers, the zinc-chlorine 

coordination number calculated experimentally by integrating to the minimum of the 

principal peak.

      The Zn-Cl-Zn bond angle distribution in figure 3.10 shows a doubly peaked 

distribution with maxima at 89o and 109o. The lower value indicates the presence of edge-

sharing tetrahedra while the latter indicates corner-sharing; the ratio of these peaks 

suggesting an equal proportion of these bonding configurations present. This in 

agreement with previous suggestions that zinc chloride can  be considered as intermediate 

between strong glasses such as silicon dioxide where the Si-O-Si54 bond angle is 

approximately 150o and BeCl2, where the mean Be-Cl-Be bond angle is significantly 
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smaller at 80o.55 The peak at 93.2o for the Mg-Cl-Mg distribution in figure 3.6 shows the 

predominance of square-based pyramidal and octahedral structures. This conclusion is 

supported by the Cl-Mg-Cl distribution where the peaks at 84.4o and 150o indicate the 

presence of axially and equatorially placed Cl-Mg-Cl triplets.

      The newly parameterised ZnCl2 model displays 56% and 37% four and five cation-

anion coordination respectively. Previous calculations using the WAC35 potential 

predicted a mixture of four cation-anion (75%), and five cation-anion coordination 

(23%). The Kumta36 potential predicts a smaller percentage of 53% and 31% for four and 

five cation-anion coordination. The average Zn-Cl coordination number, MZnCl, of 4.39 

which corresponds to a good degree with the values in table 3.1, for example the values 

of 4.3 by Biggin and Enderby4 and 4.0 by Triolo and Nielsen16. In MgCl2, there is 

significantly greater five (49%) and six anion coordination (26%) for the ion pair, MgCl, 

with a decreased four-coordination (22%). In addition, MClMg =2.61 is larger than MClZn 

Figure 3.10: Bond angle distributions for ZnCl2 and MgCl2.  Black line, Cl-Zn-Cl; red line, Cl-Mg-Cl; 

green line, Zn-Cl-Zn; blue line, Mg-Cl-Mg.
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=2.16, similar to previous RMC results47 where the cation-anion coordination had been 

fixed at 4.  These results indicate that major difference in local coordination polyhedra 

between MgCl2 and ZnCl2 is that zinc occupies tetrahedral interstitial sites in the anion 

sublattice, while magnesium occupies more octrahedral sites, in agreement with the same 

RMC results.47.                                                                                                                                                                 
                                         

3.8 Predicted structure of MnCl2 using ZnCl2 and MgCl2 partial 

structure factors.

MgCl2 and MnCl2 are considered as having similar structural properties.31 In the solid 

state both MgCl2 and MnCl2 favour CdCl2 type structures at ambient pressures, where 

metal cations fill half the available octahedral holes in a cubic close packed anion 

sublattice. In the liquid state, the values of the ratio gClCl(r)/gZnCl(r) retrieved from the 

experimentally-determined radial distribution functions were calculated as 1.47 and 1.43 

for MgCl2 and MnCl2 respectively. This evidence led Enderby et al30 to suggest that 

MgCl2 and MnCl2 constitute an isomorphic pair in the molten state. In contrast, MgCl2 

and MnCl2  are considered to have different liquid structures compared to ZnCl2, after 

analysis of neutron diffraction results which shows a higher gClCl(r)/gZnCl(r) ratio of 1.63. 

This was further supported by comparing the experimental F MnCl 2
with one created 

from the MgCl2 partial structure factors with the appropriate weightings from equation 

3.1, which resulted in a good correlation. A similar procedure can be carried out 

computationally by changing the scattering coefficient b for Mg and Zn to the value 

appropriate for manganese we can, therefore, observe any structural changes of this type. 
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      Figure 3.11 shows the calculated structure factors of ZnCl2 and MgCl2 configurations 

when b is set at the manganese value of -3.73 fm. The peak at 2Å-1 for F(k) is 

significantly greater in amplitude than the equivalent for ZnCl2 and MgCl2. This is due 

solely to the positive contribution of SMnCl(k)  caused by the negative scattering of the 

manganese ion. Correspondingly, the contribution of  SMnMn(k)  to the FSDP is negated by 

the now negative contribution of SMnCl(k) in the ~1Å-1 region. Both total structure factors 

in figure 3.11 show good correlation with the experimental F(k) for MnCl2, indicative of 

the similar cation size in all three compounds of similar MCl2 stoichiometry. Notable 

differences include larger FSDP peak for M=Zn in SMCl(k) and SMM(k) ~1Å-1. Due to the 

weighting attributable to  the negative scattering of manganese chloride, these differences 

cancel and produce a flat peak in the 1Å-1 region of F(k). The differences are further 

Figure 3.11:Constructed MnCl2 total and partial structure factors. Left: ZnCl2 scattering as MnCl2. 

Right: MgCl2 scattering as MnCl2. Black line, SClCl(k); red line, SMnCl(k); green line, SMnMn(k); blue line, F(k). 
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negated by the magnitude of the manganese scattering which result in SClCl(k)  dominating 

F(k). The relevance of the these effects is that the absence of the FSDP cannot necessarily 

be attributed entirely to the near-negligible SMnMn(k) contribution, but possibly by 

cancellation of the SMnCl(k) and SClCl(k) terms which would otherwise contribute to the 

FSDP. In effect the magnitude and direction of the manganese scattering  length damp all 

contributions to the FSDP. Furthermore, as SClCl(k) dominates F(k), the conclusion that 

ZnCl2 and MnCl2 were isomorphic would arise by application of the same method, using 

partial structure factors from ZnCl2  rather than MgCl2 .31

3.9 Effect of anion-anion repulsion on IRO.

The systems so far have featured MCl2 (where M are intermediate sized cations Mg, Mn 

and Zn). As mentioned in 3.1, neutron diffraction experiments have been carried out on 

the various halides of zinc. Changing the anion size would be expected to increase the 

anion polarisability and the anion-anion separation. In this section we fix the anion 

polarisability, αX, at 20 a.u and observe the changes in structure with respect to IRO 

which occur upon increase of anion-anion separation. To achieve this increased 

separation, we varied the parameter, BXX, at fixed density. The BXX range was from 107 

a.u, the value used for the ZnCl2 potential, to 607 a.u, as described in section 3.3, which 

resulted in a shift in the effective anion-anion separation, reff
XX , as given by the position 

of the principal peak in gClCl(r), from 3.67Å at 107 a.u to 3.84Å at 607 a.u. 

      Figure 3.12 shows the changes in the IRO properties of the partial structure factors. 

For SZnZn(k), the FSDP shifts to higher scattering angles from 1.09Å-1 at reff
XX=3.67 Å  

to 1.27Å-1 at reff
XX=3.84Å , and a progressive merging of the principal peak and FSDP is 

observed. For SZnCl(k), a larger shift is observed over the same range, 1.04Å-1 to 1.53Å-1, 

with a much sharper decrease in the intensity. A small FSDP observed in SXX(k)  at reff
XX

=3.67Å  disappears with increasing reff
XX . The principal peak in SXX(k) observed the 

greatest change in intensity, increasing from 2.64 at reff
XX=3.67 Å to 4.02 at

reff
XX=3.84 Å . SMM(kPP) stays at the same intensity and SMX(kPP) changes from 1.17 to 

1.33 over the same range. SXX(kPP) also observes also a slightly greater shift in position, of 

2.05Å-1 to 1.98Å-1 from reff
XX=3.67 Å to reff

XX=3.84 Å while SMM(kPP) shifts from 

2.08Å-1 to 2.04Å-1 and SMX(kPP) shifts from 2.06Å-1 to 2.03Å-1. 
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       Figure 3.13 shows the partial radial distribution functions in ZnX2 with varying

reff
XX  while table 3.6 summarises the changes in the first coordination shell of ZnCl2. In 

addition to the shift in principal peak position in gXX(r) the FWHM decreases sharply 

from 0.89 at reff
XX=3.67 Å to 0.56 at reff

XX=3.84 Å . The cation-cation radial distribution 

function also shows a significant shift in peak position from 3.78Å at reff
XX=3.67Å to 

3.92Å at reff
XX=3.84 Å ; the intensity at 3.32Å (forming a shoulder in gMM(r) at higher

reff
XX ) declines with increasing reff

XX Both these changes show that edge-sharing units 

are less favourable with increasing reff
XX . With increasing reff

XX , two peaks emerge in 

both gXX(r) and gMX(r) at ~4.8Å  and 5.9Å. For the Zn-Cl coordination, there is an 

Figure 3.12: Partial structure factors of ZnX2 with varying effective anion-anion separation, reff
XX.  

Colour code (y increment in brackets): black line, 3.67Å; red line, 3.76Å (+0.5); green line, 3.79Å (+1.0); 

blue line, 3.81Å (+1.5); yellow line, 3.83Å (+2.0); brown line, 3.84Å (+2.5).
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increase in the percentage of 3-coordinate zinc ions as reff
XX increases with the decline of 

five-coordinate cations present at reff
XX=3.67 Å . There is also an increase in the presence 

of 1-coordinate anions from 1.46% to 7.56% over the reff
XX range. This belies a pure 

change of edge- to corner-sharing tetrahedra where the cation-anion coordination would 

to be stable; the edge-sharing units are terminated, as indicated by the presence of singly-

coordinated anions acting as terminal bonds.            

% Coordination Number Nij Ion separation rij

ij Zn-Cl Cl-Zn

r eff
XX 3 4 5 1 3

Zn-Cl
(Å)

Zn-Zn
(Å)

3.67 1.7 79.5 17.9 1.4 9.9 2.26 3.78
3.76 2.9 92.6 4.3 2.8 3.5 2.27 3.84
3.79 4.3 92.7 3.0 3.4 3.4 2.28 3.89
3.81 6.3 92.4 1.4 5.2 2.7 2.29 3.91
3.83 8.7 90.4 1.0 6.4 2.5 2.29 3.90
3.84 10.8 88.5 0.70 7.6 2.5 2.30 3.92

Table 3.6: Changes in the first coordination shell with increasing reff
XX. For the Zn-Cl, the 2- and 6-

coordination are neglected as they are below 1% over the whole effective anion-anion separation. The ion 

separations are taken from the position of the principal peak in the related gij(r) functions.  

Figure 3.13: Radial distribution functions with varying effective anion-anion separation, reff
XX. Black line, 

3.67Å; red line, 3.76Å; green line, 3.79Å; blue line, 3.81Å; yellow line, 3.83Å; brown line, 3.84Å.
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      Figure 3.14 shows the Zn-X-Zn and X-Zn-X bond angle distributions calculated as a 

function of the effective anion radius. The most significant change occurs in Zn-X-Zn 

where the intensity at the smaller bond angle decreases with increasing reff
XX . This 

indicates that these edge-sharing tetrahedral units are reduced when the separation of 

anions increases. Considering the changes in coordination, the relative increase in the 

peak at ~120o for Zn-X-Zn is associated with trigonal planar configuration around the 

central cation as well as an increase in the corner-sharing proportion of cations. There is 

also a shift in the peak of X-Zn-X from 103o at reff
XX=3.67 Å to 109o at reff

XX=3.84 Å .

The decrease in intensity of the tail at ~150o is associated with the decline of five-

coordinate sites.  

      The changes in network connectivity of cations with varying anion-anion separation 

are given in table 3.7. The rise in E0 and decline in E2 as the effective anion radius 

Figure 3.14:Bond angle distributions with varying effective anion-anion separation, reff
XX. Left, Cl-Zn-Cl; 

right, Zn-Cl-Zn. Black line, 3.67Å; red line, 3.76Å; green line, 3.79Å; blue line, 3.81Å; yellow line, 3.83Å; 

brown line, 3.84Å.
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increases indicates a progression towards an increasingly corner-sharing network; these 

changes are exacerbated with declining MX coordination. Similar systems have been 

simulated using the PIM on a range of MCl3  systems where M=Fe, Al, La, Tb and Y56,57. 

In these compounds, the constituent units are in the form of dimers of the form M2Cl6, 

where a central edge-sharing unit is terminated at each end by two anions; here, due to the 

stoichiometry the terminating units occur with the presence of singly coordinated anions 

for three-coordinate cations. 

reff
XX (Å) E0 E1 E2

3.67 44.1 (3.9) 38.4 (3.1) 17.5 (2.7)
3.76 67.4 (3.2) 28.2 (2.8) 4.3 (1.5)
3.79 71.2 (3.5) 24.2 (3.0) 2.6 (1.0)
3.81 77.5 (2.3) 21.1 (2.1) 1.5 (0.7)
3.83 79.3 (2.3) 19.9 (2.2) 0.9 (0.5)
3.84 81.0 (2.5) 24.2 (3.0) 0.6 (0.4)

Table 3.7: Cations "coloured" according to network connectivity in ZnCl2 with varying effective anion-

anion separation, reff
XX.

       In the introduction of this chapter, the ability of models to reproduce closer cation-

cation separation was highlighted as a important factor in reproducing IRO in compounds 

such as ZnCl2. These results show that the balance between edge-sharing and corner-

sharing tetrahedra can be affected by the nature of the anion-anion separation. The edge-

sharing unit is visualised in achieving stabilisation of closer cation-cation separations for 

ions which are doubly charged. The increase in reff
XX shifts the balance in terms of how 

the system orientates to maximise anion-anion separation. Molecular units are favoured 

over edge-sharing chains as they minimise Cl-Cl repulsion by breaking MXn chains, 

thereby reducing the number of anion neighbours. This increases the number of terminal 

units, as highlighted by the large percentage of 1-coordination for X-Zn shown in figure 

3.15.
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3.10 Conclusion

The total structure factors and peak positions of new ZnCl2 and MgCl2 models show good 

correlation with the experimental results of Biggin and Enderby.4 One difference is that 

both SZnZn(k) and SZnCl(k) contribute significantly to the FSDP in contrast to the results of 

Biggin and Enderby, where SZnZn(k) dominates, and Neuefeind, where SZnCl(k) dominates. 

Further computational evidence as to the intensity of SZnZn(k) in ZnCl2 could be extracted 

from a model which produces a similar FSDP intensity in SZnZn(k) (that observed in the 

Biggin and Enderby4 experiment), and then observing whether the structural features 

present are consistent with other experimental studies of ZnCl2. We have already 

observed the possible influence that the presence of edge-sharing may have on IRO in the 

calculations of ZnX2 in section 3.9 with a decline in the proportion “1” and “2” cations 

resulting in a shift of the FSDP away from ~1Å-1. 

      Other computational models on ZnCl2 have a varied interpretation of the influence of 

differing inter-tetrahedral connections. A Monte Carlo model of ZnCl2 by Bassen et al45 

presents a highly ordered, regular tetrahedral network dominated by corner-sharing 

linkages (95% of cations in the equivalent of a “0” configuration). A Reverse Monte 

Carlo model from the same study45 indicates a greater amount of edge-sharing in 

comparison, highlighted by the greater intensity of the edge-sharing peak in the Zn-Cl-Zn 

Figure 3.15:Graphical snapshots showing configurations of ZnX2 with increasing anion-anion separation, 

reff
XX . Left, reff

XX=3.67 Å ; right, reff
XX=3.84 Å. Red circles, 2-coordinate anions; purple circles, 1-

coordinate anion; blue circles, 4-coordinate cations; green circles, 3-coordinate cations. 
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bond angle distribution function. Bassen et al45 have indicated that this is due to the 

deficiency in the Reverse Monte Carlo procedure leading to the most disordered structure. 

In addition to the evidence from Raman spectroscopy23 for the presence of edge-sharing 

in ZnCl2, the cation-cation coordination number obtained from diffraction experiments 

gives an indication of the inter-tetrahedral coordination. An increased presence of edge-

sharing in a tetrahedral network results in a decrease in the cation-cation coordination 

number. Our system has a value of MZnZn=4.4 at 800K compared to Monte Carlo 

simulation values45 of 6.1 and 5.2; this compares favourably with experimental results of 

4.015,16 and 4.74. It is unclear whether the screening potential used by Bassen et al45 to 

induce intermediate-range Zn-Zn correlations is able to stabilise the presence of greater 

amounts edge-sharing tetrahedra, or whether the proportion of edge- and corner-sharing 

tetrahedra present is dependent upon the particular details of the parameters used.45 

     A common feature of computational representations of the liquid structure of ZnCl2 is 

a more intense principal peak in gZnCl(r) than that observed experimentally. Our model 

shows an intensity of 7.79 at gZnCl(rPP) at 800K; the RMC model of Pusztai47 gives an 

intensity of ~7; the shell model of Huang et al46 at 873K shows ~10 and the MC model of 

Bassen et al45 gives a value closest to the experimental value of ~4.5.4 Another significant 

difference in the calculation of both the ZnCl2 and MgCl2 radial distribution functions 

from the RMC procedure47 is the presence of a number spurious peaks throughout the r 

range, in contrast to our model. This becomes significant if changes in the radial 

distribution functions with variations in pressure or temperature are to be observed.

     The transferability of the PIM was shown by the simple adaptation of the ZnCl2 model 

to produce a potential model for MgCl2. The cations in liquid MgCl2 favour square-planar 

and octahedral geometries compared to ZnCl2 which is dominated by tetrahedral features, 

as highlighted by bond angle and coordination number distribution. This is supported by 

Raman spectroscopy experiments of molten MgCl2 where 6-coordinated Mg cations 

persist into the liquid state from the crystalline state.18 These result in subtle differences in 

the partial structure factors where greater IRO is observed in ZnCl2 as highlighted by 

stronger FSDPs in the cation-cation and cation-anion structure factors. Our model agrees 

with Puztai and McGreevy47 that changes from the dominant tetrahedral geometry in 

ZnCl2 (the MX coordination was fixed at 4 in the RMC procedure and so does not exhibit 

the increase in MX coordination observed in our model) results in a deterioration in IRO. 

The absence of a FSDP at 1Å-1 in SZnZn(k) in a recent shell model of ZnCl2 by Huang et 
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al46, and its relationship to the radial distribution functions, can be discerned by 

comparing with the ZnCl2 and MgCl2 models produced in this chapter. In figure 7.9, the 

principal peaks of gZnZn(r) are in phase with gClCl(r), whereas in MgCl2, which observes 

weaker IRO, gMgMg(rPP) is at a greater distance than gClCl(r): a similar relationship between 

a weak FSDP and the out of phase relationship for cation-cation and anion-anion 

separations in the radial distribution functions is observed for the ZnCl2 shell model.

     With increasing anion-anion separation in ZnX2, a reduction in the intensity of the 

FSDP and shift to higher scattering angles is observed from k~1Å-1 at the smallest anion-

anion separation reff
XX=3.67Å  is observed. Further structural analysis shows that the 

anions minimise repulsion by adopting structures which favour corner-sharing between 

tetrahedra and reduce MX coordination. In this chapter we have observed how the effect 

of the balance between edge- and corner-sharing, whether by distortion of the constituent 

polyhedra (as in the case of MgCl2) or varying anion-anion separation can have a 

dramatic influence on IRO. Increasing anion-anion separation does not effectively 

simulate the effect of increasing anion size from chlorine to iodine, moving the FSDP 

position further away position exhibited by all the zinc halides9 of k~1Å-1, indicating that 

the effect on anion polarisability (explored in chapter 4) needs to be taken into account. A 

previous set of calculations using a rigid-ion model (RIM) to represent ZnCl2, ZnBr2 and 

ZnI2 utilised  larger values for the anion-anion repulsion parameters to represent the 

increases in anion size.40 In those calculations, the perturbing of the anion-anion 

separation did not result in a significant change from the IRO described, where the FSDP 

was present at ~1.3Å-1 in all three systems.40 Using a similar procedure, our calculations 

showed a larger range of changes in the position of the FSDP, indicating the PIM is more 

sensitive to changes in the anion-anion repulsion parameters than the RIM. This is due to 

the ability of the PIM to represent a greater range of inter-tetrahedral connections than the 

RIM. 
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Chapter 4 
A Polarisable Ion Model of GeSe2

4.1 Introduction.

At the end of chapter 3, the effect of changing anion size on the structure of MX2 liquids 

was highlighted. This was achieved by varying the short-range parameters whilst 

maintaining the anion polarisability at a constant value. In this chapter, we shall utilise 

the PIM on a system, germanium diselenide, and represent the change in anion size by 

varying the PIM to accommodate the presence of a larger anion polarisability. 

Germanium diselenide is a system which can be largely described through the 

interlinking of GeSe4 tetrahedra. The structure of GeSe2 has been studied through a 

number of neutron1-5 and X-Ray diffraction6,7,8 experiments. The results show several 

features in reciprocal space similar to ZnCl2,  including the presence of a FSDP in the total 

structure factor, which is primarily assigned to the contribution from SGeGe(k). There are, 

however, potentially significant differences between the functions obtained for GeSe2 and 

those obtained for the metal dihalides. In comparison to the divalent halides discussed in 

Chapter 3, SGeGe(k) displays a more intense FSDP. Homopolar bonds (nearest neighbour 

spatial correlations between like atoms) are observed in the radial distribution functions, 

gSeSe(r) and gGeGe(r), and hence show evidence of broken chemical order.3,4 The intensity of 

these low r peaks is small in comparison to the main (Ge-Se) nearest-neighbour peak, so 

are more susceptible to experimental errors and evidence of their existence has been 

contested by using the results of the high-energy X-Ray diffraction experiment of 

Petkov.8 The percentage of cations in edge-sharing units is experimentally derived at 

34%.4 Recent diffraction work5 on these two systems  has identified the presence of an 

extended range order, as defined by correlations up to 60Å in the respective radial 

distribution functions. 
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Whilst sharing the same tetrahedral motif as other AX2 compounds, the nature of the 

structure of GeSe2 continues to attract diverging opinions. In contrast to ZnCl2, GexSe1-x 

can have its stoichiometry readily altered.9 Variations in stoichiometry either side of 

GeSe2  (where x=0.33), envisage selenium rich areas containing floppy chains of Sen  when 

x < 0.33, and germanium rich areas containing Ge2Se4 ethane-like molecules when x > 

0.33. There are two prominent models for the structure of GeSe2. One model suggests that 

GeSe2 is based on a continuous random network model (CRN)10 model with chemically 

ordered-defects incorporated (the chemically ordered continuous random network model 

COCRN)11 and is supported by evidence from various experiments.7, 12-16 Other 

experiments16-22 support the “outrigger raft” model16, as shown in figure 4.1, where the 

broken chemical disorder observed in germanium or selenium rich mixtures is present at 

x=0.33; GeSe2 is comprised of units of Ge6Se14 units, where a central edge-sharing unit 

connects two units of corner-shared tetrahedra, which are linked through a chalcogenide-

chalcogenide bond. These selenium-rich clusters are offset by Ge-rich ethane-like units of 

Ge2(Se1/2)6. 

      Raman spectroscopy experiments on chalcogenides13, 14, 16 show several key features, 

particularly the presence of a companion mode, AC
1 , which originates from a splitting 

Figure 4.1: Fragment of outrigger-raft model for GeSe2. Picture is based on figure from Bridenbaugh et  

al16. Blue circles, germanium; red circles, selenium. Homopolar bonds between the selenium atoms are 

green compared to black heteropolar bonds.
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of the symmetrical A1 stretch associated with tetrahedral vibrations. In the system, 

GexSe1-x, the AC
1 mode decreases in intensity in the range of x from 0.33 to 0. 

Assignments of the companion mode reflect the different interpretations of GeSe2 

structure; the first assignment by Brindenbaugh et al16 attributes the companion mode to 

the vibrations of the chalcogenide atoms in homopolar bonds as shown in figure 4.1. A 

later assignment13 attributes the vibration of chalcogenide atoms to those placed in an 

edge-sharing unit. The change in frequency of the AC
1 mode with composition x has 

been shown to be a signature for the onset of network rigidity23,24 (that the elastic 

properties of compounds can be understood through the mean coordination number, <r>, 

where a rigid system is predicted to occur25 at <r>=2.4).    

4.2 Computational background.

A previous classical potential model for GeSe2
 developed by Vashishta26,27 used bond-

bending constraints to achieve the more acute Ge-Se-Ge bond angles required to promote 

the formation of edge-sharing units. Whilst reproducing features such as the presence of 

edge-sharing tetrahedra and a FSDP in F(k), other features, such as the presence of a 

FSDP in SCC(k)28 and homopolarity, were absent. Electronic structure calculations29-37 

have had varying success in reproducing properties of GeSe2. Early calculations showed 

that a FSDP in the total structure factor would not be produced using a density functional 

calculation applying the Local Density Approximation, and a description which 

represented greater ionicity of the bond was needed to reproduce this feature.29 The LDA38 

approximation tended to favour too much homopolarity, with 60% of Se atoms and 25% 

of Ge atoms in homopolar bonds. On applying a gradient corrected method (the 

generalized gradient approximation-GGA39) these proportions are reduced to 39% and 

10% respectively. In addition to the potential effects of the details of the electronic 

structure calculation (of which the use of LDA and GGA is an example), electronic 

structure calculations tend to use relatively small system sizes (typically ~120 atoms32) 

and so the details of the FSDP, which require the system cell to be large enough so as to 

contain the related intermediate-range length scales, may be difficult to establish. In 

addition, the time-scales accessible to such methodologies may also be limited and so 

structural relaxation, in particular at low temperature, may be a problem.32 As a result of 

these factors, the FSDP intensity can exhibit variations of 20% in intensity during a 
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simulation run.32 Drabold and Tafen35 have used FPMD-based methodologies (employing 

the FIREBALL density functional code40 with LDA) on GeSe2 and related chalcogenides, 

such as SiSe2 and GeSe4, showing good agreement with the total structure factors of these 

compounds. Cobb and Drabold33,34 used DFT methods with several essential 

approximations including, most successfully, the Harris functional41. A substantial FSDP 

was reproduced in SGeGe(k) by this method and the a possible link of IRO with the internal 

ring structure was highlighted by colouring the partial structure factors according to the 

presence of four and six-membered rings. Another technique, experimentally constrained 

molecular relaxation (ECMR), combines Reverse Monte Carlo simulation with first-

principles molecular dynamics36
. The model produces good correlation with the total 

structure factor and a similar percentage of edge-sharing tetrahedra (38% compared to the 

experimentally observed 34%). A recent model on glassy GeSe2 utilised Møller-Plesset 

perturbation theory to fit a Morse-potential37 on a 1200 atom system. The model 

reproduced qualitatively several aspects of the GeSe2 structure including homopolar 

bonds between anions (although homopolar bonds between cations were absent) and the 

presence of deformed tetrahedra, with significant variations in the constituent bond 

lengths and angles,  as observed experimentally.3  Recently, Reverse Monte Carlo 

calculations42 have been utilised to simulate experimental F(k) and partial structure 

factors, where SGeSe(k) and SSeSe(k) showed good correlation over the whole k range, but 

SGeGe(k) showed a considerably sharper FSDP than that experimentally observed.  By 

utilising the PIM we will show the usefulness of models with reference to an extended 

ionic description of bonding on the structure of GeSe2.

4.3 Simulation details.

The central cell used in all calculations in this chapter consists of 999 ions (333 cations 

and 666 anions). The initial configuration for the parameterisation of the GeSe2 PIM was 

obtained from a previous calculation for ZnCl2 using the rigid-ion model with parameters 

given in table 3.3 for the previously used ZnCl2 PIM potential.47 For each run involved in 

the parameter search (stabilising each polarisability increase of 10 a.u by varying short-

range damping parameters b and c) in forming the GeSe2 potential model, simulations of a 

smaller time-scale of 500 MD steps under NPT conditions were carried out. At αX=40 a.u, 

to get the model within 1.5% of experimental density48 (3.976 g/cm3 at 1023K) at an 
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average cell size of 31.80Å under NPT conditions was 6x10-4 a.u. Initial calculations at 

the experimental melting temperature at 1100K showed that the liquid diffusivity was too 

slow and the temperature was raised to 3000K. A simulation was carried out at an 

elevated temperatures of 7000K, well above the melting temperature, to equilibrate the 

configuration for the model. A simulation run of 100ps for calculating the structural 

properties of the system (discussed in sections 4.5-4.7) was carried out afterwards at a 

pressure of 6x10-4 a.u under NPT conditions.

4.4 GeSe2 potential construction.

Whilst the PIM has been applied with success to compounds where the anion 

polarisability is of the order 5-20 a.u, estimates of selenide polarisability range from of 

47-67 a.u.43 As a result, an emphasis in the construction of the parameter set for the GeSe2 

model was focused on stabilizing the PIM using higher polarisabilities. Initially, a GeSe2 

rigid ion model was produced by using the formal valence charges for the ions involved. 

The initial Fumi-Tosi coefficients relating to short-range repulsion used to stabilise the 

potential GeSe2 were derived from equation 4.1, the Busing form of the Born-Mayer 

potential44 which connects the Fumi-Tosi coefficients with the charges and ion size:

                                  ij r =
z i z j

r
 1

z i

ni


z j

n j
 bexp∣i j−r ij /∣                (4.1)

ni and zi are the number of outer shell electrons and charge associated with ion i, whilst  ρ 

governs the decay of the (short-range) repulsive wall and σi is the ion radius

From 4.1, the Fumi-Tosi coefficient, Bij is calculated as:

                                              Bij=1
z i

n i


z j

n j
b exp∣ i j/∣                             (4.2)

The values used, listed in Table 4.2, were based on the parameters from the rigid ion 

models of SiO2  (RIM-SiO2) and ZnCl2 (RIM-ZnCl2) produced by Woodcock et al.45 The 

final parameter set shows that the latter model had greater success in stabilising the RIM. 

Dispersion coefficients were included and calculated using the Slater-Kirkwood formula 

(equation 3.3), the coefficients for which are listed in Table 4.1, using a polarisability 

range of α=47-67 a.u for Se2-
. Starting from the GeSe2 RIM, the anion polarisability was 
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raised by 10 a.u and, at each stage, the short-range damping parameters (b and c used to 

control polarisability) and the Fumi-Tosi short-range repulsion parameters were perturbed 

to stabilize the model and avoid a polarisation catastrophe.46 A polarisation catastrophe 

occurs when a unphysically close separation of two anions is stabilised (this was 

observed in gSeSe(r), calculated  using configurations from a few MD steps before collapse 

of the calculation) ; this leads to an ever increasing dipole moment across the two anions 

which causes a collapse in the calculation. At each step the anion-anion separation had to 

be ramped up offset the tendency towards collapse. The final parameters for the model 

are shown in Table 4.2. Pressure also had to be applied to maintain the model at 

experimental density. 

ij αi αj pi pj C ij
SK C ij

Final

SeSe 40 20 6.70 6.70 630.4-
1076.2

1000.60

GeSe 40 20 6.70 0.00 380.00
GeGe 0.00

Table 4.1: Table of Dispersion coefficients calculated from Slater Kirkwood formula C ij
SK  and those 

from the final parameter set C ij
Final . The values  α and p are the respective polarisability and effective 

electon numbers used in equation 4.3. All values are in atomic units.

(a) GeSe2 PIM RIM(ZnCl2) RIM(SiO2)
ij Bij aij Bij aij Bij aij

SeSe 1185.64 1.5564 155.664 1.5564 16.6 1.5564
GeSe 199.38 1.5564 59.388 1.5564 47.665 1.5564
GeGe 12.25 1.5564 12.25 1.5564 75.73 1.5564

(b) RIM(ZnCl2) RIM(SiO2)

ij b σ σ ρ b σ σ ρ

SeSe 0.190 1.90 1.90 0.34 0.342 1.42 1.42 0.29

GeSe 0.190 1.35 1.90 0.34 0.211 1.32 1.42 0.29

GeGe 0.190 1.35 1.90 0.34 0.081 1.32 1.32 0.29

(c) α b c

Se2- 40 1.65 2.00
Table 4.2: Parameter values in development of GeSe2 PIM. The parameters of the final GeSe2 model are 

shown in columns two and three for (a) Fumi-Tosi coefficients and (c) parameters associated with 

polarisability; α, anion polarisability and short-range damping parameters b and c. Section (b) shows the 

parameter values used in equation 4.2 for calculation of FT coefficients listed in section (a) for RIM-ZnCl2 

and RIM-SiO2 models. (all units in a.u)
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4.5 Comparison of the new GeSe2 PIM with other potentials.

In this section we shall present the structural results for the GeSe2 PIM and compare it 

with results from previous classical and electronic structure calculations. A direct 

comparison is made with the trajectories generated from first principles molecular 

dynamics calculations (FPMD) by Carlo Massobrio.32 In these calculations, a central unit 

cell of 120 atoms was used in box size of 15.7Å, matching experimental density, at a 

temperature of 1025K. The generalized-gradient approximation (GGA) with suitable 

pseudopotentials was used to describe the core-valence interactions, while the valence 

electrons were described explicitly. The calculations were taken from a 21 ps run with a 

time step of 0.54 fs. Such a comparison assists the longer term aim of applying the two 

techniques together, utilizing the greater timescales and system sizes available from 

classical methods with electronic information of FPMD calculations. 

Figure 4.2: Partial structure factors of germanium selenide obtained from theory and experiment4. Top, 

SGeGe(k); middle, SGeSe(k); bottom, SSeSe(k). Black line, PIM; red line, FPMD; green line, experimental4.
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      Figure 4.2 shows the partial structure factors calculated using the both the PIM and 

FPMD. There is a stronger FSDP in SGeGe
PIM k  compared to the SGeGe

FPMD k  and that 

displayed by the potential (CMD) model of Vashishta.27 One possible explanation for the 

reduced intensity of SGeGe
FPMDk  in current FPMD calculations is structural relaxation. 

The relatively small system size coupled with the relatively short time scales used may 

mean that the actual configurations reflect the high temperature states frozen in. This 

issue was addressed in part Tafen and Drabold35 who used the WWW49,50  method which 

tightens the coordination shell by restricting Ge-Se coordination to 4. This resulted in 

better agreement with high k features, thus improving the description of the first 

coordination, but had little effect in increasing the intensity of the FSDP, indicating that 

the linkages between tetrahedral units needed a better description. The principal peaks in

SSeSe
PIM k  and SGeSe

PIM k  are at a larger intensity than the experimental observed 

functions, indicating an overstructuring of the anion-anion and cation-anion sublattice, 

Figure 4.3:Partial radial distribution functions of germanium selenide obtained from theory and 

experiment4. Top, SGeGe(k); middle, SGeSe(k); bottom, SSeSe(k). Black line, PIM; red line, FPMD; green line, 

experimental4. For the experimental function low r oscillations have been deducted. 



Chapter 4. A Polarisable Ion Model of GeSe2                                                                                                                 121

whereas the FPMD results show better correlation.

     Figure 4.3 shows that gGeGe
PIM r  differs from gGeGe

exp r  in not exhibiting a peak at 

low r (indicative of the presence of Ge-Ge homopolar bonds) and displaying greater 

intensity in the peak ~7Å. gGeGe
FPMDr  , in contrast, does display a peak at short 

separations and has approximately the same intensity at longer range values as

gGeGe
exp r  . For the replication of the principal peak, gGeGe

PIM r  has a better correlation 

with the peak position and in the decline of intensity at the high r side than the FPMD 

calculations. gSeSe
PIM r  and gGeSe

PIM r  displays a greater intensity than for the 

experimental functions at both the principal peak and the second peak indicating an 

overstructured representation of these interactions. In contrast, the FPMD results show 

better correlation; the low r peak in gSeSe
exp r  is replicated, although at a lower intensity, 

while gGeSe
FPMDr  shows the best match with experimental results over the whole range of 

separations. 

Figure 4.4:Coordination number distributions for ion pairs in GeSe2. Black line, PIM; red line, FPMD.
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      Figure 4.4 shows the coordination number distributions of the four ion pairs for the 

PIM and FPMD models. They indicate that both models display a variety of 

coordinations for each ion pair. For the Ge-Se pair, the PIM shows a tighter coordination 

shell, with 88.4% of four coordinate cation compared to 60.3% in FPMD, but also with 

non-neglible miscoordinations present with 15.0 and 0.50% of 5 and 3-coordinate cations 

respectively. In the FPMD model, the more diffuse coordination shell of the Ge-Ge pair is 

expected after observation of the intensity on the high r side of the gGeGe(r) principal peak 

in figure 4.2 in addition to low-coordinated Ge atoms in homopolar bonds where 17% of 

Ge atoms are involved. The greater propensity for regular coordination numbers in the 

PIM is further highlighted by the Se-Se function. The large difference between the FPMD 

and PIM functions can be attributed, in part, by the presence of Se-Se homopolar bonds 

in the FPMD model which involve 32% of Se atoms but not in the PIM. Homopolar 

bonds can be inserted into a tetrahedral network in two ways: they may be contiguous 

with a tetrahedral network model due to a close separation of Se atoms which bridge two 

Ge cations or they can exist in isolation, bridging between cation-centred tetrahedral 

units. Figure 4.5 shows that in the FPMD calculations the homopolar bonds occur 

through the latter mechanism with an Se-Se bond linking units cation centred units 

together. 

Figure 4.5. Molecular graphics snapshots of PIM and FPMD configurations. Left: FPMD (120 atoms) 

configuration of GeSe2. The circles around the selenium (blue) ions highlight the presence of homopolar 

bonds. Right: PIM (999 atoms) configuration of GeSe2; there are no homopolar bonds present.
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Source MSeSe MGeSe MGeGe MSeGe

PIM 12.82 4.18 3.93 2.08
FPMD 11.81 3.73 3.93 1.89
Exp-

Liquid4
9.6 3.7 2.9

Exp-Glass4 9.3 3.5 3.2
Table 4.3: Table of mean coordination numbers,Mij, of ion pairs in GeSe2 from theory and experiment4. 

      Table 4.3 shows the mean coordination number of ion pairs comparing the theoretical 

and experiment results. For FPMD and PIM, the mean coordination numbers for a given 

ion pair, Mij, were obtained using equation 4.3:

                                                                  M ij=∑l

m
N ij

                                         (4.3)

where l to m is the range of coordination numbers for ion pair, ij, considered and N ij
 is 

the percentage of coordination number α. Experimentally, this was calculated by 

integrating the principal peaks in the related radial distribution functions. Whilst MGeSe  is 

similar, there is a large discrepancy between theory and experiment for the MGeGe, 

indicating that edge-sharing, which leads to a decreased Ge-Ge coordination number, 

may be underepresented in the model. 

Figure 4.6:Bond angle distributions for ion triplets in GeSe2.  Black line, PIM; red line, FPMD.  
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      Figure 4.6 shows the six bond angle distributions calculated for both the PIM and 

FPMD. The peaks observed in the bond angle distributions in GeSe2 are similar for both 

FPMD and PIM, indicative of the fact that both are describing largely tetrahedral 

systems. The significant difference between the two sets of functions lies in the intensities 

of the  peaks. The functions calculated from the FPMD configurations show a 

significantly weaker character than those calculated using the PIM. In Ge-Se-Ge, for 

example, the peak at 90o appears stronger for the PIM owing to the much larger 

concentration of edge-sharing units. The FWHM is also larger from the FPMD, as 

highlighted in the Ge-Ge-Ge distribution, as would be expected from the wider variety of 

coordination environments in the FPMD model. The Ge-Ge-Ge distribution has a much 

sharper peak 55o and larger peak 112o ; in the Vashishta model (figure 6 in [26]), there is 

less distinction and the most intense peak is at the larger bond angle. The same feature 

arises in the Ge-Ge-Se distribution which differs from the PIM and FPMD models which 

have a larger intensity peak at lower angles. The increased connection of edge-sharing 

tetrahedra in the PIM will result in more acute Ge-Ge-Se angles due to the closure of the 

Ge-Ge-Se units which occurs with the formation of an edge-sharing unit, in comparison 

to a corner-shared configuration.

Netwok connectivity,En

(where n is number of 4-membered 

rings a cation is bonded to)

E0 E1 E2

FPMD 40.5(8.4) 40.3(7.5) 19.2(6.8)
PIM 18.1 (2.4) 49.4(2.7) 32.6(3.1)

Table 4.4:Percentage of cations according to network connectivity for FPMD and PIM GeSe2 models

4.6 Relationship of network-connectivity with radial distribution 

function, gMM(r).

Table 4.4 shows the percentages of "0", "1" and "2" cations with their respective standard 

deviations. The greater amount of edge-sharing in the PIM distinguishes it from the 

FPMD and could be highlighted as one of the causes for the strengthening of the SGeGe(k) 

contribution to the total structure factor. It is uncertain whether the experimentally quoted 

figure of 34% edge-sharing refers to purely edge-sharing cation i.e "2" or refers to both 

fully and partially edge-sharing linked cations. A noticeable difference in the standard 
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deviation of the percentage values of "0", "1", and "2" cations. The results for FPMD 

exhibit a much greater standard deviation than PIM, an indication of the effects of 

structural relaxation which arise from a small system size. The PIM shows increased 

amounts of edge-sharing compared to results from diffraction and spectroscopic 

experiments and compared with the models of Vashishta and Massobrio. However, our 

model implies that a large proportion of edge-sharing units is required to reproduce the 

liquid structure of GeSe2. This viewpoint is supported in recent calculations51 in which the 

configurations from molecular dynamics simulations were selected according to the 

percentage of edge-sharing units. The partial structure factors calculated using 

configurations containing a relatively high proportion of edge-sharing units showed an 

improved representation of the FSDP in SCC(k) when compared with the analogous 

functions calculated by averaging over all configurations. In the experiment by Salmon et  

al, from which the edge-sharing figure for glassy GeSe2 is derived4, the high temperature 

crystalline phase52 (which contains edge-and corner-sharing) is used as a guide to provide 

two length scales, one associated with corner-sharing (3.55Å) and the other associated 

with edge-sharing tetrahedra (3.05Å). Our results show that in the liquid phase, the 

separation between edge- and corner-sharing length scales (equivalent to “2-2” and “0-0” 

cation interactions) weakens and that the intermediate terms overlap. Figure 4.7 shows 

the network connectivity radial distribution functions, gab
GeGe r  , where ab represents 

the different combinations of "0", "1" and "2" cations. These functions are normalised 

according to the concentrations of the coloured species (i.e gab
GeGe r  tends to one as 

r→∞). As expected, the position of the principal peaks show significant differences for

g00
GeGe r  and g22

GeGe r  at 3.83Å and 3.46Å respectively; these represent, in extrema, 

corner- and edge-sharing length scales respectively. This contrasts with the experimental 

results of Susman et al6 which indicate that the edge-sharing separation is even smaller 

than that given by the crystalline state at 2.85Å. These functions, in addition to the 

intermediate functions, g01
GeGe r  , g11

GeGe r  , g12
GeGe r  and g02

GeGe r  ,  with principal 

peak positions of 3.79Å, (3.34Å and 3.76Å), 3.38Å and 3.88Å respectively show a 

significant amount of overlap with each other. This highlights the intractable difficulty of 

extracting edge-sharing statistics for liquids from radial distribution functions. This is 

reflected in the change of the percentage of edge-sharing cations, with variation of the 

Ge-Ge cutoff radius, as shown in figure 4.8. A large dependence with r is observed, in the 
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region 3.15Å to 3.75Å, with the total amount of edge-sharing units (E1+E2) 
 increasing 

until 3.90Å, approximately the same value as the principal peak position for g00
GeGe r  .  

Figure 4.7 (left): Breakdown of gGeGe(r) according to network connectivity of cations; black line, 

g MM
00  r ; red line, g MM

11 r ; green line, g MM
22 r ; blue line, g MM

01 r ; yellow line, g MM
02 r ;

brown line, g MM
12 r ; mauve line, gGeGe(r).

Figure 4.8(right): Percentage of cations according to network connectivity,  En;  black line, E0; red line, E1; 

green line, E2; blue line, E1+E2
.

4.7 Conclusion.

A new model using the PIM has been produced for the structure of GeSe2. In comparison 

to recent FPMD calculations32, the strength of the PIM representation is the description of 

Ge-Ge correlations which are closer to the experimental results. FPMD provides a better 

description of features such as homopolar bonds and better representation of the GeSe 

and SeSe correlations, as evidenced by a similar intensity of the principal peak. However, 

the absence of homopolar bonds do not appear to substantially affect the ability to 

reproduce IRO as SeSe interactions are significantly less important than the 

corresponding cation-cation functions. This is highlighted in the increased amount of 
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edge-sharing tetrahedral units which are exhibited by the PIM compared to FPMD and 

the Vashishta potential26. While the use of diffraction patterns has been questioned as 

suitable probe for measuring the efficacy of potential models53, without further recourse 

to spectroscopic calculations, these results highlight that diffraction experiments, 

particularly the information at low k, are able to distinguish between a number of 

computational models in describing the structure. The model produced in this chapter 

enables the colouring of cations according to network connectivity and calculation of 

constituent partial structure factors, to perturb single parameters such as anion 

polarisability, temperature and density to observe the evolution of IRO. In this chapter, 

network connectivity radial distribution functions have been used to show the variety of 

edge-and corner-sharing environments and length scales associated with them in GeSe2 

demonstrate the difficulty of elucidating the percentage of edge-sharing cations from the 

radial distribution function gGeGe(r).

      These results, and comparison with other GeSe2 models show that there are two 

important strands to simulation work with regards to the structure of GeSe2. The first is 

the importance of representing the connections between constituent tetrahedra. The 

prominence of edge-sharing is stronger in the PIM than in FPMD and previous classical 

models of Vashishta26, leading to a stronger FSDP in SGeGe(k). The influence of edge-

sharing in the representation of GeSe2 has also been observed in systems such as 

calculations of Cobb and Drabold34 where the partial structure factors are in good 

qualitative agreement with the experimental functions, but the relative intensities are 

much smaller (for SGeSe(k), ~10% of that observed experimentally). Another advantage of 

the model produced in this chapter is that it is a significantly larger system calculations of 

similar structural accuracy (999 atoms compared to 218 atoms used for the model used by 

Cobb and Drabold34). The edge-sharing present in a recent Monte Carlo model45 of GeSe2 

is much weaker than present in our model and Cobb and Drabold's calculations34. This is 

indicated by the presence of an edge-sharing peak at 3.30Å which is much less intense 

than the corner-sharing peak at higher r. In a recent Reverse Monte Carlo simulation on 

GeSe2 by Murakami et al42, a FSDP in SGeGe(k) is reproduced but of a much weaker 

intensity (about half as intense as the principal peak) than that observed experimentally. 

There is also a good correlation in the principal peak intensities of all three correlations in 

addition to the FSDP of SGeSe(k). Another feature is the slower damping of high k 

oscillations in SSeSe(k) and SGeGe(k) than is observed in our model and experimentally 
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(possibly related to the initial configuration in the RMC procedure being crystalline). 

Again, the GeSeGe bond angle distribution shows the presence of edge-sharing is less 

significant than in our model. Ongoing work in electronic structure calculations is 

looking for stronger intermediate-range GeGe correlations by application of different 

exchange-correlation functionals including the BLYP (Becke exchange function54 with 

Lee Yang and Parr correlation functional55) and Perdew-Wang56 GGA approximations for 

exchange and correlation energy. The former, which does not assume uniform electron 

gas character of the correlation energy is more successful at reproducing liquid GeSe2 

structure. The improved model with the BLYP functional displays many structural 

features which correlate with our model including a steeper decline in the intensity at the 

high r side of the principal peak in gGeGe(r); a clearer separation between edge- and corner-

sharing tetrahedra as highlighted by the presence of two peaks in the Ge-Se-Ge bond 

angle distribution; and a more intense FSDP in SGeGe(k). 

     The second important strand is the effect of the coordination shell of the ions; the PIM 

has a strong tetrahedral nature while FPMD induces a certain amount of disorder in terms 

of the coordination distribution and the presence of homopolar bonding. As highlighted in 

the introduction, too much chemical disorder through the presence of a significant 

amount of homopolar bonds leads to a relatively weakened FSDP. In comparison with 

recent results for glassy GeSe2 by Mauro et al37, no significant defect feature was 

observed in the radial distribution function at 3.04Å compared to the typical Ge-Se bond 

length of 2.36Å of gGeSe(r), as exhibited in structure factors of glassy GeSe2
1. This peak 

has been highlighted as a possible termination ripple, similar to other low r features 

caused by the truncation of the structure factor8 in the Fourier transform of High Energy 

Diffraction experiments where it is present when kmax is 20Å-1 but absent when kmax=35Å-

1. In the RMC model of Murakami, gGeSe(r) has a strong intensity of ~13, over double to 

that observed experimentally, in addition to the presence of homopolar bonds in SeSe and 

GeGe correlations; the former feature may be caused by using a crystalline configuration 

at the beginning of the RMC procedure. DFT calculations on glassy-GeSe2 by 

Giacomazzi53 show good correlation in the FSDP and higher k range of the partial 

structure factors except for the FSDP in SGeGe(k). In several models produced, one 

utilising the Vashishta potential26,27 to generate the initial configuration for relaxation by 

electronic structure methods, and another using solely electronic structure methods, show 

two varying interpretations of the structure. The first is predominantly ionic with 5% of 
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Se atoms involved in homopolar bonds and 33% edge-sharing, while the latter model has 

24% of Se atoms in homopolar bonds with 55% edge-sharing, both resulting in a 

significantly weaker than experimental feature for SGeGe(k).53 Our model, in contrast, 

shows an ability to stabilise a larger presence of edge-sharing units and exhibits greater 

stability in terms of the chemical ordering of the coordination shell, resulting in a better 

correlation to the experimental FSDP for SGeGe(k).
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Chapter 5
Chemical ordering in GeSe2 and ZnCl2

5.1 Introduction.

In the MX2 stoichiometry, GeSe2 and ZnCl2 represent an archetypal pair of materials 

possessing intermediate-range order.1,2 In both cases, the network structure can be 

considered as constructed from a mix of corner-sharing and edge-sharing MX4 tetrahedra. 

Both systems show a FSDP at scattering angles corresponding to kFSDP ~1Å-1  (compared 

with the principal peak at 2Å-1) in their structure factors.3-7 Furthermore, the existence of 

suitable isotopes allow the partial structure factors to be experimentally resolved for both 

systems.3,5-7,8 rendering these systems excellent targets for simulation models. Neutron 

scattering studies3,5-7 indicate that the respective FSDPs are dominated by the cation 

sublattice (although this view has been questioned9). Both systems display complex 

morphological changes as a function of temperature5-7,10 and pressure.11,12 Despite their 

clear similarities, these systems also show distinct differences often assigned to a 

fundamental difference in their inherent bonding, as indicated by the greater ionicity of 

the Zn-Cl bond with a value of 43% according to the Pauling electronegativity scale 

compared to 7% for GeSe2. Additionally, GeSe2 shows a small fraction of homopolar 

bonds13-18,19-23 not present in ZnCl2, which may have implications for network-dependent 

properties. 

      The difference in structure is naturally expressed in the Bhatia-Thornton structure 

factors, which separate structural (network) ordering from that imposed by the underlying 

chemistry (chemical ordering),24,25 with GeSe2 showing a significantly stronger FSDP in 

the concentration-concentration function SCC(k), indicative of the chemical ordering on an 

intermediate length scale. Simulation work has tended to focus on the individual systems. 

For GeSe2, ab initio electronic structure calculations have reproduced a large number of 

static and dynamic properties.14-18, 19-23 However, the emergence of a FSDP in SCC(k) is 

found to be heavily dependent on the details of the calculation. Pair potential based 

models augmented with explicit three body terms, which constrain specific bond angles, 

fail to reproduce such a feature.26,27 The success of electronic structure calculations in 
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reproducing the FSDP in SCC(k) varies. Neither the LDA (Harris first order functional) of 

Drabold et al20,21 or the calculations of Massobrio et al, either in LDA or GGA 

schemes,16,19 reproduce this feature. An understanding of the structural origin of the FSDP 

in SCC(k) is lacking. Massobrio et al,13-18 define three classes of IRO in which structural 

disorder is correlated with the FSDP intensity. Class 1 encompasses near perfect networks 

and have no FSDP in SCC(k). In class II, significant structural disorder leads to a FSDP, 

while in class III the degree of disorder is such as to remove the FSDP. For systems such 

as ZnCl2 and GeSe2 the polarisation effects are balanced such that these systems can be 

considered as a dynamic mix of edge-sharing and corner-sharing units. The relative 

flexibility of the PIM lies in the ability to readily stabilise both corner-sharing and edge-

sharing polyhedral links as a function of the anion environment, rather than relying on 

more restrictive explicit bond-angle constraints.26,27

      In order to exploit this inherent flexibility this chapter is divided into two main 

sections. In the first half, the current best fit models for both ZnCl2 and GeSe2 are studied 

with emphasis on the low-k properties of SCC(k). In the second half, additional models are 

considered as well as the density dependence of SCC(k), allowing for the structural origins 

of the low k features to be further understood. 

5.2 Simulation Details

The central cell used in all calculations in this chapter consists of 999 ions (333 cations 

and 666 anions).The Bhatia-Thornton24 and network connectivity correlation functions 

discussed in section 5.3, were obtained by using the configurations generated from the 

calculations for ZnCl2 and GeSe2 detailed in Chapters 3 and 4 respectively. The cell for 

GeSe2 was held to experimental density (average cell size 31.80Å) by application of a 

pressure of 6x10-4 a.u and at a temperature of 3000K while for ZnCl2 the run was at zero 

pressure and 800K, both under NPT conditions, and the results are discussed in section 

5.3.

      In section 5.4, we compare the SCC(k) of ZnCl2 and GeSe2 with BeF2, MgCl2, ZnCl2 at 

lower density and BeCl2, where the short-range damping parameter c is reduced from 0.90 

to 0.50 in steps of 0.1. In all simulations in this section, equilibration runs of 30 ps were 

carried before an additional simulation run of 60 ps length. The potential parameters for 

all these systems are given in Appendix B. For BeF2, the potential28 was applied to a 
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previous configuration using the ZnCl2 RIM model. The simulation was run at 1100K 

under NPT conditions in a cell with an average cell size of 22.17Å, within 1% of 

experimental density of 1.96 g/cm3 at 973K.29 Using a potential model which used an 

older parameter set for the ZnCl2 PIM potential model30, the range of densities analysed 

were obtained by varying the pressure from 5x10-5 a.u to 1.5x10-5 a.u pressure increments 

of 1.25x10-6 a.u. Data was taken at each increment where, beginning with the lowest 

pressure configuration, the average cell sizes were 35.05Å, 34.27Å, 33.79Å, 33.41Å, 

33.02Å, 32.73Å, 32.46Å, 32.15Å and 31.97Å. The temperature for these simulations was 

set constant at 800K. SCC(k) for BeCl2 was calculated for the configurations generated 

with the short-range damping parameter carried out in steps of 0.1 from c=0.90 to c=0.50 

in the procedure highlighted in section 6.9. SCC(k)  for MgCl2 was calculated using the 

configurations generated in Chapter 3.  

5.3 Comparison of GeSe2 with ZnCl2.

Figure 5.1 shows the network connectivity structure factors for the ZnCl2 and GeSe2 

models calculated at T=800K and T=3000K, respectively (in the liquid regimes for both 

systems). The strongest FSDPs are observed in the cation-cation functions, with 

significant features in the corresponding metal-anion functions. The major difference in 

these two systems lies in the relative intensities of the FSDP in SMM(k) compared with the 

principal peak in SMM(k). The feature in GeSe2  is significantly more intense than in ZnCl2 

(~90% and ~55% of the principal peak heights, respectively)3, 5-7, 8 consistent with 

experiment and ab initio simulations.13-18 The Bhatia-Thornton (BT) partial structure 

factors [SCC(k), SNN(k), and SNC(k)] may be expressed in terms of the Faber-Ziman 

functions as:

             S CC k =cM c X {1cM c X [ [S MM  k −S MX  k  ][S XX  k −S MX  k  ]]}         (5.1) 

             S NN  k =cM
2 S MM  k c X

2 S XX  k 2 c M cX S MX  k                                         (5.2)

             S NC  k =cM c X {c M [S MM  k −S MX  k  ]−c X [S XX  k −S MX  k  ]}                 (5.3)
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      Figure 5.2 shows the BT structure factors for the simulated GeSe2 and ZnCl2 systems. 

Clear FSDPs are observed in both SNN(k) functions (again, consistent with experiment5-7). 

Significantly, a FSDP appears in the SCC(k) for the GeSe2 model but not for the ZnCl2. 

Although recent scattering experiments suggest the appearance of an SCC(k) in both 

systems,8 the signature for ZnCl2 appears significantly weaker than for GeSe2. As a result, 

we envisage the two models considered here may represent extrema in terms of their IRO 

and its relation to SCC(k). Figure 5.3 shows the breakdown of SCC(k) into the weighted 

contributions from the FZ functions. [Eq 5.1] At kk PP SCC(k) is a simple 

superposition of three FZ functions, with the two like-like functions [SMM(k) and SXX(k)] 

equally weighted and SMX(k) weighted double. At kk PP however, SXX(kFSDP)~0 and so 

SCC(k) approximates to a simple combination of SMM(k) and SMX(k) 

[SCC(k)~cMcX{1+cMcX[SMM(k)-2SMX(k)]}. For the ZnCl2 model these two functions can 

effectively cancel out on the length scale associated with the FSDP. It appears, therefore, 

Figure 5.1:Faber-Ziman partial structure factors obtained for the ZnCl2 and GeSe2 models at 800K and 

3000K respectively. Black line, SXX(k); red line, SMX(k); green line, SMM(k), where M=Ge and X=Se for top 

panel and M=Zn and X=Cl for bottom panel.   
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that the greater intensity of SGeGe(k) [compared with SZnZn(k) in ZnCl2] leads to an 

incomplete cancellation from the respective anion-cation function and hence to the 

significant FSDP in SCC(k).

 

      In order to understand the structural origins of this difference in SCC(kFSDP) , 

SMM(k) and SMX(k) are decomposed into additional partial structure factors (network 

connectivity structure factors) generated by “colouring” each cation in the terms of the 

local environment. A cation at the centre of a tetrahedron which only corner shares with 

neighbouring polyhedra is labelled “0”, while those with structural units containing one 

and two edge-sharing units are labelled “1” and “2” respectively.15 Table 5.1 lists the 

fraction of each cation type for the two systems averaged over 100ps of molecular 

dynamics. The GeSe2 model contains a significantly greater proportion of edge-sharing 

units.

Figure 5.2:Bhatia-Thornton partial structure factors obtained for the ZnCl2 and GeSe2 models at 800K and 

3000K respectively. Black line, SNN(k); red line, SNC(k); green line, SCC(k), where full line is GeSe2 and 

half-line is ZnCl2.   
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Connectivity GeSe2 ZnCl2
0 18 33
1 49 40

2 33 27
Table 5.1: Percentage of cations coloured according to their network connectivity. 

An additional six MM and three MX structure factors can be defined as 

                        S MM
ab k =〈AM

ȧ k ⋅AM
b k 〉                                                                   (5.4)

                        S MX
aX k =〈AM

a ' k ⋅AX k  〉                                                                    (5.5)

Figure 5.3: Breakdown of the Bhatia-Thornton concentration-concentration structure factors, SCC(k), into 

the weighted Faber-Ziman functions for the GeSe2 (solid lines) and ZnCl2 (dashed lines) models. The GeSe2 

shows a clear FSDP which is absent for ZnCl2.  Black line, anion-anion contribution S CC
XX k ; red line, 

cation-anion contribution S CC
MX k ; green line, cation-cation contribution SCC

MM k ; blue line,

SCC k .



Chapter 5. Chemical ordering in GeSe2 and ZnCl2                                                                                                  139

where {a,b} ={0,1,2}. These functions can be combined to produce network connectivity 

cation-cation and cation-anion structure factors.

S MX k =c0 S MX
0X k c1 S MX

1X k c2 S MX
2X k 

                                                               (5.6) 

 

S MM  k =c0
2 S MM

00 k −1c1
2S MM

11 k −1 c2
2S MM

22 k −12c0 c1 S MM
01 k 2 c0 c2S MM

02 k 

                 + 2c1c2 S MM
12 k                                                                                           (5.7)

where c1 and c2  are the mole fractions of atoms labelled “0”, “1, and “2” respectively.

Figure 5.4 shows the breakdown of the respective SMM(k) and SMX(k) structure factors into 

the (weighted) network connectivity functions defined above. For GeSe2, the strongest 

contributions to the FSDP in SMM(k) arise from S MM
11 k  , S MM

12 k  , and S MM
02 k  ,  with

S MM
12 k  and S MM

02 k  both having a FSDP intensity greater than the principal peak. 

[SMM(kFSDP)/SMM(k)(kPP) = 1.13 and 1.79 respectively]. For ZnCl2, the six functions 

appears similar  in terms of the SMM(kFSDP)/SMM(kPP) ratio (in the range 0.6 to 0.9), with 

each appearing to contribute significantly to the FSDP in SZnZn(k) with their relative 

contributions dictated by the concentration weightings in equation 5.6. In addition, the 

GeSe2 function FSDPs differ in position, with kFSDP=0.97, 1.08, 1.02 and 1.03Å-1 for

S MM
01 k  , S MM

02 k  , S MM
11 k  and S MM

12 k  respectively. These differences indicate that 

the presence of edge-sharing units in the GeSe2 model exerts a major influence on the 

static structure by effectively breaking up the corner-sharing network and introducing 

subtle variations in the IRO. 

      Further clues as to the nature of this network are afforded by considering the width of 

the FSDPs in Figure 5.4. The S MM
11 k  , S MM

12 k  and S MM
02 k  functions show widths 

(at half the peak height) of 0.35, 0.39, and 0.67Å-1  respectively. The significantly greater 

width of S MM
02 k  at kFSDP results from the pseudo one-dimensional nature of the 

percolating edge-shared chains. These chains are effectively charge neutral and so are 

only weakly bound to the network perpendicular to the chain major axis. The weak-

bonding results in the formation of an ordered intermediate-ranged length scale in 

addition to that imposed by the corner sharing network. Unlike SMM(k), the SMX(k) 

functions appear to map onto each other when the concentration weightings are accounted 
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for. The difference in the two systems, therefore, lies in the relative intensities of the 

SMM(k) which is directly correlated to the differing proportions of edge-sharing units. 

      Two further differences between the MM functions are noteworthy. First, both 

S MM
00 k  and S MM

22 k  are increasing as k→0 indicative of the effect of “phase 

separation” or clustering of these coloured cation sites. Secondly the long k oscillations 

appear quite different in these two set of functions. For the ZnCl2 model, the six functions 

appear to contain the oscillations (at kk PP ) at approximately the same frequency. In 

the GeSe2 model, the oscillation frequencies and their intensities appear to be 

significantly different between the six different functions. To further understand these 

differences the corresponding real space network connectivity pair distribution functions,

g MM
ab r  are calculated. 

Figure 5.4:Breakdown of the cation-cation (upper panel) and cation-anion (lower panel) structure factors in 

terms of the cation environment. The functions are weighted by the respective concentrations of the 

coloured cations. 
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      Figure 5.5 shows the six network connectivity radial distribution functions for the two 

systems. ZnCl2 and GeSe2 functions display peaks on three length scales; g MM
00 r  and

g MM
01 r  show a peak at 3.86Å, g MM

11 r  at ~3.60Å, and g MM
12 r  and g MM

22 r  at 

~3.35Å. The resolution of the different cation length scales supports the existence of 

relatively long-lived species built around the corner- and edge-sharing in the molten state. 

For gGeGe
02 r  and gGeGe

12 r , a less intense principal peak compared to gZnZn
02 r  and

gZnZn
12 r  is coupled with a more intense second peak; the ratio of the intensities being 

significantly larger for gGeGe
02 r  at 1.45, compared to 0.97 for gZnZn

02 r . The function,

g MM
12 r , displays the only significant difference in terms of principal peak position 

with gGeGe
12 r  showing a peak at 3.35Å compared 3.45Å for gZnCl

12  r. gGeGe
00 r ,  

gZnZn
01 r  and gGeGe

11 r  show more intense principal and second peaks compared to 

their zinc counterparts.  

      Figure 5.6 shows two graphical snapshots of the respective cation distributions with 

the different polyhedral linkages highlighted. For the GeSe2 system a significant number 

Figure 5.5: Network connectivity radial distribution functions, g MM
ab r , for ZnCl2 and GeSe2 according 

to network connectivity of cations.
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of edge-sharing units form into chains. The percolation of the edge-sharing units form 

into chains. This percolation of edge-sharing units leads to an effective clustering of these 

units with resultant phase separation of sites labelled “0” and “2”. The presence of a 

cation labelled “2” precludes the nearest neighbour labelled “0” (since these neighbours 

must have one edge-shared link). The percolation of these edge-sharing units (equivalent) 

to chains of “2” cations results in an additional ordering of the sublattice beyond that 

imposed by a simple corner-sharing polyhedral network. The percolated edge-sharing 

units introduce a short cation-cation length scale resulting in a region of relatively high 

cation density. 

      Figure 5.7 shows the effect of the additional cation-cation length scales on the real 

space concentration-concentration Bhatia-Thornton functions, gCC(r) calculated by the 

equation 5.7:

                                           gCC r =cM c X [ gMM r gXX r −2 gMX r ]                   (5.7)

The GeSe2 system shows significant features at r+/r-~1.33 attributable to the existence of 

a significant number of the percolating edge-shared units. The presence of the percolating 

edge-shared units, therefore creates fluctuations in the cation subdensity on both the short 

and intermediate length scales. The pseudo one-dimensional nature of these units leads to 

Figure 5.6: Molecular graphics snapshots for ZnCl2 (left) and GeSe2 (right) showing cations coloured 

according to their network connectivity: red circles, "0" cations; blue circles, "1" cations; green circles, "2" 

cations.
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fluctuations in the cation charge density over the intermediate length scale and hence 

causes the FSDP in SCC(k). For ZnCl2, the chain percolation is strictly limited and so these 

additional length scales are only transient. 

      In this section the difference in the intermediate–range order observed in two specific 

systems (ZnCl2 and GeSe2) has been investigated. The variations in IRO have been 

attributed to difference in the number of edge-sharing tetrahedral units present in the two 

systems. For GeSe2, these edge-sharing polyhedral units are found to percolate into 

persistent charge neutral (one-dimensional) chain structures which act to break up the 

(three-dimensional) corner-sharing network (predominant in ZnCl2). These chains act to 

introduce an additional intermediate-range length scale leading to an excess intensity of 

the SMM(kFSDP) which is not counterbalanced by the corresponding SMX(k) function and 

hence leads to the FSDP in SCC(k).    

Figure 5.7: Real space Bhatia-Thornton concentration-concentration pair distribution functions for the 

GeSe2   (bottom panel) and ZnCl2 (top panel) along with the three Faber-Ziman contributions. Black line, 

anion-anion contribution gCC
XX r ; red line, metal-anion contribution gCC

MX r ; green line,  cation-

cation contribution gCC
MM r ; blue line, gCC(r). 
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5.4 The FSDP in concentration-concentration structure factor,

      SCC(k), in MX2 systems.

 
A study by Salmon of a group of MX2 compounds found the presence of a first sharp 

diffraction peak in SCC(k) in ZnCl2, MgCl2 and GeSe2, although absent in NiCl2, NiBr2, 

NiI2, SrCl2, CaCl2 and BaCl2.25 Subsequent computational study has found it difficult to 

reproduce this feature.16,19 In the case of classical calculations, the inability to reproduce 

homopolar bonds may have been a factor; in the case of electronic structure calculations, 

structural relaxations due to the small size of the array, and an overestimation of the 

amount of covalency could be reasons why the observation of the FSDP in SCC(k) remains 

problematic. The appearance of a FSDP in SCC(k) in section 5.2 is the first to be found in 

classical-MD calculations. The appearance of such a feature in the present work enables a 

systematic study of the SCC(k) peak with regards to temperature and pressure, and in 

particular on the structural origin. Our work so far has shown the FSDP in SCC(k) to be 

present in GeSe2-like systems while a less intense shoulder is present is ZnCl2. The major 

structural difference in GeSe2 and ZnCl2 was the presence of a tighter 4-coordination with 

the presence of larger amounts of edge-sharing. Preliminary calculations, with a 

previously used parameter set30 for ZnCl2, showed that with density changes an increased 

amount of edge-sharing was present. As a result, we pose the question as to whether a 

FSDP in SCC(k) could be produced by calculating the structure of low-density ZnCl2, 

where we expect a larger proportion of edge-shared tetrahedral units. In addition, we 

considered another candidate system, BeCl2, which displays dominant edge-sharing 

linkages in the molten state as indicated by Raman spectroscopy.31  Furthermore, a 

potential model has been developed using the PIM had shown to contain significant edge-

sharing units. BeCl2 is also shown to have significant presence of three and four 

coordinate cations. Other candidate systems for the observations of the presence of a 

FSDP in SCC(k) are BeF2: a system dominated by the presence of corner-sharing tetrahedra 

and MgCl2: a system with similar features to ZnCl2 but as shown in chapter 3 differs 

particularly in the local geometry of the anions around the central cation in constituent 

polyhedral units. This would complete the range of structures we would expect from 

molten MX2 systems in this cation size range.   
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      Figure 5.8 highlights the SCC(k) functions for the different compounds. BeF2 displays 

the least intensity at 1Å-1. GeSe2 displays the strongest SCC(k) whilst the lower density 

configuration of ZnCl2 displays a much stronger FSDP compared the experimental density 

configuration.  The simulated BeF2 system is strongly 4-coordinate with negligible 

amounts of edge-sharing tetrahedra. As a result, the length scales which are stabilised for 

systems such as GeSe2 and ZnCl2 are not present and so concentration fluctuations are not 

observed over the intermediate-range near 1Å-1 . The SCC(k)  functions of MgCl2 and 

ZnCl2 do not show a significant FSDP unlike the experimental functions by Salmon25.  

At lower densities, ZnCl2 forms a small pre-peak in SCC(k). The change in the intensity of 

SCC(kFSDP) highlighted in table 5.2 shows that there is not a simple linear relationship with 

Figure 5.8:Concentration-concentration structure factor, SCC(k), for various compounds: Black line, GeSe2 

(3000K, exp. density); red line, ZnCl2 (800K, 2.41 g/cm3); green line, ZnCl2 (800K, 2.05 g/cm3); blue line, 

BeCl2 (short-range damping parameter (SRDP) c=0.50), yellow line, BeCl2 (SRDP c=0.90); brown line, 

MgCl2  (800K); purple line, BeF2.
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decrease in density. The intensity of SCC(kFSDP) observed for ZnCl2 across the density-

range of 1.73 to 2.28 g/cm3 varies from 0.11 to 0.13, with the maximum value occuring at 

the intermediate density values of 2.05 g/cm3
 and 2.11 g/cm3

.
 Over the same range of 

densities, the FSDP in SNN(kFSDP) shows much larger changes from 0.47 at the highest to 

1.26 at the lowest density. Figure 5.9 shows the change in the partial structure factors for 

ZnCl2 over this density region. With decreasing density both SZnZn(kFSDP) and SZnCl(kFSDP) 

increase in intensity and shift to lower k. The balance of SZnZn(kFSDP) against SZnCl(kFSDP) 

which is responsible for the FSDP in SCC(k) fluctuates over this density region. 

At the lowest density sampled, 1.73 g/cm3
, SZnZn(k) displays a large FSDP similar to that 

of GeSe2  in section 5.2, but the intensity of the related SCC(kFSDP) (given in table 5.2) is 

not similarly the strongest (observed at 2.05 g/cm3) because of the larger intensity of 

SZnCl(kFSDP). Whereas SCC(k) represents the difference between SZnZn(k) and SZnCl(k) 

Figure 5.9:Partial structure factors of ZnCl2 in the density range 1.73-2.28 g/cm3. Top panel, SZnZn(k); middle 

panel, SZnCl(k); bottom panel, SClCl(k). Black line, 1.73 g/cm3; red line, 1.93 g/cm3; green line, 2.05 g/cm3; 

blue line, 2.17 g/cm3; yellow line, 2.28 g/cm3
.



Chapter 5. Chemical ordering in GeSe2 and ZnCl2                                                                                                  147

equation 5.2 shows that SNN(k) is essentially a weighted summation of the changes in the 

partial correlations. However, the subtle balance of the cation-cation and cation-anion 

terms in SCC(k) results in a non-linear relationship of the intensity at the FSDP compared 

with the relatively clear fall in intensity observed in SNN(k). Table 5.2 also shows that 

structural features over the density range remain similar, both in the percentage of cations 

coloured by their respective network connectivities and the coordination numbers, 

highlighted by the similarity in 4-coordination in the Zn cation. This indicates that the 

changes are largely to do with the accommodation of larger voids within essentially the 

same network. 

Density 
(g/cm3)

E0 E1 E2 NZn-Cl=4 NCl-Zn=1 SCC(kFSDP) SNN(kFSDP

)

1.73 19 54 26 82.7 8.96 0.12 1.26
1.85 26 57 17 82.9 8.4 0.11 1.02
1.93 31 54 15 83.6 7.81 0.12 0.98
2.00 30 54 15 84.6 6.74 0.12 0.93
2.05 26 55 20 85.7 4.46 0.13 0.89
2.11 36 48 16 83.8 5.66 0.13 0.72
2.17 34 52 15 83.6 4.63 0.12 0.67
2.24 35 48 17 81.1 4.62 0.11 0.65
2.28 35 51 15 81.2 4.05 0.11 0.47

Table 5.2: Summary of structural information of low-density ZnCl2 configurations. Columns 2-4: 

percentages of cations coloured according to their network connectivity; columns 5 and 6: percentage of 

four coordination for Zn-Cl ion pair and 1 coordination for Cl-Zn ion pair; columns 7 and 8: intensities of 

the FSDP in concentration-concentration and number number structure factors.  

      So far we have observed the presence of a FSDP in systems where edge-sharing 

connectivity between tetrahedra is more prominent i.e in GeSe2 and the low-density ZnCl2 

configurations. Whilst a minimum is highlighted in the intensity of SCC(kFSDP) in the case 

of BeF2, the possibility of a maximum in the intensity of SCC(kFSDP) can be investigated by 

using an amended BeCl2 potential which enables larger polarisation effects, such as 

increased propensity for edge-sharing to occur. The short-range damping parameter c was 

varied in the region 0.50-0.90. Figure 5.8 shows that a peak is resolved ~1Å-1 at c=0.90 

while at c=0.50 the intensity is observed as a shoulder. Table 5.3 highlights the SCC(k) 

intensity with changing value of c. In contrast to the low density configurations of ZnCl2 
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where coordination is similar, changing c causes large changes in coordination: table 5.3 

shows with decreasing c lower Be-Cl coordination is favoured. There is also a large 

increase of miscoordinated anions. Over this range of coordination changes, the SCC(kFSDP) 

intensity remains similar. In chapter 6 we show that at c=0.50, an ionic to molecular 

transition occurs: this is highlighted by the steep drop in coordination number for Be-Cl 

coupled with the rise in miscoordinated anions, indicating the formation of molecular 

units. Although there is a sharp decline in SBeBe(k) this is matched by a similar drop in 

SBeCl(k); the net effect is that though SCC(k) is observed as a shoulder rather than a peak in 

figure 5.7 it observes a similar intensity to SCC(k) at c=0.90. 

SRDP 
c

kFSDP (Å-1) SCC(kFSDP) NBe-Cl=2 NBe-Cl=3 NBe-Cl=4 NBe-Cl=5 NBe-Cl=6 NCl-Be=1

0.50 1.08 0.10 10.3 45.8 39.7 4.2 0.11 40.4
0.60 1.14 0.13 1.37 24.3 63.6 10.2 0.43 20.1
0.70 1.14. 0.13 0.17 10.5 70.1 18.1 1.08 9.7
0.80 1.09 0.12 0.018 4.30 65.3 27.9 2.56 4.5
0.90 1.09 0.10 0.017 3.42 61.5 31.5 3.58 3.2

Table 5.3: Summary of structural information of BeCl2  configurations. Columns 2-3, intensities and position 

of the FSDP in concentration-concentration structure factors; columns 4-8, percentage of coordination 

number for ion pair BeCl, NZn-Cl; column 9, percentage of 1-coordination for Cl-Zn ion pair.   

5.5 Conclusion.

The section of the London underground map in figure 5.10 provides an effective 2D 

analogy of the cation-cation correlations which are responsible for the presence of a 

FSDP in SCC(k). Stations represent cations with the section pictured here representing an 

amorphous system. In a system where Coulombic repulsion was paramount in 

determining the structure of a cation sublattice, they would, to a reasonable 

approximation, be spaced out equally with an even distribution of voids between them. 

The presence of an anion with significant polarisability stabilises closer packing of the 

cations (stations). This results in an increasing in cation bonded together through edge-

shared units (“1” cations). In GeSe2, where a larger anion polarisability is present this 
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results in chain formation (track lines) with cations in wholly edge-sharing configurations 

(“2” cations) connected together.  

The effect of this chain formation is a closer separation of atoms at local density. To 

offset this increase in local density voids are stabilised by the larger separation of bonds 

between remaining cations. It is primarily the ordering across these larger voids which are 

responsible of both longer length scale and a wider range of M-M bond distances to a 

greater degree in systems such as GeSe2 compared to ZnCl2. The importance of the 

presence of a significant amount of edge-sharing has been highlighted here and in recent 

work by Massobrio32 where GeSe2 configurations derived from those displaying a 

relatively high value of SCC(k) showed greater edge-sharing than configurations displaying 

a relatively low value. 

      Our calculations show the influence of percolating edge-sharing chains in systems 

such as molten GeSe2 which are responsible for the presence of a FSDP in SCC(k). 

Previous work26 on the presence of a FSDP in SCC(k) in MX2 systems was hindered by the 

inability to stabilise the presence of enough edge-sharing tetrahedra to stabilise the 

interactions responsible for the FSDP. An early interpretation of the FSDP in SCC(k) by 

Salmon2 indicated its presence as being a ubiquitous feature in systems of MX2 

stoichiometry which are comprised of tetrahedral units. Due to the stoichiometry of the 

constituent tetrahedra MX 4
−2 , charge propagates along the bonds and, as this occurs in 

an open network, concentration fluctuations occur as a result.2 The focus of proceeding 

electronic structure calculations was on the relationship between the charge-charge 

Figure 5.10: Section of the London Underground Map. Variations in void sizes between cations (train 

stations) are exacerbated with the presence of train tracks inducing concentration fluctuations.

ucylepr
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structure factor, SZZ(k), and the concentration-concentration structure factor, SCC(k). 

FPMD calculations on GeSe4 showed that charge fluctuations on an intermediate-range 

length scale were not responsible but structural disorder.19 This structural disorder was 

viewed in terms of miscoordination (i.e for MX2 systems higher or lower than 4-

coordination for M ions) and broken chemical order in terms of the presence of 

homopolar bonding, rather than the importance of the varying presence of edge- and 

corner-sharing tetrahedral linkages which our model indicates. Similarly, the scheme of 

Massobrio15 described in section 5.1 focuses on a small amount of disorder (combination 

of miscoordination and homopolar bonding) as being required for the presence of a 

SCC(kFSDP). As we have shown in this chapter, it is the presence of percolating edge-

sharing chains breaking up a corner-sharing network which is required for a significant 

FSDP in SCC(k). 

     In the second half of the chapter we observed a range of systems and the varying 

manner by which they displayed a FSDP in SCC(k). BeF2 observes the weakest intensity in 

the range of the FSDP in SCC(k) and it was found that systems which tended towards 

edge-sharing behaviour and strong tetrahedral coordination, such as the low-density ZnCl2 

configurations generated, displayed a stronger FSDP in SCC(k). A non-linear dependence 

was found in ZnCl2, where the temperature and pressure affected the subtle balance 

between the relative intensities of SZnZn(kFSDP) and SZnCl(kFSDP). Of all the systems analysed 

here, GeSe2 displayed the strongest intensity in SCC(kFSDP). The range of systems 

exhibiting a peak in SCC(kFSDP) in simulated systems is smaller than those observed in 

experimental systems. This gap has decreased by, firstly, the observation of the FSDP in 

SCC(k) in a simulated system and, secondly, the elucidation of the major structural features 

responsible for it. Our interpretation of the SCC(kFSDP) indicates support for the presence of 

significant peaks systems such SiSe2 and GeSe2, medium intensity for systems such as 

ZnCl2 and MgCl2 at 1Å-1 and the absence of a peak and any significant intensity for 

systems such as BeF2. This correlates with experiments8 on glassy GeSe2 and ZnCl2 which 

show that GeSe2 has a visibly more intense FSDP in SCC(kFSDP) than ZnCl2, although the 

latter systems observes a peak experimental1y compared to the shoulder observed in 

figure 5.2 from our calculations. Our model is also in contradiction with the presence of a 

FSDP observed experimentally in SCC(k) of glassy GeO2 from experiments of Salmon et 

al33 at ~1.53Å-1 in addition to earlier experiments2 which showed a FSDP present at ~1Å-1 

in MgCl2.
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Chapter 6
Network topology of MX2 compounds

6.1 Introduction.

The systems which form our primary focus are those whose structure can be considered 

network-like and formed by connecting MX4  local coordination polyhedra. As a result, 

for a given class of polyhedra of a given stoichiometry the underlying network structure 

is dependent on the details of the cation-cation and cation-anion linkages. 

A common feature of such networks is the presence of so-called intermediate range order 

(IRO), that is, ordering present on length scales longer than those associated with the 

position of the principal peak in experimental diffraction patterns.1 Figure 6.1 shows a 

series of compounds, based on a characterization of varying connectivity of edge- and 

corner-sharing tetrahedral units. This chapter deals with the MX2 stoichiometry and 

systems which are predominantly tetrahedrally coordinated systems. Previous work, 

using the PIM2 and integral equation methods3
, has shown that, within a series of MCl2 

compounds, increasing cation size leads to a weakening of medium range order due to 

the reduction of the number of tetrahedral units. The example systems listed in the above 

Figure 6.1:Compounds classified according to the nature of the connection between tetrahedra. 
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table can be considered as having significant IRO. However, the origin of IRO can be 

classified in more than one manner. One classification scheme is based on the 

mechanism for the origin of IRO:

1. Coulombic ordering. Figure 6.2 shows that tetrahedral units can be arranged in 

an edge- and corner-sharing configuration; the configuration adopted is 

determined by the strength of the dipole on the central anion.4 The result is that 

these linkages may percolate differently depending on the strength of the anion 

polarisability.5 On the right hand side of figure 6.1 are systems such as BeF2 
6 and 

SiO2 
7 which are characterized by ions having relatively low anion 

polarisabilities.7 In these systems the origin of IRO is primarily based on 

Coulombic ordering, in which highly charged cations tend to spatially avoid each 

other, highlighted by a large M-X-M bond angle and a FSDP at ~1.5Å-1.

2. Inductive effects. In the centre are compounds such as ZnCl2 
8,9  and MgCl2

10 

where inductive effects are more apparent. These systems show a similarity in the 

nearest-neighbour principal peak position in gMM(r) and gXX(r) and show a FSDP 

at k~ 1Å-1. On the left hand side are systems such as GeSe2
11 and SiSe2

12, where 

inductive effects are larger, resulting in significantly more edge-sharing; this is 

highlighted by the crystal states of such compounds which include edge-sharing13 

in contrast to SiO2 and ZnCl2. Homopolar bonds are also observed in these 

systems.14 

      An alternative classification of IRO compounds is presented by Massobrio15 in terms 

of  the uniformity of the coordination shell (and the implied chemical ordering and 

coordination environments), and its subsequent effect on the presence of the FSDP in 

SCC(k). Unlike the above classification, this scheme accounts for the observation of 

homopolar bonds in these systems. In this classification, class I includes those 

compounds, such as BeF2, where there is limited disorder: strongly four coordinate 

systems where a FSDP in SCC(k) is absent. SiSe2 is an example of a class II compound, 

where there is a little disorder: miscoordination, small percentage of homopolar bonds 

and the presence of SCC(kFSDP). Class III includes GeSe2 as modelled by Massobrio16: 

large percentage of homopolar bonds and SCC(kFSDP) is absent again.  

      One advantage of using a simple classical model is the robustness of the potential: 

many parameters can be changed with ease in order to model a wide variety of systems. 

The aim of this part of the investigation is to understand the origin of the IRO as a 
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function of the underlying network topology by systematically observing changes in the 

tetrahedral framework. As shown in Chapter 5, the difference in structural properties 

described in GeSe2 from ZnCl2 can be understood in terms of the proportions of the 

corner- and edge-sharing units in the network which, in the PIM, are controlled by both 

the anion polarisability and cation polarising power. Our strategy, therefore, is to 

understand the changes in the structure for a generalised MX2 system as a result of 

varying the anion polarisability. In doing so, the changes in structure may mirror 

compounds where the anion polarisability is smaller and also changes which occur in 

systems such as GexSe1-x
17

, where the stoichiometry can be changed experimentally. 

6.2 Simulation Details.

The initial parameters for the generalised MX2 system were those used for the GeSe2 

PIM model in chapter 4. The use of the GeSe2 short-range (repulsive) parameters favours 

the formation of relatively tight local tetrahedral geometry. The central cell used in all 

calculations in this chapter consists of 999 ions (333 cations and 666 anions). The initial 

starting configuration of MX2, where αX=40 a.u, was used from the end of simulations 

carried out on GeSe2 in Chapter 4. The pressure was maintained constant at 6 x 10-4 a.u 

in an NPT ensemble. The anion polarisability value is then reduced down in steps of 2.5 

a.u from 40 a.u to 10 a.u with the short-range damping parameters b and c fixed. The 

temperature used for these calculations is 3000K: a temperature at which system can be 

considered as the low-temperature liquid. The initial box size is 31.81Å at αX=40 a.u and 

with each step with a slight declines to 31.40Å at αX=10 a.u (the evolution of cell 

Figure 6.2: Relationship of edge and corner-sharing tetrahedral units with increasing dipole moment (based 

on figure from Wilson and Madden4). αX and σ+ refer to anion (red circles) polarisability and cation (blue 

circles) size respectively. With increasing αX  and decreasing σ+ the dipole moment on the anion 

highlighted increases.
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volume is given in figure 6.17). At each anion polarisability step, the system was 

equilibrated for 30 ps and a simulation run of 60 ps from which structural correlations 

(discussed in sections 6.3-6.8) were calculated. The initial configuration for the next 

polarisability was generated from the end of the simulation of the system at the previous 

polarisability. For section 6.6, where configurations are generated where 4-MX 

coordination is greater than 95% over the whole polarisability range, the pressure of the 

MX2 system when αX=40 a.u was reduced to 3 x 10-4 a.u. Calculations were then carried 

out in the same way as those at higher pressure of 6x10-4 a.u. 

      To represent systems with extreme anion polarisability, which are explored in section 

6.9, a BeCl2 model with the parameters from Wilson4 was used (given in Appendix B). 

To remove memory of the previous configuration, a MD simulation was carried out at 

elevated temperatures of 1500K, well above the melting temperature, to equilibrate the 

configuration for the model. Pressure (3 x 10-5 a.u) was applied to get the model with 

damping parameter c=0.90 at a similar density to that observed for MX2 at αX=40 a.u. 

NPT calculations were run at 800K and the short-range damping parameter c was varied 

in steps of 0.1 down to c=0.50. The average cell sizes from c=0.50 to c=0.90 in steps of 

0.1 are 30.93Å, 31.38Å, 31.49Å, 31.95Å and 32.31Å. At each short-range damping 

parameter  step, the system was equilibrated for 30 ps and a simulation run of 60 ps from 

which structural correlations were calculated. 
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6.3 Structure Factors.

The changes in the total structure factor, F MX 2
k  , as a function of the anion 

polarisability are shown in figure 6.3. These functions are calculated by combining the 

partial structure factors using the Ge and Se neutron scattering lengths (8.185 fm and 

7.97 fm respectively), allowing a direct comparison to be made between functions 

obtained using different anion polarisabilities. As the polarisability is decreased the 

FSDP is observed to shift to higher-k with the most significant shift between anion 

polarisabilities of 25 a.u and 10 a.u. The FSDP intensity decreases from -0.248 to -0.36 

when moving from αX=40 a.u to 25 a.u. From αX=25 a.u to 10 a.u, where the major shift 

Figure 6.3: Change in total structure factors, F(k), of MX2 systems with varying anion polarisability in the 

range αX=10-40 a.u. Inset: close-up of changes in First Sharp Diffraction Peak of F(k).
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in position occurs from 1.25Å-1 to 1.46Å-1, the intensity of the FSDP increases sharply to -

0.095. The form of F MX 2
k  at kk PP , where little change is observed as a function 

of anion polarisability, is largely a function of the short-range ordering; this indicates 

strongly that the changes in IRO which vary with polarisability, are primarily determined 

by the linkages between tetrahedral units. The convergence of kFSDP at high polarisabilities 

is consistent with the observation that features significantly lower than k~0.9 Å-1 can only 

be created by templated liquids, where large alkylammonium cations create large voids 

leading to the presence of longer-range ordering across them.18

      The partial structure factors in figure 6.4, show that SMM(k) is the dominant 

contributor to the FSDP. However, as shown in figure 6.5, the ratio of SMM(kFSDP)/

SMX(kFSDP) changes considerably over this polarisability range. This may explain in part 

Figure 6.4:Partial structure factors according to polarisability in the range αX=10-40 a.u. Top, SMM(k); 

middle, SMX(k); bottom, SXX(k). Inset: close-up of changes in First Sharp Diffraction Peak of SMX(k).
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the controversy over the dominant contributor to the FSDP8,9 in systems such as ZnCl2, 

where in the region 25 to 32.5 a.u, the disparity in contributions of SMM(k) and SMX(k) to 

IRO is weakest. In compounds such as GeSe2 and SiO2, where the positions of the FSDP 

are very different, the SMM(k) contribution dominates. 

S XX  k FSDP contributes negligible amounts to intermediate range order over the whole 

polarisability range. The position of SMM(kFSDP) shifts to higher k with decreasing 

polarisability from a minimum of 1.03Å-1 at 40 a.u to 1.55Å-1  at 10 a.u. The intensity of 

the peak varies non-linearly over this polarisability range, decreasing in the range 40-20 

a.u from 1.38→1.20, and then increasing up to 1.99 at 10 a.u. Concomitantly, the 

position of the principal peak, kPP, displays a smaller shift to lower k from 2.06Å-1  to 

1.89Å-1 
. The opposite movements in kPP and kFSDP is a result of the induction mechanism 

behind intermediate range order. The stabilising of a close cation-cation separation due 

to an induced dipole on an anion causes a local increase in cation density which can only 

be offset by a decrease in intensity over a longer range.19 This effect is represented by the 

formation of two length-scales. The peaks at higher k in SMM(k) are shifted to the right 

with declining polarisability; these changes are effectively hidden in F(k) due to the 

larger concentration weighting of SMX(k) and SXX(k) over this range. SMX(k) varies 

Figure 6.5:Intensities (left) and positions (right) of the First Sharp Diffraction Peak in S MM k 
(black line) and S MX k  (red line).
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similarly to SMM(k) in terms of the position of the FSDP and is present over all 

polarisabilities but exhibits a much smaller range of intensities of 0.26-0.10 compared to 

0.89-1.98 for SMM(k).  

6.4 Radial distribution functions and coordination numbers.

The radial distribution functions are shown in figure 6.6 and accompanying changes in 

the principal peak positions are given in table 6.1. The largest shift in principal peak 

position occurs in gMM(r) from 3.57Å at 40 a.u to 4.60Å at 10 a.u. The decreasing M-M 

distance is indicative of the increasing presence of edge-sharing tetrahedral 

configurations. The correlation with experimental observations is shown in the ratio 

gMM
PP r/g MX

PP r , where the values for selected systems such as GeSe2, ZnCl2 and SiO2, 

corresponding to strongly edge-sharing, mixed edge- and corner-sharing, and strongly 

Figure 6.6: Radial distribution functions, gαβ(r), of MX2 systems with varying anion polarisability in the 

range αX=10-40 a.u.
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corner-sharing systems, show a strong similarity with MX2 systems at αX=40, 30 and 10 

a.u respectively. The FWHM is similar at both high and low polarisabilities. The largest 

changes occur in the region of 5 to 10Å where at αX=40 a.u a much larger intensity is 

observed compared to the damped equivalent at low polarisabilites. For gMX(r) the 

changes are much less significant, while for gXX(r) there is a small shift in principal peak 

from 3.91Å at 40 a.u to 3.80Å at 10.a.u. The changes in gMX(r) are smaller, with the 

principal peak shifting from 2.47Å to 2.43Å and a decrease in the intensity. At higher r 

values both gMM(r) and gXX(r) remain similar. This indicates that the changes with anion 

polarisability are strongly to do with changes in the cation subdensity. 

Compound Ref g MX  rPP
(Å)

g MM rPP
(Å)

g XX rPP
(Å)

g MM rPP 
/

gMX r PP

g XX r PP
/

g MX r PP

gXX rPP

/
gMM r PP

GeSe2 20 2.42 3.59 3.75 1.48 1.55 1.04
ZnCl2 8 2.29 3.72 3.72 1.62 1.62 1.00
SiO2 21 1.62 3.15 2.64 1.94 1.63 0.84

MX2(αX=40 a.u) 2.47 3.57 3.87 1.39 1.50 1.08
MX2(αX=30 a.u) 2.43 4.08 3.86 1.62 1.59 0.95
MX2(αX=20 a.u) 2.44 4.46 3.84 1.82 1.57 0.86
MX2(αX=10 a.u) 2.47 4.60 3.80 1.86 1.54 0.83

Table 6.1: Radial distribution function peak positions in MX2  compounds and the values for the ratios, 

gMM rPP / gMX  rPP , gMM rPP / gXX  rPP and gXX r PP/g MM  rPP with experimental analogues. 

The dominance of the variations in the cation distribution is reflected in the average 

coordination numbers, Mij, shown in figure 6.7. Mij were obtained using equation 6.1:

                                                       M ij=∑l

m
N ij

                                                   (6.1)

where l to m is the range of coordination number for ion pair, ij, considered and N ij
 is 

the fraction of coordination number α, where the boundary for the coordination shell is 

the minimum of the principal peak from the related radial distribution function. 

       As anion polarisability decreases, the propensity for four-coordination, around a 

central cation, is largely stable at 83%-75% in the range αX=40-22.5 a.u. From αX=22.5-

10 a.u the 4-coordination decreases to 53%. The values of average coordination values of 

12.87, 4.15, 2.08 for MXX, MMX and MXM respectively are in the range of expected 
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coordination for a tetrahedral liquid. MMM shows the largest change, increasing 92% over 

the polarisability range compared for MMX,MXX and MXM with values of 7%, -4% and 

10% respectively although the pattern of the changes in MXX are less discernible. At 

α=40 a.u, where there are large amounts of edge-sharing, MMM is as low as 3.6. At lower 

polarisabilities, the larger M-M coordination (e.g MMM=7.22 at 10.au) is indicative of the 

increasing influence of a corner-sharing network, where each central cation has singly 

bridging connections with other cations. 

Figure 6.7: Change of mean coordination number, Mαβ,  in MX2  systems with anion polarisability, αX.
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      The changes in the bond angles distributions (figure 6.8) highlight further the general 

trend of large changes in the cation distribution. Bond angle distributions which involve 

X atoms; X-X-X, X-M-X and X-X-M, show little polarisability dependence and we can 

assume have little effect on IRO through the polarisability range. Those distributions 

involving changes in the angles of M atoms; M-M-M, M-M-X and M-X-M, show much 

larger changes in terms of intensity, peak positions and shape. The bond angle 

distributions show an increase in M-X-M angle with decreasing polarisability from 40 

a.u where a peak is observed at 82o to 121oat 10 a.u. This indicates that with decreasing 

polarisability, the M-M bond distances are getting larger, leading to smaller and less 

distinct edge-sharing geometries while favouring corner-sharing geometries. The FWHM 

for M-X-M decreases from 37.2o at 10 a.u to 26.0o at 40 a.u: an indication of increased 

ordering. The larger peak intensity ~90o compared to the peak at 29o~ in M-M-X was a 

feature of a previous classical potential for GeSe2
22; however, our model shows this to be 

a feature of systems where anion polarisability is lower than that exhibited by Se2-.  With 

the increasing presence of edge-sharing, the acute M-M-X bond angle involving the 

Figure 6.8: Bond angle distributions for MX2 according varying anion polarisability
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anion X bridging the cations of the edge-sharing unit dominates the distribution.  

      The M-M-M distribution shows two prominent features at large polarisabilities: a 

band at larger angles and a sharp peak around 50o. At larger polarisabilities a sharp peak 

at small bond angles dominates the larger angle peak. This ratio changes with increasing 

polarisability. In an analogous fashion to the network connectivity cation-cation structure 

factor, S MM
ab k  where {a,b}={0,1,2}, the bond angle distribution, M-M-M, can also be 

decomposed according to a cation's identity based on the number of four-membered 

rings it is bonded to. The partial contributions vary significantly in the relative 

proportion of these two features compared to the total M-M-M distribution. Figure 6.9 

shows the changes, with polarisability, of S: the ratio of the intensities of the low angle 

peak over the high angle peak for each of the partial M-M-M functions. The functions 

are separated into three groups: clustering (S>1 over whole polarisability range), 

bridging (S<1 for range 40-27.5 a.u) and intermediate (those functions which satisfy 

neither of the criteria for the first two functions). The 0-0-0 and 2-2-2 functions show a 

sharp peak at low angles and in line with the idea of clustering of “0” and “2” cations, 

Figure 6.9:Variation of ratio S with anion polarisability, αX. 
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show large values of S. The 0-1-2 function is the most easily understood bridging 

function: the connection of clusters of “0” and “2” cations is more likely to observe 

higher angles, due to the  resulting in values where S < 1, especially at high 

polarisabilities where clustering of “0” and “2” cations is more apparent. 

6.5 Network-connectivity structure factors.

As shown in Chapter 5, the S MM k  function can be decomposed into further partial 

structure factors according to the identity of cations based on number of four-membered 

rings they are bonded to. By changing the anion polarisability, we are able to observe 

how features such as the intensity and shape of the network connectivity cation-cation 

terms change with the underlying network topology. Figure 6.10 shows that the network 

connectivity cation-cation functions at different polarisabilities display a wide variation 

at low k in the presence and intensity of a FSDP. In S MM
00 k  and S MM

11 k  , the 

position of the FSDP, when present, remains in the narrow range of  1.08Å-1-1.15Å-1 

from 40 a.u to 25 a.u for S MM
11 k  and  1.44Å-1 -1.55Å-1 from 17.5 to 10 a.u for

S MM
00 k . These two functions highlight two different mechanisms for IRO: an 

induction mechanism where the anion is able to stabilise the closer separation of cations, 

and a Coulombic mechanism where repulsion of like charges is the dominant factor. The 

latter mechanism only allows for a FSDP at 1.5Å-1 whereas the induction mechanism 

enables a FSDP at peaks lower than 1.5Å-1 and closer to ~1Å-1
.
  The induction 

mechanism for IRO is highlighted in S MM
02 k  , S MM

11 k  and S MM
12 k  which exhibit 

two peaks in the 0-2Å-1 region and with decreasing polarisability the intensity of the 

FSDP decreases. S MM
12 k  , as might be expected for terms involving edge-sharing 

units, behaves similarly to S MM
11 k  in the narrow range of FSDP positions from 1.02Å-

1-1.08Å-1 for 10-40 a.u. Of the six functions, S MM
01 k  is the only function which 

displays a FSDP at low and high polarisabilities in the range 1.55Å-1-1.08Å-1 from 10 to 

40 a.u. Figure 6.10 shows the changes in cation sublattice evident in perturbing

S MM
01 k  from a double peaked structure to that of a single peak; a function which 

displays both mechanisms due to varying concentrations of cations labelled “0” i.e 

corner-sharing to “1” , where it has mixed corner- and edge-sharing character. A FSDP 
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appears in S MM
22 k  at 40 a.u only at k~1.08Å-1. This is the only example of clear FSDP 

present in a function with significant phase separation signified by the rise in S MM
22 k 

as k→0. This is due to the preponderance of “2” clusters at this polarisability. S MM
02 k 

is the only function to have a FSDP more intense than the principal peak at the highest 

polarisability values of 37.5 a.u and 40 a.u. The weak short range ordering and damped 

oscillations at high k, a feature uncommon to the other network connectivity cation-

cation functions, are consistent through all polarisabilities. At anion polarisabilities of 

αX=20 a.u and lower, where the percentage of “2” cations is small, S MM
02 k  becomes 

similar to S MM
01 k  , observing a large shift in the FSDP position.  

      The variation in the ratio of the heights of the FSDP and principal peak,

S MM
ab k FSDP/ S MM

ab k PP , where {a,b} ={0,1,2} was highlighted in the comparison of 

GeSe2
23 and ZnCl2

23 The ratios for MX2 decreasing anion polarisability are shown in table 

6.2 for the polarisability range of αX=40-25 a.u where edge-sharing is prominent. Over 

this range, large changes are observed in the ratios in all the functions considered, with a 

decrease observed in accordance with corresponding decrease of intensity in SMM(k).

S MM
ab k FSDP/S MM

ab k PP is strongest for S MM
02 k  at the highest polarisability. 

The values S MM
ab k FSDP/S MM

ab k PP observed for S MM
01 k  , which lie in the range 0.26-

0.45 are smaller than S MM
12 k  , S MM

11 k  and S MM
02 k  where the ranges are 

0.33-0.98 , 0.36-0.89 and 0.42-1.23 respectively. This indicates that while the presence 

of edge-sharing units is necessary for IRO to be observed around ~1Å-1 region, there is 

no significant increased contribution from any changes that occur in the corner-sharing 

structures over the polarisability range to intermediate-range ordering.  
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      The various S MM
ab k  functions at low k show sharply diverging characteristics 

depending on the identity of the function involved and the anion polarisability. An 

effective phase separation is characterized in reciprocal space when S MM
ab k  increases 

in magnitude sharply as k→0. Archetypally, phase separation occurs in liquid mixtures 

where two immiscible liquids are present; here, we are concerned with interactions of 

cations coloured according to network connectivity. Phase separation has been modelled 

in a binary fluid composed of molecules of sharply varying atom size at liquid packing 

Figure 6.10: Network connectivity cation-cation structure factors according to varying anion polarisability. 

Colour code with y increments in brackets: black line; 40 a.u; red line, 30 a.u (+0.6); green line 20 

a.u(1.20); blue line 10 a.u (+1.80).
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fractions24,25; in our system, the factors to be considered are concentration of the cations 

and how the changing network connectivity at each anion polarisability affects their 

distribution. 

Polarisability, αX

(a.u)
S MM

11 k FSDP
/ S MM

11 k PP
S MM

01 k FSDP /
S MM

01 k PP
S MM

12 k FSDP /
S MM

12 k PP
S MM

02 k FSDP /
S MM

02 k PP

40.0 0.89 0.42 0.98 1.23
37.5 0.80 0.42 0.70 1.20
35.0 0.63 0.45 0.70 0.66
32.5 0.49 0.26 0.57 0.42
30.0 0.59 0.31 0.86 0.64
27.5 0.42 0.44 0.42 0.60
25.0 0.36 0.32 0.33 0.55

Table 6.2: Table of ratios of the FSDP and principal peak intensities of network connectivity cation cation

                  structure factors.

      Table 6.3 highlights the phase separation behaviour of the network connectivity 

cation-cation terms. In our systems, the low concentration of each partial goes some way 

in explaining this phase separation. However, the propensity for the separate cation 

functions to display phase separation effects is not solely dependent on the concentration 

of the interaction, as shown by the varying phase separation behaviour of the network 

connectivity cation-cation terms. Although S MM
01 k  displays no phase separation over 

the whole polarisability range: a property which can  be correlated with a relatively large 

concentration term over the whole polarisability range, S MM
02 k  and S MM

22 k  provide 

contrasting examples where even at low fractions, S MM
02 k  does not display phase 

separation, whereas S MM
22 k  does. S MM

22 k  and S MM
02 k  represent the two extremes 

of functions which have varying degrees of inherent separation. At a given density,

S MM
22 k  will describe clustering cations in edge-sharing chains whilst S MM

02 k 

represents an ordering across a larger enforced separation. This is highlighted in figure 

6.11b and 6.11c which show molecular graphics snapshots of the coloured cations taken 

from the system with anion polarisability of 40 a.u. These snapshots highlight the origin 

of the features observed in S MM
02 k  and S MM

22 k . In figure 6.11c, edge-sharing 

chains are evident as well as significant clustering which result in large voids. The 

interaction between the edge-sharing chains is through weak Van der Waals forces. In 
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contrast, the bonds between "0" and "2" cations, as expected, show no sign of clustering. 

For the polarisability range considered, the “0”-“2” interaction will have stronger long 

range ordering than the “2”-“2” interaction. As a reference, 6.11a shows the cations 

coloured “0” (highlighting the origin of the features displayed by S MM
00 k  ) which, 

despite the relatively low concentration, also show signs of clustering. 

Partial  
Structure

ca cb cacb Phase 
Separation(a.

u)*

S MM
00 k  0.18-0.71 0.18-0.71 0.035-0.50 0-40

S MM
11 k  0.22-0.50 0.22-0.50 0.050-0.24 17.5-10

S MM
22 k  0.063-0.33 0.063-0.33 0.0040-0.11 0-40

S MM
01 k  0.18-0.71 0.22-0.50 0.089-0.166 None

S MM
02 k  0.18-0.71 0.063-0.33 0.048-0.091 None

S MM
12 k  0.22-0.50 0.063-0.33 0.015-0.16 25.0-10

Table 6.3: Phase separation behaviour of network-connectivity cation-cation structure factors.* The ranges 

                  describe the polarisability value boundaries where phase separation occurs. 

                       (a)                                                       (b)                                                   (c)

Figure 6.11: Graphical snaphots of arrangement of “0” and “2” cations at αX=40 a.u. (a), “0”-”0”; (b), 

“0”-”2”; (c),”2”-”2”. Figure shows strong clustering is observed for “0”-”0” and “2”-”2” compared to 

“0”-”2”.
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      To observe the effect of reducing cation concentration on the structure factor SMM(k), 

randomly selected cations were chosen from configurations generated at αX=40 a.u  to 

create arrays of varying cation density. This is intended to give some indication as to the 

effect of selecting random cations against colouring cations according to network 

connectivity. There were two methods of selection:

1. n cations were selected at random from the initial configuration (t=0). These 

cations were then extracted from every configuration onwards as the simulation 

progresses. 

2. n cations were selected at random at each time step.

      The  network connectivity structure factor, S MM
n /333 k  , where n is the number of 

ions, is calculated from the configurations generated. Figure 6.12 shows the structure 

factors calculated from configurations with the procedure applied once. At high k, there 

is little difference between the structure factors produced. At low k, the related network 

connectivity structure factor produced from method 2 shows sharp fluctuations over this 

region, in contrast to that produced by method 1. These fluctuations are stronger at low n 

compared to the high n, as shown by the similarity in S MM
200/333k  for both methods. The 

relatively good statistics observed using method 1 indicate that the coloured functions 

obtained earlier (section 6.5) are statistically valid. The dynamic implication of the 

results is that the ions change their identity (in terms of their colour) on timescales which 

are short with respect to typical simulation time-scales. 
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      As described earlier, the FSDP in SMX(k) shifts to higher k and increases in intensity 

with  decreasing anion polarisability. The partial changes that are responsible for this can 

be elucidated from calculating the structure factors, S MX
aX k  , where a= 0, 1 and 2.  The 

functions in figure 6.13 show less variability with anion polarisability than SMM(k) 

functions with common features for all functions at all polarisabilities; a FSDP of 

varying intensity and position, and the absence of phase separation effects observed in 

SMM(k). For S MX
0X k  there is a sharp rise in intensity of the FSDP with decreasing 

polarisability and a the position shifts to higher k. This is to be expected from gradual 

change from an edge-sharing network to a corner-sharing one with the increasing 

Figure 6.13: Network-connectivity cation-anion structure factors according to varying anion 

polarisability. Black line; 40 a.u; red line, 30 a.u; green line 20 a.u; blue line 10 a.u.

Figure 6.12: Random network connectivity cation-cation structure factors, S MM
n /333 k  , where n is the 

number of cations extracted. Black line: a set of n atoms is taken from the first step and then the same 

ions are repeatedly extracted in every step thereafter. Red line: a set of n atoms is taken from the first 

step and then a new set of n ions are taken from every step thereafter. 
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percentage of “0” cations. S MX
1X k  and S MX

2X k  behave similarly with regards to the 

concentration of the interaction, but at high polarisabilities, where they are most 

prominent, the FSDP is ~1Å-1. The decrease in the intensity of the FSDP at higher 

polarisability can be ascribed primarily to the damped S MX
0X k FSDP function, which of 

the three functions displays the greatest maximum intensity: 0.225 for S MX
0X k FSDP at 

12.5 a.u compared to 0.09 for S MX
1X k FSDP at 40.0 a.u and 0.09 for S MX

2X k  at 37.5 

a.u. Larger changes are observed in the principal peak intensities for S MX
0X k PP and 

S MX
2X k PP over the polarisability range than S MX

1X k PP.

Figure 6.13: Network-connectivity cation-anion structure factors according to varying anion 

polarisability. Black line; 40 a.u; red line, 30 a.u; green line 20 a.u; blue line 10 a.u.
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6.6 Bhatia-Thornton Structure Factors.

The Bhatia-Thornton formalism26  is able to separate changes in the underlying topology 

from chemical ordering. The positions and intensities of all three Bhatia-Thornton 

functions with anion polarisability are shown in figure 6.14. The feature of the FSDP in 

SCC(k), which, hitherto, had not been observed in previous classical type calculations, is 

present as a peak in the polarisability range 40-27.5 a.u. At lower polarisabilities, 

intensity is observed as a shoulder ~1Å-1 and the intensity recorded in figure 6.14 is at 

the same position as the higher polarisability functions. Rather than being a function of 

ordering, the FSDP in SCC(k) is clearly attributed to the presence of edge-sharing units. 

The SCC(k) is formed by the superposition of SMM(k), SMX(k) and SXX(k); the latter is 

ignored due to negligible contribution over small k values, and so it is reduced to 

SCCk ≈cM cX {c X S MM k cM S XX k −2cM cX S MX k },  using the Ashcroft-Langreth 

formalism. The decline of SCC(k) in the region 40-27.5 a.u can be explained by the 

declining intensity of SMM(kFSDP); the remergence of a large FSDP at lower polarisabilites 

Figure 6.14:Graph showing relationship of FSDP intensities and positions of Bhatia-Thornton structure 

factors with anion polarisability. Left, Position of FSDP in Bhatia-Thornton functions; middle: intensity of 

FSDP in Bhatia-Thornton functions; right, intensity of SCC(kFSDP) with anion polarisability. Black, number-

number (NN); red, number-concentration (NC); green, concentration-concentration (CC).
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does not produce an FSDP in SCC(k) ~ 1.5Å-1 but a wider principal peak. In contrast, 

sharp changes occur in the intensity and position of S NN k FSDP where the FSDP shifts 

in position from 1.43Å-1 at 40 a.u to 1.03Å-1 at 10 a.u. Here, the absence of a FSDP in 

SXX(k) reduces S NN k FSDP to S NN k≈cM S MM k 2c M cX S MX k .  This indicates the 

prevalence of chemical ordering in the intermediate range is limited to high 

polarisabilities, whilst number-number ordering can be attributed to a wider range of 

accessible morphologies.

     Figure 6.15 shows the changes in percentage of “0”,”1” and “2” cations according to 

anion polarisability. To observe the effects of coordination difference on the 

polarisability dependence of the edge-sharing configurations, the same functions were 

calculated at a lower density where the proportion of four-coordinate cations is greater 

than 95% over the whole polarisability range. This gives a closer topological account of 

Figure 6.15:Change in network connectivity with anion polarisability as indicated by changes in the 

percentage of cations with n number of four-membered rings, En
,
 where n=0-2..
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the changes in network connectivity statistics. While the values are similar, the changes 

follow a curvature which in the higher density configurations is “damped” due to the 

weakening 4-coordination. Increasing anion polarisability changes the network topology 

from a corner-sharing, 3D system to a system with 2D character with a combination of 

corner- and edge-sharing units. The graphical snapshots of two MX2 configurations 

(figure 6.16) at different polarisabilities show the general features of high and low 

polarisability systems. The preponderance of “2” cations in the higher polarisability 

configurations, where chains and significant clustering can be observed is contrasted 

with the configuration at 15 a.u, where “0” cations predominate. The changes in cell 

volume, as shown in figure 6.17,  are related directly to the changes in the network 

structure. With increasing polarisability, the volume increases due to the breakdown of a 

3 dimensional network into relatively less dense edge-sharing regions which are charge 

neutral and are held together by weak Van der Waals forces. The levelling out of the cell 

volume from αX=27 a.u onwards, is commensurate with a plateau in the edge-sharing 

unit percentage (which appears more significant for configurations where NMX=4>95%).. 

Figure 6.16:Graphical snapshots of configurations at αX=15.a.u (left) and 40 a.u (right). "0","1" and "2" 

cations are represented by red, blue and green circles respectively.
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      Figure 6.18 shows the changes in the network connectivity triplet structure according 

to polarisability. These triplets are the various combinations which can be obtained from 

combination of the cations identified according to the number of four-membered rings 

they are bonded to. Notable features include an obvious difference in rates of change 

with respect to the proportion of different triplets. At low polarisabilities, triplets 

associated with “0” and “1” cations dominate, particularly 0-0-0 and 0-1-0. The 

influence of these two triplets declines sharply as α→27.5 a.u. The region 27.5-40 a.u is 

characterised by two features: firstly, there are more triplet combinations involving just 

"1" and "2" cations in significant percentages: an indication of the variety of cation 

environments present. Secondly, the percentage of these triplet combinations do not 

change significantly at the highest polarisability values. As with the values in figure 

6.15, the calculations carried out where NMX=4>95% show clearer changes, though the 

overall pattern remains similar. One noticable difference is that the maximum in 0-0-0 is 

at a lower percentage due to the higher miscoordination of the respective systems at low 

polarisabilities. 

Figure 6.17: Change in volume per MX2 molecule with anion polarisability. 
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Figure 6.18: Percentage of network connectivty triplets in MX2 configurations with varying anion 
polarisability. 

Figure 6.19: Vibrational frequencies of MX2 systems. 
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6.7 Vibrational dynamics in MX2 systems.

The vibrational frequencies27 corresponding to several tetrahedral modes were calculated 

across the anion polarisability range. The full method of calculating vibrational densities 

is given in Appendix B. Note that, whilst collective modes of vibration would be 

expected to be significant for highly connected systems of the sort under study here, a 

local mode model, in which vibrations of local coordination polyhedra are considered, 

provides a useful reference point in the sense that the frequencies (and intensities) of 

specific features can be tracked as a function of the network topology. 

      The vibrational frequencies, shown in figure 6.19, for the Eg bend show two modes at 

higher polarisabilities. The first mode, present at all polarisabilities in situated around 

~170 cm-1.  The second mode is at a higher frequency ~350 cm-1  is present from 40 to 

27.5 a.u (at 25 a.u it appears as a shoulder). The A1 symmetric stretch shows the greatest 

change in intensity with increasing polarisability in contrast to the other modes. The peak 

shifts from 371cm-1 at 40 a.u to 409 cm-1 at 10 a.u.  The T2 bend also resolves two 

features; an early mode at 200 cm-1  and a higher frequency mode at ~355 cm-1 disappears 

at lower polarisability of 25 a.u.  The T2 stretch maintains approximately the same 

position, 392cm-1 at 40 a.u and 397cm-1 at 10 a.u. The shifts with polarisability are partly 

to do with the increasing coordination number distribution as polarisability decreases. 

With an increasing number of coordinated anions, the average distance from the central 

cation increases, and consequently the bond strength and vibrational frequency of the 

complex increases. This explains the changes in position, although not the appearance of 

a second identifiable modes in the Eg and T2 bends, whose appearance correlates with the 

establishment of large amounts of edge-sharing. Although the modes are higher than the 

corresponding experimental values, indicating that the potential is too stiff, the 

appearance of other modes with changing polarisability mirrors the changes in systems 

such as GexSe1-x, where new bands are observed with changing x.28 This indicates that 

varying proportion of edge- and corner-sharing tetrahedra can be a cause of changes in 

Raman rather than the continuation of broken chemical order in systems such as GexSe1-x 

where x=0.33. 
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6.8 Relationship of 29Si MAS-NMR data on SiSe2 with network-

connectivity of MX2 compounds.

A large range of structures, as shown by the variation in position and intensity of 

quantities such FSDP's, bond angle distributions and coordination numbers have been 

sampled by varying the anion polarisability in a MX2 model. While comparison of radial 

distribution functions and structure factors have been made in the thesis, the results 

concerning the network-connectivity of cations can be linked with 29Si  MAS-NMR 

experimental data. Such data is available for SiSe2, highlighting the percentage value of 

“0”, “1” and “2” cations29
.  SiSe2 is similar to GeSe2 in that edge-sharing tetrahedra  are 

present in both the liquid and crystalline phases, but where homopolar bonds have been 

detected to level of ~1%.30,31 

En

n CMD-a-SiSe2 Ex-a-SiSe2 a-SiSe2

(FPMD)

PIM(0)

(31.89 a.u)

PIM(1)

(40 a.u)

PIM(2)

(37.86 a.u)

0 48 26 30 22 18 26
1 46 52 61 38 49 45
2 6 22 9 41 32 29

Table 6.4: Percentages of cations in different network connectivities observed experimentally and 

computationally in SiSe2.  CMD, calculated values from calculations by Vashishta32; Ex-a-SiSe2, 

experimental values from Tenhover29; FPMD, calculated values from Massobrio calculations33; PIM (n), 

where n=0-2, the cation identity of the value En to be taken from experimental data that is used to locate 

the relates anion polarisability value (in brackets). The two remaining En values are then obtained using 

this polarisability value in conjunction with figure 6.15.

      To compare the results from the PIM, "0", "1" and "2" percentages were extracted 

from figure 6.15 by fixing one of terms according to the experimental figure, or in the 

case of "1", where the experimental figure is not reached in the polarisability range, the 

closest figure possible. Table 6.4 show these results and the comparison with a previous 

classical model32 and electronic structure calculations.33  The PIM results compares 

favourably with the experimental results; the polarisabilities ranging from 31.89-40 a.u. 

The simulations show that SSiSi(k) is primarily responsible for the FSDP in F(k), although 

experimental partials have yet to be extracted. The major discrepancy lies in the failure 
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of FPMD calculations and Vashishta's classical model to produce a sufficiently high 

percentage of “2” cations, highlighting that the ability of models to allow these edge-

sharing units to percolate, as the PIM is able to do, is important. A previous model3  for 

SiSe2, which centred on the edge-sharing motif of the crystalline form, is supported by 

the results of experiment and this model. This also enables a better prediction of the 

distribution of the triplets in SiSe2, as the accuracy of these figures is inherently linked 

with the correspondence with the MAS-NMR data. Amongst the configurations with 

edge-sharing units, Massobrio's model predicted 1-2-1 as the most common triplet 

combination, and our model agrees with this.33

6.9 Systems with extreme anion polarisation.

The next question which leads from the results discussed in sections 6.1-6.10 is what 

happens if the polarisability is increased further? An alternative measure of the effect of 

polarisability is the polarisation energy as a fraction of the total energy. By this measure 

a range of 8.7% at αX= 40 a.u to 1.8% at αX=10 a.u is covered in sections 

6.1-6.8. In this section we utilise a potential that was previously used for BeCl2
4
,  a 

system with substantial edge-sharing, and amend it to predict structures of larger 

polarisabilty. This was done by amending the value of c in the short-range damping 

function34 from c=0.50 to c=0.90, which accesses a range of polarisation energies of 9% 

at c=0.90, to 19% at c=0.50.

      Figure 6.20 shows the effect of the increased polarisability on the partial structure 

factors. In the range c=0.90-0.60, SMM(k) is similar to that observed at high 

polarisabilities, as highlighted by the presence of a FSDP at k~1Å-1 ; from b=0.90 to 

c=0.60, there is a shift in position from 1.03Å-1 to 1.10Å-1 and a small rise in the intensity 

of the FSDP from 1.04Å-1 to 1.18Å-1. At c=0.50, the FSDP intensity decreases to 0.93 

and the FSDP becomes a broad shoulder with peak position of 1.14Å-1. 
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This process is distinct from that observed which changes from high to low anion 

polarisability (i.e αX= 40 a.u-10a.u)  in that both the FSDP and the principal decrease in 

intensity. In SMX(k), the FSDP follows a similar pattern to the changes observed in 

SMM(k) shifting from 1.00Å-1 to 1.07Å-1 from c=0.90 to c=0.60, then shifting back to 

lower scattering angles at 1.02Å-1. The intensity over the range increased slightly from 

0.29 to 0.34 from c=0.50 to c=0.60 and then declines to 0.23 at c=0.50. The small FSDP 

in SXX(k) stays at similar intensity over the c range with similar changes in FSDP 

position as SMM(k) and SMX(k) from 0.13 at 0.97Å-1 to 0.16 at 1.08Å-1 from c=0.90 to 

c=0.60 to 0.14 at 1.05Å-1 when c=0.50. This effective transition is a change from ionic 

systems, with features attributed to covalency such as significant edge-sharing, to 

systems which can be described as having a molecular interaction. In systems such as 

Figure 6.20: Partial structure factors for MX2  with extreme anion polarisability. Black, c=0.90; red, 

c=0.80, green, c=0.70, blue, c=0.60, yellow, c=0.50
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CS2
  no FSDP is observed in the experimental F(k)35 indicating a weak interaction 

between the constituent polyhedral units.

      Figure 6.21 shows the changes in the radial distribution functions with decreasing c. 

In gMM(r), the position of the principal peak shifts from 3.57Å to 3.13Å in the range 

c=0.90-0.60, increasing in intensity from 1.91 to 2.20; this is indicative of an increasing 

effect of anion polarisation that we have observed in section 6.5. At c=0.50, the intensity 

of the principal peak decreases sharply in intensity to 1.31 with the position of the 

principal peak, now a broad shoulder, staying constant at 3.13Å. The minima of the 

principal peak at this value of c rises sharply in comparison with those at c=0.90-0.60. 

The principal peak position in gMX(r) observes a shift from 2.31Å at c=0.90 to 2.09Å at 

Figure 6.21: Radial distribution functions for MX2 with extreme anion polarisability. Black, c=0.90; red, 

c=0.80,  green, c=0.70, blue, c=0.60, yellow, c=0.50. 
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c=0.60. At c=0.50, the principal peak shifts again to 1.94Å with a sharp rise in intensity. 

These changes are much larger than those observed in section 6.5 (which varied by 

0.04Å over the anion polarisabililty range) indicating that significant changes the cation-

anion short-range ordering occur in the presence of extreme anion polarisability. The 

position of the principal peak in gXX(r) shift from 3.60Å at c=0.50 to 3.83Å at c=0.90 

with similar intensities of 2.52 and 2.44. At c=0.50, the intensity rises to 2.75 with the 

position at 3.84Å. 

      The value of the cation-cation coordination number, MMM,  ranges from 2.40 at 

c=0.50 to 4.07 at c=0.90 and is indicative of the stronger polarisability effect of using 

this potential. The corresponding MMX values are 3.38 and 4.35 which are a further 

indication of deviations in the local tetrahedra compared to simulations described in 

section 6.5.

 

The bond angle distributions, shown in figure 6.22, exhibit smaller changes in structure 

Figure 6.22: Bond angle distribution functions  for MX2 with extreme anion polarisability. Black, c=0.90; 

red, c=0.80,  green, c=0.70, blue, c=0.60, yellow, c=0.50. 
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when c decreases from 0.90 to 0.50, compared to the radial distribution functions and 

structure factors. For the M-X-M bond angle distribution the major peak is at ~85o 
 for all 

values of c covered, indicative of a system with strongly polarisable anions, where close 

separation of cations is favored (and with an associated lack of intensity at ~110o). 

The X-M-X distribution shows a strong peak ~95o which increases in intensity with 

decreasing c and also relatively against the higher angle tail ~150o. The M-M-M bond 

shows similar features in the range of c=0.90-0.70. At c=0.60 and 0.50, the acute peak 

~55o increasing sharply in intensity relative to the higher angle values. 

Short-range damping 
parameter, c

0 1 2

0.50 32.3(3.3) 40.3(7.5) 19.2(6.8)
0.60 8.3(1.7) 43.9(2.8) 47.8(3.3)
0.70 6.9(1.7) 39.0(3.2) 54.0(3.7)
0.80 9.0(1.9) 41.3(3.2) 49.8(3.8)
0.90 18.1 (2.4) 49.4(2.7) 32.6(3.0)

Table 6.5: Percentages of cations in different network connectivities observed in MX2

                            systems with varying short-range damping parameter c. 

      The percentages of cations coloured "1" and "2" (shown in table 6.5) are larger than 

in comparison with MX2 (where αX=40 a.u) whereas the percentage of "0" cations is 

similar over the c range 0.90-0.60. The values at c=0.90 are similar with those at αX=40 

a.u and the subsequent increase in edge-sharing, showing that there is no significant gap 

in the sampling of systems observed between section 6.1-6.8 and section 6.9.  With 

decreasing c (from c=0.90), there are small changes until c=0.50, where a sharp 

transition occurs with a steep rise in the percentage of "0" cations with a decline in "2" 

cations. The main cause of this is the abrupt change in percentage of 2- and 3-coordinate 

cations which rises from 1.3% and 24.3% respectively at c=0.60 to 10.5 and 45.8% at 

c=0.50. The effect of this is to break edge-sharing chains into units where there are 

terminal M-X bonds also leading to increase in 1-coordination of the X-M ion pair from 

20.1% at c=0.60 to 40.4% at c=0.50. It also noticeable that the standard deviation of 

“0”,”1” and “2” cations is much larger at c=0.50 than at higher c values indicating a 

greater flux in identity at c=0.50. 
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6.10 Conclusion.

In this chapter we have investigated the origin of intermediate range order in largely 

tetrahedral systems as a function of polarisability. The FSDP position, linked directly to 

the presence of IRO, moves from kFSDP~1.5Å-1 at low anion polarisabilities to ~1Å-1 at 

high polarisabilities. At polarisabilities higher than that sampled in sections 6.1-6.8, an 

ionic to molecular transition is observed, which results in a sharp reduction in the 

intensity of FSDP. 

     At high polarisabilities, the increased presence of edge-sharing units has several 

effects on the underlying structure: a reduction in the cation-cation coordination number 

and significant changes in those bond angle distributions involving metal cations. The 

dominance of the changes in the cation distribution allow a further analysis of the 

network connectivity cation-cation functions, where the characteristic features of 

presence of FSDP, phase separation and value of the ratio S MM
ab k FSDP/ S MM

ab k PP are 

related to the nature of edge- and corner-sharing linking, rather than simple 

concentration effects. Analogously, the bond angle distribution M-M-M can be broken 

down and understood in terms of clustering and bridging terms. With increasing 

polarisability, the separation of “0” and “2” cations is highlighted through the large 

intensity of S MM
02 k FSDP and the 0-1-2 bond angle distribution showing the strongest 

preference for larger bond angles. In contrast to a previous study3, we have focused on 

predominantly tetrahedral systems. The presence of a FSDP in SCC(k) is shown to be 

reproducible over a series of polarisabilities; it is intrinsically linked to rising a 

proportion of edge-sharing tetrahedra, independent of the presence of homopolar bonds. 

Vibrational frequency calculations also showed the formation of a second bending mode 

in Tg and Eg which corresponds to increasing percentage of edge-sharing cations. Section 

6.11 showed that upon the presence of extreme anion polarisability molecular units are 

stabilised which effectively break up the mixed edge- and corner-sharing network 

structure. As a result, a rapid decline is observed in the FSDP in SMM(k).

     Iyetomi and Vashishta3 highlighted the effect of increasing tetrahedral coordination 

on the presence of IRO by varying the ratio of cation to anion radius, with those systems 

exhibiting a higher ratio displaying strong deviation away from tetrahedral coordination 

and consequently lack a FSDP. In this chapter we have shown the variety of IRO present 

within predominantly tetrahedral conditions where only anion polarisability is varied. 
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The use of a simple potential model able to stabilise large anion polarisabilities enables 

the study of the evolution of IRO as a function of anion polarisability and underlying 

network topology. In addition, by applying a further set of calculations to describe the 

effect of extreme anion polarisability effects, we have described a range of MX2 systems 

which encompasses a large range of bonding behaviour from strongly Coloumbic, 

systems with significant inductive effects and systems which display molecular-type 

behaviour, and the IRO related to their structures. This is highlighted by the range FSDP 

positions observed from 1-1.5Å-1, larger than that observed by Iyetomi and Vashishta3 

where the FSDP position are centred around 1.4Å-1. We can therefore define a set of 

groups analogous to those described by Massobrio15 highlighted in section 6.1. Group 1 

describe systems consisting of primarily corner-sharing tetrahedra which do not exhibit a 

peak in SCC(kFSDP). In group 2, where a peak in SCC(kFSDP) is observed, the number of “1” 

cations is approximately 50%. In group 3, we define those systems where “1” cations 

decline below 50% in systems where the percolating edge-sharing threshold is passed 

leading to a transition to a molecular system. In all three groups, due to the strongly ionic 

nature of our model, broken chemical order through homopolar bonding is absent, 

although a degree of miscoordination is present in all three systems. 

      Experimentally, a similar shift in FSDP position to that observed in figure 6.3 was 

highlighted in X-ray diffraction experiments on AsXSe1-X by Bychkov et al36, where x was 

varied from 0.62 to 0.10. At x=0.62, the FSDP position is ~1Å-1, and, with declining x, 

the FSDP position shifts to higher scattering angles (~1.5Å-1 at x=0.10). The FSDP 

intensity with varying x displays a similar curve to that exhibited in figure 6.5. In 

contrast with our systems, the principal peak at ~2Å-1 observed greater fluctuations in 

intensity (intensity largest at high values of x). Additionally, no collapse of the FSDP at 

~1Å-1 occurs, such as that exhibited by extreme anion polarisability systems in section 

6.9. IRO is also linked with increasing content of As whereas in our systems the cation 

concentration is fixed. 

     A model of understanding IRO through network connectivity is analogous to other 

generic models based on cluster-void ordering37 and presence of quasi-crystalline 

layering38 in seeking an understanding of IRO which is applicable across a range of 

compounds. In this chapter we have shown that this method catalogues the subtle 

changes in network topology with vary anion polarisability. There are some limitations: 

the effect of homopolarity on the structure of the system is not considered, and the effect 
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of deviations away from a tetrahedral network will damp the significance of the edge-

sharing statistics. Experimental interest may lie in systems which lie at the transitions 

between the groups highlighted. Firstly, the transition between systems with isolated 

edge-sharing present to those where edge-sharing units percolate. In our calculations, this 

is highlighted more clearly in the sharp changes in network connectivity over a relatively 

small polarisability change from αX=22.5 to 25 a.u for calculations at lower density 

(figure 6.18). A second possible transition occurs between systems with percolating 

edge-sharing units to molecular systems.
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Chapter 7
Effect of pressure and temperature on the 
intermediate-range order of ZnCl2

7.1 Introduction.

In previous chapters the underlying network structures have been analysed for a variety 

of models (and hence network morphologies). In this chapter we will consider the effect 

of temperature and pressure for a single potential model, that for ZnCl2. The evolution of 

the system structure as a function of pressure and temperature can be monitored through 

changes in the total structure factor, F(k), particularly in the FSDP when considering the 

evolution of intermediate-range order. 

      The FSDP in the total structure factor is often distinguished from the other peaks in 

terms of the anomalous properties it exhibits with regards to temperature and pressure. 

The general behaviour of the FSDP with pressure has been interpreted by Elliot1. With 

changing temperature and at a constant pressure the change in intensity of a given peak in 

F(k) can be written as:

                                               ∂ I
∂T  p

= ∂ I
∂T  

 ∂ I
∂ T

 ∂
∂T  p

                                    (7.1) 

The first term on the right  ∂ I
∂T p

, is expected to be negative due to the Debye-Waller 

effect. The third term,  ∂∂T p
, is related to thermal expansivity which would also usually 

be negative. The second term, ∂ I
∂T

, differs between the FSDP, for which
it is large and negative; and the principal peak, for which it is small and positive. A 

similar understanding of the behaviour of the peak intensity with pressure, where the 

change in the peak intensity can be written as:

                                                      ∂ I
∂ pT

= 
B ∂ I

∂T
                                               (7.2) 
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The partial derivative on the right, 
B  ∂ I

∂ T
, is negative due to network relaxation as 

density decreases, and where B is the bulk modulus.   

7.2 Experimental methods.

The first system displaying IRO which was studied at high pressure and high temperature 

was SiO2
2-5

 which showed that FSDP declined in intensity by 50% with increasing 

pressure in the pressure range 0-28GPa.3 Experiments highlighting the effect of increased 

temperature on SiO2 showed, contradictorily, both an increase in FSDP intensity (from X-

ray diffraction)4 and a 10% decline from room temperature to 1036oC (from neutron 

diffraction).5 Early difficulties associated with high temperature, high pressure neutron 

diffraction included large amounts of Compton scattering from pressure anvils used in 

comparison to the relatively low scattering from amorphous materials. This problem was 

overcome using high energy synchrotron sources. Other difficulties include sample 

preparation and pressure and temperature control of the sample. A number of recent 

experiments have been carried out on the effect of changes in temperature and pressure of 

ZnCl2.6-9 ZnCl2  is a hygroscopic material and highly corrosive at elevated temperatures. In 

the experiment by Pfleiderer et al,6  ZnCl2 was filled and closed into a quartz glass 

ampoule, resistant to corrosiveness, in an inert atmosphere. The molten salt was 

transported to the container where neutron diffraction takes place by breaking the point of 

the ampoule with a molybdenum rod which is connected to the pressure-valve spindle. 

There was no contact with the atmosphere unlike in the experiment by Brazkhin et al,8,9 

where there was a 1 minute transfer time between the container to the pressure apparatus, 

which resulted in ~1-2% hydroxide contamination. 

      Several different apparatus have been used for high temperature-high pressure 

experiments. In the experiment by Pfleiderer et al a high pressure neutron diffraction 

apparatus is fixed on the aluminium bell-jar of the instrument D4B at Institute Laue-

Langevin (ILL). The high temperatures are produced by a jacket heater comprised of a 

cylinder of brass wound with wire. For cooling, water jackets are integrated with the 

water circuit of the ILL. A gas compressor is used to produce the extra pressure utilising 

helium as the pressure medium for the experimentally accessible pressure range of 1-

5000 bar. The X-ray diffraction experiment by Brazkhin et al was carried out at the 

MAX-80 setup at the SPring-8 synchrotron BL14B1 beam in Japan, covering a much 

larger temperature and pressure range (up to 1000oC and 4.5 GPa). The latter experiment 
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was carried out at diffraction scattering angles, 2θ=4o and 8o. 

      These experiments display a common observation: a deterioration of the FSDP in F(k) 

with pressure. Similar observations have been made in a related compound, ZnBr2.
10

 The 

term, network collapse, has been applied to his phenomena, primarily as it has been the 

intermediate-range order that is modified. The short-range order of the compounds 

remains, as indicated by no significant change in principal peak intensity over the 

experimental pressure range. Changes in the real space quantities are reflected by an 

increase in intensity at a length scale of 7-10Å in the total correlation function G(r). 

EXAFS data on ZnCl2, taken over a wider pressure range (0-12 GPa)11, shows that a rise 

in the Zn-Cl bond distance is observed from 2.30Å at atmospheric pressure to 2.45Å at 

4GPa, declining to 2.40Å at the highest pressure at 12GPa. In chapter 3, the Raman 

modes describing the structure of molten ZnCl2  were highlighted.12 Within the 

temperature range of this investigation the only mode predicted to change is the v1b
B  A1

which is present at 350oC but disappears at 800oC. It is attributed to a large cage unit 

comprising four corner-shared ZnCl4
2−. units.12 In the neutron diffraction experiment of 

Allen et al13, the structure of ZnCl2 was measured at 330oC and 600oC where little change 

was observed in the pre-peak intensity, although the rest of F(k) diminishes by ~25% in 

keeping with the general observations of Elliot.1
 High energy X-ray diffraction 

experiments predicts that Zn-Cl first coordination is largely stable to changes in bond 

length from 623K to 853K, increasing slightly from 2.281Å to 2.289Å.14

      Whilst the contributions of different individual correlation functions to F(k) have 

been highlighted, there is currently no elucidation of the changes in the partial structure 

factors as a result of changes in pressure. Furthermore, the total structure factors obtained 

from X-ray and neutron diffraction experiments may appear to evolve in a different 

manner as a function of both pressure and temperature, as was the case with SiO2
3,4. 

However, it is likely that these apparent differences are due to the differing weightings of 

the underlying partial structure factors in the total X-ray and neutron scattering functions. 

In this chapter, we highlight the changes of partial structure factors as a function of 

pressure and temperature, elucidating structural changes which contribute to any network 

collapse. The pressure range analysed will include the current experimental range for 

high-temperature neutron diffraction (1-5000 bar) as well as observing larger pressure 

effects up to 29000 bar. It is known from crystal studies15 that a pressure transition is 

obtained in ZnCl2 at 23000 bar and, in keeping with recent work on liquid 

polyamorphism,16-18 we could expect significant structural changes over this regions as 



Chapter 7.Effect of pressure and temperature on the intermediate range order of ZnCl2                       193

well. The temperature these calculations take place will be at 600K, 800K, 1000K and 

1200K. This temperature range covers a significant spectrum of where, at zero pressure, 

the FSDP was shown to have considerable variation. At each pressure, the system was 

run for 40 ps from which structural quantities were carried out for the last 25 ps.  

.

7.3 Simulation details.

All calculations in this chapter consists of 999 ions (333 cations and 666 anions). The 

ZnCl2 potential used in this chapter is the same as that developed in chapter 3. Runs 

between 600-1200K and 1 bar were generated from an initial starting configuration taken 

from simulations on ZnCl2 from chapter 3. The cell sizes for the different temperatures at 

1 bar were 31.50Å, 31.58Å, 31.96Å and 32.42Å for 600K, 800K, 1000K, and 1200K 

respectively. After the initial pressure run, further simulations were carried out at ~1 bar 

0.00000 a.u, 5000 bar (1.75 x 10-5 a.u), 15000 bar (5.0 x10-5 a.u), 22000 bar (7.5 x10-5 a.u) 

and 29000 bar (1.0 x 10-4 a.u) at all four temperatures. After initial observation of the 

pressure dependence of IRO, further calculations were carried out in the 1-15000 bar 

range where changes in IRO were greatest. At 29000 bar, the average cell size was 

27.78Å, 27.92Å, 28.13Å and 28.35Å for 600K, 800K, 1000K and 1200K respectively. At 

each state point, the system was equilibrated for 30 ps and a simulation run of 60 ps under 

NPT conditions from which structural correlations were calculated.

7.4 Total structure factors.

Figure 7.1 shows the total neutron structure factor, F(k), for simulated ZnCl2 using the 

scattering lengths for 35Cl ,37Cl, and natCl. As the pressure is increased, the FSDP is shifted 

to longer scattering angles until it is no longer discernible as a distinct peak. Peaks at 

k>1Å-1 increase in intensity, following the trend observed experimentally. The isotope 

dependence of F(k) is shown in figure 7.1 where the principal peak in F Zn37 Cl 2
k  (top 

panel) is noticeably damped compared to F Zn35 Cl 2
k  and F Zn natCl 2

k . Noticeably, the 

FSDP does persist at pressure higher than the experimentally accessible range of 1-5000 

bar.7 With variations in temperature, shown in figure 7.2, the isotopic dependence is 

further highlighted by the uneven changes in FSDP intensity, with similar intensities 

observed for F Zn35 Cl 2
k  and F Zn37 Cl 2

k  , and a decrease for F ZnnatCl 2
k . Whilst 
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total structure factors are the most common functions extracted from diffraction 

experiments, by their very nature, they do not describe the detailed partial interactions 

which are present in a multi-atomic system. An understanding of how the partials change 

in structure through pressure can only readily be implied through changes in F(k) if it is 

dominated by SZnZn(k) and other contributions from SClCl(k) and SZnCl(k) are negligible 

such that F  k FSDP =cZn
2 bZn

2 S ZnZn k FSDP  .

Figure 7.1:The total structure factor, F ZnCl 2
k  ,  of simulated ZnCl2 configurations with varying 

temperature. Top, 37Cl; middle, natCl; bottom, 35Cl. Colour code (increment of F ZnCl 2
k  in bracket): 

black line, 600K; red line, 800K (+0.15);  green line, 1000K (+0.30) ;  blue line, 1200K (+0.45).

Figure 7.2:The total structure factor, F ZnCl 2
k  , of simulated ZnCl2 configurations with varying 

pressure. Top, 37Cl; middle, natCl; bottom, 35Cl. Colour code (increment of F ZnCl 2
k  in bracket): black 

line, 1 bar; red line, 3000 bar (+0.15);  green line, 15000 bar (+0.30) ;  blue line, 29000 bar (+0.45)
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7.5 Partial structure factors: Effect of  temperature and pressure.

The major contributor to IRO in ZnCl2 has been a source of significant debate citing the 

results of diffraction experiments.19-21 An analysis of the partial structure factors shows 

the relative contributions to the presence of a FSDP in the total structure factor change 

considerably with pressure. Figure 7.3 shows the pressure-evolution of the three partial 

structure factors. At very low pressure (~1 bar), a strong FSDP is observed in both 

SZnZn(k) and SZnCl(k). With increasing pressure, the FSDP of SZnCl(k) decreases in intensity 

and moves to higher k values (1.01Å-1 at ~1 bar to 1.24Å-1 at 29000 bar). The decay of the 

FSDP in SZnCl(k) as a function of pressure is noticeably slower than for SClCl(k) and 

SZnZn(k). The principal peak intensity in SZnZn(kPP) changes the least with an increase in 

height of from 1.58 to 1.99 (26%) compared to the respective changes for SZnCl(kPP) and 

SClCl(kPP) of -1.08 to -1.54 (43%) and 2.34 to 3.65 (56%) over the same pressure range. 

Figure 7.3:Partial structure factors in ZnCl2 according to pressure in the range 1-29000 bar. 

(Temperature=800K). Top, SZnZn(k); middle, SZnCl(k); bottom, SClCl(k). Black line, ~1 bar; red line, 5000 

bar; green line, 14000 bar; blue line, ~29000 bar.
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This explains the change in F(kPP) where the contributions from SZnZn(kPP) and particularly 

SClCl(kPP) dominate that from SZnCl(kPP). SClCl(k) also displays a slight FSDP at 0.88Å-1 

which rapidly shifts with pressure to 1.00Å-1 at 5000 bar, and then disappears at higher 

pressures. At higher pressures, the position of the peaks at k>1Å-1 shift towards higher k 

values, indicating a possible change in the short-range ordering of the anion sublattice.   

      Figure 7.4 shows the temperature-evolution of the three partial structure factors at ~1 

bar. With increasing temperature, the FSDP in SZnZn(k) diminishes in intensity, from 1.09 

to 0.72, while for SZnCl(k) it shows an increase from 0.34 to 0.42 over the same 

temperature range. This feature is inconsistent with Debye-Waller effects but consistent 

with experimental observations of FSDP peak of the total structure factor, F(k), in 

systems such as As2Se3.22 For the rest of the k range a decrease in intensity is observed. 

The FSDP of the respective partial structure factors observe a shift in position to lower 

scattering angles. For SZnZn(k), SZnCl(k) and SClCl(k) shifts of 1.12-1.09Å-1, 1.07-0.89Å-1 and 

1.03-0.98Å-1 are observed from 600K to 1200K: the position of kFSDP in SZnCl(k) observes 

the greatest temperature dependence . The peaks are also shifted to lower scattering 

Figure 7.4:Partial structure factors according to temperature in the range 600K-1200K.(Pressure ~1 bar). 

Top, SZnZn(k); middle, SZnCl(k); bottom, SClCl(k). Black line, 600K; red line, 800K; green line, 1000K; blue 

line, 1200K.
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angles as would be expected with a density decrease. This disparity in rates of decline of 

IRO indicates that different mechanisms may be responsible for the contributions to IRO 

from SZnCl(k) and SZnZn(k).  

7.6 Coordination numbers

The total neutron structure factors indicate significant structural changes in the sample as 

pressure is applied. To further understand the nature of these structural changes, figure 

7.5 shows the variation in the dominant cation-anion coordination numbers ( N ZnCl
 ,

where α=4,5,6) as a function of pressure. The distributions in figure 7.5 show that 

increasing the pressure results in dramatic changes in the Zn-Cl coordination number. At 

zero pressure, zinc is predicted to have 73% four coordination with chlorine at 600K and 

65% at 1200K. With increasing pressure there is a steady shift towards five and six 

coordination. For the different temperatures sampled, the rates of decline in four 

Figure 7.5:Changes in the cation-anion coordination number, N ZnCl
 , where α={4,5,6}., .with 

temperature and pressure.  Black line, 600K; red line, 800K; green line, 1000K; blue line, 1200K.
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coordinate sites is most 

apparent at 1200K. In the experimental range of 1-5000 bar the changes in coordination 

are not as significant, and are in agreement with both the studies of Heusel et al9 (up to 

3000 bar) and Pfleiderer et al6 (up to 5000 bar) in that there is no significant change in the 

tetrahedral coordination of zinc at this pressure range.  At pressures of around 25000 bar, 

the six-coordinate zinc ions become predominant over the four and five coordinate sites. 

This change in the local cation environment correlates with the solid-state phase 

transition observed by Polsky15  in which the four-coordinate γ-ZnCl2  structure changes to 

the six coordinate CdCl2  structure at 27000 bar. The pattern of the other coordination 

numbers are shown in the calculated mean values for the Zn-Zn, Cl-Cl, and Cl-Zn 

bonding distributions shown in figure 7.6.The propensity for miscoordination in terms of 

the Cl-Zn coordination number increases with increasing pressure, as shown by the large 

deviation of MClZn away from 2. The gradients of the change for respective coordination 

 Figure 7.6: Mean coordination numbers, Mαβ, with variation in temperature and pressure. Black line, 

600K; red line, 800K; green line, 1000K; blue line, 1200K. 
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number show no significant differences except at 1200K which rises faster with pressure 

than at other temperatures. 

7.7 Radial distribution functions.

In the diffraction experiment of Pfleiderer et al7, the changes in total radial distribution 

function, G(r), in the region 5 to 8Å are highlighted. Figure 7.7 shows G(r) obtained from 

using the experimental equation7: 

                                       Gexp(r) =0.353gZnCl(r)+0.595gClCl(r)+0.052gZnZn(r)                  (7.3)

where the pre-factors arise from the respective ion mole fractions and neutron scattering 

Figure 7.7:Changes in the total radial distribution functions at different pressures. Geq(r) is comprised of 

equal  weightings from the different partial radial distribution functions and Gexp(r) with the contributions 

given in equation 7.3. Black line, ~1 bar; red line, 5000 bar; green line, 11000 bar. The value of Gexp(r) is 

raised by  5.
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lengths. In addition, the total pair distribution function, Geq, is calculated using an equal 

weighting of the three partial pair distribution functions. Both functions are calculated for 

5000 bar, the high pressure limit of the current neutron scattering experiments, and at a 

higher simulated value of 11000 bar. The simulated Gexp(r) features a principal peak at 

2.27Å, close to the experimental value of 2.30Å.14 The intensity of the simulated Gexp(r) is 

much more intense than those experimentally observed.7 This is possibly caused by 

problems in the Fourier transform procedure used to obtain G(r) from the experimentally-

determined F(k). With increasing pressure, features at higher r range such as a deepening 

minimum at 5.0Å and a rise in intensity at ~5.6 Å, compared to respective experimental 

distances of ~4.7 Å and ~5.7 Å from Heusel et al9
. The related figures of Pfleiderer et al7 

are ~5.0Å and ~6.5Å. In the  latter experiment, the minimum is broader, with a small 

maximum which increases with pressure. A noticeably faster decline in the intensity of 

the principal peak of Gexp(rPP) occurs than is observed experimentally.6,9 

      The change in contributions to G(r) can be highlighted by a difference function,

P
Pn−P1 r  , which highlights the effect of a change in one of the constituent partial 

radial distribution function terms on G(r) as a function of temperature and pressure 

defined as:

                                              P
Pn−P1 r =G

Pn−P1 r −G
P n r                                        (7.4) 

where G
P1  r  and is the total radial distribution function at pressure, P1 : 

           G
P1 r =cZn

2 f Zn
2 g Zn Zn

P 1 r cCl
2 f Cl

2 g ClCl
P 1 r 2cZn cCl f Zn f Cl g ZnCl

P1 r           (7.5)

G
Pn−P1  r  is the total distribution with one of the partial radial distribution terms at a 

different pressure from the other two, in this case, g ZnZn
P n r  :   

                    G
 Pn−P1  r =cZn

2 f Zn
2 g Zn Zn

P n r cCl
2 f Cl

2  gZnCl
P 1 r 2cZn cCl f Zn f Cl g 

P1 r   

                                                                                                                                        (7.6)

Equation 7.4 reduces to 

                                                  PZn Zn
Pn−P1 r =g ZnZn

Pn r −g Zn Zn
P 1 r                                   (7.7)
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   Figure 7.8 shows the partial contributions responsible for the changes at 5-6Å. Over 

this range there are contributions from gZnZn(r) and gClCl(r)  causing the minima to rise and 

a shoulder to appear. At larger r values, PZn Zn
P 5000−P1  r  decays and the effect is much 

weaker. Such a feature becomes more pronounced in our simulations due to the increased 

weight of the Zn-Zn interaction which is effectively hidden in the experimental G(r). 

Oscillatory character for P
Pn−P1 r  indicates either a change in peak intensity or a shift 

in peak position upon pressure. For the Zn-Cl correlation, the peak at 2.27Å reflects the 

decrease in the intensity of the principal peak. This oscillation is damped rapidly to zero 

and the similarity of PZnCl
P 5000  r  and PZnCl

P 11000 r  at r > 5Å indicates that the long range 

Zn-Cl interactions are not significantly affected over this pressure range. The oscillations 

in the Cl-Cl correlation, PCl Cl
Pn−P1 r  , indicate that all length scales are shifted with 

increasing pressure.

   Figure 7.8: Difference functions, P
P n− P1 r  , for ZnCl2 at 1000K. Top, PCl Cl

P n− P1 r ; middle,

PZn Cl
P n− P1 r ; bottom, PZn Zn

P n− P1 r  . Black line, n=5000 bar; red line , n=11000 bar.
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For gZnZn(r), where the peak intensity is similar at the pressures sampled, the respective 

difference functions, PZn Zn
Pn−P1 r  highlight the widening of the first Zn-Zn coordination 

shell. The peaks at 3.26Å and 3.9Å for PZn Zn
P5000−P 1 r  and PZn Zn

P11000−P1 r  represent the 

largest difference in intensity with the principal peak of gZnZn(r) at ~1 bar. Previously (in 

Chapter 4), we observed that the principal peak of gMM(r) can be considered as comprising 

of coloured radial distribution functions which represent the different edge- and corner-

sharing configurations. The changes in the intensity of the peaks, close to the previously 

highlighted edge- and corner-sharing peaks, represent the changes in the underlying 

network connectivity which have subtle effects on the function, gZnZn(r). Figure 7.8 shows 

that as pressure increases the relative intensities of these two peaks switch from 5000 bar, 

where a small decline in intensity is observed at distances associated with corner-sharing, 

to 11000 bar, where there is a greater decline at the distance associated with edge-sharing. 

At r is greater than rPP, where rPP  is the position of the principal peak, there is a small and 

persistent intensity in PZn Zn
Pn−P1 r  . This is the result of a change in the intensity of large r 

oscillations for Zn-Zn correlations with increasing pressure. 

Figure 7.9:Changes in  radial distribution functions, gαβ(r), according to (left) temperature(600K-1200K 

at ~1bar) and (right) pressure(~1 bar ~30000 bar) at 1000K. gZnCl(r) at 600K is elevated by 0.3 to 

highlight the shoulder in the second peak. 
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      Figure 7.9 shows the pressure and temperature evolution of the partial radial 

distribution functions with increasing pressure at different temperatures. With increasing 

temperature, the position of gZnCl(rPP) decreases from 2.28Å to 2.25Å from 600K to 

1200K. The intensity decreases, from 9.16 at 600K to 6.16 at 1000K and rising slightly 

again to 6.48 at 1200K. The position of gClCl(rPP) changes from 3.64Å at 600K to 3.59Å at 

1200K. The intensity changes from 2.74 to 2.23. The position of gZnZn(rPP) changes from 

3.76Å to 3.74Å and the intensity declines from 2.66 to 1.93. There were several notable 

changes that occur in the radial distribution functions with temperature at ~1 bar. For 

gZnZn(r), the minimum rises again but there is also a decrease in the intensity of the first 

coordination shell. Similar effects are observed for gZnCl(r), while in gClCl(r) the minimum 

remains similar while the intensity of the principal peak increases.  A strongly 

temperature dependent feature of the correlation functions was observed in the second 

peak of gZnCl(r) (highlighted at 600K in figure 7.9) where a shoulder in the second peak 

becomes apparent at high pressures at 800K (at ~59000 bar) and 600K (at ~1 bar). At 

1000K and 1200K this feature is not seen is the highlighted pressure range suggesting 

that the dynamics of this length scale are strongly temperature dependent. Further 

calculations to higher pressures of 150000 bar do not produce this feature in 

configurations at 1000K and 1200K. Although there is no reference to this phenomenon 

with similar network compounds, this is the pre-cursor to a feature commonly known as 

the split second peak.23,24 Theories have attributed it to the onset of a liquid-amorphous 

solid phase transition,  a property of the inherent structure of the liquid. Recent theories24 

have highlighted, that at higher packing densities, there are less available packing 

combinations over these length scales and as such this shoulder is isolated.

      For gClCl(r) at very high pressures the principal peak decreases from 3.62Å at 1 bar to 

3.35Å at 29000 bar, in contrast to gZnZn(r) and gZnCl(r) where the principal peak positions 

remain constant in the same pressure range at 2.26Å and 3.77Å respectively. The 

intensity changes of the principal peak with increasing pressure show a sharp decrease for 

gZnCl(rPP), declining from 7.06 to 4.69 over the pressure range; in contrast,  gClCl(rPP) and 

gZnZn(rPP) observe intensity minimums at intermediate pressure of 3750 bar, 1.82 and 2.19 

respectively, where the 1 bar and 29000 bar values are 2.08 and 1.92 for gZnZn(rPP) and 

2.34 and 2.59 for gClCl(rPP). The changes in principal peak positions contrast with EXAFS 

data which showed an increase in the Zn-Cl bond distance with increasing pressure.11 The 

experimental data is in keeping with the pressure-density anomaly where an increase in 

pressure with a corresponding change in coordination leads to an increase in the Zn-Cl 
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bond distance. In our system, it is the chlorine-chlorine sublattice which accommodates 

this change. The change in coordination can affect the radial distribution function in two 

possible ways: an increase in the intensity of the first coordination shell or a widening of 

it. The latter case is highlighted by the changes in gZnZn(r) and gZnCl(r), where the minima 

of the first coordination shell rises significantly whereas in the former case is represented 

by gClCl(r) where the intensity of the principal peak rises.

7.8 Bond angle distribution functions.

Upon increasing pressure it has been indicated that the tetrahedral units will 

accommodate the reduction in cell volume by reducing the bond angle between them.26 
 In 

the pressure sampled we have observed large changes in coordination around the cation 

Figure 7.10: Bond angle distribution for ZnCl2  with variations in pressure at 1000K. Black line, ~1 bar; red 

line, ~11000 bar; green line, ~22000 bar; blue line, ~29000 bar.  
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which must be accounted for in the bond angle distribution. The changes in the bond 

angle distribution with pressure in figure 7.10 support the case for a predominantly 

tetrahedral network changing to an octahedral structure. The Cl-Zn-Cl becomes 

increasing bi-modal with prominent peaks at ~90o and 160o. This indicates an octahedral 

configuration where the equatorial Cl-Zn-Cl contribute to the 90o peak and the axial Cl-

Zn-Cl peak contributes, less frequently, to the higher angle peak. In contrast with Cl-Zn-

Cl and Zn-Cl-Zn, the Zn-Zn-Zn, Cl-Cl-Cl, Zn-Zn-Cl and Cl-Cl-Zn bond angle 

distributions do not change their shape with increasing pressure but do exhibit an increase 

in the intensity: this is due to the large increase in coordination highlighted. For Zn-Cl-

Zn, a two peaked distribution is observed with peaks observed at 90.5o and 106o at ~1 bar. 

Increasing the pressure results in a single peak Zn-Cl-Zn distribution due to the breaking 

of these edge-sharing units and by the formation of larger coordinate zinc ions, with the 

associated square-planar and octahedral geometries. 

      Figure 7.11 shows the change in bond angle distribution with temperature at ~1 bar. 

At 600K, the latter peak ~150o in Cl-Zn-Cl is noticeably sharper than that observed at 

higher temperatures, an indication of the effect dynamics has on the bond angle 

distribution. Two peaks are observed for Zn-Cl-Zn at 89o and 111o at 600K. These two 

peaks are due to the presence of edge and corner-sharing tetrahedral units which occur at 

lower temperatures and low pressures. If the ratio of the intensity at ~89o and ~111o is an 

indication of the amount of edge-sharing then it indicates at 1200K there is a greater 

presence of edge-sharing. At higher temperatures the two peaks merge. As with the 

changes in Zn-Zn-Zn, Cl-Cl-Cl, Zn-Zn-Cl and Cl-Cl-Zn with pressure, the peak positions 

these functions remain similar but there is much smaller change in the intensity due to the 

smaller changes on coordination observed with temperature at ~1 bar.  
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7.9 Change in network connectivity with temperature and 
pressure.

The dramatic decline in the intensity of the FSDP in SZnZn(k) indicates structural changes 

in the cation sublattice, occuring in the pressure range 1-5000 bar. Recent neutron 

diffraction experiments on GeSe2 highlighted a transition between 2D edge-sharing and 

3D corner-sharing phases due the application of pressure.25 In chapter 5 we explained the 

significant structural similarities between ZnCl2 and GeSe2, although the former shows a 

much weaker edge-sharing character in comparison. For systems under pressure with 

underlying coordination changes, it becomes necessary to investigate the effect of 

coordination of the underlying network topology.    

      Calculations were carried out to find out which cations were in a "0", "1" or "2" 

Figure 7.11: Bond angle distribution for ZnCl2 with variations in temperature. Black line, 600K; red 

line,800K;green line, 1000K; blue line, 1200K. 
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conformation, referring to the number of four-membered rings the central cation is 

bonded to. If the coordination sphere of the central cation was constant at around four this 

would ordinarily tell us information of the nature of the network connectivity in the 

system; in this chapter, there are larger changes in coordination which affect how we can 

interpret these quantities. The pattern of changes in the percentages of these cation, E0, E1 

and E2 may correspond to the three following mechanisms: 

1. Strongly coordination-dependent mechanism.

The results show there is increasing tendency towards higher coordination with 

pressure. A coordination dependent mechanism envisages that the changes in E0 

and E2
  arise solely from variation in the cation-anion coordination. “0” cations 

decrease with the addition of cation-anion bonds while E2 cations increase. The 

percentage of “1” cations is expected to follow similar behaviour with 5-

coordination, increasing at first, then declining as “1” cations are converted to “2” 

cations. 

2. Edge-sharing to corner-sharing mechanism. 

Following from the experimental observations of GeSe2 under high pressure, a 

change in network connectivity is envisaged where edge-sharing units are broken 

to form corner-sharing ones: E2 is expected to decrease to form “1” and “0” 

cations. 

3. Edge-sharing to six-coordinate mechanism.

Four coordinate edge-sharing tetrahedral units are converted  into 5- and 6- 

coordinate units faster than corner-sharing ones: E0 would decrease while E1 and 

E2 would rise simultaneously.

   Figure 7.12 shows that large changes in the values of E0
,  E1

, and E2 are observed with 

changes in temperature and pressure. A smaller range of 1-15000 bar was used to focus 

on the changes in En which occur where the IRO changes most rapidly. E0 and E1  declines 

with increasing pressure while E2  increases: an indicator of a dominant coordination-

dependent mechanism. The change in E1 
 is the strongest indicator for which mechanism 

may take place: with increasing pressure, it declines showing that accompanying 

coordination changes lead to a faster rise in E2
. 
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    With increasing temperature, E1 specifically is found to rise in a configuration, while E2 

and E0 are largely similar at most temperatures except at 600K where E2 is more abundant 

for a given pressure. In contrast to the systems studied in Chapter 6, the presence of 

significant miscoordination in Zn obfuscates the changes in network connectivity which 

can be linked readily to the changes in En.  Another method of analysing the changes 

influencing intermediate-range order is to calculate structure factors and radial 

distribution functions coloured according to network connectivity and, due to the large 

changes which occur with temperature and pressure, coordination.

7.10 Coloured cation-cation structure factors.

So far we have observed changes in coordination and in network topology with 

temperature and pressure. We shall now decompose the partial structure factors, SZnZn(k) 

and SZnCl(k), further down into partials based on coordination numbers ( SMM
cd k  where 

cd={4,5,6}) and  cation network-connectivity ( SMM
ab k  where ab={0,1,2}). As figure 

Figure 7.12: Changes in network connectivity in ZnCl2 at different temperature and pressure as indicated 

by changes in the percentage of cations with n number of four-membered rings, En
,
 where n=0-2..
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7.5 showed, the spread of cation-anion coordination numbers, N ZnCl
 ,  is significant 

enough for combinations of cation-anion coordination numbers, N ZnCl
 , where α=4,5,6, 

to constitute tangible contributions to both SZnZn(k) and SZnCl(k). According to 

concentration terms, listed in table 7.1, the most important contributions to SZnZn(k) are

S ZnZn
4X k  where x=4,5,6. Figure 7.13 shows that S ZnZn

44 k  and S ZnZn
45 k  are the only 

functions to exhibit a significant FSDP. With increasing temperature, the FSDP in

S ZnZn
44 k  becomes damped and, in contrast to the other functions, the principal peak 

intensity decreases noticeably with increasing temperature. 

Zn-Cl coordination Zn-Cl coordination 

Pressure(bar)
(T=1000K)

N ZnCl
4 N ZnCl

5 N ZnCl
6 Temperature 

(K) (P=1 bar)
N ZnCl

4 N ZnCl
5 N ZnCl

6

1 68 27 2 600 72 26 2
5000 54 38 5 800 64 31 3
11000 44 44 11 1000 68 27 2
29000 16 47 34 1200 61 30 3

Network connectivity Network connectivity 

Pressure(bar)
(T=1000K)

E0 E1 E2 Temperature 
(K) (P=1 bar)

E0 E1 E2

1 bar 30 42 28 600K 41 36 23
5000 bar 23 38 40 800K 33 40 27
11000 bar 17 33 50 1000K 30 42 28
29000 bar 7 21 72 1200K 26 42 32

Table 7.1:Percentage values for cation-anion coordination number in the range N ZnCl
 , where α={4,5,6} 

and the values for different cation network connectivities for the temperature range, 600K-1200K at 1 bar, 

and the pressure range 1-29000 bar at 1000K.     

      Figure 7.14 shows the changes in the coordination-dependent cation-cation structure 

factors with pressure. The pattern of changes with varying concentration are most 

strongly observed in S ZnZn
66 k  which exhibits phase separation up to 29000 bar where a 

shallow intensity is observed. The absence of phase separation in S ZnZn
45 k  and

S ZnZn
44 k  and the persistence of either a FSDP or a shoulder at low scattering angles 

throughout the pressure range suggests that these terms are concomitant with network 



Chapter 7.Effect of pressure and temperature on the intermediate range order of ZnCl2                       210

ordering. The character of S ZnZn
45 k  changes from a FSDP ~1 bar to a broad shoulder 

~29000 bar. As we saw in the Chapter 6, with the pattern of changes in S MM
01 k 

highlighting the changing degree in how the Coulombic and induction mechanisms 

influence IRO with anion polarisability, the S ZnZn
46 k  term highlights the breaking up of 

network ordering, due to the changes in coordination, observing phase separation at high 

pressures despite a slight increase in the c4c6 term from 0.0129 at ~1 bar to 0.054 at 

~29000 bar. Small values are observed for the ratio, SMM
cd k FSDP /S MM

cd k PP , (in 

contrast to the values observed for high polarisability systems in Chapter 6) for the 

functions that exhibit a FSDP (0.42-0.57 at 600K and 0.30-0.47 at 1200K), with little 

variation between them, indicating that the occupation of sites by sampling through 

cation coordination samples the system nearly isotropically. 

Figure 7.13 :Changes in coordination-dependent cation-cation structure factors, SMM
cd k  , with 

temperature (at 1 bar). Black line, 600K; red line, 800K; green line, 1000K;blue line, 1200K.
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      A comparison of the network-connectivity cation-cation functions showing the effect 

of pressure contrasts significantly with that observed in chapter 6. Firstly, pressure and 

not polarisation is the order parameter; this means much larger cell volume changes are 

observed. Secondly, the coordination number change over the pressure range is much 

larger than that observed for changing polarisability: this could damp IRO related features 

of the network connectivity functions such as values of the ratio, S MM
ab  kFSDP /S MM

ab  kPP  ,  

being greater than one (in systems such as GeSe2). Figure 7.15 shows the change of these 

network-connectivity structure factors with changing temperature. There is a much larger 

variation in the ratio of S MM
ab  kFSDP /S MM

ab k PP  for the network-connectivity structure 

factors, where at 600K and 1 bar, for S ZnZn
02 k  , this value is 0.89 compared values of 

0.38, 0.53, and 0.49 for S ZnZn
12 k  , S ZnZn

11 k  and S ZnZn
01 k .  

Figure 7.14 :Change in coordination-dependent cation-cation structure factors, SMM
cd k  , with pressure 

(at 1000K). Colour code (y increment in brackets): Black line, 1 bar; red line, 5000 bar (+0.5); green line, 

11000 bar (+1.0); blue line, 29000 bar (+1.5). 
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At 1200K, a FSDP is observed in S ZnZn
01 k  , S ZnZn

11 k  and S ZnZn
02 k  with the intensity 

decreasing from maximum values at 600K to the smallest intensities observed at 1200K. 

The FSDP in S ZnZn
01 k  and S ZnZn

11 k  shows a sharp decrease with increasing 

temperature while S ZnZn
12 k  and S ZnZn

02 k  show smaller changes. There is a small 

decrease in the positions of the FSDP by 0.04Å-1, 0.03Å-1, 0.02Å-1
, 0.07Å-1 for

S ZnZn
11 k  , S ZnZn

01 k  , S ZnZn
02 k  and S ZnZn

12 k  respectively. At high scattering wave 

vectors changes are observed for S ZnZn
00 k  and S ZnZn

01 k  where a decrease in the 

intensity of the peaks is observed with increasing temperature. As k→0 the behaviour of

S ZnZn
01 k  and S ZnZn

12 k  are heavily temperature dependent: as temperature increases 

the value of S ZnZn
01 k  as k→0 rises while for S ZnZn

12 k  it declines. S ZnZn
01 k  mirrors

Figure 7.15: Change in network connectivity cation-cation structure factors, SMM
ab k  , with pressure. 

Black line, 600K; red line, 800K; green line, 1000K; blue line, 1200K.
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S ZnZn
44 k  in this regard as well as the decline of both the FSDP and principal peak 

occuring with increasing temperature in these functions.  

      Figure 7.16 shows the changes in network-connectivity functions with pressure. At ~1 

bar, S ZnZn
02 k  displays similar properties as the MX2 systems in Chapter 6 , with the ratio 

of FSDP to principal peak ~1 at low pressures. As pressure increases, the position of the 

peak shifts to 1.43Å-1 at 29000 bar from 1.07Å-1  at 1 bar with a decline in intensity.

S ZnZn
12 k  displays similar behaviour in showing a decline in intensity and a shift in 

position from 0.98Å-1 at 1 bar to 1.32Å-1 at 29000 bar. S ZnZn
00 k  and S ZnZn

22 k  observe 

phase separation over most of the pressure range except S ZnZn
22 k  which, due to the 

increased concentration term (c6 rises from 0.02 at 1 bar to 0.34 at ~29000 bar), forms a 

shoulder at 1.34Å-1 at 29000 bar. S ZnZn
01 k  and S ZnZn

11 k  show a small FSDP at ~1 bar, 

but then observe phase separation at 11000 and 29000 bar respectively. At higher k where 

Figure 7.16 :Change in network connectivity cation-cation structure factors, SMM
ab k  , with pressure. 

Black line, 1 bar; red line, 5000 bar; green line, 11000 bar; blue line, 29000 bar.
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k > 3Å-1, S ZnZn
02 k  and S ZnZn

11 k  show the smallest changes with variations in 

temperature and pressure. Of the network-connectivity and coordination-based functions 

which might be expected to overlap, S ZnZn
22 k  and S ZnZn

66 k  , display a shoulder at 

high pressures and exhibit phase separation through the pressure range. The similarity of

S ZnZn
01 k  and S ZnZn

44 k  exhibited with temperature changes is weaker for changes in 

pressure: whilst the FSDP and principal peak intensity declines, phase separation occurs 

at an earlier pressure range of 5000-11000 bar for S ZnZn
01 k  , compared to S ZnZn

44 k 

where it occurs in the 11000-29000 bar pressure range. 

7.11 Coloured cation-anion structure factors.

It was shown earlier that the FSDP intensity ~1Å-1 in SZnCl(k) increases with temperature 

and declines with pressure, but at a slower rate compared to SZnZn(k). Figure 7.17 shows 

Figure 7.17 :Change in coordination-dependent cation-anion functions, S ZnZn
cCl k  , where c={4,5,6}, 

with temperature.  Black line, 600K; red line, 800K; green line, 1000K; blue line, 1200K.
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that the changes in coordination-dependent cation-anion functions, S ZnZn
cCl k  , where 

c={4,5,6}, with temperature. The FSDP observed in S ZnCl
4Cl k  ,  which dominates the 

weighting at all temperatures (at ~ 1 bar), increases with temperature in spite of a 

decrease in the concentration, c4, from 0.75 at 600K to 0.61 at 1200K Phase separation 

effects, as highlighted by a rising intensity as k→ 0 is observed for S ZnCl
6Cl k  over the 

temperature range. Phase separation is also observed for S ZnCl
5Cl k  at 1000K and 1200K. 

The increase in phase separation behaviour is related to changes in density and the 

concentration terms, c5 and c6. The position of the FSDP in S ZnCl
5Cl k  at 1000K is at 

noticeably lower scattering angles at 0.84Å-1 than S ZnCl
4Cl k  at 0.97Å-1

. 

      Figures 7.18 shows the related functions with an increase in pressure. The FSDPs,

S ZnCl
4Cl k FSDP  and S ZnCl

5Cl k FSDP  , decline in intensity but persist as shoulders to 29000 

bar. A significant FSDP is absent in S ZnCl
6Cl k  at all pressures. S ZnCl

6Cl k  displays a 

wide variation in the principal peak height over the pressure range, smallest when IRO is 

present in the other two functions at low pressures. Over the pressure range a shift is 

observed in the principal peaks from 2.05-2.18Å-1, 2.01-2.09Å-1 and 1.96-2.09Å-1  for

S ZnCl
4Cl k PP  , S ZnCl

5Cl k PP and S ZnCl
6Cl k PP  respectively. At 29000 bar, an abrupt shift is 

observed for S ZnCl
4Cl k PP  from 2.02Å-1 to 2.18Å-1. This is in contrast with S ZnCl

5Cl k PP 

and S ZnCl
6Cl k PP  which observe shifts of 0.05Å-1 and 0.06Å-1 over the same pressure 

increase. 
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      Figure 7.19 shows the network-connectivity cation-anion structure factors. At 1 bar, 

S ZnCl
1Cl k FSDP  and S ZnCl

2Cl k FSDP  observed increases in the FSDP intensity from 0.206 

and 0.198 at 600K to 0.268 and 0.262 at 1200K, while for S ZnCl
0Cl k FSDP  the intensity 

declines from 0.220 to 0.162; at 600K, there is also a noticeably sharper decrease as k→0 

compared to the higher temperature functions. Larger changes are observed in the 

principal peak intensity for S ZnCl
0Cl k PP  from -0.77 to -0.42 compared to S ZnCl

1Cl k PP 

and S ZnCl
2Cl k PP  which have smaller changes of -0.65 to -0.53 and -0.56 to -0.69 

respectively. The position of the FSDP shows a marked difference for S ZnCl
2Cl k FSDP  at 

1200K, 0.83Å-1 compared to 0.92Å-1 and 0.90Å-1  for S ZnCl
0Cl k FSDP  and S ZnCl

1Cl k FSDP 

respectively. At 600K, the positions are much closer to each other: 0.96Å-1 , 0.98Å-1 and 

Figure 7.18: Change in coordination-dependent cation-anion structure factors, S ZnZn
cCl k  , with 

temperature. Black line, 1 bar; red line, 5000 bar; green line, 11000 bar; blue line, 29000 bar.  
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0.95Å-1  for S ZnCl
0Cl k FSDP  , S ZnCl

1Cl k FSDP and S ZnCl
2Cl k FSDP  respectively. The position of 

the FSDP in S ZnCl
5Cl k  at low pressure is 0.82Å-1  which is similar to the distances 

observed for S ZnCl
2Cl k  at the same pressure. 

Is is noticeable that phase separation occurs more readily for the coordination-dependent 

functions than those derived from the description of network connectivity. A 

consideration of S ZnCl
5Cl k  shows, that at 1200K, it observes greater phase separation 

effects at low k compared to S ZnCl
2Cl k  over the temperature range of 600-1000K and

S ZnCl
0Cl k  at 1200K even though the concentration terms, c2 and c1 in the respective 

cases are weaker than c5. Figure 7.20 shows that the FSDP in S ZnCl
aCl k  where a={0,1,2) 

is observable to higher pressures than those exhibited in the cation-cation functions, 

analogous to the changes observed in the coloured structure factors, SZnCl(k) and SZnZn(k). 

With increasing pressure, the FSDP shifts to higher wavevectors and declines to a similar 

Figure 7.19 :Change in network connectivity cation-anion structure factors, S ZnZn
aCl k  ,  where 

a={0,1,2} with temperature.  Black line, 600K; red line, 800K; green line, 1000K; blue line, 1200K.
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plateau in all three functions. The rates of change for S ZnCl
0Cl k FSDP  and S ZnCl

2Cl k FSDP 

are similar, observing shifts of 0.23Å-1 from 1 bar to 5000 bar, and 0.07Å-1 from 5000 bar 

to 11000 bar; S ZnCl
1Cl k FSDP  observes an initially weaker shift of 0.07Å-1, and then a 

larger shift of 0.16Å-1 over the second interval of pressure. The changes in the principal 

peak positions with pressure are smaller than the related changes in coordination-based 

functions with increases of 0.07Å-1, 0.02Å-1 and 0.04Å-1 for S ZnCl
0Cl k PP  , S ZnCl

1Cl k PP and

S ZnCl
2Cl k PP  over the pressure range.

Figure 7.20 :Change in network connectivity cation-anion structure factors, S ZnZn
aCl k  ,  where 

a={0,1,2} with pressure. Black line, 1 bar; red line, 5000 bar; green line, 11000 bar; blue line, 29000 bar.
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7.12 Coloured radial-distribution functions.

In section 7.7, we observed that with increasing temperature and pressure the intensity of 

the principal peak in gZnZn(r) stays the same. The intensity changes in the temperature 

range were much large than exhibited with pressure, 2.67-1.93 in the range 600K-1200K, 

and 4.07-3.97 for 1-29000 bar. The coordination-dependent radial distribution functions, 

shown in figure 7.21 (changes in temperature) and 7.22 (changes in pressure), do not 

elucidate significant variations in the shape of the principal peak. There are, however, a 

number of significant changes associated with increasing temperature and pressure in 

terms of peak shifts and intensity changes. With increasing pressure, g ZnZn
46 r PP ,

g ZnZn
66 r PP , g Zn Zn

55 r PP  and g ZnZn
45 r PP exhibit large shifts in the position of the 

principal peak of 3.56 to 3.87Å, 3.58 to 3.88Å, 3.57 to 3.79Å and 3.52 to 3.80Å 

respectively. g ZnZn
44 r PP and g ZnZn

56 r PP change from 3.78-3.78Å and 3.71-3.62Å 

respectively. With increasing temperature, the changes are much smaller with only

g ZnZn
46 r PP , g Zn Zn

56 r PP  and g ZnZn
45 r PP exhibiting increases larger than 0.01Å, with 

decreases in position of 0.04Å, 0.03Å and 0.07Å from 3.65Å, 3.69Å and 3.75Å 

Figure 7.21:Changes in coordination-dependent radial distribution functions, g ZnZn
cd  r  , with 

temperature. Black line, 600K; red line, 800K; green line, 1000K;blue line, 1200K. 
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respectively. 

The network connectivity cation-cation radial distribution functions in contrast to the 

coordination-dependent functions, show a wider range of principal peak positions, with 

ranges of 3.29Å-3.86Å compared to 3.59Å-3.80Å respectively. The functions

g ZnZn
00 r PP , g Zn Zn

01 r PP  , gZn Zn
02  r PP and g ZnZn

11 r PP show a substantial widening of the 

FWHM with increasing temperature (shown in figure 7.23) and a decrease of short range 

order. g ZnZn
11 r PP , g Zn Zn

22 r PP  and g ZnZn
02 r PP possess the largest FWHM at 1200K of 

1.34Å , 1.69Å and 1.15Å while g ZnZn
00 r  , g Zn Zn

12 r PP  and g ZnZn
01 r PP and  have smaller 

corresponding values of 0.53Å, 0.85Å and 0.90Å. g ZnZn
12 r PP and g ZnZn

22 r PP show 

very similar FWHM at each end of the temperature range, with changes of 22% and 11% 

respectively, compared to the other functions which show widening with temperature of 

30-50%.

Figure 7.22 :Change in coordination-dependent cation-cation radial distribution functions, g ZnZn
cd  r  ,  

with pressure.  Black line, 1 bar; red line, 5000 bar; green line, 11000 bar; blue line, 29000 bar.
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g ZnZn
12 r PP and g ZnZn

22 r PP also observe the smallest shifts in principal peak position 

of 0.03Å and 0.01Å compared to 0.06Å, 0.09Å and 0.09Å for g ZnZn
00 r PP , g Zn Zn

01 r PP 

and g ZnZn
02 r PP . The rigidity of these functions in terms of position and FWHM may be 

expected from rigid edge-sharing chains compared to the corner-sharing configurations 

and those where one edge-sharing unit is involved. g ZnZn
11 r PP shows a split in the 

principal peak, with peaks at 3.24Å and 3.76Å. This feature, not observed in the full 

radial distribution function, gZnCl(r), is indicative either of relatively slow dynamics or a 

particularly strong ordering of the tetrahedra. The split in gZn Zn
11 r PP is an indication of 

two length scales as shown in figure 7.24. The earlier edge-sharing peak reflects the 

bonding of two “1” cations through bridging anions, where the presence of intermediate 

edge-sharing unit ellicits a closer separation. The longer corner-sharing peak occurs when 

two E1 cations are bonded through one bridging anion with edge-sharing unit in the 

opposite direction.

Figure 7.23:Changes in network connectivity radial distribution functions, g ZnZn
ab  r  , with temperature. 

Black line, 600K; red line, 800K; green line, 1000K; blue line, 1200K. 
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      The corresponding functions calculated for the pressure range, 1-29000 bar, shown in 

figure 7.25, at 1000K, show changes in the principal peak and intensity. g ZnZn
11 r PP at 

low pressure exhibits intensity a edge-sharing peak at 3.39Å, in addition to the corner-

sharing peak at 3.80Å, which declines at higher pressure and only a single peak is 

observed at 3.85Å. There is noticeably sharper decline in the intensity of the second peak 

at ~7Å which flatten to a plateau at the highest pressure for g ZnZn
01 r PP and

g ZnZn
11 r PP . g ZnZn

02 r PP , g Zn Zn
22 r PP  and g ZnZn

12 r PP exhibit larger changes in the 

increasing FWHM of the principal peak (0.31-61) over the pressure range compared to

g ZnZn
00 r PP , g Zn Zn

01 r PP  and g ZnZn
11 r PP (0.04-0.19). g ZnZn

22 r PP shows the smallest 

change in the minima at ~5Å which is also the case for the functions in figure 7.23.

g ZnZn
12 r PP , g Zn Zn

11 r PP  and g ZnZn
22 r PP show the largest changes in terms of position 

in the principal peak shifting from 3.43Å to 3.96Å and 3.34Å to 3.93Å, and 3.45Å to 

3.68Å respectively. Smaller changes of 3.77Å to 3.77Å, 3.93Å to 3.93Å and 3.94Å to 

4.01Å are observed for g ZnZn
00 r PP , g Zn Zn

01 r PP  and g ZnZn
02 r PP respectively. In contrast 

to the changes in g ZnZn
02 r PP with temperature, the weakening of the separation between 

the principal and second peak is accompanied by a rise in the ratio of principal peak 

intensity over second peak from 0.88 at ~1 bar to 1.30 at 29000 bar.

Figure 7.24: Schematic diagrams of two bond length scales for "1"-"1"  cation cation interaction. A: Long 

bond, r1, between two "1" cations where there is a singly bridging anion. B: Short bond, r2, where there are 

two bridging anions present.  
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7.13 Conclusion.

The changes in the structure of ZnCl2 with temperature and pressure have been 

highlighted. With increasing temperature, the FSDP intensity in F(k), depending on the 

isotopic weighting, either stays at a similar intensity or declines, whilst with pressure it 

declines (over all isotopic weightings). The pattern of changes of the variation in the 

intensity of SZnCl(k) and SZnZn(k) differ; the integrity of the peak in SZnCl(k) persists to 

higher temperatures and pressure than that observed in SZnZn(k) which becomes a shoulder 

at higher scattering angles. As expected, the cation-anion coordination increases with 

pressure, but the change is not substantial over the range of detailed neutron diffraction 

Figure 7.25 :Change in network-connectivity cation-cation radial distribution functions, g ZnZn
ab  r  , with 

pressure. Black line, 1 bar; red line, 5000 bar; green line, 11000 bar; blue line, 29000 bar.
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investigations of Pfleiderer6 and Heusel9. The anion sublattice is predicted to 

accommodate the changes with pressure with a significant reduction in the nearest 

neighbour anion-anion distance. Changes in the principal peak of gZnZn(r) are made clearer 

through the difference functions, P
Pn−P1 r  . The separation between edge and corner-

sharing peaks is highlighted further in the function, gZn Zn
11  rPP , which shows a split 

correlated with changes to the relative intensities of the edge- and corner-sharing peaks. 

While broad patterns are observed by the change of these variables with pressure, the 

details of changes in structure were better understood when the partial structure factors 

and radial distribution functions are coloured according to both network connectivity and 

ZnCl coordination. At low pressure and temperature, the network connectivity functions 

show similar features with the high polarisability systems studied in previous chapters. 

With increasing temperature and pressure they show a diminishing of features associated 

with IRO. The network connectivity functions show greater variation in certain properties 

such as propensity for phase separation and the ratio of the FDSP to principal peak 

intensities. It is shown that decomposing the partial structure factor according to network 

connectivity is a more effective probe than colouring by coordination.

     Previous ZnCl2 models have focused on the structure at a single state point.28-33 In 

chapter 3 we showed that the ZnCl2 PIM  displayed a good correlation with experimental 

densities and quantities such as the total structure factors at zero pressure. Here we 

produced the first set of calculations on ZnCl2 showing the effect on IRO across the 

temperature and pressure range. Equations by Elliot1, highlighted in the introduction, 

expressing the temperature and pressure dependence of the FSDP of F(k), the total 

structure factor were shown. Elliot's model based on cluster-void ordering relies on the 

packing of cation-centred clusters, and by implication a strong cation-cation ordering 

which neglects other ion correlations. As we have observed in chapter 6, in systems of 

intermediate polarisability, the relative contributions of SMM(k) and SMX(k) to the FSDP 

are closest so this assumption is weakest with regards to systems such as ZnCl2 whose 

anion polarisability is close to this range. We have shown that the cation-cation and 

cation-anion contributions display a different temperature dependence in their respective 

contributions to IRO. This indicates that the cation-anion contributions are not as 

structurally dependent upon the cation-cation correlations as the void model implies. 

      Our results showed a good correlation with the experimental results of Allen et al9 

with increasing temperature with the FSDP intensity more stable to changes in 

temperature than peaks at higher k. Our decomposition into partial structure factors 
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shows this is due to the stability of the FSDP in SZnCl(k) with increasing temperature. This 

is supported by the slight decline in the position of the kFSDP in F(k) experimentally from 

1.005-1 at 603K to 0.944Å-1 at 873K which corresponds with the pattern of decline in 

position of SZnCl(kFSDP) we have observed in our results from 0.96Å-1 at 600K to 0.90Å-1 at 

1200K.

      In recent pressure experiments on ZnCl2, it was commented by Brazkhin8 that with 

increasing pressure the structure of ZnCl2 becomes similar to that of compounds such as 

MgCl2. Some evidence in support of this statement is that, at increased pressure, ZnCl2 

displays a coordination similar to that exhibited by MgCl2. In comparing the partial 

structure factors of ZnCl2 at higher pressures and MgCl2, while they exhibit a decline in 

the intensity of the FSDPs, they show a number of significant differences. In MgCl2, only 

the principal peak position in SMgMg(k) shifts significantly whereas with increasing 

pressure in ZnCl2, principal peaks for all three correlations shift in position. The greatest 

change in principal peak intensity also occurs for SMgMg(k) in MgCl2 compared to the 

change in pressure with ZnCl2 where it is the changes in anion-anion term SClCl(kPP) term 

which is notably greater than SZnCl(k) and SZnZn(k). For higher k oscillations, SMgMg(k) and 

SMgCl(k) are observed to shift while for increasing pressure in ZnCl2 it is only the 

oscillations in the anion-anion term, SClCl(k) that do so. 
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Chapter 8
Effect of temperature and pressure in MX2 

systems

8.1 Introduction.

In Chapter 7 we studied the effect of temperature and pressure in ZnCl2; this corresponds 

to a system of MX2  stoichiometry where anion X has an intermediate polarisability value 

of 20 a.u. In this chapter, we shall focus primarily on systems which lie either side (in the 

context of the magnitude of the underlying polarisation) by application of a MX2  model, 

with the anion polarisability, αX, set to 35 a.u and 15 a.u; these systems might be 

expected to correspond to systems such as GeSe2 and GeO2  respectively. It has been 

observed in diffraction experiments for GeSe2
1 that the FSDP in the number-number 

structure factor, SNN(k), rapidly diminishes when the temperature is raised from 800oC to 

1100oC, with a shift in the position from 0.99Å-1 to 1.05Å-1.1 A possible explanation for 

this change was that upon increasing temperature the structure of GeSe2  becomes similar 

to GeSe; this was supported by the similarity with the absence of a FSDP of GeSe at 

727oC and also the similar values in conductivities of 60 Ω-1
 cm-1

.
2 Pressure studies in 

liquid GeSe2
3 have shown a change from a 2D system, where there are significant 

amounts of edge-sharing, to a 3D network, where corner-sharing dominates the linkages 

between tetrahedral units. Raman spectroscopy supports this by observing a reduction in 

the presence of edge-sharing tetrahedra in an experiment carried out to ~3 GPa.4 This 

change was accompanied by a decrease in the intensity of the FSDP. The accompanying 

coordination changes predicted are for Ge to gradually increase from 4 to 6 coordination 

and for Se to increase from 2 to 4 coordination.9 Recent neutron diffraction experiments 

by Mei et al5 on glassy GeSe2 show that the FSDP observes a 31% reduction in intensity 

from 0-3.9 GPa followed by a 8% reduction from 3.9 to 9.3 GPa.5 Other structural 

features include a shift in the position of both the FSDP from 1.010Å-1 to 1.225Å-1 and 

the principal peak from 2.042Å-1 
 to 2.262Å-1.5 A double peak between 4.5 and 7.5Å-1 , 

previously associated with well defined tetrahedral units,6,7 and the weakening of the 



Chapter 8. Effect of Temperature and Pressure in MX2 systems                                    229

shoulder at 6.92Å-1 
 with increasing pressure was associated with diminution of these 

units.5 An increase in Ge-Se bond length, from 2.32Å to 2.46Å, is measured for liquid 

GeSe2
3
, up to an experimental pressure range of 4.1 GPa, whereas for glass the 

corresponding figures were 2.364Å to 2.377Å up to 9.3 GPa5. The Ge-Se coordination 

number increases from 4.0 to 4.2 at 3.9 GPa, and then up to 4.5 at 9.3 GPa.5 The results 

disagree with earlier work by Prasad et al8  which predicted a semi-conductor to metallic 

transition at 9GPa whilst observing that GeSe2  remains amorphous up to these pressures.

      There have been several representations of the effect of pressure and temperature on 

GeSe2 using computational simulations.9-13 Electronic structure calculations by 

Durandurdu et al predict9,10 that with increasing pressure, the percentage of homopolar 

bonds initially deteriorates, then increases over the pressure range considered. Likewise, 

electronic structure calculations on the effect of temperature predict an increase in 

homopolarity with increasing temperature, leading to a reduction in the FSDP intensity.11 

In calculations by Vashishta for GeSe2
12,13

,  a similar FSDP intensity is observed at 300K 

and 1100K, temperatures corresponding to the glassy and liquid regimes respectively. 

      At the lower end of the polarisability spectrum we would expect the effect of 

pressure to relate with changes in systems such as GeO2
14-18

 which displays a FSDP at 

~1.5Å-1 and a larger M-X-M bond angle ~130o compared to the smaller values associated 

with GeSe2. With increasing pressure, the FSDP in GeO2 glass broadens and shifts to 

higher k values.17 EXAFS experiments on liquid GeO2 show stable 4-coordination up to 

2.5 GPa, followed by an increase in coordination number from 4 to 6 from 2.5 GPa to 4 

GPa.16 Difference functions, which use X-Ray and Neutron diffraction data to eliminate 

one of the partial structure factors were derived by Sampath et al17. The results showed 

that Ge-O and O-O correlations were largest contributors to the change in the structure 

factor. This is in contrast with the changes in IRO we have studied which so far have 

been dominated by cation-cation and cation-anion interactions. One proposed mechanism 

for densification envisages the collapse of the cage structure of GeO2 enabled by rotation 

in the [GeO4]2- tetrahedra occurring in the pressure region below 6GPa.18 This is followed 

by coordination increase in the pressure range of 6-15GPa. Molecular dynamics 

simulations on GeO2 show an increase in coordination, changing from a tetrahedral to 

octahedral network with increasing pressure.19-26 GeO2 and GeSe2  may densify through a 

combination of different effects. The presence of edge-sharing tetrahedra in GeSe2 

enables a 2D-3D transition with density changes;  in contrast, GeO2 , which is dominated 
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by corner-sharing connections, may be dominated by coordination changes. 

8.2 Simulation details.

In this chapter, we will observe the changes in network structure over a large change in 

density for MX2 using anion polarisability values of 15 a.u and 35 a.u (the recorded 

densities correspond to the molecular weight of 230.53 g/mol for GeSe2).  The accessing 

of low density is intended to observe both the structural changes upon densification 

according to two different anion polarisabilities. In addition, the breakdown of partial 

structure factors and radial distribution functions calculated at low densities, where 

coordination tends strongly to four-coordination, will highlight the influence of network 

topology in comparison to coordination-defects and frustration caused by packing. The 

effect of temperature on a system corresponding to GeSe2, (αX=35 a.u) will be observed 

by recording the structure at temperatures corresponding to low (2000K) and high 

temperature (7000K) liquids. 

      The MX2 potential used in this chapter is the same as that developed for GeSe2 in 

chapter 4 with the anion polarisability, αX, changed to 35 a.u and 15 a.u. All calculations 

in this chapter consists of 999 ions (333 cations and 666 anions). The starting 

configurations for the calculations for αX =15 a.u and αX=35 a.u were obtained from the 

end of the simulations described in Chapter 6. Initial calculations were carried out by 

raising the pressure to 1x10-3 a.u. The lower density calculations were generated by 

decreasing the pressure applied via the barostats by increments of 1 x 10-4 a.u. At each 

pressure an equilibration run of 30 ps was carried out. Simulation runs, using an NPT 

ensemble,were carried out for 60 ps. Structural correlations (discussed in sections 8.3-

8.6) are calculated in this chapter for both systems across a similar range of density and 

pressure change. At αX=35.a.u, the structural correlations were highlighted for the 

pressures at 9.0x10-4 a.u, 7.0x10-4 a.u, 4x10-4 a.u and 1x10-4 a.u corresponding to average 

cell sizes of 34.74Å (3.00 g/cm3), 32.30Å (3.73 g/cm3), 31.28Å (4.11 g/cm3) and 30.73Å 

(4.34 g/cm3). At αX=15.a.u, the structural correlations were highlighted for the pressures 

at 1.0x10-4 a.u, 3.0x10-4 a.u, 6.0x10-4 a.u and 9.0x10-4 a.u corresponding to average cell 

sizes of 34.25Å (3.13 g/cm3), 32.37Å (3.71 g/cm3) , 31.08Å (4.19 g/cm3) and 30.38Å 

(4.49 g/cm3). 

     For calculating high temperature liquid configurations for MX2 (αX=35 a.u), analysed 

in section 8.7, an initial starting configuration was taken from the end of a simulation run 
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at 2000K. The average cellsize was 32.30Å corresponding to a density of 3.71 g/cm3. 

The temperature was raised by 1000K to 7000K over series of runs of 30 ps at each 

stage. At 7000K upon a further equilibration run, a simulation of 60 ps in an NPT 

ensemble was carried out from which structural correlations were calculated. The 

average cell size was 33.85Å corresponding to density of 3.25 g/cm3.

8.3 Change in partial structure factors of MX2 systems with density.

Figure 8.1 shows the partial structure factors of MX2 at αX=15 a.u in the density range 

3.13-4.49 g/cm3. At high densities, the principal peak and  FSDP are effectively merged 

in SMM(k) at 1.65Å-1. With decreasing density, there is little change until 3.13 g/cm3 when 

a split in the FSDP occurs so that a peak is observed at 1.33Å-1 and 1.85Å-1. The split in 

the FSDP indicates the nascent formation of two separate length scales, where the lower 

value peak tends towards ~1Å-1 and the higher value peak towards ~2Å-1: these features 

are typical of higher anion polarisability systems. SMX(kFSDP) decreases sharply in 

intensity with increasing density with the position of the peak shifting to lower k values 

from 1.19Å-1 at 3.13 g/cm3 to 1.38Å-1 at 3.71 g/cm3. Although no observable FSDP is 

present in SXX(k), the intensity at 3.13 g/cm3 is considerably larger at 0.29 than that 

observed at 4.49 g/cm3 of 0.05. The principal peak intensities of SMX(k) and SXX(k) 

Figure 8.1:Partial structure factors of MX2, when αX=15.0 a.u, according to density range 3.13-4.49 g/cm3. 

Top, SMM(k); middle, SMX(k); bottom, SXX(k). Black line, 3.13 g/cm3; red line, 3.71 g/cm3; green line, 4.19 g/

cm3; blue line, 4.49 g/cm3
.
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change from -1.48 to -1.82 and 3.07 to 4.72 over the density range while both observe 

similar shifts of 1.87Å-1to 1.97Å-1 and 1.86Å-1 to 2.00Å-1
 respectively..    

      Figure 8.2 shows that for the anion polarisability of 35 a.u, there is a reduction in the 

intensity of the FSDP in SMM(k) with increasing pressure. The FSDP also shifts to higher 

k from 0.96Å-1 at 3.00 g/cm3 to 1.14Å-1 at 4.34 g/cm3. SMX(kFSDP) decreases sharply in 

intensity with increasing density from 0.49 at 3.00 g/cm3  to 0.04 at 4.34 g/cm3
 and its 

position shifts to higher k values from 0.94Å-1 at 3.00 g/cm3 to 1.05Å-1 at 3.73 g/cm3. A 

FSDP is observed in SXX(kFSDP) only at the lowest density in contrast to SMM(k) and 

SMX(kFSDP) which is observed over the whole density range. The principal peak intensities 

increase with increasing density: SMM(kPP), SMX(kPP) and SXX(kPP) increase from 1.58-1.69, 

-1.00 to -1.33 and 2.82 to 3.33 respectively; the change in SXX(k) is weaker than that 

exhibited at αX=15.0 a.u. The changes in position of SMX(kPP) and SXX(kPP) are similar 

with shifts of 1.79Å-1 to 1.99Å-1 and 1.80Å-1 to 2.00Å-1 respectively, whilst for SMM(kFSDP) 

it is much smaller from 1.96Å-1 to 1.99Å-1 . SXX(kPP) also shows changes at higher k, 

unlike SMX(kPP) and SMM(kPP), as the function is translated by 0.32Å-1 over the density 

range.

Figure 8.2:Partial structure factors of MX2, when αX=35.0 a.u, according to density range 3.00-4.34 g/cm3. 

Top, SMM(k); middle, SMX(k); bottom, SXX(k). Black line, 3.00 g/cm3; red line, 3.73 g/cm3; green line, 4.11 g/

cm3; blue line, 4.43 g/cm3
.
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8.4 Changes in radial distribution functions in MX2 with density.

For αX=15.0 a.u, a small pre-preak is observed in gMM(r) at 3.00 g/cm3, as highlighted in 

the inset of figure 8.3, indicating the formation of edge-sharing units. In the region of r > 

rPP , gMM(r) shows considerable variation between densities. Noticeably at 5.14Å, the 

intensity of gMM(r) is substantially weak at 3.00 g/cm3 but observes a stronger peak at 

6.56Å. At higher densities the separation between these two lengths weakens, with an 

increasing intensity ~5.14Å. The intensity of the principal peak in gMX(r) declines from 

11.11 at 3.13 g/cm3 to 5.81 at 4.79 g/cm3, while the position stays constant at 2.46Å. At 

higher densities, the principal peak position of gXX(r) is perturbed by shifting to lower r 

from 4.00Å to 3.74Å over the same density range. The peaks at r >rPP  also shift by a 

similar amount in contrast to gMM(r). 

 Figure 8.3: Radial distribution functions, gαβ(r), of MX2 systems, when αX=15.0 a.u, in the density range 

3.13-4.49 g/cm3
.  Inset: small edge-sharing peak observed in gMM(r) at 3.13 g/cm3

. Black line, 3.13 g/cm3; 

red line, 3.71 g/cm3; green line, 4.19 g/cm3; blue line, 4.34 g/cm3
.



Chapter 8. Effect of Temperature and Pressure in MX2 systems                                    234

       Figure 8.4 shows the changes in the radial distribution functions with density for 

αX=35.0 a.u. There is little shift of the position in the principal peak in gMX(r), which 

remains at 2.47Å from 3.00 g/cm3 to 4.34 g/cm3, but there is a significant change in the 

intensity from 7.96 to 6.80. In gXX(r) the greatest shift in principal peak position occurs, 

changing from 4.08Å at 3.00 g/cm3 to 3.76Å at 4.34 g/cm3; the intensity also declines 

from 3.69 to 3.13. The change in gMM(r) is different from gXX(r) and gMX(r) in that the 

shape of the principal peak varies significantly. At low densities a separate peak is 

observed at 3.42Å in addition to a peak at 3.86Å which is observed over the whole 

density range. With increasing density, the intensity at this separation decreases until no 

second peak is observed at 4.11 g/cm3. The changes in the intensity of the principal peak 

are comparatively small, from 2.40 to 2.21 over the density range. Larger variations are 

observed at the minima of gMM(rPP)~4.65Å, which are not observed in the other two 

functions. 

Figure 8.4: Radial distribution functions, gαβ(r), of MX2 systems, when αX=35.0 a.u, in the density range 

3.00-4.34 g/cm3
.  Black line, 3.00 g/cm3; red line, 3.73 g/cm3; green line, 4.11 g/cm3; blue line, 4.34 g/cm3

.
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       Figure 8.5 shows the changes in the mean coordination number, Mij, for the different 

ion-pairs for varying densities for both αX=15 a.u and  αX=35 a.u. For αX=15 a.u, the 

changes in MXM and MMX  shows a faster rise in increasing coordination than for αX=35 

a.u. The changes with density for MXX and MMM are similar; the values for MMM at all 

densities are greater for αX=15 a.u whilst the reverse occurs for MXX  at αX=35 a.u.  At 

lower densities, the cation-anion coordination number tends towards a strongly four 

coordinate system with percentage values of 96.93% and 98.45% at 3.00 g/cm3 and 3.13 

g/cm3 for αX=35 a.u and 15 a.u respectively. At the highest density, these values reduce to 

63.28% and 38.31% for αX=35 a.u and 15 a.u respectively. This shows that the increase 

in density can be accommodated by changes in the bonding between tetrahedra for the 

higher anion polarisabililty systems; at lower anion polarisabilities, the changes in 

coordination dominate. 

8.5 Changes in bond angle distribution functions in MX2 with density.

Figure 8.6 shows the changes in the bond angle distribution for αX=15 a.u. For M-M-M, 

there is an increased overall area with increasing density and an increasingly sharp peak 

at 50o. For M-M-X, the early peak at 30o decreases in relative magnitude compared to the 

Figure 8.5:Mean coordination number,  Mαβ, of ion pairs in MX2 where αX=15 a.u (black) and 35 a.u (red)
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latter 100o peak with increasing density. With increasing density, there is a widening of 

the FWHM in the M-X-M bond angle distribution. The intensity at ~96o increases, 

arising from the larger presence of 5 and 6 coordinate M cations at higher densities. 

There are two contrasting X-M-X distributions over the density range: firstly, at low 

densities a symmetrical peak around 105o is observed, indicating a strongly tetrahedral 

distribution; the second limit, at high densities, is signified by the characteristic tail at 

~160o and an earlier peak at 90o indicating a strongly square-planar/octahedral geometry. 

      Figure 8.7 shows the accompanying changes in the bond angle distribution for αX=35 

a.u. With decreasing density, the M-X-M bond angle distribution increasingly separates 

into two resolved peaks at ~83o and ~104o. From 4.11 g/cm3 to 3.00 g/cm3, the M-X 

coordination is highly 4-coordinate so the divergence of the two peaks, as highlighted by 

the declining intensity of the minima at 91o, shows that the corner and edge-sharing 

geometries are increasingly distinguished from intermediate configurations resulting 

from miscoordination or frustration caused by packing at higher densities. These changes 

are also reflected in the X-M-X distribution where the tail at ~160o diminishes with 

Figure 8.6:Bond angle distributions for MX2, when  αX=15.0 a.u in the density range 3.13-4.49 g/cm3
. 

Black line, 3.13 g/cm3; red line, 3.71 g/cm3; green line, 4.19 g/cm3; blue line, 4.49 g/cm3
.
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declining density and the X-M-X increasingly takes the form of a symmetrical peak 

around 108o. The M-M-X distribution observes a split in the peak at 43o at the lowest 

density in contrast to the analogous functions for  αX=15 a.u.

      The results so far show that in the density-range covered, there are two separate 

changes occurring in the MX2  structure. At αX=15 a.u, the system moves from one that is 

corner-sharing to one with a small amount of edge-sharing; this change occurs at very 

low densities and is responsible for the splitting of the FSDP in figure 8.1. When αX=35 

a.u, the system already has significant edge-sharing present and the decrease in density is 

accommodated by strengthening of the edge- and corner-sharing tetrahedral network, 

both in increasing four-coordination and the arrangement of geometry as shown in figure 

8.7. 

Figure 8.7:Bond angle distributions for MX2, when  αX=35.0 a.u in the density range 3.00-4.34 g/cm3
.  Black 

line, 3.00 g/cm3; red line, 3.73 g/cm3; green line, 4.11 g/cm3; blue line, 4.34 g/cm3
.
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8.6 Changes in network-connectivity functions in MX2 with density.

As shown in Chapter 5, SMM(k) can be decomposed into partial structure factors based on 

the network connectivity of cations according to the number of four-membered rings 

they are bonded to. Figure 8.8 shows the breakdown of configurations taken at densities 

of 4.34 and 3.00 g/cm3  for the MX2 system at αX=35 a.u. The results show that SMM
22 k 

and S MM
00 k  display phase separation at both densities and so are not responsible for 

the change in in the FSDP of SMM(k). SMM
01 k  , S MM

02 k  , S MM
11 k  , and S MM

12 k 

exhibit FSDP at both densities although in all cases they are reduced at the higher 

density, by 0.12, 0.05, 0.28 and 0.11 respectively. The biggest decrease in FSDP 

intensity is clearly observed in SMM
11 k  . There is also a shift to higher scattering 

angles, with S MM
02 k FSDP exhibiting the largest change from 0.95-1.16Å-1 while

SMM
11 k FSDP  , S MM

12 k FSDP  , S MM
12 k FSDP  , and S MM

01 k FSDP observe changes of 0.96-

1.04Å-1, 0.99-1.10Å-1, and  0.97-1.10Å-1 respectively. Large changes are observed in the 

principal peak intensities of SMM
22 k PP , S MM

01 k PP  and SMM
02 k PP . S MM

22 k PP

increases by 0.3 from 0.10, while the latter two collapse from 0.36 to 0.09 and 0.39 to 

Figure 8.8 :Change in network connectivity cation-cation structure factors, S MM
ab  k  ,  with density. 

Black line, 3.00 g/cm3; red line, 4.34 g/cm3.
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0.03. The remaining functions, SMM
11 k PP , S MM

12 k PP and S MM
00 k PP show much 

smaller changes of 0.01, 0.02 and 0.01. 

      Figure 8.9 shows the related network connectivity radial distribution functions. In all 

the functions, there is a decrease in the value of the minima at ~4.7Å with decreasing 

density. g MM
02 r  shows dramatic changes with regards to the intensity of the principal 

peak showing a sharp decline with decreasing density from 1.52 at 4.34 g/cm3  to 0.46 at 

3.00 g/cm3. This is understood if we idealise the interaction between the “0” and “2” 

cations as having an especially weak ordering over the usual cation-cation separation due 

to the presence of a "1" cation as an intermediate site. The large difference between this, 

close to ideal, g MM
02 r  and those exhibited at experimental densities (in Chapter 5) 

shows the effect of increased coordination in perturbing the network structure. In 

contrast, features such as similar minima in g MM
22 r  show that this feature is not 

dependent on the density: the presence of two edge-sharing units around a central cation 

effectively fixes the short-range ordering at ~4.5Å. g MM
22 r PP and g MM

12 r PP  also 

observe changes in intensity of 10.07 to 4.49 and 5.67 to 1.99, whilst the corresponding 

values for g MM
00 r PP , g MM

01 r PP and g MM
11 r PP of 10.79 to 7.28, 4.75 to 4.75, and 

2.88 to 2.18 are smaller. g MM
11 r  shows a split of the principal peak into an edge-

sharing peak at 3.36Å and a corner-sharing peak at 3.95Å which is observed from 4.11 g/

cm3 to 3.00 g/cm3, in contrast to the highest density configuration where the edge-sharing 

peak is reduced to a shoulder. As might be expected, the distinction between the corner- 

and edge-sharing peaks is much stronger than observed for ZnCl2 in chapter 7. The ratio 

of the intensities of the edge-sharing peak to the corner-sharing peak increases with 

decreasing density showing that the effective distribution of "1" cations adopts 

morphologies which maximise the edge-sharing character.
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8.7 Change of MX2 (αX=35.0 a.u) structure with increasing temperature.

In order to study the effect of increasing temperature on systems with high anion 

polarisability, the temperature of the system at a density of 3.73 g/cm3 was raised in 

1000K increments to 7000K. Figure 8.10 shows that at the higher temperature there is a 

sharp decline observed in the intensity of SMM(kFSDP) with a 34% drop in the intensity of 

the FSDP from 1.22 to 0.81. There is no significant FSDP in SXX(k) and SMX(k) at either 

temperature. The position of the FSDP in SMM(k) shifts from 1.04Å-1  at 2000K to 1.18Å-1 

at 7000K. A larger drop in the intensity of the principal peak is observed for SMM(kPP) of 

17% (1.80 to 1.49) compared to 8% for SMX(k) (-1.202 to -1.10) and 9% for SXX(k) (3.29 

to 2.99). There is also a large shift in the position of both the FSDP and principal peak in 

SMM(kPP) with increasing temperature of 0.14Å-1 compared to no shift in SMX(kPP) and 

0.02Å-1 increase for SXX(kPP). For systems displaying larger FSDPs in SMM(k), it shows a 

 Figure 8.9:Changes in the network connectivity based radial distribution functions, gMM
ab r , where a,b 

={0,1,2), with density. Black line, 3.00 g/cm3; red line, 3.73 g/cm3; green line, 4.11 g/cm3; blue line, 4.34 

g/cm3.
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simple model is able to predict the deterioration of the FSDP with temperature without 

the presence of homopolar bonding.

      Figure 8.11 shows the changes in the radial distribution functions with increasing 

temperature. The intensity of the principal peaks decrease with increasing temperature; 

the change is largest in gMX(rPP), from 8.09 to 4.53, compared to 2.35 to 1.63 for gMM(rPP) 

and 3.52 to 2.55 for gXX(rPP) where there is a slightly smaller reduction. In contrast to the 

changes observed with pressure, there is a shift in position of the principal peak of 

gMX(rPP) from 2.46Å at 2000K to 2.42Å at 7000K. The respective changes for gMM(rPP) 

and gXX(rPP) are from 3.75Å to 3.83Å and 3.83Å to 3.77Å. The second peak in g(r), 

observes differing behaviour between the ion pairs: the intensity of the second peak in 

gMM(r) decreases in intensity from 1.41 to 1.18 while the changes in gMX(r) and gXX(r) are 

much smaller at 1.43 to 1.35 and 1.36 to 1.28 respectively.

Figure 8.10:Partial structure factors of MX2
 at 2000K and 7000K. Top, SMM(k); middle, SMX(k); bottom, 

SXX(k)
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      Table 8.1 highlights the changes in coordination. At the higher temperature, there is 

an increase in disorder, as defined by the increasing percentage of miscoordinated M-X 

and X-M ion pairs diverging from the ideal tetrahedral values of 4 and 2 respectively. 

The percentage of 1-coordinate anions increased from 1.85% at 2000K to 11.09 at 

7000K, while four (cation-anion) coordination declines from 72.29% to 59.87%, with 3-

coordination increasing to 10.23%, much higher than the values exhibited at the lowest 

density at 2000K (3.08% at 3.00 g/cm3) .

Temperature NMX=3 NMX=4 NMX=5 NMX=6 NXM=1 NXM=2 NXM=3

2000K 0.27 72.29 26.85 2.93 1.85 81.63 20.19
7000K 10.23 59.87 24.66 2.77 11.09 67.70 16.23

Table 8.1: Effect of temperature on the coordination pairs MX and XM in a MX2 system.

Figure 8.11: Radial distribution functions, gαβ(r), of MX2 systems at 2000K and 7000K. 
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      The bond angle distributions of the higher temperature configurations (figure 8.12) 

show a weakening of the features associated with the mixed edge- and corner-sharing 

tetrahedral network present at 2000K. This is highlighted in the M-X-M distribution 

where the peaks at 84o and 101o representing the bond angles associated with edge and 

corner-sharing tetrahedra are reduced in intensity and a single peak is formed. The 

related change in X-M-X is more subtle; the peak shifts from 97o to 92o at 7000K and 

there is a weakening of the distinction between this peak and the tail at 160o
.  The changes 

in M-M-M are larger than those in other functions with a substantial reduction in the 

minima at 75o which separates the low and high peaks. This is an indication of the effect 

of coordination change and the transition of a mixed edge- and corner-sharing tetrahedral 

network to one with more molecular features present.   

 Figure 8.12:Bond angle distributions for MX2 at 2000K and 7000K.  Black line, 2000K; red line, 7000K
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      The network connectivities at the two temperatures are shown in table 8.2. With 

increasing temperature, there is a sharp reduction in the percentage of “2” cations and an 

increase in “0” cations. This is further evidence that changes in the structural properties 

are indicative of an underlying change in network-connectivity with increasing 

temperature. These values are closer to that observed in the FPMD calculations in 

Chapter 4. 

Network Connectivity MX2(2000K) MX2(7000K)

E0 29.1 (2.4) 42.3 (3.5)
E1 40.2 (2.1) 42.7 (2.8)
E2 30.7 (2.7) 15.0 (2.7)

Table 8.2: Percentage of cation colored according to their network connectivity for high and low 

temperature configurations of MX2.

Figure 8.13 :Change in network connectivity cation-cation structure factors, S MM
ab  k  ,  with 

temperature. Black line, 2000K; red line, 7000K.
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      Figure 8.13 shows the partial network connectivity structure factors at 2000K and 

7000K. S MM
22 k  and S MM

00 k  exhibit phase separation at both temperatures with 

sharply damped oscillations at k >4Å. SMM
02 k  and SMM

12 k  show the sharpest 

decline in FSDP intensity with increasing temperature and is responsible for the loss of 

intensity of the FSDP at ~1Å-1
 at the higher temperature. SMM

01 k  and SMM
11 k  show 

the smallest change in FSDP intensity, although SMM
01 k FSDP  becomes a shoulder. This 

shouldering, due to the relatively large c0c1 at the higher temperature, dominates the 

character of the partial structure factor, SMM(k), especially over the range of 1-2Å where 

similar shouldering is observed. S MM
01 k  and SMM

02 k  also show the largest 

movement in position with an increase of 0.11Å-1 and 0.13Å-1 from 1.09Å-1 and 1.05Å-1 

respectively. The changes in SMM
11 k  and SMM

12 k  are smaller with shifts of 0.04Å-1 

and -0.05Å-1 from 1.09Å-1 and 1.13Å-1  respectively. The principal peak intensity 

observes a decline in all structure factors, particularly in SMM
02 k  and SMM

22 k  .  

SMM
11 k PP shows the smallest decline in intensity.

      The network-connectivity radial distribution functions are exhibited in figure 8.14. 

Figure 8.11 showed large changes in gMM(r) with a decline in principal peak intensity, 

increase in the minima of the principal peak and the decline in intensity of the second 

peak. g MM
00 r  shows the sharpest decrease in the intensity of the principal peak of 

declining from 9.75 to 3.79. The principal peak position in g MM
01 r  increases by 0.19Å 

from 3.81Å at 2000K. The changes in the position in the other functions are smaller with 

increases of 0.04Å , 0.06Å , 0.13Å  and 0.07Å  for g MM
00 r  , g MM

22 r  , g MM
02 r  and

g MM
12 r . The split peak feature resolved at 2000K in g MM

11 r  is removed at 7000K. 

All functions except g MM
22 r  show a substantially increased minima of the principal 

peak at ~4.7Å; the largest change occurs in g MM
02 r . The intensity of the oscillations 

r>rPP  decrease at the increased temperature with this effect being particularly strong in

g MM
00 r .  
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8.8 Conclusion.

The structural behaviour of systems with high and low anion polarisability at various 

densities has been studied. The anion polarisability can be considered as controlling the 

network topology (via constraining the cation-anion-cation bond angle), whilst changes 

in density may control the distribution of local ion coordination environments. 

      At αX=15 a.u, the principal peak of SMM(k) splits at the lowest density, indicating the 

formation of a longer length scale associated with IRO; the FSDP in SMX(k) also 

increases over the range. These relatively low k features at ~1.2Å-1 at 3.13 g/cm3 are not 

observed experimentally in systems such as GeO2
14 and are taken to be a feature of 

reducing the density from experimental values. The structure factors of glassy GeO2 from 

neutron diffraction experiments by Salmon et al14 show a FSDP in SOO(k) which is not 

observed at any density in our model. As the model was based on the short-range 

repulsion parameters of GeSe2, the actual correlation lengths are larger than that 

Figure 8.14:Changes in network connectivity radial distribution functions, g MM
ab r , where  a,b ={0,1,2), 

with temperature. Black line, 2000K; red line, 7000K.
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exhibited in GeO2 (3.16Å, 1.73Å,  2.83Å for the experimental GeGe, GeO, and  OO 

separations15 compared to 4.45 -4.30Å , 2.47Å and 4.08-3.76Å observed over the density 

range in our calculations). Our main priority in this chapter was to observe the 

densification mechanism and how it affects IRO for systems of high and low anion 

polarisability. A continuous rise in MX coordination at αX=15 a.u is observed with 

changing density in our results. Pressure studies on GeO2 have shown that with 

increasing pressure the coordination increases. The nature of the coordination increase 

varies with glassy GeO2 show a sharp increase in coordination to ~5 at 6GPa and ~6 at 

15GPa.16 EXAFS experiments on liquid GeO2 indicate a sharp rise in coordination at 

2.5GPa to 3GPa18, indicating that such such transformation of rigid tetrahedra is 

responsible for the densification mechanism up to this pressure. Our model, which does 

not show the discontinuous rises in coordination observed experimentally, agrees with 

MD calculations on GeO2
20, where the predominant structural unit GeOX is stable with 

increased pressure with x=5,6 increasing while those units of x=4 declines. 

      In contrast to changes at high polarisability, the principal peak in gMM(r) decreases in 

position with increasing density from 4.45Å to 4.30Å from 3.13 to 4.49 g/cm3. In the 

related radial distribution functions, greater changes were observed in 5-9Å range of 

gMM(r) than in the principal peak, except at the lowest density, where a small edge-

sharing peak was observed. This is in contrast with recent MD simulations where a 

smaller distance peak in gMM(r) in GeO2 is attributed to edge-sharing (as part of five and 

six coordinate species) at higher pressures19. The same study displays a decline in the 

anion-anion separation with increasing density similar to our results. Experimental 

studies also show an elongated GeO correlation length with increasing pressure from 

~1.7Å to 2.5Å16 which was not observed in our results.  

     One densification mechanism proposed after neutron diffraction experiments with 

glassy GeO2 by Sampath et al17 involves the rotation of rigid tetrahedral units before any 

increase in MX coordination. This mechanism is suppported in part by a MAS NMR 

experiment on glassy SiO2 which shows a decline in the Si-O-Si bond angle with 

increasing pressure27. The related bond angle distribution functions in our system shows 

increasingly tetrahedral behaviour at lower densities. With increasing density, our bond 

angle distributions show evidence of distortion of the corner-sharing tetrahedra, as 

indicated by a small decline in the position of the higher angle peak in M-X-M, and 

associated bond angles of higher coordinate species, as indicated by the increased 
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intensity of lower bond angle peaks in figure 8.6. Our results show a coordination-

dependent densification mechanism dominates for the lower anion polarisability system 

in addition to changes in the bond angle distribution. 

      At αX=35 a.u, the intensity of the FSDP in SMM(k) and SMX(k) increases and moves to 

slightly higher scattering angles with increasing density. The shift in FSDP of SMM(k) 

observed over the density range (0.96Å-1 at 3.00 g/cm3
 to 1.14Å-1 at 4.34 g/cm3) is similar 

to that observed for increasing pressure in glassy3 (1.010Å-1 to 1.225Å-1) and liquid5 

GeSe2, where the FSDP position increases from ~0.9Å-1 (upper limit unspecified). At 

higher polarisabilities, where there is already significant edge-sharing at higher-

pressures, the effect of decreasing density is to effectively sharpen these edge-sharing 

features, as indicated in the bond angle distribution, with clearer edge- and corner-

sharing peaks observed in M-X-M distributions, and by the tightening of the 

coordination shell to strongly 4-MX coordination. These effects are further highlighted in 

the network connectivity functions, where the interaction of "0" with "2" cations results 

in a collapsed principal peak in g MM
02 r . This change supports the experimental 

interpretation where a 2D-3D transition (from a system with edge-sharing to a corner-

sharing system) is proposed as the cause for the decline in FSDP intensity in liquid 

GeSe2 when pressure is applied.3 

      Our calculations indicate that at αX=35 a.u there is a greater dependence on the MM 

correlations on IRO with changes than density, than at αX=15 a.u, where MM and MX 

contribute to the smaller IRO present. In the experimental total structure factors of 

GeSe2
5, the ratio of the principal peak (at ~2Å-1) against the third peak (at ~3.5Å-1) is 

observed to increase with increasing pressure. Our model shows a stronger increase in 

the intensity of the principal peak in SXX(k) compared to a smaller increase in SMX(kPP) 

which would result in a similar increase in F(k). A shift in the gMM(r) principal peak 

position to higher values indicative of an increase in corner-sharing tetrahedra is 

observed in our results. This agrees with the result highlighted experimentally by the 

difference functions in experiments of densified glassy GeSe2 where SeSe correlations 

are removed, and the second peak is observed to shift from 3.63Å to 3.72Å5. When GeGe 

correlation are removed, there is no significant shift of this peak which disagrees with 

our results describing the decline in anion-anion separation. In the experimental total 

radial distribution function of liquid GeSe2 with increasing pressure3, the largest change 

occurs at ~3Å, corresponding to the minimum of gGeSe(r); our results show no correlation 
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with this observed feature with the minimum of gMX(r) (figure 8.4) stable to changes in 

density. In contrast to experimental results, an elongation of the GeSe bond3
 (from  2.32Å 

to 2.46Å) is not observed here and the effects of homopolar bonds (observed at 

atmospheric pressure but no experimental evidence as to their changing abundance with 

increasing pressure) on any densification mechanism are not considered here. As such, 

our results contrast with electronic structure calculations on GeSe2
9 which show large 

changes in the chemical ordering upon application of large pressure (upto 60GPa), with 

substantial increases in homopolar bonding with increased pressure. 

      Figure 8.15 shows the changes in network connectivity at αX =15 a.u and αX =35 a.u, 

with changing density. Larger changes in network connectivity are observed at αX =15 

a.u, driven in part by faster changes in coordination. The sharpening of the coordination 

distribution for both polarisabilities results in a better correlation of the network 

connectivity statistics with the structure observed. For αX =15 a.u, the formation of a 

small number of edge-sharing units, indicated by the small “1” percentage at the lowest 

density (3.13 g/cm3), and this correlates with gMM(r), where a small edge-sharing peak 

observed in figure 8.3, in addition to the overwhelmingly dominant corner-sharing peak. 

Figure 8.15:Change in network connectivity with density at αX=15 a.u (full line) and αX=35 a.u (dashed 

line) as indicated by changes in the percentage of cations with n number of four-membered rings, En
,
 where 

n=0-2..
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In addition, no significant FSDP intensity was observed at 1Å-1 at any density when 

αX=15 a.u, indicating that the density decline does not impose IRO on the systems and 

that the structural origin for the nature of IRO is dominant. For αX =35 a.u, the decline in 

density results in a strengthening of the 4-coordination. In contrast to αX=15 a.u, where 

“0” cations increase, an increase in the preponderance of edge-sharing linkages are 

observed. The edge-sharing “1” cations increase with decreasing density while the 

proportion of “0” and “2” cations decline. The rise in “0” cations is much smaller than 

that observed at αX=15 a.u, an indication of the strong presence of edge-sharing units. In 

section 7.9, we highlighted three possible mechanism for changes in network 

connectivity with pressure: strongly coordination-dependent, edge-sharing to corner-

sharing and edge-sharing to six-coordinate mechanisms. At αX=15 a.u, moving from high 

to low density, the reduction in “1” and “2” cations with strengthening 4-coordination are 

an indication that a coordination-dependent mechanism is dominant. In contrast, at 

αX=35 a.u, an increase in “1” cations, a slower rise in “0” cations than is observed at 

αX=15 a.u, and a reduction in “2” cations indicates of a mixture of coordination-

dependent and corner-to edge-sharing  mechanisms occurring.

      With increasing temperature, the system at high polarisability shows a decrease in 

FSDP intensity in SMM(k) and SMX(k). Other indications of increased disorder include 

increased miscoordination and weakening of the intensity of peaks in the bond angle 

distribution. Also highlighted is the reduction in separation of the edge- and corner-

sharing peaks in g MM
11 r . Electronic structure calculations with increasing temperature 

also show that with increasing temperature the FSDP declines.11 In addition to the FSDP, 

the principal peak in SSeSe(k) and SGeGe(k) show a sharper decline in intensity than is 

observed with increasing temperature in our calculations. We attribute this to the 

different deterioration in short-range order an extended ionic model has compared to 

FPMD. In our model, where due to the strong Coulombic interactions present, 

homopolar bonding is precluded, the effect of increased temperature is to break up the 

presence of edge-sharing units as shown by declining proportions of “1” and “2” cations, 

favouring of corner-sharing connections between the coordination polyhedra, and 

increased presence of lower coordinate M and X species. In the FPMD calculations of 

Massobrio11, in addition to the decrease in coordination, there is also predicted to be a 

decline in chemical order with increased homopolar bonding. The major structural 

features which occur in GeSe2 with increasing temperature is the decline in the intensity 
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of the FSDP. In addition, the third peak at ~3.5Å-1 in the experimental SNN(k) declines in 

intensity faster than the smaller changes observed in the principal peak; electronic 

structure calculations exhibit a collapse of chemical order with increasing temperature 

and show a merging of the third and second peak with increasing temperature. No 

significant change in mean coordination number is observed with the increase in 

temperature experimentally1, and our results highlight the same; it is the distribution of 

coordination numbers around the mean which shows greater variation at higher 

temperature. A shift in the position of the FSDP, observed experimentally from 0.95Å-1 

to 1.04Å-1 from 1073K to 1373K, while our system observes a shift from 1.05-1.18Å-1. 

Our model indicates that many of the structural changes observed experimentally in 

GeSe2 can be observed in a model where chemical order is maintained.
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Chapter 9
The inherent structure of network-forming 

liquids

9.1 Introduction.

So far, our study into the structure of liquids has been carried out through simulations at 

liquid temperatures. The advantage of this method is that comparison can be made with 

experimental results and other liquid systems. Another approach, the study of the inherent 

structure1-2, is rooted in the crystallographic conception of the structure of liquids: that 

they  consist of defined geometric structures. This idea was first espoused by J.D Bernal3 

who applied this to monatomic hard-spheres liquids. The application of the potential 

energy landscape4
 
 into the structure of liquids is accessed through inherent structure 

calculations. Stillinger and Weber1,2 separated the structure of liquids into two 

components: the temperature-independent inherent structure and the component attributed 

to thermal excitations. The inherent structure describes a liquid which is rapidly quenched 

to zero temperature, removing fluctuations and pushing the liquid to its local lowest 

energy state. More formally, the inherent structure represents a local minimum in the 

potential energy surface. For any given configuration, these local minima can be located 

by the use of a steepest descent calculation as outlined in Figure 9.1. The configurational 

degrees of freedom, D,  are determined by the number of distinguishable species and the 

number of degrees of freedom (rotational, vibrational and conformational), 3 + nα  (the 

following derivation is from Debenedetti et al5):

                                                  D=∑
=1

v

 3n N                                                    (9.1) 

The related quantity, Φ(X|V) is the potential energy function for the system and is related 

to the number of particles present and where V is the volume and B are the basins of 

attraction:
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                                                 ≥B N 1/V ,..... N V /V N                                        (9.2) 

Newton's equations of motion can be used to describe the movement of configuration 

point X, on the the Φ hypersurface where M is the diagonal matrix of appropriate masses:

                                                M⋅Ẍ  t =−∇ X  X                                                (9.3) 

and where X is the shorthand notation for the complete set of individual particle vectors:

                                                X≡x1,. .... x N                                                             (9.4)

 

The potential energy surface can be divided into local minima and their associated basins 

of attraction. The inherent structure is the minimum in the potential energy hypersurface 

which satisfies the relation.

                                                   ∇ X =0                                                                  (9.5)

 

The basins of attraction are defined by the set of configuration vectors which tend 

towards a given inherent structure by steepest descent on the Φ hypersurface:

                                           d X s /ds=−∇ X [X s ∣V ] s≥0                     (9.6)
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9.2 Previous inherent structure calculations.

The precursor of recent inherent structure calculations, carried out in the mid-1970s, were 

steepest descent calculations on metallic alloys of Ni-P6,7 and molecular dynamics on 

quenched configurations of Lennard-Jones systems8,9 and MX2 salts10. For the latter, 

changes in the pair correlation function gMX(r) were observed, including a resolution of a 

double-peak feature in the second peak, known as the split second peak.11 More recently, 

inherent structure calculations have been carried out on systems such as H2O12,13, ZnBr2
14 

and monoatomic systems such as Argon15 and Silicon16,17. In the system which 

corresponds closest to those we have studied so far, ZnBr2, these changes include splitting 

of the principal peak in gZnZn(r) observed at low density and formation of a new peak in 

gBrBr(r) at a position intermediate between the principal and second peak.14 Stillinger et al 

hint at a possible link with a solid-solid phase transition which occurs at a similar 

density.14 Noticeably, the model used was a Born-Huggins Mayer potential with no 

accounting for polarisability effects.

Figure 9.1: Schematic representation of calculating the inherent structure. 

1. A configuration is selected from a liquid simulation; at this stage the energy of this system is such that 

vibrational effects weaken the effects of the underlying potential energy surface. 

2. A steepest-descent algorithm is applied to locate potential energy minima. 

3. The inherent structure is calculated when the local minima in the potential energy surface is located. For 

computational expense, this process is limited to 1.2 ps of molecular dynamics.  
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9.3 Simulation details.

Inherent structure calculations were carried out on the range of systems examined in 

Chapters 3-8; ZnCl2  at different temperatures and pressures; ZnX2 systems with a 

variable anion-anion separation range; MX2 with varying anion polarisability from αX=10-

40 a.u; MX2 systems at varying density for both α=15 a.u and 35 a.u (2000K and 7000K); 

and the extreme anion polarisability systems. By studying this range of systems we enable 

an observation of the inherent structure of a wide range of systems not examined 

previously through inherent structure calculations: systems with a description of 

polarisability where there are large changes in the underlying network topology as 

evidenced by the presence of differing mixtures of edge- and corner- sharing features as 

well as a range of local ion coordination environments.

      All calculations in this chapter consists of 999 ions (333 cations and 666 anions). All 

starting configurations for each inherent structure calculation were generated from the 

related MD runs highlighted in the related chapters of each type of materials. In addition 

to the single temperature calculation carried out at 7000K in section 8.6, further 

calculations were carried out for a range of other densities. These were calculated from 

pressure range of 6.0x10-4 to 1.0x10-4 a.u in steps of 1.0x10-4 a.u, resulting in average cell 

sizes of 32.31Å, 32.58Å, 33.16Å, 33.85Å, 34.84Å and 36.92Å..

      At each state point, a sample of 100 configurations was extracted from the last 25 ps 

of the related simulations. In view of the time taken for each inherent structure calculation 

of a single configuration and the range of parameter space being sampled, this number 

was deemed sufficient to highlight the structural properties at each state point. The 

velocities of the extracted configurations were quenched by setting the thermostats to 0K, 

and a steepest descent algorithm was applied for 1.2 ps to locate the potential minima. 

Figure 9.2 shows the evolution of the total energy with time, indicating that the final 

energy structure can be considered the inherent structure. The average resolution of the 

calculation, as determined by the energy separation of the last two steps, was 0.08kJ/mol, 

comparable with previous calculations where a cutoff of 0.0042 kJ/mol was applied. The 

decision to use the steepest-descent algorithm was based on computational expense. A 

previous comparison of descent-minimization methods showed that using different 

techniques would result in different inherent structures due to the rugged nature of the 

energy landscape.18 Properties such as the radial distribution functions, gαβ(r), and bond 
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angle distributions are time-averaged over the 100 inherent structure configurations. 

9.4 The inherent structure of ZnCl2 at varying temperature and 

pressures.

In Chapters 3 and 7, we observed that at low temperature and pressures, there was more 

IRO present in ZnCl2 as indicated by a more intense FSDP. With increasing temperature 

and pressure, a decline in the intensity of the FSDP was observed. A comparison of GeSe2 

and ZnCl2 in chapter 5 showed that ZnCl2 displayed less strongly features responsible for 

an intense FSDP at 1Å-1: edge-sharing character in the network and 4-coordination of the 

cation-anion coordination pair. 

      Figure 9.3 compares the inherent radial distribution function, gZnCl
IS  r , with

gZnCl
Crystal r  ,  the related function for a β-ZnCl2 configuration19 at the same density of 

3.18 g/cm3. This shows us that while the first coordination shell of gZnCl
IS r  maybe 

analogous to a crystal structure, with a sharply increased intensity of the principal peak 

when compared with the functions obtained from the liquid configurations, the extended 

range is still amorphous showing greater similarity with liquid gZnCl
liq  r , where a single 

peak is observed in the range 3-6Å. 

Figure 9.2: Total energy against time for a single configuration in a steepest-descent energy calculation. 
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      Figure 9.4 shows a comparison of inherent and liquid radial distribution functions in 

the temperature range 600K-1200K at 1 bar. At constant pressure, the increase in 

temperature results in a decline in the intensity of the principal peak in gZnCl
IS r PP from 

23.1 at 600K to 18.7 at 1200K. The principal peak of gZnZn
IS r PP splits into an edge-

sharing peak at ~3.25Å and a corner-sharing peak at ~3.78Å. With increasing 

temperature, a more intense edge-sharing peak is observed from a peak height of 1.22 at 

600K to 1.98 at 1200K, and a less intense corner-sharing peak, from 3.93 to 2.63 over the 

same temperature range. The intensity of the principal peak in gClCl
IS r PP at 3.67Å 

declines from 6.05 to 4.86, while a shoulder observed at 3.33Å increases in intensity from 

2.02 to 3.01.  

Figure 9.3: A comparison of the inherent structure radial distribution functions with crystalline function at 

the same density. 
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      Figure 9.5 show the changes of the inherent radial distribution functions at 1200K 

with pressure in the range, 1-29000 bar. The intensity of the principal peak in

gZnCl
IS r PP changes from 18.92 at 1 bar, peaking at 20.15 at 2000 bar and then declining 

to 10.72 at 29000 bar. At pressures of under 12000 bar the edge- and corner-sharing peaks 

in gZnZn
IS r  are present. Over this range, the intensity of the edge-sharing peak declines 

in intensity from 2.07 at 1 bar to a shoulder with an intensity of 0.71 at 29000 bar. The 

decrease in this peak indicates that these units break-up with increasing pressure: an 

observation unable to be made from the liquid radial distribution functions. The pattern of 

change in intensity of the corner-sharing peak at 3.78Å of gZnZn
IS r  is similar to the 

changes in gZnCl
IS  r: from 2.72 at 1 bar , a peak of 2.97 is observed at 2000 bar, 

followed by a decline to 2.31 at 29000 bar.

      The split in gZnZn
IS r  which arises is larger than that previously observed for the 

rigid-ion  ZnBr2  potential used by La Violette14 et al where a smaller fracture in the 

Figure 9.4: The inherent and liquid structure radial distribution functions of ZnCl2 with varying 

temperature. Black line, 600K; red line, 800K; green line,1000K; blue line, 1200K. 



Chapter 9. The inherent structure of network-forming liquids                                        261

principal peak was observed only at much lower densities. This is an indication of the 

effect of including polarisation where edge-sharing configurations are stabilised at 

experimental densities in contrast to rigid-ion models where this is a feature at only much 

lower densities than is observed experimentally. The changes observed in the principal 

peak of gClCl
IS r PP are similar to those with varying temperature in that the change in 

principal peak intensity is relatively small, ranging from 3.56Å to 3.41Å over the pressure 

range; however it does not display the shoulder at low r observed earlier.    

 

    The inherent structure also resolve a small prepeak, gZnCl(rSB), where SB signifies 

shortened bond. The position of this peak is at ~2.10Å compared to the position of the 

principal peak at 2.29Å. This is shown in figure 9.6 which focuses in the region of the 

Figure 9.5: Radial distribution functions of the inherent and liquid structure of ZnCl2 with varying pressure. 

Black line, 1bar; red line, 2000 bar ; green line, 5000 bar; blue line, 12000 bar; yellow line, 29000 bar.
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principal peak for gZnCl
IS  rSB; upon calculation of the inherent structure, the FWHM of 

the principal peak reduces, in addition to the formation of a new peak. The intensity of the 

prepeak is considerably smaller than that observed for the principal peak, typically around 

2-5% of the intensity of gZnCl
IS  rPP . This is the first instance of  a prepeak in the cation-

anion function, g MX
IS  r ,  found in the current body of work on inherent structures. The 

appearance of this peak is strongly temperature dependent, not appearing at any densities 

at 600K and 800K but at 1000K and 1200K. This suggests the peak intensity is possibly 

linked with diffusive effects. At a given temperature, the intensity of the bump increases 

with decreasing pressure in the range, 1-12000 bar; the intense shoulder at 29000 bar in 

figure 9.6 is possibly a result of increasing amorphisation of the first coordination shell of 

Zn-Cl where there are increasing amounts of 5 and 6 coordination.  

      As the changes in structure are largely concentrated around the first coordination 

shell, and that larger variations are observed in the intensity of gZnCl(rPP), the bond angle 

distributions were restricted to Zn-Cl-Zn and Cl-Zn-Cl. Figure 9.7 shows the Zn-Cl-Zn 

and Cl-Zn-Cl bond angle distributions for ZnCl2  at 1 bar in the temperature range 600K-

Figure 9.6: The prepeak feature in gZnCl(r) in the pressure range 1-29000 bar.  Black line, 1 bar; red line, 

2000 bar; red line (dotted), 2000 bar (liquid); green line, 5000bar; blue line, 12000 bar; yellow line, 29000 

bar.
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1200K. With increasing temperature, the peak at 89o in Zn-Cl-Zn increases in intensity 

while the peak at 109o (600K)-113o(1200K) decreases. Though these features are apparent 

to a smaller degree in the liquid configurations, the edge-sharing peak is sharpened in 

comparison through both a reduction in the FWHM and a reduction in the minima 

between the two peaks. In Cl-Zn-Cl, a peak appears at 91o in the inherent structure which 

increases with increasing temperature. There is also a relative contraction of intensity 

close to 50o  and in particular the tail near 180o
 from the liquid to inherent structure 

distributions. 

      The changes in the Zn-Cl-Zn and Cl-Zn-Cl bond angle distributions with changing 

pressure are shown in figure 9.8. At lower pressure a sharp peak at 90o is featured in Zn-

Cl-Zn with a second peak at 110o. At higher pressures, the distinction between the two 

arrangements weakens as shown by the increasing height of the minima in between the 

two peaks. This is due to the increase of higher coordinate zinc ions with the associated 

range of Zn-Cl-Zn bond angles due to the square-planar and octahedral geometry. Similar 

Figure 9.7: Bond angle distributions of the inherent and liquid structure of ZnCl2 at different temperatures. 

Black line, 600K; red line, 800K; green line, 1000K; blue line, 1200K.
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features are observed in the Cl-Zn-Cl bond angle distribution (significant peak at ~90o 

and a second peak at 110o.) With increasing pressure, the distinction weakens and features 

of axially placed anions in square-planar and octahedral units becomes stronger.  

9.5 The structural origin of the gMX(rSP) prepeak.

The prepeak, gZnCl
IS  rSB , highlights a smaller length-scale than we have observed 

previously; however, as shown in figure 9.6, the width of the liquid peak exceeds that in 

the inherent structure indicating that vibrational motion associated with the larger peak 

may mask the short-range structural feature at elevated temperatures. The assumed shape 

of the principal peak of the cation-anion radial distribution function is regarded a 

symmetrical peak.20 The broadness of the peak is a result of the vibrations which occur in 

the liquid state. As indicated by the absence of the prepeak in liquid configurations and its 

Figure 9.8: Bond angle distributions of the inherent and liquid structure of ZnCl2 at different pressures.

(1200K) Black line, 1 bar; red line, 2000 bar ; green line, 5000 bar; blue line, 12000 bar; yellow line,

29000 bar. 
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subsequent resolution in the inherent structure, the prepeak is not expected experimentally 

as a separate moiety but integrated in the gZnCl
liq r PP principal peak. Although there is no 

direct reference to a principal peak in literature, the influence of such a peak on

gZnCl
liq r  is implied in the neutron diffraction experiment on NiCl2 by Wood and 

Howe.20 In this study, it was noted there was a better correlation in the back Fourier-

Transform if the principal peak of gNiCl(r) was attributed an uneven intensity towards the 

lower r side: this was accomplished either through a soft leading edge or a prepeak 

shoulder.21 Another example of deviations away from a symmetrical principal peak 

include EXAFS studies of AgBr.22 The study shows that with increasing temperature the 

first coordination shell becomes increasingly asymmetrical, with a greater intensity this 

time on the high r side of the principal peak.22 Experiments on glassy systems, taken at 

300K, lower than corresponding liquid temperatures but still higher than that of the 

inherent structure calculations, may give further indication of the existence of such a 

peak. In neutron diffraction studies23,24 of glassy ZnCl2 and GeSe2, the former shows a 

slight deviation on the low r side of the gZnCl(r) (figure 3 in paper). In glassy GeSe2 , low 

intensity peaks at a positions smaller than the principal peak were observed in gGeSe(r) but 

their presence was attributed to truncation errors in the Fourier transform of F(k) to G(r). 

      Intuitively, it might be expected that these features are the result of three coordinate 

species, correlating with their expected greater abundance for low density systems; 

however, when the cations involved in these shorter cation-anion bonds are isolated, it is 

found that the shortened bond is attached to cations with varying MX coordination 

including 5-coordinate cations. Figure 9.9 below shows that in fact the shortened-bond is 

due to a second effect of polarisation, indicating that it is rather the environment of the 

anion which is responsible for the presence of gZnCl(rSB). Previously, the effect of anion 

polarisability was discussed in terms of three bodies, where two cations are drawn closer 

together by a dipole on the central anion. This assumption holds true most of the time for 

systems of AX2  stoichiometry, where the anion-cation coordination is strongly 2-

coordinate. Figure 9.9a , a snapshot of a cluster of atoms taken from an inherent structure 

calculation, shows a situation where this assumption is invalid. Within the effective range 

of the dipole moment of the anion, if there is only one cation present, the net effect of the 

dipole is to attract the cation towards it. This results in the shortened Zn-Cl bond 

observed in gZnCl
IS  r. The presence of these defects presents a possible mechanism for 

diffusion. 
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      Figure 9.9b shows the related liquid identity of the anion involved in a Zn-Cl short 

bond in the inherent structure (shown in figure 9.9a). Although the anion is not involved 

in a shortened bond, it retains the feature highlighted from the inherent structure of being 

singly coordinated. There is a strong correlation between the temperatures which exhibits 

this prepeak in gZnCl(r) and the larger presence of the defect 1-coordination in the ion 

coordination pair, Cl-Zn. At 1 bar, the percentage of single Cl-Zn coordination is 0.21% 

compared to 14.5% for 1200K at the same pressure. This effect diminishes with 

increasing pressure as the 1-coordinate Cl-Zn pair percentage declines to 0.05% at 29000 

bar for 600K. Figure 9.10 shows which cations features in a shortened cation-anion bond 

over the time of the simulation. It shows that it is present among all cations over a time 

range with the intensity flowing intermittently in and out of different ions, indicating that 

such bonds are involved in diffusion. Some of these bonds last 0.604 fs while others last 

much longer for periods of ~12 fs. 

Figure 9.9: Graphical snapshot of “shortened" cation-anion bond in (a) inherent structure and (b) the 

equivalent set of ions in the melt configuration. Blue circle, cations in “normal” length bonds; purple circle, 

anions in normal  length bonds; red circle, cation in shortened bond; green circle, anion in shortened bond. 

In both configurations, the common feature is the single coordination of the anion with the cation but the 

shorter bond distance (2.08Å) is not retained in the melt configuration where the bond is 2.21Å.   
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9.6 The inherent structure of ZnX2 with varying anion-anion distance.

With increasing anion-anion separation, a decrease in the intensity of the FSDP was 

observed in Chapter 3 as well as a shift in its position to higher scattering angles. In 

contrast with other systems, the cell size was fixed over the whole parameter range of 

effective anion-anion separation, reff
XX=3.67−3.84 Å. Figure 9.11 shows the effect of 

increasing the effective anion-anion separation on the inherent structure. The cation-

cation functions, gZnZn
IS r  displays a split into edge- and corner-sharing features. With 

increasing reff
XX , the intensity of the edge-sharing peak at ~3.21Å decreases, while the 

intensity of the corner-sharing peak ~3.78Å  increases. Analogously, g XX
IS r  observes a 

distinct shoulder on the low r-side of the principal peak, and which over the range r eff
XX

=3.67-3.84Å moves in position from 3.31Å to 3.56Å; the intensity diminishes from 0.91 

to 0.23 where it merges into the main principal peak. The presence of a prepeak in

gZnX
IS r  is apparent with increasing r eff

XX with the intensity increasing from a weak 

shoulder of intensity 0.16 at reff
XX=3.67Å to 0.90 at reff

XX=3.84 Å . This correlates with 

Figure 9.10: Appearance of shortened cation-anion bond with cation number according to time. 
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the changes in the miscoordination observed in the liquid systems where the single X-Zn 

coordination rises from 1.46% at reff
XX=3.67 Å to 7.56% at reff

XX=3.84Å . The intensity 

of the principal peak of gZnX
IS r PP decreases with increasing r eff

XX from 21.47 at

reff
XX=3.67Å to 13.76 at reff

XX=3.84 Å .

      The Zn-X-Zn bond angle distribution in figure 9.12 shows two peaks at 88o and 110o; 

the former peak, associated with edge-sharing tetrahedra, declines with increasing reff
XX .  

while the latter peak, associated with corner-sharing tetrahedra, increases over the same 

range. The minima in between the two peaks changes sharply from reff
XX=3.67Å  to

reff
XX=3.76−3.84 Å. Whilst the smaller FWHM of the edge-sharing peak compared to 

the corner-sharing peak  is consistent with the results for ZnCl2, a noticeable difference 

Figure 9.11: Radial distribution functions of the inherent and liquid structure of ZnX2 systems where the 

anion-anion separation, reff
XX , is varied in the range 3.67-3.84Å. Black line, 3.67Å; red line, 3.76Å; 

green line, 3.79Å; blue line, 3.81Å; yellow line, 3.83Å; brown line, 3.84Å. 
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lies in the intensity of the peak at 88o at reff
XX=3.67 Å which is much more intense 

compared to higher values of r eff
XX in the liquid distribution than in the inherent structure. 

The X-Zn-X bond distribution displays a small peak 91o which, as with the low angle 

peak in Zn-X-Zn declines with increasing reff
XX , and a larger peak at 107o, which 

increases with increasing reff
XX .  

9.7 The inherent structure of MX2 systems where anion polarisability, 

αX, varies from αX=10-40 a.u.

In chapter 6, the anion polarisability was varied in the range αX=10-40 a.u and the 

changes in IRO were correlated with changes in the structural features, from tetrahedral 

systems dominated by corner-sharing at low anion polarisabilities to those with large 

Figure 9.12: Bond angle distribution functions of the inherent and liquid structure of ZnX2 systems  where 

the anion-anion separation, reff
XX , is varied in the range 3.67-3.84Å. Black line, 3.67Å; red line, 3.76Å; 

green line, 3.79Å; blue line, 3.81Å; yellow line, 3.83Å; brown line, 3.84Å. 
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amounts of edge-sharing at high polarisabilities. Figure 9.13 shows that the radial 

distribution functions of the inherent structure show several features in common with the 

calculations on ZnCl2; increased short-range ordering signified by the large increase in the 

value of g MX
IS r  and little change in the intensity of g XX

IS r . The prepeak feature in

g MX
IS r  is not present at any polarisability; this correlates with the smaller presence of 

the single X-M coordination which lies in the range of  4.4% (αX=40 a.u)-1% (αX=10 a.u) 

for MX2 compared to the maximum of 14.5% for ZnCl2 observed at 1200K (~1 bar). 

Figure 9.13 shows that the changes in intensity for g XX
IS r  do not vary significantly 

over the polarisability range and, unlike the functions observed in the sections 9.4 and 

9.6, does not display a shoulder or splitting. The intensity of g MX
IS r   follows a similar 

pattern in the range 40-20 a.u, where a maximum of 21.58 is observed at αX=25.0 a.u and 

a minimum of 17.91 at 30.0 a.u, but declines sharply from αX=20 to 10 a.u from 18.86 to 

11.30. This may be partly to do with the change in presence of 4 cation-anion 

coordination which decreases to 53% at 10 a.u from 83% at αX=40 a.u, where the sharpest 

decline occurs between 25-10 a.u. The cation-cation term, g MM
IS r ,  shows significant 

splitting into edge- and corner-sharing peaks at high polarisabilities, significantly more 

strongly than that observed in ZnCl2. At αX=40 a.u, g MM
IS r  displays a larger edge-

sharing peak at 3.29Å, which is greater in intensity than the corner-sharing peak at 3.77Å, 

at a ratio of 1.25. This correlates with the large amount of edge-sharing observed in these 

systems. As the polarisability decreases, this peak declines, while the corner-sharing peak 

maintains intensity and shift to the right, following the changes in structure determined in 

Chapter 6. This ratio declines to 0.13 at αX=25.0 a.u, after which only the corner-sharing 

peak is present. The intensity of the minima in-between the two peaks is due to 

deviations, in terms of coordination and geometry, from edge and corner-sharing 

tetrahedra.
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The related bond angle distributions, shown in figure 9.14, for M-X-M resolve two sharp 

peaks at αX=40 a.u; this is in contrast to the liquid configurations where the intensity at 

81o and 98o are resolved only as shoulders. Analogous to the changes in gMM(r), the peaks 

in the bond angle distribution move to higher values: the corned-shared peak moves from 

98o to 124o at αX=10 a.u. With decreasing polarisability, a relative decline in the edge-

sharing peak is observed, and at αX=25.0 a.u only a corner-sharing peak is present. In 

contrast, the X-M-X bond angle distribution is similar to the liquid equivalent in 

displaying a main peak around 98o and with a tail at 150o which increases with decreasing 

polarisability in keeping with the increase of 5 and 6 coordinate M cations. 

Figure 9.13: Radial distribution functions of the inherent and liquid structure of MX2  in the anion 

polarisability range, αX=10-40 a.u.  Black line, 40 a.u; red line, 30 a.u; green line, 20 a.u; blue line, 10 a.u.
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Figure 9.15 shows the inherent structure and liquid curves for the changes in “0”, “1” and 

“2” cations with anion polarisability where the number refer to the number of four-

membered rings that a cation is bonded to. The bars show the standard deviations; the 

standard deviation for “0”,”1” and “2” cations changes from 3.18, 2.61 and 2.41 in the 

liquid configuration to 1.99, 1.84 and 1.60 for the inherent structure calculation. The 

largest deviation of the inherent structure values of E0, E1, E2 and the molten liquid values 

occur in the region,  αX=15-25 a.u. The equivalent inherent structure values for higher 

temperature configurations (7000K) taken in the density range 2.48-3.73 g/cm3, and at 

αX=35 a.u, are 3.46, 3.11 and 2.95 indicating that the underlying potential energy surface 

is sharply affected by changes in temperature. 

Figure 9.14: Bond angle distribution functions of the inherent and liquid structure of MX2 in the anion 

polarisability range, αX=10-40 a.u.  Black line, 40 a.u; red line, 30 a.u; green line, 20 a.u; blue line, 10 a.u.
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9.8 The inherent structure of MX2, where αX=15 and 35 a.u  with varying 

density.

In chapter 8 changes in the structure with temperature and density were highlighted for 

the MX2 systems where the anion polarisability, αX , was 15 a.u and 35 a.u. The most 

prominent change with decreasing density included increased ordering effects associated 

with IRO: the induction of edge-sharing units and a tightened first coordination shell 

where the percentage of 4-coordinate M cations reached over 95%. With increasing 

temperature, a large decline in the IRO was observed for the MX2  model where αX=35 

a.u. Figures 9.16 and 9.17 show the respective comparisons of the calculated inherent 

Figure 9.15: Change in network connectivity in the inherent structure and liquid configurations of MX2 

where anion polarisability, αX, varies in the range αX=10-40 a.u. The standard deviation bars are 

coloured orange for the inherent structure and blue for liquid. Black, “0”; red,”1”;green,”2”  (referring to 

percentage of cations with n number of four-membered rings, En
,
 where n=0-2.) Full line, inherent 

calculations; half-lines, liquid configuration. 
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structure radial distribution functions for MX2 systems in the density ranges of 3.13-4.49 

g/cm3 and  3.00-4.34 g/cm3 for αX=15 a.u and 35.a.u respectively. As with ZnCl2  at 

different pressures, the intensity of the principal peak in g MX
IS r PP varies significantly 

over the respective density ranges; the largest intensity is observed at the lowest densities, 

43.49 for 15 a.u and 32.79 for 35 a.u. The values of 10.12 and 15.0 at the highest 

densities indicate that a faster decline is observed αX=15 a.u. There are no prepeaks in

g MX
IS r  over either density range; the respective ranges for the single X-M coordination 

are small at 0.19-0.43% for 15 a.u and 1.60-3.08% for 35 a.u. The intensity of g XX
IS r  is 

similar over the density range for both αX=15 a.u and 35 a.u, lying in the ranges 5.47-4.94 

and 4.28-4.48 over the density ranges of 3.13-4.49 g/cm3 and 3.00-4.34 g/cm3 

respectively. The function, g MM
IS r , when αX=15 a.u, is similar to the liquid equivalent 

in maintaining a single principal peak at ~4.3Å in the density range 4.49-3.71g/cm3
.

Figure 9.16: Radial distribution functions of the inherent and liquid structure of MX2 in the density range 

3.13-4.49 g/cm3 where αX=15.0 a.u. Black line, 3.13 g/cm3; red line, 3.71 g/cm3; green line, 4.19 g/cm3; blue 

line, 4.49 g/cm3.
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 At 3.13 g/cm3 , a small edge-sharing peak is observed at ~3.55Å, representative of edge-

sharing and in keeping with the liquid result. 

      At αX=35 a.u, this effect is much stronger; at 3.00g/cm3 there is a sharp increase in the 

intensity of the peak at 3.35Å and a decrease in the minima at ~3.65Å, which indicates a 

strong ordering of the corner- and edge-sharing tetrahedra. In comparison with the liquid 

configurations this is partly reflected in a small prepeak at 3.39Å at 3.00 g/cm3, but the 

inherent structure magnifies this effect and elucidates a sharper distinction of the edge- 

and corner-sharing tetrahedral units. Analogously, the position of the principal peak at

g XX
IS r PP at 3.00 g/cm3  is shifted to 4.09Å in comparison to the higher density 

configurations and a prepeak is resolved at 3.78Å. The intensity of g XX
IS r  remains 

similar over the density range mirror the changes of the liquid structure over the density 

range for both αX=15 a.u and 35 a.u. The sharp change in intensity of g MM
IS r  at 3.00 g/

cm3 
 is in contrast to the step-wise decline in the intensity of g MX

IS  rPP:  this may be a 

feature of calculating the inherent structure from the low-temperature liquid. 

Figure 9.17: The inherent and liquid structure radial distribution functions of MX2 in the density range 

3.00-4.34 g/cm3  where αX=35.0 a.u. Black line, 3.00 g/cm3; red line, 3.73 g/cm3; green line, 4.11 g/cm3; 

blue line, 4.34 g/cm3.
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      The M-X-M bond angle distribution for αX=15 a.u in figure 9.18 shows similar 

changes over the density range compared to the liquid configurations with the peak at 91-

95o increasing in intensity with increasing density. In the X-M-X distribution, the relative 

intensities of the main peak vary with density unlike the liquid configurations where they 

are similar: the peak at 106o for 3.13 g/cm3 is sharpened with a larger intensity compared 

to the higher density configurations. At αX=35.0 a.u, as shown in figure 9.19, the inherent 

structure M-X-M contrast with those obtained for αX=15 a.u in sharpening features 

associated with the different edge- and corner-sharing connectivities. At 3.13 g/cm3
, the 

M-X-M distribution displays a sharpened edge-sharing peak at 83o and the minima at 93o 

between the edge- and corner-sharing peaks is sharply reduced compared to the liquid 

configuration. The X-M-X bond angle distribution from 4.34 to 3.73 g/cm3 shows similar 

features with the liquid equivalents, with a main peak at 94o and a tail at 170o indicating 

the increasing of 5 and 6 coordinate sites. At 3.00 g/cm3, a sharp new peak at 96o is 

resolved which does not feature in the corresponding liquid distributions. 

Figure 9.18: The bond angle distribution functions of MX2  in the density range 3.13-4.49 g/cm3 , where 

αX=15.0 a.u. Black line, 3.13 g/cm3; red line, 3.71 g/cm3; green line, 4.19 g/cm3; blue line, 4.49 g/cm3.
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9.9 The inherent structure of MX2, where αX= 35.a.u, at T=7000K. 

Figure 9.20 shows the inherent structure radial distribution functions for high temperature 

configurations of MX2 systems in the density range 2.48-3.73 g/cm3
.  In g MX

IS  r , a 

reduction in the FWHM of the principal and resolution of a prepeak is observed over the 

density range of 2.48-3.73 g/cm3. This correlates with an increased single X-M 

coordination at the higher temperature, from 27.8% at 2.48 g/cm3 to 9.77% at 3.73 g/cm3, 

compared to the lower temperature values of 3.08% and 1.60% at 3.00 and 4.34 g/cm3 

respectively. The prepeak intensities vary substantially over the density range, peaking at 

4.21 at 2.48 g/cm3 , then declining with increased density to 1.16 at 3.37 g/cm3
.   For

g MM
IS r , there is a separation of the principal peak into edge- and corner-sharing peaks 

at ~3.4Å and 3.90Å respectively with more gradual changes in intensity between densities 

compared to the lower temperature where there is a sharp change at the lowest density. 

Also, for 3.00 g/cm3 
 at 7000K, g MM

IS r  does not exhibit a minima close zero at 3.6Å 

Figure 9.19: Bond angle distribution functions of the inherent and liquid structure of MX2  in the density 

range 3.00-4.34 g/cm3 , when αX=35.0 a.u. Black line, 3.00 g/cm3; red line, 3.73 g/cm3; green line, 4.11 

g/cm3; blue line, 4.34 g/cm3.
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compared to the result at 2000K; there is a smaller ratio of the relative intensities of the 

edge-sharing peak against the corner-sharing peak from 1.52 to 0.79 indicating the break 

up of edge-sharing units. This is additional evidence that the deterioration in the FSDP 

with temperature shown in Chapter 8 is a result of both an increase in vibrational effects 

and a change in the non-vibrational structure. As with previous systems, g XX
IS r  shows 

the smallest changes in the intensity of the principal peak with a range of 5.77-5.22 over 

the density range. At 2.48 and 3.00 g/cm3 , prepeaks at 3.80Å and 3.58Å are observed 

with respective intensities of 3.66 and 1.72. 

      The changes in the M-X-M and X-M-X bond angle distributions in figure 9.21 are 

once again reflective of the changes in the radial distribution functions with peaks at 82o 

and 103o  indicate the presence of edge and corner-sharing tetrahedra. As with the changes 

in g MM
IS r , this separation is not observed at similar densities at 2000K. The deep 

minimum observed at 93o for 2000K is not repeated for the lower density configurations 

Figure 9.20: Radial distribution functions of inherent and liquid structure of high temperature MX2 in the 

density range 2.48-3.73 g/cm3 where αX=35.0 a.u. Black line, 2.48 g/cm3; red line, 3.00 g/cm3; green line, 

3.25 g/cm3; blue line, 3.45 g/cm3; yellow line, 3.60 g/cm3; brown line, 3.73 g/cm3
. 
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at 7000K. Two peaks at 96o and 107o are resolved in X-M-X in the density range 2.48-

3.45 g/cm3, similar to the low density configuration at 2000K. 

 

9.10 The inherent structure of system with extreme anion polarisation. 

An analysis of the MX2 system with extreme anion polarisation exhibited in Chapter 6, 

will illustrate several features. Firstly, this set of systems was shown to have the highest 

proportion of mis-coordinated anions due to their molecular nature where there is a high 

proportion of terminal units. It would be expected that a significant prepeak feature in 

gMX(r) would be observed. Figure 9.22 shows the inherent radial distribution functions; 

the presence of a significant prepeak is clearly observed, and it considerably larger in 

intensity than those observed in ZnCl2 both in absolute values and the ratio of the intensity 

of the prepeak against that of the principal peak. These systems highlight the effect of 

 Figure 9.21: Bond angle distribution functions of the inherent and liquid structure of high temperature 

MX2 in the density range 2.48-3.73 g/cm3 where αX=35.0 a.u. Black line, 2.48 g/cm3; red line, 3.00 g/cm3; 

green line, 3.25 g/cm3; blue line, 3.45 g/cm3; yellow line, 3.60 g/cm3; brown line, 3.73 g/cm3
. 
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structure on the presence of the prepeak in g MX
IS  r. When c=0.90 a.u, the prepeak at 

2.11Å is weakest in intensity in comparison to the principal peak at 2.35Å which has an 

intensity of 10.46. As c decreases, the intensity of the peak at 1.93Å increases sharply in 

comparison to the principal peak at 2.33Å. At c=0.50 a.u, the intensity at 2.33Å declines 

to a shoulder. The relevance of the inherent structure is highlighted by the presence of 

prepeaks of intensities 4.16, 1.56 and 0.55 at c=0.60-0.80 where such features are not 

observed in the liquid, whereas the large principal peaks for c=0.60-0.90, and the large 

prepeak at c=0.50, ostensibly the principal peak, are. Split peaks are observed in both

g XX
IS r  and g MM

IS r . At c=0.90, g MM
IS r , displays similar features to MX2(where 

αX>25 a.u) with edge-sharing and corner-sharing peaks of similar intensity. For 

g MM
IS r , the intensity at the corner-sharing peak at 3.58Å forms a shoulder at lower c 

values of 0.50 and 0.60. The intensity of the early edge-sharing peak in g MM
IS r  at 

~3.04Å varies non-linearly with c: 3.36 at c=0.50 a.u, peaking at 6.27 at c=0.60 a.u, and 

Figure 9.22: Radial distribution functions of the inherent and liquid structure of MX2 systems where the 

short-range damping parameter c  is varied in the range 0.50-0.90 a.u.  Black line, 0.50 a.u; red line, 0.60 

a.u; green line, 0.70 a.u; blue line, 0.80 a.u; yellow line,0.90 a.u. 



Chapter 9. The inherent structure of network-forming liquids                                        281

then declining to 2.36 at c=0.90. For g XX
IS r , the intensity of the low r principal peak 

and high r principal peaks, 2.26 and 2.68 respectively, are similar at c=0.90, but diverge 

sharply at c=0.50 where the values are 1.06 and 3.55. 

      The bond angle distributions in figure 9.23 are sharpened in comparison to the related 

liquid configurations. At c=0.90, two significant peaks are present: the first at 86o and a 

peak at 104o. The latter peak declines sharply in intensity as c declines. A similar pattern 

emerges from the changes in the X-M-X distribution where the intensity around 110o 

declines with decreasing c, but in contrast with M-X-M the FWHM increases with 

intensity at larger angles increases.  

      The change in the intensities of the principal peak of the radial distribution functions 

have been dominated by the cation-anion term. This does vary between the systems 

studied, and in particular with respect to the changes in cation-cation term.  Table 9.1 

show the values for ratio, Q, given by: 

Figure 9.23: Bond angle distribution functions of the inherent and liquid structure of MX2 systems where 

the short-range damping parameter c  is varied in the range 0.50-0.90 a.u. Black line, 0.50 a.u; red line, 

0.60 a.u; green line, 0.70 a.u; blue line, 0.80 a.u; yellow line, 0.90 a.u. 
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Q=
gMM

IS r PP−gMM
liq r PP

gMX
IS r PP−gMX

liq r PP

      In most cases, Q >1 indicating that the increase  in intensity from the liquid to 

inherent structure is larger for gMX(rPP) than gMM(rPP). The relative changes in the intensity 

of the principal peaks of g MM
IS r PP can be understood through the differences 

contributions of the vibrational structure of the first coordination shell of M-X compared 

to M-M and X-X. However, for the extreme polarisability system, the increase in 

principal intensity of gMM(r) from the liquid to the inherent structure is larger than that 

observed in gMX(rPP), as indicated by the Q values of under 1.

  

MX2 ZnCl2
Section

Parameter 

9.7

α(a.u)

a=10

 b=40 

9.8(35 a.u)

ρ(g/cm3)

a=3.00

b=4.34**

9.8(15 a.u)

ρ(g/cm3)

a=3.13

b=4.49

9.8(7000K)

ρ(g/cm3)

a=2.48

b=3.73**

9.10

.c  (a.u)

a=0.50

b=0.90

9.6

r eff
XX

a=3.67

b=3.84

9.4

T(K)

a=600

b=1200

9.4

P(bar)

a=1 

b=29000 

g MM
IS a−br  /

g MM
liqa−br 

1.72

1.18

1.15

0.68

1.49

1.42

2.69

1.11

2.39

3.59

1.37

1.52

1.41

1.32

1.39

1.23

g MX
IS a−br  /

g MX
liqa−br 

2.10

2.72

3.15

1.98

3.98

1.78

2.85

2.91

1.51

2.22

2.89

2.22

2.58

2.79

2.83

2.29

Qa−b  1.22

2.31

2.74

2.91

2.67

1.25

1.06

2.62

0.63

0.62

1.46

2.11

1.83

2.11

2.04

1.86

Table 9.1: Ratios of changes in the intensities of the principal peaks of g MM
IS r  (row 3) and g MX

IS r 
(row 4) from liquid to the inherent structure. The fifth row shows , Q, the ratio which highlights the relative 

increase in intensity of g MM
IS a−br  compared to g MX

IS a−br  where a and b are the extremes of the 

ranges highlighted in the 1st row. The top value in each box is from a, the lowest value in the range while the 

bottom value is b, the highest value in the range.
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9.11 Conclusion
In this chapter we have observed that inherent structure calculations elucidate new 

sructural features within MX2 liquids previously hidden in the liquid structure and not 

observed in similar inherent structure calculations on rigid-ion model systems.14  In 

comparison to the work of La Violette et al14, who used rigid-ion models, the increase in 

short-range ordering, as highlighted by a substantial increase in the principal peak of 

gMX(r), is repeated. The presence of a intermediate peak in the anion-anion separation was 

not found in the range of systems highlighted, although this occurred at densities much 

higher than those sampled here. 

      Earlier inherent structure calculations6-9
 on hard-sphere6,7 and Lennard-Jones systems8,9 

observed a main feature of a split second peak in the inherent structure g(r). In this 

chapter, we have focused on the greater changes which occur in the principal peaks of the 

inherent structure radial distribution functions.A significant difference between these 

systems and this current study is the presence of a description for polarisability in the 

range of systems observed here, where differing proportions of corner- and edge-sharing 

tetrahedra are present, resulting in a greater range of changes in the pair correlation 

functions. The distinction between corner- and edge-sharing linkages between MX4 

tetrahedra is observed more clearly in the radial distribution functions; the ratio of the 

intensity of edge- and corner-sharing peaks, resolved in a number of systems analysed, 

gives a clearer indication as to the specific mixture underlying the liquid configurations. 

In gMM(r), a peak at ~3.3Å is indicative of the presence of edge-sharing and a corner-

sharing peak at ~3.7Å; the relative intensities of these peaks gives an indication of the 

wide range of mixed corner, corner- and edge-sharing and edge-sharing systems observed 

in this study.

      These changes are also observed in the bond angle distribution functions. In a 

previous inherent structure study on liquid silicon16, anomalous changes were observed in 

a peak upon calculation of the inherent structure with a decline in intensity while others 

increased with increasing temperature, although not linked to to any structural or dynamic 

property of the system.16 In our calculations, increasingly resolved peaks, based on 

structures from our analysis in earlier chapters have been observed. A number of 

disparities in the relative intensities observed in the peaks between inherent structure and 

liquid configurations have been observed. Significantly, the inherent structure bond angle 

distributions highlight the “rigid” structural ordering present within edge-sharing 
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tetrahedra in comparison to the corner-sharing peak, as shown by the smaller FWHM of 

the associated sharp peaks in the X-M-X and M-X-M bond angle distributions and the 

associated peak in the cation-cation g(r) for systems such as MX2 (αX=40 a.u), and ZnCl2 

at 1200K at low pressure. In the molten state, this separation between the two geometries 

becomes less clear giving a strong indication of different types of motion. The greater 

range of bond angles observed by the vibrational structure in edge-sharing chains is 

attributed to the floppy motion of edge-sharing chains whereas corner-sharing, which, 

structurally, is less restricted, observes a relatively smaller range of motion. 

     This is the first set of calculations where a prepeak in the principal peak of gMX(r) is 

observed in a number of systems and its origin highlighted. It is related to the 

miscoordination of the ion-pair X-M, where the anion is singly bonded. This prepeak is 

observed in the inherent structure of a range of systems and its increasing intensity occurs 

in ZnCl2 when temperature is increased; in ZnX2 systems when anion-anion separation 

increases; and in high temperature MX2(αX=35a.u) systems when density declines. For 

systems with extreme anion polarisability (section 9.10), this effect is so large that the 

prepeak and principal peak switch places when the short-range parameter c is shifted from 

0.50 to 0.90. These systems also observed greater changes in intensity, upon calculation 

of the inherent structure, in gMM(rPP) than gMX(rPP). The weakest prepeak intensity was 

observed in MX2 systems(αX=40-10a.u) which displays the most strongly tetrahedral 

coordination in the range of systems (and subsequent lack of defect, singly coordinated 

anions) observed in this chapter. 

      Within classes of systems, a central question is whether the change in IRO as a 

function of temperature is due to increased motion of ions, an underlying change in 

structure or a mixture of the two. Inherent structure calculations help our understanding in 

this regard. In the case of ZnCl2, the inherent structure shows an increase in edge-sharing 

features, as indicated by the increase in intensity at r~3.3Å with increasing temperature; in 

contrast, these edge-sharing features decline with increasing pressure. In addition, the 

prepeak in gMX(r) which increases with increasing temperature, and declines with 

increasing pressure, is further evidence of structural change. The changes in IRO with 

increasing temperature can then be understood as a competition between the underlying 

structure with features more conducive to IRO and the vibrational disorder. This gives a 

clearer understanding of the structural origin of the “relaxation” of network structure 

highlighted in systems where the FSDP observes anomalous temperature dependence.25 
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Chapter 10
Homopolarity and the effect on IRO

10.1 Introduction.

In previous chapters we have demonstrated the effect of varying anion polarisability and 

system conditions in terms of controlling liquid network topology. In particular, these 

factors are shown to control the arrangement of (predominantly) tetrahedral (although 

both higher and lower ion coordination environments have been shown to have significant 

effects) units in the network systems, with associated changes in both the intensity and 

position of the first-sharp diffraction peak (FSDP). The FSDP, we recall, is taken as 

indicative of significant intermediate-range order (IRO). In this chapter, we investigate 

the change of structure in a rigid ion system when homopolar bonds (bonding of like 

atoms) are included. The primary goal of this chapter is to demonstrate how such bonding 

motifs may be included, within a relatively simple model framework, without the need for 

computationally-demanding  electronic structure calculations. These models are not, at 

present, constructed to give an accurate description of specific systems, but are 

constructed in a more speculative fashion in order to highlight how the presence of such 

homopolar bonds may influence liquid structure.

      Experimentally, homopolar bonds are observed as small peaks in the like-like radial 

distribution functions, gMM(r) and gXX(r) for systems of MX2 stoichiometry. In a 

chemically-ordered network, such as those described previously in which electrostatic 

(Coulombic) forces dominate, such bonding motifs may be excluded. In the random 

covalent network1, which describes a chemically disordered network, an atom has no 

preference to bond with like or unlike atoms. In systems of interest to us, such as GeSe2, 

homopolar bonds can be considered as defects in a chemical ordered network model 

which arise either through close separation of anions bridging cations or as an isolated 

homopolar bond between cation-centred units.2 As a result, such systems can be 

considered as essentially chemically ordered networks with a significant element of 

random network. The incidence of homopolar bonds predicted from experiment is a 

maximum of 25% and 20% of Ge and Se atoms respectively in GeSe2
3,4 

. The presence of 
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homopolar bonds is shown in several Raman5-10 , Mössbauer11-12 and grazing incidence X-

Ray scattering (GIXS) experiments13. They are either described as appearing as defects 

within a tetrahedral network5-8,13 or as an integral feature of the proposed constituent 

units9-12 such as the Ge6Se14 units (shown earlier in figure 4.1) present in the “outrigger-

raft” model9. Other experiments on GeSe2 have not detected the presence of homopolar 

bonds14,15. 

      In the ab initio FPMD model16 for GeSe2 highlighted in Chapter 4, homopolar bonds 

between Se atoms exist as a bridge connecting two cation-centred units. The PIM 

parameter sets used so far are unable to induce homopolar bonds as might be expected for 

models where Coulombic interactions, resulting from the presence of formal valence 

charges, are dominant. In early electronic structure calculations17 on GeSe2, where the 

local density approximation (LDA)18 is applied for the exchange and correlation energy, 

the high proportion of atoms observed to be in homopolar bonds (60% for Se and 25% of 

Ge) correlated with an absence of a FSDP in the total structure factor. When a generalised 

gradient approximation (GGA) for electron correlation19 was introduced, these 

proportions reduced to 39% for Se and 10% for Ge and a FSDP appeared. This feature 

was attributed “to the enhancement in chemical order in the form of tetrahedral units, 

which in turn establish an intermediate-range order featuring a FSDP”.17 Calculations by 

Drabold20 and Massobrio16 on GeSe2 report systems with both the presence of homopolar 

bonds (26% and 17% of Ge atoms and 24% and 32% of Se atoms in homopolar bonds 

respectively) and the presence of a FSDP. The LDA results were highlighted as possibly 

representative of high temperature behaviour for the GeSe2  melt where a large decrease is 

observed in the intensity of the FSDP in SNN(k).
21 Our results in Chapters 4 and 8 show 

that structural features of GeSe2: the presence of a FSDP in SCC(k) and high temperature 

reduction in FSDP, are reproduced without the presence of homopolar bonds. A question 

of interest, therefore, is what role does the presence of homopolar bonds have on IRO. In 

addition, the strength of any effects can be probed by systematically varying the number 

of homopolar bonds within the simulation model (the analogue of controlling the network 

topology through the anion polarisability).
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10.2 Method.

Homopolarity was incorporated into a RIM by means of a Morse potential (referred to 

now on as the Morse-RIM) which is applied between pairs of like atoms only. The 

potential takes the form

          
           U Morse

ij  r ij=De 1−exp−a r ij−r e
2   

(10.1)

where Rij is the separation between ions of like charge, re . In a standard Morse potential, 

for example modelling the vibrations of a simple diatomic molecule, re and De are simply 

the separation and depth of the energy minimum in the function. In the present work the 

interaction energy between pairs of like ions will be dominated by the (repulsive) 

Coulombic interactions. As a result, re and De are effectively parameters which define the 

length-scale over which homopolar bonds may be formed and the strength of those bonds 

respectively. Figure 10.1 highlights the effect of including a Morse potential with the 

Figure 10.1: Energy diagram for formulation of Morse-RIM potential. Inset: close-up. The function 4/r is 

an indication of the form of the electrostatic repulsion to which a Morse potential must overcome to induce 

hompolar bonds . De is the dissociation energy, which at De=0.10 eV (from original parameterisation) and 

0.16 eV (where HXX,, the percentage of anions in homopolar bonds, is 100%). The parameter, a, which 

controls the width of the potential is fixed at 4.0 a.u for both values of De.
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electrostatic repulsion between two X- ions. The latter interaction takes the form U=+4/r 

which is here augmented with the Morse potential which acts to effectively induce a local 

energy minimum (a “kink”) into the total energy function. The presence of this local 

energy minimum can act to stabilise the relatively close approach of anion pairs. 

The total energy of interaction can be written as:

U Total=U MorseU Born−Mayer

                                                                                                                                       (10.2)

Fumi-Tosi Morse
ij aij(a.u) Bij(a.u) Cij (a.u) re  (a.u) A (a.u) De (eV)

XX 1.00 8.00 0.0 4.4 4.0 0.10
MX 1.600 30.00 0.0 - - -
MM 1.5564 19.699 40 4.4 4.0 0.10

Table 10.1:Parameter set for Morse-RIM of a MX2 system giving Fumi-Tosi and Morse potential 

parameters for each ion pair.  

10.3 Simulation details.

All calculations in this chapter consists of 324 (108 cations and 216 anions) ions. The 

initial starting configuration was used from previous calculations at zero pressure where 

parameters were perturbed to maximise the number of homopolar bonds between anions 

and to maximise the attractive interaction between the cations. A homopolar bond is 

defined as any pair of like ions found within a given cut off, defined by the position of the 

minima in the principal peak of gMM(r) and gXX(r) (~4.69Å for gXX(r) through the HXX 

range and 5.19Å for gMM(r)). To obtain liquid densities for the model a pressure of 

3.5x10-4 a.u was applied. The temperature of the system was set at 1500K. Table 10.1 lists 

the parameter set for the model used in this chapter. This parameter set was derived from 

earlier calculations22 at zero pressure. To limit the number of variables observed in this 

chapter, all parameters were kept constant apart from the parameter, De
XX , which 

controls the percentage of homopolar bonds. De
XX , was increased from 0.00 eV in steps 

of 0.04 eV. The parameter, De
XX , which controls the depth of the energy well in the 

anion-anion energy function, was varied from 0.00-0.20 eV, this range being found to 

yield a percentage of anions in homopolar bonds, HXX, from 0-100% (figure 10.2a). Once 
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the range of anions present in homopolar bonds was understood with 100% being reached 

at 0.20 eV, more data points were collected in the range of 0.00 eV to 0.20 eV to measure 

the change in homopolar bonds against network connectivity statistics. The sharpest rise 

in the number of homopolar bonds occurs in the region of De
XX =0.06-0.10 eV, where 

the homopolar percentage jumps from 6 to 80%. The cell size was fixed for the De
XX

range 0-0.20 e.v at 20.87Å,  similar to typical liquid densities in this stoichiometry. A 

simulation was carried out at elevated temperatures of 2500K, well above the melting 

temperature, to equilibrate the configuration for the model. For each calculation in this 

chapter, an equilibration run of 50 ps was used and a simulation run of 150 ps under NVT 

conditions at 1500K was undertaken. Structural quantities were calculated for De
XX

values of 0.00, 0.04, 0.08, 0.09, 0.12 and 0.16 eV which correspond to HXX values of 0%, 

3%, 25%, 55%, 80% and 100%.

      In section 10.9, calculations at a range of cell sizes were calculated to observe high 

and low density behaviour of systems with no homopolar bond and a system with many 

homopolar bonds (HXX=80%). The barostats were relaxed from 3.5 x10-4 a.u configuration 

to 2.5 x 10-4 a.u and 1.5  x 10-4 a.u resulting in larger cell sizes of 23.56Å and 28.77Å. A 

higher density configuration of with an average cell size of 19.42Å.was generated by 

increasing the barostats to 4.5 x 10-4 a.u. The configuration were equilibrated for 50 ps 

and a simulation run of 150 ps under NVT conditions were undertaken.

10.4 Homopolar bonding and changes in network connectivity. 

Figure 10.2b indicates that with an increasing percentage of homopolar bonds the 

percentage of edge-sharing cations rises sharply. The sharpest rise occurs in the range

De
XX =0.04-0.11eV where the fraction of cations labelled “0” change from 82%-3%; 

those labelled “1” rise from 16% to 36% at 0.09 eV, and then declines to 18%;  and those 

labelled “2” rise from 2% to 87%. The correlation between the fraction of anions in 

homopolar bonds and the fraction cations in edge-sharing “1” and “2” configurations can 

be understood as follows. In polarisable ion models, the edge-sharing unit is stabilised by 

the presence of dipoles on the anion bridges which act to shield the Coulombic repulsion 

between cation pairs and, as a result, stabilise their relatively close approach. In the 

Morse-RIM model the formation of homopolar bonds results in an effective build up of 
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negative charge around two closely spaced anions which stabilises the closer separation 

of cations. Figure 10.3 shows a schematic diagram of such an edge-sharing unit and 

highlights how the formation of a homopolar bond between the bridging anions acts to 

stabilise this edge-sharing motif. 

Figure 10.2 (a) Percentage of anions (HXX) in homopolar bonds with varying potential energy well 

depth, De
XX eV  (left). (b) Percentage of cations in different network connectivities with varying 

potential energy well depth, De
XX eV  (right). 

Figure 10.3: Change in connection of two tetrahedral units (red circles are X anions and blue circles are 

M cations) with increasing homopolarity. The distance rXX and rMM decrease, for the anion-anion 

interactions this is strong enough to produce a prepeak in gXX(r) but not in gMM(r). An edge-sharing unit 

is formed by the concentration of negative charge of the two anions in the homopolar bond (circled) 

which stabilises the closer separation of the cations. 
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10.5 Changes in the partial structure factor with varying anion 

homopolarity, HXX.

The partial structure factors calculated are shown in figure 10.4. At low values of HXX, the 

position of the FSDP in SMM(k) is ~1.45Å-1. This is associated with low polarisability 

systems where the inter-tetrahedral linkages are predominantly corner-sharing. At 

HXX=80%, the position of the FSDP shifts dramatically to ~1.07Å-1 which is linked with 

the increased presence of significant edge-sharing within the tetrahedral framework. The 

formation of the FSDP at small scattering angles is coupled with a sharp increase in the 

intensity of the principal peak at 1.92Å-1, from 1.34 at HXX=0% to 2.76 at 100%. The 

changes in SMM(k) with increasing HXX  mirror the changes observed with increasing 

polarisability (Chapter 6): the increase in anion polarisability changes the FSDP position 

from ~1.4Å-1, shifting in position to lower k, with an associated decline in intensity and 

then, with further increased anion polarisability, an increase, corresponding to systems 

such as GeSe2  where the intensity of the FSDP approached that of the principal peak. 

Here we observe a limiting case in terms of induction of homopolar bonds and the ratio of 

the FSDP intensities of the principal and first-sharp peaks, with values observed (33% and 

25% at HXX=80% and 100% respectively) that are lower than that observed in systems 

such as ZnCl2  (55%) and GeSe2 (90%). 

      The FSDP in the cation-anion partial structure factor, SMX(k), shifts from ~1.44Å-1 at 

HXX=0-55% to ~1.13Å-1 at HXX=80% and HXX=100%. The changes in the principal peak 

intensity show relatively smaller changes with the fraction of homopolar bonds, with a 

minimum at HXX=3% of -1.18 and a maximum of -1.74 occurs at HXX=80%. The 

increased homopolarity has a more dramatic effect on the anion-anion correlations, with a 

significant FSDP, indicative of the presence IRO in the anion sublattice, appearing as the 

degree of homopolarity increases. In the range, HXX=0-55%, a small FSDP in SXX(k) is 

present at ~1.41Å-1 with intensity in the range 0.32-0.47. At 80%, the FSDP moves to 

lower scattering wavevectors of 1.09Å-1. In contrast to the changes in SMM(k), the increase 

in intensity of a FSDP is coupled with a decrease in the intensity of the principal peak, 

and a shift in position, from 2.83 at 2.00Å-1 for HXX=0% to 1.72 at 1.88Å-1 for HXX=100%. 

This is the first system studied in this thesis where a substantial FSDP in SXX(k) has been 

observed. It is only upon the formation of significant amounts of homopolar bonds (well 

beyond that experimentally observed) that significant IRO appears in the anion-anion 
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correlations in the system. The creation of two lengths scales in SXX(k) is analogous to the 

mechanism proposed by Wilson and Madden23 where the closer cation separation enabled 

by the presence of a dipole on the anion is matched by a corresponding longer length 

scale. Also, the nature of the FSDPs for all three ion correlations are similar at high HXX 

values in contrast to other systems previously studied, where the FSDPs in the cation-

cation and cation-anion correlations dominate those from anion-anion correlations. 

10.6 Changes in the radial distribution functions.

The radial distribution functions shown in figure 10.5 show similarly large changes with 

the  increase of HXX. Firstly, the existence of homopolar bonds is highlighted by the 

emergence of a peak at 2.34Å in gXX(r). This peak rises sharply in intensity from 2.91 at 

HXX=3% to 15.56 at HXX=100%. The rise in peak intensity is correlated with a shift in the 

principal peak position to higher r, from 3.67Å to 3.98Å. In comparison with 

experimentally obtained functions, such as gSeSe(r) in GeSe2, the low-r peak is much 

Figure 10.4: Partial structure factors in MX2 system with varying homopolarity. Black, 0%; red, 3%; green, 

25%; blue, 55%;yellow, 80%; brown, 100%.
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sharper and larger in intensity. The principal peak position in gMX(r) remains constant at 

2.24Å but increases in intensity from 5.45 to 7.02 as the homopolar bond percentage 

changes from 0-55% to 80%-100%. A smaller minima in gMX(r) is observed at HXX=80% 

and HXX=100% in addition to the splitting effect in the second peak at the same 

percentage, where two peaks at 4.54Å and 5.94Å are observed.

      In a rigid-ion model, the cation-cation and anion-anion separations are expected to be 

ordered along Coulombic lines; here, an increase in HXX leads to smaller cation-cation 

separations. At 0%, the principal peak position of gMM(r) is 4.37Å. This figure is similar 

until HXX=80% when the peak shifts to 3.96Å,  corresponding to the increasing edge-

sharing behaviour. However,  the ratio, g MM
PP r  / g MX

PP r of 1.77 indicates that, in terms 

of the classification highlighted in Chapter 6, the system lies in between SiO2 and ZnCl2, 

where the respective values are 1.94 and 1.62. In addition, there is an increase intensity in 

the region 6-8Å for gMM(r) at HXX=80% and 100%, showing significantly greater ordering. 

Figure 10.5:Radial distribution functions in MX2 system with varying homopolarity. Black, 0%; red, 3%; 

green, 25%; blue, 55%; yellow, 80%; brown, 100%.
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10.7 Changes in the bond angle distributions.

The bond angle distributions are shown in figure 10.6. From HXX=0-55%, the M-X-M 

bond angle is 135o, values typical for corner-sharing tetrahedral systems. At HXX=80%, 

this peak shifts to ~115o and sharpens in intensity, indicative of the decreased separation 

of cations with increasing HXX. For the X-M-X function a peak emerges at 50o as the 

number of homopolar bonds increases. At HXX=80%, this peak rises sharply in intensity 

and the larger angle peak shifts from ~100o to 118o. This correlates with the presence of 

homopolar bonds in the system which derive from a close separation of anion pairs in 

edge-sharing units. As homopolarity becomes increasingly larger, this peak increases in 

the intensity while the typical X-M-X bond angle shifts to higher values (as can be 

understood by considering figure 10.3). At HXX=55% the system exhibits an intermediate 

bond angle distribution, as exemplified by the nascent formation of a peak at 59o  in M-M-

M, and the peak in M-X-M whose position is closer to the higher HXX distributions, but 

where the intensity is closer to the lower HXX distributions. 

Figure 10.6: Bond angle distributions in MX2 system with varying homopolarity. Black, 0%; red, 3%; 

green, 25%; blue, 55%; yellow, 80%; brown, 100%.
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10.8 Molecular Graphics.

Figure 10.7 shows graphical snapshots of configurations at HXX=3%, 25%, 80% and 

100%, representing contrasting degrees of chemical disorder. The system displaying no 

homopolar bonds (corresponding to the simple RIM) appears dominated by charge-

ordering and hence the system can be well-described in terms of corner-linking MX4 

tetrahedra. The charge ordering also leads to a relatively uniform ionic density 

distribution with an absence of significant void structure. For high degrees of 

homopolarity larger voids in the ion structure are evident which correspond to the low k 

features observed in all three partial structure factors in figure 10.4. The inclusion of 

homopolar bonds in a system of fixed density promotes the emergence of additional 

ordering on intermediate length-scales. Similar void structure may be induced into liquid 

and glassy systems such as ZnCl2 through templating, where ordering across these voids 

induces the peaks at low k in the underlying structure factors.24

Figure 10.7: Graphical snapshots of Morse-RIM configurations with increasing homopolarity, HXX. Cations 

are represented by blue circles and aniond by red circles. (Homopolar bonds between anions, where the 

cutoff is 3.17Å, are shown). With increasing HXX, clustering of both cations and anion increasingly occurs. 

This is visible with creation of voids observable at HXX=80% and HXX=100% in addition to the evidence 

from the change in cation coordination numbers and the creation of longer length scales in partial structure 

factors.
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Mean coordination of ion pairs
Homopolar 

coordination
MMX MXM MXX MMM

0% 4.22 2.11 12.91 6.86
3% 4.22 2.11 12.92 6.68
25% 4.38 2.18 12.97 6.71
55% 4.65 2.32 13.54 7.09
80% 5.10 2.55 12.75 6.68
100% 5.48 2.74 12.97 7.04

Table 10.2: Coordination for ion pairs of Morse-RIM MX2 system.

10.9 Coordination Numbers.

Table 10.2 shows the changes in coordination number with the number of homopolar 

bonds. At low HXX, the values are closer to a predominantly tetrahedral system: the 

cation-anion coordination is 4.2, while the anion-cation coordination is 2.1. With 

increasing homopolar bond percentage, an increase in coordination is observed for all the 

ion pairs. Whereas increases in coordination are usually associated with increasing system 

density, the increase in coordination here is accompanied by the stabilisation of larger 

voids. In other words, the effective local system density increases accompanied by the 

emergence of ordering on an intermediate length-scale associated with larger void 

formation (regions of low local ion density). The MM and XX coordination numbers 

appear approximately independent of the number of homopolar bonds. 

To highlight the effect of system density additional simulations are performed at three 

further densities, corresponding to cubic simulation cell lengths, L, of 19.42Å, 23.56Å 

and 28.77Å, the original simulations being performed at a system density corresponding 

to a cell length of 20.87Å. The effect of the change in system density is highlighted by the 

calculation of  partial structure factors of systems at high and low values of HXX, 

(corresponding to HXX=0% and HXX=80% respectively), shown in figure 10.8. 

     At the lowest density studied (corresponding to L=28.77Å) an effective phase 

separation (as characterised by an increase in the structure factor intensities as k tends to 

0) is observed for SMM(k) and SMX(k) when HXX=80%, in contrast with HXX=0%. For 

HXX=0%, the lower density configurations show a FSDP tending towards the values 

observed in higher HXX systems at the same density, with the FSDP shifting in SMM(k) 
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from 1.50Å  at 19.42A to 0.98Å-1 at 28.77Å. The high density behaviour when HXX=80% 

displays  characteristics similar to changes observed in systems discussed in Chapters 6-8: 

diminution of the FSDP intensity at ~1Å-1 in SMM(k) and a decline in intensity and a shift 

in position to higher k to 1.35Å-1 for SMX(k). The FSDP in SXX(k) declines in intensity to 

0.86 and position shifts to 1.35Å-1. For HXX=0%, the split peak in SMM(k) is merged into a 

single peak at 1.71Å-1 at the highest density.

Figure 10.8: Partial structure factors for MX2 system at HXX=80% (left) and HXX=0% (right) at different 

simulation cell lengths. Black, 19.42Å; red, 20.87Å; green, 23.56Å; blue, 28.77Å. 
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10.10 Conclusion.

The implementation of a Morse potential in addition to the Born-Mayer potential is able 

to induce homopolar bonds between anions. When the amount of anions in homopolar 

bonds, HXX, increases, the percentage of cations in edge-sharing configurations also 

increases. With increasing HXX, the intermediate-range order changes from that typically 

observed for systems with anions of low polarisability, with a FSDP in SMM(k) at ~1.5Å-1, 

to that typical of systems containing anions of high polarisability, as evidenced by the 

change in the position of the FSDP in SMM(k) to ~1Å-1. It is, however, important to note 

that these changes only occur at values of HXX  much higher than those typically observed 

experimentally. The presence of a large proportion of homopolar bonds leads to a 

significant perturbation in anion-anion correlations leading to a significant FSDP at ~1Å-1 

in SXX(k). The effect of density changes in such systems were highlighted: at lower 

densities, configurations with significant amounts of homopolar bonding showed effective 

phase separation in the partial structure factors, while at higher density, IRO collapses, as 

it does with configurations which exhibit no homopolar bonds and in keeping with 

systems such as ZnCl2 as shown in chapter 7. The presence of IRO in this system (where 

HXX=80%)  is much more sensitive to packing effects than that observed for MX2 

(αX=35a.u) in chapter 8, where, at lower densities, the FSDP intensity increases.

      Although approached from a different angle (without the presence of anion 

polarisability) there are similarities with other systems, such as GeSe2, explored in this 

thesis: the creation of local density differences by the contraction of the first coordination 

shell lead to the presence of larger voids with inherent longer-range ordering across them. 

The evolution of IRO with increasing homopolar bonding is comparable to the change in 

IRO observed in Chapter 6 although there are number of significant differences. The 

intensity of the FSDP in SMM(k) is much smaller than observed with systems which 

change with anion polarisability. There is also a departure from tetrahedral coordination 

with increased edge-sharing (as shown in figure 10.2) in contrast to the systems in chapter 

6 where it is strengthened. However, despite this departure away from tetrahedral 

coordination, the IRO present in the system increases, stressing the importance of 

connections between such units rather than the nature of the SRO present. This in contrast 

with an earlier study25 which stressed the importance of tetrahedrality in stabilising IRO. 

In addition, at high proportions of anions in homopolar bonds, the percentage of “2” 



Chapter 10: Homopolar bonds and the effect on IRO                                                     301

cations is higher than that observed previously (indicated by figure 6.15) due to the rapid 

increase in MX coordination. The variation in changes of network connectivity and the 

resulting changes in structure between systems explored in C6 and C10 is highlighted by 

observing the system when percentage of anions in homopolar bonds are at 55%. The 

respective “0”, “1” and “2” cation percentages are 36%, 36% and 28% for the MorseRIM 

systems closer to the result obtained for ZnCl2 (33%, 40% and 27%) compared to GeSe2 

(18%, 49% and 33%). The resulting structure is indicative of systems with smaller anion 

polarisability however with the FSDP in all three partial correlation functions appearing at 

k~1.3Å-1. By referring to figure 6.5, the anion polarisabililty value which corresponds to a 

FSDP position of 1.3Å-1 is αX=20 a.u (using the position of SMX(kFSDP=1.3Å-1) and αX=25 

a.u using SMM(kFSDP=1.3Å-1) indicating the system at HXX=55% is closer to ZnCl2 than 

GeSe2.

     In contrast with the other systems explored, this mechanism has a similar effect on all 

three partial correlations whereas, previously, it had been primarily the changes in the 

cation-cation and cation-anion correlations which dominated the resulting nature of the 

IRO. The presence of large numbers of homopolar bonds leads to a significant difference 

in the anion-anion correlations compared with the RIM, which for the first time in this 

study, displays a significant FSDP at ~1Å-1 in the structure factor. The difficulty of 

observing real space correlations responsible for IRO is highlighted by the different 

changes which occur in the related radial distribution functions: a split second peak 

observed in gMX(r), a shift in the position of the principal peak for gMM(r) to smaller r 

values, and a shift in the principal peak in gXX(r) to higher r values. This system is 

significant that in contrast with other MX2 systems which display the FSDP, where the 

IRO present is dependent on cation-cation and cation-anion correlations, anion-anion 

correlations are also significant. This indicates a single mechanism which contributes 

equally to all three correlations, in contrast to the evolution of IRO in ZnCl2 with 

temperature and pressure (observed in chapter 7) where the different rates of change in 

FSDP properties indicates different mechanisms are responsible. 

     These are the first set of calculations to look specifically at the effect of inducing 

homopolar bonds into a tetrahedral network. In previous electronic calculations, the effect 

of homopolar bond presence has not been separated from other structural features such as 

the strength of the tetrahedral coordination, in addition to the variety of computational 

methods used where homopolar bonds are present. In our model, the homopolar bonds are 



Chapter 10: Homopolar bonds and the effect on IRO                                                     302

present in edge-sharing units. In chapter 4, we showed that homopolar bonds in the 

FPMD are isolated connecting cation-centred units. In the calculations of Cobb and 

Drabold20, the majority of Ge and Se atoms involved in homopolar bonds are present in 

ethane-like units and dimers respectively while for high pressure simulations of GeSe2, 

chains of Se atoms are predicted. In contrast, other studies do not state specifically in 

which type of structures the homopolar bonds are present.26, 27 so as such it is difficult to 

make comparison with these systems. While these calculations show a varying presence 

of homopolar bonds, how the resulting structures in which homopolar bonds are present 

affect the network structure is unclear. 

      With regards to experimental systems, this simple model broadly correlates the 

existence of significant homopolar bonding in systems with those systems which display 

IRO and large presence of edge-sharing units. Experimentally, the range of MX2 systems 

which display homopolar bonds include GeSe2 whilst those systems dominated by ionic 

bonding including ZnCl2, SiO2, and GeO2 do not. Systems such as liquid SiSe2 are 

intermediate between these two groups of systems, displaying a strong presence of edge-

sharing tetrahedra, but a much smaller presence of homopolar bonding (1% of Se 

atoms28,29). In contrast with experimental systems, significant homopolar bonding is 

observed in systems which do not display a FSDP at ~1Å-1, a likely feature of using the 

RIM, which does not account for polarisation effects, in conjunction with the Morse 

potential. 

      The system described in this chapter have yet to be observed experimentally and 

computationally but there are similarities with other systems where the mechanism for the 

creation of the FSDP has been shown through the creation of void inhomogeneities30. 

Computationally, this has been done on simple crystal packing of a cell of 27000 Lennard 

Jones atoms by taking out atoms to created voids. By applying the method to a crystalline 

cell, phase separation was observed in the structure factor, whilst with amorphous systems 

a FSDP observed; with dimunition of the number of atoms, the position stayed the same, 

but the intensity of the FSDP increased. One significant difference is that the creation of 

intermediate length scales is produced  by keeping the concentration of the liquid 

constant. Experimentally, this has been achieved by introduction of voids using 

alkylammonium templating24, described earlier in section 1.8.1, although the range of 

FSDP positions observed with increasing void size (1.4-0.75Å-1) is different from that 

observed here (1.45-1.07Å-1).
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Chapter 11
Summary and Conclusions.

11.1 Summary

This study highlighted the variety of ordering, particularly intermediate-range ordering 

(IRO), displayed in network-forming melts of MX2 stoichiometry by studying the 

structure of a range of systems using the Polarisable Ion Model (PIM)1 which accounts 

for anion polarisation, Coulombic repulsion and short-range repulsive effects. The 

changes to short-range ordering (SRO), controlled by variation in the constituent 

polyhedral units, and IRO that occur with variations in temperature, pressure, anion size, 

polarisability and homopolarity were examined. The manner in which the constituent 

polyhedral units, predominantly MX4 tetrahedra, interconnect, in particular the proportion 

of edge- and corner-sharing connections present, was shown to be the controlling factor 

in understanding how the intermediate range order varies.

      In chapter 3, an improved  PIM representation for ZnCl2 was achieved which showed 

good correlation with the experimental total structure factors. An additional potential 

model was produced for MgCl2, which showed increased 5- and 6-MX coordination 

compared to ZnCl2, with concomitant square-planar and octahedral geometries around the 

central cation. This had the effect of weakening IRO in comparison to ZnCl2. By using 

the anion radius as an effective parameter generic ZnX2 materials were simulated. These 

systems showed changes in the SRO (increased 3-coordinate cations and associated 

singly-coordinate anions) which resulted in weaker IRO through a shift to higher 

scattering angles and a decline in the intensity of the FSDP.  

      Systems with larger anions were then represented by a new potential model for GeSe2 

(requiring the stabilisation of a system with a relatively large anion polarisability, αX) In 

terms of the network connectivity structure factors, the representation of Ge-Ge 

interactions over the range associated with IRO was improved compared to FPMD 

calculations2. The weaknesses of the model include a Se sublattice which shows 

overstructuring as indicated by the larger intensity of the SSeSe(k) and SGeSe(k) principal 

peaks and the system observes liquid diffusivities at much higher temperatures (~2500-
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3000K) compared to the experimental melting point (1025K). The results showed that the 

effective balance in ionicity and metallic character is important in reproducing this 

system, with the PIM, a strongly ionic model, favouring strongly tetrahedral systems with 

larger amounts of edge-sharing while the FPMD calculations, favouring a metallic 

description of the bonding, lead to increased miscoordination, both in terms of a 

reduction in tetrahedrality and the presence of homopolar bonds. The decomposition of 

gGeGe(r) according to network connectivity showed the difficulty in extracting edge-

sharing statistics directly from the network connectivity radial distribution functions. 

      In chapter 5, the chemical ordering in MX2 systems was investigated. The variations 

in the IRO in ZnCl2  and GeSe2  have been attributed to the difference in the number of 

edge-sharing tetrahedral units present in the two systems. For GeSe2, the larger number of 

edge-sharing polyhedral units present percolate into persistent charge-neutral pseudo one-

dimensional chain structures which act to break up the three-dimensional corner-sharing 

network predominant in ZnCl2. These chains act to introduce an additional intermediate-

ranged length scale leading to an excess intensity in SMM(kFSDP) which is not 

counterbalanced by the corresponding SMX(kFSDP) function and hence leads to the FSDP in 

SCC(k). The key features in systems which contributes to a FSDP in SCC(k) are increased 

presence of edge-sharing and strong tetrahedral coordination; this was highlighted further 

by inducing a stronger SCC(kFSDP) in ZnCl2  by use of a lower density which favoured these 

features. 

      Chapter 6 showed the gradual evolution of intermediate-range order using the anion 

polarisability as a free parameter in order to control the network topology, starting with 

the anion polarisability appropiate to the GeSe2 potential. With increasing anion 

polarisability, the gradual change from corner- to edge-sharing systems was observed. 

The effect of a large percentage (~50%) of cations labelled “1” percolating through the 

tetrahedral network was evident in the intensity of FSDP in SCC(kFSDP) and the presence of 

a second peak in the Eg stretch and T2 bend vibrational modes. The changes in cation-

cation correlations dominated the variations in IRO, as highlighted by the bond angle 

distribution functions, which changed significantly compared to anion related terms, and 

the  partial structure factors. The inherent properties of the structure factors were made 

clearer by constructing additional functions “coloured” in terms of network connectivity. 

For example, S MM
02 k  showed a resistance to phase separation compared with
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S MM
22 k  and S MM

00 k  at similar concentrations. By use of an amended BeCl2 

potential with extreme anion polarisability, the system showed distortions from the ionic 

network with increasing anion polarisability which do not lead to continuous increases in 

properties associated with IRO. Using the short range damping parameter, c, as a free 

variable shows a “transition” (when c=0.50) corresponding to a sharp decrease in the 

intensity of SMM(kFSDP), in contrast to a parallel gradual decline in SRO  as indicated by 

the decrease in the intensity of the principal peaks. With increasing polarisation the 

tetrahedral network was shown to break down owing to the presence of increased 

presence of singly-coordinated anions. 

      In chapters 7 and 8, the changes in network topology with temperature and pressure 

were investigated using systems of low, intermediate and high anion polarisabilites, 

complementing experimental work which highlighted the analogous changes in IRO in 

ZnCl2
3-9 and GeSe2

10-12. As with the experimental results5-8,12, the FSDP in F(k) decreases 

noticeably over the experimental neutron diffraction pressure range, with substantial 

changes with further pressure increases. The change in IRO with increasing temperature 

is smaller with a decline in intensity. It was shown that the contribution to the FSDP in 

F(k) from SZnCl(k) is more stable to changes in temperature and pressure than the cation-

cation function. In the radial distribution functions, a shift in the principal peak in gXX(r) 

is observed with increasing pressure. The changes in the cation-cation correlations were 

probed by use of a difference function, P
Pn−P 1 r  , indicating a change in the fraction of 

corner- and edge-sharing polyhedra present, with the latter declining with increasing 

pressure. Large increases in coordination numbers were observed and, in contrast to the 

systems observed in Chapter 6 which were predominantly tetrahedral, this affected the 

network connectivity values, and the subsequent interpretation of the variations in E0-2. 

Greater clarity was achieved by calculating the related structure factors and radial 

distribution functions according to network connectivity, uncovering greater details of the 

structural changes occurring, particularly the changes between the interactions of cations 

labelled “1” with each other in both reciprocal and real space functions. In comparison, 

the functions based on coordination environment were largely determined by the isotropic 

distribution of sites. 

      Chapter 8 focused on the changes in an MX2  system with anion polarisability values 

higher (αX=35 a.u) and lower (αX=15 a.u) than that for ZnCl2 (αX=20 a.u). At very low 

densities, MX2 at αX=15 a.u adopts features associated with systems of higher 
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polarisability: a shift in FSDP position to ~1Å-1 and decreasing nearest-neighbour cation-

cation separation. At the higher polarisability, the FSDP position does not shift as 

significantly but increases in intensity. The existence of different mechanisms in 

changing network structure was highlighted in the disparity of rates of increase in 

coordination environment, particularly in the MX first coordination shell. The network 

connectivity radial distribution functions showed that, at the lowest density, the weak 

short range ordering of the interaction of the “0” cations with those labelled “2” moved 

closer to the idealised form due to the reduction in confinement effects, as evidenced by a 

collapsed principal peak in gMM
02 r  . At high temperature a sharp reduction in FSDP 

intensities occurs for SMM(k) and SMX(k). The weakening of short- and intermediate-range 

ordering is highlighted in the decreasing intensities of network-connectivity structure 

factors and a weakening of the tetrahedral coordination structure, moving to lower XM 

and MX coordination. 

      The inherent structure calculations, undertaken in chapter 9, showed an underlying 

deformation within constituent polyhedra through the presence of a shortened cation-

anion bond length-scale. The signature of such a deformation is indicated through the 

presence of a prepeak in the inherent structure of gMX(r), correlating with an increase in 

single anion-cation coordination, such that NXM=1>~5%. The largest prepeak was 

observed in the MX2 systems with extreme anion polarisability where a transition is 

shown with the prepeak effectively becoming the principal peak with declining parameter 

c. The underlying differences in inter-tetrahedral linkages are highlighted by the radial 

and bond-angle distribution functions, which exhibit the presence of corner- and edge-

sharing tetrahedra through separately resolved peaks, in contrast to that observed in 

molten configurations. The strength of the separation of these two arrangements, as 

indicated by the position of the minima between both edge-and corner-sharing 

arrangements in gMM(r) and in the M-X-M bond angle distribution was greater in systems 

such MX2 (αX>25 a.u) compared to ZnCl2.

      One notable feature present in experimental work13,14 and electronic structure 

calculations2,15 ,but absent in our models so far, was the presence of homopolar bonds. In 

chapter 10, the effect on structure with varying presence and abundance of homopolar 

bonds was studied. Although the use of a Morse-RIM potential resulted in homopolar 

bond between anions only, it had the effect of drawing cations closer than would have 

otherwise occurred resulting in an increasing proportion of edge-sharing units. The 
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inducement of substantial amounts of homopolarity (above that observed experimentally) 

has a similar effect to increasing anion polarisability on IRO. A significant FSDP was 

observed at 1Å-1 in SXX(k), which had not been observed in previous chapters, as well as 

SMM(k) and SMX(k). The radial distribution functions, gXX(r), showed a sharp and intense 

prepeak which indicated the presence of anion-anion homopolar bonds, while gMX(r) 

showed the presence of a split second peak with increasing homopolarity. The 

coordination number distribution, where the MX and XM coordination rises faster than 

MM and XX, indicates the presence of increased void volume with increasing 

homopolarity. A further indication of this behaviour occurs by varying the density. In 

systems with very high homopolarities and lower densities, phase separation occurs in the 

partial structure factors, a feature not exhibited in the systems studied in earlier chapters.  

11.2 Conclusion

Accurate polarisable potential models have been developed for ZnCl2 and MgCl2 which 

reproduce a number of experimental features including good correlation with total 

structure factors and radial distribution functions. A new GeSe2 model has been created 

and has been compared with experimental and computational studies. Its major strengths 

include the stabilisation of high-proportion of edge-sharing tetrahedra enabling the study 

of the relationship of corner- and edge-sharing tetrahedra to IRO and elucidation of the 

structural features responsible for the FSDP in SCC(k).

     A greater understanding of the origin of the FSDP in (concentration concentration 

structure factor) SCC(k) has been achieved. Firstly, the GeSe2 model created exhibited a 

large FSDP, comparable to that observed experimentally, and significantly greater in 

intensity than those previously observed in computational studies. Decomposing partial 

structure factors according to network connectivity (a process not possible from 

experimental study), we are able to show the features responsible for the peak in SCC(k). 

The balance between SMM(kFSDP) and SMX(kFSDP) was shown to be responsible and in GeSe2 

the excess intensity of the FSDP in SMM(k) was significant enough to result in a peak at 

FSDP in SCC(k). The SCC(kFSDP) intensity was linked to increasing amounts of edge-

sharing units perturbing the corner-sharing network and the greater peak intensity found 

in GeSe2 compared to ZnCl2 was attributed to the percolation of these units. In 

comparison, the SCC(k) functions of a range of systems were evaluated showing the 
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minimum in BeF2, which is a wholly corner-sharing system; a non-linear change in 

intensity in low-density ZnCl2, where there is competition between the intermediate-range 

cation-cation and cation-anion correlations which are of similar intensity; and BeCl2, 

where the short-range damping parameter (one of the parameters controlling anion 

polarisability) was varied between c=0.50 and c=0.90. At the lower value, a transition 

was observed between a system with percolating edge-sharing chains into a molecular 

system resulting in sharply decreased intermediate-range cation-cation correlations due to 

the weak interaction of the constituent charge-neutral units. We have shown a limit to 

SCC(kFSDP) intensity in systems of MX2 stoichiometry such as GeSe2 which are comprised 

of a mixture of edge- and corner-sharing tetrahedra. 

     We have shown the evolution of the FSDP in terms of position and intensity with 

changes in underlying network connectivity. While the presence of corner- and edge-

sharing features have been highlighted previously in experimental and simulated systems, 

the preponderance of these features and their relationship with IRO has been investigated 

in this thesis by “colouring cations” according to their network connectivity. Novel 

correlation functions, network connectivity structure and network connectivity radial 

distribution functions, uncover the details of the structural relationship of the cations 

within a network system of varying inter-tetrahedral connectivity from corner-sharing, 

through to mixed edge- and corner-sharing and strongly edge-sharing systems. The 

network connectivity structure factors uncover different degrees of clustering of the 

coloured cations, highlighted in an effective “phase separation”, and the evolution of IRO 

with increasing ratio of FSDP intensity to that of the principal peak intensity related to 

the degree of edge-sharing. In Chapter 6, a limit to the enhancement of the IRO due to 

anion polarisation in MX2 systems was shown in systems with extreme anion 

polarisation, highlighting another 'class' of molecular structures beyond those with 

percolating edge-sharing chains. This thesis has highlighted the utility of decribing 

network connectivity in addition to changes in coordination and other structural features 

such as structure factors and radial distribution functions. These methods could be used 

in other computational techniques, such as Reverse Monte Carlo modelling, where a 

particular frame of network connectivity (specified according to the  proportion of “0”, 

“1”, and “2” cations) could be added as an additional constraint. Furthermore, the related 

network connectivity functions, and particular properties identified, such the largest ratio 

of FSDP to principal peak intensity in the function, SMM
02 k  , could be added. 
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     The effect of pressure and temperature on IRO and structure has been highlighted for a 

range of systems, particularly in partial structure factors and radial distribution functions 

which are difficult to obtain experimentally. A decline in the intensity of the FSDP was 

shown with increasing pressure in ZnCl2 and the related changes in radial distribution 

functions indicated. The effect of increasing temperature in ZnCl2 was more subtle with 

an increase in the intensity of SZnCl(kFSDP) in chapter 7 compared to a decline SZnZn(kFSDP), 

indicating that different structures are responsible for the respective contributions to IRO. 

In chapter 8, we highlighted that systems of relatively low anion polarisability show a 

greater rate of coordination change of cation-centred polyhedra than the system at the 

higher anion polarisability with changing density. The network connectivity radial 

distribution functions for MX2 (where αX=35a.u) shows closer to idealised functions 

present as 4 MX coordination approaches 100%. In both sytems, a shift of the FSDP to 

lower scattering wavevectors is observed with declining density. 

      An attempt has been made to include homopolarity within the framework of ionic 

models by use of a Morse potential which stabilises short-range separation of like ions in 

combination with the Born-Mayer potential which treats Coulombic, short-range 

repulsive and dispersion terms. Homopolar bonds between anions are achieved and the 

cation-cation separation is reduced leading to the increased formation of edge-sharing 

units. The induction of homopolarity within a tetrahedral network system is shown to be 

an analogous mechanism to increasing anion polarisability in inducing concentration 

fluctuations on long and short-length scales in the ion density. Additionally, at very high 

fractions of anions in homopolar bonding (HXX=80% and 100%), a system is observed 

where all three correlations contribute approximately equally to IRO which has not been 

previously observed. 

     The inherent structure calculations on the range of MX2 systems have been carried 

out highlighting a number of novel structural features not exhibited in previous inherent 

structure calculations. The presence of a defect feature in the cation-anion radial 

distribution principal peak, not highlighted previously in both experimental and 

computational work, is observed. Defect singly-coordinated anions present in a range of 

systems are uncovered as the structural origin of this feature. Additionally, the features 

resolved in the cation-cation distribution function, gMM(r), give an indication of the 

presence of edge- and corner-sharing configurations and indications of deviations away 

from purely tetrahedral configurations through the intensity of the minimum between 
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these two peaks. The bond angle distributions from the inherent structure also highlight 

the rigid bond angle ordering controlling with edge-sharing tetrahedra in the vibrationless 

structure, indicating that the greater similarity of peaks in the bond angle distributions 

relating to corner- and edge-sharing geometries in the liquid distributions, is a result of 

the greater mobility of cations in edge-sharing conformations.

     We have calculated the first set of network connectivity diagrams. The underlying 

change in network connectivity in MX2 systems was demonstrated over a range of 

polarisability values (realistic in terms of ab initio and experimental results). In this 

investigation, we have correlated the configuration of “0”, “1” and “2” cations with 

structural properties such as FSDP intensities of SMM(k) and SMX(k). In addition to the 

structural properties highlighted, this can be used as the basis with which to explore other 

properties such as liquid fragility, diffusion constants and the onset of network rigidity. In 

this investigation we observed the evolution of these statistics with IRO in several 

different environments using different order parameters: largely tetrahedral systems with 

varying anion polarisability, where the initial cell size at the highest anion polarisability 

used was at experimental density, and at a lower density where tetrahedral coordination is 

strengthened; ZnX2 materials where the order parameter was varying anion-anion 

repulsion; MX2 systems (where αX=15 a.u and 35 a.u) with varying density; and the 

Morse RIM system, where proportion of anions in homopolar bonds are varied. Future 

calculations could include effects of homopolar bonds which are isolated from the 

tetrahedral network (as observed in the calculations of Massobrio32 highlighted in figure 

4.5) and systems of different stoichiometry such as GeSe4.

11. 3 Future Work

The highlighting of network connectivity as a controlling factor in IRO lends itself to a 

number of further routes of investigation. Firstly, to what extent can the dynamic 

properties of liquids be understood through the presence of edge-sharing tetrahedra and 

the links with the character of such liquids in terms of their fragility?16 Another question 

is the link of deformed polyhedra, observed by the prepeak feature in gMX(r) in a range of 

systems, with the possible mechanisms by which diffusion occurs in liquids.

Particular structural features observed in liquids through variation of order parameters 

may link with possible defects present in the crystalline state: the presence and influence 
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of differing edge- and corner-sharing connections in the liquid structures of ZnCl2 and 

GeSe2, CS2  respectively, which contrast in terms of IRO and molecular features. 

      Further work could utilise the computational advantages of the classical MD methods 

with FPMD calculations. Early collaborations have focused on oxides alkaline-earth 

systems17,18, Al2O3
19 and Li2O20; here, density functional calculations are carried out on a 

small unit cell and the ion forces, multipole moments and cell stresses are then used to 

parametrise the potential model. In order to produce more advanced models the 

differences between MD and FPMD need to be fully understood so that further models 

parametrised in the future retain parameters with physical relevance. This would help in 

resolving some of the deficiencies in both models: the overstructuring observed for MX 

and XX in the PIM and the weaker (compared to experimental and PIM) intermediate-

range ordering in the FPMD calculations highlighted.2 

      Recent experimental work on filling of carbon nanotubes with molten salts, including 

MX2 liquids  such as BaI2
21 and CoI2

22 leads another route of utilising the systems studied 

here. Computational work so far23-29, has studied the mechanism of filling and 

understanding the internal crystal structure of the filled-in nanotube and their variation 

with diameter size. With MX2 systems, simulations have utilised systems with larger 

sized cations such as SrCl2 which exhibit 5- and 6-MX coordination; further study could 

observed the effect of anion polarisability on the crystal structures and the effect of 

confinement effects on IRO in systems investigated here, intermediate-sized cations and a 

range of anion polarisabilities.   

      The colouring of structural properties such as network connectivity could be applied 

further to systems of similar stoichiometry (such as MX4) in order to effectively build a 

set of rules regarding the ratios of the FSDP with the principal peak and propensity for 

phase separation in addition to systems where the anion polarisability is varied. It could 

also be used to highlight structural features within monatomic liquids and metallic alloys 

such as NaPb.30,31 

      While homopolarity was studied with a rigid-ion model, the effect of combing such a 

system, further exploration of the effect of homopolarity in ionic models could be 

examined by utilising a combined PIM and homopolar model.
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Appendix A
Potential model parameter tables.

Compound
Parameter (a.u) ZnCl2 PIM

(OLD)

ZnCl2 PIM 

(New)

MgCl2 PIM ZnX2

a-- 1.00 1.5776 1.5564 1.5776

B-- 8 87 63 *(103-603)

C 0 183 183.0 183

a+- 1.56 1.5564 1.5564 1.5564

B+- 48 43.71 51.72 43.71

C+- 0 80 18.94 80

a++ 1.60 1.5600 1.5564 1.5600

B++ 27 27 27 27

C++ 0 40 2.2 40

αX 20 20 20 20

SRDP b 1.55 1.65 1.65 1.65

SRDP c 1 1.4 1.4 1.4

Chapter reference 3 3,4,5,7,9 3,5 3,9

SRDP=Short-range damping parameter. * refers to the parameter which is varied in the range denoted in 

brackets. 

Compound
Parameter (a.u) GeSe2 PIM MX2 MX2 (BeCl2 PIM)1 BeF2 PIM 2

a-- 1.5564 1.5564 1.5564 1.8564

B-- 1185.64 1185.64 120.00 16.62

C 1000 1000.60 183.00 0.00

a+- 1.5564 1.5564 1.60 1.8564

B+- 199.38 199.38 53.719 13.10

C+- 380 380.00 80.00 0.00

a++ 1.5564 1.5564 1.5564 1.8564

B++ 12.25 12.25 27.00 8.245

C++ 0 0 40.00 0.00

αX 40 (40-10)* 20 5.983

SRDP b 1.65 1.65 1.55 1.65

SRDP c 2.00 2.00 *(0.90-0.50) 1.00

Chapter reference 4,5 6,8,9 5,6,8,9 5

[1] M. Wilson and P. A. Madden. Mol. Phys., 92, 197, (1997).

[2] R Brookes, Part II Thesis, University of Oxford, (1998).
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Appendix B

Calculation of the vibrational frequencies.

The vibrations of polyatomic molecules and ions are considered to be normal modes, 

which means the vibrations of like atoms within the molecule occur simultaneously 

within each mode. The motion of the ions may be decomposed into various normal 

modes which transform as the symmetry operation of the tetrahedron, and then a Fourier 

transformed velocity autocorrelation function for each of these modes will give the 

vibrational density of states for that mode. 

For the tetrahedral cation, i, at a given time, t, the four bonded anions are identified, 

α=1,2,3,4. The position and velocities of these neighbouring anions relative to the central 

cation, r i and v i , are then calculated. 

r i=
r i
∣r i∣

=
r i−r
∣r i−r∣

                                                                           (B.1)

where r i is the unit vector along the bond between cation i and anion α, and then the 

velocities are decomposed into components paralled to, v i
∥ , and perpendicular to

v i 
⊥ , the bonds, according to 

v i
∥ =v i⋅ri                                                                                       (B.2)

and  

          v i 
⊥ =v i−v i

∥ r i                                                                                (B.3)

The symmetry species of the vibrational normal modes of the tetrahedral species are 

A1ET 1T 2 . The velocity of the central cation, i, in the A1 (stretching) modes, 

V i
A1 , is then given by
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V i
A1= ∑

i=1 4
v i

∥
                                                                                (B.4)

 

The two components of the (doubly degenerate) E (bending) modes are given by

 

V i
E ,1=v il

⊥ −v i2
⊥ ⋅ r12v i3

⊥ −vi4
⊥ ⋅ r 34

V i
E , 2=v il

⊥ −v i3
⊥ ⋅ r 13v i2

⊥ −vi4
⊥ ⋅ r24

V i
E=V i

E ,1V i
E , 2                                                                               (B.5)

where r =
ri−r i 
∣ri−r i ∣

, i.e r  is the unit vector along the line joining anions α and β. 

The three components of the (triply degenerate) T1 (bending) mode are given by  

V i
T 1,1=v il

∥ −{v i2
⊥ ⋅ri1vi3

⊥⋅r i1v i4
⊥⋅r i1}

V i
T 1,2=vi2

∥ −{v i3
⊥⋅ri2v i4

⊥⋅r i2v i1
⊥⋅r i2}

V i
T 1,3=vi3

∥ −{v i4
⊥⋅ri3v i1

⊥ ⋅r i3v i2
⊥ ⋅ri3}

V i
T 1=V i

T1, 1V i
T1, 2V i

T 1,3                                                                (B.6)

Finally, the three components of the (triply degenerate) T2 (stretching mode) are given by

V i
T 2,1=vi1

∥ −
1
3 {v i2∥ v i3∥ vi4∥ }

V i
T 2,2=vi2

∥ −
1
3 {v i3∥ vi4∥vi1∥ }

V i
T 3,1=v i3

∥ −
1
3 {v i4∥ v i1∥ v i2∥ }

V i
T 2=V i

T 2,1V i
T 2, 2V i

T 2,3                                                                    (B.7)

The density of states for a given symmetry species, CV  , with   A1,E1,T1,T 2

are then given by

CV =ℜ{∫0

∞
dt ei t 1

N i
∑
i
〈V i

 t 〉V i
 0}                                                          (B.8)
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Appendix C

Atomic Units.

Unit Name Conversion Factor
 Mass me 9.1095x10-37 kg
Time 2.4188x10-17 s

Charge e 1.6022x10-19 C
Energy Hartree 4.3957x10-18 J
Length bohr 0.529177x10-10 m

Pressure 2.942x1013 Pa

Table C: Conversion factors between atomic units and SI units. 


