
1

A Framework for the Characterization and
Analysis of Software Systems Scalability

Ana Leticia de Cerqueira Leite Duboc

Thesis submitted for the degree of

Doctor of Philosophy

of

UCL

Department of Computer Science

University College London

2009

2

I, Ana Leticia de Cerqueira Leite Duboc, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been indicated in the

thesis.

Abstract 3

Abstract

The term scalability appears frequently in computing literature, but it is a term that is poorly defined and

poorly understood. It is an important attribute of computer systems that is frequently asserted but rarely

validated in any meaningful, systematic way. The lack of a consistent, uniform and systematic treatment

of scalability makes it difficult to identify and avoid scalability problems, clearly and objectively describe

the scalability of software systems, evaluate claims of scalability, and compare claims from different

sources.

This thesis provides a definition of scalability and describes a systematic framework for the charac-

terization and analysis of software systems scalability. The framework is comprised of a goal-oriented

approach for describing, modeling and reasoning about scalability requirements, and an analysis tech-

nique that captures the dependency relationships that underlie typical notions of scalability. The frame-

work is validated against a real-world data analysis system and is used to recast a number of examples

taken from the computing literature and from industry in order to demonstrate its use across different

application domains and system designs.

Acknowledgements 4

Acknowledgements

“By the end of it, you will hate scalability with all your strength!” warned me a fellow PhD student.

Perhaps strangely, I enjoyed my research to the last day and I am still fascinated by the subject of scala-

bility. This would never be possible without the support of some great people:

David Rosenblum and Tony Wicks, who became role models for me. I hope I have managed to learn

at least a few of their many qualities as outstanding computer scientists, researchers and supervisors.

Thank you for all these years of supervision and friendship!

Emmanuel Letier, who guided me to the fascinating world of requirements engineering. Thank you for

the countless discussions, the words of encouragements, and all the knowledge you brought to this re-

search.

Wolfgang Emmerich and Anthony Finkelstein, my examiners on the first, second and mock vivas. Your

experience, knowledge and feedback have been invaluable to this research. Thank you.

Soren-Aksel Sorensen, Antonio Carzaniga, Sebastian Ebaum, Alex Wolf, Damon Wischik, Elaine

Weiuker, and Thomas Alspaugh, world-class researchers with whom I had the opportunity to discuss

this research.

Fortent staff, especially John Taylor, Andrew Towers, Steve Brewin, Iain MacLaren, Alexon Bell, Colin

Briggs and Ben Cave, who gave me all the support I needed to complete the case studies. John deserves

a especial thanks for over 10 years of help since I first joined Searchspace!

Capacitas staff, especially Andy Bolton, Manzoor Mohammed, Danny Quilton, and Paul Seaton-Smith,

from whom I have learned a lot about performance and capacity planning.

My friends Vanessa Almeida, Carina Alves, Rami Bahsoon, Elias Bareinboim, Michael Browarski, Mar-

cus Bulach, Hina Keval, Licia Capra, Jose Heleno Faro, Gorka Guardiola, Rae Harbird, Richard Mapes,

Siva Murugiah, Christian Netwitch, Alok Rana, David Rawlinson, Genaina Rodrigues, Sonia Shaw, He-

len Shum, Luis Silva, Socrates Varakliotis, Stefanos Zachariadis, with whom I had countless discussions

on scalability and a great time during this PhD research. A special thanks for Franco, who were very

helpful as my mock examiner.

My Brazilian and my English family: Maria Lucia, Gilson, Ana Luisa, Maria Sylvia, Isoel, Gizela and

Pedro, who despite knowing nothing about scalability, gave me all the support that made this work

possible. I cannot thank you enough.

Contents 5

Contents

1 What Is Scalability? 14

1.1 Motivation . 15

1.1.1 A Frequently Claimed Attribute . 15

1.1.2 A Poorly Defined Term . 16

1.1.3 An Often Overlooked Quality . 18

1.1.4 An Increasingly Important Quality . 19

1.2 Running Example . 20

1.3 Research Problem and Hypothesis . 20

1.4 Solution and Thesis Contributions . 21

1.5 Scope of this Work . 23

1.6 Clarifications and Assumptions . 24

1.7 Research Method . 25

1.8 Thesis Outline . 25

1.9 Summary . 27

2 Literature Review 28

2.1 Background . 29

2.1.1 Experimental Program Analysis . 29

2.1.2 Goal-Oriented Requirements Engineering with KAOS 30

2.2 Related Work . 32

2.2.1 The Various Contexts of Scalability . 32

2.2.2 Scalability — Definition, Analysis and Prediction 34

2.2.3 Software Architecture Evaluation . 40

2.2.4 Performance Analysis and Prediction . 45

2.2.5 Multiple Criteria Optimization . 46

2.2.6 Scalability Requirements . 47

2.2.7 Capacity Planning . 50

2.3 Summary . 50

Contents 6

3 Software Systems Scalability Defined 52

3.1 On the Meaning of Scalability . 53

3.1.1 Scalability, Variation and System Goals . 54

3.1.2 Scalability and Quality Goals . 54

3.2 A Definition for Scalability . 55

3.3 The Scalability Framework: An Overview . 56

3.4 Critical Evaluation . 57

3.5 Summary . 60

4 Characterizing and Analyzing Scalability 61

4.1 On Scalability Analysis . 62

4.2 Causes of Scalability Problems . 62

4.3 Elements of the Scalability Framework . 64

4.3.1 Quality (Scalability) Goals . 64

4.3.2 Scalability Questions and Answers/Claims . 64

4.3.3 Analysis Variables . 66

4.3.4 Analysis Functions . 67

4.3.5 Raw Data . 69

4.4 Scalability Analysis . 69

4.5 Critical Evaluation . 72

4.6 Summary . 75

5 Elaborating Scalability Requirements 76

5.1 On Scalability and Requirements Engineering . 77

5.1.1 Challenges in Elaborating Scalability Requirements 77

5.2 An Experience with KAOS . 79

5.3 Specifying Scalability . 80

5.3.1 Specifying Scaling Assumptions . 81

5.3.2 Specifying Scalability Goals . 84

5.4 A Systematic Process . 85

5.4.1 Process Overview . 85

5.4.2 Identifying Scalability Obstacles . 87

5.4.3 Assessing Scalability Obstacles . 90

5.4.4 Resolving Scalability Obstacles . 91

5.5 Critical Evaluation . 102

5.6 Summary . 105

6 Scalability Analysis Method 106

6.1 The Method Description . 107

6.1.1 Define the Scalability Question . 108

Contents 7

6.1.2 Elaborate the Goal Model . 108

6.1.3 Identify, Assess and Resolve Scalability Obstacles 109

6.1.4 Select Goals for Scalability Analysis . 110

6.1.5 Refine and Elaborate New Scalability Questions 112

6.1.6 Instantiate Variables and Functions for the Scalability Analysis 112

6.1.7 Perform the Analysis and State the Answer . 115

6.2 Critical Evaluation . 116

6.3 Summary . 118

7 Empirical Studies and Examples 119

7.1 On the Evaluation of Techniques . 120

7.2 The Intelligent Enterprise Framework (IEF) . 120

7.3 Case Study 1: A Prototyping Study . 121

7.3.1 Objectives . 121

7.3.2 Hypothesis . 122

7.3.3 Pilot Project . 122

7.3.4 Planning . 123

7.3.5 Execution . 123

7.3.6 Evaluation . 130

7.3.7 Concluding Remarks . 131

7.4 Case Study 2: A Comparison of Alternative Designs 131

7.4.1 Objectives . 132

7.4.2 Hypothesis . 132

7.4.3 Pilot Project . 133

7.4.4 Planning . 133

7.4.5 Execution . 133

7.4.6 Evaluation . 138

7.4.7 Concluding Remarks . 141

7.5 Case Study 3: Elaborating the Scalability Requirements of the IEF 141

7.5.1 Objectives . 141

7.5.2 Hypothesis . 141

7.5.3 Pilot Project . 142

7.5.4 Planning . 142

7.5.5 Execution . 143

7.5.6 Evaluation . 167

7.5.7 Concluding Remarks . 172

7.6 Further Examples and Informal Study . 172

7.6.1 Examples of Instantiating Framework Elements 173

7.6.2 Examples of the Elaboration of Scalability Requirements 183

Contents 8

7.6.3 An Informal Study: The “Realtime Banking System” 190

7.7 Critical Evaluation . 192

7.8 Summary . 194

8 Conclusions 196

8.1 Review of Research Problem and Goal . 197

8.2 Thesis Contributions . 197

8.3 Critical Evaluation . 199

8.4 Future Work . 202

8.5 Closing Remark . 204

A Scalability Definitions 205

A.1 Scalability Definitions in Scientific Literature . 206

A.2 Scalability Definitions in Informal Literature . 208

B Industry Cases 210

B.1 Motivation . 211

B.2 An Overview of the Industry Cases . 213

B.3 Summaries of Industry Cases . 217

B.3.1 Enterprise Resource Planning (ERP) System 217

B.3.2 Message Validator . 219

B.3.3 Cluster Infrastructure . 220

B.3.4 Telephone Billing System . 221

B.3.5 Mobile Services . 222

B.3.6 Web Application . 223

B.3.7 Funding Compliance System . 224

B.3.8 ETL System . 225

B.3.9 Service Control System . 226

B.3.10 Field Services Systems . 227

B.3.11 Communication Services . 228

B.3.12 Data Integration System . 230

B.3.13 Online Games . 231

B.4 Critical Evaluation . 232

C A Comparative Case Study Design 233

C.1 Study Design: An Comparative Study . 234

C.1.1 Objectives . 234

C.1.2 Hypothesis . 234

C.1.3 Pilot Project . 234

C.1.4 Method of Comparison . 235

Contents 9

C.1.5 Planning . 235

C.1.6 Prizes . 235

C.1.7 Deliverables . 236

C.1.8 Evaluation . 236

C.1.9 Expected Outcome . 237

C.1.10 Risks . 237

C.1.11 Concluding Remarks . 239

Bibliography 240

List of Acronyms

ADL Architecture Description Language

AHP Analytic Hierarchy Process

ATAM Architecture Tradeoff Analysis Method

CBAM Cost Benefit Analysis Method

EJB Enterprise JavaBeans

EPA Experimental Program Analysis

ERP Enterprise Resource Planning

ETL Extraction, Transformation and Load

IEF Intelligent Enterprise Framework

J2EE Java 2 Enterprise Edition

JVM Java Virtual Machine

LAS London Ambulance Service

MDA Model Driven Architecture

MMS Multimedia Message Service

MTTF Mean Time To Failure

OLAP Online Analytical Process

OLTP Online Transaction Process

OWL-S Ontology Web Language for Services

PASA Performance Assessment of Software Architectures

PNL Performance Non-Scalability Likelihood

QoS Quality of Service

QSEM Quantitative Scalability Evaluation Method

RFP Request For Proposals

RUP Rational Unified Process

Contents 10

SAAM Scenario-based Architecture Analysis Method

SAP Session Announcement Protocol

SBAR Scenario-Based Architecture Reengineering

SKServer Surrogate Key Server

SLA Service Level Agreements

SMS Short Message Service

SPE Software Performance Engineering

SQL Structured Query Language

STAS Scalability Testing and Analysis System

UAT User Acceptance Tests

UML Unified Modeling Language

WAP Wireless Application Protocol

WSOL Web Service Offering Language

List of Figures 11

List of Figures

1.1 Publications with ‘scalable’ or ‘scalability’ in the title (source: Engineering Village 2). . 15

2.1 KAOS goal model notation. 32

3.1 High-level view of the scalability framework elements. 57

3.2 High-Level process for scalability analysis. 58

3.3 Mapping of scalability framework elements to EPA. 58

4.1 Elements of the scalability framework. 65

4.2 Comparing alternative designs. 70

4.3 Utilities of two hypothetical alternative designs against the number of business entities. . 71

4.4 Hypothetical pdf for the number of business entities. 71

4.5 A different hypothetical pdf for the number of business entities. 71

5.1 High-level process for elaborating scalability requirements. 86

5.2 Scalability obstacle to multiple goals. 89

6.1 Overview of the scalability analysis method. 107

7.1 Case Study 1, Java heap vs number of distinct business entities. 127

7.2 Case Study 1, throughput vs number of distinct business entities. 127

7.3 Case Study 1, disk usage vs number of distinct business entities. 128

7.4 Case Study 1, utilities comparison. 128

7.5 Case Study 2, measured system qualities. 137

7.6 Case Study 2, utility comparison. 138

7.7 Case Study 3, High-level, strategic IEF goals. 144

7.8 Case Study 3, Fraudulent transactions detected and acted upon. 145

7.9 Case Study 3, Possible fraudulent transaction alerted. 145

7.10 Case Study 3, Transactions matching known fraudulent patterns alerted. 146

7.11 Case Study 3, Alert Generator agent responsibilities. 147

7.12 Case Study 3, Scalability obstacle to Alert Generator goals. 149

7.13 Case Study 3, Data Storage agent responsibilities. 150

7.14 Case Study 3, Data Storage agent responsibilities. 150

List of Figures 12

7.15 Case Study 3, Bank staff agent responsibilities. 151

7.16 Case Study 3, Applying tactic Limit goal load according to fixed agent capacity. 154

7.17 Case Study 3, Applying tactic Transfer goal to non-overloaded agent. 155

7.18 Case Study 3, Alerts stored. 156

7.19 Case Study 3, Applying tactics Set agent capacity upfront to worst-case load and Adapt

agent capacity at runtime according to load. 156

7.20 Case Study 3, Alerts investigated. 158

7.21 Case Study 3, Applying tactic Split goal load into subtasks. 158

7.22 Case Study 3, Applying tactics Obstacle mitigation and Goal restoration. 159

7.23 LAS incident reported. Adapted from van Lamsweerde and Letier (2000). 184

7.24 LAS ambulance allocated at station. Adapted from Letier (2001). 185

7.25 LAS ambulance allocated at road. Adapted from Letier (2001). 185

List of Tables 13

List of Tables

5.1 Scalability obstruction patterns. 88

5.2 Pattern of scalability obstruction to multiple goals. 88

5.3 Scalability obstacle resolution tactics. 92

7.1 Case Study 1, Test machine specification. 124

7.2 Case Study 1, Boundaries for dependent variables. 125

7.3 Case Study 3, Scalability obstacles. 152

7.4 Case Study 3, Refined scalability obstacles. 152

7.5 Case Study 3, Criticality of scalability obstacles. 153

7.6 Case Study 3, Recorded times of activities. 163

14

Chapter 1

What Is Scalability?

The computing community is lacking (1) a precise definition of the term scalability and (2) a

systematic, uniform and consistent treatment of scalability that can be applied across applica-

tion domains and system designs. In this work, we (1) provide such a definition and (2) develop

systematic techniques to characterize, analyze and compare the scalability of software systems.

1.1. Motivation 15

1.1 Motivation
Since the origins of software development, the size and complexity of software systems have been ever

increasing. Scalability is a critical quality for software systems and, as suggested by Figure 1.1, it is a

quality that has been receiving growing interest over the years. But what exactly is scalability?

1.1.1 A Frequently Claimed Attribute

“I examined aspects of scalability, but did not find a useful, rigorous definition of it. Without

such a definition, I assert that calling a system ‘scalable’ is about as useful as calling it

‘modern’. I encourage the technical community to either rigorously define scalability or

stop using it to describe systems.” —Mark D. Hill, What is Scalability? (Hill, 1990)

As this quotation suggests, scalability is a term that is poorly defined and poorly understood. It is an

important attribute of computer systems that is frequently asserted but rarely validated in any meaningful,

systematic way. Many computer scientists employ phrases such as “X is a scalable system” or “Y is not

a scalable approach” in order to convey some intuition about the system or approach at hand, but such

phrases leave little more than the vague and ill-formed impression that “X is good” or “Y is bad”.

Although Hill’s quotation is some 18 years old, it seems as valid today as when he first stated it. The

term scalability continues to be widely used without precision in technical literature, including design

documents, research papers, standards specifications and product brochures. As an illustration, consider

the following quote extracted from a content management company’s website:

“Scalability is a key requirement for the corporate content infrastructure, . . . [which] needs

to be capable of handling high volumes of content as well as of fulfilling high performance

requirements.” (EMC2, 2008).

The company, named EMC2, develops content management and distribution products and services for

enterprise-level systems. This quote makes a fairly typical use of the term, in which scalability is used

Figure 1.1: Publications with ‘scalable’ or ‘scalability’ in the title (source: Engineering Village 2).

1.1. Motivation 16

to convey an intuition of high performance or high capacity. Typically, what is meant by scalable is not

precisely defined or further refined, making it difficult to judge the veracity of the claim.

This is a typical example of semi-technical literature, marketing brochures and technical summaries,

where precision is deliberately sacrificed in favor of conciseness and/or effect. However, the imprecise

use of the term can also be found in more solid technical literature, like the specification of the Session

Announcement Protocol (SAP), a well known protocol studied in networking (Handley et al., 2000).

The roughly 5500-word document contains exactly three occurrences of the word scalability. The first

occurrence is in the abstract of the document; here is the complete abstract:

This document describes version 2 of the multicast session directory announcement proto-

col, SAP, and the related issues affecting security and scalability that should be taken into

account by implementors. (Handley et al., 2000)

The second occurrence is in a paragraph in the middle of the document; here is the complete paragraph:

A SAP announcer periodically multicasts an announcement packet to a well known multi-

cast address and port. The announcement is multicast with the same scope as the session

it is announcing, ensuring that the recipients of the announcement are within the scope of

the session the announcement describes (bandwidth and other such constraints permitting).

This is also important for the scalability of the protocol, as it keeps local session announce-

ments local. (Handley et al., 2000)

The third occurrence is within a heading entitled “Scalability and Caching” for a section containing a

free-form discussion of desiderata that neither uses the term nor precisely defines its intended meaning.

The authors of this document are extremely talented network protocol designers, and thus their

claims about scalability arguably can be taken on trust. But what exactly are their claims? What is it

whose scalability is being claimed? Is it the whole protocol? The caching strategy of the protocol? What

system property is being measured to determine scalability? Is it message delay? Message through-

put? What is it whose scaling is considered important? Is it something in the design of the protocol?

Something in the execution environment of the protocol?

As in these examples, numerous are the cases in the computing literature in which scalability is

mentioned in passing in this fashion or simply claimed outright but never fully defined or justified. The

little consensus on the meaning of scalability gives rise to a range of competing, and at times inconsistent

views on what it means for a system to be scalable. These different views may lead to misinterpretations

of scalability claims and difficulty in evaluating claims or comparing statements of scalability from

different sources.

1.1.2 A Poorly Defined Term

To overcome this problem, a few authors have attempted to define scalability, mostly in the form of rules

of thumb, with varying degrees of rigor:

1.1. Motivation 17

“Scalability means not just the ability to operate, but to operate efficiently and with ade-

quate quality of service, over the given range of configurations.” (Jogalekar and Woodside,

2000)

“Load scalability: ability to function gracefully (i.e., without undue delay and without un-

productive resource consumption or resource contention at light, moderate, or heavy loads)

while making a good use of available resources.” (Bondi, 2000)

“A system is a scalable system if it can be deployed effectively and economically over a

range of different ‘sizes’, suitably defined.” (Jogalekar and Woodside, 1998)

“Scalability is the ability to handle increased workload by repeatedly applying a cost-

effective strategy for extending a system’s capacity.” (Weinstock and Goodenough, 2006)

Terms such as “efficient”, “effective” and “adequate” are commonly found in definitions in the com-

puting literature (Jogalekar and Woodside, 1997; Stephens and Poess, 2004; Law, 1998), but are too

subjective to be of use. Somewhat better are the following:

“An architecture is scalable . . . if it has a . . . linear (or sub-linear) increase in physical

resource usage as capacity increases . . .” (Brataas and Hughes, 2004)

“An algorithm is scalable if the level of parallelism increases at least linearly with the prob-

lem size. An architecture is scalable if it continues to yield the same performance per pro-

cessor, albeit used on a larger problem size, as the number of processors increases.” (Quinn,

1994)

“A desirable form of scalability is a resource cost that is at most linear in some measure of

performance or usage.” (Messerschmitt, 1995)

Such heuristics might seem reasonable at first blush, but it is normally easy to think of exceptions. Look-

ing for an increase at most linear in resource usage as demands on the system increase is a commonly

found rule of thumb (Bondi, 2000; Sun and Rover, 1994). However, linearity is not always necessary or

even adequate. Arllit et al, for example, describe the scalability of a large Web-based shopping system

and argue that the uncertainty of the workload and fluctuation in capacity requirements makes linearity

unattractive (Arlitt et al., 2001). Conversely, consider also the quicksort algorithm, backbone of many

scalable information processing systems, which has super-linear time complexity of O(n log n) in the

average case and O(n2) in the worst case (Rivest and Leiserson, 1990).

Another tempting rule of thumb is to avoid solutions that result in an exponential use of resources

in relation to the input size. Such rule would find its roots in the intractable nature of problems that

can only be solved by algorithms having exponential time or space complexity (Hopcroft et al., 2006).

1.1. Motivation 18

Nevertheless, such a statement would represent yet another arbitrary heuristic. In rare cases where the

scaling aspect is highly unlikely to cross a given threshold, an exponential growth may be perfectly

acceptable.

Our literature review suggests that, so far, attempts to generalize the term scalability represent an

intuitive ideal. Notably, when an accurate use is found in the literature, it is invariably because of its

narrow meaning, as in the case of the parallel computing area (Luke, 1993; Kumar and Gupta, 1994).

This limitation has been recognized by some authors, who stated that scalability has dimensions and

have tried to characterize them. For example, Gustavson classifies scalability dimensions as perfor-

mance, economic, physical, addressing, software transparency, communication ability, and technology

independence (Gustavson, 1994). Bondi defines three types of scalability: load, space and space-time

scalability (Bondi, 2000). Finally, Brataas and Hughes divide scalability into processing, information

and connectivity capacity (Brataas and Hughes, 2004). The problem is that scalability is so dependent

on the application domain and the system’s goals that accommodating all dimensions in pre-defined

categories is very challenging, if not impossible.

1.1.3 An Often Overlooked Quality

Our conversations with companies from different sizes and industries suggest that developers often ig-

nore scalability during the system development (Industry Interviews, 2007). This is not surprising. Our

extensive literature review (see Chapter 2) shows that few authors are concerned with the precise mean-

ing of the term. In fact, scalability is not even to be found in the some popular software quality tax-

onomies (Boehm et al., 1976; Keller et al., 1990; McCall et al., 1977; Sommerville, 2004; Kruchten,

1999; Dromey, 1996; ISO 9126, 1991). Many works on scalability refer to narrow classes of systems or

technologies, not being applicable to software systems in general. Others are targeted at broader classes

of systems, but nearly all are concerned with performance metrics only. Scalability, however, relates to

multiple system qualities (see Chapter 3). Furthermore, a number of works judge a system’s scalability

based on the values assumed by metrics of interest, rather then considering the satisfaction of the stake-

holders with these values (i.e., the system scalability goals). Finally, virtually no work addresses the

elaboration of scalability requirements.

Scalability is a multi-dimensional problem that cannot be explained by individual technologies or

user trends. Its multi-dimensional nature makes it difficult for developers to reason about scalability and

build scalable systems that accommodate all the relevant forces at work. Our conversations with devel-

opers indicate that they regularly failed to identify these forces and predict all the system trends (Industry

Interviews, 2007).1 Even when they claimed to have considered scalability, they had generally catered

only for the extreme cases of environmental and design characteristics. Doing so is a popular fallacy,

as extreme cases will often change. The same product may also be deployed at different client sites,

each one with its own local limits. More importantly, extreme cases are no basis for understanding the

system behavior on other points of the execution range. Take, as an example, a commercial system that

uses parallel computation to perform batch processing of data. If the system behavior is known only

1Common causes of scalability problems are discusses in Section 4.2.

1.1. Motivation 19

for the current maximum batch size, little can be said about its scalability. If the size of the data batch

is dramatically reduced, the overhead of the parallel algorithm may compromise the users’ perceived

performance. This system may also not perform at its best for the sub-range of the market that generates

most of its company’s revenue. Finally, no estimation can be made regarding its behavior in the case of

a future increase in the data batch size.

This lack of a systematic treatment of scalability results in problems that often became apparent only

when the system is exposed to full load during the production phase, that is, where fixes are costliest

according to Boehm’s landmark paper (Boehm, 1976)2. This scenario may lead to hard-to-maintain

workarounds and, on occasions, complete re-designs (Industry Interviews, 2007).

1.1.4 An Increasingly Important Quality

Historically, developers have been relying on hitherto continuous improvements in hardware technology

to rescue them from poor software design decisions. In fact, some of the developers we interviewed

firmly believed that current technologies, such as multicore CPUs or virtualization, would ensure the

scalability of their systems (Industry Interviews, 2007). Nevertheless, according to an internationally

respected group of scientists looking into the future of science towards 2020, computing technology is

running up against fundamental physical limits:

“We postulate that most aspects of computing will see exponential growth in bandwidth

but sub-linear or no improvements at all in latency. Moore’s Law will continue to deliver

exponential increases in memory size but the speed with which data can be transferred

between memory and CPUs will remain more or less constant and marginal improvements

can only be made through advances in caching technology. Likewise, Moore’s law will allow

the creation of parallel computing capabilities on single chips by packing multiple CPU

cores onto it, but the clock speed that determines the speed of computation is constrained

to remain below 5 GHz by a thermal wall. Networking bandwidth will continue to grow

exponentially but we are approaching the speed of light as a floor for latency of network

packet delivery. We will continue to see exponential growth in disk capacity but the speed

with which disks rotate and heads move, factors which determine latency of data transfer,

will grow sub-linearly at best, or more likely remain constant. Thus commodity machines

will not get much faster . . .” — The 2020 Science Group (2006)

Consequently, developers will have to take a proactive approach to scalability, designing systems

that will take advantage of the available technologies to meet their scalability goals, without running up

against economical or fundamental physical limits.

2Since the paper was published, improved software processes and technologies have reduced the amount of rework needed to

fix problems (Boehm, 2006). Lately, agile methods promised to flatten the curve presented in Boehm’s paper (Beck and Andres,

2004). However, data indicates that this flattening does not take place for larger projects (Elssamadisy and Schalliol, 2002; Boehm,

2006). Therefore, the cost of change at later stages of the software development lifecycle continues to be a problem.

1.2. Running Example 20

1.2 Running Example
A real-world system is used as an illustrative example and case study subject throughout this thesis: the

Intelligent Enterprise Framework (IEF). The system contains over 1,500 Java classes and a third of a mil-

lion lines of code. The Intelligent Enterprise Framework (IEF) is a financial services platform designed

by Searchspace to process large volumes of data, build adaptive profiles of business entities that are

represented within the data, and generate automated alerts to notify users of behavior that appears fraud-

ulent. 3 Searchspace’s customers are primarily retail, investment banks and other financial institutions,

but for the reminder of this thesis we will use the word banks to consider this group.

Over the last 10 years, the banking and finance sector has seen a considerable consolidation. The

rate of electronic transactions has increased dramatically, analytical methods have become more com-

plex, and system performance expectations have increased. In order to maintain its performance as data

volumes have grown, the system design went through three major re-designs in a lifespan of seven years.

These extensions involved significant time and effort on the part of developers, which also required a

better understandings of its scalability barriers. This is a story familiar to many software systems and

development organizations.

1.3 Research Problem and Hypothesis
There are undoubtedly many contradicting notions of scalability. In the literature, we have not found

a definition that is equally applicable to a variety of domains. So far, attempts to generalize the term

represent an intuitive ideal, and it is easy to imagine situations where their rationale is not valid. As

a reflection, the use of the term scalable in the literature often implies a desired goal or a completed

achievement, whose precise nature is left to the reader’s imagination.

While computer scientists share an informal, intuitive (and sometimes contradictory) understanding

of scalability, our extensive literature review shows that there are as yet no general, precise techniques

for characterizing and analyzing the scalability of software systems. As a result, it difficult to identify

and avoid scalability problems, clearly and objectively describe the scalability of software systems,

evaluate claims of scalability, and compare claims from different sources.

Our research problem is stated as follows:

The Research Problem The computing community is lacking (1) a precise definition of the term scal-

ability and (2) a systematic, uniform and consistent treatment of scalability that can be applied

across application domains and system designs.

By treatment, we mean the application of techniques that characterize and analyze the scalability of

software systems, allowing developers to identify and avoid scalability problems that would otherwise

be overlooked.
3This thesis has studies consecutive versions of the IEF, starting from the year 2000. Since then, Searchspace has been bought,

being currently known as Fortent, and the IEF has been renamed.For consistency, however, we have decided to continue referring

to the company as Searchspace and to the system as the IEF.

1.4. Solution and Thesis Contributions 21

To address this problem we have defined the following research hypothesis:

The Research Hypothesis It is possible to (1) provide a precise definition of scalability that is appli-

cable to any application domain and (2) develop systematic techniques, also applicable to any

application domain, to characterize and analyze the scalability of software systems, so that devel-

opers can identify and avoid scalability problems that would otherwise be overlooked without the

definition and techniques.

By systematic we mean techniques that follow precisely defined steps, and provide the necessary

support information, to guide the analyst in the characterization and analysis of software systems scala-

bility. Proving that such techniques can be applied uniformly and consistently across different application

domains and system designs is difficult in the lifetime of a PhD. Our aim is therefore to create a definition

of scalability and a framework that uses no application domain specific terms and makes no assumptions

on the system design. This hypothesis is tested in a small but representative sample of real-systems, as

described in Chapter 7.

1.4 Solution and Thesis Contributions
Furthermore, in order to resolve the lack of techniques for characterizing and analyzing scalability, we

provide a framework for the systematic treatment of scalability, including techniques for (a) specifying

scalability goals, (b) generating and evaluating strategies to satisfy these goals, and (c) characterizing,

analyzing and comparing the scalability of software systems. The framework characterizes scalability

in terms of independent and dependent variables, and objective functions. These variables and functions

are derived from a goal model of the system, developed using the techniques in points (a) and (b) above.

The contributions of this thesis are as follows:

• A uniform and precise definition of scalability that is independent of the application domain and

system design.

For reasons we will explain in Chapter 3, we define scalability as “the ability of a system to satisfy

quality goals to levels that are acceptable to its stakeholders when characteristics of its application

domain and design vary over expected ranges”. Unlike other definitions in the computing litera-

ture that relate scalability with particular metrics (e.g., throughput), scaling characteristics (e.g.,

number of users), or scaling behavior (e.g.,linear), our definition describes scalability in terms of

quality goals and scaling characteristics of the application domain and the system design. These

are concepts common to all software systems, resulting in a uniform and precise definition that

transcends application domains, system designs and specific system concerns.

• A framework and a method for characterizing and analyzing software systems scalability that is

independent of the application domain and system design.

A framework, based on Experimental Program Analysis (EPA) that reveals the impact of scaling

characteristics of the system design on the satisfaction of the system quality goals. The framework

1.4. Solution and Thesis Contributions 22

combines a technique for elaborating scalability requirements with a technique for characterizing

and analyzing scalability. A method defines a systematic way to derive from a goal model, the

variables and functions to be used in the scalability analysis. As with the definition, the framework

and method are based on concepts that are independent of application domain and system design.

• A technique for describing, modeling and analyzing scalability requirements, and the description

at the goal level of common strategies to resolve scalability obstacles identified during require-

ments engineering.

The technique extends the KAOS4 framework, allowing one to identify, assess and resolve scal-

ability risks systematically during requirements engineering. The result is a consolidated set of

requirements in which important scalability issues have been anticipated through the precise, quan-

tified specification of scaling assumptions and scalability goals, two novel concepts introduced in

this thesis. The technique has the following values: generates a complete set of scalability obsta-

cles, identifies non-obvious scaling characteristics in the application domain, accurately models

the impact of scalability obstacles , and creates a range of alternative resolutions for scalability

obstacles, among others.

• An analysis technique for evaluating and comparing scalability characteristics of software systems

that is independent of the application domain and system designs.

An analysis technique uses preference and utility functions to quantify the satisfaction of the stake-

holder with specific quality goals and the overall system, respectively. By plotting the utility curve

against the scaling characteristics of the system, it is possible to evaluate and compare quantita-

tively the scalability of software systems.

• Significant case studies demonstrating the applicability of our scalability definition, framework,

requirements engineering techniques and analysis technique.

Three case studies demonstrated the applicability of the concepts and techniques described in

this thesis in a large, complex, proprietary system. The studies were performed from within a

company, involving real stakeholders, and facing a number of the difficulties normally found in

industrial projects. The report of such experience and the possible research directions resulted

from it are themselves relevant contributions to software engineering.

Additional benefits of this research include the following:

• a precise and uniform vocabulary that stakeholders can use to articulate scalability concerns;

• raise awareness of scalability as a quality that can be analyzed with respect to other system quali-

ties;

• counter-arguments to common misconceptions on scalability;

4KAOS stands for “Keep All Objectives Satisfied”.

1.5. Scope of this Work 23

• a framework that encourages a proactive approach to scalability when building systems, particu-

larly with respect to scalability problems caused by exceptional application domain scenarios;

• a requirements elaboration technique that can be used as input to various methods for analyzing

aspects of software scalability at architectural level, and that can have different uses during the

development lifecycle;

• recasted examples from the literature in terms of the scalability framework;

• a number of industry interviews with professional developers describing real scalability problems,

with reflections on the development mistakes and lessons learned; and

• Scientific publications in first-class, peer-reviewed conferences (Duboc et al., 2006, 2007, 2008).

A journal paper, covering the scalability goal-obstacle analysis technique and the full IEF case

study, is currently being written. An industry-oriented article is also planed.

1.5 Scope of this Work
This work concentrates on a definition for scalability, a technique for elaborating and satisfying scal-

ability goals, and an analysis method for quantifying and comparing scalability of software systems.

Scalability, however, is a large area of research. For this reason, a number of interesting topics had to be

left out of scope:

• We have not investigated techniques for extrapolating the analysis results. As will be explained in

Chapter 4, our analysis combines preferences over dependent variables in a utility value. Extrap-

olating from this utility is challenging because of the different nature of the dependent variables.

Leaving the extrapolation of the analysis results out of the scope of this research imposes cer-

tain threats to our scalability framework, as it will be discussed in Chapter 4. Extrapolation is

considered as future work in Chapter 8.

• We have not explored the design of test cases for scalability. Goal models are a good source to

design a representative set of scalability tests. This subject is also discussed in Chapter 8.

• Another area we did not cover is the treatment of uncertainty in both the articulation of require-

ments and in the analysis technique. Incorporating uncertainty into the scalability framework is

one of our priorities for future research.

• Theoretically the scalability framework can be used as input for existing modeling/analysis tech-

niques, such as queuing networks, ATAM, QSEM. Nevertheless, it was out of the scope of this

work to create such models/analysis from our framework instantiation.

• We have decided not to develop a catalog of system qualities and respective metrics commonly

affected by scalability. In the lifetime of a PhD, a comprehensive catalog would be very challeng-

ing to investigate, describe and evaluate across the whole range of architectural styles or software

domains. Nevertheless, others could use our framework and method as a starting point to develop

1.6. Clarifications and Assumptions 24

such a catalog. Different instantiations of the framework can be derived from the goal model of a

system fitting architecture style and application domain and generalized for that style or applica-

tion domain.

• We describe at the goal level some of the commonly-used strategies for the design of scalable

systems, so that they can be considered during the requirements engineering phase. It is outside

the scope of this research to provide a detailed discussion of the advantages and disadvantages of

such strategies. The computing literature has a wide range of formal and informal discussions on

the subject (Jacobs, 2005; TCSC, 2008; Barra et al., 2001; Yuan and Sharp, 2004; Menascé, 2003;

Bondi, 2000; Scholz and Rouvoy, 2007; Ghemawat et al., 2003).

• It is not our intent to provide an out-of-the-box solution, or automated tools for scalability analysis,

or predefined formulas, or rules-of-thumb to judge the scalability of a system.

• Finally, it is out of the scope of this research to investigate the scalability of software development

techniques and processes.

A number of these points are discussed as future work on Chapter 8.

1.6 Clarifications and Assumptions

Clarifications

Ian Sommerville defines a stakeholder as any person or group that will be affected by the system, directly

or indirectly (Sommerville, 2004). Stakeholders typically include strategic decision makers, managers

of operational units, domain experts, operators, end-users, developers, sub-contractors, customers, cer-

tification authorities and so forth (van Lamsweerde, 2008). In this thesis, we refer to “the stakeholder”

when it is not relevant to the discussion what is the exact role that stakeholder is playing. However, for

ease of argumentation in some points of the thesis, we refer to two specific roles: developer and analyst.

Developers are people actively involved in the construction of the system, such as business analysts,

software architects, programmers and testing analysts. The analyst is the person, or group of people,

performing the scalability analysis. Multiple roles can be played by the same person.

Chapter 5 describes a technique for elaborating scalability requirements. We chose to use the term

requirements elaboration because the technique helps to identify which scalability-related information

needs to be elicited during requirements engineering, and covers the description, modeling and analysis

of the acquired knowledge.

Assumptions

This research relies on a number of assumptions. While we recognize that these assumptions will not

always hold in the real wold, we feel that they were reasonable in order to develop the techniques

described in this thesis. Furthermore, our case studies demonstrate that these techniques can already

provide valuable support for characterizing, analysing and comparing the scalability of software systems.

Naturally, we intend to continue the research, so that the framework can be used in a progressively

imperfect world. For the time being, the assumptions we rely on are as follows:

1.7. Research Method 25

• The analyst has access to the stakeholders, documents and data required to construct the goal

model.

• The information to characterize scaling ranges and distributions over scaling ranges can be elicited

from the stakeholders, documents and tests.

• There is no uncertainty in relation to the ranges and distribution of scaling characteristics.

• There ultimately will be a running version of the system, possibly a prototype, that can be used for

scalability analysis.

• There are sufficient data and hardware infrastructure to run the system (or a prototype) over the

full range of scaling characteristics for purposes of analysis.

• The metrics being collected for the analysis are a fair representation of the system qualities of

interest.

• The analyst has the analytical skills to cater for dependency between analysis variables and for

choosing an appropriate utility function.

• The analyst has the ability to choose a representative set of system designs (or system configura-

tions) and data for running any required scalability test.

• KAOS is used as the requirements elaboration technique for the system under scalability analysis.

That is, a standard goal model is available for the analysis of scalability at the goal level.

1.7 Research Method
This research combined practice and theory, following cycles of observing, planning, experimenting and

reflecting. The research problem emerged from the intuition, observation and experience of the people

involved and was confirmed by a comprehensive literature review and discussions with other computer

scientists. Knowledge on the subject was built (1) analytically, through the review of the state-of-art

in scalability research and related areas, and through courses offered at universities, industry and at

conferences; and (2) empirically, through constant experimentation, numerous informal conversations

and frequent exposure of ideas to other researchers and practitioners. Research ideas were validated in

an industrial setting from the very beginning. Constant experimentation allowed observation, reflection

and generation of new ideas.

1.8 Thesis Outline
Chapter 1 has described the motivation and scope of our work. We have also included the research

problem and hypothesis, the thesis contributions and assumptions. The remaining chapters are organized

as follows:

Chapter 2 covers the background concepts required to understand our work, such as experimental pro-

gram analysis and goal-oriented requirements engineering. Our position with respect to related

work is discussed.

1.8. Thesis Outline 26

Chapter 3 revisits our definition of scalability and presents a high-level overview of the framework we

created for the characterization and analysis of software systems scalability.

Chapter 4 describes the elements of the framework in greater detail and introduces an analysis tech-

nique that characterizes and compares the scalability of software systems with respect to the stake-

holders’ goals.

Chapter 5 presents techniques for elaborating scalability requirements, based on a goal-oriented re-

quirements engineering method. These techniques allows one to anticipate and resolve scalability

risks at the goal level.

Chapter 6 brings together our techniques for scalability analysis and for the elaboration of scalability

requirements. A method describes the activities required for characterizing and analyzing the scal-

ability of software systems, which includes the systematic derivation of the variables and functions

to be used in the scalability analysis from the system’s requirements.

Chapter 7 describes a series of case studies using a real-world data analysis system and the applica-

tion of our techniques to a number of smaller examples taken the literature and from industry

interviews.

Chapter 8 summarizes and evaluates the contribution of this work to software engineering and explores

future directions of this research.

Appendix A lists a number of definitions of the term scalability taken from the scientific and informal

computing literature.

Appendix B summarizes a number of interviews carried out with stakeholders and developers in indus-

try about scalability problems they have faced in their companies.

Appendix C contains the design of a comparative case study for the analysis of scalability during the

development lifecycle, including its objectives, hypotheses and risks.

General Remarks The critical evaluation is discussed on a chapter by chapter basis. Also, many of the

remarks in this thesis are the result of our experience as researchers, software developers, project

managers and experimenters. We have also undertaken a number of interviews with seasoned

stakeholders and developers who have faced scalability problems in their systems. The interviews

covered 16 companies of different sizes, industries and maturity level. Each interview was an in-

depth discussion of their scalability problems, development processes and lessons learned. While

these results were not gathered by any scientific means, it helped us to confirm intuitions, ar-

ticulate common concerns regarding scalability and propose ideas for the scalability framework.

When a remark originating from this tacit knowledge is made in the thesis, we will reference it as

“(Industry Interviews, 2007)”. A summary of the industry interviews is given in Appendix B.

1.9. Summary 27

1.9 Summary
In this chapter, we have discussed the motivation, the research problem and hypothesis, as well as the

scope, contributions and assumptions of the work described in this thesis.

Scalability is a frequently asserted attribute of software systems that is rarely validated in any mean-

ingful, systematic way. Inconsistent views on the meaning of the term and the lack of systematic, uniform

and consistent techniques for characterizing and analyzing the scalability of software systems make it

difficult to identify and avoid scalability problems, to describe clearly and objectively the scalability of

software systems, to evaluate claims of scalability, and to compare claims from different sources.

The computing community is lacking a precise definition of scalability and a systematic, uniform

and consistent treatment of scalability that can be applied across application domains and system designs.

This work aims to provide such a definition and develop systematic techniques to characterize, analyze

and compare the scalability of software systems.

Scalability is a large research area and, for this reason, a number of interesting topics had to be left

out of the scope of this research. This includes the extrapolation of scalability analysis results, the design

of test cases for scalability, the treatment of uncertainty in both requirements elaboration and scalability

analysis techniques, among others. This work also relies on a number of assumptions that, although

will not always hold true in the real-world, were considered reasonable to enable the development of

techniques that provide valuable contributions for the field of software systems scalability.

In the next chapter, we review some background concepts that are required to understand this re-

search and discuss related work.

28

Chapter 2

Literature Review

Scalability is a large area of research. In this chapter, we provide the the-

oretical grounding required to understand the scalability framework and give

an overview the state-of-the-art in scalability research and related fields.

2.1. Background 29

2.1 Background
This section reviews the concepts of experimental program analysis and goal-oriented requirements en-

gineering, two important techniques that form the theoretical grounding for this thesis.

2.1.1 Experimental Program Analysis

The scalability framework is adapted from the Experimental Program Analysis (EPA) technique, a for-

malization of guidelines and methodologies of scientific experimentation in program analysis (Ruthruff

et al., 2006). This technique is defined as follows:

Experimental Program Analysis

The evolving process of manipulating a program, or factors related to its execution, under con-

trolled conditions in order to characterize or explain the effect of one or more independent vari-

ables on an aspect of the program. (Ruthruff et al., 2006)

In scientific experimentation, manipulations are purposeful changes to independent variables in an ex-

periment. In the context of EPA, they are modifications in concrete representations of a program (e.g.

source code) or factors relating to its execution (e.g. input or program states). Independent variables

manipulations are called treatments, whose effects are inferred from observations in the experiment.

EPA techniques follow six distinct (and often interleaving) activities:

1. Recognition and statement of the problem: Guides and sets the scope for the experimental program

analysis activity. It defines specific questions (the problem) and the aspect of the program the

experiment will draw conclusions about (the population).

2. Selection of independent and dependent variables: Defines the aspect of the program to be ma-

nipulated by the EPA technique, a construct with which to measure these manipulations, and the

factors for which the experiments do not account, but that could influence or bias observations.

3. Choice of experiment design: Determines specific levels from each independent variable’s range

at which to instantiate treatments; formulates hypotheses about the effects of the treatments on the

aspect of the program of interest; and samples a set of elements from the population, assigning

treatments to samples.

4. Execution of the experiment: Obtains the set of observations on the sample units that measure the

effect of independent variables manipulations (treatments).

5. Analysis and interpretation of data: Analyzes the collected observations to evaluate hypotheses

and determines whether further treatments need to be evaluated or different experimental condi-

tions need to be explored.

6. Conclusions and recommendations: Draws conclusions based on experimental program analysis

results and, if appropriate, recommends future courses of action.

Chapter 3 describes how the scalability framework addresses these stages.

2.1. Background 30

2.1.2 Goal-Oriented Requirements Engineering with KAOS

Goal orientation is a recognized paradigm for elaborating, structuring and analyzing software require-

ments (Chung et al., 1999; van Lamsweerde, 2008). In KAOS, which stands for “Keep All Objectives

Satisfied”, a goal is a prescriptive statement of intent the system should satisfy through the cooperation

of agents. Agents are active system components such as humans, devices, and software. Domain proper-

ties and assumptions are statements about the application domain. The former are descriptive statements

about this world. Physical laws are typical examples of domain properties. Domain assumptions are

statements to be satisfied by the environment. They are specialized in expectations (prescriptive state-

ment to be satisfied by a single environment agent) and hypotheses (descriptive statements satisfied by

the environment and subject to change).

Goals, domain properties and assumptions can be organized in AND/OR refinement structures.

An AND-refinement relates a goal to a set of subgoals; this means that satisfying all subgoals in the

refinement is a sufficient condition in the domain for satisfying the goal. OR-refinement links relate

a goal to a set of alternative AND-refinements; this means that each AND-refinement represents an

alternative way to satisfy the parent goal. Terminal goals in a goal-refinement structure are goals that

are assigned to some individual agent who is alone responsible for guaranteeing the satisfaction of the

goal (Feather, 1987). A requirement is a terminal goal under the responsibility of the software-to-be; an

expectation is a terminal goal under the responsibility of an agent in the environment (van Lamsweerde,

2008).

A goal specification includes a name, a category, a natural language definition, and an optional for-

mal definition expressed in the Metric Linear Temporal Logic (Koymans, 1992). We use the following

standard temporal logic operators in this thesis: �P (P is true in all future states), ♦P (P is true in

some future state), and ♦≤dP (P holds in some future state that is at most d time units from the current

state). The natural language and formal definition of a goal define what it means for the goal to be

satisfied in an absolute sense. Partial levels of goal satisfaction can be specified in precise terms using

domain-specific quality variables and objective functions (Letier and van Lamsweerde, 2004). Objective

functions are used for evaluating and selecting among alternative system designs. As an example, take

the specification fragment below published by Letier and van Lamsweerde (2004). It describes a goal

for the intervention of an ambulance in a urgent incident for an ambulance dispatching system:

2.1. Background 31

Goal 2.1

Goal Achieve [Ambulance Intervention]

Category Performance

Def For every urgent call reporting an incident, an ambulance must arrive at the incident scene within 14

minutes.

Formal Def ∀ inc:Incident

Reported (inc)⇒ ♦≤14′ (∃ Ambulance:Ambulance) Intervention(amb, inc)

Quality Variable: RespTime

Def: time between first report of the incident and arrival of the first ambulance at the incident scene.

Sample Space: Set of reported incidents.

Objective Functions:

Name Definition Mode Must

8MinRespRate Pr(RespTime ≤ 8’) Max 50%

14MinRespRate Pr(RespTime ≤ 14’) Max 95%

The natural language and formal definitions state that this goal is satisfied in an absolute sense

if an ambulance arrives at the incident scene within 14 minutes. The quality variable RespTime is a

random variable whose sample space is the set of reported incidents and whose value denotes the time

for an ambulance to arrive at the incident scene. The objective functions state that the system should be

designed to maximize the probability of an ambulance arriving in less than 8 or 14 minutes. The “Must”

column indicates that in at least 50% of the cases an ambulance should arrive at the incident scene within

8 minutes and in at least 95% of the cases it should arrive within 14 minutes. This high-level goal is not

assigned to any agent and should be refined further.

Goal-obstacle analysis consists of taking a pessimistic view of the model elaborated so far. An

obstacle to some goal is an exceptional condition that prevents the goal from being satisfied (Potts,

1995; van Lamsweerde and Letier, 2000). An obstacle O is said to obstruct a goal G in some domain

characterized by a set of domain properties Dom iff (1) the obstacle entails the negation of the goal

in the domain (i.e., O, Dom � ¬ G), and (2) the obstacle is not inconsistent in the domain (i.e., Dom

2 ¬ O). The principle of obstacle analysis consists of systematically identifying as many obstacles as

possible to the satisfaction of goals, and finding ways to resolve the identified obstacles by producing a

more complete set of goals and requirements to prevent, reduce, or mitigate the identified obstacles. The

selection of a preferred resolution depends on the obstacle likelihood and critically, and the impact of

the resolutions on the satisfaction of high-level goals (Letier and van Lamsweerde, 2004).

Graphically, goals are organized in tree structures, as in Figure 2.1. Goals and assumptions are

represented by parallelograms. The trapezoid is used for representing domain properties or hypotheses.

Hexagons are used for agents, and the circle in the line joining a goal to an agent is a responsibility

assignment. An AND-refinement is represented by an arrow with a small circle connecting the sub-

goals contributing to the refined goal; the latter is the target of the directed link. An OR-refinement is

graphically represented by multiple AND-refinement arrows pointing to the same goal. A negated arrow

represents a goal obstruction, and a “reverse” parallelogram indicates an obstacle.

2.2. Related Work 32

Figure 2.1: KAOS goal model notation.

Goal-oriented requirements elaboration methods such as KAOS and the NFR framework (Chung et al.,

1999) provide a rich set of techniques for the incremental elicitation, specification, analysis, and evolu-

tion of requirements models. However, as reported in (Duboc et al., 2008), during our first application of

KAOS to an industrial system, we could not find any support for the elaboration of scalability require-

ments. Specifying a high-level goal named Scalable System and gradually refining this goal into more

precise requirements is not adequate because of the lack of a precise definition for the description of the

high-level goal and the lack of guidance on how to refine it into testable scalability requirements. We

tackle this problem in Chapter 5.

2.2 Related Work
This section gives an overview of the state-of-the-art in scalability and other related areas.

2.2.1 The Various Contexts of Scalability

Scalability has been studied in a variety of contexts, such as parallel computing (Luke, 1993; Kumar and

Gupta, 1994; Sun et al., 2005), video imaging (North, 2006), hypermedia (Anderson, 1999a; Field-

ing and Taylor, 2002; Anderson, 1999b), mobile and ubiquitous systems (Deters, 2001; Rana and Stout,

2000; Bivens et al., 2004; Kang et al., 2008), networks and routing protocols (Li et al., 2008; Kosch et al.,

2006; Alazzawi et al., 2008), distributed systems (Zhang et al., 2007; Bahsoon and Emmerich, 2008;

Kalinov, 2004), gaming (Jiang et al., 2005; Callow et al., 2007; Müller and Gorlatch, 2006), simula-

tion (Ji et al., 2006; Law, 1998; Egea-Lopez et al., 2006), information retrieval (Imafouo, 2005; Monch,

2002), data mining (Lutu, 2002; Buehrer and Chellapilla, 2008; Blockeel and Sebag, 2003), operating

systems (Silva et al., 2006; von Behren et al., 2003; Jones et al., 2003), quantum computing (Meter and

Oskin, 2006) and software process (Laitinen, 2000; Tepfenhart et al., 2002), among others. We next

exemplify how scalability is treated in some of these contexts:

Parallel Systems

One of the areas in which scalability has been extensively studied is parallel systems. The parallel

computing community has a few well-established definitions, including fixed-size speedup (where the

number of processors is scaled in the presence of a fixed workload to reduce processing time), fixed-time

2.2. Related Work 33

speedup (where processor attributes are scaled so that workload can be scaled to retain a fixed processing

time), and efficiency (the ratio of speedup to the number of processors) (Luke, 1993; Kumar and Gupta,

1994). Based on these definitions, a number of scalability metrics and functions have been defined, such

as P-scalability (Jogalekar and Woodside, 1997), isoefficiency (Rao and Kumar, 1987; Grama et al.,

1993), scaled speedup (Gustafson, 1995), sizeup (Sun and Gustafson, 1993), and isospeed (Sun and

Rover, 1994; Sun, 2002). These metrics, related mainly to performance, exploit the uniform nature of

parallel systems. In particular, they rely on the fact that such systems are typically symmetric compo-

sitions of a single, basic processing node, inducing fairly straightforward closed-form characterizations

of their scalability properties. Nevertheless, because of fundamental differences between parallel com-

puting and other classes of systems, these metrics cannot be applied more broadly (Sun et al., 2005;

Pastor and Bosque, 2001; Jogalekar and Woodside, 1998). Distributed systems, for instance, typically

consist of heterogeneous processors and interconnection mechanisms, irregular topology, concurrent

input, geographic separation, etc. Therefore, merely increasing hardware resources may not scale up

a system’s performance if a bottleneck lies in the software/middleware (Bondi, 2000). Attempts to

generalize metrics for parallel systems are discussed later in this chapter.

Model Checking

Another area where scalability has received systematic treatment is model checking. The state

space size a model checker can handle can be taken as an indicator of scalability, where being able

to handle a larger the state space indicates a more scalable model checker. There is a large body of

research that concentrates on tackling the so-called state explosion problem of model checkers (Grum-

berg and Peled, 1999) through heuristics and optimizations, such as exploiting the symmetry of the state

space (Emerson and Sistla, 1997; Clarke et al., 1996; Ip and Dill, 1996). Model checking techniques

can then be easily compared through the use of a few common metrics of interest, normally related to

resource usage. But such approaches and metrics are inapplicable to systems other than model checker.

Computational Complexity

The term scalability is often used to refer to more theoretical notions of computing, as in computa-

tional complexity (Goldsmith et al., 2007; Yang et al., 2003). A common intuition is that an algorithm

with a polynomial complexity is scalable, while one with an exponential complexity is not scalable (Sas-

try et al., 2005; Nadeau and Teorey, 2002). In such cases, scalability is being related to the tractability

of the algorithm.

Programming Languages and Software Development Processes

Scalability has also been studied in contexts other than software systems. More generally, artifact

size (e.g., lines of code, test suite size) is used as a scalability metric to compare software tools and meth-

ods. For example, programming language advocates often discuss a language’s scalability, where more

powerful constructs and features mean a more scalable language (Vanier, 2001; Odersky et al., 2008). In

2.2. Related Work 34

such cases, the term is related to the complexity of the coding tasks, and language scalability is normally

achieved through abstraction. Another common concern is the scalability of software development pro-

cesses, tools and methods. Some software development practices, designed for large departments, are

inefficient for smaller ones (Laitinen, 2000), while others do not bring the envisaged benefits in large

projects (Elssamadisy and Schalliol, 2002; Boehm, 2006).

2.2.2 Scalability — Definition, Analysis and Prediction

The following studies explicitly tackle the problem of scalability. Some attempt to define the meaning of

the term, while others are concerned with analysing and predicting the scalability of software systems.

This list of works is not exhaustive. Yet, it highlights the main aspects of the state-of-the-art in scala-

bility research. Some works are presented in more detail in order to convey a more concrete view of

the different treatments of scalability. The main distinctions with respect to our framework are discussed.

Scalability Definitions

Like ourselves, other authors have questioned the meaning and use of the term scalability and have

attempted to provide better definitions (Hill, 1990; Steen et al., 1998; Bondi, 2000; Weinstock and Good-

enough, 2006; Sun and Rover, 1994; Luke, 1993; Zirbas et al., 1989; Law, 1998). A list of definitions

of scalability is given in Appendix A. However, these earlier attempts to define scalability represent an

intuitive ideal or are restricted to a narrow meaning, as discussed in Chapter 1. In particular, as it will

be explained in Chapter 3, we associate scalability with the satisfaction of quality goals. A few previ-

ous works have related scalability to requirements and/or Quality of Service (QoS), either formally or

informally. For example:

“Scalability means not just the ability to operate, but to operate efficiently and with ade-

quate quality of service, over the given range of configurations.” (Jogalekar and Woodside,

2000)

“Scalability is the ability of a system to continue to meet its response time or throughput

objectives as the demands for the software functions increases.” (Smith and Williams, 2001)

“The scalability of a system architecture must be seen in the context of the requirements

placed on it. It represents the ability to fulfill capacity requirements over some desired range,

while continuing to satisfy all other requirements: functional, statistical work-mix, quality

of service, unit cost of ownership, etc.. We shall refer to the complete set of requirements

other than capacity as the IT profile. An architecture is scalable with respect to an IT profile

and a range of desired capacities if it has a viable set of instantiations over that range.

Viable will therefore be taken to mean (1) satisfying the requirements of the IT profile, (b)

technically realizable and (c) with linear (or sub-linear) increase in physical resource usage

as capacity increases over the range. It is factor (c) which is the essence of the scalability

concept, with factors (a) and (b) acting as constraints.” (Brataas and Hughes, 2004)

2.2. Related Work 35

These definitions, however, suffer from the same weakness as the ones discussed in Chapter 1.

They are subjective (because adopt terms such as adequate) or are restricted to performance metrics and

the idea of linear scalability.

Techniques Adapted from Parallel Computing

With respect to the analysis of scalability, some early papers attempted to adapt scalability notions

from parallel computing to other classes of systems. Jogalekar and Woodside define a metric for evaluat-

ing scalability based on the power of the system (the ratio between throughput and mean response time)

to the cost of obtaining this power, and a method for finding the most economical path for evolving a

system (Jogalekar and Woodside, 1997, 2000). More recently, Sun et al. (2005) extended the isospeed

scalability metric to an isospeed-e metric that is suitable for both homogeneous and heterogeneous com-

puting. These same authors created a Scalability Testing and Analysis System (STAS) that provides

analysis of algorithms and systems based on the isospeed-e metric (Chen and Sun, 2006). Kalinov

(2004) adapts metrics proposed for linear algebra libraries to heterogeneous platforms.

These papers, which are mainly targeted at distributed systems, also concern performance metrics

only. We view scalability as a quality that relates to a number of system qualities, not only performance,

as reported in (Duboc et al., 2007). Therefore, in our framework, scalability may be analyzed with

respect to metrics related to other system qualities as well. In fact, the metrics used by these papers can

be used in the scalability framework to quantify dependent variables.

Techniques Targeted at Narrow Classes of Systems and Specific Technologies

More recent work has targeted narrow classes of systems and technologies (Kwok and Wong, 2008;

Coarfa et al., 2007; Cecchet et al., 2002; Kim and Ellis, 2001). Papavassiliou et al. (2002), for example,

describe a simulation methodology to evaluate the scalability of ad-hoc mobile networking technologies.

Liu et al. (2002) describe an empirical investigation into the scalability of the Enterprise JavaBeans

(EJB) technology. Kong et al. (2006) concentrate specifically on peer-to-peer (P2P) systems based on

distributed hash tables (DHT) and present a technique for characterizing the scalability of these systems

under random failures.

The advantage of using such techniques is that they offer off-the-shelf analyses of scalability

problems that are specific of a particular class of systems and technologies. Also, by exploiting charac-

teristics of these systems and technologies they might be able to accomplish a more precisely prediction

of system qualities of interest. However, by applying only such techniques, one may overlook problems

that are specific to the system being analyzed. Our framework, in contrast, aims to establish a uniform

notion of scalability that can be applied in a wide variety of application domains and system designs.

Yet, it is based on a systematic requirements engineering technique that will help to identify and resolve

scalability risks that are particular to the system being analyzed. Finally, one may create specific instan-

tiations of the scalability framework for classes of systems and/or technologies that will act as a first

guidance to characteristics to consider for system fitting these categories. Such instantiations could be

2.2. Related Work 36

extended by using the systematic requirements engineering techniques to include other aspects that are

specific to the system under analysis.

Techniques for Evaluating Scalability with Respect to Performance

Some papers in the computing literature are concerned with analyzing the scalability of broader

classes of software, but with respect to performance metrics only. For instance, Steen et al. (1998)

describe a systematic approach to guide the distribution and application of scaling techniques, such as

replication and caching, based on performance metrics. Masticola et al. (2005) focus on the inception

phase of the Rational Unified Process (RUP), estimating scalability from user scenarios, experimenta-

tion, public study data, and performance data from a baseline system. Some other examples are given in

more detail below:

Performance Non-Scalability Likelihood

Weyuker and Avritzer define a Performance Non-Scalability Likelihood (PNL) metric, whose goal

is to determine whether a system can continue to function with acceptable performance when the work-

load has been significantly increased (Weyuker and Avritzer, 2002). The metric is calculated with the

formula PNL(P,Q) =
∑

s

Pr(s)C(s), where Pr(s) is the probability of a given state s andC(s) is the

acceptability of a certain performance: C(s) = 1 if performance is acceptable and C(s) = 0, otherwise.

The process to apply the PNL metric is the following: (1) define the performance objective of the system;

(2) determine the appropriate distribution of arrival processes and service times; (3) model the system as

a queuing network; (4) solve the model to generate the state probability distribution of the system; and

(5) compute the PNL metric. The process requires the collection of significant amounts of field data to

derive the operational distribution, including an operational profile of the system under study.

In common with our framework, their paper considers the acceptability of the system’s perfor-

mance objectives when evaluating scalability. However, it offers no guidelines on how to define these

objectives, which in the paper are described only in terms of the maximum acceptable response time.

Furthermore, unlike our framework, this paper is restricted to queuing network models and performance

metrics.

Brataas and Hughes’s Architectural Scalability

Brataas and Hughes (2004) explore the scalability of an architecture through measurement and a

combination of static and dynamic models. The authors consider an architecture to be scalable, over

a particular set of requirements, if the physical resource usage per unit of capacity remains roughly

constant. A static modeling technique, the Structure and Performance (SP) specification method, defines

the services used by each software component in the form of a work-complexity matrix (Jogalekar and

Woodside, 1998). This static model determines the resource demands of the system, which are then used

in a queuing network to model the dynamic behavior of the system.

The method consists of the following steps: (1) determine the scaling objectives (i.e., the design

2.2. Related Work 37

space to be explored); (2) construct static and dynamic models; (3) validate the baseline model by mea-

surement,; (4) explore scalability by increasing capacity; and (5) validate scalability projections (where

possible).

This work is interesting because it considers scalability with respect to the system requirements.

According to the authors, a system is scalable if it can fulfill capacity requirements over some desired

range, while continuing to satisfy all other requirements: functional, statistical work-mix, quality of

service, unit cost of ownership, etc. These other requirements are referred to as the IT profile. The

paper, however, has a limited view of scalability, only considering scalable a system that can satisfy

its IT profile while maintaining a linear (or sub-linear) increase in physical resource usage as capacity

increases over the range. We dispute the use of heuristics such as “linear scalability”, which may impose

an unnecessary demand on the system. We argue, instead, that scalability objectives should be derived

from high-level business goals. Furthermore, Brataas and Hughes’ work is also restricted to queuing

networks and performance metrics.

D’Antonio et. al’s Scalability of Component-based Frameworks

This paper (D’Antonio et al., 2004) proposes an engineering approach to the study of scalability

in distributed systems. The solution consists of developing a model of the orchestrated behavior of a

system’s components, evaluating the system performance, and identifying bottlenecks. More precisely,

the solution starts by defining a set of independent parameters for the model (e.g., number of users,

average number of requests per user, number of user input components, etc.) and evaluating how the

number of messages exchanged in the system varies relative to such parameters. The system available

resources are then modeled with a queuing network. Message arrival rates are defined as functions of the

independent parameters, and service rates are estimated based on the message processing time. Finally,

the authors replace independent parameters with realistic scenarios, varying one parameter at a time,

and estimating the order of magnitude and trends of dependent variables (e.g., message arrival time and

server’s service rate).

Scalability analysis on our framework could theoretically be conducted in similar fashion: by using

a queuing network to estimate trends of dependent variables based on the variation of independent vari-

ables. However, our analysis goes beyond the estimation of values of dependent variables, taking into

consideration the satisfaction of the stakeholder with the values assumed by these dependent variables

(described by preference and utility functions). Furthermore, our analysis is not limited to performance

metrics or any particular type of architecture. It establishes, instead, a uniform notion of scalability that

can be applied in a wide variety of application domains and system designs.

Williams and Smith’s Quantitative Scalability Evaluation Method (QSEM)

Williams and Smith describe QSEM, a model-based approach to evaluating quantitatively the scala-

bility of Web-based applications and other distributed systems (Williams and Smith, 2005). QSEM uses

straightforward measurements of maximum throughput for different numbers of processors or nodes,

2.2. Related Work 38

and extrapolates the results to a higher number of processors or nodes. The method consists of seven

steps: (1) identify critical use cases; (2) select representative scalability scenarios; (3) determine scala-

bility requirements; (4) plan measurement studies; (5) perform measurements; (6) evaluate data; and (7)

present results.

Use cases and scenarios chosen in steps 1 and 2 are the ones that represent the typical uses of the

application or that have high resource demands, and therefore contribute to the dominant load. The

scalability requirements, defined in step 3, should be precise, quantitative and measurable. They are

often described by combining performance requirements, performance workload, and projected growth.

In order to plan the measurement studies, in step 4, it is necessary to have quantitative information

about typical execution paths, thinking time between user requests, typical database queries and the

probability of taking different execution paths. In step 5, measurement experiments are conducted and

regression analysis is used to determine which of the scalability models best describes the application’s

observed behavior, which are then used to extrapolate the results. Finally, steps 6 and 7 evaluate the

measurement data to determine whether the scalability requirements can be met and then select the best

scaling strategy, presenting the results.

This interesting work focuses on scalability with respect to performance, uses measurement,

and builds on previously proposed models (linear scalability, Amdahl’s law, super-serial model and

Gustafson’s law) 1. Its narrower scope makes it well suited to the exploration of throughput with respect

to the chosen scalability scenarios. Nevertheless, despite the emphasis on the importance of determin-

ing scalability requirements, the authors offer weak guidelines on how to elaborate these requirements,

which could lead to overlooking important scenarios. They also do not consider that the level of satis-

faction of requirements may vary as quantities in the application domain scale.

Our framework, in contrast, recognizes that scalability problems often come from unexpected

system usage and exceptional circumstances, and provides a systematic way to explore these scenarios

during requirements engineering. It also formalizes the concepts of scaling assumptions and scalability

goals, which describe the “required performance to be achieved expressed in terms of the workload

mix and the expected intensity”—an interesting need highlighted by the authors, but not specifically

addressed. Finally, our framework also incorporates stakeholders’ goals—as preference and utility

functions—in the scalability analysis.

Weinstock and Goodenough’s Scalability Model

Weinstock and Goodenough (2006) provide an interesting discussion on the scalability of

performance-critical systems. The discussion includes their definition of the term, causes of scalability

failures, the trade-off between system qualities, and an audit for helping the assessment of proposed

scalability strategies. The authors also present initial ideas on a model for scalability.

Weinstock and Goodenough’s model looks at adding hardware resources incrementally to satisfy a

response metric M. The analysis is defined in terms of processor units P, and assumes that the system

1A discussion of these models can be found in Williams and Smith (2004).

2.2. Related Work 39

consists of one or more processors added incrementally. The maximum capacity of a single processor

is D1 demands units. That is, a single processor running alone will satisfy the metric M as long as the

instantaneous demand d is within the processor’s capacity (d ≤ D1). The authors note that there are

potential overheads in adding processors and that it may not linearly increase the system capacity or

decrease performance at low demand. They thus define Efficiency En as a measure of the actual capacity

available in the n-processor system when overhead is taken into account, divided by the capacity that

would be available if the overhead were ignored: En = Σn
i=1 Di / nD1. Efficiency is used to measure the

relative scalability of a system. A system architecture whose efficiency falls off slowly as more capacity

is added is more likely to continue to be scalable than one in which efficiency falls quickly.

The model also defines Ci as the cost of extending the system’s capacity by adding the ith unit, and

a cost-effectiveness metric Ki as some function F (Ci, Ei), such that when two scaling strategies have

different values of K, it is always more effective to pick the one with higher value when adding the ith

unit.

Like our framework, Weinstock and Goodenough’s model allows comparing the scalability of al-

ternative system architectures. The model is, however, limited to system performance with respect to the

number of processors and does not consider the stakeholder’s goals. The authors also tackle the issue of

costs (an issue that is not directly addressed by our scalability framework), but they point out that much

more work is needed in evaluating the cost-effectiveness of a scalability strategy.

Munsterman’s Software Scalability Evaluation Method

Munsterman describes a method for improving software scalability (Munsterman, 2008). The au-

thor’s main concerns are (1) the system’s ability to accommodate more users without modifying its

hardware infrastructure; and (2) the portability of the code to distributed servers or multiple projects.

The model consists of finding, analyzing and choosing solution strategies for removing bottlenecks at

the system’s code level.

Various methods are suggested for finding bottlenecks, including load and stress tests, execution

information obtained from log files of application servers and bug tracking systems, and experience of

the people involved with the application. If multiple bottlenecks are found, they are ranked by priority.

The cause and effects of bottlenecks are then analyzed. For such, the author proposes the use of a

profiler to measure the behavior of the application at runtime, and the calculation of metrics that measure

code reuse (coupling, cohesion, complexity, instability, and documentation rate). Knowledge about the

bottleneck is used to solve the scalability problem. The author suggests that this knowledge can be

gained through white papers, community forums and best practices.

Munsterman’s solution is targeted at the specific problem of improving a system’s scalability (with

respect to performance) through modifications in the system’s configuration and code. The author claims

that only after the software is optimized, scalability through hardware should be considered. Although

the system designer should indeed aim for the best use of the resources available and try to avoid soft-

ware bottlenecks, code optimizations are usually one-off scalability strategies only. Munterman’s model

2.2. Related Work 40

has, therefore, a different scope from the scalability framework, which aims to characterize, analyze,

and compare the scalability of software systems, regardless of the scaling strategy used to achieve the

desired scalability. The author also overlooks the scalability requirements of the system and how to

evaluate whether the code optimizations will meet these requirements.

2.2.3 Software Architecture Evaluation

The vast majority of works we reviewed in the area of scalability analysis and prediction are concerned

with performance metrics. We, however, view scalability as a quality that relates to other system quali-

ties, as will be explained in Chapter 3. For this reason, our work also relates to the area of architecture

evaluation methods.

This body of research is concerned with the analysis of software qualities at the architectural

level. Some well-known methods in this area are: the Scenario-based Architecture Analysis Method

(SAAM) (Kazman et al., 1996), the Architecture Tradeoff Analysis Method (ATAM) (Kazman et al.,

1998), the Cost Benefit Analysis Method (CBAM) (Kazman et al., 2001), the Scenario-Based Architec-

ture Reengineering (SBAR) (Bengtsson and Bosch, 1998) and the Performance Assessment of Software

Architectures (PASA) (Smith and Williams, 2001). These methods generally identify the quality goals

of interest and then evaluate the strengths and weaknesses of the architecture to meet the desired goals.

Depending on the method, the evaluation explicitly addresses a single quality or multiple quality goals

at the same time. In general, these methods suffer from a considerable drawback: the wrong choice of

variables and functions could compromise the analysis results; yet they do not provided guidance on this

task. Our scalability framework, in contrast, includes systematic techniques to identify variables and

functions from scalability goals.

Before looking into these methods in more detail, we first review some concepts used by them:

Architectural Style: a description of components types and their rules of configuration. It also includes

a description of the pattern of data and control interaction among the components and an informal

description of the benefits and drawbacks of using that style (Shaw and Garlan, 1996; Buschmann

et al., 1996).

Attribute-based Architectural Style (ABAS): provides a foundation for more precise reasoning about

architectural design by explicitly associating a reasoning framework (whether qualitative or quan-

titative) with an architectural style (Klein et al., 1999). It is a pre-packaged set of analyses and

questions for the architect, based upon solutions to commonly recurring problems and known

difficulties in employing those solutions.

Scenarios: brief narratives of the expected or anticipated use of a system from both developer and end-

users viewpoints. They are considered important tools for exercising an architecture in order to

gain information about the system’s fitness with respect to a set of ordered quality attributes (Kaz-

man et al., 1996).

2.2. Related Work 41

We now give a short description of some of the well-known architecture evaluation methods:

SAAM

SAAM is a structured method employing scenarios to analyze architectures (Kazman et al., 1996).

It elicits stakeholders’ input to identify quality goals that the architecture is intended to satisfy, uses

scenarios to operationalize these attributes, and indicates places where the architecture fails to meet these

requirements. The steps of SAAM are: (1) describe the candidate architecture; (2) develop scenarios;

(3) perform scenario evaluations; (4) reveal scenario interactions; and (5) present overall evaluation.

Scenarios are classified as direct (supported by the current architecture) and indirect (requires a

modification to the architecture to be satisfied). Scenario evaluations, indicate for each indirect scenario

a list of changes that are necessary and the cost of performing these changes. Determining scenario

interaction is the process of identifying scenarios that affect a common set of components.

SAAM is concerned with a system architecture’s fitness with respect to a number of qualities, includ-

ing correctness, security, reliability, availability, maintainability, predictability, and scalability2, among

others. Although the scenarios defined in step 2 force developers to consider future uses and changes to

the system, there is no specific guidance on how to elaborate the scalability scenarios, nor are these sce-

narios treated differently from other types of scenarios. In contrast, our scalability framework explicitly

addresses the elaboration of scalability requirements and is concerned with characterizing the effect that

scaling characteristics will have on multiple system qualities, whether or not a change is required to the

system architecture.

SBAR

SBAR is a method for reengineering software architectures (Bengtsson and Bosch, 1998). It re-

ceives as input an updated requirements specification and the existing software architecture and then

produces an improved architectural design. The process starts with incorporating new functional re-

quirements into the architecture. Quality attributes (QA) are estimated using qualitative or quantitative

assessment techniques, and the QA’s estimates are then compared to the non-functional requirements. If

the requirements are not met by the estimations, the architecture is improved by selecting an appropriate

QA-transformation, resulting in a new version of the architectural design that is fed back to the start of

the process.

Despite being aimed at reengineering software architectures, SBAR relates to our scalability frame-

work because it assesses multiple quality attributes against non-functional requirements. Four different

approaches are used for the evaluation of the architecture with respect to quality attributes: scenarios,

simulation, mathematical modeling and objective reasoning. Scenarios are the primary method of as-

sessment. However, no guidelines are given to specify these scenarios, nor is there any mention of

scenarios that consider the scaling of domain characteristics. Furthermore, the method assumes that

2The authors do not define what they mean by scalability.

2.2. Related Work 42

requirements specifications exist, as well as the targets for non-functional requirements. The lack of

guidelines for both the specification of scenarios and non-functional requirements introduces the risk

of overlooking or wrongly estimating the scaling of domain characteristics, which could jeopardize the

estimation of quality values.

ATAM

ATAM is a scenario-based technique to assess the consequences of architectural decisions in the

light of quality attribute requirements (Kazman et al., 1998). Not only does it review how well an

architecture satisfies particular quality goals, but it also provides insight into how these goals interact

with each other (Clements et al., 2002). There are three types of scenarios in ATAM:

Use scenarios: describe the typical uses of the completed running system;

Growth scenarios: describe ways in which the architecture is expected to accommodate growth and

change in the moderate near term (expected modifications, changes in performance or availability,

porting to other platforms, and so on); and

Exploratory scenarios: describe extreme forms of change (such as order of magnitude changes in per-

formance or availability requirements or major changes to the system’s infrastructure or mission).

ATAM’s steps are as follows: (1) present ATAM to stakeholders; (2) present business drivers; (3)

present architecture; (4) identify architectural approaches; (5) generate quality attribute utility tree; (6)

analyze architectural approaches; (7) brainstorm and prioritize scenarios; (8) analyze new architectural

approaches; and (9) present results.

Step 1 simply describes the ATAM method for all the people involved in the assessment of the

system. The business drivers and the system architecture are described in steps 2 and 3 according to

templates. For example, the business drives should include a description of the business environment,

history, market differentiators, driving requirements, stakeholders, business constraints, technical con-

straints, and quality attributes. In step 4, architectural approaches and architectural styles are identified

as a means of addressing the highest priority quality attributes. The generation of the quality attribute

tree in step 5 results in a prioritized list of scenarios. For such, quality factors that contribute to the

system “utility” (performance, availability, security, modifiability, etc) are elicited, specified down to

the level of scenarios, annotated with stimuli and responses, and prioritized. Prioritization is based on

the importance of each node to the success of the system and the degree of perceived risk posed by

the achievement of this node. The architectural approaches that address the highly-ranked scenarios are

elicited and analyzed in step 6. The output of this phase is a list of architectural approaches, questions

associated with them, and the architect’s response to these questions (frequently including a list of risks,

sensitivity points and trade-offs). This step may also include rudimentary analyses of the quality at-

tributes. This analysis is not meant to be comprehensive and detailed, but commensurate with the level

of detail of the architectural specification. A brainstorm with a larger stakeholder community takes place

in step 7 for the generation of more scenarios. The highly-ranked scenarios are analyzed in step 8.

2.2. Related Work 43

ATAM may be perceived as the technique that most overlaps with the scalability framework. It

concerns multiple qualities at the same time, it aims for the precise statement of quality attribute re-

quirements, and it uses utility to evaluate the satisfaction of these requirements. Its main objectives

are, however, different. ATAM is concerned with assessing the consequences of architectural decisions,

with respect to the different system qualities. This assessment may be qualitative. The scalability

framework, on the other hand, is concerned with explicitly and quantitatively showing the effect that

scaling characteristics in the application domain and system design have on the satisfaction of quality

goals—independent of any change in the system architecture. Furthermore, ATAM gives no systematic

guidelines to elaborate quality requirements, or growth and exploratory scenarios. As will be discussed

in Chapter 5, scalability problems are sometimes the result of unforeseen scenarios. Without a sys-

tematic technique, exceptional scenarios are likely to be overlooked. ATAM’s use of utility also differs

from the notion of utility in our scalability framework. This difference will be described in Section 2.2.5.

CBAM

CBAM is a method for analyzing the costs, benefits, and schedule implications of architectural

decisions. CBAM begins where the ATAM concludes and depends on the artifacts produced by ATAM.

The method aids in the specification and documentation of costs, benefits and uncertainty of a “portfolio”

of architectural investments and gives stakeholders a framework for applying a rational decision-making

process that suits their needs and risk averseness (Kazman et al., 2001).

The steps of CBAM are as follows: (1) collate scenarios, both new ones and the ones elicited

during ATAM; (2) refine scenarios; (3) prioritize scenarios; (4) assign utility for each quality attribute

response level; (5) develop an architectural style for the scenarios and determine their expected quality

attributes response levels; (6) determine the utility of the expected quality attributes response levels

by interpolation; (7) calculate the total benefit obtained from an architectural style; (8) choose a new

architectural style based on return on investment (ROI), subject to costs and schedule constraints; and

(9) confirm the results against intuition.

In CBAM, a scenario contains the worst-case, current, desired and best-case response levels of the

quality attribute associated with that scenario. In step 3, scenarios are prioritized by allocating 100 votes

to each stakeholder and having them distribute the votes among scenarios by considering the desired

response value of each scenario. A weight of 1.0 is assigned to the highest-rated scenario, and the

other scenarios receive weights that are relative to that one. In step 4, a utility is assigned for each

quality attribute response level, forming a utility curve. In step 5, the utility of the expected quality

attributes value is determined by interpolation, using the utility curve. The total benefit is obtained

by subtracting the utility value of the “current” level from the “expected” level for each quality and

computing a weighted sum using the votes elicited in step 3.

Unlike CBAM, costs have not been thoroughly investigated in our scalability framework. Theoret-

ically, cost is another goal that has to be satisfied and can be mapped to a dependent variable. However,

more research is needed in order to incorporate costs into our framework. One advantage of CBAM is

2.2. Related Work 44

that it considers uncertainties, defining a range of values for each cost, response and utility. This is still

the subject of future research in the scalability framework. Particularly, we want to capture uncertainties

about future values of scaling assumptions in the goal graph, to then incorporate them into the scalability

analysis.

Nevertheless, building upon ATAM, CBAM shares the same disadvantages as ATAM with respect

to the lack of systematic techniques for elaborating quality requirements and scenarios. Finally, the au-

thors admit that one of the biggest problem with CBAM is that it is difficult for stakeholders to quantify

the expected utility level of an architectural style. They also observe that highly variable judgments

can result if their interpretations cannot be calibrated with the current system’s business goals. In the

scalability framework, the problem of quantifying preferences and utility according to business goals

is dealt with by using a systematic goal-oriented requirements elaboration technique. CBAM’s use

of utility also differs from the notion of utility in our scalability framework. This difference will be

described in Section 2.2.5.

PASA

PASA is a scenario-based method for performance assessment of software architectures. It uses the

principles and techniques of software performance engineering (SPE) to determine whether an architec-

ture is capable of supporting its performance objectives (Smith and Williams, 2001).

The PASA process consists of the following 10 steps: (1) present an overview of the process to

stakeholders; (2) present an overview of the architecture; (3) identify critical use cases; (4) select key

performance scenarios; (5) identify performance objectives; (6) clarify and discuss features of the ar-

chitecture to support key performance scenarios; (7) analyze the architecture to determine whether it

supports performance objectives; (8) identify alternatives, if problems are found; (9) present results; and

(10) perform analysis of costs and benefits of the study and the resulting improvements.

As with other architecture evaluation methods, PASA starts with an overview of the method and

architecture in steps 1 and 2. The critical use cases identified in step 3 are those that are important to

the operation of the system, or that are important to responsiveness as seen by the user. They may also

include those for which there is a significant performance risk. Each use case consists of a set of scenarios

that describe the sequence of actions required to execute the use case. Step 4 focus on the scenarios that

are executed frequently and on those that are critical to the user’s perception of performance. Each key

scenario has at least one associated performance objective. This objective is expressed in a quantitative

and measurable way in step 5. The analysis of the architecture, performed in steps 6, 7 and 8, use

several techniques, including the identification of the underlying architectural style and performance

anti-patterns, and quantitative analysis through performance models. Steps 9 and 10 present the results

and recommendation, which are complemented by an economic analysis showing that the time and

effort dedicated to PASA was worthwhile compared to the time and effort that would be required if the

problems were discovered later.

Despite being restricted to performance, PASA is interesting because it explicitly considers variations

2.2. Related Work 45

in the workload mix over time (specified as the conditions under which the required performance is to

be achieved for each combination of scenario and objective). Nevertheless, the method also has weak

guidelines for the specification of scenarios and performance objectives. In addition, despite the authors

noting that performance objectives must be balanced with other quality concerns, they give no specific

guidance on how to incorporate these conflicts and trade-offs into the analysis.

2.2.4 Performance Analysis and Prediction

Measurement and evaluation of certain qualities represented in our framework as dependent variables

have been studied for many years. For this reason, our work is also related to analysis and prediction

of specific system qualities, such as reliability, availability, security, and others. One area in particular

that has received much attention is performance evaluation, where established models such as queuing

networks, Petri nets and stochastic process algebras are used to estimate and compare the performance

of one or more alternative system designs. These techniques are perfectly valid models to predict per-

formance at different points of the system’s operational range; but they generally fail to characterize the

impact of the system’s operational range on the satisfaction of its performance goals. One particular

well known method in the area of performance evaluation is described below.

Software Performance Engineering (SPE)

Software Performance Engineering (SPE) is a systematic, quantitative approach to construct soft-

ware systems that meet performance objectives (Smith and Williams, 2001). SPE is a model-based

approach that uses deliberately simple models of software processing. Two types of model provide in-

formation for architecture assessment: the software execution model and the system execution model.

The former is derived from UML models and is constructed using execution graphs to represent work-

load scenarios. Nodes in the graph symbolize functional components of the software, and arcs show

the control flows. Solving this model provides a static analysis of the mean, best- and worst-case re-

sponse times. If the software execution model indicates that there are no problems, analysis proceeds to

construct and solve the system execution model. This model is a dynamic model that characterizes the

software performance in the presence of factors that could cause contention for resources, such as other

workloads or multiple users.

The SPE process includes the following steps: (1) assess performance risk; (2) identify critical use

cases; (3) select key performance scenarios; (4) establish performance objectives; (5) construct perfor-

mance models; (6) determine software resource requirements,; (7) add computer resource requirements;

(8) evaluate the models; and (9) verify and validate the models.

In relation to the scalability framework, SPE suffers from the same weakness as PASA—weak

guidance on elaborating scenarios, workload intensities and performance objectives.

There are many other works in the area of software performance analysis. Some of them propose ex-

tensions to standards and notations such as the Model Driven Architecture (MDA), the Unified Mod-

2.2. Related Work 46

eling Language (UML), the Architecture Description Language (ADL), the Ontology Web Language

for Services (OWL-S) and the Web Service Offering Language (WSOL) to incorporate performance

attributes (Woodside et al., 2005; Hopkins et al., 2002; Verdickt et al., 2004; Tribastone and Gilmore,

2008). Some works extend the SPE process (Hoeben, 2000; Bertolino and Mirandola, 2004). There are

also works that rely on monitoring capabilities to model and predict performance (Mos and Murphy,

2004; Avritzer et al., 2002; Caporuscio et al., 2005; Avritzer et al., 2002; Reiss, 2008) and works that

adopt an hybrid approach using modeling and monitoring (Liu and Gorton, 2004). These approaches can

be specialized for different kinds of systems or technologies (e.g., component-based systems and middle-

ware) by exploiting knowledge about the technology to aid performance prediction (Wu and Woodside,

2004; Llado; and Harrison, 2000; Petriu et al., 2000).

Although these works are restricted to performance, some of the models and techniques they pro-

pose can, theoretically, be used in the scalability framework to produce raw data for scalability analysis.

Further research is required in order to integrate existing models for specific quality attributes into our

scalability framework.

2.2.5 Multiple Criteria Optimization

A number of works in the computing literature deal with the problem of deciding among alternatives in

the face of multiple, sometime conflicting objectives. These works can be found in a variety of fields,

such as mobile computing (Capra et al., 2002; Shen et al., 2005), resource allocation (Lu and Bigham,

2006; Bennani and Menasce, 2005; Marbukh, 2007), autonomic computing (Cheng et al., 2006), test-

ing (Lee and Snavely, 2007), recommendation systems (Wei et al., 2005), intelligent agents (Robu et al.,

2005; Ficici and Pfeffer, 2008), Web services (Lamparter et al., 2007), and architecture evaluation (Kaz-

man et al., 1998, 2001).

In this research, achieving scalability is seen as a multicriteria optimization problem, where the

multiple, sometimes conflicting scalability goals have to be satisfied simultaneously. For such, we have

devised a scalability analysis that shows to what extent these quality goals are satisfied when the charac-

teristics of the application domain and system design scale. The stakeholders’quality goals are quantified

by preference functions over the value of each quality attribute. A preference value therefore measures

the “satisfaction level” of the stakeholder with respect to individual quality goals. A utility function

transforms a vector of preference values into a single scalar value. The utility value can be thought as a

measure of the “overall satisfaction” of the stakeholder with the scalability of the system.

From the works that use utility theory, the ones that most approximate the scalability framework

are in the area of architecture evaluation. In ATAM, for example, a utility tree is used to translate

from higher-level quality factors (e.g., performance, modifiability, availability and security) to concrete

attribute scenarios (e.g., “transactions are secure 99.9% of the time”). The output of the utility tree

provides a prioritized list of scenarios that is used to plan the amount of time spent by the development

team in each scenario (Kazman et al., 1998). Therefore, the concept of utility in ATAM differs from that

of the scalability framework, since it is just a mechanism for prioritizing scenarios.

2.2. Related Work 47

In CBAM, utility is used to represent the benefit added to the system through the implementation of

an architecture strategy (Kazman et al., 2001). A utility-response curve shows the utility as a function of

the chosen response value. As described previously, this curve is built by asking the stakeholder to assign

utilities to the worst-case, current, desired and best-case values of the quality attributes for a scenario,

and scenarios are themselves assigned a normalized weight through a voting exercise. The benefit of an

architectural style in a particular scenario is calculated by subtracting the utility of the expected value of

the architectural style from the utility of the current system relative to this scenario. Finally, an overall

benefit of an architectural style is the weighted sum of the benefits associated with each scenario.

A comparison can be made between CBAM and the scalability framework. CBAM’s utility-

response curve is similar to preference functions in the framework. Also, CBAM’s overall benefit may

be compared with the scalability framework’s utility. However, there are fundamental differences:

1. In CBAM, the authors recognize that stakeholders have difficulty identifying the expected utility

level of an architecture strategy. In the scalability framework, on the other hand, preference and

utility functions are derived from a systematic requirements engineering technique.

2. CBAM is concerned with the cost/benefit trade-offs of changing the system architecture. There-

fore, the concepts of utility and overall benefit refer to the added benefit brought by this change

(i.e., expected utility minus the current utility). In the scalability framework, the preferences and

utility refer to the range of quality attribute values in quality goals and the relative importance of

these goals, independently of any change to the system architecture.

3. CBAM defines the weights in the overall benefit through a two-phase voting process. The scala-

bility framework does not establish a particular method for deriving the utility function. Instead, a

number of requirements prioritization techniques may be used for that purpose.

2.2.6 Scalability Requirements

As with other software analysis techniques, the correctness and usefulness of our scalability analysis

is highly dependent on the selection of its variables and functions. However, it is all too easy to make

these selections arbitrarily, as was noted by the authors of CBAM (Kazman et al., 2001). To address this

problem, it is necessary to derive the variables, scaling ranges and functions in a clear, consistent and

systematic manner from system requirements.

Many works in the scalability literature recognize the need to base the analysis on precise scala-

bility requirements (Bahsoon and Emmerich, 2008; Williams and Smith, 2005; Weyuker and Avritzer,

2002; Smith and Williams, 2001; Steen et al., 1998; Masticola et al., 2005; Brataas and Hughes, 2004).

However, the great majority of them take the elaboration of these requirements for granted. The few

works in the area of scalability analysis that attempt to give some guidance on scalability requirements

take an oversimplified view of the requirements engineering process. They also tend to concentrate on

either specifying the information such requirements should contain, or providing rough guidelines on

the scenarios such requirements should cover. Consider the examples below.

2.2. Related Work 48

Steen et. al’s Framework for Specifying Scalability Requirements

Steen et al. describe a framework for precisely formulating scalability requirements and an engi-

neering method for building scalable distributed systems (Steen et al., 1998). The motivation for their

work came from the observation that one requirement that is often formulated imprecisely is that an

application should be “scalable”.

The authors distinguish between two environments: a client environment, which consists of end

users and processes that make use of services implemented by the application, and an execution envi-

ronment, which models the infrastructure on which the application is executed. The client environment

is associated with a number of attributes Attr1, ..., AttrN , such as the number of clients, number of

requests, data volume, etc. This environment is also associated with a performance measure PerfA,

expressed in some numerical performance unit, such as throughput. The execution environment has a

number of resources Res1, ..., ResM , whose combined capacity is associated with a cost. The authors

also define a performance degradation bound δ (the maximum acceptable degradation in performance

when increasing the value of the client environment attributes), and a reference cost bound γ (limiting

the maximum costs for increasing resource capacity).

According to this work, in order to formulate scalability requirements precisely, one should define

the attributes of the client environment, a simple performance measure, and the performance degradation

bound δ. If resources are taken into account, one also needs the resources cost measure and the reference

cost bound γ.

The main problem with this work is that it only addresses the specification of scalability require-

ments, taking the rest of the requirements elaboration process for granted. Elaborating scalability

requirements is a complex activity, as will be discussed in Chapter 5.

PASA and QSEM

PASA and QSEM are scenario-based methods for performance and scalability evaluation of soft-

ware architectures. As described in the Sections 2.2.2 and 2.2.3, these methods advise the analyst to

choose scenarios that are executed frequently in the typical uses of the application, or that are executed

infrequently but have high resource demand. They also advise on the specification of these requirements,

which should combine the performance requirements, current workload volume, projected growth, and

conditions under which the performance requirements should be achieved.

Although this work offers guidelines on the elaboration of scalability scenarios and objectives,

these are still oversimplified. Without a systematic method, it is easy to overlook scenarios, particularly

the ones triggered by exceptional circumstances.

2.2. Related Work 49

Scalability in Requirements Engineering

To the best of our knowledge, there is no established work specifically on scalability in the require-

ments engineering field. Although the term scalability is often mentioned in the requirements engineer-

ing literature, it is normally in the context of the scalability of the proposed technique itself (In et al.,

2001; Cheng and Atlee, 2007) or in very vague terms only (Bhushan and Patel, 1998; Heindl and Biffl,

2006).

In this thesis, scalability is seen as a meta-quality—a quality that relates to other system qualities.

Therefore, a scalability analysis evaluates the degree of quality goal satisfaction when characteristics

from the application domain and/or system design scale. For this reason we next consider a range of

works on the elaboration of quality requirements; particularly the ones that allow for the evaluation

of alternative designs with respect to degrees of goal satisfaction. This feature is interesting for two

reasons. First because it would allow one to choose among strategies to achieve the desired levels of

quality goals satisfaction, second because the degree of goal satisfaction may vary as characteristics of

the application domain scale. Letier and Lamsweerde review a number of quantitative and qualitative

reasoning techniques with this purpose. In summary, they conclude that:

Qualitative approaches such as the NFR framework (Chung et al., 1999) and the Win-Win

framework (In et al., 2001) are useful to gain a first, high-level understanding of the system

quality goals and their interactions. However, for most systems, the information contained

in such models is too vague to provide precise guidance for software architectural design,

analysis and testing. For example, the NFR framework allows one to compute, for each

alternative design the satisfaction status of each softgoal, namely “satisficed” (i.e. partially

satisfied), “denied” or “undetermined” (Chung et al., 1999).

Many of the quantitative techniques are based on quantitative values that have no precise

physical interpretation in the application domain (Akao, 1990; Robinson, 1990; Yen and

Tiao, 1997; Giorgini et al., 2002; Feather et al., 2002). For this reason, there is no way to

test whether the level of satisfaction of quality goals are actually achieved in the running

system. Other quantitative techniques are based on more precise specifications of quality

goals expressed in terms of measurable criteria that have a precise physical interpretation

in the application domain. The concept of “fit criteria” in the VOLERE (Robertson and

Robertson, 1999) requirements engineering method is a typical example of this.

Letier and van Lamsweerde (2004)

In this last category, is also Letier and Lamsweerde’s work on partial goal satisfaction Letier and van

Lamsweerde (2004). This work extends KAOS goal refinement graphs (van Lamsweerde, 2008) with

a probabilistic layer for the precise specification of quality concerns expressed in terms of application-

specific measures (Letier and van Lamsweerde, 2004). The technique is particularly interesting because

it specifies partial goal satisfaction in terms of objective functions and quality variables, which can be

used in downstream activities in the software development process.

2.3. Summary 50

Our scalability framework builds on Letier and Lamsweerde’s work, not only to derive its functions

and variables from KAOS goal refinement graphs, but also because some of the well-known advantages

of goal-oriented requirements engineering are particularly useful for scalability analysis, as will be de-

scribed in Chapter 5. More precisely, the scalability framework extends KAOS with the concepts of

scaling assumptions and scalability goals and uses goal-obstacle analysis for reasoning about scalabil-

ity during requirements engineering. The scalability framework also defines new patterns and heuristics

for the systematic identification and resolution of scalability obstacles. This obstacle category had not

been taken into account by previous techniques (van Lamsweerde and Letier, 2000). Furthermore, unlike

previous patterns and heuristics that generate obstacles from one goal at a time, our technique consists of

generating a scalability obstacle from all goals involving the same agent resource. This is an important

and distinguishing feature of scalability obstacles. Thus, our technique allows one to identify a more

precise, extensive and applicable set of obstacles than previously.

2.2.7 Capacity Planning

Another area of research that is closely related to our work is capacity planning. Capacity planning is

the process of predicting when future load levels will saturate the system and of determining the most

cost-effective way of delaying system saturation as much as possible (Menasce and Almeida, 2001).

In fact, some of the techniques that are routinely used for capacity planning can be very useful for the

scalability framework, such as regression analysis, analytical modeling and workload characterization.

There are, however, fundamental differences between our work and capacity planning.

As described in Chapter 1, the scalability of a system is determined by its ability to satisfy qual-

ity goals when characteristics of the application domain and system design vary over expected ranges.

Therefore, unlike capacity planning techniques that characterize the effect of scaling characteristics over

measured system qualities, the scalability framework is also concerned with the effect of these charac-

teristics on the satisfaction of goals concerning these qualities, as well as the relative importance that

stakeholders give to the satisfaction of these goals. For this reason, the scalability framework also puts

great emphasis on the elaboration of quality goals, which is generally taken for granted by capacity

planning techniques.

Furthermore, the scalability framework makes a clear distinction between the scalability of a system

(i.e., the effect of the scaling characteristics on the satisfaction of the system’s quality goals) and the

strategy used to achieve this scalability. It also treats cost as just another quality goal to be achieved by

the system over the full scaling range of application domain and system design characteristics. Although

the information produced by the scalability framework can be very valuable in defining a cost-effective

way of delaying the system saturation, this is not its sole objective. The scalability framework and

capacity planning techniques are, therefore, complementary approaches to the treatment of scalability.

2.3 Summary
In this chapter, we provided the theoretical grounding required to understand our scalability framework

and gave an overview the state-of-the-art in scalability research and related fields.

2.3. Summary 51

Scalability has been studied in many contexts. Like ourselves, other authors have questioned the

meaning and use of the term scalability and have attempted to provide better definitions. However, these

attempts represent an intuitive ideal or are restricted to a narrow meaning. There are also a number

of works concerned with analysing and predicting the scalability of software systems. The approaches

for scalability analysis are varied. Some works, for example, attempt to adapt scalability notions from

parallel computing to other classes of systems. There are also works that target narrow classes of systems

and technologies, while still others are concerned with analysing the scalability of broader classes of

software. However, in nearly all works we reviewed, scalability is analyzed with respect to performance

metrics only.

Our work also relates to some architectural evaluation methods. This growing body of research is

concerned with the analysis of software qualities at the architecture level. Depending on the method, the

evaluation explicitly addresses a single quality or multiple quality goals at the same time. The latter may

be perceived as overlapping with the scalability framework, particularly the ones that use multicriteria

decision techniques. The main distinctions between these methods and our work have been discussed.

Finally, the scalability framework also relates to the field of requirements engineering, because

variables and functions used in the scalability analysis are derived from system requirements. To the

best of our knowledge, there is no established work specifically on scalability and requirements, and

current NFR methods do not provide systematic guidance for elaborating scalability requirements. .

52

Chapter 3

Software Systems Scalability Defined

Our literature review suggests that scalability quotations normally refer to the characteri-

zation of the system response to the variation (or scaling) of some characteristics in the

system’s application domain and design. This chapter introduces a novel definition of

the term that describes scalability in the context of other system qualities, and gives an

overview a framework for the characterization and analysis of software system scalability.

3.1. On the Meaning of Scalability 53

3.1 On the Meaning of Scalability
In order to gain a first intuition on the subject of scalability, we resorted to extensive literature review.

In particular, we looked for commonalities in scalability definitions and claims from both formal and

informal literature (refer to Appendix A). Among them, a notable work on scalability was authored by

Weinstock and Goodenough, the “On Systems Scalability” (Weinstock and Goodenough, 2006). They

capture common intuitions on scalability in two definitions:

Def. 1. “Scalability is the ability to handle increased workload (without adding resources to a system).”

Def. 2. “Scalability is the ability to handle increased workload by repeatedly applying a cost-effective

strategy for extending a system’s capacity.”

These are succinct and well-observed points on scalability. Yet, we can discuss a few drawbacks of

the above definitions:

First, scalability is not always related to increase, but to variation. As an anecdotal evidence, take

one of the earliest versions of the IEF. The various stages of the data analysis process were implemented

as separate services, each running in its own Java Virtual Machine (JVM). At the beginning of the

processing cycle, the JVMs were created, incurring a start-up delay that was virtually unnoticeable for

the typical large batch of transactions. However, the IEF had to be scaled down to deal with small

financial institutions—in that situation, the start-up delay represented a large chunk of the processing

time of transactional batches. As a result, the user-perceived performance became unacceptable. The

system, as implemented, could not be scaled down.

Second, another (yet imprecise) definition could be added to theirs:

Def. 3. “Scalability is the ability to handle the same workload more efficiently, by applying a cost-

effective strategy for extending a system capacity.”

In other words, a system can (possibly, repeatedly) be made scalable by realizing an improvement

in its system qualities through the scaling of some characteristics of its design while maintained its

environment unchanged. An illustration of such a definition of scalability can be found in the early

days of the Web, when caching was created to improve the quality perceived by the end user, instead of

anticipating the future growth of the Web (Fielding and Taylor, 2000).

Finally, as with other definitions, the authors associate scalability with the strategy to support the

scaling of application domain characteristics and the costs for doing so. Such definitions essentially

allude to how a designer achieves (stated or unstated) scalability goals, rather than referring to the effect

the variation of some characteristics have on the satisfaction of the system goals. 1 We see cost as an

important goal that has strong interaction with scalability and other goals. It is another goal that should

be satisfied when devising or selecting among a set of scalability strategies. Bahsoon and Emmerich,

for example, relate costs and scalability using mining in performance repositories to value the ranges

in which a given software architecture can scale to support likely changes in the load (Bahsoon and

Emmerich, 2008).
1In Chapter 5 the distinction between scalability goals and scalability strategies is shown explicitly.

3.1. On the Meaning of Scalability 54

3.1.1 Scalability, Variation and System Goals

Our literature review suggests that what scalability definitions have in common is the characterization

of the system response to the variation or scaling of some characteristics affecting its execution. In

fact, as in the example of the early days of the Web, scalability is not only about the system response to

variation on its application domain, but also about the system’s ability to satisfy varying quality goals

for a static application domain. Therefore, variation may occur both in the application domain and the

system design—that is, the world and the machine (Jackson, 2001)—and should be supported only within

expected ranges. 2 The variation of application domain characteristics determines the load imposed on

the system. The system’s ability to support this load depends on its capacity, which may be achieved

by varying the characteristics of the system design. Determining the critical scaling characteristics,

the critical system qualities that must be measured in order to judge scalability, and what constitutes

satisfactory values for these system qualities, are all things that stakeholders ultimately must decide in

the context of the system goals, since they will know best what kinds of demands will be placed on a

system and which system qualities are most critical to maintain or improve.

3.1.2 Scalability and Quality Goals

Scalability concerns have been related with different quality goals (as shown with added emphasis in the

following quotes):

1. “Scalability is the ability of a system to continue to meet its response time or throughput objectives

as the demand for the software functions increases.” (Smith and Williams, 2001)

2. “However, a RAID5 system still has problems with its scalability . . . the MTTF of RAID5 is

inversely proportional to the square of the number of HDDs.” (Yokota, 2000)

3. “The limited scalability of existing multicast simulation methods is primarily due to the large

amount of state maintained by the simulators, which is often on a high order of the input size. . .

This state requires a proportional amount of memory in the simulator.” (Xu et al., 2003)

4. “The table above gives cost-equivalent key sizes . . . The time to break is computed assuming that

Wiener’s machine can break a 56-bit DES key in 100 seconds, then scaling accordingly. The ‘Ma-

chines’ column shows how many NFS sieve machines can be purchased for $10 million. . .” (Sil-

verman, 2000)

The use of the term scalability in the context of performance, as in the first quote, is the most

common. However, performance is just one of many possible indicators of scalability. The second quote,

for example, uses Mean Time To Failure (MTTF) to estimate the system availability as the number of

hard disk drives scales. The third one refers to the amount of memory used by a simulation system as

a function of its input size. And the fourth quotation points to a table that indicates the time required

2Weinstock and Goodenough also recognize the importance of specifying allowable ranges, stating that “no system is infinitely

scalable” and “it is not reasonable to say a system is scalable without one or more demand measures with an allowable range of

values and one or more response measures, with an allowable range of values”.

3.2. A Definition for Scalability 55

to break symmetric keys using a varied number of NFS sieve machines; in this case, the performance

metric “time” serves as a proxy for security.

Scalability cuts across system design decisions and refers to different system qualities, such as per-

formance, reliability, availability, dependability and security. Scalability also relates to other quality

attributes such as adaptability, extensibility and predictability. These attributes have a different relation-

ship with scalability, as is discussed in Section 8.4. Scalability is therefore a meta-quality of other system

qualities. That is, it is a quality that refers to the system ability to satisfy its other quality goals when

characteristics of the application domain and system design vary over time. For this reason, it is vague

to refer simply to “the scalability of a system”; instead one must refer to the scalability with respect to

some specific measure of a system quality, such as “the scalability with respect to throughput”, or “the

scalability with respect to latency and memory consumption”.

3.2 A Definition for Scalability
After extensive literature review and numerous discussions with researchers and practitioners, we settled

on the following definition of scalability:

Definition: Scalability is the ability of a system to satisfy its quality goals to levels that are

acceptable to its stakeholders when characteristics of the application domain (“the world”)

and system design (“the machine”) vary over expected ranges. (Duboc et al., 2008)

Scalability is not an absolute concept. Instead, it is always relative to a set of quality goals and

how their level of satisfaction vary under the variations of characteristics in the application domain and

the system design. In order to claim scalability, one must specify with respect to which quality goals,

scaling characteristics and expected ranges the system is scalable. By “expected” we mean both normal

and exceptional conditions (in which a degraded level of goal satisfaction might be acceptable).

This definition concisely addresses the issues highlighted in section 3.1, namely scalability being

a matter of the system’s goals as determined by the stakeholders, and the system’s ability to support

the variation of both the application domain and system design over expected ranges. Furthermore,

this definition of scalability is independent of scaling strategies and their costs. Yet, cost is consider

indirectly, as one of the quality goals to be achieved.

As a consequence of our definition, a scalable system is one that satisfies its quality goals when

the characteristics of the application domain and system design vary over expected ranges. In order to

demonstrate the expressiveness of our definition, consider the following example:

The Google architecture is a cluster of commodity processors over which the load of search queries

is distributed (Barroso et al., 2003). In an article published in 2005, Barroso discusses two quality

goals for the Google search engine: the ratios performance/server price and performance/watt (Barroso,

2005). The author looks back at three successive generations of Google server platforms, suggesting that

Google is scalable because, over the years, it has managed to deliver increasing performance for roughly

the same costs, resulting in an upward trend of the performance/server price. The article describes the

3.3. The Scalability Framework: An Overview 56

Google architecture at a very high level only and does not actually specify what is meant by performance.

However, assuming that the number of queries per second and the number of indexed Web pages grew

over the observed generations of Google, we can translate the author’s claim as:

Claim 1: The Google search engine is scalable with respect to performance/server price (quality

of interest) because it satisfies the goal of maintaining a upward trend in performance/server price (cost

goal) as the number of queries per second and the number of Web pages to be indexed scale (varying

application domain characteristics).

However, performance/watt has remained roughly flat over the Google generations observed by the au-

thor. In other words, every gain in performance has been accompanied by a proportional inflation in the

overall platform power consumption. The author argues that if performance/watt was to remain constant

over the years, it would lead to machines’ powered up costs to be significantly more than the machines

themselves, which he does not consider scalable. This claim would be translated as:

Claim 2: The Google search engine is not scalable with respect to performance/watt (quality of

interest) because it does not satisfy the goal of achieving a less than linear performance/watt (energy-

efficiency and cost goal) as the number of commodity servers scales (varying design characteristic).

Analyzing whether a system is scalable, or more scalable than an alternative solution, requires a

careful characterization of the causal impact of the variation of application domain and design charac-

terizes on system qualities of interest. The next section gives an overview of the scalability framework

we developed with this objective. The framework is described in detail in Chapters 4 to 6.

3.3 The Scalability Framework: An Overview
Our scalability framework addresses the lack of a systematic and consistent treatment of scalability, al-

lowing one to approach the problem of scalability analysis in a uniform manner across different system

designs and application domains. Building on our definition of scalability, a framework for the charac-

terization and analysis of software systems scalability requires a clear statement of the quality goals of

the system, and the characteristics of the application domain and system design whose scaling will affect

the satisfaction of these goals, as well as the feasible range of values for these scaling characteristics.

This framework was first reported in (Duboc et al., 2007).

A high-level view of the elements composing the scalability framework is shown in Figure 3.1.

These elements are represented by boxes. Larger boxes mean that more details will be filled in later.

Arrows indicate the relationship between the framework elements.

As with any analysis, the framework starts with a question regarding the system’s scalability for

which an answer is being sought. Scalability questions must refer to particular system qualities (such as,

is Google scalable with respect to performance/server price when the number of concurrent queries and

the size of the Web increase over time?). The answer to a scalability question requires an understanding

of the quality goals of the system (e.g., an at-least-constant performance/server price) and their required

level of satisfaction when characteristics of the system’s application domain (e.g., the expected number

of concurrent queries and Web pages in the foreseeable future) and system design (e.g., number of com-

3.4. Critical Evaluation 57

Figure 3.1: High-level view of the scalability framework elements.

modities machines in the cluster) vary over expected ranges. This information is objectively described

as variables and functions. Testing and/or modeling produces the raw data for the quantitative analysis

used to justify the scalability answer/claim. This high-level process is illustrated by Figure 3.2. Plain

arrows represent data dependency, where the target step may require elements from the source step. For

example, on one hand, knowledge of the system quality goals will inform what scalability questions need

to be answered and, on the other hand, the question may inform which quality goals must be taken into

consideration during the scalability analysis. Hence the bidirectional arrow in the diagram. Similarly,

the result of a scalability analysis may lead to the revision of the system’s quality goals.

The elements of the scalability framework are adapted from the main EPA steps (represented as

dashed boxes) as in Figure 3.3: recognition of the problem, selection of variables and choice of experi-

ment design, experimentation, analysis and interpretation, and conclusion.

3.4 Critical Evaluation
The risks associated with our definition of scalability and high-level view of the framework is as follows:

Risk: Our definition challenges widely-spread intuitions on scalability.

In particular, we observed that scalability goes beyond performance, that linear scalability is not

always desirable, and that cost should be treated as another quality goal to be achieved when charac-

teristics of the application domain and system design scale over expected ranges. We believe we have

3.4. Critical Evaluation 58

Figure 3.2: High-Level process for scalability analysis.

Figure 3.3: Mapping of scalability framework elements to EPA.

constructed convincing arguments to support our statements.

Risk: Attempting to create a general framework for scalability analysis that can be used across appli-

cation domains and system designs could cause the perception of “stating the obvious”.

We identified essential elements of a scalability analysis that are common to all software systems

(these will be explained in greater detail in Chapters 4 to 6). However, we provide no catalog of instan-

3.4. Critical Evaluation 59

tiations of analysis variables and functions for different categories of systems. Instead, we let them be

instantiated according the system’s scalability goals, which will differ greatly for one system to another.

Given the broad application intended for the framework, it could not be different. Nevertheless, there

is a risk that this generality would cause the perception of “stating the obvious”. By no means do we

think that is the case. Our extensive literature review and consultation with professional developers has

convinced us that the term scalability is used with little precision and that scalability is not properly con-

sidered during the development lifecycle. Undeniably, outstanding developers have been considering,

analyzing and achieving scalability for years. However, the larger software community is still lacking

a uniform, consistent and systematic treatment of scalability. Our framework tackles this problem by

providing systematic steps for instantiating the elements of a scalability analysis, allowing to identify

and resolve scalability problems that could be overlooked otherwise.

Risk: Developers may feel that the costs of applying the scalability framework outweighs its benefits.

Undoubtedly, regardless of the numerous benefits that such analysis is likely to bring in terms of

better defined requirements, higher design quality, and longer lifetime for the system design, an upfront

analysis of scalability will require time and effort. We have observed in our interviews with practitioners

that scalability problems often become apparent only when the system is exposed to full load during

the production phase (Industry Interviews, 2007). This is also the phase where problems are costliest to

fix (Boehm, 1976), making the analysis of scalability at earlier stages an attractive alternative. However,

further research is needed to assess the portion of development time the adoption of the framework would

take and how it would fit into the popular software development methodologies.

Contributions and Benefits

Our definition and framework were deliberately designed to convey different notions of scalability and

to be used across a wide range of software systems. For such, we created:

Contribution: A uniform and precise definition of scalability that is independent of application domains

and system design.

Unlike definitions that associate scalability with particular metrics, scaling characteristics or scaling

strategies, ours describes scalability in terms of quality goals and scaling characteristics of the application

domain and system design. These are concepts common to all software systems, resulting in a uniform

and precise definition that transcends application domains and system design.

Further benefits associated with the ideas discussed so far are as follows:

Benefit: Counter-arguments to common misconceptions on scalability.

In our conversations with practitioners and other researchers, and in our extensive literature review,

we observed a number of misconceptions with respect to scalability. Possibly the two most common ones

are the belief that scalability is always related to performance and that a scalable system must present an

at most linear increase in resource usage as demands on the system increase.

3.5. Summary 60

Benefit: The recognition of scalability as a quality that can be analyzed with respect to other system

qualities.

The misconception that scalability is always related to performance is a dangerous one, as it may

lead the developer to neglect the effects of scaling system characteristics on other system qualities. In

this work, we explicitly state that scalability should be analyzed with respect to quality goals. Therefore,

when describing the scalability of a system, one should clearly describe it with respect to which specific

measures of system qualities the system is scalable, such as “scalable with respect to throughput”, or

“not scalable with respect to latency and memory consumption”.

3.5 Summary
In this chapter, we have defined scalability as the ability of a system to satisfy its quality goals to levels

that are acceptable to its stakeholders when characteristics of the application domain (“the world”) and

system design (“the machine”) vary over expected ranges. In this definition, scalability is seen in the

context of the system’s quality goals, so it can relate to performance, availability, reliability, security,

costs and so forth. We have also presented a framework, based on EPA, for the characterization and

analysis of software system scalability. The framework is composed of six elements: the scalability

question, the scalability goals, the variables and functions to be used in the scalability analysis, the raw

data and the scalability answer or claim.

The next chapter elaborates on the framework, presenting the details of the analysis method and

explaining how it can be used to evaluate and compare the scalability of software systems.

61

Chapter 4

Characterizing and Analyzing Scalability

This chapter drills into the details of the scalability analysis technique. It discusses com-

mon causes of scalability problems, explains the semantics of variables and functions in the

scalability analysis, and illustrates how the analysis can answer different scalability concerns.

4.1. On Scalability Analysis 62

4.1 On Scalability Analysis
We have seen from our conversations with developers in industry that many did not properly consider

scalability when building systems. They frequently made unfounded assumptions about or disregarded

the effect that the chosen design had on the satisfaction of the system’s quality goals when characteristics

of the application domain scale or its ability to satisfy varying quality goals. A common assumption is

that the system would gain scalability with more powerful hardware or parallelization (Industry Inter-

views, 2007). Nevertheless, achieving scalability through such strategies is not straightforward. In fact,

without a careful analysis, they can provoke just the opposite result due to knock-on effects, such as

the overhead of distributed communication or race conditions in threads (Noelle et al., 1998; Yu, 2008).

Also, the scalability achieved by varying the system’s hardware is limited by physical constraints, such

as the speed of light limiting the latency of network packet delivery and a “thermal wall” bounding

the clock speed (The 2020 Science Group, 2006). In addition, some of the developers who claimed to

have considered scalability had catered for the extreme cases of the application domain only (Industry

Interviews, 2007)—considered by us to be a fallacy, as discussed in Chapter 1.

Analyzing scalability requires, instead, a clear and precise picture of the operational impact that

the variation of application domain and system design characteristics will have on system qualities. In

an ideal world, that picture would cover the full operational range of multiple scaling characteristics.

However, in reality, the complete picture will rarely be feasible or, in fact, necessary. Instead, this

picture is required to cover a sample of points of the operational range of these characteristics. It is the

stakeholder who must determine which are the relevant points and the desired level of system qualities

at these points, according to the system’s scalability goals. For example, the stakeholder may choose the

sub-range of values that generate most of the company’s revenue plus the extreme points of the scaling

ranges. Such understanding is useful for guiding design decisions that are more likely to support multiple

deployments, to state scalability claims objectively and to compare claims from different sources. We,

therefore, define scalability analysis as:

Scalability analysis is a form of experimental design that is used to reveal—in a precise

and explicit form—the impact caused by the relevant points in the operational range of the

system application domain and design characteristics on the satisfaction of the system’s

quality goals.

Consequently, any system analysis—performance, reliability, availability or other—conducted with

respect to a variation over a range of application domain or system design characteristics is a scalability

analysis.

4.2 Causes of Scalability Problems
The scalability of a system is influenced by a number of factors, including its operational environment,

the underlying operating system, network, database and programming language (Munsterman, 2008),

and it can affect a number of system qualities. Weinstock and Goodenough observe that scalability fail-

ures occur when increased demand causes some resource to become overloaded or exhausted, such as

4.2. Causes of Scalability Problems 63

exceeding the available address space, overloading the memory, exceeding the available network band-

width, and filling the internal tables (Weinstock and Goodenough, 2006). Nevertheless, increase in de-

mand and resource exhaustion are not the only reasons for scalability problems. The authors themselves

observe that a scalability problem may be caused by a bug, as in the case of a memory leak. Another ex-

ample is given by the IEF, whose scaling down—in number of bank transactions to be processed by the

system—increased the user-perceived response time due to the start-up overhead of JVM’s. We there-

fore state that a scalability problem occurs when the scaling of characteristics of the system’s application

domain and system design prevents the system’s quality goals from being satisfied.

Sometimes, scalability is completely overlooked during system development. On other occasions,

scalability is considered, but problems occur because the system relies on assumptions that do not hold

true when its application domain and/or system design scale. These are assumptions such as the correct-

ness of configuration files, the system’s usage pattern, advances in technologies, and the rate and effect

of “rare” failures or exceptions (Weinstock and Goodenough, 2006). Take, for example, an exception

that increases the load on the system (e.g., by writing error messages to a log file). The increase in load

of such an exception may not be considered a problem, if its occurrence is believed to be rare. However,

the scaling of some domain quantity may affect the number of occurrences of this exception, which can,

in turn, lead to the exhaustion of some system resource (e.g., disk space).

Other causes of scalability problems include changing requirements, “hard-coded” capacity limits,

changes in the usage pattern caused by advances in technology or acquired knowledge of the system,

knock-on effects of changes to the system’s implementation or configuration, unplanned evolution (in

particular, from bespoken projects to a single product), exceptional application domain circumstances,

inadequate design, tools or infrastructure, lack of knowledge of the adopted technologies, and inex-

perienced developers (Weinstock and Goodenough, 2006; Industry Interviews, 2007). A summary of

causes for scalability problems observed during our industry interviews is given in Appendix B. We now

illustrate scalability problems caused by some of these scenarios:

“Hard-coded” capacity limits: “Comair is the commuter affiliate of Delta Airlines. During the Christ-

mas travel season in 2004, Comair stranded thousands of airline passengers because its 10-year-old

crew scheduling system crashed. The reason for the crash was that the system was only capable of

accommodating 32,000 (probably 32,767) crew schedule changes in a month. This limit was by

design and was presumably acceptable—until it wasn’t.” (Weinstock and Goodenough, 2006)

Knock-on effects from changes: As Searchspace, the company who developed the IEF, expanded to

new markets, the system had to be adapted to support additional languages and regional differ-

ences. This adaptation demanded a change from single-byte to multi-byte characters. Conse-

quently, there was an increase in the size of the data to be manipulated by the system, forcing

Searchspace to re-evaluate the use of resources, such as memory and disk, to prevent a scalability

problem.

4.3. Elements of the Scalability Framework 64

Exceptional circumstances: A real-world system, used by a large transportation company, aggregates

data from various external data sources, making them available to a number of internal applica-

tions. The system also performs a number of heavy batch management tasks. The system was

designed such that batch files were scheduled not to coincide with each other. However, occasion-

ally, external data sources would become unavailable, forcing the system to wait and causing the

overlap of batches. This overlap would lead to an increase in the data volume and the exhaustion

of the system’s resource (Industry Interviews, 2007).

Unusual system usage: A Web-based booking system for a large theater offers users the ability to see

the view of the stage from the chosen seat. Users, however, desiring to check the view of multiple

seats in order to choose one, would open a number of tabs in the Web browser—one for each

potential seat. On the occasion of a popular play, this unpredicted system usage caused a large

increase in the number of connections to the Web server, bringing the system to a halt.1

4.3 Elements of the Scalability Framework
In Chapter 3, we have introduced a framework for the characterization and analysis of software systems

scalability. The elements composing this framework are quality (scalability) goals, scalability questions,

analysis variables, analysis functions, raw data, and scalability answer/claim. A more detailed view of

the framework is given in Figure 4.1. Note that analysis variables have been divided into factors and

dependent variables. The former represent characteristics of the application domain and system design

that affect the system behavior, and the latter are metrics that characterize system qualities of interest

in a scalability analysis. This analysis, however, is not performed with respect to the values assumed

by the system qualities, but according to the stakeholders’ satisfaction with these values and the relative

importance they give to the system quality goals—respectively described in the framework by preference

and utility functions. This analysis has been published in (Duboc et al., 2007).

We next describe the elements composing the scalability framework. Emphasis is given to the

analysis variables and functions, which are the building blocks of the scalability analysis technique

discussed in this chapter. Other elements will be revisited later in the thesis.

4.3.1 Quality (Scalability) Goals

We define a scalability goal as a goal that specifies the acceptable levels of satisfaction for quality goals

with respect to the scaling of application domain characteristics. A careful elaboration of such goals is

required both for asking relevant scalability questions and for deriving the variables and functions to be

used in the scalability analysis. The elaboration of scalability goals and their use in the framework are

described in Chapters 5 and 6.

4.3.2 Scalability Questions and Answers/Claims

The scalability question defines what information should be uncovered by the scalability analysis. An-

alyzing a system’s scalability is a complex, multi-variate activity and no analysis can realistically take

1Adapted from a real story.

4.3. Elements of the Scalability Framework 65

Figure 4.1: Elements of the scalability framework.

into consideration all quality goals, application domain characteristics, and strategies to achieve scala-

bility at once. A scalability question, therefore, should focus on a particular scalability aspect of interest.

Normally, analyzing the scalability of a system will involve a number of scalability questions.

A scalability question is often related to one of the two concerns: checking whether the system can

satisfy its quality goals when characteristics of its application domain scale, and exploring the system’s

limits and scaling trends. Questions may refer to a system in isolation, or compare systems (or alternative

system designs) with respect to the above concerns. Much of the information required for stating a

scalability question can be obtained from the system’s scalability goals, as will be described in Chapter 6.

The exact format of the question is highly dependent on the concern being addressed and on the

information available at the time. Take for example, the scalability question introduced with the Google

example in Section 3.3. In its simplest form, a scalability question should refer to a system quality and

one or more application domain characteristics whose scaling is likely to affect the value of this quality:

Question Is Google scalable with respect to performance/server price when the number of concurrent

queries and the size of the Web increase over time?

Later, the question may be refined to refer to a particular scalability goal and to include characteristics

of the system design whose scaling are likely to affect the system qualities of interest, as follows:

4.3. Elements of the Scalability Framework 66

Question Can Google maintain an at least constant trend in performance/server price when the number

of queries per second and the number of Web pages to be indexed scale by increasing the number

of commodity machines in the Google cluster?2

Similarly, a scalability answer or claim should be described clearly and with as much detail as possible.

An example of a scalability answer/claim has been given in Section 3.2. In this example, a claim for

Google’s scalability was stated as follows:

Claim: The Google search engine is scalable with respect to performance/server price because it satis-

fies the goal of maintaining a upward trend in performance/server price as the number of queries

per second and the number of Web pages to be indexed scale.3

4.3.3 Analysis Variables

Factors represent characteristics of the application domain and system design that will affect the system

behavior, such as the volume of input data, the rate at which work arrives at the system, the number of

concurrent system users, the maximum cache size, the maximum thread pool size, the number of nodes

in a server cluster, and the algorithm selection. These characteristics can be classified as scaling and

non-scaling.

The subset of the factors that can be manipulated for the scalability analysis are called independent

variables. Scaling independent variables represent characteristics of both the application domain and the

system design that can potentially scale, whether within or in between executions of the system. They

could be, for example, the number of concurrent users or available nodes in a cluster. The non-scaling

independent variables are characteristics of the application domain or system design that are either set

to fixed levels or vary within a nominal scale. They could be, for example, the selection of a sorting

algorithm or the RAM of the machine. Nuisance variables are characteristics of the application domain

and system design that cannot be manipulated for the scalability experiment, such as the processor speed

if the infrastructure is already decided and cannot be changed; these characteristics may also scale.

Dependent variables are metrics that characterize system qualities such as performance, mainte-

nance, reliability, and security. Examples of dependent variables are peak and average values of through-

put, storage consumption, and failures per unit of time. While the dependent variables typically represent

metrics of traditional quality goals, it is the analysis of the dependent variables in the presence of varia-

tion to the scaling variables that turns an ordinary quality analysis into a scalability analysis.

The selection of factors and dependent variables are unique to the scalability question and system at

hand. Once the variables of interest have been identified, the stakeholder must establish bounds defining

their expected range of values. The bounds reflect the expected variation in the application domain,

the technical and economic feasibility of the system design, and the acceptable bounds on required

system qualities. Note that the system may be designed to cope with variation in scaling variables by

2Question adapted from (Barroso, 2005). Scaling characteristics and their possible range of values have not been described in

that paper.
3Answer adapted from (Barroso, 2005). Possible range of values for the number of queries/second and Web pages have not

been described in that paper.

4.3. Elements of the Scalability Framework 67

dynamically varying some characteristic of the design, such as the size of a thread pool. However, such

dynamic variation can be performed only within static limits, and it is these static limits that are the

bounds for the independent variables representing the system design. When possible, the stakeholder

should also determine the probability distribution of the independent variables. Section 4.4 discusses the

usefulness of this information on a scalability analysis.

As an example, take the Google search engine: In 2003, Barroso et al. described the two most

important goals that influenced the Google design: the energy-efficiency and price-performance ratios.

These goals are achieved through a large cluster of commodity processors over which the load of search

queries is distributed (Barroso et al., 2003; Barroso, 2005).4 In this Google example, the elements of the

scalability framework are instantiated as follows:

Quality Goals:

Cost goal: maximize performance per unit of cost

Energy-efficiency goal: minimize power usage per server

Independent variables:

Scaling Variables:

Number of queries per second (application domain)

Number of Web pages to be indexed (application domain)

Number of machines in the Google cluster (system design)

Non-scaling variables:

Available bandwidth (system design)

Network round-trip time (application domain)

Dependent variables:

Aggregate request throughput (performance)5

Performance/server price 6

Performance/watt 7

4.3.4 Analysis Functions

We see achieving scalability or choosing among alternative systems with respect to scalability as a mul-

ticriteria optimization problem, in which several, possibly conflicting quantitative criteria are to be op-

timized simultaneously. For this reason, our scalability analysis shows to what extent these quantitative

criteria are being met when characteristics of the application domain and system design vary over time.

In the scalability framework, the dependent variables quantify the criteria to be optimized, and the trade-

offs among the dependent variables result in different choices of system designs.

4The instantiation of the framework variables is limited by the information available in the papers, which do not describe the

ranges or specific targets for quality goals.
5It is not clear from (Barroso, 2005) which performance metric is used. From (Barroso et al., 2003), we assumed it to be

aggregate request throughput.
6Performance per sum of capital expense (with depreciation) and operating costs, such as hosting, system administration and

repair (Barroso, 2005).
7Performance per overall platform power consumption (Barroso, 2005).

4.3. Elements of the Scalability Framework 68

Preferences

The stakeholders’ scalability goals with respect to different measurable characteristics of the system are

quantified by preference functions over the values of the dependent variables. The analyst can then use

these preference functions to measure the “satisfaction level” of the stakeholder with respect to individual

quality goals. The preference functions must be defined in such a way that the qualities of the system are

mapped to a range of values in which a greater value equates with greater preference. For instance, the

identity function could be used as a preference function for a quality such as average throughput, since

higher throughput is normally preferred to lower throughput. However, for a quality such as memory

consumption, lower consumption is normally preferred to higher consumption, and so the preference

could be computed as the reciprocal of the value of memory consumption.

In many multicriteria optimization problems, a solution that maximizes all preferences may not

exist. For instance, it may be possible to improve the throughput of a system at the cost of memory

consumption due to increased buffer size, or conversely to reduce memory consumption at the cost of

decreased throughput. In such Pareto optimal situations, it is not possible to improve any one quality

without compromising another (Varian, 2003). Typically, the Pareto optimum will be a frontier of points

whose shape indicates the trade-off between different objectives. In our framework, preferences over the

dependent variables of interest define the axes of the plot of the frontier. Different system designs will

produce alternative outcomes (i.e., points in the plot), which may or may not lie on the Pareto frontier.

Utility Functions

The choice between alternative outcomes in a Pareto frontier is not straightforward. To resolve the trade-

offs inherent in a Pareto optimal situation, we use a utility function to transform a vector of preference

values into a single scalar value. The utility value can be thought as a measure of the overall satisfaction

of the stakeholder with the system.

A commonly used model of utility is objective weighting, in which the utility function U(x), for

a random variable X , is a linear combination of preference values fj(x), with each preference value

weighted by a corresponding weighting factor λj (Eschenauer et al., 1990). Therefore, taking X to rep-

resent the values assumed by a scaling independent variable and fj(x) to be a preference over dependent

variable j, the utility U(x) is calculated as U(x) = λ1f1(x) + . . .+ λkfk(x) for k dependent variables.

The weights represent the extent to which an increase of one quality will be accepted as the others de-

crease. The choice of weights reflect the interests of the stakeholders, who must decide how to prioritize

the preferences over particular system qualities.

When assigning weights to disparate system qualities such as disk consumption and throughput,

there is a danger of producing an ill-defined utility function due to wide variation in the range of pos-

sible values for each preference. Therefore, the preference values fj(x) should first be normalized to a

common range before being used in a utility function. For instance, we may define a function f̂j(x) for

each dependent variable j that normalizes the preference values fj(x) to a value between 0 and 1:

f̂j(x) =
fj(x)− fj,min
fj,max − fj,min

(4.1)

4.4. Scalability Analysis 69

where fj,min and fj,max are, respectively, the lowest and highest possible preference values for the

dependent variable j. If the lowest and highest possible values cannot be established in a meaningful

way, then the lowest and highest preference values for all observed outcomes can be used.

4.3.5 Raw Data

We refer to raw data as the data used to calculate the value of preferences and utility in the scalability

analysis. In other words, raw data are all the values assumed by the dependent variables in a scalability

analysis. Raw data may be generated in a number of ways, such as testing, modeling or simulation.

For example, one could build a prototype of the system (or part of it) with which to run experiments.

Alternatively, the analyst could create a queuing network model to estimate the system performance

at different points of the scaling ranges of independent variables. In this research, we only employed

testing, using both a real system and prototypes of it. 8

When using testing, the values of the dependent variables represent an observation of the execution

of a single system design. An observation may be a snapshot of the system at any given time or may be

some measurement of interest (average or peak) of a complete system execution.

4.4 Scalability Analysis

A simple scalability analysis can be made by plotting the utility outcomes against the scaling vari-

ables. Consider, for example, a scalability analysis comparing five different hypothetical system designs

with respect to the dependent variables average response time and peak disk usage. The axes of the two-

dimensional graph in Figure 4.2.a represent the preferences over these two dependent variables. This

figure, therefore, shows a snapshot of these preferences produced by the alternative designs for a partic-

ular value of the scaling independent variable average number of simultaneous users. For this snapshot, the

outcomes produced by designs A, B and C are Pareto optimal. In particular, none of these three designs

is universally preferable to the other two, since none of them maximizes both preferences. However,

designs D and E are inferior in both preferences for A, B and C. If that is the case for the full range

of the scaling variable, designs D and E can be rejected from further consideration. Note that a system

design may under perform for particular values of the scaling variables, but still represent an acceptable

solution for the majority of the values in the scaling range.

Figure 4.2.b plots the utility curves for the three Pareto-optimal designs of Figure 4.2.a against the

average number of simultaneous users. We have used as a utility function a weighted sum of the normal-

ized preference values over the dependent variables, where the preference for peak disk usage receives

three times the weight as preference for average response time. The design that maximizes utility for the

expected range of the scaling variables is the one that should be selected. In this example, the design C

quickly overcome the utility of the other designs at around 30,000 users. Whether the design C should

then be chosen will depend on the likely range and distribution of the number of simultaneous users.

8The implications of this decision are discussed in Section 4.5.

4.4. Scalability Analysis 70

Figure 4.2: Comparing alternative designs.

Probability Distribution of Independent Variables

A particularly desirable information for a scalability analysis is the expected distribution of the scaling

variables. Consider, for example, the graph in Figure 4.3, where A and B represent alternative system

designs whose utility is plotted against the scaling variable number of business entities (x). Note that

there is a critical point c′, from which the utility of design A overcomes the utility of design B as

the number of entities increases. If we consider that the graph covers the full range of the scaling

independent variable (i.e., no extrapolation is necessary) and that the preference and utility functions

were designed in such a way that a utility of zero indicates non-compliance with quality goals, we

can conclude that both designs are feasible since none of them reaches zero utility at any point of the

graph. Nevertheless, the choice between designs A and B will depend on whether the likely number

of entities the system is required to handle lies before of after the critical point c′. If, for example,

the distribution of the number of entities is as depicted by the probability density function (pdf) p(x)

shown in Figure 4.4, then the probability P (X ≤ c′) that the system will have to handle less than c′

business entities is high, approximately 0.9. If, however, the pdf p(x) is as described in Figure 4.5,

then the probability P (X ≤ c′) that the system will have to handle less than c′ business entities is low,

approximately 0.3. Clearly, in the former case, design B should be chosen, while in the later one, design

A is more desirable. Mathematically, the utility of a system design for a number of business entities

described by p(x) is calculated by Formula 4.2, where X is distributed in the interval [Cmin, Cmax]. 9

U =
∫ Cmax

Cmin

U(x)p(x) dx (4.2)

9Modeling multiple scaling characteristics requires accounting for any dependency between their corresponded variables.

4.4. Scalability Analysis 71

Figure 4.3: Utilities of two hypothetical alternative designs against the number of business entities.

Figure 4.4: Hypothetical pdf for the number of business entities.

Figure 4.5: A different hypothetical pdf for the number of business entities.

4.5. Critical Evaluation 72

4.5 Critical Evaluation
The risks associated with the scalability analysis described in this chapter are as follows:

Risk: The usefulness of the analysis results depends on the adequate identification of application do-

main/design characteristics, system qualities, and functions.

A performance consultant, with whom we discussed our framework, noted that normally scalability

problems arise from overlooked variables (Sorensen, 2007). His opinion was confirmed by the industry

interviews we conducted throughout this research. Scalability problems indeed often took developers by

surprise. These problems were the result of overlooked characteristics, wrong assumptions, unexpected

circumstances and knock-on effects of changes to the software, as summarized in Appendix B. In order

to mitigate this risk, we introduce in Chapter 5 a technique for systematically selecting variables and

functions for a scalability analysis. This technique includes obstacle analysis to help identify exceptional

conditions that may prevent the systems’ scalability goals from being satisfied.

Risk: Relying on software metrics and optimizations for characterizing and analyzing scalability may

be misleading.

This was, in fact, a true criticism received by this work in the early days of the research (Alspaugh,

2007). The main points of this particular observer were:

• The framework requires a “leap of faith” in the relationship between the metrics that are collected

and system qualities we would like to measure.

• Metrics are very sensitive to the way they are collected, so one cannot really trust the metrics being

collected or what is inferred from them.

• Optimization and decision functions are, in general, very sensitive to small errors in measurement,

abnormalities and wrong assumptions. In addition, choosing a function would require a unrea-

sonable amount of work in analyzing that function and its sensitivity to the various factors, the

properties and correlation of the variables, etc.—which is simply not practical.

Another understandable concern refers to the adequacy of such functions to compare alternative sys-

tems/designs. Alternatives may represent radically different designs, and care must be taken in defining

the semantics of variables and functions so that they can be used for comparison.

These are known problems with metrics and optimization/decision functions in the general case,

however we do not think they are strong enough reasons to disregard the scalability framework. We use

the words of Fenton and Pfleeger to respond to these concerns:

“It is the general picture that is important, rather than the exactness of the individual mea-

sure, so the subjectivity, although a drawback, does not prevent us from gathering useful

information about the entity”—Fenton and Pfleeger (1996)

“Those who reject a measure because it does not provide enough information may be expect-

ing too much of a single measure. [. . .] Likewise, models that define an attribute in terms

4.5. Critical Evaluation 73

of several internal attributes may be useful, even if they are not complete.”—Fenton and

Pfleeger (1996)

Finally, another fair criticism of the analysis method would be its use of a weighted sum. Direct

estimation of weights is subjective and vulnerable to judgment errors. A similar observation was made

by Letier and Lamsweerde with respect to qualitative requirements engineering methods that use weights

for determining the degree of goal satisfaction (Letier and van Lamsweerde, 2004). Instead, Letier and

Lamsweerde suggest integrating quantitative techniques for reasoning about non-functional properties

with goal-oriented techniques for building requirements models. In Chapter 5, we build on their solution

and suggest the use of requirements prioritization techniques to reduce the risk of deriving inappropriate

variables and functions for the scalability analysis.

Risk: Input distributions and growth characteristics of independent variables may not be known.

A scalability analysis can benefit greatly from knowledge of input distributions and growth charac-

teristics of independent variables. Such characteristics can be inferred from field usage data, also known

as an operational distribution or operational profile (Musa, 1993). However, collection of field data

can be both expensive and time-consuming, and in some cases, it may even be impossible (Weyuker and

Avritzer, 2002). Clearly, if the distribution of independent variables cannot be predicted reliably, an anal-

ysis simply considering different points of the scaling range can already bring useful information (for

example, it can indicate whether the system can meet its goals for all the points considered). However,

when possible, a careful workload characterization should precede the scalability analysis. The amount

of effort worth putting into this activity is highly dependent on the problem and system at hand. Weyuker

and Avritzer, for example, believe that “in spite of the difficulty and expense of collecting data in the field,

it is definitely worth the resources when it is essential to have highly dependable systems” (Weyuker and

Avritzer, 2002).

Risk: It is impossible to test realistically for scalability.

Weinstock and Goodenough observe that: “You can’t really test (in the traditional sense) to see if a

system is scalable. It is usually impossible to generate a realistic load—much less to actually add com-

puting capacity to see if the planned scaling strategy will work smoothly” (Weinstock and Goodenough,

2006). When the the full workload cannot be generated, and the infrastructure is not powerful enough

to test the system (or a prototype), then extrapolation is necessary. Due to time constraints, however, the

extrapolation of the analysis results had to be left out of the scope of this PhD research. Therefore, for

the context of this work, we assumed:

Assumption: There ultimately will be a running version of the system, possibly a prototype, that can be

used for scalability analysis.

Assumption: There are sufficient data and hardware infrastructure to run the system (or a prototype)

over the full scaling range of independent variables for purposes of analysis.

4.5. Critical Evaluation 74

We recognize these are strong assumptions that will not always hold in the real world. Yet, they do

not invalidate the contribution of this work, namely a precise and uniform definition of scalability and

a framework that is independent of application domain and system design. Furthermore, nothing in the

framework prevents raw data from being generated through modeling or simulation, or the framework

from being further elaborated to include techniques for the extrapolation of analysis results. This is, in

fact, one of our directions for future work. Extrapolation of the analysis results is difficult for a number

of reasons. It is not straightforward to extrapolate the combination of characteristics with different

scaling trends. In fact, even extrapolation of individual variables should be informed by knowledge of

the underlying computational phenomena determining the scaling trend of that variable. Extrapolation

of the analysis results is discussed in more detail in Chapter 8.

Finally, whether raw data is generated through testing or modeling, it will not always be possible

to predict all scalability problems. Sometimes, a system gives no sign prior to a scalability failure, as

when this failure is caused by a bug. As stated by Weinstock and Goodenough, an analysis can only give

greater confidence in the scalability of the system, not an absolute guarantee.

Contributions and Benefits

The contributions associated with this chapter are as follows:

Contribution: a framework for characterizing and analyzing software system scalability that is inde-

pendent of the application domain and system design; and

Contribution: an analysis technique for evaluating and comparing scalability characteristics of soft-

ware systems.

The scalability framework (Figure 4.1) is based on concepts that are common to software systems

in general, such as quality goals and system metrics, and makes no assumptions on the application

domain or system design. Furthermore, in Section 4.3.2, we described two common objectives when

evaluating or comparing the scalability of software systems: (1) checking whether the system can meet

its quality goals when characteristics of its application domain and system design scale and (2) explor-

ing the system’s limits and scaling trends. In the scalability framework, quality goals and their relative

importance are described in terms of preference and utility functions over dependent variables, while the

characteristics of its application domain and system design are independent variables. How the analysis

will answer questions related to the above objectives depends on the semantics chosen for variables and

functions. For example, preferences and utility functions can be modeled in such a way that a zero value

indicates no compliance with quality goals, so that objective (1) can be achieved by checking whether

the preference or utility curve reaches zero at any point of the scaling range of independent variables.

Similarly, in order to achieve objective (2), independent variables can be scaled until a zero utility is

reached, uncovering the limits of the system. The scaling trends can be characterized both in terms of

the values assumed by dependent variables or, more meaningfully, in terms of the system’s preferences

and utility.

4.6. Summary 75

An additional benefit of the concepts introduced in this chapter is:

Benefit: a precise and uniform vocabulary that stakeholders can use to articulate scalability concerns.

Numerous are the cases in the computing literature in which scalability is mentioned in passing

or simply claimed outright but never fully defined or justified. The lack of a consensus on both the

meaning of the term and on tools and techniques to characterize and analyze the scalability of software

systems makes it difficult to describe the scalability of a system clearly, to evaluate claims of scalability

and compare claims from different sources. Doing so requires an understanding of the system’s scal-

ing characteristics and their impact on quality goals. The scalability framework translates scalability

questions and goals into clearly defined variables and functions, offering the stakeholder a precise and

uniform vocabulary to articulate scalability claims. Furthermore, trends described by dependent vari-

ables, preferences and utility values give sufficient information for others to confirm or dispute these

claims.

4.6 Summary
The purpose of a scalability analysis is to explain the effects that variations within characteristics of

the application domain (e.g., the number of concurrent requests) and variations within characteristics

of the software design (e.g., the number of machines in a cluster) have on the levels of satisfaction of

quality goals (e.g., goals on response time or resource usage). The analysis uses preference functions for

modeling quality goals and utility functions for aggregating multiple preferences into a single value.

However, the wrong choice of variables and functions can compromise the analysis results. The next

chapter presents a technique for elaborating the system’s scalability goals, from which the framework

variables and functions are ultimately derived.

76

Chapter 5

Elaborating Scalability Requirements

Despite the recognized importance of considering scalability since the early stages of development,

there is currently little support for reasoning about scalability at the requirements level. This chap-

ter presents a goal-oriented approach for modeling and reasoning about scalability requirements.

5.1. On Scalability and Requirements Engineering 77

5.1 On Scalability and Requirements Engineering
A system’s ability to scale is strongly dependent on decisions taken at the requirements and architecture

levels (Bahsoon and Emmerich, 2008). Failure to consider scalability in these stages may result in

systems that are impossible or too costly to change when scalability problems become apparent during

testing or system usage. Scalability is one of the most critical requirements for software systems (Gabriel

et al., 2006) and should be taken into consideration from the very early stages of development. Yet,

despite the importance of scalability to software engineering, there is currently a lack of systematic

methods for modeling and reasoning about scalability requirements.

Our discussions with developers in industry revealed that they generally paid no systematic at-

tention to scalability during requirements engineering (Industry Interviews, 2007). Many companies

concentrated on functional requirements, never considering load, growth characteristics, or technical

boundaries when designing their systems. In fact, some companies, struggling to gain market share

and generate revenue, believed concentrating on functionality was the only possible way to succeed.

Although time-to-market concerns are arguably justifiable for some systems, ignoring non-functional

requirements may lead to scalability problems that cannot be fixed quickly, and the repeated use of

workarounds can make the system unmanageable.

When scalability was not completely ignored, requirements were often described in terms of the

application domain boundaries only—a limited approach as discussed in Chapter 1. Sometimes, scala-

bility requirements considering different points on the range application domain characteristics can be

drawn naturally from Service Level Agreements (SLA). For example, in an e-commerce system, a slight

drop in performance might be acceptable during high volume periods, such as Christmas. We however

have also seen scalability requirements that appeared to be derived from folklore or the willingness to

comply with generally accepted good practices in software development. Such requirements can impose

unjustifiable demands on the system design. This is the case of the vague belief in the need for linear

scalability, such as when throughput is required to increase linearly with machine capacity (Brataas and

Hughes, 2004).

Conflicts of interest between management and technical groups were common. Management often

pushed for a quick solution, even when scalability problems had been predicted. As a result, people

tended not to take responsibility for scalability. With the quality neglected or stated in vague terms only,

developers had no clearly defined, justifiable targets to ensure the system meets its scalability goals.

Consequently, workload tests were largely overlooked and scalability problems became apparent only

during production.

5.1.1 Challenges in Elaborating Scalability Requirements

In Chapter 3, scalability was defined as the ability of a system to satisfy its quality goals to levels that are

acceptable to its stakeholders when characteristics of the application domain and the system design vary

over expected ranges. The precise definition of a system’s scalability requirements is, therefore, relative

to other primary quality goals for the system. For example, the scalability of a Web search engine may be

characterized by its ability to return search results in a time that remains almost instantaneous—a perfor-

5.1. On Scalability and Requirements Engineering 78

mance goal—when the number of simultaneous queries and the number of pages indexed increases; or

the scalability of an air traffic control system may be characterized by its ability to keep safe separation

distances between airplanes—a safety goal—when the number of airplanes simultaneously present in

the airspace region increases.1

Scalability requirements should be identified early, and defined in a precise, testable way. The task,

however, is not trivial. Some of the main challenges in elaborating scalability requirements are:

1. Often scalability problems come from unforeseen circumstances and system exceptions as de-

scribed in Chapter 4. Elaborating scalability requirements demands a systematic exploration of

unusual scenarios and of the load imposed by exceptions triggered during the system execution.

2. Scalability is a multivariate problem, which is hard to solve unassisted. If too many application

domain and design characteristics are taken into consideration, there is the risk of the problem

becoming too hard and prohibitively time-consuming to solve or understand. There is also the risk

of the scalability requirements simply reflecting the intended system design—when the opposite

should be true. Furthermore, each system quality is normally related to a number of characteristics

in the application domain and system design. Even if the scaling of a particular characteristic does

not obstruct the satisfaction of a quality goal, the combined scaling of multiple characteristics may

do so. Conversely, multiple qualities may be affected by the scaling of a single characteristic.

Elaborating scalability requirements demands uncovering the relationship between scaling char-

acteristics and system qualities; and exploring the combined effect of these characteristics on each

system quality.

3. Characterizing the possible range of values that application domain characteristics may assume can

be challenging. In fact, in the early stages of the software development, the application domain and

its growth characteristics are often not sufficiently known. Exceptions are driven by the industry

in which the company finds itself; in industries where the revenue depends on the input volume

handled, companies are usually more careful about characterizing the application domain and

establishing SLAs.

4. Scalability makes even blurrier the boundary between requirements and design. Scalability is

frequently achieved by means of a design-based scaling strategy, where the system capacity is

varied to deal with the scaling of the application domain (Weinstock and Goodenough, 2006).

Therefore, it is not always possible, during requirements engineering, to verify the satisfiability of

scalability goals. This inability may prevent the assessment of scalability risks during requirements

engineering, requiring these goals to be clearly “marked” for later investigation.

1These are just simplified examples. The scalability of a system will be characterized with respect to multiple goals and

scaling characteristics.

5.2. An Experience with KAOS 79

5.2 An Experience with KAOS
After a review of the available requirements engineering techniques, we settled on KAOS as a good can-

didate for elaborating scalability requirements and investigated its suitability by applying the technique

to the IEF. This experience was reported on (Duboc et al., 2008) and led us to recognize the benefits of

KAOS that are particularly useful for scalability:

Makes assumptions explicit: The scalability of a system is highly dependent not only on the assump-

tions made about the current system environment, but also on the estimation of this environment in

the future. Systems may reach scalability barriers because such assumptions were based on incor-

rect premises. Making such assumptions explicit is crucial for verifying premises and justifying

scalability requirements.

Provides rationale for requirements: Without an explicit statement of their rationale, scalability re-

quirements may impose unjustifiable demands on the system design, such as a unfounded goal for

linear scalability. Goal models allow one to analyze the completeness and relevance of scalability

requirements with respect to higher-level goals.

Provides traceability: Traceability is particularly useful in the context of scalability. If, in the future,

assumptions on application domain ranges are found to be incorrect or no longer valid, they can

be traced easily to the system requirements.

Provides assignment of responsibilities: By assigning goals to agents, KAOS can formally establish

the responsibility for scalability. For example, assigning an assumption on the expected workload

to the agents customer and service provider clearly establishes that both parties should agree on a

supported workload that should be respected during production.

Provides measurable quality variables and objective functions: One can draw an almost direct par-

allel between KAOS’s quality variables and objective functions and the scalability framework’s

variables and functions (Figure 4.1). Therefore, goal models can be used quite naturally as input

to the scalability analysis, as is described in Chapter 6.

Despite these benefits, we found a number of difficulties in applying KAOS for elaborating scal-

ability requirements. Most importantly, there is currently a lack of sound techniques for elaborating

scalability goals (Duboc et al., 2008). In particular:

Handling ranges in the application domain: Although KAOS provides a means of identifying and

specifying measurable quality goals as objective functions, it overlooks the existence of ranges

and their probability distribution of values. Techniques are needed for the systematic elicitation

and specification of such ranges in a goal model.

Taxonomy of application domain assumptions: While goals have a clear taxonomy (functional, per-

formance, reliability, security, etc.), KAOS lacks a taxonomy for assumptions. Should an assump-

tion on the range of a characteristic of the application domain be treated in the same way as an

5.3. Specifying Scalability 80

assumption on the correctness of the input format? Which elements should each category of as-

sumptions contain? Such taxonomy and associated heuristics would help future modeling efforts.

Handling disagreements on range values: In the IEF, some of the “conflicts” between assumptions

were not actually conflicts or divergences in the KAOS sense (van Lamsweerde, 2001), but rather

disagreements about the range of values for application domain characteristics. KAOS lacks an

appropriate way to model these disagreements in a KAOS goal tree. Modeling disagreements is

important not only as a negotiation tool, but also to enable an analysis of the impact of different

assumptions on goals.

Handling time-varying assumptions: It is unclear how to deal with assumptions that vary over time in

KAOS. For example, the increase of electronic transactions and advances on hardware technolo-

gies mean that the assumptions on the IEFs application domain and required infrastructure will

vary over time. KAOS lacks ways to express this variation in goal models.

Modeling hardware characteristics in goal trees: When the hardware capacity is varied to support the

scaling of application domain characteristics, it is unclear whether a distinction between hardware

and software should be made in a goal model. For the IEF, we explicitly chose to model assump-

tions on hardware infrastructure because such strategy imposes a requirement on the predictability

of system performance in various infrastructures, and because the responsibility for software and

hardware were spread over two organizations (banks were required to provide the infrastructure to

run the IEF).

Based on the conclusions drawn from the industry interviews, discussions with other computer

scientists and this initial experience with KAOS, we developed a technique for elaborating scalability

requirements. The technique inherits KAOS advantages, while tackling some of the challenges and

drawbacks discussed above.

5.3 Specifying Scalability
In our definition of scalability, the elements required to define what it means for a system to be scalable

are the quality goals of the system; the characteristics of the application domain and system design that

are expected to vary and their ranges; and the acceptable levels of quality goal satisfaction under these

variations. In the KAOS framework, these elements can be represented as follows:

1. Quality goals correspond to goals whose specification includes domain-dependent objective func-

tions.

2. Expected variations of application domain characteristics are represented in domain assumptions

that we call scaling assumptions.2

2At the requirements level, scaling assumptions are only concerned with variations of characteristics in the application do-

main (Zave and Jackson, 1997).

5.3. Specifying Scalability 81

3. The acceptable levels of quality goal satisfaction under these variations can be specified as target

values for the quality goal objective functions. We refer to quality goals that are constrained by

scaling assumptions as scalability goals.

The following sections define the concepts of scaling assumption and scalability goal in more detail,

and illustrate their uses and roles in the elaboration of software requirements.

5.3.1 Specifying Scaling Assumptions

We define a scaling assumption as a domain assumption specifying how certain characteristics in the

application domain (i.e., domain quantities) are expected to vary over time and/or across different cate-

gories of system instances. The specification of scaling assumptions should make reference to:

1. one or more domain quantities whose expected variations are defined in the assumption;

2. the periods of time and categories of system instances over which the assumption is defined; and

3. the ranges of values each quantity is expected to take for each system category over each period

of time.

For example, in the IEF, bank transactions can be submitted for processing in daily batches. The

following scaling assumption specifies how the number of transactions in daily batches submitted to

the IEF is expected to vary over time and for different categories of banks; Banks can be classified in

categories as small, medium, large and merge (acquisition of one bank by another), as in Assumption 5.1.

Assumption 5.1

Assumption Expected Batch Size Evolution

Category Scalability

Definition Between 2009 and 2015, daily batches are expected to contain up to the following numbers of

transactions for the different bank categories:

Bank 2009 until 2012 until 2015

small 10,000 15,000 20,000

medium 1 million 1.2 million 1.8 million

large 50 million 55 million 60 million

merger 80 million 85 million 95 million

Our definition of scaling assumption covers the case where variations of domain quantities refer to

a single period of time and a unique set of system instances. For example, the scaling of the IEF’s batch

size can be described as in Assumption 5.2.

Assumption 5.2

Assumption Expected Batch Size Variation

Category Scalability

Definition Over the next three years, daily batches of transactions for all our customers are expected to vary

between 10,000 and 95 million transactions.

5.3. Specifying Scalability 82

Scaling assumptions can be specified with varying precision. For some projects, it may be useful to

distinguish between the average and peak value of some domain quantity. The specification of a scaling

assumption might even refer to the probability distributions of the domain quantities under consideration

(e.g., the distribution of the number of transactions in a daily batch).

Eliciting information about domain quantities might be challenging. Such information may come

from domain knowledge, from workload characterization of other systems in the same domain, from

similar domains, among others. In the IEF, for instance, the number of transactions per account per

day and the percentage of transactions that are fraudulent are known in the financial domain. In an

ambulance dispatching system, data collected over the years allow to estimate the number of emergency

calls the system is expected to receive. However, particularly during the early stages of the development

lifecycle, there may be many uncertainties about the expected variations of some domain characteristics.

When this is the case, it is vain to try to elicit precise numbers and detailed probability distributions from

stakeholders. Fortunately, such level of detail is not always needed; identifying orders of magnitude for

all domain quantities might be enough to inform the system and software design decisions adequately.

Nevertheless, just because there are uncertainties, it does not mean that scalability requirements should

be specified in vague terms. A formalization technique is important to analyze this uncertainty and

understand it better.

Note that scaling assumptions are not requirements; they describe properties that are assumed to

be true in the application domain rather than properties that must be enforced by the software-to-be.

Scalability requirements are specified by defining the required levels of satisfaction for other quality

requirements under the variations given in the scaling assumptions, as shown below.

The Role of Scaling Assumptions

Semantically, scaling assumptions express constraints on the ranges of values that domain quantities are

expected to take over the specified time periods and categories of instances. Logically, the absence of

a scaling assumption for a domain quantity means that there is no assumed constraint on its possible

values; that is, potentially its value at any point in time could be infinite.

Scaling assumptions play a similar role in software development as other kinds of domain assump-

tions, that is, they support the refinement of goals towards requirements and expectations that can be

satisfied by a single agent (Zave and Jackson, 1997; van Lamsweerde, 2008). More precisely, scaling

assumptions support the refinement of quality goals expected to handle an unbounded number of domain

quantities. To illustrate this, consider the IEF goal Achieve[Batch Processed Quickly] (Goal 5.1) below 3

The natural language and formal definitions state that the goal is satisfied in an absolute sense if every

batch of transactions submitted is processed in less than 8 hours. The quality variable processingTime is a

random variable whose sample space is the set of batches submitted to the IEF. Its value denotes the time

to process a batch; that is, the time to verify all transactions in the batch and generate alerts for those that

seem fraudulent. The objective function states that the system should be designed so as to maximize the

3This and other goals in this thesis are stated examples to demonstrate use of the technique. Different parameters applied to

the actual system.

5.3. Specifying Scalability 83

probability that a batch is processed in less than 8 hours. The “Must” column states that this percentage

should be at least 90%. The goal is assigned to the Alert Generator agent, a subsystem of the IEF.

Goal 5.1

Goal Achieve [Batch Processed Quickly]

Category Performance

Definition Daily batches of transactions provided by the bank should be processed in less than 8 hours.

Quality Variable: processingTime: Time

Definition: The time required to process the batch

Sample Space: Set of batches submitted

Objective Functions: At least 90% of the batches should be processed within 8 hours, and all batches

should be processed within 9.6 hours.

Name Definition Mode Must

% of batches processed in 8 hours Pr(processingTime ≤ 8h) Max 90%

% of batches processed in 9.6 hours Pr(processingTime ≤ 9.6h) Max 100%

Responsibility Alert Generator

The goal is realizable by the agent as it is defined entirely in terms of quantities that are monitored

and controlled by that agent (Letier and van Lamsweerde, 2002; Zave and Jackson, 1997; Courtois and

Parnas, 1993). Realizability is a theoretical notion of what it means for a goal to be achievable by an agent

based on the agent’s monitoring and control capabilities only. It implicitly assumes that the agent has

infinite capacity, where agent capacity denotes a domain-specific measure intended to characterize the

amount of resources available to the agent to satisfy the goal. In practice, however, all agents have finite

capacities. It is impossible for the Alert Generator to guarantee the satisfaction of the goal irrespectively

of the size of the daily batches to be processed.

In order to obtain a goal whose satisfaction can be guaranteed to be realized by the Alert Generator

alone, the goal Achieve[Batch Processed Quickly] can be refined into a scaling assumption on the size of

the transactional batches, such as in Assumptions 5.1 and 5.2, plus a goal requiring daily batches to be

processed within 8 hours only for batches satisfying the scaling assumption. Using Assumption 5.1, we

obtain the Goal 5.2.

Goal 5.2

Goal Achieve [Batch Processed Quickly Under Expected Batch Size Evolution]

Category Performance and Scalability

Definition At the end of each day, the batch of transactions submitted by the bank should be processed in

less than 8 hours, provided that the batch size does not exceed the bounds stated in the scaling

assumption ‘Expected Batch Size Evolution’.

This goal now can be satisfied by an Alert Generator with finite capacities (i.e., finite processing speed,

memory and storage capacities).

5.3. Specifying Scalability 84

We ignore for the moment the specification of the partial levels of satisfaction using objective func-

tions and how to decide which scaling assumption to apply to a given goal. These will be considered in

the next sections.

5.3.2 Specifying Scalability Goals

We define a scalability goal as a goal whose specification includes a description of the required levels of

the goal satisfaction under variations of some application domain quantities, as specified in one or more

scaling assumptions. Goal 5.2 is an example of a scalability goal.

A frequent type of scalability goal is one in which the same level of goal satisfaction must be

maintained under the full range of variations specified in the associated scaling assumptions. We call

these scalability goals with fixed objectives. These are goals for which the definition, objective functions

and target values are the same across the whole range of values considered in the scaling assumptions.

For example, with fixed objectives, the specification of the scalability goal Achieve[Batch Processed Quickly

Under Expected Batch Size Evolution] will be as in Goal 5.3. The objective function is defined as the condi-

tional probability that a batch is processed in less than 8 hours when it satisfies the scaling assumption

Expected Batch Size Evolution.

Goal 5.3

Goal Achieve [Batch Processed Quickly Under Expected Batch Size Evolution]

Category Performance and Scalability

Definition At the end of each day, the batch of transactions submitted by the bank should be processed in less than

8 hours, provided that the batch size does not exceed the bounds stated in the scaling assumption

‘Expected Batch Size Evolution’.

Quality Variable: processingTime: Time

Definition: The time required to process the batch

Sample Space: Set of batches submitted

Objective Functions: At least 90% of the batches should be processed within 8 hours, and all batches

should be processed within 9.6 hours.

Name Definition Mode Must

% of batches processed in 8 hours Pr (processingTime ≤ 8h | ExpectedBatchSizeEvolution) Max 90%

% of batches processed in 9.6 hours Pr (processingTime ≤9.6h | ExpectedBatchSizeEvolution) Max 100%

Responsibility Alert Generator

By contrast, scalability goals with varying objectives are scalability goals whose required level of

goal satisfaction is not the same under the whole range of variations specified in the scaling assumptions.

Their goal definition, objective functions definitions, or target values are different across the range of

values considered in the scaling assumptions. For example, a specification of the goal Achieve[Batch

Processed Quickly Under Expected Batch Size Variation] with varying objectives is as in Goal 5.4.

5.4. A Systematic Process 85

Goal 5.4

Goal Achieve[Batch Processed Quickly Under Expected Batch Size Evolution]

Category Performance and Scalability

Definition At the end of each day, if the size of the batch submitted by the bank conforms to constraints

stated in the scaling assumption “Expected Batch Size Evolution”, the whole

batch must be processed in less than X hours where the value of X is specified in the following

table:

Bank 2009 2010 - 2012 2013 - 2015

small 4h 4h30m 5h

medium 5h 5h30m 6h

large 8h 8h30 9h

merger 10h 10h30 11h

Formal Spec (∀ b:Batch)

� (b.Submitted→ ♦≤Xhours b.Processed) a

Quality Variable processingTime : Time

Objective Function: At least 90% of the batches should

be processed within X hours and all batches should be processed in 1.2 X hours

(tolerance of 20% in the processing time).

Name Definition Mode Must

% of batches processed in X hours Pr (processingTime ≤ X h | Max 90%

ExpectedBatchSizeEvolution)

% of batches processed in 1.2 X hours Pr (processingTime ≤ 1.2 X h | Max 100%

ExpectedBatchSizeEvolution)

Responsibility: Alert Generator

aSee Section 2.1.2 for explanation of syntax.

Scalability goals with varying objectives can also be used to specify how system qualities are al-

lowed to degrade under exceptional conditions. In particular, they can specify “graceful” degradation

of goal satisfaction when the system operates outside of its normal scaling ranges, a desired property of

software systems.

Scalability goals can be specified at different levels of abstraction in the goal refinement graph.

Following the KAOS definitions, a scalability requirement is a scalability goal assigned to an agent

in the software-to-be, while a scalability expectation is a scalability goal assigned to an agent in the

environment.

5.4 A Systematic Process
This section presents a systematic process to guide the modeling and analysis of scalability concerns

during goal-oriented requirements engineering.

5.4.1 Process Overview

In Chapter 3, we explained that what it means for a system to be scalable is relative to other quality

goals for the system. Identifying the primary quality goals of a system is therefore a prerequisite to the

5.4. A Systematic Process 86

precise specification of its scalability goals. The process described in this section assumes that functional

and quality goals of the system have been elaborated following a systematic KAOS process (van Lam-

sweerde, 2008). During such an elaboration process, the initial specification of goals, and the assignment

of goals to agents, are typically idealized. The model is generally elaborated without explicit considera-

tion for the scaling characteristics of the application domain and the limited capacities of agents.

Starting from idealized goals is beneficial as it avoids premature compromises based on implicit

and possibly incorrect stakeholder perceptions of what might be achievable. However, later on in the

requirements elaboration process, it is necessary to take into account what can be achieved realistically

by agents and, if needed, modify the specifications of goals, requirements, and expectations accordingly.

Our process for elaborating scalability requirements is shown in Figure 5.1. This process is based on

the goal-obstacle analysis loop of the KAOS method, which is a goal-anchored form of risk analysis (van

Lamsweerde and Letier, 2000). Starting from an initial goal model, the goal-obstacle analysis loop

consists of:

1. systematically identifying obstacles that may obstruct the satisfaction of the goals, requirements,

and expectations elaborated so far;

2. assessing the likelihood and criticality of those obstacles; and

3. resolving them by modifying existing goals, requirements, and expectations, or generating new

ones so as to prevent, reduce or mitigate the identified obstacles.

Figure 5.1: High-level process for elaborating scalability requirements.

Goal-obstacle analysis is performed iteratively until all remaining risks are considered acceptable.

The application of these steps to handle scalability concerns will lead to the identification and assessment

of scalability obstacles and to their resolution. Some of the model elaboration tactics for resolving

scalability obstacles lead to the identification of scaling assumptions and scalability goals introduced in

Section 5.3. We describe each of these three steps in the following subsections.

5.4. A Systematic Process 87

5.4.2 Identifying Scalability Obstacles

As discussed in Chapter 3, load and capacity are fundamental drivers of scalability.4. We therefore

define a scalability obstacle as a condition that prevents some goals from being satisfied because the

load imposed by the goals on agents involved in their satisfaction exceeds the capacity of those agents.

Therefore, a scalability obstacle will be of the form ♦(LoadG > Capacityag). The concepts of goal

load and agent capacity are defined as follows:

Goal load: a domain-specific measure intended to characterize the amount of work needed to

satisfy the goal.

Agent capacity: a domain-specific measure intended to characterize the amount of resources

available to the agent to satisfy its goal.

In order to identify concrete scalability obstacles, goal loads and agent capacities must be instantiated to

measures that are specific to the goals and agents being considered. For example, a scalability obstacle

to the goal Achieve[Batch Processed Quickly] (Goal 5.1) is the condition Batch Size Exceeds Alert Generator

Processing Speed. The goal load is the number of transactions in the batches to be processed, and the agent

capacity is the Alert Generator’s processing speed measured as the number of transactions it can process

per hour. As another example, consider the downstream process of investigating the alerts generated by

the IEF. Once an alert is generated, fraud investigators are expected to verify the alert within the next

day, confirming or dismissing the suspicion of fraud. This goal, named Achieve[Alerts Investigated Quickly],

would have as a scalability obstacle the condition Number of Alerts Exceeds Fraud Investigators Speed. In this

case, the goal load is the number of alerts to be processed each day and the agent capacity is the number

of alerts the team of fraud investigators is able to investigate per day.

A scalability obstacle can be an obstacle to goals at any level in the goal refinement structure.

However, during scalability obstacle analysis, we find it preferable to generate scalability obstacles from

lower level goals assigned to single agents because it allows one to generate more specific obstacles

and investigate more specific resolution strategies than by considering scalability obstacles to higher

level goals. That is, one should consider scalability obstacles to all requirements and expectations in

the model. Note that domain properties and domain hypothesis cannot be obstructed by scalability

obstacles, as they are not under the responsibility of an agent. However, if incorrect, they may cause

scalability obstacles to other goals in the model. For example, if the assumption Expected Batch Size

Evolution (Assumption 5.1) is violated in the running system, it may create a scalability obstacle to the

goal Achieve[Batch Processed Quickly] (Goal 5.1).

Patterns of scalability obstructions

The generation of obstacles from goals in (van Lamsweerde and Letier, 2000) is guided by formal ob-

struction patterns. In order to help the generation of scalability obstacles, we have created scalability

4There might be others, as is discussed in in Section 8.4. Load is determined by the scaling of application domain character-

istics associated with goals. The agent’s ability to support the load imposed by the goals under its responsibility will depend on its

capacity.

5.4. A Systematic Process 88

obstruction patterns in Table 5.1. 5

Goal Domain Property Obstacle

G: �P �(P→ ♦(LoadG > Capacityag)

LoadG ≤ Capacityag)

G: �(A→ P) �(P→ ♦(A ∧

LoadG ≤ Capacityag) LoadG > Capacityag)

Table 5.1: Scalability obstruction patterns.

The first pattern considers goals of the form �P, which do not refer to a scaling assumption.6 It

uses a domain property stating that a necessary condition for the goal to be satisfied is that the goal load

is less than or equal to the agent capacity. The identified scalability obstacle has the form Goal Load

Exceeds Agent Capacity. Take, for example, the IEF goal Achieve[Batch Processed Quickly] (Goal 5.1) and its

assignment to the Alert Generator. This goal is impossible to satisfy without some bound on the size of the

transactional batches submitted to the system. The application of the first pattern on this goal generates

the scalability obstacle Batch Size Exceeds Alert Generator Processing Speed whose formal definition is given

by: ♦ (∃ b:Batch, ag:AlertGenerator) Size(b) > Speed(ag).

The second pattern considers goals of the form �(A → P), where A is the condition defined in

a scaling assumption on the goal load.7 It uses the same domain property and produces a scalability

obstacle of the form Goal Load is within Scaling Assumption and Exceeds Agent Capacity. Take, for example

the IEF goal Achieve[Batch Processed Quickly under Expected Batch Size Evolution] (Goal 5.2). A scalability

obstacle occurs if the system does not have sufficient capacity to process a transactional batch, even if

its size is within the expected bounds. The application of the second pattern on this goal generates the

obstacle Batch Size is within Expected Evolution and Exceeds Alert Generator Processing Speed whose formal

definition is given by: ♦ (∃ b:Batch, ag:AlertGenerator) WithinExpectedSize(b) ∧ (Size(b) > Speed(ag)).

However, when identifying scalability obstacles, it is not sufficient to consider obstacles to each

goal in isolation. There might be situations where an agent capacity might be sufficient to satisfy each

goal in isolation but insufficient when having to satisfy all goals together. The additional obstruction

pattern in Table 5.2 can be used to generate scalability obstacles to multiple goals.

Goals Domain Property Obstacle

G1,...,Gn G1 ∧ . . .∧ Gn→ ♦(LoadG1 + . . .+ LoadGn)

�(LoadG1 + . . .+ LoadGn ≤ Capacityag) > Capacityag

Table 5.2: Pattern of scalability obstruction to multiple goals.

Consider a set of goals G1, ..., Gn assigned to a same agent ag, and a domain property G1 ∧ ... ∧

Gn =⇒ �(LoadG1 + ... + LoadGn ≤ Capacityag) stating that the agent’s capacity must always be
5See Section 2.1.2 for explanation of syntax.
6A goal of the form textsf�P states that the condition textsfP must be true for all future states.
7A goal of the form �(A→ P) states that always, if the condition A is true then the condition P must also be true.

5.4. A Systematic Process 89

bigger than the sum of the goals’ loads in order for the goals to be satisfied. A scalability obstacle to

this set of goals would be the condition ♦(LoadG1 + ... + LoadGn > Capacityag), where the sum of

the goal’s load eventually exceeds the agent capacity. When n = 1, this pattern is equivalent to the first

obstruction pattern to a single goal in Table 5.1.

To illustrate this pattern, consider the following two IEF goals: Achieve[Incoming Transactions Stored]

and Achieve[Alerts Stored]. These goals state, respectively, that all transactions submitted to the system and

all alerts generated by the system should be stored in the system. Both goals are assigned to the agent

Data Storage, as illustrated in Figure 5.2. A necessary condition for both goals to be satisfied is that the

sum of the transactions and alerts data (goal load) does not exceed the Data Storage’s disk space (agent’s

capacity). An application of the pattern generates the scalability obstacle Amount of Data Exceeds Data

Storage Space. Note that the strict application of the pattern for a single goal described in the beginning

of this section would have generated two obstacles: Number of Incoming Transactions Exceeds Data Storage

Space and Number of Alerts Exceeds Data Storage Space. The logical conjunction of these two scalability

obstacles is not equivalent to the joined scalability obstacle Amount of Data Exceeds Data Storage Space.

Figure 5.2: Scalability obstacle to multiple goals.

In the KAOS framework, the situation described in this pattern can also be viewed as a divergence

between the set of goals G1, ..., Gn where the scalability obstacle is the boundary condition for this

divergence (van Lamsweerde et al., 1998). For the purpose of elaborating scalability requirements, we

found it more convenient to treat such situations as obstructions rather than divergences because our main

focus is on identifying and resolving scalability problems rather than handling goal conflicts. Identifying

and resolving these scalability obstacles will also resolve the goal divergences as a by-product.

Using obstruction patterns

The scalability obstruction pattern to multiple goals suggests the following process to identify scalability

obstacles: For each agent,

1. identify the set of all goals assigned to the agent;

2. for each goal, identify what defines the goal load and what agent resources are involved in its

satisfaction;

3. for each agent resource M identified in step 2, if it is a domain property that the satisfaction of

5.4. A Systematic Process 90

all goals involving the resource M requires that the sums of the goals loads is always smaller or

equal to the amount of resource M of the agent, then generate a scalability obstacle of the form

♦(LoadG1 + ...+ LoadGn > M) obstructing the set of goals G1, ..., Gn.

This process is an over-simplification, as it assumes that the agent alone is responsible for the sat-

isfaction of all goals under consideration and that the total load imposed on an agent can be calculated

as the addition of individual goal loads. The pattern of scalability obstruction for multiple goals could

be generalized to a situation where the domain property involves any monotonically increasing function

F (LoadG1, ..., LoadGn) instead of a simple addition. However, further research is needed to to create

a process that considers interactions between agents and/or goals and more complex calculation of the

total load imposed on agents, as will be discussed in Chapter 8. Furthermore, it may not be interest-

ing to consider specific resources (such as CPU, memory, network bandwidth or disk) at early stages

of requirements specification, as satisfying a goal probably will use portions of a number of different

resources. However, if an agent is responsible for goals that will be critical to specific resources, then it

might be interesting to analyze these resources separately. The technique allows one to model resources

at different levels of abstraction, and the appropriate level depends on the particular goal.

5.4.3 Assessing Scalability Obstacles

Once potential scalability obstacles have been identified, their criticality and likelihood should be as-

sessed. As for other kinds of obstacles, criticality depends on its impact on higher-level goals and the

criticality of those goals.

A lightweight technique to support this process consists of using a standard qualitative risk analysis

matrix in which the likelihood of a scalability obstacle is estimated on a qualitative scale from Very Un-

likely to Almost Certain and its criticality is estimated on a scale from Insignificant to Catastrophic (van

Lamsweerde, 2008). The goal refinement graph helps estimating obstacle criticality by allowing one to

follow goal-refinement links upward to trace all high-level goals affected by an obstacle.

When needed, a more detailed, quantitative analysis of the impact of obstacles on higher-level goals

could be performed using quality variables refinement equations of a quantitative goal model (Letier and

van Lamsweerde, 2004). Much further work is needed in order to develop techniques for a quantitative

scalability analysis at the requirements and goal levels, as it will be discussed in Chapter 8. It is important

to note, however, that a detailed, quantitative analysis of scalability during requirements elaboration is

not the purpose of this work. In the early stages of scalability requirements elaboration, the main purpose

of obstacle assessment is to separate scalability obstacles for which resolutions need to be sought from

those whose risk is so low that they can safely be ignored. When possible, obstacles will be assessed and

resolved at the goals level. When assessing the likelihood of some obstacle is not viable at requirements

elaboration time, its obstructed goals should be clearly marked for later investigation. This can be easily

accomplished in KAOS using the “issue” feature in goals, which is a process-level feature capturing

questions raised during requirements elaboration but that can only be addressed at later stages of the

development process.

5.4. A Systematic Process 91

5.4.4 Resolving Scalability Obstacles

Scalability obstacles whose combined likelihood and criticality are considered serious enough must be

resolved. The obstacle resolution process comprises two activities: the generation of alternative reso-

lutions and the selection of resolutions among the generated alternatives. Only the generation step was

investigated in this research; the selection among alternatives is left for future work.

This section presents a catalog of model transformation tactics for generating alternative ways to

prevent, reduce or mitigate scalability obstacles. We have developed tactics for resolving scalability

obstacles by systematically considering specializations along the eight general obstacles resolutions

strategies in van Lamsweerde (2008): goal substitution, agent substitution, obstacle prevention, goal

weakening, obstacle reduction, goal restoration, obstacle mitigation, and do-nothing. Tactics in our cat-

alog formalize, at the goal level, strategies commonly used in industry to achieve scalability. They were

collected from the industry interviews and from the computing literature. The benefit of a catalog of

requirements-level scalability obstacle resolution tactics is to encode knowledge about how to deal with

scalability risks at the requirements level in a form that allows system designers to explore a range of

alternative system designs. Our catalog of scalability obstacle resolution tactics is summarized in Ta-

ble 5.3. The first and second columns show the general obstacle resolution categories and descriptions,

as defined in van Lamsweerde and Letier (2000). The third column shows the specialized tactics and sub-

tactics for resolving scalability obstacles, respectively preceded by the black and white circles. The ones

preceded by a dash are typical strategies to satisfy the goals introduced by the tactics and sub-tactics.

The remaining of this section presents these tactics in more detail. For each of the general obstacle

resolution strategies, we briefly discuss its relevance for resolving scalability-related risks and, where ap-

propriate, define specialized model transformation tactics that are specific to the resolution of scalability

obstacles. Note that different tactics may be applied to resolve the same scalability obstacle, generating

a set of alternative resolutions. The choice among these resolutions is made in the selection activity of

the obstacle resolution phase.

All scalability obstacle resolution tactics have a scalability obstacle O as a precondition:

Precondition: A goal G is unsatisfiable by an agent ag because the load imposed by all goals

assigned to ag exceeds the ag’s capacity.

5.4. A Systematic Process 92

Category Short Description Scalability Obstacle Resolution Tactic

Goal Substitution Eliminates the need for the obstructed goal (Direct application)

Agent Substitution Assigns the responsibility for the obstructed • Transfer goal to non-overloaded agent

goal to another agent ◦ Automate responsibility of overloaded human agent

• Split goal load among multiple agents

◦ Split goal load into subtasks

◦ Split goal load by case

Obstacle Prevention Avoids the obstacle entirely • Set agent capacity according to load

◦ Set agent capacity upfront to worst-case load

◦ Adapt agent capacity at runtime according to load

- Increase number of agent instances

- Increase the capacity of the agent instance

• Limit goal load according to agent capacity

◦ Limit goal load according to fixed agent capacity

◦ Limit goal load according to varying agent capacity

- Limit goal load over time

Obstacle Reduction Reduces its likelihood by introducing some (Direct application)

ad-hoc countermeasure - Influence goal load distribution

Goal Weakening Weakens the obstructed goal specification • Introduce scaling assumption

• Strengthen scaling assumption

•Weaken goal objective function

◦ Relax real-time requirement

◦ Relax required level of satisfaction

Goal Restoration Tolerates the obstacle while requiring the target (Direct application)

condition of the obstructed goal to be restored - Postpone excess goal load

Obstacle Mitigation Tolerates the obstacle and mitigates its (Direct application)

consequences

Table 5.3: Scalability obstacle resolution tactics.

Each scalability obstacle resolution tactic transforms a model in which a scalability obstacle O

obstructs a goalG under the responsibility of an agent ag into a new model that contains new or modified

goals, domain assumptions, agents, or responsibility assignments. The application of several of these

tactics results in the specification of new or modified scaling assumptions and scalability goals. The

obstructed goal G may or may not already refer to scaling assumptions; that is, it may be of the form �P

or �(A→ P).

5.4. A Systematic Process 93

Goal Substitution

An effective way to resolve an obstacle to some goal is to eliminate the need for this goal by finding an

alternative refinement to some higher-level goal in which the obstructed goal and its obstructing obstacle

are no longer present. For scalability obstacles, the principle is to try to find an alternative way to satisfy

higher-level goals in which the scalability risk no longer exists. Tactic 5.1 shows the refinement pattern

for this resolution. As an example, consider the scalability obstacle Batch Size Exceeds Alert Generator’s

Processing Speed obstructing the goal Achieve[Batch Processed Quickly] (Goal 5.1). Historically, in the IEF,

transactions were always processed in batches. A goal substitution is to consider a system that process

all transactions continuously, 24 hours per day, rather than in overnight batches. 8

Tactic 5.1: Goal substitution

Postcondition: The unsatisfiable goal G is eliminated by defining an alternative refinement for its

parent goal PG involving subgoals different from G and such that O no longer exists.

Agent Substitution

This tactic consists of eliminating the possibility for the obstacle to occur by assigning the responsi-

bility for the obstructed goal to another agent. For resolving scalability obstacles, we define five new

specializations of this tactic.

Transfer goal to non-overloaded agent: This tactic consists of transferring responsibility for one or

more of the goals assigned to an overloaded agent to an alternative agent with bigger capacity

or smaller load. Possible choices for the alternative agent can be explored systematically by

considering agents already present in the model. This strategy may also lead to the introduction

of a new agent role. A particular case is the commonly used strategy automate responsibility of

overloaded human agent, in which a task normally accomplished by a human is automated by

the system. The refinement pattern for this resolution is shown by Tactic 5.2.

8The current version of the system supports both processing options.

5.4. A Systematic Process 94

Tactic 5.2: Transfer goal to non-overloaded agent

Postcondition: Transfer the responsibility for the obstructed goal G from a single agent ag to an-

other single agent ag∗ that alone has sufficient capacity to support the load imposed by the goals

transfered from ag.

Split goal load among multiple agents: This tactic consists of refining a goal assigned to an over-

loaded agent into subgoals with smaller loads, such that each subgoal can be assigned to an agent

with enough capacity to satisfy it. An application of this tactic may lead to the introduction of

new agent roles taking responsibilities for the subgoals. The specialized tactics split goal load

into subtasks and split goal load by case consists of generating the subgoals by refining the

obstructed goal following a milestone-driven or a case-driven formal refinement pattern, respec-

tively (Darimont and van Lamsweerde, 1996). The former identifies an intermediate condition

that is a necessary milestone for reaching the target condition prescribed by the obstructed goal. It

then creates a subgoal for reaching the milestone condition and another subgoal for reaching the

target condition from the milestone condition, each assigned to an agent with sufficient capacity

to support its goal load. The latter tactic identifies different cases for reaching the target condition.

Each case is covered by a subgoal, whose disjunction implies the target condition of the obstructed

goal. As in the former specialization, each subgoal is assigned to an agent with sufficient capacity

to support its load. Tactics 5.3 and 5.4 shows the refinement patterns for these resolutions.

Tactic 5.3: Split goal load into subtasks

Postcondition: The unsatisfiable goal G is AND-refined into subgoals G1 and G2, such that:

(i) G1 achieves an intermediate milestone condition for reaching the target condition prescribed by G,

(ii) G2 achieves G’s target condition starting from the intermediate milestone condition, and

(iii) G1 and G2 are respectively assigned to agents ag1 and ag2, who have sufficient capacity to

support the load imposed by their assigned goals.

As an example in the IEF, consider the goal Achieve[Alerts Investigated Quickly] assigned to the agent

Fraud Investigator, and the scalability obstacle Number of Generated Alerts Exceeds Fraud Investigator’s Capacity.

The tactic ‘split goal load by case’ suggests identifying a set of alternative cases of alert investigation

that could be assigned to fraud investigators who specialize in such cases and are therefore more efficient

to deal with them (e.g. based on the type of alert and category of the account holder). The tactic ‘split

5.4. A Systematic Process 95

goal load into subtasks’ suggests identifying subgoals corresponding to subtasks that can be assigned to

different agents in the system, such as assigning the responsibility of contacting card holders as part of

the fraud investigation process to the agent Client Security Officer instead of Fraud Investigator.

Tactic 5.4: Split goal load by case

Postcondition: The unsatisfiable goal G is AND-refined into subgoals G1 and G2 that must be respec-

tively satisfied in Case1 and Case2, such that:

(i) G1 and G2 each achieve the target condition prescribed by G,

(ii) Case1 and Case2 are disjoint and cover the entire state space, and

(iii) G1 and G2 are respectively assigned to agents ag1 and ag2, who have sufficient capacity to

support the load imposed by their assigned goals.

Obstacle Prevention

This resolution tactic consists of generating a new goal requiring the obstacle to be avoided entirely. In

the case of scalability obstacles, the generated goal has the following pattern:

Goal Pattern:

Goal Avoid [Goal Load Exceeds Agent Capacity]

Formal Spec �¬(LoadG > Capacityag)

We have defined new goal refinement tactics and associated formal goal refinement patterns to guide

the systematic exploration of alternative refinements for this goal:

Set agent capacity according to load: This tactic consists of refining the above goal into a scaling

assumption defining a bound X on the goal load, and a goal requiring the agent capacity to have

a value equals or above X . Its refinement pattern is show in Tactic 5.5. This tactic has two

specializations. On the specialization set agent capacity upfront to worst-case load, X defines

a fixed worst-case bound on the goal load, and the goal requires the agent capacity to have a

constant value equals or above this worst case load. The specialization adapt agent capacity at

runtime according to load is a dynamic counterpart of the previous one. In this tactic, X defines

a time-varying variable representing the predicted future value of the goal load at run-time, and the

goal dynamically extends the agent capacity based on the predicted load. Two typical strategies to

satisfy the subgoal of both specializations is to increase the number of agent instances so that their

5.4. A Systematic Process 96

added capacity is greater then X and to increase the capacity of the agent instance so that it is

greater than X . In the IEF, for example, that could be increasing the number of Fraud Investigators

processing alerts or providing training to investigators so that alerts can be processed quicker.

Tactic 5.4 shows the refinement for this resolution.

Tactic 5.5: Set agent capacity according to load

Postcondition: Define a new goal G∗ of the form �¬(LoadG > Capacityag) that is AND-refined

into:

(i) a scaling assumption A of the form �(LoadG ≤ X) defining a bound on G’s load, and

(ii) a goal G∗∗ of the form �(Capacityag ≥ X) requiring ag’s capacity to a value smaller than or

equal to X.

Limit goal load according to agent capacity: This tactic consists of refining the avoid goal (Goal Pat-

tern 5.1) into a requirement or expectation stating that the agent capacity is greater than some

value K, and a subgoal limiting the goal load value at any given time below or equals to K. Note

the difference: while the previous tactic assumes a goal load and adapts the agent capacity accord-

ingly, this one expects or requires an agent capacity and limits the goal load accordingly. This

refinement pattern in shown in Tactic 5.6.

This tactic also has two specializations. On the specialization limit goal load according to fixed

agent capacity, K is a constant value representing a fixed agent capacity. One typical strategy to

satisfy this subgoal is to limit the goal load over time; for example, for a student enrollment system,

this could be achieved by setting different registration dates for different student groups. The

specialization limit goal load according to varying agent capacity is the dynamic counterpart

of the previous specialization. The principle here is to monitor or predict variations in the agent

capacity at run-time (i.e., the variation of k over time), and dynamically change the limit on the

maximal goal load based on these variations. Satisfaction of goals that limit the load can be

automated or left entirely under the responsibility of human agents.

5.4. A Systematic Process 97

Tactic 5.6: Limit goal load according to agent capacity

Postcondition: Define a new avoid goal G∗ of the form �¬(LoadG > Capacityag) that is AND-

refined into:

(i) a requirement or expectation G∗∗ of the form �(Capacityag ≥ K) requiring the agent capacity

to be greater than or equal to some value K, and

(ii) a subgoal G∗∗∗ of the form �(LoadG ≤ K) limiting the goal load to a value smaller than or

equal to K.

To illustrate some of these tactics with the IEF, consider the goal Avoid[Batch Size Exceeds Alert Gener-

ator Processing Speed] generated to prevent the obstacle Batch Size Exceeds Alert Generator Processing Speed.

Applying the tactic ‘set agent capacity upfront to worst-case load’ refines this goal into a scaling assump-

tion Batch Size Below Max (where Max is a constant value) and a subgoal Maintain [Alert Generator Processing

Speed Above Max], i.e. the alert generator would have a fixed capacity designed to deal with the largest

possible batch size. An alternative is to apply the tactic ‘adapt agent capacity at runtime according to

load’, generating the subgoals Maintain [Accurate Batch Size Prediction] and Maintain [Alert Generator Processing

Speed above Predicted Batch Size].

Obstacle Reduction

Instead of eliminating the scalability obstacle, as in the tactics above, one can reduce its likelihood by

introducing a new goal containing some ad-hoc countermeasure. For scalability obstacles, one strategy

to satisfy this new goal is to try to influence the distribution of goal load. Consider, for example, an

e-commerce website wishing to announce a sale. It can send notification e-mails to registered customers

on different dates, assuming that customers are more likely to shop as soon as they receive the e-mail.

Note that this is different from preventing the obstacle occurrence by limiting goal load over time, where

one sets an upper limit to the goal load at different points in time, as in the student enrollment example.

In the e-commerce example, customers may still choose to buy in the very last day of the sale. Tactic 5.7

shows this resolution.

5.4. A Systematic Process 98

Tactic 5.7: Obstacle Reduction
Postcondition: Define a new goal G∗ containing some countermeasure that reduces the likeli-
hood of the scalability obstacle O (e.g., G∗ with an objective function of the form Max P(LoadG <

Capacityag)).

Goal Weakening

Initial goals specification are often elaborated without considerations for the agent capacity. In this case,

their obstruction by a scalability obstacle may be resolved by weakening the goal specification. The

following elaboration tactics can be used:

Introduce scaling assumption: Recall that the absence of a scaling assumption for a domain quantity

means that there is no assumed constraint on its possible values. This tactic is applied when a goal

of the form �P is expected to handle certain domain quantities but does not refer to any scaling

assumption, implying in a scalability obstacle. The tactic refines the obstructed goal into a scaling

assumption and a subgoal whose definition states that the property expressed in the definition of

the obstructed goal must be satisfied only when the property expressed in the scaling assumption

holds. This tactics, therefore, determines which scaling assumptions to apply to a given goal: those

who are concerned with domain quantities that are monitored or controlled by an agent in order

to satisfy the goal. An example of this refinement pattern was given in the refinement of the goal

Achieve [Batch Processed Quickly] (Goal 5.1) into the scaling assumption Expected Batch Size Evolution

(Assumption 5.1) and the goal Achieve [Batch Processed Quickly Under Expected Batch Size Evolution]

(Goal 5.2). Tactic 5.8 shows this refinement pattern.

Tactic 5.8: Introduce scaling assumption

Postcondition: The obstructed goal G of the form �P is refined into:

(i) a scaling assumption A with a property � SA defining the range of values the domain quantities

can assume, and

(ii) a subgoal G∗ of the form �(SA→ P).

5.4. A Systematic Process 99

Strengthen scaling assumption: This tactic can be applied when a goal of the form �(A→ P) cannot

be satisfied because its responsible agent does not have sufficient capacity to support the load de-

termined by its scaling assumption (See Table 5.1). This tactic strengthen the scaling assumption

by reducing the range of values for its domain quantities. Tactic 5.9 gives its refinement pattern.

Note that by strengthening the scaling assumption, one is simply saying that the domain quantities

are believed to vary within a smaller range than previously stated. This is different from creating

a requirement or expectation limiting the range of values domain quantities can assume, as in the

tactic ‘limit goal load according to agent capacity’.

Tactic 5.9: Strengthen scaling assumption

Postcondition: Replace the condition �SA in a scaling assumption A by another condition � SA∗

describing a smaller range of values for the domain quantities in A.

Weaken goal objective function: This tactic involves weakening the goal definition, objective function

or required levels of satisfaction so that it requires less agent capacity for its satisfaction. For

Achieve goals of the form �(C → ♦≤dT), a specialized tactic for goal weakening is to relax real-

time requirement by increasing the time for achieving the condition T . This formal refinement

pattern is shown in Tactic 5.10. The relax required level of satisfaction specialization consists of

relaxing the minimum value to be achieved for the goal objective function to be maximized (i.e.

the value in the “Must” value of the goal’s objective function).

Tactic 5.10: Relax Real-time Requirements

Postcondition: Replace the time d to achieve the target condition of the obstructed goal G by a

larger value d∗ so that the goal satisfaction can be achieved with the agent ag’s capacity.

To illustrate some of these tactics, consider the first version of the goal Achieve [Batch Processed

Quickly Under Expected Batch Size Evolution] (Goal 5.2), where this goal is specified with a fixed objective

5.4. A Systematic Process 100

function. Assume that the scalability obstacle Expected Batch Size Evolution and Exceeds Alert Generator

Processing Speed obstructing this goal is considered likely to occur. In order to resolve the obstacle, the

tactic ‘relax real-time requirement’ would weaken the goal by increasing the expected processing time,

the tactic ‘relax required level of satisfaction’ would weaken the goal by allowing for less than 90% of

the batches to be processed in 8 hours.

Goal Restoration

It is generally impossible or too costly to guarantee that all scalability obstacles will be avoided. One

should therefore also consider generating new goals to mitigate the effects of obstacle occurrences. This

tactic tolerates the obstacle occurrence while requiring the target condition of the obstructed goal to be

satisfied. For scalability obstacles, one strategy is to limit the load artificially as soon as it exceeds the

agent capacity and submit the remaining load when the agent is less busy. Note that this is different

from preventing the obstacle occurrence by ‘limiting the goal load according to agent capacity’. As

an example for the IEF, one can mitigate the occurrence of a scalability obstacle where the number of

transactions that occurred in a day is exceptionally much larger than what had been anticipated (caused,

for example, by a large scale security attack) by truncating the batch to a manageable size and reporting

the unprocessed transactions to a later day when the number of transactions becomes manageable again.

This refinement pattern is shown in Tactic 5.11.

Tactic 5.11: Goal Restoration

Postcondition: Add a goal G∗ that requires the target condition of the obstructed goal G to be

eventually achieved.

Obstacle Mitigation

In obstacle mitigation, a new goal is added to attenuate the consequences of an obstacle occurrence. That

normally involves ensuring the satisfaction of a weaker version of the obstructed goal (weak mitigation)

or of an ancestor of the obstructed goal (strong mitigation). Consider, for example, a call center with

the goal Achieve [Calls Answered Quickly] stating that calls should be answered in less than 3 minutes. If

in a given day, the call center receives a unusually high amount of calls, this goal is obstructed by the

scalability obstacle Number of Calls Exceeds Customer Service Team Capacity. A strategy to mitigate this

obstacle might be to create a new goal Achieve[Call Back Every Missed Call] which ensures a weaker version

of the obstructed goal stating that a call must be taken in less than 3 minutes or the details of the customer

should be recorded and the call returned in less than half an hour. The refinement pattern is shown by

Tactics 5.12 and 5.13.

5.4. A Systematic Process 101

Tactic 5.12: Strong Obstacle Mitigation

Alternative postcondition: Add a goal G∗∗ that ensures the satisfaction of an ancestor of the ob-

structed goal G (e.g., the condition �T of G’s parent goal).

Tactic 5.13: Weak Obstacle Mitigation

Postcondition: Add a goal G∗ that ensures the satisfaction of a weaker version of the obstructed

goal G (e.g., a goal with a property �P ′).

Generating Alternative Resolutions to Scalability Obstacles

We have used, throughout this section, the same IEF obstacle (Batch Size Exceeds Alert Generator Processing

Speed) to exemplify a number of the resolution tactics presented in this chapter. These were goal substi-

tution, set agent capacity upfront to worst case load, adapt agent capacity at runtime, introduce scaling

assumption, relax real-time requirement, relax required level of satisfaction, and goal restoration. The

application of two more tactics to reduce the likelihood of this obstacle are shown in Chapter 7, the limit

goal load according to agent capacity and the transfer goal to non-overloaded agent. Our intent is to

demonstrate the range of design alternatives that can be generated by systematic looking for instantiation

of each resolution tactic. The set of resolution tactics, therefore, may help developers to consider a wider

range of of strategies for solving a scalability obstacle than simply increasing the agent’s capacity.

5.5. Critical Evaluation 102

5.5 Critical Evaluation
The risks associated with the technique described in this chapter are as follows:

Risk: Developers may feel that the costs of scalability requirements analysis outweighs its benefits.

We present a technique for analyzing scalability at the goal level, but we have not yet investigated

the costs of doing so.9 Future research should include such an investigation. However, we have reasons

to believe that the benefits brought by the technique outweighs the costs. As discussed in Chapter 1, we

have observed that scalability problems often become apparent at the production phase, where the costs

of fixing problems are much higher than they would be at the requirements engineering phase (Boehm,

1976). Analyzing scalability during requirements engineering also allows developers to consider a wider

range of solutions to prevent scalability problems. Finally, this research assumes that KAOS is used for

requirements engineering (see Chapter 1), meaning that we are simply adding another type of obstacle

to be considered during the goal-obstacle analysis of the KAOS method, rather than suggesting that a

complete goal model is built at a point of the development lifecycle where it may otherwise not be useful.

Risk: It is difficult to estimate the agent capacity in early stages of the development lifecycle.

A distinction must be made between the assumed capacity of given agents in the environment and

the required capacity of the computer-based system to be constructed. The former is easier to estimate

during requirements engineering time. However, the latter is typically unknown during requirements

elaboration. In future work, we intend to develop techniques for identifying how the obstacles’ likelihood

varies with the required agent’s capacity, as discussed in Chapters 7 and 8.

However, our technique for scalability goal-obstacle may be applied later in the development life-

cycle to a pre-existing goal model, with the purpose of instantiating variables and functions for a quan-

titative scalability analysis. In this case, the capacity of the software agent might be known or be easier

to estimate.

Risk: Scalability obstacle assessment and resolution takes a simplified view of goal load and agent

capacity.

We have added two important concepts to KAOS: goal load (denoted as a domain-specific measure

intended to characterize the amount of work needed to satisfy the goal) and agent capacity (denoted

as a domain-specific measure intended to characterize the amount of resources available to the agent

to satisfy the goal). These concepts, however, need to be elaborated further. For example, where and

how to specify an agent capacity in a goal model? In the monitoring and control links? Can an agent

have different kinds of capacity for different types of goal loads? Can there be conflicts between agent

capacities that will make it difficult to offload, split, or transfer goals load? Also, defining the total

load imposed by goals on an agent as the sum of the load imposed by the individual goals is a crude

approximation. In reality, multiple goals will not all mobilize the agent’s resource at the same time. For

example, in the IEF, goals dealing with alerts generation mobilize the system’s processing power during

9An idea of the effort involved can be taken from the Case Study 3, described in Chapter 7.

5.5. Critical Evaluation 103

the night, whereas goals dealing with displaying the resulting alerts to fraud investigators mobilize the

processing power during the day. Further elaborating the concepts of goal load and agent capacity, and

developing more precise techniques for the assessment and resolution of scalability obstacles is subject

of future research.

Risk: Stakeholders may have diverging assumptions about how quantities in the application domain are

expected to vary over time and/or across different categories of system instances.

It is not uncommon to encounter diverging assumptions on the ranges of application domain quan-

tities during the requirements engineering process. In the IEF, for example, diverging opinions could

be explained by people’s experiences with banks of different nature and sizes. Furthermore, the range

of values for certain application domain quantities may depend on assumptions about other quantities.

In the IEF, the expected number of transactions on a given day can be determined by an estimation of

the number of accounts in that bank and the expected number of transactions per account per day. A

technique for elaborating scalability requirements should offer systematic support for resolving diverg-

ing assumptions and assessing the combined effect that the variation of individual quantities have on

dependent scaling assumptions and scalability goals.

In the IEF case study, we have used a parameterized goal model to highlight disagreements and

show the impact of different assumptions on application domain quantities ranges in scaling assumptions

and scalability goals. The parameterized goal model captured the dependency among scaling assump-

tions and scalability goals. Parameters represented the values variables can assume, and derived variables

were described by refinement equations on these parameters. Instantiating parameters with different val-

ues highlighted divergences in scaling assumptions and allowed to compute the combined effect of these

assumptions on scalability goals. Although this lightweight technique has helped in the requirements

engineering process of the IEF, further research is needed in order to incorporate this technique into

the scalability framework. For example, how to resolve the disagreements that were highlighted by the

parameterized model?

Risk: Considering the absence of a scaling assumption for a domain quantity as having an infinite

range of values may be seen as imposing unnecessary work on the analyst.

No system is infinitely scalable (Weinstock and Goodenough, 2006). Effectively, considering the

absence of a scaling assumption as an infinite range of possible values for a domain quantity is forc-

ing the definition of scaling assumptions for virtually every quality goal. This interpretation may seem

counter-intuitive to those who believe that a requirements engineering technique should require min-

imum effort and accommodate incomplete information. While these principles are not incorrect, our

conversations with computer scientists in both industry and academia suggest that scalability problems

often occur because the range of values for some domain quantity and its effect on the system have been

neglected. Systematically checking for the effect of scaling application domain variables in quality goals

can uncover scalability problems that otherwise could be overlooked.

5.5. Critical Evaluation 104

Contributions and Benefits

The contributions associated with the techniques described in this chapter are as follows:

Contribution: A technique for describing, modeling and satisfying scalability requirements using

KAOS.

Our conversations with practitioners and the literature review suggest that scalability is largely

overlooked during requirements engineering. A number of reasons contribute to this fact, such as time-

to-market pressures and the lack of techniques to support the elaboration of scalability requirements (In-

dustry Interviews, 2007). Furthermore, the multivariate nature of scalability, the difficulty in discovering

domain quantity ranges at requirements engineering time, and the thin boundary between scalability

requirements and design, make modeling scalability requirements a difficult task.

The technique we present in this chapter inherits from KAOS some advantages that are particularly

useful for the elaboration of scalability requirements. It also extends KAOS to include the specification

of scaling ranges in application domain characteristics and the varying degree of goal satisfaction over

these ranges. Goal-obstacle analysis allows the systematic identification and resolution of potential scal-

ability problems during the early stages of the software development. In particular, the technique helps

to identify which scalability-related information needs to be elicited during requirements engineering:

quality goals, scaling characteristics, goal load, agent capacity, and scalability obstacles. The technique

also tackles some of the difficulties listed on Section 5.2. It is, for example, a step towards a taxonomy

for domain assumptions as it specifies a new type of assumption: the scaling assumption, which allows

for the description of time-varying assumptions on the application domain. Finally, the technique models

scaling strategies in the goal tree as resolutions to scalability obstacles.

There are a number of research directions that can be taken in the future, such as: (1) using prob-

abilistic information in a parameterized goal model, and investigating conflict resolution techniques to

handle disagreements; (2) developing a context-sensitive agent load analysis that takes into considera-

tion the time at which the load of a certain goal is imposed on an agent; and (3) further investigation

into the relationship between cost goals and alternative obstacle resolution tactics, with the objective of

investigating the cost-effectiveness of tactics.

Additional benefits of the technique introduced in this chapter are:

Benefit: The technique offers a proactive approach to treat scalability problems caused exceptional

application domain scenarios.

Our conversations with practitioners and researchers suggests that scalability problems are, on oc-

casion, caused by exceptional application domain scenarios that are difficult to predict. The technique

addresses the problem of scalability requirements through a cycle of identification, assessment and res-

olution of scalability obstacles. By applying a goal-obstacle analysis, our technique takes a pessimistic

view of the goal model developed so far, allowing for the natural investigation of scalability problems

caused by exceptional circumstances, which could be overlooked easily if no systematic technique was

being used.

5.6. Summary 105

Benefit: A goal model can serve as input to various methods for analyzing software scalability at the

architectural level.

The correctness and usefulness of quantitative methods for assessing system qualities is highly

dependent on the variables and functions selected for the analyses. In the scalability framework (Fig-

ure 4.1), these variables and functions can be systematically derived from the goal model elaborated

using our requirement engineering technique. Theoretically, this goal model may also be used as input

to various methods of analyzing software scalability at the architectural level (Kazman et al., 1998, 2001;

Bahsoon and Emmerich, 2008). Instantiation rules would have to be developed for different analyses.

Further research and case studies are needed to develop such rules.

Benefit: A goal model can have different uses during the development lifecycle.

The goal model with carefully specified scaling assumptions and scalability goals can be used in

various forms throughout the software development lifecycle. During requirements engineering time, it

can guide requirements engineering decisions. In the design phase, it can be used to guide design-level

decisions, such as choosing between some backbone algorithms, architectures or technologies. At testing

time, it may serve as input to models that predict performance for different hardware infrastructures. We

are particularly interested in developing a technique for designing and selecting scalability test cases

from goal models.

5.6 Summary
This chapter has described a systematic approach for specifying and reasoning about scalability during

a goal-oriented requirements elaboration. The approach involves the precise specification of scaling as-

sumptions and scalability goals. The former are assumptions about expected variations of quantities in

the application domain. The latter are goals whose specification includes a definition of the required

levels of goal satisfaction under the scaling of domain characteristics specified in the scaling assump-

tions. The technique explores scalability at the goal level, by systematically identifying, assessing, and

resolving obstacles to the satisfaction of scalability goals. The resolution of scalability obstacles at this

level allows one to explore a wider range of alternative resolutions than at the design or implementation

levels, notably through the exploration of alternative goal refinements and alternative assignments of

goals to agents.

Now that the different techniques of our framework have been presented, we next describe how they

fit together in a method for characterizing and analyzing the scalability of software systems.

106

Chapter 6

Scalability Analysis Method

The techniques described in the previous chapters are combined in a method for the analysis and

characterization of software system scalability. In this method, the variables and functions used

in the scalability analysis are systematically derived from the system’s goal model. The method

can be applied at any point of the development lifecycle, bringing greater benefits if adopted ear-

lier, when developers have more freedom to negotiate requirements and change the system design.

6.1. The Method Description 107

6.1 The Method Description

This now describe a first attempt to define a method that combines the techniques described in the

previous chapters. The method defines the set of activities required to produce the elements of the

scalability framework (Figure 4.1) and to perform a scalability analysis. Our objective is to provide the

necessary structure and steps to derive, from the requirements elaboration technique, the variables and

functions to be used in the scalability analysis. The method is illustrated by Figure 6.1.

Figure 6.1: Overview of the scalability analysis method.

In summary, the objective of a scalability analysis is to answer a scalability question. That requires

a good understanding of the system’s scalability goals and the characteristics of the application domain

and system design that will influence these goals. Such understanding starts with a conventional KAOS

goal model, from where scalability obstacles are iteratively identified, assessed and resolved, resulting in

an updated model that includes scaling assumptions and scalability goals. Selected goals are then used

6.1. The Method Description 108

to derive the variables and functions required for the analysis. Finally, the analysis is conducted and the

answer to the scalability question stated. We next describe each of these steps.

6.1.1 Define the Scalability Question

Initial scalability questions may originate from various sources. For example, questions may refer to

recurring causes of scalability problems in similar systems, such as the questions listed in Weinstock

and Goodenough’s scalability audit (Weinstock and Goodenough, 2006). This audit is targeted at sys-

tems that are required to accommodate a significant increase in load over their lifetimes or whose failure

caused by an unexpectedly high workload would be disastrous. The audit covers potential bottlenecks,

common incorrect assumptions, general scaling strategies, and a scalability assurance method. It is,

therefore, a good source of inspiration for identifying potential scalability problems; however, being de-

scribed in only six pages, the audit is also very limited. Another possible source for initial scalability

questions may be a impact analysis of planned software changes, exceptional application domain sce-

narios, or unusual system usage patterns. Alternatively, scalability questions simply may come from ex-

amining the system’s conventional KAOS goal model—hence, the directed link from the step “elaborate

goal model” to the step “elaborate scalability question”. In the IEF, for example, an initial scalability

question may be stated as: “Is the IEF scalable with respect to processing time when the number of

records in a batch vary over time?” This is an example of a typical early stage question, when not much

information is known about the scaling of the system’s application domain, its design, or its (possibly

competing) scalability goals.

The initial scalability question will inform what portions of the goal model need to be elaborated;

that is, for which portion one needs to identify relevant scalability goals and scaling assumptions that

will yield the variables and functions to be used in the framework. Hence the directed link from the step

“elaborate scalability question to the step “elaborate goal model” in Figure 6.1.

6.1.2 Elaborate the Goal Model

In order to analyze scalability, one should seek to improve his/hers knowledge about the system, its

environment, and its scalability goals. The first step towards this objective is to build, or refer to, a

conventional KAOS goal model. By “conventional” we mean a goal model that has been built without

scalability in mind; that is, a model that ordinarily would be produced by the KAOS method, described

in Lamsweerde’s book (van Lamsweerde, 2008). This is the step “elaborate goal model” in Figure 6.1. 1

In the IEF, the goal related to the initial scalability question is a performance goal named

Achieve[Batch Processed Quickly] (Goal 5.1). To ease the discussion, we re-state this goal below:

1In this thesis, KAOS is assumed as the technique for requirements engineering (see Chapter 1). Therefore, the analyst either

has access to a existing goal model or will build one during the requirements engineering phase.

6.1. The Method Description 109

Goal 6.1

Goal Achieve [Batch Processed Quickly]

Category Performance

Def Daily batches of transactions provided by the bank should be processed in less than 8 hours.

Quality Variable: processingTime: Time

Def: The time required to process the batch

Sample Space: Set of batches submitted.

Objective Functions: At least 9 out of 10 batches should be processed within 8 hours, and all batches

should be processed within 9.6 hours.

Name Definition Mode Must

% of Batches Processed in 8 hours Pr(processingTime ≤ 8h) Max 90%

% of Batches Processed in 9.6 hours Pr(processingTime ≤ 9.6h) Max 100%

6.1.3 Identify, Assess and Resolve Scalability Obstacles

The purpose of a scalability goal-obstacle analysis is to verify whether system agents in the goal model

have sufficient capacity to handle the varying loads imposed on them. As a result, the model is extended

to describe how quantities in the application domain are expected to vary over time and/or across different

categories of system instances (scaling assumptions), and the required levels of quality goal satisfaction

under the variations of these application domain quantities (scalability goals).

Starting from the conventional KAOS goal model, a scalability goal-obstacle analysis consists of

systematically (1) identifying scalability obstacles that may obstruct the satisfaction of the quality goals,

requirements, and expectations; (2) assessing the likelihood and criticality of these obstacles; and (3)

resolving them by modifying existing goals, requirements, and expectations, or generating new ones so

as to prevent, reduce, or mitigate the identified obstacles. The process is represented in Figure 6.1 by

the steps “identify scalability obstacles, “assess scalability obstacles” and “resolve scalability obstacles”,

which will lead back to the step “elaborate goal model”. This process is iterative.

In Chapter 5, the performance goal Achieve[Batch Processed Quickly] was refined to consider the scal-

ing of the transactional batch size (Assumption 5.1). In reality, however, the batch processing time also

depends on the number of distinct business entities in a batch, the number of fraudulent patterns that

an incoming transaction is compared against when entering the system, and the type of the fraudulent

patterns (e.g., historical, peer, or blacklist).2 We, therefore, refine Goal 6.1 into the scalability goal

Achieve[Batch Processed Quickly Under Scaling Assumptions] (Goal 6.2) and the scaling assumptions Expected

Batch Size Evolution, Expected Number of Business Entities Variation and Expected Number of Fraudulent Patterns

Variation. This goal is shown by Goal 6.2 below. The type of a fraudulent pattern is represented in

a goal model as a standard KAOS domain assumption (we will refer to these as non-scaling domain

assumptions).

2In the IEF, one of the techniques used to identify fraudulent transactions is to compare all transactions against known fraudu-

lent patterns. Some types of patterns require more complex processing than others . Real classification of patterns types have been

omitted to protect Searchspace’s intellectual property.

6.1. The Method Description 110

Goal 6.2

Goal Achieve [Batch Processed Quickly Under Scaling Assumptions]

Category Performance and Scalability

Definition Daily batches of transactions provided by the bank source system should be processed in less

than 8 hours, provided that the batch size does not exceed the bounds stated in the

scaling assumptions “Expected Batch Size Evolution”, “Expected Number of Business Entities

Variation” and “Expected Number of Fraudulent Patterns Variation”.

Quality Variable processingTime: Time

Objective Functions Under the conditions stated in the scaling assumptions “Expected Batch Size

Evolution”, “Expected Number of Business Entities Variation” and “Expected Number of

Fraudulent Patterns Variation”, for any bank, at least 90% of the daily batches should be

processed within 8 hours, and all batches should be processed within 9.6 hours.

Responsibility Alert Generator

Assessment and resolution of a scalability obstacle may require a more precise, quantitative assess-

ments of an agent’s ability to satisfy a given load. Whether capacity can be estimated will depend on the

agent and the phase of the development lifecycle in which the system finds itself. It is interesting to note

that assessing a scalability obstacle effectively may be answering a particular scalability question about

the agent’s ability to satisfy its scalability goals. Such a question may be answered in the step “generate

raw data and perform scalability analysis”, hence the data dependency arrow between this steps and the

“assess scalability obstacle” in Figure 6.1.

As the scalability goal-obstacle analysis progresses, the analyst updates the goal model, adding scal-

ing assumptions, refining quality goals to describe their required level of satisfaction under variations in

the scaling assumptions and, possibly, creating new goals. By the end of it, the analyst will have acquired

more knowledge about the stakeholder needs and expectations, physical and financial constraints on the

system, exceptional circumstances, characteristics of the application domain and expected changes to

these characteristics in the future. In particular, the scalability goal-obstacle analysis is likely to have un-

covered exceptional application domain scenarios and unusual patterns of system usage that may impose

scalability risks.

6.1.4 Select Goals for Scalability Analysis

At first sight, one can draw an almost direct parallel between KAOS quality variables and objective

functions and the variables and functions in the scalability framework. Nevertheless, this instantiation is

not so straightforward. The goal model will contain a number of goals, assumptions and agents, many

of which are not relevant to the scalability concern at hand. Therefore, relevant goals should be selected

before refining the scalability question and deriving the analysis variables and functions. An obvious first

step is to consider the scalability goals and scaling assumptions in the model. These, however, will be

yet too many. In practice, the final selection of goals depends on the objective of the scalability analysis.

We next discuss initial ideas for performing the step “select goals for scalability analysis” in Figure 6.1

for three types of scalability concerns:

6.1. The Method Description 111

Understanding the scaling trend of a particular goal in isolation: The simplest form of analysis

seeks to characterize the scaling trend of a goal independently of other goals. That includes

both the effect of scaling application domain characteristics and the effect of variation in some

system design characteristics. This kind of analysis is useful, for example, to understand the

demand of a particular goal on an agent and to test the effectiveness of a scalability strategy to

maintain or improve the satisfaction of a specific goal. In such cases, the goals selected for the

analysis should be (1) the scalability goal whose trend should be characterized; (2) all scaling and

non-scaling domain assumptions related to that goal; and (3) all agents assigned to that goal.

Analyzing an agent’s ability to support the load imposed on it: Another form of analysis may inves-

tigate an agent’s ability to satisfy a given quality goal for a range of application domain charac-

teristics. The satisfaction of a goal cannot be measured in isolation. An agent is often assigned to

multiple goals, among which the agent’s capacity must be shared. Therefore, testing the satisfac-

tion of a goal requires that all other goals sharing resources with that goal are also being satisfied.

Such an analysis requires therefore the identification of all goals that might simultaneously im-

pose load on that particular agent. One way to do so is to generate an agent load diagram (van

Lamsweerde, 2008) and use informal techniques, such as experts’ knowledge, to identify goals

that will impose load simultaneously. 3 In this case, the goals selected for analysis should be (1)

the scalability goal we are interested in; (2) the agent whose ability to satisfy that goal we aim to

analyze; (3) all goals that might also require the resources of that agent; (4) the scaling and non-

scaling domain assumptions associated with all selected goals; and (5) possibly some cost goal if

we want to investigate alternative scalability strategies to satisfy that goal.

Characterizing the trade-off between a set of competing goals: One may be also be interested in an-

alyzing how the satisfaction of a particular scalability goal (or a particular strategy to achieve

scalability) may affect the satisfaction of other goals. Such analysis is not only useful when the

goals share the resources of a same agent. The IEF, for example, compares incoming transactions

against fraudulent patterns to identify possibly fraudulent transactions. One alternative to support

a greater number of transactions within a time window (performance and scalability goal) is to use

simpler patterns, such as patterns that do not use historical information. Such a tactic improves the

processing time, but it might have a negative effect on the goals Achieve[Reduced Rate of False Alerts]

and Achieve[Reduced Rate of Missed Frauds]. If we want to take such trade-offs into consideration

when analyzing scalability, the goals selected should be (1) the scalability goal we are interested

in; (2) other quality goals whose satisfaction may be affected by the satisfaction of the scalability

goal of interest; (3) the scaling and non-scaling domain assumptions associated with all involved

goals; and (4) the agents responsible for all the involved goals.

Examples of goals selection according to the above guidelines are given in Chapter 7. However, more

research is needed to develop goal selection techniques further for different types of scalability concerns.

3Formal techniques for identifying concurrent load are subject of future work.

6.1. The Method Description 112

6.1.5 Refine and Elaborate New Scalability Questions

The scalability question will inform which goals need to be selected for the scalability analysis. Con-

versely, the selection of goals may also help the systematic refinement of scalability questions. Hence

the bi-directed arrow between the steps “elaborate scalability question” and “select goals for scalability

analysis”. A question typically will focus on a particular scalability aspect of interest—involving one

or a few scalability goals. The scaling characteristics of the application domain (and their ranges) are

derived from the scaling assumptions associated with these goals, while the scaling characteristics of

the system design come from the agents responsible for these goals. The scalability question may also

explicitly refer to the quality variables and objective functions of the scalability goals of interest.

For example, the question “Is the IEF scalable with respect to processing time when the number

of records in a batch vary over time?” (Section 6.1.1) is related to the goal Achieve[Batch Processed

Quickly Under Scaling Assumptions]. This goal is assigned to agent Alert Generator and refers to the scaling

assumptions Expected Batch Size Evolution, Expected Number of Business Entities Variation, and Expected Number

of Fraudulent Patterns Variation. For the purpose of illustration, assume that the Alert Generator is responsible

only for this goal. According to the scaling assumptions, the processing time depends not only on the

number of transactions in the batch (which may reach 95 million), but also on the number of business

entities (up to 60 million) and the number of fraudulent patterns used to identify fraudulent transactions

(up to one thousand). The definition of the goal Achieve[Batch Processed Quickly] also states that not all

batches need to be processed in 8 hours and that there is actually a 20% tolerance for 10% of the batches.

The original question can then be refined to “Can the IEF process 90% of the batches within 8 hours

and all batches within 9.6 hours, when the number of transactions in a batch scales up to 95 million,

the number of business entities scale up to 60 million, and the number of fraudulent patterns scale up to

1000?”.

The elaboration of the IEF goal model also uncovered requirements related to the storage of trans-

actions, fraudulent patterns, and alerts. These new requirements led to the definition of new scalability

questions concerned with the system’s ability to store this data.

6.1.6 Instantiate Variables and Functions for the Scalability Analysis

The step “instantiate variables and functions” in Figure 6.1 is similar to the process for refining, or

defining new, scalability questions. It, however, may involve more goals, depending on the scalability

question, as is shown below.

Map Goal Variables to Analysis Variables

The variables required for the scalability analysis are as follows:

• Independent variables represent aspects of the application domain and system design that will

affect the system behavior. They may vary over a range or be set to fixed values. Scaling indepen-

dent variables belonging to the application domain are derived from scaling assumptions. More

precisely, they correspond to the domain quantities whose possible range of values are determined

6.1. The Method Description 113

in the scaling assumptions. Note that this range of values also represents the load imposed on goals

by these assumptions. Non-scaling independent variables belonging to the application domain are

derived from conventional KAOS domain assumptions.

System design variables correspond to characteristics of the software, devices, and humans com-

posing the system, which are derived from characteristics of the agents responsible for the scala-

bility goal—that includes characteristics that will determine the agent capacity (e.g., disk size or

number of processors). When the agent is the software, instantiating these variables may require

knowledge of the portion of the system design (or intended design) that satisfies that goal. This in-

formation might be available depending on in which point of the development lifecycle the system

is when the scalability analysis is performed.

• Dependent variables represent software metrics that characterize quality goals whose specifica-

tion describe the required level of satisfaction under the variation of independent variables. There-

fore, dependent variables are represented in the goal model as quality variables of scalability

goals.

Furthermore, scalability problems are often caused by resource exhaustion. Sometimes, there

are business reasons to set the target levels for resource usage under the variation of application

domain quantities (such as when the system is deployed on a hosted environment). In such cases,

these targets are represented in scalability goals. However, on many other occasions, the only

concern is not to exhaust the system’s resources—a concern that is not usually modeled as explicit

goals, but that is taken into consideration in virtually all scalability analyses. Therefore, there will

likely be dependent variables that measure resource usage in a scalability analysis. In other words,

dependent variables are also derived from characteristics that measure the usage of an agent’s

capacity.

• Nuisance variables are characteristics of the application domain and the system design that cannot

be manipulated in a scalability analysis. They are derived from goal models in the same way as

independent variables.

As an example, take the scalability goal Achieve[Batch Processed Quickly Under Scaling Assumptions]

(Goal 6.2), assigned to the agent Alert Generator. This goal describes the acceptable performance for batch

processing in the IEF and is associated with the scaling assumptions Expected Batch Size Evolution, Expected

Number of Business Entities Variation and Expected Number of Fraudulent Patterns Variation. Searchspace intends

to achieve this goal by distributing the load over a cluster of multi-threaded processing engines, with a

number of engines per computer. Therefore, a possible instantiation for the scalability analysis variables

is as follows:

6.1. The Method Description 114

Independent variables:

Application Domain:

Number of transactions batch [10,000 — 95 million]

Number of business entities in a batch [6,000 — 60 million]

Number of fraudulent patterns [200 — 1000]

Type of fraudulent patterns [historical, peer, blacklist]

System design:

Number of processing engines in the cluster

Number of threads within a processing engine

Network bandwidth connecting the cluster

Disk read/write speed

CPU speed

Dependent variables:

Average processing time

Average CPU utilization

Maximum memory usage

Maximum disk usage

Total network I/O time

Total disk I/O time

Note the source of each variable: the number of transactions, entities and fraudulent patterns were

mentioned in the scaling assumptions Expected Batch Size Variation, Expected Number of Business Entities

Variation, and Expected Number of Fraudulent Patterns Variation, respectively. The type of fraudulent pattern

is taken from a conventional KAOS domain assumption named Types of Fraudulent Patterns. The number

of processing engines and threads, network bandwidth, disk speed and CPU speed are characteristics of

the agent Alert Generator. The processing time came from the variable in the scalability goal Achieve[Batch

Processed Quickly Under Scaling Assumptions. Finally,s CPU usage, memory usage, disk usage, network I/O

time and disk I/O time came from characteristics that determine Alert Generator’s capacity usage.

From Objective Functions to Preferences

Preference functions measure the “satisfaction level” of the stakeholder with respect to individual qual-

ity goals. They should be modeled in such a way that the values of dependent variables are mapped to

a range of preference values in which a greater value equates with greater preference. Preferences are

derived in the goal model from objective functions in scalability goals.

When translating from objective functions to preferences, one should avoid creating a “ranking”

between system designs that equally meet the target defined by the objective function. For example,

if an objective function states that a system should process a data batch in less than 8 hours, then a

stakeholder might be tempted to assign a greater preference to a system that processes all batches within

6 hours than one that does so within 8 hours. In our opinion, such assignment is arbitrary if it cannot be

justified in terms of the system’s business goals and may impose an unnecessary demand on the system

6.1. The Method Description 115

design. However, if the objective function states that the system should maximize the probability that

processing will be completed in less than 8 hours for 90% of the batches, then the preference function

can be modeled in such a way that preference value assigned to a system increases with the percentage

of batches that are processed within 8 hours. For illustration, consider the preference function derived

from the scalability goal Achieve[Batch Processed Quickly Under Scaling Assumptions] (Goal 6.2):

pref(ProcTime) =

 −10.000, if Pr(ProcTime ≤ 8hrs) < 0.9 or Pr(ProcTime > 9.6hrs) > 0
Pr(ProcTime ≤ 8hrs) - 0.9

0.1
, otherwise.

(6.1)

An analyst may as well choose to model preferences on some resource usage even when there are

no explicit goals associated with that resource. Such a preference can be used to show scaling trends that

may lead to resource exhaustion. However, care must be taken not to base decisions on preferences if

there are no business reasons behind them. One way to do that is not to include such preference is in the

calculation of the system utility.

Further research is required to devise other guidelines for translating from goal objective functions

to preference functions.

From Goal Prioritization to Utility Functions

A utility function transforms a vector of preference values into a single scalar value. There are different

ways of modeling a utility function. In Chapter 4, we used objective weighting. A disadvantage of

this approach is that direct estimation of weights is subjective and vulnerable to judgment errors. A

more precise and consistent set of weights can be determined by applying a requirements prioritization

technique. Some of these techniques produce a list of requirements and their respective weights, which

is used as a conceptual map for analyzing and discussing the candidate requirements. In the scalability

analysis, preference functions can be mapped back to goals. Therefore, the weights of preferences can

be inherited from the weights assigned their originating goals by a requirements prioritization technique.

This is the step “prioritize goals” in Figure 6.1.

There are a number of prioritization techniques available, the Analytic Hierarchy Process (AHP)

being a well known one (Saaty, 1980). AHP performs pairwise comparison of requirements, which in-

cludes redundancy and is thus less susceptible to judgmental errors. A known disadvantage of pairwise

comparison is that such approaches become impractical when the size of the collection of requirements

is greater than about twenty, since the elicitation effort grows as the square of the number of require-

ments (Avesani et al., 2005). A scalability analysis, however, is likely to focus on a specific scalability

concern and is unlikely to involve that many goals. Further research is needed in order to evaluate the

use of different requirements prioritization techniques to derive a utility function.

6.1.7 Perform the Analysis and State the Answer

With the scalability question translated into clearly defined variables and functions, the analyst should

proceed to the step “generate raw data and perform scalability analysis” in Figure 6.1. The analyst

first needs to produce the raw data for the analysis; that is, all the values assumed by the dependent

variables in a scalability experiment. In this research, we have used testing for that purpose. However,

6.2. Critical Evaluation 116

we believe it to be possible to generate the raw data through modeling or a combination of modeling

and testing, as it will be discussed in Chapter 8. Such activity is not trivial. The scalability experiment

must be carefully designed, considering the adequacy of the chosen technique to the problem at hand.

When using testing, for example, the analyst should consider whether a running version of the system

is available, the effort of building a prototype, the power of the available infrastructure, and so forth. If

using a queuing network, the analyst must verify whether the system can be abstracted into servers and

queues, which type of queue better models the system, whether it is possible to estimate the probability

of transitions between service centers, job arrival and service times, and so forth. In the IEF case study,

testing was used to generate the raw data. A detailed description of the study is given in Chapter 7.

Once the raw data has been generated, it is used to calculate the value of preferences and utility in

the scalability analysis, to then provide an answer to the scalability questions. The scalability answer

should be very carefully stated, with sufficient information to enable the reader to confirm or dispute

the claim. At the very least, the answer should state the scalability goal or trend being verified, the

characteristics of the application domain and system design considered in the analysis, and the scaling

range of values these variables are expected to assume. For example, an answer to the scalability question

stated in Section 6.1.4 could be: “The IEF is scalable with respect to response time because it can process

batches of 10,000 to 95 million transactions against a data store of up to 60 million business entities and

up to 1000 fraudulent patterns in less than 8 hours in 92% of the cases and no longer than 9.6 hours for

all cases, by varying the number of processing engines and machines in the cluster. That is, the system

satisfies the scalability goal Achieve[Batch Processed Quickly Under Scaling Assumptions]”.4 In this case, the

system is considered scalable with respect to response time because it satisfies the goal to which the

scalability question refers. The scalability answer, however, does not need to be in the form of a “yes”

or a “no”, nor does it need to be presented exclusively in textual form. Instead, it may include as much

information as considered necessary. For example, it could show graphs representing the trends on the

satisfaction of the quality goals against the different scaling characteristics of the application domain

and system design. Its format will thus depend on the scalability question. Future research should

look into the information required to answer different types of scalability questions satisfactorily. This

corresponds to the last step of the method, the “state scalability answers/claims” in Figure 6.1.

6.2 Critical Evaluation
The risks associated with this chapter are as follows:

Risk: The model may lose accuracy when translating from objective functions to preferences.

Letier and Lamsweerde suggest specifying goal objectives in terms of probabilistic func-

tions (Letier and van Lamsweerde, 2004). An important advantage of describing quality goals with

probabilistic objective functions is that the goal satisfaction criteria can be based on domain-specific

physical interpretation, rather than subjective judgment. Converting objective functions into preferences

4If a cost goal has also been considered in the analysis, the claim could be extended to say “for a total cost of ‘x’ per transaction,

satisfying the goal Reduce[Total Cost of Ownership]”.

6.2. Critical Evaluation 117

and utility functions makes room for criteria that have no physical meaning. If care is not taken, the

accuracy introduced by the goal model may be lost in the scalability analysis. This is undoubtedly a

disadvantage of such transformation and future research directions should develop transformation rules

that will guarantee that the physical meaning of objective functions is not lost.

Risk: Using objective weighting to model the utility requires variables to be independent.

There are a number of ways of modeling a utility function. In the scalability framework, as in

ATAM and CBAM, we have used objective weighting. This approach can only be used if the variables

involved are independent. In our framework, the variables used in the objective weighting are derived

from quality variables in a goal model. Goals, in KAOS, can be refined until they are independent; this,

however, does not guarantee the independence of their quality variables. When quality variables cannot

be assumed independent, the variables derived from them need to be defined further until other variables

are reached that can be assumed to be independent.5 More research is needed into refinement techniques

that will convert goal quality variables into variables that can be used in a weighted sum. Alternatively,

other forms of modeling a utility function can be investigated.

Risk: There is a gap between the instantiation of analysis variables/functions and the design of the

scalability experiment.

The method, as stated, does not define how to select a small, yet representative, set of experiments

to characterize the scalability of a system. Furthermore, the method requires the analyst to have sufficient

knowledge and experience to design experiments that will provide the correct raw data required for the

analysis.

In this research, assumptions guarantee that testing can be used to generate raw data and that the

metrics collected are a fair representation of the system qualities of interest. Designing the scalability

experiment is one of the main areas of future work. We intend to integrate widely used models, such as

queuing networks and Petri Nets, into the scalability framework and to provide guidelines to design and

select test cases for scalability.

Risk: Some of the steps described in the method are just initial ideas that have not been validated.

The method described in this chapter brings together techniques for scalability analysis and for the

elaboration of scalability requirements. Each of these techniques have been validated separately, as will

be discussed in Chapter 7. The whole method, however, has not. Some steps of the method are just

initial ideas; when that is the case, we have made a point of clearly stating that more research is needed

to develop them.

Contributions and Benefits

The contributions associated with this chapter are as follows:

Contribution: A method for characterizing and analyzing software system scalability that is indepen-

dent of the application domain and system design.
5This assumption is also made for quantitative analysis of fault trees and for the computation of Bayesian networks.

6.3. Summary 118

The method introduced in this chapter combines a technique for elaborating scalability requirements

with a technique to characterize and analyze software system scalability. The techniques complement

each other in the sense that the variables and functions used in the analysis are derived from the goal

model produced by the requirements engineering technique, and scalability obstacles identified in the

goal model requiring a more thorough assessment can be supported by the analysis technique. These

two main components rely on concepts that are common to software systems in general, such as agents,

quality goals and software metrics, producing a method that can be used across application domains and

system designs. Yet, the requirements engineering technique ensures that the analysis will be relevant to

the problem at hand.

An additional benefit of the method introduced in this chapter is:

Benefit: A method that encourages a proactive approach to scalability when building systems.

As observed in Chapter 1, developers should take a proactive approach to scalability, designing sys-

tems that will scale to meet their goals without running up against economical or fundamental physical

limits.

The method described in this chapter naturally fits the development lifecycle, encouraging a proac-

tive approach to scalability. During the requirements engineering phase, scalability obstacles can be

identified, assessed and resolved, providing the developer with more freedom to investigate alternative

system designs. Obstacles that cannot be assessed during the requirements engineering can be marked

for later investigation. As the design phase advances and the required information becomes available,

these obstacles can be revisited and the scalability analysis performed.

6.3 Summary
This chapter combines the techniques described previously, composing a method for the analysis and

characterization of software system scalability. The method is as follows: starting from an initial scal-

ability question, the analyst updates a goal model of system requirements through the identification,

assessment and resolution of scalability obstacles. Selected scaling assumptions and scalability goals

are used to refine the scalability question and to derive variables and functions for the scalability anal-

ysis. The result is an answer to the scalability question. The application of the method can start at any

point of the development lifecycle, bringing greater benefits if adopted earlier, when developers have

more freedom to change the system design and negotiate requirements.

119

Chapter 7

Empirical Studies and Examples

This chapter describes case studies with a large industrial system and a number of other smaller

examples used to demonstrate the concepts and techniques described in this thesis. The empiri-

cal studies include two case studies to validate the scalability analysis technique and a require-

ments engineering exercise using our extensions to KAOS for elaborating scalability requirements.

7.1. On the Evaluation of Techniques 120

7.1 On the Evaluation of Techniques
This chapter describes the three case studies completed during the course of this PhD research. Case

studies were chosen as the method of validation for the concepts and techniques described in this thesis

for the following reasons: (1) we were interested in investigating the suitability of the concepts and

techniques in a typical industrial project; (2) we were fortunate to have full access to Searchspace’s

code base, documents and employees; and (3) the alternative method usually used to validate novel

techniques—a formal experiment—required careful control, statistical rigor, and appropriate levels of

replicability, which would be too difficult to design for a large, proprietary and complex software system.

Case studies, however, are harder to interpret and more difficult to generalize (Kitchenham et al., 1995).

The limitation of our case studies are discussed in the end of each case study.

The subject of the studies was the Intelligent Enterprise Framework (IEF), a real-world data anal-

ysis system for the financial services industry. A short description of the system is given before intro-

ducing the case studies. This chapter also presents a number of examples taken from the computing

literature and from industry interviews to demonstrate the use of the scalability framework across differ-

ent application domains and system designs.

Two retrospective empirical studies were carried out to demonstrate that our scalability analysis

technique provides the information required to characterize, analyze and compare the scalability of soft-

ware systems according to our definition of scalability; that is, with respect to the characteristics of the

application domain and system design that are expected to vary, and the levels of satisfaction of quality

goals measured under these variations. For such, it is assumed that the acceptability and utility of this

definition have been convincingly argued through discussions in Chapters 1 to 3 and comparisons with

other definitions in the computing literature.

The first study was designed to provide an early validation of the analysis technique and give quick

feedback for the research. More precisely, it consisted of a small scale empirical study that compared

prototypes of two consecutive IEF versions. The second study repeated the study for the real IEF. The

third study applied the requirements engineering techniques described in Chapter 5 to elaborate the

scalability requirements of a new version of the IEF.

The structure of the case studies are adapted from (Kitchenham et al., 1995) and have the following

sections: (1) objectives, (2) hypothesis, (3) pilot project, (4) planning, (5) execution, (6) evaluation, (7)

concluding remarks.

7.2 The Intelligent Enterprise Framework (IEF)
As described in Chapter 1, the IEF is a data analysis system for the financial services industry. The

system receives large volumes of financial transactions data, builds adaptive profiles of business entities

within the data, and generates alerts to automatically notify users of behavior that appears unusual.

Searchspace’s users are primarily the staff of retail, investment banks and other financial institutions (we

use the word banks to consider this group). Its data analysis comprises the following stages: validation,

preprocessing, loading, migration, profiling, eventing and alerting. The first stages of the data analysis

7.3. Case Study 1: A Prototyping Study 121

are performed by a sub-system, the Data Manager, which is responsible for the validation, preprocessing,

loading and migration of the transactional data to a database. In the preprocessing stage, the Data

Manager takes transactions as input and replaces the various original business entity identifiers with

simplified surrogate keys. Normally, a transaction contains a heterogeneous mixture of identifiers for

different kinds of business entities. The main business entities in the IEF are account, branch, customer,

transaction code and transaction type. Keys are allocated by a critical component, the surrogate key

server (SKServer).

Historically, IEF processed bank transactions in overnight batches. In a company’s early imple-

mentation of the Surrogate Key Server (SKServer) (year 2000), the creation/lookup of surrogate keys

was recognized as a major barrier to scalability. The implementation consisted of an in-memory cache of

previously mapped entity-ID/surrogate-key pairs, which incurred a very high storage overhead, increas-

ing both memory footprint and garbage collection activity. As the number of distinct business entities

grew during the lifetime of the system, available memory required to process the overnight batch was

exhausted eventually, causing the system to fail. We will refer to this version of the IEF as Version 1. In

2003, the problem was corrected in a new design of the SKServer that used a file-based surrogate key

lookup for the assignment of keys for large sets of distinct business entities (such as accounts and cus-

tomers), reducing the memory footprint. Over the subsequent few years, the number of distinct business

entities continued to grow, requiring time-consuming I/O to process the batch of transactions. It then

became apparent that the second design would eventually incur unacceptable processing times in the

system. We will refer to this version of the IEF as Version 2. Therefore, in 2007, the Data Manager en-

tered its third generation of design, in which transactions can also be processed in real-time, in addition

to overnight batches. This last version of the IEF will be referred to as Version 3.

7.3 Case Study 1: A Prototyping Study

This case study, planned and executed during the first few months of the research, was designed to

validate an early version of the framework and to provide quick feedback about the scalability analysis

technique described in Chapter 4.

7.3.1 Objectives

At the time of the study, scalability was described as :

Concept: “Scalability is a quality of software systems characterized by the causal impact that certain

system characteristics have on certain measured system qualities, as these characteristics are

varied over expected operational ranges. If the system can accommodate this variation in a way

that is acceptable to the stakeholder, then it is a scalable system”

The objective of the case study is to demonstrate that the scalability analysis technique provides the

information required to characterize, analyze and compare the scalability of software systems, according

to this definition.

7.3. Case Study 1: A Prototyping Study 122

The research questions formulated to achieve this objective are as follows:

RQ.1.1 Is it possible to measure characteristics of a software system quantitatively in such a way as to

provide a characterization of its scalability according to the definition of scalability above?

RQ.1.2 Do the measurements support the systematic formulation of qualitative judgment about the scal-

ability of the measured system, and the limitations of that scalability, that are consistent with the

judgment an expert on the system would make?

RQ.1.3 Do the measurements support systematic comparison of the relative scalability of different sys-

tem designs that are consistent with the comparative judgment an expert on the system would

make?

7.3.2 Hypothesis

From the research questions, we formulated the following hypotheses:

H.1.1 The scalability analysis technique allows one to characterize quantitatively the scalability of a

software system according to the definition above—that is, in terms of the impact that scaling

characteristics of the application domain and the system design have on system qualities of interest.

H.1.2 The scalability analysis technique allows one to characterize systematically the satisfaction of the

stakeholder with respect to system qualities when certain application domain and system charac-

teristics vary over operational ranges. This characterization can be used to formulate a qualitative

judgment about the system’s scalability and its limits, and to compare the scalability of alternative

system designs, in such a way that the result of the comparison is consistent with the judgment an

expert on that system would make.

Finally, the case study relied on the following assumptions:

Assumption: The acceptability and utility of our definition of scalability has been convincingly argued

through discussions in Chapters 1 to 3 and comparisons with other definitions in the computing

literature.

Assumption: The stakeholder’s judgment can be obtained consistently and without bias independently

of the work performed in carrying out the case study.

7.3.3 Pilot Project

A pilot project should be representative of the type of project that would normally benefit from the eval-

uated technique. However, at the time of the study, we were aiming for a small-scale project that could

give quick feedback about the scalability analysis technique. For this reason, we chose a retrospective

study that simulates in a small scale, a real scalability problem faced by Searchspace: the replacement

of original business entity identifiers with surrogate keys on the IEF. This replacement was performed,

in the original system, by a critical component called the surrogate key server (SKServer). The project

simulates Version 1 and Version 2 of the SKServer (implemented, respectively, in 2000 and 2003).

7.3. Case Study 1: A Prototyping Study 123

A retrospective study was chosen because it allows validation of the result of the analysis technique

against what is known as fact about the system’s scalability.

7.3.4 Planning

The case study was executed by the PhD candidate, with the cooperation of Searchspace staff. The PhD

candidate played the role of the analyst. She was placed within the company and was given access to

source code, documentation and the company employees. One staff member was allocated in weekly

meetings to play the roles of the stakeholder and expert. The allocated staff member was directly in-

volved with the architecture of both versions of the system that were being represented by the prototypes.

Other staff members were also available for occasional consultation. More precisely, the analyst used

the scalability analysis technique to characterize and compare the scalability of the prototypes of the

Version 1 and Version 2 of the SKServer with respect to performance and resource usage metrics. Both

prototypes offered identical functionality, but had different implementations. The case study involved

the following steps:

1. Understanding of the actual problem faced by Searchspace in the period of 2000 to

2003;

2. Development of prototypes for both SKServer versions;

3. Setting up the required environment to run the study on the testing machine;

4. Instantiating the variables and functions for scalability analysis;

5. Executing both prototypes, collecting metrics that measure the system qualities of in-

terest, and using this data to perform the scalability analysis as described in the tech-

nique;

6. Drawing conclusions about the study, comparing the analysis results to an expert’s

judgment.

7.3.5 Execution

We next describe the case study according to the execution plan above.

Step 1: Understanding the Problem

The analyst first familiarized herself with the problems faced by Searchspace during the period of

time considered for the research. The expert described the original system, its architecture, the scalability

problem it faced, and how the new version of the system solved this problem. The expert claimed that

Version 1 of the SKServer was not scalable, as the growing number of distinct business entities eventually

caused the system to fail. He also claimed that Version 2 of the SKServer was scalable, considering the

load estimate at the time. This problem has been described in Section 7.2.

The stakeholder was mainly concerned with memory usage, which was dictated by the number of

distinct business entities, rather than the number of transactions in a batch. This concern perhaps can be

explained by the stakeholder’s familiarity with the actual problem. Therefore, the stakeholder expressed

7.3. Case Study 1: A Prototyping Study 124

his scalability concern as the system’s ability to support a growing number of distinct business entities,

while maintaining throughput and resource usage within acceptable boundaries.

Step 2: Creating the Prototypes

Both prototypes were built by the PhD candidate. For such, the code for Version 1 of the SKServer

was isolated, removing functionality that allowed the tests to be performed independently of the rest

of the IEF. The first prototype was therefore a stripped-down SKServer, which was left with a simple

memory cache implemented as a Java Hashtable. Limitations on the JVM heap size (2GB in a 32-bit

machine) restricted the number of entity-key maps that could be held in memory. In order to perform a

comparative scalability analysis, we implemented another prototype for Version 2 of the SKServer that

contained a cache that expanded to disk. This implementation limited the amount of heap that could be

used to store entity-key maps. The cache implemented a least recently used (LRU) policy, where objects

removed from the memory cache were kept as serialized objects on disk. Both implementations were

discussed with the expert to ensure they approximated to the original systems.

Step 3: Setting up the Testing Environment

The prototypes were deployed in the machine described in Table 7.1.

Processor: Twin Intel(R) Xeon(TM)

CPU: 2.40GHz

Memory: 2GB

Disk: 4x 60GB - with RAID

Operating System: Red Hat Linux release 7.3 (Valhalla)

Database: Oracle version 9.2

Table 7.1: Case Study 1, Test machine specification.

Step 4: Instantiating the Framework

After conferring with the stakeholder, we determined that average throughput, maximum memory

usage and maximum disk usage should be the dependent variables measuring performance and resource

usage. Throughput and memory usage were primary concerns, as the system must be able to complete its

analysis overnight and without running out of memory. Disk usage was also chosen as a dependent vari-

able of interest because in adopting a file-based cache, the required space for holding the keys is shifted

from memory to disk, and the stakeholder needed to analyze if this shift would impose a scalability

problem.

We had learned in step 1 that the number of distinct business entities was the main factor affecting

the qualities of interest, so they were chosen as a scaling independent variable. According to the stake-

holder, the prototypes were required to handle up to 2 million distinct business entities. Since we were

comparing two implementations of the same system whose difference was in the type of caching mech-

anism, this was chosen as a non-scaling independent variable. Available network bandwidth was also

7.3. Case Study 1: A Prototyping Study 125

mentioned as a less important property that could affect the system throughput. However, because avail-

able network bandwidth did not directly relate to the mechanism for creating and looking up surrogate

keys, it was assumed to be a nuisance variable.

Minimum throughput was targeted at 50 key substitutions per second. Memory and disk usage were

limited by the JVM and available disk, respectively.1 The lower and upper boundaries of the dependent

variables are shown in Table 7.2.

Lower boundary Upper boundary

Average throughput 50 transactions/sec —

Memory usage — 2GB

Disk usage — 73GB

Table 7.2: Case Study 1, Boundaries for dependent variables.

The variables instantiated for the analysis were as follows:

Questions:

Which SKServer prototype is more scalable with respect to average throughput, memory

usage and disk usage, when the number of distinct business entities grows over time?

Independent variables:

Scaling variables:

Number of distinct entities (0 to 2 million)

Non-scaling variables:

Disk vs memory cache

Dependent variables:

Average throughput (at least 50 key substitutions/second)

Memory usage (up to 2GB)

Disk usage (up to 73GB))

The stakeholder has also declared that he would prefer the prototype that maximized throughput

and minimized both memory and disk usage. The normalized preference functions for each one of these

characteristics were:

Disk usage D(x): Disk usage was measured as the percentage of the total disk used.

D(x) =
maxdisk(V1,V2)− x

maxdisk(V1,V2)−mindisk(V1,V2)
(7.1)

where maxdisk(V1,V2) is the maximum disk usage computed throughout the execution of both

prototypes, mindisk(V1,V2) is the minimum disk usage for both prototypes, and x is the percentage

1It was out of the scope of this study to apply a requirements engineering technique. Operational ranges of the system

characteristics and the acceptable values of system qualities were tailored by the stakeholder according to the specification of the

testing machine and assumed to be correct.

7.3. Case Study 1: A Prototyping Study 126

of total disk being used at the time the metrics were collected. As the preferred configuration

minimizes disk usage, a smaller value represents a more desirable result. Hence, the function

computes higher preference values to smaller disk usages.

Throughput T(y): Throughput was measured as the number of surrogate key substitutions per second.

Since a throughput lower than 50 key substitutions per second is considered too low, the normal-

izing function penalizes the system by assigning a value of negative 10,000 in such situations.

T(Y) =

 - 10000, if y < 50
y - worstperf (V1, V2)

bestperf (V1, V2) - worstperf (V1, V2) , otherwise.
(7.2)

where bestperf (V1, V2) is the overall maximum throughput computed throughout the execution

of both prototypes, worstperf (V1, V2) is the minimum throughput achieved in the execution and y

is average throughput since the last collection of the metrics. The preferred prototype maximizes

throughput, and therefore a higher value of both throughput and its representation as a preference

indicate a more desirable result.

Heap size H(z): Heap size was measured as the total memory usage of the JVM.

H(z) =
maxmem(V1,V2) - z

maxmem(V1,V2) - minmem(V1,V2)
(7.3)

where maxmem(V1,V2) is the overall maximum heap usage computed throughout the execution

of both prototypes, minmem(V1,V2) is the overall minimum heap usage for both prototypes, and

z is the memory usage measured as the Java heap footprint at the time the metrics were collected.

The Java heap footprint is in fact less than the actual RAM footprint, as it only measures space

consumed by Java objects. As with disk space, the preferred alternative minimizes heap size.

Therefore, a smaller value represents a more desirable result, and the function computes higher

preference values to smaller memory usages.

The stakeholder has declared that, at the time, he valued throughput and memory usage over disk

usage, as the latter was becoming increasingly cheaper. The preferences for maximizing throughput

and minimizing heap size were each expressed as being 10 times more important than minimizing disk

usage. The (normalized) utility was calculated through Function 7.4, where n is the number of distinct

business entities.

U(n) =
D(x) + 10 * T(y) + 10 * H(z)

21
(7.4)

Step 5: Prototypes Execution

Tests consisted of continuously submitting transactions with distinct business identifiers to the

surrogate key subsystem. Every new key incremented the counter for the number of distinct business

entities. Each configuration was run 6 to 8 times and metrics for memory, disk and average throughput

were collected periodically (every 5 minutes). Tests were run until the machine reached its physical

limits or the system could no longer comply with its requirements.

7.3. Case Study 1: A Prototyping Study 127

Figures 7.1 and 7.2 show the metrics collected during the study. We plot the actual values rather

than the preferences because it is easier to explain the behavior of the prototypes. Graphs on the left-

hand side illustrate the metrics for the Version 1 prototype, while the right-hand side graphs represent

the metrics for the Version 2 prototype.

Figure 7.1 plots the Java heap usage against the number of distinct business entities. Note that

in the Version 1 prototype, the heap usage reaches almost 1.8GB. Since the Java heap footprint only

measures space consumed by Java objects, the system was reaching the machine’s actual memory limits

of 2GB. Figure 7.2 plots throughput against the number of distinct business entities. In the Version 1

prototype, as the machine’s memory usage nears 2GB, it starts to swap, bringing the throughput close

to zero. Figure 7.3 plots disk usage against the number of distinct business entities. In this graph, one

should look at the growth in the disk usage rather then the actual values (which simply reflect the amount

of disk that were in use in the testing machine at the time tests were run). In the Version 1 prototype,

surrogate key maps are kept in the memory cache, and hence there is not a significant growth in disk

usage. The Version 2 prototype, on the other hand, uses a disk cache. This is reflected by the 10%

growth in disk usage as the number of distinct business entities increases.

Figure 7.1: Case Study 1, Java heap vs number of distinct business entities.

Figure 7.2: Case Study 1, throughput vs number of distinct business entities.

7.3. Case Study 1: A Prototyping Study 128

Figure 7.3: Case Study 1, disk usage vs number of distinct business entities.

Figure 7.4 plots the variation of the utility values for both prototypes against the measured range of

distinct business entities. Note that as the number of distinct business entities increases over time, the

utilities of both systems decrease. The utility of the Version 1 prototype starts very high, but it suffers

a quick decrease, falling to zero when the number of distinct entities exceeds 1 million. This result is

easily explained by the fact that in the first prototype, the system reaches the machine’s physical memory

limits, starting to swap, which brings the throughput below the accepted level. The occasional recovery

shown in the graph (in the subsequent “impulses” between 1 and 2 million business entities) is explained

by the disk swaps. The utility of the Version 2 prototype decreases smoothly, never reaching zero for the

measured number of distinct business entities.

Figure 7.4: Case Study 1, utilities comparison.

Step 6: Drawing Conclusions

The hypotheses have been validated as follows:

Validation of Hypothesis H.1.1: The hypothesis states that the analysis technique should allow one to

characterize quantitatively the scalability of a software system according to the definition of scal-

ability. Validating this hypothesis requires evidence that the prototypes’ scalability have been de-

7.3. Case Study 1: A Prototyping Study 129

scribed through independent and dependent variables, and that the technique has produced quanti-

tative data that shows the impact of variables representing scaling characteristics of the application

domain and of the system design on variables representing the system qualities of interest.

The evidence provided by the case study is as follows:

• The instantiation of the scalability framework describing, in terms of independent and de-

pendent variables, the scaling characteristics of the prototypes;

• Figures 7.1 to 7.4 demonstrating the causal impact of the scaling of the number of distinct

business entities on the metrics representing system qualities of interest (memory usage, disk

usage and average throughput).

These figures validate Hypothesis H.1.1 (and positively answer research question RQ.1.1), demon-

strating that it is possible to measure the systems quantitatively in such a way as to provide a

characterization of its scalability according to our definition of scalability.

Validation of Hypothesis H.1.2: The hypothesis states that analysis technique should allow one to

characterize systematically the satisfaction of the stakeholder with the system qualities when cer-

tain application domain and system characteristics vary over operational ranges. Validating this

hypothesis requires evidence that the stakeholder’s scalability concerns have been described with

preferences and utility functions, and data plots that provide solid confirmation of the expert’s

judgment have been produced.

The evidence provided by the case study is as follows:

• The instantiation of the scalability framework describing, in terms of preferences and utility

functions, the stakeholder’s scalability goals for the prototypes;

• Figure 7.4 demonstrating the variation in the utility of both prototypes, which confirm the

expert’s judgment expressed during the problem familiarization step.

According to the stakeholder’s utility, the Version 1 prototype shows an unacceptable result when

the system has to handle over 1 million distinct business entities. We can, therefore, conclude

that the Version 1 prototype is not scalable with respect to throughput and memory usage for the

measured ranges of distinct business entities—a result that is consistent with the expert’s judgment.

This evidence, therefore, provides a positive answer to research question RQ.1.2.

The graph also suggests that beyond the point of approximately 1 million distinct business enti-

ties, the Version 2 prototype presents a more desirable behavior than the memory-based prototype.

From this observation, we conclude that, for the measured range of distinct business entities, the

Version 2 prototype represents a more scalable solution with respect to the measured system qual-

ities than the Version 1 prototype. This evidence therefore also positively answers research ques-

tions RQ.1.3, since the expert had judged the Version 2 solution more scalable than the Version 1

solution. By answering both questions, the study also confirms hypothesis H.1.2.

7.3. Case Study 1: A Prototyping Study 130

Finally, the qualitative judgment about the system scalability has been formed by following an

number of steps, which included defining a scalability question, consulting with the stakeholder

for the selection of variables and functions that represent their system qualities of interest and

objectives, building and measuring the prototypes of the system, and using the collected data to

instantiate the variables and functions, and to formulate an answer to the scalability question. The

case study, therefore, also demonstrates the systematic nature of the framework

7.3.6 Evaluation

The critical evaluation of this study is divided into two parts: (1) threats to validity and (2) evaluation

of the scalability analysis technique. Some of the threats discussed have been addressed in the second

case study. The evaluation of the scalability analysis technique, which apply to both case studies, are

discussed in Section 7.4.6.

Threats to Validity

This case study, carried out in the first few months of the research, had as an objective to provide quick

feedback on the scalability framework at the time. For this reason, a number of simplifications were

made, which imposed a few threats. Most importantly, the study used prototypes of the SKServer rather

than the real system. Furthermore, a sufficiently powerful testing machine to support the load normally

imposed on the IEF was not available, and the prototypes were run on a much less powerful UCL-owned

machine deployed at Searchspace.

A threat to the external/construct validity of the study is that there is no guarantee that the pro-

totypes used in the study mirrored the scalability problems faced by the real system. For this reason,

the analysis results, which may well be a fair representation of the prototypes’ scalability, may not be

consistent with the results you might obtain for the real IEF. We tried to reduce this risk by stripping

down the actual SKServer and discussing any new implementation with Searchspace staff to ensure that

the prototypes were a fair representation of the IEF. Another threat to the external validity of the study

is that we knew in advance that the number of business entities was the main scaling characteristic influ-

encing the system’s throughput, memory usage and disk usage. In the analysis of a newly built system,

the choice of variables may not be so straightforward. In the scalability framework, this risk is mitigated

by the requirements engineering techniques described in Chapter 5, which provide a systematic process

for identifying obstacles to quality goals caused by the scaling of application domain characteristics.

The system’s operational ranges and the acceptable values of system qualities were tailored by the

stakeholder according to the specification of the testing machine, which also represents a threat to the

construct validity of the study. This task was delegated to the stakeholders, who are experienced with

running the IEF in less powerful machines and are, therefore, more able to estimate how the prototypes

should perform in such an environment. Another threat to the construct validity was that upfront knowl-

edge about the expert’s judgment might bias the analyst to produce a prototype and generate data that

would confirm what was already known. We tried to reduce this risk by consulting Searchspace staff

when developing the prototypes and generating the synthetic data. Ideally, the staff member supervising

the construction of the prototypes and the generation of data would have been different from the staff

7.4. Case Study 2: A Comparison of Alternative Designs 131

playing the roles of the stakeholder. However, unfortunately, no other staff with sufficient knowledge of

the implementation of these old versions was available for participation on the study. These limitations

have been addressed in the second case study.

A threat to the internal validity of the study is that we have not accounted for all characteristics

that may affect the system qualities of interest. The only scaling characteristic considered in the analysis

was the number of business entities, pointed out by the stakeholder as the main factor influencing the

system’s qualities of interest. We have also overlooked a few issues in this case study. The preference

functions should have been normalized according to the requirements given by the stakeholder, not the

minimum and maximum values assumed by the measured qualities. Although this does not invalidate the

results, it might give a distorted impression of the stakeholder’s satisfaction with the system. Finally, we

could have artificially restricted the amount of memory and disk on the testing machine in order to better

mimic the execution environment at the time of these IEF versions. These issues were also addressed in

the second case study.

Despite the measures described above, there was still no guarantee that the study would be a fair

representation of what happened with the real system. However, given that the case study was meant to

provide quick feedback on the analysis technique in the early stages of the research, we felt that these

were reasonable measures to take. Furthermore, a second case study was planned to address some of

these threats.

7.3.7 Concluding Remarks

This section has described a case study using prototypes of a real-world system to provide quick feedback

about the scalability analysis technique for characterizing, analyzing and comparing the scalability of

software systems. The main points are:

• The case study aimed to validate the provide quick feedback about the analysis technique during

the early stages of the research.

• The case study involved the PhD candidate and Searchspace staff.

• Using prototypes in the pilot project may diminish the contribution of the case study. Measures

were taken to reduce this risk, when possible.

• The case study has demonstrated that it is possible to describe a software system’s scalability

according to the definition presented in the beginning of this section and to produce data plots that

confirm an expert’s judgment about the scalability of the system.

The described case study, by itself, is not sufficient to validate the analysis technique, as the pilot

project uses prototypes of a typical IT system. Nevertheless, the study contributed to the research by

validation of both hypotheses and by giving quick feedback on the analysis technique.

7.4 Case Study 2: A Comparison of Alternative Designs
Although that first study proves its hypotheses, there is no guarantee that the prototypes built for the study

fairly reflected the scalability problems faced by Searchspace. A second case study was then designed

7.4. Case Study 2: A Comparison of Alternative Designs 132

to evaluate the previous research hypothesis, using the real IEF and more realistic set of testing data.

In particular, the study compared Version 1 and Version 2 of the IEF, respectively implemented in 2000

and 2003. The former used a Java Hashtable object allocated in the Java Virtual Machine (JVM) heap

as a cache. The latter used the Java Hashtable only for small sets of distinct entities, such as branch and

transaction type, while large sets were stored in a disk cache. This study was reported on (Duboc et al.,

2007).

7.4.1 Objectives

This study was designed to verify the results of the previous study. It, therefore, aimed to answer the

same research questions as the previous study. These are:

RQ.2.1 Is it possible to measure characteristics of a software system quantitatively in such a way as

to provide a characterization of its scalability according to the definition of scalability in Sec-

tion 7.3.1?

RQ.2.2 Do the measurements support the systematic formulation of qualitative judgment about the scal-

ability of the measured system, and the limitations of that scalability, that are consistent with the

judgment an expert on the system would make?

RQ.2.3 Do the measurements support systematic comparison of the relative scalability of different sys-

tem designs that are consistent with the comparative judgment an expert on the system would

make?

7.4.2 Hypothesis

Likewise, this study used the same hypothesis as the previous one. These are:

H.2.1 The scalability analysis technique allows one to characterize the scalability of a software system

quantitatively according to the definition in Section 7.3.1—that is, in terms of the impact that

scaling characteristics of the application domain and system design have on system qualities of

interest.

H.2.2 The scalability analysis technique allows one to characterize systematically the satisfaction of the

stakeholder with respect to system qualities when certain application domain and system charac-

teristics vary over operational ranges. This characterization can be used to formulate a qualitative

judgment about the system’s scalability and its limits, and to compare the scalability of alternative

system designs, in such a way that the result of the comparison is consistent with the judgment an

expert on that system would make.

Finally, the study relies on the same assumptions as previously:

Assumption: The acceptability and utility of our definition of scalability have been convincingly argued

through discussions in Chapters 1 to 3 and comparison with other definitions in the computing

literature.

7.4. Case Study 2: A Comparison of Alternative Designs 133

Assumption: The stakeholder’s judgment can be obtained consistently and without bias independently

of the work performed in carrying out the case study.

7.4.3 Pilot Project

The project compares Version 1 and Version 2 of the IEF. Unlike the first study, which considered only

the substitution of original business entities identifiers with surrogate keys, this study considered the four

first stages of the IEF: validation, preprocessing, loading and migration.

A retrospective study was chosen because it allows one to validate the result of the analysis tech-

nique against what is known as fact about the system’s scalability.

7.4.4 Planning

The case study was executed by the PhD candidate, with the cooperation of Searchspace staff. Both IEF

versions offered identical functionality, but had different implementations. The case study involved the

following steps:

1. Characterizing the application domain;

2. Deploying the two versions of the IEF on the testing machine;

3. Instantiating the variables and functions for the analysis;

4. Executing both IEF versions, collecting metrics that represent the system qualities of

interest, and using the raw data collected to perform the scalability analysis as de-

scribed in the technique;

5. Drawing conclusions about the study, comparing the results of analysis with the expert

judgment.

7.4.5 Execution

We next describe the case study according to the execution plan devised above.

Step 1: Characterizing the Application Domain

The stakeholder has declared that banks using the IEF, at the time, had up to approximately 30

million accounts, 20 million customers, 1 thousand branches, 115 transaction codes and 130 transaction

types (for a total of over 50 million business entities). The system was expected to process up to 30

million transactions in a time window of 8 hours, which corresponds to roughly one thousand transac-

tions/second.

Synthetic data was generated by Searchspace staff following the same characteristics of a sample,

taken from a large UK bank, with approximately 48 million bank transactions processed between 5th

January 2000 and 4th March 2001. The sample included all the transactions performed by roughly one

million randomly selected accounts, which corresponded to 3.2% of the total number of accounts in that

particular bank. Although banks had in average 50% more accounts then customers, in the transactional

batches the number of accounts were only 5% above the number of customers (possibly because many

of the accounts are saving accounts, which are seldom involved in transactions). The remaining entities

7.4. Case Study 2: A Comparison of Alternative Designs 134

corresponded to only 0.003% of the total number of business entities in batches.

Step 2: Deploying Both Versions of the IEF

Version 1 and Version 2 of the IEF were deployed by the PhD candidate on the same machine used

for the first case study (Table 7.1) and configured to run from the validation to the migration stages.

Switching from one design to another was a matter of setting parameters in the system configuration

files. In both designs, the size of the maximum JVM heap was set to 500MB to mimic the environment

at the time these versions were in operation. The number of threads handling the data migration to the

operational data store was configurable from 1 to 5 threads.

Step 3: Instantiating the Framework

The framework instantiation was almost identical to the first case study, with the exception of an-

other scaling variable—the number of migration threads—which was considered by the stakeholder to be

an important machine characteristic affecting throughput. Furthermore, the tests were run on a machine

that was less powerful than the one normally used in the production environment.2 Based on the experi-

ence of Searchspace’s testing group, the maximum number of business entities was set to 5 million and

the required throughput was set to at least 100 transactions/second, for a batch of 5 million transactions

and considering that the system would run from the validation to the migration stages.

The instantiation of the framework was as following:

Questions:

Which IEF implementation is more scalable with respect to average throughput, memory

usage and disk usage, when the number of distinct business entities grows over time?

Independent variables:

Scaling variables:

Number of distinct business entities (0 to 5 million)

Number of concurrent threads (1 to 5)

Non-scaling variables:

Memory vs disk cache

JVM memory size (500 MB)

Dependent variables:

Average throughput (at least 100 transactions/second)

Memory usage (0 to 500 MB)

Disk usage (0 to 24 GB)

The preferences stated by the stakeholder were still the same as in the previous case study, but they

were modeled in such a way that the preference values were normalized against the expected bounds.

2The TCP-C benchmarks of the testing and production machines are 34,473 tpmC and 768,839 tpmC, respectively. Although

we cannot make a direct comparison and state that the surrogate key server would run twenty times faster in the production

environment, the benchmarks give us an indication of the difference in power of both machines.

7.4. Case Study 2: A Comparison of Alternative Designs 135

As in the first case study, we took negative 10,000 to represent a penalty value. The preference functions

were defined as follows:

Disk usage D(x): Disk usage was measured as the maximum percentage of the total disk used in the

execution.

D(x) =

 - 10000, if x > 24
24 - x
24 - 0

, otherwise.
(7.5)

where x is the maximum percentage of total disk used during the system execution (among the

metrics collected periodically). As the preferred configuration minimizes disk usage, a smaller

value of x represents a more desirable result.

Throughput T(y): Throughput was measured as the number of surrogate key substitutions per second.3

T(y) =

 - 10000, if y < 100
y - 100

400 - 100
, otherwise.

(7.6)

where y is the average throughput during the system execution (calculated from the metrics col-

lected periodically). The preferred prototype maximizes throughput, and therefore a higher value

of y indicates a more desirable result.

Heap size H(z): Heap size was measured as the maximum memory usage of the system’s JVM.

H(z) =

 - 10000, if z > 500
500 - z
500 - 0

, otherwise.
(7.7)

where z is the maximum JVM memory usage during the system execution (among the metrics

collected periodically). The preferred alternative minimizes heap size. Therefore, a smaller value

of z represents a more desirable result.

Since the stakeholder maintained his opinion about the relative importance of system qualities, the

utility function remained the same as in the first case study:

U(n) =
D(x) + 10 * T(y) + 10 * H(z)

21
(7.8)

Step 4: Systems Execution

We have executed both systems, Version 1 (memory-based design) and Version 2 (disk-based de-

sign), varying the number of migration threads between one, three and five. Unlike the first case study,

where the number of business entities increased throughout the system execution, in this study each

version of the IEF was run to completion against the data batches of 5 million transactions contain-

ing an increasing number of distinct entities. The five batches containing, respectively, 1.5 thousand,

6 thousand, 50 thousand, 500 thousand and 50 million distinct business entities where generated using
3As no upper-limit was declared for throughput, 400 transactions/second (slightly above to the maximum observed throughput)

was used as the upper bound.

7.4. Case Study 2: A Comparison of Alternative Designs 136

a Searchspace in-house application, and following the characteristics in the sample described in Step 1.

Each batch was run two or three times, individual measurements were recorded periodically (every 5

minutes), and the average number of the collected metrics over the executions for each batch was used.

We next discuss and compare Version 1 and Version 2, both with 5 migration threads (as the systems

obtained their best performance with this configuration).

Figure 7.5.a shows plots of JVM heap usage against the number of distinct business entities for

Version 1 and Version 2. In Version 1, heap usage reaches 500MB, which was the maximum memory

available to the JVM at the time. Therefore, the JVM runs out of memory at just a little over 4 million

distinct business entities in memory, causing the system to fail. In Version 2, heap usage never exceeds

around 20MB, as just the business entities with few distinct values are held in memory (roughly 1200

entities). Figure 7.5.b plots throughput against the number of business entities. In Version 1, as the JVM

runs out of memory, the throughput goes to zero because of virtual memory swapping. In Version 2,

throughput decreases only slightly, as the number of entities to be searched for a lookup increases. Disk

usage, although a stakeholder concern, was 1%–2% of the total available space in both versions, proving

not to be a problem.

Figure 7.6 shows a plot of the utility against the measured range of distinct business entities for

Version 1 and Version 2. The plot shows that the utility of Version 1 exceeds that of Version 2 for most

of the measured range, but drops to zero after a critical point of approximately 4 million distinct business

entities. The file-based implementation has its utility dropping only slightly and very smoothly from

roughly 0.7 to 0.6 as the number of distinct business entities increase. Although the study cannot prove

that the disk-based design scales to the required production data load, it is sufficient to demonstrate the

different scalability characteristics of the two designs.

Step 5: Drawing Conclusions

The hypotheses have been validated as follows:

Validation of Hypothesis H.2.1: The hypothesis states that the analysis technique should allow one

to characterize quantitatively the scalability of a software system according to the definition of

scalability. Validating this hypothesis requires evidence that the systems’ scalability have been de-

scribed through independent and dependent variables, and that the technique has produced quanti-

tative data that shows the impact of variables representing scaling characteristics of the application

domain and of the system design on variables representing the system qualities of interest. The

resulting data should be consistent with known facts about the system.

The evidence provided by the case study is as follows:

• The instantiation of the scalability framework describing, in terms of independent and de-

pendent variables, the scaling characteristics of both versions of the system;

• Figures 7.5 and 7.6 demonstrating the causal impact of the scaling of the number of distinct

business entities on the metrics representing system qualities of interest (memory usage, disk

usage and average throughput).

7.4. Case Study 2: A Comparison of Alternative Designs 137

Figure 7.5: Case Study 2, measured system qualities.

Similarly to case study 1, the graphs in these figures confirm Hypothesis H.2.1 (and positively

answer research question RQ.2.1), demonstrating that it is possible to measure characteristics

of both versions of the IEF quantitatively in such a way as to provide a characterization of its

scalability according to our definition of scalability.

Validation of Hypothesis H.2.2: The hypothesis states that the analysis technique should allow one

to characterize systematically the satisfaction of the stakeholder with the system qualities when

certain application domain and system characteristics vary over operational ranges. Validating

this hypothesis requires evidence that the stakeholder’s scalability concerns have been described

with preferences and utility functions, and data plots that provide solid confirmation of the expert’s

judgment have been produced.

The evidence provided by the case study is as follows:

• The instantiation of the scalability framework describing, in terms of preferences and utility

functions, the stakeholder’s scalability goals for both versions of the system;

• Figure 7.6 demonstrating the variation in the utility of both systems, which confirm the ex-

pert’s judgment expressed during the problem familiarization step.

Given that the utility function was modeled in such a way that it would receive a negative value if

the system requirements were not met, we can conclude that Version 1 is not scalable with respect

to throughput and memory usage for the measured range of business entities, which is consistent

7.4. Case Study 2: A Comparison of Alternative Designs 138

Figure 7.6: Case Study 2, utility comparison.

with the stakeholder judgment on that version. This result provides a positive answer to research

question RQ.2.2.

In addition, no extrapolation was necessary to show that Version 2 was more scalable than Ver-

sion 1. As the system has to handle on average around 36.66 million entities, and as the JVM

memory at the time was limited to 500MB, we can conclude that Version 1 should have been with-

drawn from consideration. We also know as fact that Version 2 can handle the required batches

with 30 million transactions and 50 million distinct entities. This result answers research ques-

tion RQ.2.3 positively. By answering both questions RQ.2.2 and RQ.2.3 positively, the study also

confirms hypothesis H.2.2.

As in the previous study, qualitative judgment about the system scalability has been formed by fol-

lowing number of steps for the definition of the scalability question, the selection of variables and

functions that represent the system qualities of interest, the collection of data, and the instantiation

of the variables and functions to provide a scalability answer. This second case study, therefore,

also shows the systematic nature of the framework.

7.4.6 Evaluation

The critical evaluation is divided in two parts: (1) threats to validity and (2) evaluation of the analysis

technique.

Threats to Validity

In hindsight, Version 2 may appear to be obviously superior to Version 1. One may speculate that

Searchspace’s problem was in correctly estimating the load and that the analysis technique would bring

little additional benefit, which may represent a threat to the external validity of the study. In fact, simple

back-of-the-envelope calculations could have warned developers about the problem. Surrogate keys for

business entities were held in objects of 16 bytes and were intended to be stored in a Java HashMap.

A HashMap has roughly 116 bytes with an overhead of 24 bytes per object. Even if the system did

nothing but hold 50 million of these objects in memory, it would require 1.5GB of heap space, which

was more than the 500MB available. At the time, however, the problem was not obvious at all. Fur-

7.4. Case Study 2: A Comparison of Alternative Designs 139

thermore, the study intended to show that it is possible to characterize the scalability of a real-world

software system quantitatively and the satisfaction of the stakeholder with respect to system qualities

when these characteristics are varied over operational ranges. Whether the analyst uses prototyping,

modeling or back-of-the-envelope calculations to quantify these variables is irrelevant for the technique.

Furthermore, the scalability framework advocates a proactive approach to scalability, encouraging the

analyst to consider scalability from the early stages of software development. We can therefore reason-

ably speculate that such a framework would have warned developers of the scalability problem faced by

the IEF.

A problem we tried to tackle in the second study was to have a more realistic data set. However,

customer data could not be viewed by the PhD candidate. In order to address this problem, synthetic

data, generated based on real characteristics, was provided by Searchspace staff. The sample used to

generate the data was small (containing only 3.2% of the accounts for that particular bank), and the ratio

between the business entities in that sample was assumed to hold for different batches of transactions.

The synthetic data produced was assumed to be a fair representation of Searchspace’s actual customer

data, although in reality this cannot be guaranteed, representing a threat to the construct validity of the

system.

Despite addressing some of the limitations of case study 1, this case study shares a few of its

threats. We still did not have a powerful enough machine to run the tests and, as in the first case study,

the operational ranges of the system characteristics and the acceptable values of system qualities were

tailored by the stakeholder according to the specification of the testing machine. In order to reduce the

risk to the construct validity of the study, we counted on the experience of Searchspace’s testing group

for this task, who routinely performed tests on less powerful machines. Yet, the size of each individual

transaction (and of business entities) was maintained, and the memory in the testing machine was limited

to 500MB to mimic the production environment at the time. Therefore, the memory exhaustion seen in

the study does reflect what, in reality, has happened with the IEF. In addition, as in the first case study, the

analysis was performed by the PhD candidate, who may be biased to produce a positive result. Therefore,

despite using a typical IT system that would normally benefit from the technique, the case study does not

use a typical analyst, which is also a threat to the construct validity of the study. The risk of a positively

biased result was reduced by constantly consulting Searchspace staff about the execution of the case

study. Unfortunately, no other person was available to play the role of the analyst. Finally, this study

also does not account for all scaling characteristics that may affect the system qualities of interest. This

threat to the internal validity of the study is mitigated in the scalability framework by our techniques for

elaborating scalability requirements.

Evaluation of the Analysis Technique

Case studies 1 and 2 highlighted some limitations of the proposed technique in a real-world setting:

Choosing variables and functions: Being a retrospective study, the analysis was simplified by the fact

that the scalability problem was well-known. Such familiarity has probably helped the stake-

holder to choose the relevant scaling variables and system characteristics—a task that would not

7.4. Case Study 2: A Comparison of Alternative Designs 140

have been so simple for a new system. Choosing appropriate variables and functions is crucial

to the analysis. This observation motivated us to develop the requirements engineering technique

described in Chapter 5.

Early scalability analysis: Similarly, the fact that both designs were already implemented allowed re-

liable metrics to be collected and analyzed. There will be occasions when an analysis of a yet

unimplemented system will be required. The importance of quality predictions in early stages of

the development lifecycle is advocated in software engineering (Smith and Williams, 2001). Al-

though further research is needed to confirm this, at least theoretically, raw data could be produced

for the analysis through models, such as queuing networks and Petri nets.

Design of scalability tests: We knew as fact that the growth in the number of business entities (rather

than another scaling characteristic) had been responsible for the scalability problem of Version 1 of

the IEF. This previous knowledge made testing straightforward. However, when analyzing a new

system, there may be multiple scaling characteristics affecting a number of system qualities. The

technique is still lacking support for systematically deriving a set of tests cases for the analysis.

Extrapolation beyond measured ranges: The case studies have shown that Version 2 was more scal-

able than Version 1, but they have not proved that it was scalable with respect to performance.

Doing so requires either a sufficiently powerful infrastructure to run the system against the full

range of distinct business entities or extrapolation of the analysis results. Extrapolation is subject

to substantial uncertainty and is very challenging when the utility combines variables with distinct

scaling characteristics. For the case study, extrapolation was not necessary to demonstrate the su-

periority of the Version 2’s design. Realistically, extrapolation often will be required, and is left as

a topic of future research.

Despite the limitations, the case studies have been successful in demonstrating important benefits of the

technique in a real-world setting:

Quantitative characterization of system scalability and stakeholder preferences: The case studies

have shown that the technique can quantitatively characterize a software system’s scalability ac-

cording to the definition in Section 7.1 and the satisfaction of the stakeholder with respect to

system qualities when system characteristics vary over operational ranges.

Clear and objective comparison of the scalability of alternative system designs: The case studies

have also demonstrated the suitability of the technique for clearly and objectively comparing the

scalability of alternative designs in a large real-world system.

The quantitative characterization produced by the technique allows one to describe the scalability of a

software system clearly and objectively. As a result, the technique tackles the problem of intuitions,

ambiguities and inconsistencies underlying the notion of scalability in computing. Finally, by forcing

scalability concerns to be clearly expressed as variables and functions, the technique encourages software

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 141

developers to think carefully about the subject, possibly bringing into evidence problems that might

otherwise be overlooked.

7.4.7 Concluding Remarks

This section has described a case study to validate the scalability analysis technique in a real world

setting. The main points are:

• The case study demonstrated that it is possible to describe a software system’s scalability according

to the definition presented in Section 7.3.1, and produced data plots that confirm what is known as

fact about the real system’s scalability.

• The case study involved the PhD candidate and Searchspace staff. Experienced Searchspace staff,

not involved in the first study, has helped the generation of synthetic data.

• The case study validated the stated hypotheses for a real-world system. The development of a

requirements engineering technique was a direct result of the limitations observed in this study.

7.5 Case Study 3: Elaborating the Scalability Requirements of the

IEF
A third case study was planned to validate the technique described in Chapter 5. Part of this study was

reported on (Duboc et al., 2008).

7.5.1 Objectives

The objective of this case study was to validate the requirements engineering technique described in

Chapter 5 against a real-world system, and to demonstrate the derivation of variables and functions for

a scalability analysis from the system’s scalability requirements. The research questions formulated to

achieve these objectives are as follows:

RQ.3.1: How to describe, model, and analyze scalability requirements of software systems systemati-

cally?

RQ.3.2: Is it possible to derive variables and functions for scalability analysis systematically from a

system’s scalability requirements?

7.5.2 Hypothesis

In order to answer the research question RQ.3.1, we have applied the technique described in Chapter 5

to elaborate the requirements of a real-world system. Systematically describing, modeling and analyzing

scalability requirements demands form the technique the properties stated in the following hypothesis:

H.3.1: The technique is applicable to large-scale, industrial projects.

H.3.2: The technique allows one to identify systematically important scaling and non-scaling character-

istics of the application domain that may be missed if no systematic technique is applied.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 142

H.3.3: The technique allows one to identify systematically a set of scalability risks, some of which may

be missed if no systematic technique is applied, and to link each scalability risk to the system goals

it may impact.

H.3.4: The technique allows one to explore systematically a wide range of alternative ways to deal with

scalability risks, and envision solutions that may be missed if no systematic technique is applied.

Question RQ.3.2 is addressed by the step 6.1.5 of the method described in Chapter 6. The study

hypothesis formulated to answer this question is as follows:

H.3.5: The method allows one to derive systematically from a goal model a set of variables and func-

tions for a scalability analysis.

Our requirements engineering activities took place in parallel with the third major re-design of the IEF

and, for this reason, the requirements for this new version, arguably, had been defined (albeit not in a

goal-oriented form). Therefore, a limited comparison of the resulting goal model is made against the

original requirements specification document for the system and against a goal model developed using

the standard KAOS techniques.

Therefore, the case study relied on the following assumptions:

Assumption: The original requirements specification document for the system is unbiased and consid-

ered to be complete and comprehensive by its authors.

7.5.3 Pilot Project

As we started to consider KAOS as a technique for elaborating scalability requirements, we constructed

goal models for small portions of the IEF, which were circulated within Searchspace. A few months

later, the IEF entered a major re-design (for Version 3) and the project manager responsible for this new

IEF version suggested that we applied KAOS in parallel with the development activities. The IEF was

then chosen as the pilot project for evaluating the suitability of our extension to KAOS for elaborating

scalability requirements.

The IEF is a complex, real-world system, and is therefore representative of other systems that would

benefit from the proposed technique. Elaborating the requirements of the new IEF version included all

the complexities normally present on such activity: a wide variety of goals, multiple input sources, mul-

tiple stakeholders’ views, inconsistent and conflicting goals, alternative solutions, a complex application

domain, and changing goals.

7.5.4 Planning

The case study was executed by the PhD candidate, with the cooperation of Searchspace staff. The

PhD candidate played the role of the requirements analyst. She had worked for three a half years at

Searchspace and therefore had some domain knowledge. She had no previous experience with KAOS.

KAOS was learned through technical papers and discussions of the evolving model with an expert re-

searcher in the area. The role of the stakeholders was played mainly by Searchspace’s global director

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 143

and by the IEF’s architecture team leader, with the occasional input of other Searchspace staff who were

available for questions.

The case study involved a number intertwining steps:

Step 1: Familiarization with the goals for the new version of the IEF and construction of

the standard KAOS goal model;

Step 2: Model refinement through the systematic application of scalability goal-obstacle

analysis;

Step 3: Instantiation of variables and functions required for scalability analysis from se-

lected goals;

Step 4: Drawing conclusions about the study, including a comparison with the IEF’s origi-

nal requirements specification document and standard goal model.

7.5.5 Execution

This section describes the case study according to the execution plan devised above. The final model

contains 145 goals and 11 agents. Due to the scale of the goal model and the sensitivity of the infor-

mation it contains, it cannot be fully described in this thesis. However, some of its goals, assumptions,

obstacles and resolutions have been discussed in Chapters 5 and 6, and will be described further next.

The quantitative data presented in the goals throughout this chapter have been changed in order to protect

the company’s proprietary information.

Step 1: Familiarization with the goals of the new version of the IEF and construction

of the standard goal model

The elaboration of scalability requirements combined a number of activities, such as interviews, brain-

storming, data characterization, and document review. Documents included the product specification of

the previous IEF version, the business requirements specification and use cases documents originally

developed by Searchspace for this new version of the system, and marketing documents describing the

main characteristics of the company’s customer base.

The business requirements specification document contains 44 requirements divided into archi-

tecture, transaction processing, data handling, user interface, rules testing, development timetable,

backwards-compatibility and performance. Requirements were described in natural language, usually

in one or two sentences. For example, the requirement on the processing of transactions has been stated

as “Rules can be applied real-time as the records arrive or as part of a batch process as defined by the rule”.

Nearly all requirements in the document were functional. The document contained exactly two

requirements under the “performance” category. One stating that the new IEF version should run in a

particular platform, and the other quantifying the expected number of transactions to be processed per

day—a number that had not been justified in the document. The latter requirement has been stated as “It

should be capable of processing 200,000 transactions a day.”4

4The actual number of transactions have been modified to protect Searchspace’s intellectual property.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 144

As originally stated, the requirements of the IEF were more a statement of idealized goals rather

than precise requirements with clearly understood objectives.

We next describe a portion of the IEF goal model developed through the standard application of

KAOS.

Standard KAOS goal model:

We started the construction of the standard KAOS goal model by looking at the interests of

Searchspace’s customers and the nature of their operating environments that most affected the IEF. At a

very high level, a bank has strategic goals such as Maintain[Bank Reputation], Avoid[Inconvenience to Account

Holders] and Avoid [Loss Due to Fraudulent Transactions]. All these goals receive a positive contribution from

the goal Achieve[Fraudulent Transactions Detected and Acted Upon], as shown in Figure 7.7.

Figure 7.7: Case Study 3, High-level, strategic IEF goals.

Detecting and acting upon fraudulent transactions require that suspicious transactions are identified,

investigated, and resolved when a fraud is confirmed. Resolving a fraudulent transaction includes can-

celing it before completion and reversing it after completion. The responsibility for resolving fraudulent

transactions is assigned to the agent Bank Staff. Furthermore, financial services regulation requires infor-

mation about fraudulent transactions to be recorded. The goal Achieve[Fraudulent Transaction Detected and

Acted Upon] is therefore AND-refined into the goals Achieve[Possible Fraudulent Transactions Alerted Quickly],

Achieve[Alerts Stored] and Achieve[Alerts Investigated and Acted Upon Quickly], as illustrated in Figure 7.8.

Alerts are stored in an external data storage, represented in the goal model by the agent Data Storage.

The IEF recognizes fraudulent behavior both by comparing transactions with known fraudulent

patterns and by learning what is unusual behavior compared with other transactions of the same kind.

For simplicity, we consider only the first case. In order to satisfy the goal Achieve[Alerts Investigated

and Acted Upon Quickly], this goals is refined into an assumption Fraudulent Transactions Follow Known Pat-

terns, and the goals Achieve[Fraudulent Patterns Recorded] and Achieve[Transactions Matching Known Fraudulent

Patterns Alerted]. Recording known fraudulent patterns is accomplished by encoding, testing and stor-

ing patterns into the system, which is represented in the model by an AND-refinement of the goals

Achieve[Known Fraudulent Patterns Encoded], Achieve[Fraudulent Patterns Tested Against Real Transactions] and

Achieve[Fraudulent Patterns Stored and Activated]. Finally, Searchspace stores incoming transactions that are

then used to test new fraudulent patterns. This is represented in the model by an AND-refinement of the

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 145

Figure 7.8: Case Study 3, Fraudulent transactions detected and acted upon.

goal Achieve[Fraudulent Patterns Tested Against Real Transactions] into the goals Achieve[Incoming Transactions

Stored] and Achieve[Fraudulent Patterns Tested Against Stored Transactions]. Fraudulent patterns are encoded

into the system by Searchspace Staff. Incoming transactions and fraudulent patters are stored in the Data

Storage and then tested using the Alert Generator. All these goals are shown in Figure 7.9.

Figure 7.9: Case Study 3, Possible fraudulent transaction alerted.

There are two main approaches for alerting transactions that match known fraudulent patterns:

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 146

Figure 7.10: Case Study 3, Transactions matching known fraudulent patterns alerted.

continuously and overnight. In the former, transactions are streamed by the bank system into the IEF

and processed as soon as they arrive. In the latter, transactions are provided periodically and pro-

cessed in data batches. The selection between them depends on the type of fraud being addressed

and the upstream banking processes. For example, the clearing process for some types of transactions

(e.g., cheque transactions) is normally performed in the next working day, so they can be processed

overnight. Other transactions (e.g., debit card online transactions) may require instantaneous clearing.

The goal Achieve[Transactions Matching Known Fraudulent Patterns Alerted] is therefore refined using the pat-

tern decomposition-by-cases (van Lamsweerde, 2008), as in Figure 7.10. Note that transactions either

require next day or instantaneous clearing, never both. Therefore, satisfying the goal Achieve[Transactions

Processed in Batches if Next Day Clearing] or the goal Achieve[Transactions Processed Continuously if Instantaneous

Clearing] satisfies the parent goal. The former goal is AND-refined into the expectation Achieve[Transactions

Delivered Continuously] and the goal Achieve[Transactions Processed Quickly]. The latter goal is AND-refined

into the expectation Achieve[Transactions Delivered Periodically in Batches] and the goal Achieve[Batch Processed

Quickly]. Transactions are delivered by the agent Bank System, and processed by the agent Alert Generator.

There are many other goals in the KAOS goal model for the IEF, such as Achieve[Learn Usual Cus-

tomer Behavior], Achieve[Backward Compatibility with Previous Versions], Achieve[Integration with Other Searchspace

Systems], Minimize[Total Cost of Ownership],and Achieve[Deployment of Multiple Products on the Same Hardware].

Nevertheless, for the purpose of this thesis, the description of the IEF model stops here. The next section

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 147

demonstrates the identification and resolution of scalability obstacles associated with the goals described

above.

Step 2: Model refinement through scalability goal-obstacle analysis

Starting from the standard KAOS goal model produced in the previous step, the scalability goal-obstacle

analysis consists of (1) systematically identifying obstacles that may obstruct the satisfaction of the

goals, requirements, and expectations elaborated so far; (2) assessing the likelihood and criticality of

those obstacles; and (3) resolving them by modifying existing goals, requirements, and expectations,

or generating new ones so as to prevent, reduce or mitigate the identified obstacles. These steps are

illustrated below:

Identifying Obstacles

This step requires systematically checking for scalability obstacles to all the requirements and

expectations in the model. That is done by comparing, for each agent, the capacity of this agent against

the load imposed on it by its assigned goals. We next exemplify the identification of such obstacles for

the following three agents: Alert Generator, Data Storage and Bank Staff. A list of scalability obstacles in

the goal model described in the previous section is given in Table 7.3.

Scalability obstacles to goals under the responsibility of the Alert Generator

The Alert Generator is responsible for three of the leaf goals presented above: Achieve[Batch Processed

Quickly], Achieve[Transactions Processed Quickly] and Achieve[Fraudulent Patterns Tested Against Stored Transac-

tions], as shown by the agent load diagram in Figure 7.11.

Figure 7.11: Case Study 3, Alert Generator agent responsibilities.

In all these goals, each transaction is compared against a set of known fraudulent patterns. We refer

to this process as “txn check”. We define the Alert Generator capacity in terms of the average number of

txn checks per second it can support. The load imposed on this agent (also defined in terms of the average

number of txn checks per second) depends on many application domain characteristics, such as the number

of transactions, the number of fraudulent patterns, the type of fraudulent patterns, and so on. We next

look at the specification of each of these goals to determine this load:

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 148

Goal 7.1

Goal Achieve [Batch Processed Quickly]

Category Performance

Definition Batches of bank transactions provided by the bank source system should normally be processed in less

than 8 hours. Processing consists of generating alerts on the transactions in the batch that match

known fraudulent patterns stored in the system.

Quality Variable: processingTime: Time

Definition The time required from reading the transactions to generating alerts on all transactions that match

one or more fraudulent patterns.

Sample Space Set of batches of bank transactions submitted by the bank source system.

Objective Functions At least 9 out of 10 batches should be processed within 8 hours, and all batches should be

processed within 9.6 hours.

Name Definition Mode Must

% of Batches Processed in 8 hours Pr(processingTime ≤ 8h) Max 90%

% of Batches Processed in 9.6 hours Pr(processingTime ≤ 9.6h) Max 100%

Responsibility Alert Generator

Goal 7.2

Goal Achieve [Transactions Processed Quickly]

Category Performance

Definition Each bank transaction provided by the bank source system should be processed immediately and

in less than 0.5 milliseconds. Processing consists of generating an alert on any transaction that

matches one or more known fraudulent patterns stored in the system.

Quality Variable processingTime: Time

Definition The time required from reading the transaction to generating an alert if it matches a fraudulent

pattern.

Sample Space: Set of transactions submitted by the bank source system.

Objective Functions At least 8 out of 10 transactions should be processed within 0.5 milliseconds each, and every

transaction should be processed within 2 milliseconds.

Name Definition Mode Must

% of Txns Processed Pr(processingTime ≤ 0.5ms) Max 80%

in less than 0.5 ms

% of Txns Processed Pr(processingTime ≤ 2ms) Max 100%

in less than 2 ms

Responsibility Alert Generator

Goal 7.3

Goal Achieve [Fraudulent Patterns Tested Against Stored Transactions]

Definition New patterns of fraudulent transactions encoded by Searchspace staff should be tested against real

transactions stored in the system. The test should certify that the new fraudulent patterns have been

correctly encoded; that is, that alerts are generated for the transactions in the test data expected to

match the new pattern and that are not generated for transactions that are not expected to match the

pattern.

Responsibility Alert Generator

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 149

These goals, as stated, do not identify the ranges of application domain characteristics that will determine

their load. The characteristics of the application domain whose ranges have been overlooked in the

original model are the: number of transactions in a batch, number of distinct business entities in a batch, number

of transactions per second, number of distinct business entities per second, number of transactions in test data,

number of distinct business entities in test data, number of fraudulent patterns (to be compared against incoming

transactions), and number of new fraudulent patterns in any given day (to be tested against stored transactions).

The type of the fraudulent patterns had also been overlooked. Some fraudulent patterns, such as the ones

which consider historical information about the account or the behavior of peer accounts take longer to

process than others that are simple comparisons against a blacklist of accounts, countries or institutions. 5

The type of fraudulent pattern is represented in the goal model as a standard KAOS domain assumption

named Types of Fraudulent Patterns.

Therefore, the load on each of these goals can be considered infinite, inducing the scalability ob-

stacle Number of Txn Checks Exceeds Alert Generator Processing Speed. This obstacle is illustrated in Fig-

ure 7.12.

Figure 7.12: Case Study 3, Scalability obstacle to Alert Generator goals.

Note that the obstacle Number of Txn Checks Exceeds Alert Generator Processing Speed can be defined

more precisely for each of the goals it obstructs. For example, sub-obstacles to the goal Achieve[Batch

Processed Quickly] can be defined with respect to the different application domain characteristics, such

as Batch Size Exceeds Alert Generator Processing Speed, Number of Entities Exceeds Alert Generator Processing

Speed, and Number of Patterns Exceeds Alert Generator Processing Speed. A list of obstacles and sub-

obstacles for each agent is shown in Tables 7.3 and 7.4.

5The real classification of pattern types have been omitted to protect Searchspace’s intellectual property.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 150

Scalability obstacles to goals under the responsibility of the Data Storage

The agent Data Storage is responsible for three of the goals in the standard goal model: Achieve[Incoming

Transactions Stored], Achieve[Alerts Stored], and Achieve[Fraudulent Patterns Stored], as shown in the agent load

diagram in Figure 7.13.

Figure 7.13: Case Study 3, Data Storage agent responsibilities.

Since all these goals are concerned with the storage of data, the agent capacity is defined in terms of

the amount of data the Data Storage can store. The load imposed on this agent (also defined in terms of the

amount of data) depends on different application domain characteristics that have been overlooked in the

standard goal model: number of fraudulent patterns, size of fraudulent patterns, number of transactions per second,

number of transactions in a batch, size of transactions, number of new business entities per second, number of new

business entities in a batch, size of business entities, number of alerts, and size of alerts. All these characteristics,

but the size of alerts, will scale over expected ranges. The size of alerts is fixed. 6

Therefore, the load on each goal can be considered infinite, inducing the scalability obstacle Amount

of Data Exceeds Data Storage Space, as show in Figure 7.14. As in the previous example, this obstacle

can be further refined into sub-obstacles to each of the goals, such as Number of Transactions Exceeds Data

Storage Space, Number of Business Entities Exceeds Data Storage Space, Number of Alerts Exceeds Data Storage

Space, and Number of Patterns Exceeds Data Storage Space. These obstacle and sub-obstacles are listed in

Tables 7.3 and 7.4.

Figure 7.14: Case Study 3, Data Storage agent responsibilities.

6The size of an alert is considered part of the problem domain because the new Alert Generator has to be compatible with

other subsystems of Searchspace, such as the Alert Resolution Workflow.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 151

Scalability obstacles to goals under the responsibility of the Bank Staff

As a last example, consider the agent Bank Staff, responsible for the goal Achieve[Alerts Investigated and

Acted Upon]. The agent capacity, in this case, is the number of alerts processed in a day by the Bank Staff. The

load imposed on this agent (also defined in terms of the number of alerts processed in a day) depends on

the number of alerts and the number of case-worthy alerts, which requires more investigation and resolution

time. Both characteristics have been overlooked in the standard goal model. Therefore, the load on the

goal Achieve[Alerts Investigated and Acted Upon] can be considered infinite, inducing the scalability obstacle

Number of Alerts Exceeds Bank Staff Processing Speed, as illustrated in the Figure 7.15.

Figure 7.15: Case Study 3, Bank staff agent responsibilities.

Scalability obstacles in the standard goal model

Repeating the process for the other agents in the standard goal model, the set of scalability obstacles

identified is listed in Tables 7.3 and 7.4 below. Note that we chose not to generate scalability obstacles

to the expectations Achieve[Transactions Delivered Periodically in Batches] and Achieve[Transactions Delivered

Continuously]. Both goals are under the responsibility of the environment agent Bank System, whose scaling

characteristics defining the load on these goals are unknown by Searchspace. 7 Note that this is different

from a scalability obstacle to the goal Achieve[Transactions Processed Quickly], caused by the Bank System

delivering a number of transactions that falls outside to the range expected by Searchspace.

7Sometimes, however, it might be interesting to assume the existence such obstacles, as their potential occurrence may have

consequences for system being analyzed. By anticipating these consequences, the system can be designed to provide the best

service if an external agent in unable to satisfy its goals.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 152

Agent Scalability Obstacle Goal

Alert Generator
Number of Txn Checks Exceeds Alert

Generator Processing Speed

Achieve [Batch Processed Quickly]

Achieve [Transactions Processed Quickly]

Achieve [Fraudulent Patterns Tested Against Stored Transactions]

Data Storage
Amount of Data Exceeds Data Storage

Space

Achieve [Incoming Transactions Stored]

Achieve [Alerts Stored]

Achieve [Fraudulent patterns Stored]

Bank Staff Number of Alerts Exceeds Bank Staff

Processing Speed

Achieve [Alerts Investigated and Acted Upon]

Searchspace Staff Number of Fraudulent Patterns Exceeds

Searchspace Staff Encoding Speed

Achieve [Known Fraudulent Patterns Encoded]

Table 7.3: Case Study 3, Scalability obstacles.

Scalability Obstacle Refined Scalability Obstacle

Number of Txn Checks Exceeds Alert

Generator Processing Speed

Batch Size Exceeds Alert Generator Processing Speed

Number of Incoming Transactions Exceeds Alert Generator Processing Speed

Number of Stored Transactions Exceeds Alert Generator Processing Speed

Number of Patterns Exceeds Alert Generator Processing Speed

Number of New Patterns Exceeds Alert Generator Processing Speed

Number of Entities Exceeds Alert Generator Processing Speed

Amount of Data Exceeds Data Storage

Space

Number of Transactions Exceeds Data Storage Space

Number of Business Entities Data Exceeds Data Storage Space

Number of Alerts Exceeds Data Storage Space

Number of Patterns Exceeds Data Storage Space

Table 7.4: Case Study 3, Refined scalability obstacles.

Assessing Obstacles

Obstacles assessment consists of estimating the likelihood and criticality of scalability obstacles.

As discussed in the previous step, since a number of application domain characteristics have been over-

looked in the standard goal model, the load on the goals impacted by these characteristics can be con-

sidered infinite. Therefore, strictly speaking, the likelihood of the scalability obstacles in this first as-

sessment can be classified as ‘almost certain’. For this reason, we show in Table 7.5 only the estimated

criticality of the identified scalability obstacles.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 153

Scalability Obstacle Criticality

Number of Txn Checks Exceeds Alert Generator Processing Speed high

Amount of Data Exceeds Data Storage Space high

Number of Alerts Exceeds Bank Staff Processing Speed moderate

Number of Fraudulent Patterns Exceeds Searchspace Staff Encoding Speed low

Table 7.5: Case Study 3, Criticality of scalability obstacles.

Scalability goal-obstacle analysis is an iterative process. The loop identify-assess-resolve is re-

peated until all remaining obstacles are considered acceptable. When application domain characteristics

have been overlooked, the tactic introduce scaling assumption is normally applied to establish the pos-

sible range of values for these characteristics, as it will be demonstrated in the next step. Once the

overlooked application domain characteristics have been bounded, the scalability obstacles must be

re-assessed. At this point, it may also be interesting to assess the likelihood of scalability sub-obstacles

individually. Such assessment may require further analysis—for instance, back-of-the-envelope calcu-

lations, modeling or prototyping. For the purposes of the case study, we simply assumed the obstacles

were likely to occur and applied the resolution tactics described in Chapter 5.

Resolving Obstacles

The generation of resolutions to scalability obstacles was performed by iterating through the catalog

of resolution tactics and checking whether they could be instantiated for the obstacles at hand. Some of

the resolutions we describe in this step were, in fact, used by Searchspace; others are simply alternative

solutions to scalability obstacles.

Resolutions to the scalability obstacle Number of Txn Checks Exceeds Alert Generator Processing Speed

As shown in step 1, this obstacle can be defined more precisely for each of the goals it obstructs.

Take, for example, the obstacle Batch Size Exceeds Alert Generator Processing Speed that obstructs the goal

Achieve[Batch Processed Quickly].

The first resolution tactic instantiated to the obstacle Batch Size Exceeds Alert Generator Processing

Speed was the introduce scaling assumption, which defines scaling assumptions on each of the appli-

cation domain characteristics that had been overlooked in the standard goal model, and modifies the

specification of the obstructed goals in such a way that they only need to be satisfied under the condi-

tions expressed in the scaling assumptions. Two forms of describing a scaling assumption on the number

of transactions in a batch were given in the Assumptions 5.1 and 5.2 of Chapter 5. We next exemplify a

scaling assumption on the number of fraudulent patterns. Other assumptions are defined in a similar fashion.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 154

Assumption 7.1

Assumption Expected Number of Fraudulent Patterns Variation

Category Scalability

Definition The IEF can have a number of different products running concurrently, each with a maximum of

200 fraudulent patterns. The overall maximum number of fraudulent patterns the system is

expected to deal with is 1000. This assumption is valid for the next three years.

Considering that the scalability obstacle Batch Size Exceeds Alert Generator Processing Speed is still

likely to occur, we examine the other resolution tactics. In Chapter 5, we have already described reso-

lutions for this scalability obstacle using the tactics Goal substitution, Adapt agent capacity at runtime

according to load, Set agent capacity upfront to worst-case load, Strengthen scaling assumption, Relax

real-time requirement, and Relax required level of satisfaction.

An alternative resolution instantiates the tactic Limit goal load according to fixed agent capacity. In

this resolution, the IEF receives transactions continuously from the Bank System and accumulate them in

batches, never allowing the batch to grow over the maximum expected batch size the Alert Generator can

handle. This resolution is illustrated by Figure 7.16. The dynamic counterpart of this resolution would

be to adjust the size of the batch at runtime according to the available capacity of the Alert Generator. That

tactic is the Limit goal load according to varying agent capacity.

Figure 7.16: Case Study 3, Applying tactic Limit goal load according to fixed agent capacity.

The tactic Transfer goal to non-overloaded agent can also be applied to reduce the probability of

occurrence of the obstacle Number of Txn Checks Exceeds Alert Generator Processing Speed. A solution actu-

ally adopted by Searchspace to reduce the load on the Alert Generator was to create a separate environment

for testing new fraudulent patterns. More precisely, the responsibility for the goal Achieve [Fraudulent Pat-

terns Tested Against Stored Transactions] is transferred to another agent, named Sandbox. This agent runs in

a separate environment and has as its only responsibility the testing of new fraudulent patterns. The goal

model is then refined as in Figure 7.17.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 155

Figure 7.17: Case Study 3, Applying tactic Transfer goal to non-overloaded agent.

The tactic Split goal load among multiple agents could also be applied to mitigate the obstacle

Number of Txn Checks Exceeds Alert Generator Processing Speed. For example, the load could be split by

case, where different agents are responsible for different types of transactions and frauds.

Finally, reaching the end of the catalog, the tactic Goal restoration can be applied to store the

transactions that could not be processed within the expected time window, re-submitting them to the

Alert Generator when it is less busy.

In this example, we have shown that alternative resolutions can be generated by systematically

iterating through the catalog of obstacle resolution tactics described in Chapter 5. Note that, with the

support the catalog, one can generate a number of alternative resolutions that are more creative than the

usually adopted solution of increasing the system capacity. In next examples, we list only a few of the

possible resolutions that have been obtained in a analogous fashion.

Resolving the scalability obstacle Amount of Data Exceeds Data Storage Space

As in the previous example, the first resolution tactic instantiated to mitigate the obstacle above was the

introduce scaling assumption. The tactic was used, for example, to refine the goal Achieve[Alerts Stored]

into scaling assumptions for the number and size of alerts and a refined specification of the obstructed goal

such that it only needs to be satisfied under the conditions of these assumptions. The size of alerts is

known from previous IEF versions and the number of alerts can be estimated through domain knowledge,

such as the percentage of transactions that are fraudulent, and Searchspace’s history in terms of the rate

of false alerts and missed fraud. This resolution is illustrated in Figure 7.18.

This same tactic was applied to refine the goals Achieve[Incoming Transactions Stored] and

Achieve[Fraudulent Patterns Stored]. The expected number of fraudulent patterns has already been shown

in Assumption 7.1. The size of fraudulent patterns as well as the number and size of transactions and business

entities are all known from previous versions of the IEF.

Considering that the scalability obstacle Amount of Data Exceeds Data Storage Space is likely to occur

for the ranges of values established with the tactic above, different tactics can be applied to mitigate this

obstacle. For example, by applying the tactic Set agent capacity upfront to worst-case load, one can

estimate the maximum amount of space required to store incoming transactions, business entities, alerts,

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 156

Figure 7.18: Case Study 3, Alerts stored.

and fraudulent patterns based on the scaling assumptions for number and size of these characteristics;

and create a goal that requires the Data Storage to have sufficient space upfront to support this maximum

load. Alternatively, one can apply the tactic Adapt agent capacity at runtime according to load, creating

a goal to predict the amount of data to be stored in the near future, and another goal to add more space

to the Data Storage agent accordingly. These resolutions are shown in Figure 7.19.

Figure 7.19: Case Study 3, Applying tactics Set agent capacity upfront to worst-case load and Adapt

agent capacity at runtime according to load.

The obstacle Amount of Data Exceeds Data Storage Space can also be mitigated by applying the tactic

Goal substitution. In fact, fraudulent patterns can normally be tested with one month’s worth of trans-

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 157

actions. Therefore, it is sufficient to store incoming transactions for 30 days only. Similarly, by law,

information about fraudulent transactions only needs to be stored for a limited amount of time. The

obstructed goals are therefore replaced by Goals 7.4 and 7.5.

Goal 7.4

Goal Achieve [Incoming Transactions Stored for a Limited Time Under Transaction Volume Variation]

Category Scalability

Definition All incoming transactions should be stored for 30 days, provided that the number and size of

transactions do not exceed the bounds stated in the scaling assumptions ‘Expected Transactions

Size Variation and Expected Number of Transactions Variation.a

Responsibility: Data Storage

aAssumptions describing the expected variation in the size of transactions and number of incoming transactions.

Goal 7.5

Goal Achieve [Alerts Stored for a Limited Time Under Alert Volume Variation]

Category Compliance and Scalability

Definition All alerts generated should be stored for 180 days, provided that the number and size of alerts

do not exceed the bounds stated in the scaling assumptions Expected Alert Size Variation

and Expected Number of Alerts Variation.a

Responsibility Data Storage

aAssumptions describing the expected variation in the size of alerts and number of alerts generated per day.

If limiting the time that the alert data is stored does not resolve the scalability obstacles, an option

is to apply the tactic Goal substitution again. Note that a portion of the alerts generated by the IEF

are, in fact, false positives (alerts for transactions that are not fraudulent). The need for storage space

can be reduced by replacing the goal Achieve[Alerts Stored for a Limited Time Under Alert Volume Variation]

by another goal Achieve[Only Case-worthy Alerts Stored for a Limited Time Under Alert Volume Variation], requir-

ing that only the alerts whose fraud have been confirmed are stored. The new goal is specified as follows:

Goal 7.6

Goal Achieve [Case-worthy Alerts Stored for a Limited Time Under Alert Volume Variation]

Category Compliance and Scalability

Definition All alerts whose fraud has been confirmed by the bank staff should be stored for 180 days,

provided that the number and size of alerts does not exceed the bounds stated in the scaling

assumptions Expected Alert Size Variation and Expected Number of Alerts Variation

Responsibility: Data Storage

Resolving the scalability obstacle Number of Alerts Exceeds Bank Staff Processing Speed

As with the other two examples, the tactic introduce scaling assumption was used to bound the number of

alerts and the number of worth-case alerts, as shown in the Figure 7.20. This obstacle can also be mitigated

by applying the tactic Split goal load into subtasks, which refines the goal Achieve[Alerts Investigated

and Acted Upon Quickly] into two separate goals Achieve[Alerts Investigated Quickly] and Achieve[Fraudulent

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 158

Transaction acted upon quickly], each assigned to an agent with a specialized role. The former goal is

assigned to the agent Fraud Investigator, while the latter is assigned to the agent Collector. This division is,

in fact, adopted by some of Searchspace’s customers. Figure 7.21 models the application of this tactic.

Figure 7.20: Case Study 3, Alerts investigated.

Figure 7.21: Case Study 3, Applying tactic Split goal load into subtasks.

If despite all the above measures, the number of alerts still exceeds the fraud investigator processing

speed, the tactics Obstacle mitigation and Goal restoration can be applied. It is possible, for example,

to block every account associated with more than one alert automatically, ensuring the ancestor goal

Avoid[Loss Due to Fraudulent Transaction] (obstacle mitigation); and postponing their investigation to a qui-

eter time (goal restoration). In this case, the goal model would be refined as in Figure 7.22.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 159

Figure 7.22: Case Study 3, Applying tactics Obstacle mitigation and Goal restoration.

Step 3: Instantiation of variables and functions required for scalability analysis from selected goals

We next describe the instantiation of the framework for two types of scalability analysis, one that

aims to understand the scaling trend of a particular goal and another that looks at an agent’s ability to

support the load imposed by its goals. However, first we review in the box below the mapping between

the goal model and the scalability analysis variables and functions described in Chapter 6:

Independent variables: Application domain variables are derived from scaling and non-scaling

domain assumptions. Variables from the system design are derived from characteristics of the

agents responsible for the goals.

Dependent variables: Derived from quality variables of scalability goals and from characteristics

that measure the usage of an agent’s capacity.

Preference functions: Derived from objective functions in scalability goals.

Utility function: If using objective weighting, the utility function can be derived from the weights

assigned their originating goals by a requirements prioritization technique.

The scalability goal-obstacle analysis of a KAOS goal model, with the objective to instantiate the

variables and functions for the analysis, can be made at different points of the development lifecycle.

In the case of the IEF, the requirements engineering activity was performed in parallel with the devel-

opment of the third version of the system. As we progressed with the construction of the model, so

did the IEF developers with their own activities. For this reason, the developers already had in mind

a rough idea of the intended design. We could take advantage of this knowledge when instantiating

variables and functions for a scalability analysis. Note that the intended design, in reality, is describing

the characteristics of the software agent responsible for the goal. There are also a number of standard

measures the IEF developers were interested in collecting for the diagnosis of eventual problems. These

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 160

measures characterized not only the usage of the agent’s capacity (e.g., memory usage, disk usage,

CPU usage), but also some performance measures that may help to identify bottlenecks and causes of

problems (e.g., disk I/O, network I/O, database read/write speed).

Scalability analysis: Analyzing the Trends of a Particular Goal

Chapter 6 suggests that in order to instantiate systematically the variables and functions for this

kind of analysis, one should select (1) the scalability goal whose trend should be characterized; (2) all

scaling and non-scaling assumptions related to that goal; and (3) all agents assigned to that goal.

Take, for example, the goal Achieve [Transactions Processed Quickly] (Goal 7.2). In the refined model,

this goal is associated with scaling assumptions specifying the ranges of the following characteristics:

number of transactions per second, number of distinct business entities per second, and number of fraudulent pat-

terns. The agent assigned to that goal is the Alert Generator. Developers intended to implement the Alert

Generator as a software component running in the IEF platform. In their intended design, each fraudulent

pattern is implemented as a rule that is checked against incoming transactions. Transactions may be

checked in parallel by separate threads in the Alert Generator. Most of the rules may run in parallel, but

some rules depend on the results of previous rules, so they have to run in a particular order. Rules also

have different types, which correspond to the types of fraudulent patterns. For this reason, not only the

number or type of rules (or fraudulent patterns) matter, but also the percentage of rules that depend on

others, and the dependency depth of these rules. Finally, system designers hoped to improve scalability

by running a number of Alert Generators in a computer cluster. The specification of these machines and

the network also have an impact on the satisfaction of the goal.

From the goal model and the description of the intended design, the variables and functions were

instantiated as shown below. Note that we have included dependent variables that measure resource

usage (i.e., characteristics that determine the usage of the Alert Generator’s capacity). These variables are

used to explain the scaling trends observed in the scalability tests.

Scalability Question:

How does the processing time of incoming transactions on the IEF vary with the number of

transactions per second, distinct business entities per second, and fraudulent patterns?

Quality goal:

Performance and scalability goal: Achieve[Transactions Processed Quickly]

Independent variables:

Scaling variables:

Number of transactions per second

Number of distinct business entities per second

Number of fraudulent patterns (rules)

Number of Alert Generators in cluster

Number of threads in Alert Generators

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 161

Non-scaling variables:

Type of fraudulent pattern (rules)

Percentage of dependent rules

Average rule dependency depth

Network bandwidth

Machine CPU speed

Machine RAM

Disk speed

Dependent variables:

Average transaction processing time

Average CPU usage

Average Network throughput

Maximum Memory usage

Average Disk I/O

Preference function:8

pref(processingTime) =

 1, if Pr(processingTime ≤ 0.5ms) ≥ 0.8 and Pr(processingTime > 2ms) = 0
Pr(processingTime ≤ 0.5ms) - 0.8

0.1
, otherwise.

(7.9)

Scalability Analysis: Analyzing an Agent’s Ability to Satisfy a Scalability Goal

In order to instantiate systematically the variables and functions for this kind of analysis, one should

select (1) the scalability goal we are interested in; (2) the agent whose ability to satisfy that goal we aim

to analyze; (3) all goals that might also require the resources of that agent; (4) the scaling and non-scaling

assumptions associated with all selected goals; and (5) possibly some cost goal if we want to investigate

a scalability strategy in which the agent’s capacity is varied with the load.

From the goal model and the intended design, the variables and functions were instantiated as

follows:

Scalability Question:

Can the IEF store incoming transactions for 180 days given a varying number and size of

transactions, business entities, alerts and fraudulent patterns?

Quality goal:

Achieve [Incoming Transactions Stored for a Limited Time Under Transaction Volume

variation]

8There are no goals associated with the other dependent variables (for resource usage), therefore only the preference for

processing time is defined.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 162

Independent variables:

Scaling variables:

Number of transactions per second

Number of transactions in batch

Size of transactions

Number of rules (or fraudulent patterns)

Size of rules

Number of business entities

Number of alerts

Size of business entities

Number of threads

Non-scaling variables:

Size of alerts

Database tuning parameters

Remote vs local disk

Network bandwidth

Dependent variables:

Maximum Disk usage

Average CPU usage

Average Disk I/O

Preference function: 9

pref(usedSpace) =

 −10.000, if availableSpace - usedSpace = 0

1, otherwise.
(7.10)

Step 4: Considerations and Conclusions

Unlike a retrospective study of a fully implemented system with well understood requirements, this

project involved a system under development, with all the complexities normally present on a require-

ments engineering exercise. The actual system was in the requirements specification stage, with many

conflicting views and uncertainties regarding the system’s goals. Stakeholders were busy with their own

daily tasks and reluctant to provide estimates about the application domain in the future. There were

multiple, incomplete and, sometimes, conflicting sources of information.

The requirements elicitation and construction of the goal model was performed by the PhD can-

didate.10 She had worked for three and a half years as a developer at Searchspace and, therefore, had

some domain knowledge. She had no professional experience in requirements engineering. KAOS was

learned through technical papers and discussions about the models with an expert researcher on the area.

The requirements engineering activities took approximately 30 days, including the interviews, brain-

9There are no goals associated with the other dependent variables, therefore only the preference for disk usage is defined.
10Threats to validity associated with this choice are discussed in Section 7.5.6.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 163

stormings, data characterization, document review, modeling, and exploration of the new techniques for

elaborating the scalability requirements described in this thesis. A breakdown of these times is shown in

Table 7.6.

Time Activity

2 days The analyst built an initial high-level model with her own domain knowledge to serve

as a starting point for discussions.

25 days The analyst built the standard goal model and applied goal-obstacle analysis to identify

scalability obstacles and scaling assumptions.

5 days The analyst explored alternative resolutions to identified obstacles and refined the model.

Table 7.6: Case Study 3, Recorded times of activities.

Validation of the Hypotheses

Ideally, for validation of the hypothesis, the resulting goal model would be compared with what, in

reality, happened to the system during production. The objective of such evaluation would be to assess

whether the technique has described the relevant scaling characteristics of the application domain, the

correct levels of goal satisfaction under the range of values for these characteristics, and the obstacles

to these goals. Nevertheless, such a comparison is not viable within the time frame of a PhD research

programme. Evaluation, instead, was performed by demonstrating the application of the proposed tech-

niques on a large-scale industrial system, with the support of rational argumentation. Comparison of the

resulting goal model against the original set of requirements for the system and against the goal model

developed with the standard KAOS technique is also used for evaluation.

Similarly, this case study is concerned with the derivation of scalability analysis variables and func-

tions from a goal model. Evaluation of the case study in that respect is also a combination of rational

argumentation and the demonstration of the technique in a real-world system. In the particular case of

the IEF, a limited comparison can be made against the variables and functions used in the first two case

studies.

The hypotheses have been validated as follows:

Validation of hypothesis H.3.1: This hypothesis states that the techniques can be applied to large-scale,

industrial projects. Validating this hypothesis requires evidence that the technique has been applied

to a number of real-world systems within an industrial context, with all the complexities normally

involved in a requirements engineering activity.

The evidence provided by the case study is as follows:

• The set of scaling assumptions, scalability goals, scalability obstacles and resolutions de-

scribed in Section 7.5.5; and

• the recorded times of the different activities listed in Table 7.6 demonstrating that the tech-

nique was successfully applied in a large-scale, industrial project.

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 164

Due to the complexity of the task, the technique could only be applied to a single system. There-

fore Hypothesis H.3.1 has been only partially validated by this case study. Difficulties of the

exercise, limitations of the technique, and benefits to Searchspace are discussed in Section 7.5.6.

Validation of hypothesis H.3.2: This hypothesis states that the technique should allow one to identify

systematically important scaling and non-scaling characteristics of the application domain that

may be missed if no systematic technique is applied. Validating this hypothesis requires evidence

that the technique unveiled scaling and non-scaling assumptions on application domain character-

istics that are likely to have been overlooked otherwise. A limited comparison of this model can

be done against the original requirements specification document and standard KAOS goal model.

The evidence provided by the case study is as following:

• The specification of scaling and non-scaling characteristics of the IEF’s environment speci-

fied in domain assumptions. Assumption 7.1 is an example of a scaling assumption. Goal

7.4 is an example of a scalability goal that relies on this assumption;

• A set of 13 application domain characteristics that may affect the satisfaction of the IEF

goals, uncovered by the technique in the portion of the goal model described in this chapter.

These characteristics and the required level of goal satisfaction with respect to them have

been overlooked in the original set of business requirements for the IEF and in the standard

KAOS goal model. They are: number of transactions in a batch, number of distinct business entities

in a batch, number of transactions per second, number of distinct business entities per second, number

of transactions in testing data, number of business entities in testing data, number of fraudulent patterns,

number of new fraudulent patterns on any given day, size of fraudulent patterns, size of transactions, size

of business entities, size of alerts, and number of case-worthy alerts.

The scaling domain assumptions have been uncovered by iterating through all the scalability ob-

stacles in the goal model and applying the tactic introduce scaling assumption to the ones that were

caused by a unbounded range of some application domain characteristic; which demonstrates the

systematic nature of our technique.

In addition to the ranges of application domain characteristics, the quality requirements and their

varying levels of goal satisfaction had been almost completely overlooked in the original business

requirements specification for the system. The comparisons used to validate this hypothesis have

their limitations, as discussed in Section 7.5.6. We next use rational argumentation to complement

the evidence presented above:

The original requirements specification document was built without a systematic technique, yet

it had been approved to drive the design and implementation of the system. Our comparison,

therefore, does demonstrate that application domain characteristics have been overlooked. Ad-

ditionally, in the standard KAOS model, goals such as Achieve [Batch Processed Quickly], Achieve

[Incoming Transactions Stored] and Achieve [Alerts investigated and acted upon quickly] did not identify

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 165

the ranges of application domain characteristics that determined their load. Such an omission is

not uncommon in goal models published in the computing literature. Take for example, the goal

Achieve [Ambulance Intervention] (Goal 2.1, in Chapter 2) published for the London Ambulance Ser-

vice (Letier and van Lamsweerde, 2004). This goal states that for every urgent call reporting an

incident, an ambulance must arrive at the incident scene within 14 minutes, but does not state the

number of simultaneous incidents that could occur at any given time, neither whether the level of

satisfaction of this goal is allowed to vary with the number of simultaneous incidents.

We therefore argue that both comparisons, although limited, can be used as evidence to validate

Hypothesis H.3.2.

Validation of hypothesis H.3.3: This hypothesis states that the technique should allow one to identify

systematically a set of scalability risks with respect to all the goals and expectations in the model,

some of which may be missed if no systematic technique is applied, and to link each scalability

risk to the system goals it may impact. Validating this hypothesis requires evidence that all re-

quirements and expectations in the goal model have been systematically examined for scalability

obstacles, and that paths have been defined between the scalability obstacles and all goals they

may affect.

The evidence provided by the case study is as following:

• The set of scalability obstacles listed in Tables 7.3 and 7.4, representing the risks associated

with the satisfaction of scalability goals. Figures 7.13 and 7.15 are examples of scalabil-

ity obstacles in the IEF. This set is considered comprehensive as it was obtained by iter-

ating through all requirements and expectations associated with each agent in the model,

as demonstrated in Section 7.5.5. These obstacles have been completely overlooked in the

IEF’s original requirements specification and in the standard goal model;

• The obstruction and goal refinement links that can be followed upwards to demonstrate the

impact of the scalability obstacles in the system goals. For example, the obstacle Batch Size

Exceeds Alert Generator Processing Speed obstructs not only the goal Achieve [Batch Processed

Quickly], but also higher level goals such as Achieve [Transaction Matching Fraudulent Patterns

Alerted], Achieve [Fraudulent Transactions Detected and Acted Upon], and Maintain [Banks Reputation].

The set of scalability obstacles was uncovered by iterating through all leaf quality goals in the

model, and creating an obstacle to any goal that could not be satisfied because the agent responsible

for that goal may not have sufficient capacity to support the load imposed on it. This iteration

demonstrates the systematic nature of our technique.

As with the previous hypothesis, the comparisons used have their limitations. Rational argumen-

tation complements the above evidence:

In the standard KAOS goal model produced in Step 1, the omission of application domain ranges

implies a potentially infinite load and, consequently, (unrevealed) scalability obstacles. In order

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 166

to demonstrate that such omission is not uncommon, we return to the London Ambulance Service

example. The goal Achieve [Ambulance Intervention] is impossible to satisfy without some bound on

the number of simultaneous incidents that could occur at any given time. As another example, take

a goal-obstacle analysis for this same system (van Lamsweerde and Letier, 2000). In that work,

the authors did not identify scalability obstacles, despite the fact that such obstacles had occurred

in the real system and contributed to its failures. Consider the goal MobOrderSentToKnownStation

requiring a mobilization order to be sent over a PSTN line to the station at which an allocated

ambulance is waiting. We believe that our techniques would have identified the scalability obstacle

Number of Mobilization Orders to be Sent Exceeds PSTN Lines Available, whereas the technique described

by Lamsweerde and Letier only identified the more general obstacle MobOrderNotSentToKnownSta-

tion (van Lamsweerde and Letier, 2000).

The study therefore validates Hypothesis H.3.3.

Validation of hypothesis H.3.4: This hypothesis states that the technique should allow one to explore

a wide range of alternative ways to deal with scalability risks systematically, and envision solu-

tions that may be missed if no systematic technique is applied. Validating this hypothesis requires

evidence that scalability obstacles have been systematically mitigated with the support of the reso-

lution tactics described in Chapter 5, resulting in a range of non-obvious alternative resolution for

scalability obstacles.

The evidence provided by the case study is:

• The set of obstacle resolution tactics described in Section 7.5.5. For example, 12 alternative

resolutions for the obstacle Batch Size Exceeds Alert Generator Processing Speed were generated

by iterating through the catalog of scalability resolution tactics and checking whether each

of them could be instantiated for the scalability obstacle at hand.

This iteration through all the resolution tactics the catalog for each obstacle shows the systematic

nature of our technique. By doing so, we also have generated more creative alternatives than

simply increasing the capacity of the Alert Generator. One of the resolutions that had not been

considered by Searchspace resulted from the application of the tactic Limit goal load according to

fixed agent capacity, in which the IEF receives transactions continuously from the Bank System and

accumulate them in batches, never allowing the batch to grow over the maximum expected batch

size the Alert Generator can handle.

The study therefore validates Hypothesis H.3.4.

Validation of hypothesis H.3.5: This hypothesis states that the method in Chapter 6 should allow one to

derive systematically, from a goal model, a set of variables and functions for a scalability analysis.

Validating this hypothesis requires evidence of the derivation of variables representing characteris-

tics of the application domain and system design, of measurable system qualities, and of functions

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 167

representing the levels of satisfaction of goals under the variation of some of these variables. A

limited comparison of these variables and functions can be done against the ones provided by the

stakeholder for the first two case studies.

The evidence provided by the case study is:

• The instantiation of variables and functions for two kinds of scalability analysis, one con-

cerned with the scaling trend in the processing time of transactions and another looking at

the IEF capacity for storing an increasing amount of data;

• A set of variables and functions that have been overlooked or modeled incorrectly on the

previous two case studies. For example, the stakeholder overlooked the number and type of

fraudulent patterns, which also impacts the processing time of a transactional batch. Differ-

ences can also be found in the function for the batch processing time. In the first two case

studies the preference stated that the higher the throughput, the better. This study, however,

has shown that stakeholders ultimately are not interested in achieving the highest throughput

possible. Instead, what they really want is to ensure that a transactional batch is processed

within a given time window, as represented by the objective functions in the resulting goal

graph.

The variables and functions have been selected by considering, one-by-one, all the goals, scaling

assumptions and agents related to the two scalability concerns, which demonstrates the systematic

nature of our technique. Nevertheless, as is discussed in Section 7.5.6, the selection of system

design variables was performed in an ad-hoc manner. Therefore, our study partially validates

Hypothesis H.3.5.

7.5.6 Evaluation

Critical evaluation of this study is divided into three parts: (1) threats to validity, (2) difficulties of the

elaboration of scalability requirements and its benefits to Searchspace, and (3) evaluation of the KAOS

extensions for elaborating scalability requirements.

Threats to Validity

The study just described has some limitations. The requirements engineering technique was applied by

the PhD candidate, who may be biased to produce a conventional KAOS model with obstacles that can

be mitigated by the proposed obstacle resolution tactics. Having the PhD candidate playing the role

of analyst represents a threat to the construct and external validity of our study. Ideally, the standard

goal model would have been produced by a requirements analyst experienced with KAOS, but unaware

of our extensions to the technique or purpose of the study. Unfortunately, given the complexity of the

task it was not possible to have a KAOS expert to produce a goal model of the IEF prior to the study.

Therefore, although the PhD candidate did her best to produce a model with a similar style to the ones

commonly found in the literature, there is no guarantee that such a model is not biased. This threat

is partially reduced by a smaller study of the London Ambulance Service (LAS) system described in

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 168

Section 7.6.2. In this study, scalability obstacles elaborated with our technique are compared with a

previously published set of obstacles resulted from the standard KAOS technique (van Lamsweerde and

Letier, 2000). All scalability obstacles had been over overlooked in the original set of obstacles, and one

of them (Number of Mobilization Orders to be Sent Exceeds PSTN Lines Available) indeed occurred in the real

system and contributed to its failures.

Another threat to the external validity of our study is that, being an one-off study, it does not guar-

antee that our resolution tactics can be applied to real-world systems from different domains. However,

due to time constraints it was infeasible to repeat the study in real-world systems from different domains.

In order to address this problem, Section 7.6.2 illustrates scalability obstacles and resolution tactics on

other systems described in the literature and in the industry interviews.

The case study also performed a few comparisons between the goal model resulted from our tech-

niques and the original set of requirements for the IEF. Such a comparison may be seen as unfair, as

the original IEF requirements were elaborated without a systematic requirements engineering technique.

This is a threat to the construct validity of the study. However, despite being limited, the comparison is

interesting because it shows the benefits of using our technique against the requirements that otherwise

would have driven the design of a real-world system.

Finally, the exercise has identified a number of domain characteristics whose scaling range had not

been previously estimated by Searchspace staff. Although, we have performed some data characteriza-

tion ourselves, we did not have the time to estimate the range of all domain characteristics identified,

which represents a threat to the internal validity of our study. In such cases, we just assumed the scala-

bility obstacles were likely to occur and generated resolutions to them in order to illustrate the tactics.

Difficulties of the Requirements Engineering Exercise and Benefits to Searchspace

As with any requirements engineering exercise, human issues were a key contributor to the difficulties

we experienced in applying KAOS to elaborate the scalability requirements of the IEF. Knowledge

was spread across individuals, and their assumptions were a mix of “common sense” with peoples’

experiences on different projects, documents were contradictory and incomplete, and many goals had no

clear rationale other than being a reflection of older IEF versions. Some data characterization had been

performed, but these were isolated attempts, whose results had not been widely circulated. Although our

technique helps to identify what scalability-related information needs to be elicited during requirements

engineering, we found the elicitation of measurable requirements particularly difficult. The varying

characteristics of the customer base led to different assumptions to be considered and people found it

difficult to provide definite estimates, forcing us on occasion to perform our own data characterization.

The requirements engineering exercise has been valuable to Searchspace. Project managers easily

understood and accepted the basic concepts of KAOS and were particularly impressed by the impact

of distinct projected values on leaf goals and the revelation of contradictory requirements. In fact, we

modeled the new version of the IEF by invitation of the project manager, who had seen partial goal

models we had produced previously for the IEF. KAOS provided rationale for low-level requirements

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 169

and, in particular, it allowed a more precise and justifiable characterization of scaling ranges and objec-

tive functions. Some scaling bounds happened to be more flexible than originally stated, while others

were found to be more rigid. One of the tools that enabled us to elaborate goals and estimate bounds

more precisely was to get an explicit statement of all underlying assumptions about the application

domain. The final model contained a number of goals that had been overlooked in Searchspace’s initial

requirements specification and replaced others that were idealized on that specification. The approach

also helped to document and resolve the various stakeholder disagreements. Goal-obstacle analysis

showed possible threats, and not only scalability related ones. Searchspace has used the goal model we

produced to support the development of the new version of the IEF. Furthermore, the model can be used

by them to assist a number of other activities, such as scalability analysis, derivation of test cases, and

hardware sizing.

Evaluation of the KAOS Extensions for Elaborating Scalability Requirements

With respect to the technique itself, we have faced some difficulties in attempting to apply it to a real-

world system. All these limitations are considered as future work in Chapter 8.

Modeling disagreements and uncertainties: The most significant difficulty in the process involved

reaching agreements on the projected values for domain quantities in the scaling assumptions.

The reason for this is that there are many uncertainties about future values, and different people

had different opinions about them. The identification of scalability obstacles and description of

scaling assumptions helped us uncover these disagreements (some of which had remain tacit until

then), but we lacked a systematic approach to resolve them. Notably, the KAOS modeling lan-

guage did not allow us to model disagreement about the content of a scaling assumption (other

than by specifying separate assumptions which is an unsatisfactory solution), nor to model and

reason about uncertainties concerning such assumptions. Such support might help the elicitation,

negotiation, and analysis of scaling assumptions and scalability goals.

Likelihood of scalability obstacles: The capacity of the agent under development is typically unknown

during requirements engineering; a purpose of the requirements engineering process is indeed to

define what the required capacity of this agent should be. The assessment of the likelihood of

scalability obstacles affecting this agent should therefore involve identifying how the obstacles’

likelihood varies with the agent’s required capacity. Such information together with the obstacle

criticality and the costs associated with each alternative could then be used to decide which capac-

ity should be deployed. Quantitative techniques such as those of Letier and Lamsweerde might

help, but they require significant modeling effort (Letier and van Lamsweerde, 2004).

Context-sensitive agent load analysis: Defining the total load imposed by goals on an agent as the sum

of the load imposed by the individual goals is a crude approximation. In reality, multiple goals

will not all mobilize the agent’s resource at the same time. In the IEF, goals dealing with alerts

generation may mobilize the system’s processing power during the night, whereas goals dealing

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 170

with displaying the resulting alerts to fraud investigators mobilize the processing power during

the day. Techniques are required to perform a quantitative agent load analysis that takes into

consideration when goals consume the agents’ capacity.

Selection of resolution strategy: Another important difficulty concerns the selection of preferred ob-

stacle resolution strategies from among a set of alternatives. The systematic identification of scal-

ability obstacles generated a wide range of meaningful alternative ways to improve the system

scalability, which ranged from simplifying the logic of the alert generation rules to increasing

hardware capacity. Alternative solutions have different short-term and long-term costs, as well as

different impact on goal satisfaction (such as fraud detection speed and the rate of missed/false

alerts). A quantitative cost/benefit analysis would be useful.

Load imposed by the system design: Some of the load imposed on agents is not captured by the goal

model because it is determined by the system design. Take, for example, the storage capac-

ity of the agent Alert Generator. In Figure 7.13, the goals using the Alert Generator’s storage ca-

pacity are Achieve[Transactions Stored for a Limited Time], Achieve[Alerts Stored for a Limited Time] and

Achieve[Fraudulent Patterns Stored]. However, as described earlier, developers intend to implement

fraudulent patterns as rules that are checked against incoming transactions. Rules may depend on

each other and, for this reason, rules results are stored, also consuming some of the Alert Genera-

tor’s storage capacity. As Achieve[Rules Results Stored] is not a goal in the IEF goal model, it is not

considered in the agent load analysis.

Adhoc selection of system design variables and diagnosis metrics: Recall that the scalability goal-

obstacle analysis of a preexisting KAOS goal model can be performed at any point of the de-

velopment lifecycle. In this case study, design knowledge was used to instantiate independent

system design variables, albeit in an ad hoc manner. Furthermore, Searchspace developers showed

interest in collecting standard metrics (e.g., memory usage, disk usage, disk I/O, network I/O)

even when these metrics were not directly related to the quality variables and objective functions

of the goals in question. They were also interested in collecting metrics on intermediate steps to

satisfy a goal. For example, the goal Achieve [Transactions Processed Quickly] was described in terms

of the quality variable processingTime; however, developers were interested in measuring the time

spent in the different processing stages, such as the transaction parsing time, the rule execution

time, the historical data retrieval time and so forth. Developers wished to collect these metrics

for the diagnosis of eventual problems, such as the identification of bottlenecks if the targets for

processing time were not achieved.

The scalability framework is still lacking systematic techniques for identifying independent system

design variables and dependent “diagnosis” variables.

The experience also demonstrated some benefits of the techniques in a real-world setting:

KAOS advantages for scalability: Some of the well-known advantages of KAOS are particularly use-

ful for elaborating scalability requirements. These include: uncovering assumptions about the ap-

7.5. Case Study 3: Elaborating the Scalability Requirements of the IEF 171

plication domain, providing rationale for goals, providing traceability for changing assumptions on

application domain quantities, assigning responsibilities, and providing measurable quality vari-

ables and objective functions. These advantages have been discussed in Chapter 5.

Scalability goal-obstacle analysis: Goal-obstacle analysis has proved to be a systematic and intuitive

way to reason about scalability during the early stages of software development, and to guide the

specification of scaling assumptions and scalability goals. Furthermore, the study has demon-

strated the application of the scalability obstacle resolution tactics in a real-world setting. In

particular, the technique has the following values:

• Comprehensive set of scalability obstacles: this is guaranteed by the technique, which sys-

tematically examines all requirements and expectations associated with each system agent,

searching for scalability obstacles.

• Identification of non-obvious scaling characteristics: The systematic specification of scal-

ability obstacles led to the identification of several domain quantities that had been over-

looked in our standard goal model. The specification of scaling assumptions for domain

quantities led stakeholders to reconsider some of the initially envisaged requirements for

the system, with some requirements being made weaker than initially specified and others

stronger.

• Accurate model of impact for scalability obstacles: The impact of scalability obstacles on

the system goals can be obtained by following upwards the obstruction and goal refinement

links in the resulting goal model.

• Range of alternative resolution for scalability obstacles: A catalog of resolution tactics

encodes design ideas into a coherent body of knowledge to make them more accessible and

easy to apply, also allowing the exploration of a range of possible alternative resolutions to a

problem.

Specifying scaling ranges in the application domain: In our previous experience with KAOS, we ob-

served that there was a lack of systematic techniques for specifying scaling ranges in application

domain characteristics. We also noticed that KAOS had no taxonomy for application domain

assumptions or means to express assumptions that varied over time. With the case study, we

showed that scaling assumptions clearly expressed all the relevant aspects of these ranges, as well

as showed their impact on different IEF goals.

Modeling hardware-based scaling strategies: Another question raised in our first experience with

KAOS was whether to model hardware-based scaling strategies11 in goal trees. Our concern was

that we would be inappropriately crossing the border between requirements and design in the goal

model. We now see such strategies as being resolutions to scalability obstacles, which can be

11These are strategies where the system hardware capacity is increased to deal with the variation of quantities in the application

domain (Weinstock and Goodenough, 2006).

7.6. Further Examples and Informal Study 172

expressed at the requirements level. For example, the obstacle Batch Size Exceeds Alert Generator

Processing Speed can be resolved by maintaining the alert generator processing speed above what

is needed to process the predicted maximal batch size. At design time, this tactic could be imple-

mented either by increasing the hardware power or the number of machines in a cluster.

Assessing the combined load of goals on agents: Extending agent responsibility diagrams with scala-

bility obstacles provided a lightweight assessment of the combined effect of the load imposed by

different goals on a single agent. For example, the Alert Generator agent needs sufficient storage

space to hold incoming transactions, alerts and fraudulent patterns.

7.5.7 Concluding Remarks

This section has described a study to evaluate the techniques for elaborating scalability requirements

presented in Chapter 5 against a real-world system. The main points are:

• The study demonstrates the suitability of the technique to specify scalability requirements in goal

models, and to derive variables and functions to be used in a scalability analysis.

• The study involved the PhD candidate and Searchspace staff. The study combined a number of

activities, such as interviews, brainstorming, data characterization, and documents review to build

the goal model.

• The study elaborated the requirements of the IEF, dealing with many of the complexities normally

present in the real-world systems. For this reason, evaluation of hypotheses are a mix of demon-

strating the application of the technique, comparison against the original IEF requirements and

early case studies, and rational argumentation.

The case study contributed to the research by providing validation of the hypothesis, which demon-

strates the suitability of our requirements engineering technique for a large real-world system. It has also

benefited Searchspace, by identifying requirements and scaling characteristics that had been overlooked,

replacing requirements that had been idealized, and highlighting inconsistencies and contradictions in

Searchspace’s original requirements specification documents.

The case study has also highlighted a number of shortcomings on our technique, such as the mod-

eling of uncertainties in a goal model, the need for a quantitative assessment of scalability obstacles, and

the need for systematic selection among scalability resolution strategies. All these shortcomings have

been set as future work.

7.6 Further Examples and Informal Study
This section contains a number of smaller examples taken from the computing literature and from the

industry interviews. These examples complement the cases studies, illustrating the application of the

concepts and techniques described in this thesis to systems in a variety of application domains and with

different designs.

7.6. Further Examples and Informal Study 173

7.6.1 Examples of Instantiating Framework Elements

In Chapter 4, scalability concerns from the Google search engine were recast according to the scalability

framework elements. Other examples taken from the computing literature and industry interviews are

given below. We describe each example in terms of quality goals, scalability question, independent and

dependent variables, and preference functions, when possible. It is important to note that the level of

detail with which the framework elements are instantiated is limited by the information available in the

source documents from which the examples are drawn or from the stakeholders. Sometimes, assumptions

had to be made.

Furthermore, although we argue that the instantiation of the scalability framework would have

helped readers to understand what is being claimed by the authors of the papers, the main objective of

this section is to show that different scalability concerns can be clearly and precisely described according

the elements of our scalability framework.

Recast Examples from the Computing Literature

Distributed Systems

Jogalekar and Woodside address the question of a scalability measure for distributed heterogeneous

service systems (Jogalekar and Woodside, 1997). They created a metric ψ that measures the return on

investment for increasing the traffic handling capacity of the system, or for improved QoS. According to

the authors, a distributed service system is considered scalable if ψ ≥ 1.

We recast two examples from their paper according to the scalability framework. The first refers

to quality goals and characteristics related to the scalability of distributed systems in general. The au-

thors state that distributed systems normally aim to maximize throughput for a fixed response time and,

conversely, minimize the response time for a fixed throughput. These objectives are instantiated in the

scalability framework as the performance goals Maximize [Throughput for fixed response time] and Minimize

[Response time for fixed throughput]. Another concern of the authors is whether the system can maintain or

increase the power per invested dollar as it scales, where power is defined as the ratio between through-

put and response time. This objective is represented in the scalability framework by the cost goal Avoid

[Reducing the power per invested dollar]. In KAOS, these goals would be measured by the quality variables

throughput, response time and cost in dollar. These variables are used to calculate the metric ψ, whose defi-

nition encompass the three goals above. The authors also identify the number of active clients as a scaling

characteristic of the application domain that might affect the satisfaction of the above goals. In addition,

they enumerate a number of characteristics of the system design that contribute to the satisfaction of

these goals: the number of replicated databases, the number of replicated servers, the CPU speed, the disk speed,

the communication links speed, the collocation/distribution of software tasks, the priority scheduling, the trading al-

gorithm, and the name /directory service algorithm. The scalability framework is, therefore, instantiated as

follows:

7.6. Further Examples and Informal Study 174

Quality goals:

Maximize [Throughput for Fixed Response Time]

Minimize [Response Time for Fixed Throughput]

Avoid [Reducing the Power per Invested Dollar]

Independent variables:

Scaling variables:

Number of active clients

Number of replicated databases

Number of replicated servers

CPU speed

Disk speed

Communication links speed

Non-scaling variables:

Collocation/distribution of software tasks

Priority scheduling

Trading algorithm

Name/directory service algorithm

Dependent variables:

Throughput: t

Response time: rt

Cost in dollars: c

Preference function:

Any system whose ψ ≥ 1 is equally preferred, while systems with ψ < 1 are unacceptable.

pref(ψ) =

 1, if ψ ≥ 1

-10,000, otherwise.

This example is interesting because it represents an instantiation of the scalability framework for

distributed systems in general. Such instantiation could be included on a catalog to guide analysts in the

instantiation of the scalability framework for their own systems.

A second example comes from a connection management system described in the paper. The system

is responsible for allocating and deallocating bandwidth, as well as setting up and tearing down the

connections to previously allocated resources. The authors use the metric ψ to analyze two scalability

strategies to maximize the number of active clients (with a minimum target of 30 times the number of

active clients supported by the system-as-is): (A) replacing all CPUs with faster ones, and (B) replacing

all CPUs with the exception of the one on which the database is executing. This objective is instantiated

in the scalability framework by the performance goal Maximize[Number of active clients supported by the

system]. Whatever strategy is adopted, the system must not reduce the power per invested dollar, must

maximize throughput for a fixed response time, and must minimize response time for a fixed throughput.

In other words, ψ must be greater than 1. These objectives are represented in the scalability framework by

7.6. Further Examples and Informal Study 175

the goals Avoid[Reducing power per invested dollar], Maximize [Throughput for fixed response time] and Minimize

[Response time for fixed throughput]. The authors consider cost directly proportional to the CPU speed.

Therefore, the characteristics of the application domain and system design that are expected to affect the

satisfaction of the above goals are the number of active clients, the CPU speed, and the strategies ‘all machines’

vs ‘all but the database machine’. The scalability framework is therefore instantiated as follows:

Question:

Can the system increase the number of active clients by proportionally increasing the CPU

speed of (A) all machines or (B) all but the database machine?

Quality goals:

Maximize [Number of Active Clients Supported by the System]

Maximize [Throughput for Fixed Response Time]

Minimize [Response Time for Fixed Throughput]

Avoid[Reducing Power per Invested Dollar]

Independent variables:

Scaling variables:

Number of active clients (at least 30 times the number of active clients of the system-as-is)

CPU speed

Non-scaling variables:

‘All machines’ vs ‘All but the database machine’ strategy

Dependent variables:

Throughput

Response time

Cost in dollars

Preference function:

Any system whose ψ ≥ 1 is equally preferred, while systems with ψ < 1 are unacceptable.

pref(ψ) =

 1, if ψ ≥ 1

-10,000, otherwise.

By instantiating the scalability framework for the examples above, we believe to have presented

information that was presented in a free-form discussion in the paper in a more concise, clear and precise

form. We therefore speculate that it becomes clearer to the reader which goals and characteristics of the

application domain and system design are relevant to the scalability of distributed systems and of the

connection management system described in the paper.

Commercial Server-based Software

Masticola and Bondi discuss a large-scale commercial server-based software product (Masticola

et al., 2005). The system, denoted by LSCSP, is partitioned into concurrent processes that communicate

7.6. Further Examples and Informal Study 176

using socket-based transmission of SOAP messages. The authors describe an effort to develop another

version of the system based on Java technology. Among the objectives of the new version were (1) to

increase the number of users by one order of magnitude on a “standard server”, (2) to increase the total

number of users by adding more servers, and (3) to support failover between servers with minimum

interruption of service. Objective (1) means that the new version would have to support a higher number

of users while maintaining resource usage within the capacity of a “standard server”. Objective (2)

is concerned with the effectiveness of their chosen scalability strategy for achieving the satisfaction

of the system goals for the expected number of users. Objective (3) should also be considered in a

scalability analysis because failover operations would require cross-server request handling and data

replication, which consumes resources that would be otherwise available to support user operations.

These objectives are instantiated in the scalability framework by the goals Increase [Number of Users on

a “Standard Server”], Increase [Total Number of Users Supported by the System], and Minimize [Interruption of

Service in Case of Failover]. The authors declared that, in order to achieve these objectives, the LSCSP’s

modules would have to be mapped into Java containers of various types. They identified at least 10

possible process-to-container mappings. Additionally, within each mapping, several technology options

were possible for communications between pair of modules. The authors list 7 communication technologies

among the ones considered. The authors were also interested on the use of active resources (such as

processors, bandwidth and I/O devices), on the use of passive resources (such as memory) and the on latency

for inter-module communication). Finally, in addition to the scaling in the number of users, the authors

were also concerned with the scaling of the message length sent between system’s modules.

Despite the many aspects the authors claim to consider in their scalability analysis, the description

of the problem is limited. For example, it does not describe the system’s goals for the response time

of user requests, or the desired latency for inter-module communication. There is also no discussion on

whether the target satisfaction of these goals are allowed to vary with the scaling in the number of users

and message length. The authors also did not mention any cost goal limiting the number of servers that

can be added to support more users. Yet, the information available in the paper can be used to instantiate

the scalability framework as follows:

Questions:

1. Can the system increase, by one order of magnitude, the number of users supported on each

“standard server” by changing the implementation from C# to Java?

2. Can the system increase the total number of users through the use of collaborating servers? 12

Quality goal:

Increase [Total Number of Users Supported by the System]

Increase [Number of Users on a “Standard Server”]

Minimize [Interruption of Service in Case of Failover]

Independent variables:

Scaling variables:

12The paper does not indicate the desired total number of users or any goal that will limit the number of collaborating servers.

7.6. Further Examples and Informal Study 177

Number of users per ‘standard server’ (at least 10 times the number of users on the system-as-is)

Average message length

Number of collaborating servers

Non-scaling variables:

Choice of server implementation language (C# vs. Java)

Choice of process-to-container mapping

Choice of communication technology between modules

Dependent variables:

Processors utilization

Bandwidth usage

I/O devices usage

Memory usage

Disk usage

Interruption time

Preference functions: 13 A system design that minimizes interruption time is preferred over the others,

while any system whose interruption time exceeds a given threshold is considered unacceptable.:

pref(interrupt t) =

 0, if interrupt t > max t
max t− interrupt t

max t
, otherwise.

The authors use scenarios, experimentation, published study data, and performance data from baseline

systems to accomplish the scalability analysis. They build a spreadsheet-based model for determining

whether the non-functional requirements are likely to be simultaneously met. The authors claim that

the model contains 23 different parameters. However, it is not clear from the paper which parameters

are used or which non-functional requirements are expected to be met. We speculate that by describing

the system goals, application domain characteristics and design alternatives according to the scalability

framework, it would have been clearer to readers what the authors have accomplished.

Web-based Shopping System

Arlitt et al. present a workload analysis for a large Web-based shopping system (Arlitt et al., 2001).

The system includes Web servers, application servers, database servers, load balancers, and firewall

appliances. The objectives of their study are to assess the system’s scalability with respect to response

time for HTTP requests and to support a capacity planning exercise. For this reason, the authors are

particularly interested in analyzing the system’s ability to meet its goals at peak load. The authors were

also interested in verifying whether simply increasing the number of application servers handling HTTP

13The preference function are limited to the information available in the paper. There should be other preferences (e.g., response

time, message latency, costs).

7.6. Further Examples and Informal Study 178

requests (which they refer to as “horizontal scalability”) was a cost-effective solution.

The system is expected to provide a pleasurable shopping experience to customers. This should be

achieved through the provision of a personalized service to customers, and by avoiding poor site respon-

siveness. These objectives are conflicting, as a personalized service requires the dynamic generation of

HTML resources, increasing the request response time. They are represented in the scalability frame-

work by the goals Maintain[Personalized Service to Customers] and Achieve[Request Responded quickly]. These

goals are not described in a measurable way by the authors of the paper. We, therefore, are unable to

derive preference functions for this example.

Providing a personalized service requires the redirection of requests to the application server, the

creation of sessions, and the dynamic allocation of resources; all of which increase the demand for CPU.

CPU utilization is therefore the resource of greatest concern to the authors of the paper. Other measures of

interest are peak disk utilization and physical memory utilization. These characteristics, together with response

time, are represented in our framework as dependent variables.

Response time and resource usage are influenced by a number of factors: the type of customer issuing

requests (users and robots), the type of request (cacheable, non-cacheable and search), the number of active

sessions (containing sequence of requests from the same customer), the number of concurrent requests (from

multiple sessions), the type of resources being requested (static and dynamic), the number of references per

resources, and the number of application servers in the system. All these characteristics are represented in

our framework as independent variables. The size of the request and the size of the response header and body

were also mentioned as characteristics affecting the response time and resource usage, but they had to be

left out of the scalability analysis because the authors did not have access to data to characterize them.

They are, therefore, nuisance variables in the scalability framework.

We next show the instantiation of the framework for the system just described:

Questions:

1. Can the system meet its responsiveness goal for HTTP requests when the number of concurrent

requests achieves its peak?

2. Is “horizontal scalability” a cost-effective strategy for supporting an increasing number of

concurrent requests?

Quality goal:

Maintain[Personalized Service to Customers]

Achieve [Request Responded Quickly]

Independent variables:

Scaling variables:

Number of concurrent requests

Number of active sessions

Number of resources

Number of references to resources

Number of servers

7.6. Further Examples and Informal Study 179

Non-scaling variables:

Type of customer (users and robots)

Type of request (cacheable, non-cacheable and search)

Type of resources (static and dynamic)

Nuisance variables:

Size of request

Size of response headers of bodies

Dependent variables:

CPU utilization

Response time

In order to answer the above questions, the authors perform a number of workload characterizations,

and analyze the impact of different classes of requests and users on the system’s response time and CPU

utilization. As a result of such analyses, strategies for achieving scalability with respect to response time

are suggested, including caching mechanisms for dynamically generated resources and relaxing the QoS

at peak times. Simply adding more servers was considered inadequate due to the significant impact of

resource type and due to the workload mix in the number of server needed for meeting the system’s

goals.

We speculate that, in this example, the scalability framework also would have helped the authors to

explain their scalability study concisely, and perhaps would have highlighted some missing information

(e.g., What are the cost goals of the system? How is cost-effectiveness measured?). In fact, given the

different analyses they performed for the study, separate framework instantiations would have made

clear to the readers which were the relevant characteristics and metrics for each analysis.

Recast Examples from Industry Interviews

We next briefly describe scalability problems faced by real companies, and show how the elements of

the scalability framework can be instantiated to describe these problems clearly and concisely. Naturally,

we cannot claim that had the scalability framework been used, these problems would have been avoided.

However, our framework encourages a proactive approach to scalability, where the system’s goals are

systematically examined for the identification and resolution of scalability risks. Given that nearly all

interviewed companies had paid little or none attention to scalability requirements, they would probably

have benefited from our framework.

As in the previous section, the instantiations of the scalability framework are limited to the infor-

mation provided by the interviewees.

ERP System

This case reflects a company that developed bespoken ERP systems to customers in Brazil dur-

7.6. Further Examples and Informal Study 180

ing the 90’s (see “ERP System” in Appendix B). The systems were divided in Online Transaction

Process (OLTP) and Online Analytical Process (OLAP) modules. The architecture was a simple SQL

client that connected directly to an Oracle database. The company always started the development from

the OLTP module, and normally faced problems when adding OLAP support. Furthermore, the com-

pany’s customer base experienced rapid growth over the years, which led to a move from bespoken

systems to a generic ERP product to be deployed at different customers. That move created many scal-

ability problems. Attempts to scale exhausted the system resources (CPU, disk, memory, and network

bandwidth) and took unacceptable response times. Resource usage and response time were influenced by

a number of factors: the number of users concurrently logged into the system, the type of users (humans and ex-

ternal systems), the number of concurrent queries, and the type of queries (transactional and analytic). Also,

developers relied on the implicit assumption that scalability could be gained by more powerful hardware.

Validating such a strategy required a careful scalability analysis. Had this analysis been performed, the

instantiation of the framework variables would have been as follows:

Questions:

Can the system maintain acceptable response times for a growing number of users and

queries, by varying the power of its infrastructure?

Quality goal:

Maintain [Response Time for Queries]

Independent variables:

Scaling variables:

Number of concurrent users (10 to 100)

Number of concurrent queries (up to 1,000 per day)

CPU processing speed

RAM size

Disk size

Non-scaling variables:

Type of users (humans and external systems)

Type of queries (transactional and analytical)

Dependent variables:

Average/Maximum CPU utilization

Average/Maximum Disk usage

Average/Maximum Memory usage

Average/Maximum Network bandwidth usage

Average Response time

Based of this instantiation, one could examine how the growing number of users affects the satis-

faction of the performance goal Maintain[Response Time for Queries]. Such an analysis would characterize

the workload based on the distribution of types of users and queries, and examine whether varying the

power of the infrastructure (CPU processing speed, RAM, and disk sizes) would bring the expected

7.6. Further Examples and Informal Study 181

benefits. This analysis would probably have to take into consideration a cost goal not specified during

the interview.

Field Services Systems

This example recasts a scalability problem faced by a company that specializes in building software

to manage complex field service operations (see “Field Services Systems” in Appendix B). Field services

systems schedule jobs for field workers, dispatch workers to specific locations and provide up-to-date

and accurate information to workers.

Each system has, on average, over one hundred users (workers), each receiving five to ten jobs per

day through a mobile device. Each device downloads roughly one thousand pages from the server at

start up, and another two hundred pages during the day. In addition, the system constantly receives global

positioning system (GPS) information from the mobile devices and performs automatic synchronization. All

these messages consume bandwidth and may create queues waiting for processing in the system’s backend

server.

Despite the requirements set during the sales negotiation process, the company often faces scala-

bility problems after the system has been put into production—usually because the amount of data (i.e.

number and size of messages) received by the system exceeds the company’s expectations. More data

means more bandwidth usage, longer message processing times, increased queue size and longer end-user

waiting times. Devices are then forced to reconnect, spending more bandwidth and incurring higher costs

to the customer.

The instantiation of the framework variables reflecting this problem would be as follows:

Questions:

Can the system maintain acceptable response times and bandwidth costs for a growing number of

messages and message sizes?

Quality goal:

Maintain [End-user Waiting Time]

Minimize [Monthly Bandwidth Costs]

Independent variables:

Scaling variables:

Number of concurrent users

Number of jobs per day

Number of pages at startup

Size of pages at startup

Number of pages during the day

Size of pages during the day

Number of GPS location messages

Non-scaling variables:

7.6. Further Examples and Informal Study 182

Size of GPS location messages

Dependent variables:

Average/Maximum network bandwidth cost

Average end-user waiting time

Average/Maximum network bandwidth usage

Average queue size

Average queue waiting time

Average message processing time

This instantiation could be used to guide an analysis of the impact of the scaling characteristics

(users, jobs, pages and GPS location messages) on the satisfaction of the goals Maintain[End-user Waiting

Times] and Minimize[Monthly Bandwidth Costs]. Note that, in addition to the qualities of interest (network

bandwidth cost and end-user waiting times), the instantiation of the framework includes other variables

(average queue size, average queue waiting time and average message processing time) that can be used

to explain the values obtained for the qualities of interest.

Message Validator

This case describes a software engine that validates messages against a number of validation rules

(see “Message Validator” in Appendix B). The engine is commercialized as an API, which is used by

customers to build their own systems. Rules are written by customers with a graphical tool. When the

system starts, rules are loaded into the engine, which then waits for messages to validate. During valida-

tion, a message is loaded entirely into memory, so it can be randomly accessed. Rules run independently,

and the engine may hold a number of messages in memory. This design was chosen to satisfy one of the

main goals, providing fast validation of messages.

The engine has been used to build systems for a number of different domains. The number of rules

developed by customers varied greatly. The largest set of rules the system is known to be used for is

2,500. The size of the messages being validated varied between 200KB and 100MB. In addition, the

complexity of the rules (i.e., the logic implemented by rules) and the complexity of the message (i.e., its

structure) also varied. All these factors influence the message validation time.

Recently, the owner of the company has been approached by a customer interested in validating

documents as big as 2GB. The relationship between validation time and document size have been inves-

tigated by the company. The system’s inability to validate large messages is a known scalability issue,

because the machine memory becomes exhausted.

The instantiation of the framework reflecting the scalability concern just described is as follows:

Questions:

Can the system achieve acceptable message validation times for a growing message size?

Quality goal:

Achieve[Message Validated Quickly]

7.6. Further Examples and Informal Study 183

Independent variables:

Scaling variables:

Number of messages per second

Size of messages

Complexity of messages

Number of validation rules

Complexity of the rules

Dependent variables:

Message validation time

Maximum memory usage

Nevertheless, not all aspects represented in the instantiation of the framework above have been

considered in the company’s analysis of the system’s scalability (e.g., complexity of message and rules).

These aspects only appeared during the interview, as we attempted to identify the factors that could

influence the goal Achieve[Message Validated Quickly].

7.6.2 Examples of the Elaboration of Scalability Requirements

We now illustrate the identification of scalability obstacles and possible resolutions for a well known

and widely studied real-world example in the requirements engineering literature, the London Ambu-

lance Service (LAS) system. Other real-world examples of scalability obstacles and their resolution are

described next.

The London Ambulance Service (LAS)

The computer-aided system (CAD) develop for LAS has two main functions: responding to emergency

calls requiring the rapid intervention of an ambulance, and dealing with non-urgent patient journeys.

Its responsibilities include receiving calls, dispatching ambulances based on an understanding of the

nature of the call and the availability of resources, and monitoring the progress of the response to the

call (Finkelstein and Dowell, 1996). This example is primarily based on the Report of the Inquiry Into

the London Ambulance Service (Page et al., 1993) and goal models published in previous works (Letier,

2001; van Lamsweerde and Letier, 2000).

Description of the System

When a 999 or urgent call is received in the Central Ambulance Control (CAC) room, the Control

Assistant (CA) fills in a form with the details of the incident, including the coordinates of the incident lo-

cation. These goals are captured by the portion of the goal model in Figure 7.23. The goal Achieve[Incident

Reported] is refined into two subgoals. The goal Achieve[Emergency Call Taken] describes the goal of answer-

ing an emergency call made by a member of the Public. Calls are taken by Call Assistants with the support

of a Call Handling Software. The goal Achieve[Accurate Incident Call] is satisfied by accurately identifying

the incident location through a Gazetteer and Map Software and encoding this location into the incident

form, a responsibility of the Call Assistant. These subgoals are represented in Figure 7.23 by the nodes

7.6. Further Examples and Informal Study 184

Achieve[Accurate Incident Location] and Achieve[Incident Form Encoded with Incident Location], respectively.

Figure 7.23: LAS incident reported. Adapted from van Lamsweerde and Letier (2000).

Once the form is encoded, available ambulances are allocated optimally according to the incident

location. The allocated ambulance is then mobilized by informing the relevant ambulance station or

the ambulance directly, if it is away from the station. Mobilizing an ambulance at the station (Achieve

[Allocated Ambulance Mobilized at Station]) requires an order to be printed (Achieve [Mobilization Order Printed

at Station]) and an ambulance to be mobilized from that order (Achieve [Ambulance Mobilized from Printed

Mobilization Order]). Printing orders involves sending them to the station printer (Achieve [Mobilization Order

Transmitted to Station Printer]) and printing them (Achieve [Received Mobilization Order Printed]). These goals

are shown in Figure 7.24. Mobilizing an ambulance on the road requires displaying a mobilization

order on the chosen ambulance’s mobile data terminal (Achieve [Mobilization Order Displayed on MDT]) and

then mobilizing the ambulance according to this order (Achieve [Ambulance Mobilized from Order on MDT]).

The former goal is achieved by identifying the mobile data terminal in the allocated ambulance (Achieve

[Accurate Ambulance/MDT Mapping]), sending it a mobilization message (Achieve [Mobilization Order Sent to

Mapped MDT sent to the MDT]), ensuring the message is transmitted (Achieve [Mobilization Order Transmitted

to the MDT]), and displaying the message on the ambulance’s mobile data terminal (Achieve [Received

Allocation Displayed on MDT]). These goals are illustrated by Figure 7.25.

7.6. Further Examples and Informal Study 185

Figure 7.24: LAS ambulance allocated at station. Adapted from Letier (2001).

Figure 7.25: LAS ambulance allocated at road. Adapted from Letier (2001).

7.6. Further Examples and Informal Study 186

Obstacle Identification

As modeled, the goals above do not refer to scaling assumptions on domain quantities. Their load

is therefore unbounded, giving rise to a number of scalability obstacles:

Number of Calls Exceeds Call Assistant Team Capacity: This obstacle may prevent the call assistant

team to take an emergency call in time, and is caused by a larger volume of emergency calls than

the call assistant team can handle, leading to unacceptable ringing times.

Number of Calls Exceeds Call Handling Software Capacity: This obstacle may lead to an ongoing

call to be dropped or a new one not getting through because the volume of emergency calls is

larger than the call handling software can support.

Number of Location Requests Exceeds Gazetteer and Map Software Capacity: This obstacle may

prevent the accurate incident location in time, and is caused by a volume of location requests that

is larger than the gazetteer and map software capacity.

Number of Messages Exceeds Communication Infrastructure Capacity: This obstacle is caused by

an overload of the communication infrastructure capacity, and may prevent messages from being

delivered to MDTs and stations’ printers.

Number of Printing Requests Exceeds Printer Capacity: This obstacle may obstruct reports from

being printed at stations due to overflow of the printer queue, insufficient paper or used-up car-

tridges.

Message Size Exceeds MDT Display Capacity: This obstacle may obstruct mobilization orders from

being shown because the amount of information to be displayed is greater than the MDT can

handle.

None of these obstacles have been identified in a previously published list of obstacle refinements for

the LAS system (Letier, 2001).

Obstacle Assessment

Once the obstacles have been identified, their criticality and likelihood must be assessed. Our illus-

trative example of LAS is based on a few key documents describing the system (Letier, 2001; Finkel-

stein and Dowell, 1996). Since we did not have access to the stakeholder or sufficient information about

the problem domain, we limit this section to exemplify the kinds of considerations to be taken when

assessing two of the identified scalability obstacles:

Number of Calls Exceeds Call Assistant Team Capacity: In order to assess the likelihood of this ob-

stacle, one must understand the nature and volume of incoming calls, as well as the load they

impose on control assistants. For example, do all calls demand the same time from the control

assistant? What is the average time required by each call category? What is the distribution of

calls among these categories? How is the number of calls expected to vary during the day, over the

7.6. Further Examples and Informal Study 187

year, and in the next few years? Which scenarios may lead to an increase in the number of calls?

How likely are they?

For example, the requirements analyst may discover that callbacks require more time than new

calls. He may also find that heavy traffic or inefficient ambulance allocations lead to delays in

ambulances and, consequently, to an increased number of callbacks. In these cases, more questions

should be asked: What is the likelihood of heavy traffic? What may cause inefficient ambulance

allocations?

One should also ask what would happen if emergency calls are not answered within the specified

ringing times. In other words, how critical is that to the system?

Number of Messages Exceeds Communication Infrastructure Capacity: Similarly, in order to un-

derstand the likelihood of this obstacle, one should investigate the size and volume of different

types of messages being transported by the communication infrastructure. For example, when are

messages sent? Where are messages sent to? Are there different types of messages? What is

the size of the different types of messages? Do messages need to be acknowledged? Are mes-

sages or acknowledgments ever resent? Which scenarios may lead to an increase in the number of

messages on the network? How likely are they?

In the LAS, messages may be sent to stations or directly to ambulances, and can be of different

types, such as allocation, mobilization, login and acknowledgement messages. Retrospectively,

we know that the number of messages increased due to software delays and mistrust in the system

from the LAS staff (Page et al., 1993). Perhaps these scenarios could have been uncovered by a

careful cause-effect analysis of scalability obstacles.

As in the previous example, one should also ask what happens if messages get lost or delayed? Is

the delivery of every type of message equally critical?

Obstacle Resolution

As none of the goals in the original model referred to assumptions on domain quantities, the first

step is to apply the resolution tactic introduce scaling assumption. The following is a simplified example

of a scaling domain assumption on the number of incoming calls:

Assumption 7.2

Assumption Expected Number of Incoming Calls

Category Scalability

Definition The total number of calls includes ordinary and emergency (999) calls. On average, the LAS

receives between 2,000 and 2,500 calls daily; this includes between 1,300 and 1,600 emergency

calls.a

a Numbers are taken from Finkelstein and Dowell (1996). In an actual requirements engineering exercise, this

assumption should include a careful characterization of the incoming calls, including the different categories of calls, their

distribution, and estimation over the following years, and so forth.

7.6. Further Examples and Informal Study 188

We next illustrate further possible resolutions to these obstacles:

Number of Calls Exceeds Call Assistant Team Capacity: A number of tactics can be applied to re-

solve this obstacle. One can, for example, adapt agent capacity at runtime according to load

by increasing the size of the call assistants team on duty to support the scaling in the number of

calls. It is also possible to split goal load by case, where new calls and callbacks are dealt with by

different teams of call assistants.

Number of Messages Exceeds Communication Infrastructure Capacity: Mitigating this obstacle

may be a matter of ensuring the deployment of a communication infrastructure with sufficient

bandwidth to support the anticipated number of messages being communicated, or in other words,

set agent capacity upfront to worst-case load. Alternatively, one can adapt agent capacity at run-

time according to load, where the message volume is monitored and the system administrator is

informed of a growth trend in the number of messages, so that the infrastructure can be upgraded

to prevent the scalability obstacle.

Scalability Obstacles and Resolutions in Industry Interviews

This section exemplifies real-world scalability obstacles and resolutions observed during the industry

interviews. Given the very limited information we had about these systems, our intend is not to identify

scalability risks or resolutions other than the ones described by the interviewees themselves. We aim

instead to demonstrate how scalability problems faced by real-world companies in different application

domains, and their resolutions, can be expressed at the goal level, by using the concepts and tactics

described in Chapter 5.

Data Integration System (DIS)

This system aggregates data from various external data sources and makes this data available to a

number of internal applications in a large transportation company. The system has a number of well-

defined non-functional requirements, including a goal on the response time for data requests by internal

applications. We refer to this performance goal as Achieve [Data Provided Quickly for Expected Number of

Application Requests]. The system also has other maintenance goals such as Achieve [Historical Data Updated

from Recent Data], Achieve [Recent Data Gathered from External Data Source], and Achieve [Obsolete Data Re-

moved]. These maintenance goals consume a lot of the machine’s resources (in particular CPU cycles).

All these goals may be obstructed by the obstacle Number of Requests Exceeds DIS Capacity, where the

number of requests is the sum of application requests and maintenance requests that satisfy the goals

above. In order to mitigate this obstacle, the system designers defined maintenance time frames and

scheduled these heavy tasks to run in these time frames. This resolution corresponds to the tactic limit

goal load according to fixed agent capacity.

However, despite the application of this tactic, sometimes maintenance tasks overlap. This situation

increases the number of requests the DIS has to handle, obstructing the satisfaction of the performance

7.6. Further Examples and Informal Study 189

and scalability goal Achieve [Data Provided Quickly for Expected Number of Application Requests]. The overlap-

ping of maintenance tasks may be caused by a number of reasons, such as (1) an external data source

becoming unavailable, forcing the system to wait and delaying the execution of a maintenance task; (2)

a system backup running without previous agreement, overloading the CPU and causing a maintenance

task to take longer then expected; or (3) an external system sending more requests than expected and,

again, causing maintenance tasks to run for longer.

The company’s solution was to accept that overlapping would sometimes occur, and to have devel-

opers constantly on call to stop the system, find a time where the CPU would be less busy, and manually

reschedule maintenance tasks. This resolution belongs to the category goal restoration.

Communication Services

This example describes a company that develops software for telephone operators, telecom oper-

ators, and cable companies. They offer a set of services that vary from dial-up ISP authentication, to

e-mail provisioning, to digital television (see “Communication Services” in Appendix B). Their first

customer had one million users and was planning to grow by ten thousand users a week. This expec-

tation would be represented in a goal model as a scalability assumption stating that the expected number

of users would vary from one to three million in the first three years. System goals such as Achieve [Au-

thentication of Dial up User Quickly] would then have to be satisfied for the expected number of users. This

increase in the number of users threatened the satisfaction of a number of system goals. This risk could

be represented in the goal model as the scalability obstacle Number of Users Exceeds the System Capacity.

To mitigate this risk, the system was built with scalability in mind from the outset. The first scaling

strategy adopted by the company was to replicate the system as a monolithic instance on multiple servers

to spread the load when the machine was reaching its limits. This strategy corresponds to the tactic adapt

agent capacity at runtime according to load. The company later realized this solution was wasteful,

because the system had two types of end user with very different usage profiles, with one requiring

a much faster service than the other. Replicating a monolithic system did not solve the problem for

users requiring a faster service. The company then decided to break the system down into services that

could scale individually, spreading the load according to the type of incoming request. This solution

corresponds to the tactic split goal load by case.

Funding Compliance System

Web Application

This example refers to a family of Web-based products for telecommunication operators (see “Web

Application” in Appendix B). The company specializes in novelty products, whose popularity is difficult

to predict. In the same way that a new product can be a sudden success, its use may drastically decrease

when a successful promotion gets to an end. For this reason, instead of trying to anticipate the popularity

7.6. Further Examples and Informal Study 190

of a new product, the company adopts a scaling strategy to mitigate the scalability obstacle Number of

Requests Exceeds System Capacity.

Products are built as a number of Web servers running on commodity machines to which the load

is dynamically distributed. The strategy is to scale horizontally, adding more hardware as the demand

for a particular application increases. This strategy is built into the company’s business model. New

applications are normally deployed in shared servers, and may receive a dedicated server if they prove to

be a success. Load analysis is performed weekly, sometimes daily, and the number of servers is adjusted

according to the demand. They also maintain a few idle machines to support an increase in the load due

to a marketing campaign or some other reason. This resolution illustrates the use of the tactic adapt

agent capacity at runtime according to load.

Telephone Billing System

This system is responsible for the billing of telephone calls (see “Telephone Billing System” in

Appendix B). A call is composed of a number of messages that contain a series of information, such as

the caller and callee identities, the duration of the call, and who terminated the call. The system captures

these messages from the telecom operator’s network, identifying each message, and reconstructing the

call before it is saved on the database to be made available to a number of business applications.

In order to achieve the goal Achieve [Calls Reconstructed], the system must, among other things, Avoid

[Message Loss]. This subgoal should be achieved for the scaling assumption Expected Number of Messages.

The system designers decided to satisfy this goal by keeping, in a memory buffer, a copy of each message

passed to the system’s network until the call has been correctly reconstructed and saved.

Although the system has never halted due to scalability problems, it has produced inconsistent

results due to an overflow of the memory buffer and, consequently, the loss of messages. In other words,

the scalability obstacle Number of Messages Exceeds System Capacity obstructed the satisfaction of the goal

Avoid [Message Loss]. The reason for the increase in the number of messages was long network downtimes.

The company’s solution was to migrate the system to a 64-bit machine. The new machine had a

much larger address space, which prevented the overflow of the memory buffer. This resolution corre-

sponds to the tactic set agent capacity upfront to worst-case load.

7.6.3 An Informal Study: The “Realtime Banking System”

An informal study was executed to aid the design of a comparative case study to investigate how the

scalability framework could be applied during the software development lifecycle. The actual study was

a coding task to be given to undergraduate students as a coursework. However, in order to certify that

the case study would run smoothly, the coding task was first given to two professional developers. The

developers were asked to implement a simple concurrent system, following a set of systematic steps.

The steps themselves had not yet been formalized, and the study was run in a very informal way. The

results were: (1) feedback from professional developers on the scalability framework and a planned case

study, and (2) a first sketch of a method for scalability analysis.

7.6. Further Examples and Informal Study 191

Study Description

This study consisted of implementing a simple real-time banking system. The system was required

to verify requests for money transfers, ensuring that the payer has enough money in their account to

perform the transfer, and that the transaction is unlikely to be fraudulent. When a money transfer request

is received, the system performs the following tasks: (1) it checks the balance in the payer account, (2) it

checks the request against a set of pre-defined rules to assess if the transfer is suspicious, (3) it performs

the transfer, updating the balances of payer and payee; and (4) it notifies the client of the completion

or denial of the transaction. In order to check the payer balance and the likelihood of fraud, the server

maintains, for each account, information including the origin country of the account and a summary of

all transactions in the current month. This information is used by fraud analysis rules to decide if the

transfer request is suspicious.

Developers were given a hypothetical distribution for request arrival rates and the required through-

put, and were told that a bank is expected to deal with over 1.5 million accounts. Developers were also

requested to implement the system using only standard Java classes, without a database. The maximum

allowed heap size was 64MB, and disk was 100MB. Because of the lower heap size, developers could not

keep all accounts information in memory, having to extend storage to disk, while maintaining throughput.

Summary of the Results

Both developers, one with four and the other with fifteen years experience in software development,

attempted to implement the system by following our instructions. Due to time constraints, only one

delivered a working system, with rough measurements of dependent variables. Although the study was

not conducted rigorously, it resulted in a first sketch of a method for scalability analysis.

Both developers had a very basic understanding of scalability prior to the study, mostly relating

it to performance. The developers have stated that they agree with the majority of the points made

by the research and admitted that they would not have thought about scalability if they had not been

requested to do so. This is not surprising, especially because neither of them had a lot of experience

with architecting systems. They found that the framework let to good practice, but also demonstrated

concerns with the overhead of performing a scalability analysis. Both developers said they have gained

a greater understanding of scalability and that the experience has influenced the way they will develop

systems in the future.

Critical Evaluation of Informal study

As a one-off informal study, very limited conclusions can be drawn. Yet, the study was useful

in the design of a case study and as a starting point to develop a scalability analysis method. The

framework does seem to have changed the volunteers’ perception of scalability and to be considered

useful in software development. We have also learned that there was a concern with the overhead of the

analysis and certain resistance in following it, step-by-step, in the real-world.

7.7. Critical Evaluation 192

7.7 Critical Evaluation
This thesis concentrates on a definition for scalability, a technique for elaborating scalability require-

ments, and an analysis technique for quantitatively characterizing and comparing the scalability of soft-

ware systems. The thesis also describes a method that brings together these concepts and techniques.

Despite the effort made to validate these techniques against real-world systems, data and stakehold-

ers, the case studies did not cover the whole method described in Chapter 6, but rather only parts of it.

In none of the studies was the method followed from the beginning to the end—i.e, define scalability

question, build preliminary model, update goal model, select goals for scalability analysis, refine and

define new scalability questions, instantiate variables and functions, prioritize goals, perform analysis,

and state scalability answer or claim. In particular:

1. Case study 3 illustrated the instantiation of variables and functions for two specific scalability

analyses, and considered only portions of the goal model. These simple analyses did not require

the combination of distinct scalability objectives, and consequently no utility function was needed.

Therefore, initial ideas on using requirements prioritization techniques for deriving utility func-

tions from a goal model have not been validated.

2. Case study 3 coincided with the construction of the third version of the IEF. By the end of the

study, the system development was still in the early stages of the design phase. On one hand,

that allowed us to take into consideration some system design characteristics in the instantiation

of variables for the scalability analysis. On the other hand, it was not yet possible to validate

whether the instantiated scalability analysis would help to predict the actual system scalability

accurately. Furthermore, the selection of variables representing system design characteristics and

the conversion from objective functions in the goal model to preferences were performed in an

ad-hoc manner. It is, therefore, possible that not all relevant dependent and independent variables

from the system design have been taken into account, or that the resulting preferences precisely

translate the stakeholders’ scalability goals.

3. Case studies 1 and 2 showed that it is possible to characterize scalability quantitatively, while case

study 3 demonstrated that one can derive from a goal model the variables and functions for a scal-

ability analysis. None of the studies, however, demonstrated that the proposed techniques indeed

result in the construction of more scalable systems. Doing so requires a comparative empirical

study such as the case study planned in Appendix C, but not executed due to reasons beyond our

control.

Combined Contribution of Case Studies and Examples

The individual benefits and limitations of each case study have been discussed in its respective section.

We next assess the combined contributions of the case studies and examples to the validation of the ideas

presented in this thesis. For such, we first review the research hypothesis:

7.7. Critical Evaluation 193

The Research Hypothesis It is possible to (1) provide a precise definition of scalability that is appli-

cable to any application domain and (2) develop systematic techniques, also applicable to any

application domain, to characterize and analyze the scalability of software systems, so that devel-

opers can identify and avoid scalability problems that would otherwise be overlooked without the

definition and techniques.

Ideally, the validation of the research hypothesis would have been done by means of a single,

comprehensive case study. However, both due to the way the research has developed and time constraints

of the PhD candidate and the other people involved in the studies, we have decided to perform a series

of complementary studies. The first two case studies validated the scalability analysis technique, while

the third one validated the techniques for elaborating scalability requirements. In addition, we have

described a number of smaller examples for both techniques in order to demonstrate their applicability

to different application domains and system designs.

In a retrospective study, such as case studies 1 and 2, it is difficult to claim the analysis technique

would have predicted a scalability problem developers did not. We have, therefore, opted for demon-

strating that the analysis technique can be used to formulate qualitative judgment about the system’s

scalability that is consistent with the judgments an expert on that system would make. In case study 3,

we opted for showing that one can derive, from a goal model, the variables and functions that would

otherwise be overlooked without the technique. More precisely, this chapter has shown that:

1. It is possible to characterize the scalability of a real-world system clearly and objectively in terms

of independent variables, dependent variables, preference functions, and utility functions; and to

form qualitative judgments about the system’s scalability that is consistent with the judgment an

expert on that system would make.

2. One can identify scalability goals, scaling assumptions, scalability obstacles, and scalability res-

olution strategies for a real-world system; and derive, from a goal model, variables and functions

that would otherwise be overlooked.

3. One can apply both techniques to real-world systems of different application domains and system

designs.

The combination of these results is a reasonable indicator of what would have happened if a single

comprehensive study had been performed. That is, taking into consideration that the requirements en-

gineering technique allows one to identify variables and functions that would otherwise be overlooked,

and that the analysis technique can use these variables and functions to produce a fair qualitative judg-

ment about a system’s scalability, then the combination of both would allow one to identify and avoid

problems that would otherwise be overlooked without the techniques.

Contributions and Benefits

The contributions associated with this chapter are as follows:

Contribution: Significant case studies demonstrating the applicability of the scalability definition, re-

quirements engineering technique, and analysis technique.

7.8. Summary 194

The techniques described in this thesis were validated against a complex, proprietary, real-world

system. The PhD candidate was placed within a real company, with full access to source code and

documentation, and counted on the cooperation of real stakeholders. The report of such an experience is,

in itself, a valid contribution to software engineering research. The PhD candidate has faced a number of

issues commonly found in an industrial setting, such as the lack of time of the stakeholders, incomplete

and inconsistent documentation, missing data, disagreements between stakeholders and their unwill-

ingness to take responsibility for estimates. These difficulties led to improvements to the techniques

and highlighted a number of limitations that could have passed unnoticed had the case study not been

performed within an industrial setting.

An additional benefit of this chapter is

Benefit: Recast examples from the computing literature and industry in terms of the scalability frame-

work.

In addition to reviewing the state-of-the-art in scalability research, we have conducted a number of

interviews with stakeholders and professional developers about scalability problems they faced through-

out their careers. We have used cases described in both the computing literature and in these industry

interviews to demonstrate parts of the scalability framework. These smaller examples were limited by the

amount of information we had access to, but served to show the applicability of the scalability framework

to different application domains and system designs.

7.8 Summary
This chapter described case studies and examples used to validate the concepts and techniques presented

in this thesis. These were

1. A small-scale empirical study that compared the scalability of two prototypes representing con-

secutive IEF versions. The study provided an early validation of the analysis technique and gave

feedback for the research.

2. An empirical study that repeated the previous study for the real implementation of both IEF ver-

sions. This study included a more careful characterization of the application domain and confirmed

what was known as fact about the system’s scalability. The study has also highlighted limitations of

the technique, which motivated the extensions to KAOS for elaborating scalability requirements.

3. The goal-oriented analysis of a new IEF version, demonstrating the use of scalability goals, scaling

assumptions, scalability obstacles, and scalability resolution strategies. This study has led to the

improvement of our extensions to KAOS and highlighted a number of possible paths for future

research.

4. An informal study with two volunteers to investigate how the scalability framework could be

applied during the software development lifecycle. The study, although performed informally, has

helped to define the method in Chapter 6.

7.8. Summary 195

5. Examples from the computing literature and from industry interviews recast according to the scal-

ability framework, which included the Google search engine, a distributed heterogeneous service

system, a commercial server-based system, a Web-based shopping system, an ERP system, a field

services system, and a message validator system. These examples demonstrated how scalability

concerns from different application domains can be characterized in terms of independent and

dependent variables and preference functions.

6. Examples from the computing literature and from industry interviews illustrating the identification,

assessment and resolution of scalability obstacles, which included the London Ambulance Service

(LAS) system, a data integration system, a communication services system, a funding compliance

system, a Web application, and a telephone billing system.

196

Chapter 8

Conclusions

This chapter concludes our journey through the topic of software systems scalability. It

recapitulates the research problem and goal, lists the main contributions, provides a crit-

ical evaluation of the work, and, finally, discusses possible directions of future work.

8.1. Review of Research Problem and Goal 197

8.1 Review of Research Problem and Goal
Scalability is a term that appears frequently in computing literature, but it is a term that is poorly defined

and poorly understood. It is an important attribute of computer systems that is frequently asserted but

rarely validated in any meaningful, systematic way. The lack of a uniform, consistent and systematic

treatment of scalability makes it difficult to identify and avoid scalability problems, to describe the

scalability of software systems clearly and objectively, to evaluate claims of scalability and to compare

claims from different sources.

Therefore, the research problem of this thesis has been stated as follows: The computing community

is lacking (1) a precise definition of the term scalability and (2) a systematic, uniform and consistent

treatment of scalability that can be applied across application domains and system designs. Proving that

a technique can be applied across different application domains and system designs would be challenging

in the time frame of a PhD research programme. For this reason, our aim was to develop a definition

and techniques that use no application domain-specific terms and make no assumptions about the system

design, but are sufficiently powerful to identify and avoid scalability problems that would otherwise be

overlooked.

8.2 Thesis Contributions
The contributions of this thesis to software engineering are summarized below:

Contribution: A uniform and precise definition of scalability that is independent of the application

domain and system design.

We define scalability as the ability of a system to satisfy its quality goals to levels that are ac-

ceptable to its stakeholders when characteristics of the application domain and system design vary

over expected ranges.

Unlike other definitions in the computing literature that relate scalability with particular metrics,

such as throughput or response time, scaling characteristics, such as number of requests or pro-

cessors, or scaling behavior, such as linear or sub-linear, our definition describes scalability in

terms of quality goals and scaling characteristics of the application domain and the system design.

These are concepts common to all software systems, resulting in a uniform and precise definition

that transcends application domains, system designs and specific system concerns.

Furthermore, by demonstrating the correctness and usefulness of such a definition we have ex-

plicitly shown the relationship of scalability with other system qualities and presented counter-

arguments to common misconceptions about scalability, such as the belief that scalability is al-

ways related to performance or that scalable systems should present an at-most-linear increase in

resource usage as the demands on the system increase.

Contribution: A framework and a method for characterizing and analyzing software systems scalability

that is independent of the application domain and system design.

We have created a framework (Figure 4.1) to reveal—in a precise and explicit form—the impact

8.2. Thesis Contributions 198

of scaling characteristics of the application domain and system design on the satisfaction of the

system’s quality goals. The framework combines techniques for requirements engineering and

scalability analysis, ensuring that the variables and functions used for the analysis are relevant to

the problem at hand.

Our method brings together these techniques, describing the steps required to instantiate the ele-

ments of the scalability framework. Starting from an initial scalability question, the analyst up-

dates a goal model through the identification, assessment and resolution of scalability obstacles.

Resulting gals are then selected and used to refine the scalability question, and to derive variables

and functions to be used in the analysis that will produce an answer to the scalability question.

This method can be applied at any point of the development lifecycle. When applied earlier, it

encourages a proactive approach to scalability when building systems.

The scalability framework follows the general steps defined by EPA and relies on concepts that

are common to software systems in general, such as agents, quality goals and software metrics. It,

therefore, applies to software systems regardless of the application domain and the system design.

Contribution: A technique for describing, modeling and analyzing scalability requirements, and the

description at the goal level of common strategies to resolve scalability obstacles identified during

requirements engineering.

We have developed techniques for describing, modeling, and reasoning about scalability require-

ments. The approach consists of systematically identifying scalability obstacles to the satisfaction

of goals; assessing the likelihood and severity of these obstacles; and generating resolutions to

them. The result is a consolidated set of requirements in which important scalability issues are an-

ticipated through the precise, quantified specification of scaling assumptions and scalability goals.

These techniques bring a number of benefits to the elaboration of scalability requirements, such

as uncovering and specifying non-obvious time-varying assumptions on the application domain,

providing rationale for scalability goals, providing traceability for changing assumptions on appli-

cation domain quantities, assigning responsibilities for satisfying scalability goals, and providing

measurable quality variables and objective functions to be used for scalability analysis. Goal-

obstacle analysis has shown to be a systematic and intuitive way to reason about scalability during

the early stages of software development. It generates a comprehensive set of scalability obstacles

and provide an accurate model of impact for these obstacles. The technique is particularly useful

for recognizing scalability problems caused by exceptional circumstances and unexpected system

usages.

We have also described strategies for achieving scalability goals at the requirements level, when

more freedom is available for exploring alternative system proposals. As an additional benefit, the

resulting goal model can serve as input to various methods for analyzing software scalability at

the architectural level, and can have different uses during the development lifecycle.

8.3. Critical Evaluation 199

Contribution: An analysis technique for evaluating and comparing scalability characteristics of soft-

ware systems that is independent of the application domain and system designs.

The scalability analysis technique described in this thesis explains the effects that the scaling of

application domain and system design characteristics (independent variables) have on the satisfac-

tion of quality goals (dependent variables and stakeholders’ preferences and utility). Consequently,

any system analysis—performance, reliability, availability or other—conducted with respect to a

variation over a range of application domain or system design characteristics can be modeled as a

scalability analysis.

These variables and functions allow one to describe, with clarity and precision, whether the system

meets its quality goals when characteristics of its application domain and system design scale, as

well as to show the system’s limits and scaling trends. That is, the analysis technique creates a

precise and uniform vocabulary that stakeholders can use to articulate scalability claims.

Contribution: Significant case studies demonstrating the applicability of our scalability definition,

framework, requirements engineering technique, and analysis technique.

Three case studies demonstrated the applicability of the techniques described in this thesis. The

first two studies validated the scalability analysis technique, while the third one validated the

technique for elaborating scalability requirements. Validation was performed against a complex,

real-world system, to which the PhD candidate had full access and for which the candidate was able

to enjoy the cooperation of real stakeholders. The report of such experience is in itself an important

contribution to software engineering, demonstrating the benefits and challenges of applying the

proposed techniques in an industrial setting.

Additional benefits brought by the validation of these techniques were their application to smaller

examples taken from the computing literature and software industry, and a number of interviews

with stakeholders and professional developers describing real scalability problems, with reflections

on the development mistakes and lessons learned.

8.3 Critical Evaluation
This thesis aims to provide a precise definition of scalability and develop systematic techniques to char-

acterize and analyze the scalability of software systems, as stated by the research hypothesis in Chapter 1.

Scalability characterization and analysis is a large research area, which includes workload charac-

terization, requirements elicitation, system modeling and simulation, test design, and so on. This work

concentrates on a definition for scalability, a technique for elaborating scalability requirements, and an

analysis technique for quantitatively characterizing and comparing the scalability of software systems.

The research hypothesis was validated through a mix of argumentation and experimentation. In particu-

lar, the usefulness and correctness of our definition for scalability have been argued through discussions

in Chapters 1 to 3, while the techniques have been validated through case studies and other smaller

examples taken from the computing literature and from industry interviews, as described in Chapter 7.

8.3. Critical Evaluation 200

Despite the constrained scope of the research, the chosen areas of investigation are themselves wide

and complex, and, for this reason, have not been completely addressed by the techniques described in

this thesis. We next describe such limitations:

Limitations of the Scalability Analysis Technique

An analysis that relies on metrics and optimization functions imposes a few risks. If variables and

functions have not been adequately selected and the study has not been carefully designed and executed,

the analysis results may be misleading.

Taken in isolation, the scalability analysis technique is described in terms of generic elements. We

have opted for not providing a catalog of possible instantiations of these elements for particular types

of systems or scalability concerns. Thus, critics of the analysis technique may argue that the usefulness

of its results may be jeopardized by the wrong choice of variables and functions. This is a real risk,

especially considering that scalability problems are often caused by characteristics of the application

domain and system design that have been overlooked during the construction of the system, and that

the operational distribution of application domain characteristics may not be known in the early stages

of the development lifecycle. This risk is unavoidable. However, in order to reduce its likelihood we

complement the scalability analysis with the requirements elaboration technique described in Chapter 5.

It is also the case that one has to trust that the metrics being collected are a good representation of

the system qualities they represent. Furthermore, metrics are very sensitive to the way they are collected,

particularly to small errors in measurements, abnormalities and wrong assumptions. This is a problem

with methods that use metrics in general. However, as argued by Fenton and Pfleeger, the subjective-

ness normally associated with metrics, although a drawback, does not prevent us from gathering useful

information about the system (Fenton and Pfleeger, 1996).

The technique is also limited in the sense that it does not incorporate uncertainty into the analysis or

allow for the extrapolation of its results. For the purpose of this research, it is assumed that no uncertainty

exists in relation to the distribution and scaling of independent variables, and that there is a running

version of the system and sufficient data and hardware infrastructure to run this version. However,

these assumptions will rarely hold in the real-world. The importance of incorporating uncertainty and

extrapolating the analysis results is undeniable, and both topics have been set as future work.

Finally, although theoretically, raw data can be produced for the scalability analysis through mod-

eling or simulation, this belief has not been validated by the case studies in the research. We intend to,

in the future, investigate the integration of the scalability framework with existing modeling techniques,

such as queuing networks and Petri Nets for performance modeling and reliability growth models (Lyu,

1996). The case studies have also not contemplated system qualities other than performance-related

ones. We had planned to perform a scalability analysis of the Condor system (University of Wiscousin-

Madison, 2006) with respect to reliability, but due to time constraints this study could not be performed

and is also left for future work.

8.3. Critical Evaluation 201

Limitations of the Requirements Elaboration Techniques

As mentioned above, this research assumes there is no uncertainty in relation to the values of the

application domain quantities (independent variables). However, in the validation of our extensions to

KAOS against a real-world system, we observed that stakeholders had different views on the values

assumed by domain quantities. The many uncertainties about their future values made stakeholders un-

willing to provide estimates. Reaching agreement on the projected values for domain quantities in the

scaling assumptions was our most significant difficulty. As it stands, our technique for elaborating scal-

ability requirements gives no support to model disagreements about the content of a scaling assumption,

nor to model or reason about uncertainties concerning these assumptions.

Another limitation of our extensions to KAOS is that only a lightweight assessment of the load

imposed on agents has been considered. However, in reality, a number of considerations must be made.

First, not all goals will mobilize the agent’s resources at the same time. In addition, some of the load

imposed on the agent may be determined by the system design (e.g., the storage of rule results in the

IEF), which is not captured by the goal model. The likelihood of a scalability obstacle affecting an agent

is another issue, as it should involve identifying how the obstacle’s likelihood varies with the agent’s

required capacity. Further techniques are needed to perform a precise quantitative assessment of the load

imposed on an agent.

The requirements engineering techniques described in this thesis also do not offer support for the

selection of the preferred resolution strategy from among a set of alternatives. During the requirements

engineering process, a number of resolutions are likely to be generated. Choosing from among them

requires being able to perform a quantitative analysis of the likelihood of scalability obstacles and their

impact on goal satisfaction, as well as perform a cost/benefit analysis of each strategy.

Finally, there is a risk that a scalability goal-obstacle analysis as a pre-step for the scalability anal-

ysis may be seen as overkill by developers. This is the case especially if considering that the absence of

a scaling assumption represents a possibly infinite range of values to be assumed by the characteristic at

hand. Although defining scaling assumptions for all characteristics involves a considerable amount of

work, our conversations with computer scientists from both industry and academia suggest that scalabil-

ity problems often occur because the ranges of values of some domain quantities have been overlooked.

The goal-obstacle analysis of the model allows variables and functions for the scalability analysis to be

systematically derived from scalability goals, scaling assumptions and agents. This research assumes

that a standard goal model is available from the requirements engineering phase, or that KAOS is chosen

as the requirements elaboration technique if scalability is being considered early in the development life-

cycle. However, a partial model could also be constructed in other stages of the development lifecycle,

bearing in mind that a full model is more likely to reveal the full range of potential scalability problems.

Limitations of the Method for Scalability Analysis

The method described in Chapter 6 brings together the requirements engineering and scalability

analysis techniques. This method is limited in the sense that some of its steps are just initial ideas, which

8.4. Future Work 202

have not been fully developed and validated. For example, the method indicates that system design

variables should be derived from agents in the goal model. However, this selection is currently performed

in an ad-hoc manner. Another risk is that, without precise guidelines, the model may lose accuracy when

translating from objective functions to preferences. The use of requirements prioritization techniques to

derive utility functions also needs to be further investigated, as well as refinement techniques that convert

goal quality variables into independent variables that can be used in a weighted sum. Alternative ways

to model utility functions can also be investigated.

Furthermore, the design of scalability tests—that is, the selection of a representative set of execution

experiments to characterize the sample space of system behavior—has been left out of the scope of this

thesis. This is an important activity, which should be included in the step “generate raw data and perform

scalability analysis” of the method. Finally, when modeling techniques, such as queuing networks, are

incorporated into the method, there will be a need for a feedback loop assessing the degree of accuracy of

the analysis and updating the model accordingly. As it stands, the method is useful to developers willing

to characterize and analyze the scalability of existing software systems (or prototypes), with sufficient

data and infrastructure to run the system over the full range of scaling application domain characteristics.

Finally, in order to make our method useful for developers in industry, we need a better understanding

of how it fits into popular development methodologies, as well as a quantification of its effort, costs and

benefits. For example, is the method only useful to build critical systems that follow strict development

processes? Could it be adapted to more dynamic and iterative methods, such as Agile? These questions,

however, have been left unanswered in our research and should be tackled in the future.

Despite these limitations, the scalability definition, framework and techniques provide a common

understanding of scalability, allowing scalability claims to be fully justified and described with sufficient

information for others to confirm or dispute these claims. The techniques also encourage a proactive

approach to scalability, addressing difficulties that commonly lead to scalability problems, such as the

scaling caused by overlooked application domain and system design characteristics, unusual system

usage, software errors, and expected application domain scenarios.

8.4 Future Work
In this section, we list a number of possible directions for future work that cover both the limitations of

the techniques described in this thesis and the topics that had to be left out of the scope of this research.

Design of test cases: Scalability analysis is a multi-dimensional problem, involving a number of scal-

ing characteristics and system qualities. Designing a small, yet comprehensive, set of tests for

exploring the range of system behaviors is an important activity. In the future, we plan to look at

deriving scalability tests from goal models. Doing so allows one to check for test coverage more

naturally. In KAOS, a set of requirements is complete with respect to a set of goals if all the goals

can be shown to be satisfied when all the requirements are satisfied, assuming the environment as-

sumptions and domain properties hold. Therefore, in principle, tests derived systematically from

these requirements, can be shown to cover all the goals of the system.

8.4. Future Work 203

Extrapolation of analysis results: This work relies on the assumption that there is a running system

and sufficient data and hardware infrastructure to study with the system over the full ranges of

application domain characteristics. This assumption, however, will rarely hold in the real world.

Extrapolating the results of a scalability analysis is of undeniable importance. Extrapolation must

take into consideration the different scaling nature of independent and dependent variables, and

the uncertainties regarding their values, and include a feedback loop to validate the predictions and

adjust the parameters of the technique accordingly. Possible techniques include the combination

of modeling and testing. Inevitably, there will be errors in the extrapolation, but it should at

least serve as an indicator to support scalability-related decisions, such as the choice between two

alternative designs.

Quantitative agent load analysis: Assessing the likelihood of scalability obstacles requires an analysis

of the load imposed by goals on agents. Such analysis must consider when each goal inflicts load

on an agent, the different types of capacity in an agent, and how the likelihood of a scalability

obstacle varies with the required agent’s capacity. Naturally, being a requirements engineering

technique, it should not include an assessment of the load imposed by the system design. Such an

assessment should, however, be considered later during system design and testing, as well as be

considered in the scalability analysis.

Modeling and handling uncertainties and disagreements: Techniques are needed for modeling and

reasoning about uncertainties and disagreements concerning scaling assumptions in goal models.

Currently, disagreements have to be modeled as distinct assumptions, which is an unsatisfactory

solution. One possible technique is to use a parameterized model (and confidence intervals) to

highlight the impact of different assumptions on the likelihood of scalability obstacles and on the

satisfaction of system goals, as to promote discussions among the stakeholders.

Derivation of system design variables, preferences and utility functions: In the scalability method,

independent and dependent variables belonging to the system design are still derived in an ad-

hoc manner. Also, more systematic techniques are needed to ensure that the analysis will not

lose the accuracy introduced by the goal model in the translation of goals objective functions into

preference functions. This thesis also presents initial ideas on using requirements prioritization

techniques to derive the utility function to be used in the scalability analysis. Further case studies

should be completed to validate these initial ideas.

Selection of scalability strategies: Future work should also develop a technique for selecting a strat-

egy from among a set of alternative scalability strategies. Such a technique should consider the

scalability obstacle likelihood and criticality, and the costs associated with each alternative.

Expand the catalog of scalability strategies: This thesis has described a number of strategies com-

monly used in industry to achieve scalability in software systems. There are probably many more.

Future work can expand such a catalog so that requirements analysts have more strategies to choose

from when resolving scalability obstacles.

8.5. Closing Remark 204

Explore the scaling down of software systems: This thesis defines scalability in terms of variation of

system characteristics, not growth. From the perspective of goal-obstacle analysis, the problem of

scaling down a system to run on a more restricted environment can be seen in an analogous way

to the scaling up problem: the restricted capacity of the agent may not be sufficient to support

the load imposed by its goals, configuring a scalability obstacle. Nevertheless, mitigating such

obstacles in a scaling down system will require different strategies, such as eliminate irrelevant

functionality. The problem of scaling down needs to be more thoroughly investigated in the future

and specific resolution tactics must be defined.

Beyond load and capacity: Our scalability goal-obstacle analysis relies exclusively on the concepts

of load and capacity to assess the satisfiability of quality goals, such as performance, availabil-

ity and reliability. However, additional quality attributes such as adaptability, extensibility and

predictability have a different relationship with scalability. Take for example, the scalability ob-

stacle resolution strategy adapt agent capacity at runtime according to load. This strategy may

be achieved by means of predicting the available capacity of the system when its load varies, and

designing it to reconfigure itself or to be easily extended to support this variation. Adaptability,

extensibility and predictability are therefore important attributes of scalable systems. Should these

attributes be treated as first-order concepts in scalability or contributing factors? Future work

should explore the relationship between these attributes and scalability, as to extend our catalog of

scalability obstacle resolution strategies and to create design guidelines to implement them.

8.5 Closing Remark
My interest in the topic of scalability started as a combination of intuition and experience as a profes-

sional software developer. As we advanced in the research, I started to really contemplate the depth and

breadth of this topic. This thesis is a compilation of four years of research, uncountable discussions with

researchers and practitioners, and practical experience. It represents a initial, but relevant contribution to

the problem of scalability in software engineering.

The scalability framework allows stakeholders to describe the scalability of a software system

clearly, tackling the problem of intuitions, ambiguities and inconsistencies underlying the notion of

scalability in computing. It also encourages scalability concerns to be clearly expressed and thoroughly

investigated in the development of software systems, possibly bringing into evidence problems that could

otherwise be overlooked.

We encourage the computing community to adopt some of the ideas presented in this thesis when

building their systems and to incorporate scalability into their analysis of other system qualities. Fi-

nally, we encourage the academic community to concentrate more research effort into the interesting

and important field of software systems scalability.

205

Appendix A

Scalability Definitions

Like ourselves, other authors have questioned the meaning and use of the term scal-

ability and have attempted to provide better definitions. This appendix shows a list

of definitions of the term taken from the scientific and informal literature. Most at-

tempts, however, represent an intuitive ideal or are restricted to a narrow meaning.

A.1. Scalability Definitions in Scientific Literature 206

A.1 Scalability Definitions in Scientific Literature
• “Scalability metrics measure the ability of a parallel architecture to increase the number of pro-

cessors for solving a problem of a increasing size where the parallelism of a given algorithm has

already been effectively exploited.” (Zhang et al., 1994)

• “Scalability is defined as the ability to maintain cost effectiveness as workload grows” (Luke,

1993) — Where cost effectiveness is defined as a function of work (minimum number of operations

required to complete a given computational task), execution time and a scaling constant between

workload and processing resources.

• “The scalability of a parallel architecture is a measure of its capacity to effectively utilize an

increasing number of processors.” (Kumar and Gupta, 1994)

• “[. . .] scalability: the system’s ability to increase speedup as the number of processors in-

crease.” (Grama et al., 1993)

• “Scalability is a property which exhibits performance linearly proportional to the number of pro-

cessors employed.” (Sun and Rover, 1994)

• “Scalability measures the ability of a parallel system to improve performance when the sizes of

the program and the machine are scaled.” (Zhang and Xu, 1995)

• “An architecture is scalable with respect to an IT profile and a range of desired capacities if it has

a viable set of instantiations over that range.” (Brataas and Hughes, 2004)

• “An architecture is scalable [. . .] if it has a [. . .] linear (or sub-linear) increase in physical re-

source usage as capacity increases [. . .]” (Brataas and Hughes, 2004)

• “An algorithm-system combination is scalable if the achieved speed-efficiency of the combina-

tion can remain constant with increasing system ensemble size, provided the problem size can be

increased with the system size.” (Sun et al., 2005).

• “Scalability is the ability of a parallel algorithm on a parallel architecture to effectively utilize an

increasing number of processors.” (Vetter and McCracken, 2001)

• “An algorithm is scalable if the level of parallelism increases at least linearly with the problem

size. An architecture is scalable if it continues to yield the same performance per processor, albeit

used on a larger problem size, as the number of processors increases.” (Quinn, 1994)

• “Scalability is the ability of a distributed simulation to maintain time and spatial consistency as

the number of entities and accompanying interactions increase.” (DoD, 1995)

• “A scalable simulation is one that exhibits improvements in simulation capability in direct pro-

portion to improvements in system architectural capability.” (Law, 1998)

A.1. Scalability Definitions in Scientific Literature 207

• [Telecommunications systems] “must be capable of being deployed efficiently at both large and

small scales. Over time it must also be possible to add capacity to either support more users, or

enhance the quality of service, or both.” (Jogalekar and Woodside, 1997)

• “A distributed system is said to be scalable from its old state to a new state, if power per in-

vested dollar can be improved (or maintained constant) by evolving the system configuration.” (Jo-

galekar and Woodside, 1997)

• “...information systems should be scalable. Informally this means that the system should easily

accommodate higher performance levels, because, for example, the size or geographic dispersion

of the set of users changes. At the same time, systems should be scalable in the sense that they can

easily be adapted to cooperate with future applications.” (Steen et al., 1998)

• An architecture is scalable if it is “able to accommodate whatever performance level or number of

users necessary by simply adding resources to the system, as opposed to replacing the technology

for higher performance. [...] A desirable form of scalability is a resource cost that is at most

linear in some measure of performance or usage.” (Messerschmitt, 1995)

• “Let γ(a) be a function in attribute values a returning values in the same unit as CostA Fur-

thermore, let δ(a) be a function in a returning values in the same performance measure unit as

PerfA with ∀ a::δ(a) ≤ and δ(a) = 0. An application A is scalable in attribute Attri for val-

ues up to a maximum amax with respect to γ and δ if the following properties hold: P1: A can

accommodate values aref [i] ¡ a ≤ amax; P2: ∀ aref [i] ¡ a ≤ amax ∃ r::PerfA(aref , rref) -

PerfA(aref (i:a), r) ≤ δ(aref (i:a)); P3: ∀ aref [i] ¡ a ≤ amax:: CostA(aref (i:a), rmin(aref (i:a)))

≤ γ(aref (i:a)).” (Steen et al., 1998)

• “[Scalability] denotes the ability to accommodate a growing future load.” (Bahsoon and Em-

merich, 2008)

• “Load scalability [...] the ability to function gracefully, i.e., without undue delay and without un-

productive resource consumption or resource contention at light, moderate, or heavy loads while

making good use of available resources [...] Space scalability [...] its memory requirements do not

grow to intolerable levels as the number of items it supports increases... if its memory requirements

increase at most sub-linearly [...] Space-time scalability [...] if it continues to function gracefully

as the number of objects it compasses increases by orders of magnitude [...] Structural scalability

[...] its implementation or standards do not impede the growth of the number of objects it encom-

passes, or at least will do so within a chosen time frame [...] Distance scalability [...] if it works

well over long distances as well as short distances. [...] Speed/Distance scalability [...] if it works

well over long distances as well as short distances at high and low speed.” (Bondi, 2000)

• “A system is a scalable system if it can be deployed effectively and economically over a range of

different ‘sizes’, suitably defined.” (Jogalekar and Woodside, 1998)

A.2. Scalability Definitions in Informal Literature 208

• “Scalability means not just the ability to operate, but to operate efficiently and with adequate

quality of service, over the given range of configurations.” (Jogalekar and Woodside, 2000)

• “[Def.1] Scalability is the ability to handle increased workload (without adding resources to a

system). [Def.2] Scalability is the ability to handle increased workload by repeatedly applying a

cost-effective strategy for extending a system’s capacity.” (Weinstock and Goodenough, 2006)

• “Given a reasonable performance on a sample problem, a problem of increased workload can

be solved with reasonable performance given a commensurate increase in computational re-

sources.” (Luke, 1993)

• “Scalability in the context of software engineering is the property of reducing or increasing the

scope of methods, processes, and management according to the problem size. On way of assessing

scalability is with the notion of scalable adequacy — the effectiveness of a software engineering

notation or process when used on differently sized problems.” (Laitinen et al., 2000)

• “Scalability is the ability of a system to continue to meet its response time or throughput objectives

as the demands for the software functions increases.” (Smith and Williams, 2001)

• “[Scalability is] the ability of a system to keep its performance when the system ensemble size is

scaled up.” (Chen and Sun, 2006)

• [Scalability is the] “ ability to provide a basic service to an increasing number of

users.” (Scholz and Rouvoy, 2007)

• “Software scalability is the easy with which the software of a system can be expanded to serve

more users and/or work.” (Munsterman, 2008)

• “Software scalability is the ability to handle increased workload by changing parts of the code

(scalability optimization/vertical scalability).” (Munsterman, 2008)

• “Software scalability has the ability to be used multiple times in a cost-effective way (environmen-

tal flexibility/horizontal scalability).” (Munsterman, 2008)

• “Scalability is a measure of an application systems ability to—without modification—cost-

effectively provide increased throughput, reduced response time and/or support more users when

hardware resources are added.” (Williams and Smith, 2004)

A.2 Scalability Definitions in Informal Literature 1

• “Scaling up is the commonly used term for achieving scalability using better, faster, and more

expensive hardware. [...] Scaling out leverages the economics of using commodity PC hardware

to distribute the processing load across more than one server.” (Microsoft, 2005)

1Many of the definitions was collected by Weinstock and Goodenough (2006)

A.2. Scalability Definitions in Informal Literature 209

• “Def.1: [Scalability] is the ability of a computer application or product (hardware or software)

to continue to function well when it (or its context) is changed in size or volume in order to meet

a user need. Typically, the rescaling is to a larger size or volume. The rescaling can be of the

product itself (for example, a line of computer systems of different sizes in terms of storage, RAM,

and so forth) or in the scalable object’s movement to a new context (for example, a new operating

system). Def.2: It is the ability not only to function well in the rescaled situation, but to actually

take full advantage of it. For example, an application program would be scalable if it could be

moved from a smaller to a larger operating system and take full advantage of the larger operating

system in terms of performance (user response time and so forth) and the larger number of users

that could be handled.” (SearchDataCenter, 2006)

• “Def.1: [Scalability is] how well a hardware or software system can adapt to increased demands.

For example, a scalable network system would be one that can start with just a few nodes but

can easily expand to thousands of nodes. Def.2: [Scalability] refers to anything whose size can be

changed (e.g., a scalable font is one that can be represented in different sizes). Def.2: [Scalability,]

when used to describe a computer system, the ability to run more than one processor.” (Webopedia,

2006)

• “A highly scalable device or application implies that it can handle a large increase in users,

workload, or transactions without undue strain. Scalable does not always mean that expansion is

free. Extra-cost hardware or software may be required to achieve maximum scalability.” (Farlex,

2008)

• “[Scalability is the] ability to easily change in size or configuration to suit changing conditions.

For example, a company that plans to set up a client/server network may want to have a system

that not only works with the number of people who will immediately use the system, but the number

who may be using it in one year, five years, or ten years.” (ComputerUser, 2008)

• “Def.1: A system whose performance improves after adding hardware, proportionally to the ca-

pacity added, is said to be a scalable system. An algorithm, design, networking protocol, pro-

gram, or other system is said to scale if it is suitably efficient and practical when applied to large

situations (e.g. a large input data set or large number of participating nodes in the case of a dis-

tributed system). Def.2: A scalable online transaction processing system or database management

system is one that can be upgraded to process more transactions by adding new processors, de-

vices and storage, and which can be upgraded easily and transparently without shutting it down.

Def.3: A routing protocol is considered scalable with respect to network size, if the size of the

necessary routing table on each node grows as O(log N), where N is the number of nodes in the

network.” (Wikipedia, 2008)

• “Scalability refers to the component’s ability to adapt readily to a greater or less intensity of use,

volume, or demand while still meeting business objectives.” (Chiu, 2001).

210

Appendix B

Industry Cases

In order to gain a better understanding of common causes for scalability problems in in-

dustry, we conversed with 16 companies of different sizes, industries and maturity lev-

els. This appendix describes our findings and presents a summary of each industry case.

B.1. Motivation 211

B.1 Motivation

In addition to review the state-of-the-art in scalability research, we sought to gain a better understanding

of the treatment of scalability in industry. We were particularly interested on how scalability was dealt

with during the development lifecycle, common causes for scalability problems and lessons learned

by professional developers who have experienced scalability problems on their systems. For such, we

conversed with 16 companies of different sizes, industries and maturity levels. Conversations, took the

form of phone or face-to-faces interviews, each lasting around two hours. Interviews were recorded

and transcripts were produced. Most interviewees were experienced software developers, who had been

closely related with the system they choose to describe.

The interview was designed to uncover the developer’s experience and involvement with the system

being described, relevant information about the systems functionality, application domain and architec-

ture, the software development process followed, the scalability problems faced and their solutions, and

lessons learned from the experience. Towards the end of the interview, there was a couple of “specu-

lative questions” that investigated the interviewee’s opinion regarding scalability problems in general.

Questions were revised by a psychologist to minimized the chances of biasing the interviewees answers.

They are listed in the end of this section.

The interviews, which were conducted in 2007, covered both recently developed systems as well

as systems dating back to the 90’s. The fact that we have included older systems may raise a concern

regarding the validity of our observations for today’s reality. However, among the 16 companies, there

were three consultancies specialized on performance and scalability. With these consultancies we dis-

cussed scalability in more general terms. We asked about commonly found scalability problems, their

causes and resolutions, as well as their advice to build scalable systems. The conversations with these

consultancies confirmed our own observations from the interviews. These observations are covered in

the next section.

While these results were not gathered by any scientific means, it helped us to confirm our intu-

itions and develop a better understanding of the treatment of scalability in practice. Conversations also

provided us with a number of examples used throughout this thesis to motivate discussions, and illus-

trate common scalability problems and resolutions tactics. In particular, these interviews confirmed the

importance of the requirements phase in preventing scalability problems and helped us to articulate com-

mon concerns that illustrates the benefits of applying goal-oriented requirements engineering for eliciting

scalability requirements.

B.1. Motivation 212

Interview Questions

1. Can you please quickly describe your experience as a software developer? E.g. Pro-

grammer, architect role? Years of experience?

2. What was your involvement in the system you are about to describe? E.g. Design,

implementation, testing?

3. Could you please describe the system and its intended functionality?

4. Could you please quickly describe the process used to build the system? E.g. How

the requirements and design were captured? What kind of analysis and testing were

performed?

5. Could you please describe the application domain of the system? Hardware, environ-

ment, users, workload?

6. Could you please describe the main aspects of the system design?

7. Could you please describe the scalability problem faced by the engineering?

8. When did the company realized the system had scalability problems?

9. Could you please describe how the problem was corrected?

10. Was the problem expected or did it take the engineers by surprise?

11. Looking retrospectively, which design and environment characteristics most contributed

to the problems? Which system qualities were mostly affected? Can you tell me the

scaling range and hard bounds? Can you currently describe the relationship between

them?

12. If the problem was expected, how was the threat been dealt with during the require-

ments, design or testing? Why do you think the problem still happened, despite of all

the measures taken?

13. Given enough time and money, what could the software engineers have done to avoid

the problem?

14. Under the circumstances at the time, what could have been realistic done to avoid the

problem?

15. In your opinion, why so many systems encounter scalability problems?

16. In your opinion, which phase of the software development lifecycle is the most impor-

tant in order to build scalable systems? E.g. requirements, design, coding, testing?

B.2. An Overview of the Industry Cases 213

B.2 An Overview of the Industry Cases
Interviews covered a variety of systems, from small bespoken applications developed in an ad-hoc man-

ner, to complex systems built according to a strict software development process, to infrastructure sys-

tems whose main objective was to provide scalability. All of them faced scalability problems. Some-

times, problems were uncovered during load or stress tests. Other times, they were predicted by moni-

toring the system’s load and resource usage during production. However, often they were discovered by

customers during system usage.

Scalability problems took developers by surprise on many occasions. Some problems, however,

were expected and deliberately not dealt with until they became a reality. Reasons for doing so varied

from the belief that developers would be able to solve the problem later easily, to conscious decisions to

focus on more pressing issues. Often, scalability problems were fixed through workarounds—up to the

point the system became unmanageable, requiring a complete redesign. Sometimes, they were treated

as bug fixes to be addressed in the next release cycle. On other cases, the companies chose to let these

problems happen, mitigating the consequences every time.

Causes for scalability problems were varied, some of which are listed below. When enquired about

the phase of the development lifecycle that was more important when building scalable systems, most

interviewees elected requirement elicitation.

Time-to-market pressures: The most cited cause for scalability problems. Time pressure happened for

a variety of reasons, such as an upcoming marketing campaign, the need to overcome competi-

tors, and end user pressure. As a consequence, nearly everything has happened. Processes were

abandoned, companies felt obliged to squeeze the phases of the software development lifecycle,

sometimes removing them altogether. Load tests were moved into the production, management

pushed for a quick solution or more features even when scalability problems had been predicted,

and systems were released with known scalability problems. As a result, people tended not to take

responsibility for scalability failures.

Start-up companies were the most susceptible to such pressures. They were forced to con-

centrate on functionality in order to gain market share and generate revenue to survive. These

companies were often under-staffed, had less experience, and little money for investing in tools

and infrastructure. There was generally a belief that the customer would trust the company to fix

scalability problems later. It has been argued on a few interviews that a company must get to a

certain size before it is able to create a product properly.

In summary, developers were under too much pressure to consider scalability carefully, and

when looking back they often believe they did their best under the circumstances at the time.

Complete lack of requirements: Some systems were built without a requirements specification. They

were novel products or research tools that did not existed on the market. For this reason, developers

implemented features they considered useful. These features were often implemented in an ad-hoc

manner and without any concern for scalability.

B.2. An Overview of the Industry Cases 214

Lack of non-functional requirements: On many occasions, a requirements specification existed, but it

concentrated on functional requirements, never considering load, growth characteristics or techni-

cal and physical boundaries. Scalability requirements were often overlooked or undervalued, fol-

lowing the dangerous belief that scalability could be addressed later. Without such requirements,

some developers declared they deliberately did not address scalability with the fear of creating

new problems or of optimizing something that was not required. As a consequence, scalability

was not considered when designing some systems. There were also cases when non-functional

requirements were only elicited after scalability problems became apparent.

Some companies raised scalability questions from the outset. These were companies whose

business was to provide scalability, whose revenue was driven by volume processed (such as tele-

com companies), who by nature dealt with extreme high volume (such as scientific computing)

and companies in more mature industries (such as banks)

Imprecise non-functional requirements: Sometimes, scalability requirements were drawn naturally

from QoS agreements with respect to different values of the scaling ranges. This is true particularly

for some sectors, such as telecom. Other times, however, scalability requirements seem to have

been derived from folklore or the willingness to comply with generally accepted good practices in

software development, which could impose unjustifiable demands on the system design. This is

the case of the vague belief in the need for linear scalability — e.g. when throughput is required

to increase linearly with machine capacity (Brataas and Hughes, 2004).

There were also occasions where the application domain was not known. For example, when

developing novel products whose market did not exist and whose popularity was hard to predict.

On these cases, imprecise requirements were sometimes elicited from informal sales conversa-

tions or were based on wrong assumptions. It was also observed that people may know the mar-

ket, but were often bad at estimating concurrency and growth. In some cases, eliciting precise

non-functional requirements is difficult because they are very dependent on the complexity and

distribution of the customer data, not only the load.

Scalability requirements were often described in terms of boundaries. Focusing on limiting

cases of relevant domain characteristics may lead to a solution that does not perform at its best

for the sub-ranges of greatest interest to the stakeholder. For example, a system that is optimized

to achieve the best performance at peak load may not be optimal under normal load, which may

be more important to stakeholders. Another observed cause for imprecise requirements was little

interaction of the commercial team with the technical staff, leading to requirements that were not

technically feasible.

Changing non-functional requirements: Requirements also changed during the lifetime of some of

the systems discussed. Often because they were found to be incorrect or because the application

domain had changed. That were also cases in which the company targeted new markets, whose

scale had a very different nature from the markets the system was originally built to address.

B.2. An Overview of the Industry Cases 215

Another common case of changing non-functional requirements was on licitation processes, where

the real numbers were only disclosed after the contract was signed.

Inadequate design: Give a lack of non-functional requirements, some systems were built without scal-

ability in mind and architects chosen inadequate solutions to the problems (e.g. the use of syn-

chronous communication when there were many concurrent requests). On more extreme cases,

there was a complete lack of architecture.

Scalability through hardware seemed a popular strategy. Some companies hit the limits of

vertical scaling. Although horizontal scaling was often used, it was not always properly imple-

mented. A few companies, for example, scaled the system as a monolithic instance, not taking full

advantage of the hardware infrastructure. It is however recognized that some problems are more

serializable then others, making some systems easier to design for horizontal scaling. This is the

case with telecom and some scientific applications.

Inexperienced developers: Interviewees often described developers as inexperienced—with large sys-

tems, with a particular industry, with the environment being used, or with software development in

general. Some companies relied on trainees with little experience and keen to use new technology.

Basic implementation mistakes: Perhaps the little experience can justify some of the mistakes made

when building the software systems described on the interviews. Developers were reported of ig-

noring basic computer science concepts, having little interest about the computational complexity

of algorithms, designing interfaces without concern for performance, using wrong design patterns,

and so fourth. Some of the problems described were well known by the software engineering

community, indicating that a proper research into the adopted solution was not performed.

Inadequate tools and infrastructure: Another cause of scalability problems often mentioned was the

use of inadequate tools and infrastructure. The reasons varied from lack of money to internal

organization rules (e.g. bureaucracy to acquire proprietary tools or new machines).

Inadequate use of technology: The use of new technology, without sufficient experience of the devel-

oping team, was blamed for the creation of code with performance and scalability problems. That

included bad configuration of tools, from-scratch-implementation of services already provided by

the technologies, and the improper use of technology (e.g. not taking advantage of sets when using

a relational database).

Lack of load/stress tests: Load and stress tests were described as overlooked and undervalued, both

by developers and customers. They are activities that were often ignored due to time-to-market

pressures or wrong beliefs about the system capacity and ease of change. On a number of cases,

load and stress tests were only performed after the system had been put into production and had

presented scalability problems. Mentioned exceptions were systems developed for restricted en-

vironment, businesses whose revenue are driven by volume, and systems whose business is to

provide scalability. It has also been argued by some interviewees, working as performance and

B.2. An Overview of the Industry Cases 216

scalability consultants, that few industries understand the importance of non-functional tests, that

testing is seen as an under-job, and that there are few testing specialists on the market. Load and

performance tests were described as very time consuming to plan and execute.

Inadequate load/stress tests: There were cases in which load/stress tests were performed before pro-

duction, but not in an adequate manner. Sometimes, tests were performed with much less load

then the system would face in production or without considering future growth (e.g. only with the

average load or with the load generated by the company’s biggest customer at the time). Other

systems were tested in a different infrastructure/topology from the production environment (e.g.

locally and without taking the network latency into consideration, or in a simpler network).

Inability to perform load/stress tests: Some interviewees argued it was impossible to perform

load/stress tests. Reasons cited were insufficiently powerful infrastructure, and inability to simu-

late production load (e.g. Internet-based applications).

Inability to reliably predict scalability beyond tested load: All consultants mentioned the difficulty

in extrapolating test results to heavier loads or different environments. Difficulties were explained

by the large number of variables and assumptions. In fact, two of the consultancies routinely ask

for equivalent testing infrastructure from customers or do not guarantee results, explaining they

are based on assumptions that could be incorrect.

Once-only load/stress tests: The importance of continuous functional testing is well understood and

accepted in the software industry. However, load tests were rarely repeated after changes to the

systems described. As a result, scalability problems were sometimes caused by knock-on effects

of these changes.

Dangerous beliefs: We have witness a number of dangerous beliefs that led to some of the causes

listed above. For example, some developers admitted to have assumed some piece of code would

simply work or have linear scalability without having tested for it. There was also a general

reactive approach to scalability, in which developers believed that systems evolved ‘naturally’

and scalability risks could be easily addressed when they became a reality. Normally, developers

trusted a more powerful machine or more machines would solve scalability problems, and some

believed that scalability through hardware had no limits. It was also believed that the customer

would generally trust the company to fix scalability problems and that it was more economically

viable to get consultants to solve scalability problems rather than building scalability into the

application. It was also pointed out by consultants that developers believe what is advertised in

terms of volume of requests handled by application servers and alike, forgetting that the system

performance and scalability also depends on the design of their applications.

Unplanned evolution: Another major cause of scalability problems was unplanned evolution. Many

systems evolved from bespoken applications or research tools to commercial products. They were,

B.3. Summaries of Industry Cases 217

for this reason, not designed to handle the scale they ended up facing. Engineers struggled to ac-

commodate the variability of requirements from different customers, making use of workarounds

that would often lead to scalability problems. Interestingly, we have observed two opposite scenar-

ios with research tools, those whose scalability had been completely neglected and those whose

scalability had been thoroughly investigated—it basically dependent on whether scalability was

part of the problem the research was trying to address. Finally, there were also the systems who

changed markets due to a business opportunity, suddenly having to deal with a complete different

load.

Unexpected scaling: Developers were also often taken by surprise for the scaling of some aspect the

system that had not been considered. For example, developers might have planned for the scaling

of some characteristics, but overlooked others (e.g. consider the number of incoming request, but

not the size the data these requests were carrying). Unexpected scaling was also caused by unpre-

dicted usage scenarios, software errors and knock-on effects of software/infrastructure changes.

B.3 Summaries of Industry Cases
This section contains a summary of the interviews conducted as part of this research. When the intervie-

wee told us the story of more than one system, one was selected to be described here. Details that could

compromise the identity of the companies were concealed and the interviewees names are fictitious.

Some cases could be described with more details then others, as authorized by the interviewees.

The description of industry cases cover the following points: (1) the interviewed experience and

role on the system being described, (2) a brief description of the system and of its architecture, when

relevant, (3) the development process followed, (4) the scaling characteristics of the application domain,

(5) the scalability problems faced, when they became apparent and how they have been solved, (6)

lessons learned, and finally, (7) their opinion on issues related to scalability in general.

B.3.1 ERP System

Inacio has over ten years of experience as a professional programmer and software architect. He has been

involved in the design and implementation of a number of systems. His role in the system described was

of technical leader. He was also responsible for the optimization of the application’s database.

Inacio described a client-server ERP system built in the 90’s. The system was divided in OLTP and

OLAP. The OLTP module was always implemented first for customers. The system used a SQL client

that connected directly to an Oracle database. The company started by developing bespoken systems,

but later evolved to a single product that fulfilled the requirements of all customers.

The company did not follow any particular development process. There were two main distinct

groups: the account managers, who were responsible for the business contracts and requirements elicita-

tion, and the engineers, who were responsible for implementation, testing and technical support. Initially,

only functional requirements were elicited. The company followed no particular testing strategy. Once

the system passed very basic functional tests, it was deployed at the customer site. Particularly, no work-

load testing or system optimization was done before the system went into production. The company

B.3. Summaries of Industry Cases 218

counted with two implicit assumptions: (1) The database would be able to handle the load when OLAP

was added, and (2) in the worst case scenario, an upgrade of the infrastructure would solve any scalability

problem.

The company’s customer base, composed by banks and medium size companies in Brazil, grew

from two to nearly one hundred in three years. In average, the deployed system would have ten to fifty

concurrent users, possibly reaching one hundred. Query frequency depended on the type of the user:

humans or external systems. In average, 80% of human users used OLTP, performing small queries at

a rate of one to five queries per minute; the remaining 20% used OLAP, requesting ten reports per day.

Although the majority the reports had one or two pages, some reports could reach three thousand pages.

External systems sent, in average, ten thousand invoices per day, each with ten lines. Most operations

were performed during working hours.

The company faced a number of scalability problems. As the company’s customers-base increased

and the system evolved from bespoken applications to a product, the engineers struggled to accommodate

the variability of new requirements. The system could not easily support the addition of new types of

queries, suffered to integrate with external systems due to the import/export of large data sets, and could

not handle the increasing number of concurrent users, query load and reports sizes. Attempts to scale

exhausted the system resources and took unacceptable times.

Due to the lack of workload testing, problems were normally uncovered by customers. As the first

complains were raised, engineers realized the system had scalability problems, but did not understand

its magnitude. Engineers then requested account management to characterize the application domain.

However, conflict of interest between engineering and management meant that this task was poorly

executed—without detail or precision, and only in terms of the load at the time. Management felt it

was the customers responsibility to provide them with the characterization of the application domain,

and was more concerned in quickly delivering the system to generate revenue. Engineers felt it was

the management responsibility to provide them with precise requirements and the time and resources to

tackle the problem. No one accepted the responsibility for the failure. The scalability problems were

never properly corrected, instead the company implemented a number of workarounds, particularly in

terms of database optimization.

Inacio blames the scalability problems at the lack of a process that treated scalability and em-

phasized that such a process should not only provide the ability to quantify and qualify the scalability

characteristics of the system, but should also assign responsibilities to all involved. He believes that

an Agile development method would have been more appropriate and that non-functional requirements

should have been elicited earlier.

When enquired about scalability problems in general, the interviewed emphasized the importance of

carefully described requirements. He believes that, if not given proper requirements, architects and pro-

grammers will either overlook the non-functional aspects of the system or will deliberately not address

them with the fear of creating new problems for trying to optimize aspects that were not required.

B.3. Summaries of Industry Cases 219

B.3.2 Message Validator

Mark has been a software developer for twenty years, seven of which he has worked as an independent

adviser and technical leader. The system he describes was first developed as part of his PhD research

and turned into a commercial product.

The system validates messages against a number of validation rules written by the customer in a

graphical tool. Its engine is commercialized as an API, which is used by customers to build their own

systems—normally standalone applications or Web services. When the system starts, rules are loaded in

the engine, which then waits for messages to validate. During validation, the message is loaded entirely

into memory, so it can be randomly accessed. Rules run independently and the engine may hold a number

of messages in memory.

The system was first written as a prototype to solve a research problem. It then improved in order

to demonstrate its usefulness in a real-world setting. By the time it became a commercial product, the

system had gone through a lot of performance optimization and had received an user interface. There has

never been a requirement specification. Mark initially implemented features he considered the customer

would want. Load estimates came often from informal sales conversations and, in this case, were highly

exaggerated. As a result, the system could handle a much greater number of messages then it has ever

been required. The system has 70% of unit test coverage. Performance figures with realistic examples

were produced to support the sales process.

The system has been used in a number of different domains. Currently, most of its customers are in

the finance sector. The number of rules developed by customers varies greatly. The largest set of rules

the system is known to be used with is 2,5 thousand. Size and complexity of messages being validated

also vary, normally between 200 KB and 100 MB.

Recently, Mark has been approached by a company interested in validating 2 GB documents. The

relationship between validation time and document size had been investigated as part of the PhD re-

search. The system’s inability to validate large messages is a known scalability issue. Mark had tried

to address this problem during the PhD research, but he did not succeeded. When the system became a

commercial product, they chose not to address this problem and concentrate instead on functionality and

performance. This limitation has never been a problem to the company, as the system was normally sold

for transaction processing. At the time of the interview, Mark had not yet decided whether they should

change the system to support larger documents. The prospective customer was aware of the limitation

and conversations were taking place.

Mark does not regret his decision of prioritizing functionality and performance. He explains that if

a new product does not have enough features, it fails immediately. However, if it has scalability prob-

lems, customers will normally trust the company to fix it. Mark’s advice is to understand the system’s

scalability from a theoretical point of view, but optimize it to the typical case, rather then try to fix it

to extreme scenarios. He believes it becomes important to understand the system behavior beyond the

common cases if there is a chance that the system will need a complete redesign when limits are reached.

B.3. Summaries of Industry Cases 220

B.3.3 Cluster Infrastructure

Steve has over twenty years experience in the software industry. He has described the development of a

cluster infrastructure, for which he has been one of the principle software architects. The infrastructure

was first built by a start-up company on the 90’s. Given that a cluster is aimed at providing scalability,

this quality was a major concern. In particular, architects were concerned with the amount of coordi-

nation and synchronization they would implement between servers in the cluster and the provision of

ACID guaranties. They deliberately decided to provide a weaker coordination between cluster mem-

bers and relaxed ACID guaranties in order to gain scalability. Retrospectively, these proved to be good

decisions—the cluster achieved linear scalability at least in the tens of servers.

As is common with start-up companies, particularly the ones building a system to which a market

does not exist yet, there was no requirements gathering. The development team concentrated on im-

plementing what they believed to be a suitable set of features and on achieving good scalability. The

company was also under-staffed, both code and tests were written by the same developers. As a conse-

quence, there were never enough tests and functional tests were given priority over scalability ones.

The cluster was launched without any known scalability limits. It was not until one year later

that a scalability problem became apparent, taking the architects by surprise. The cluster provided an

advertisement feature for services. At start-up, every member of the cluster would advertise each service

individually. As customers built bigger and more complex applications, the number of services in the

cluster increased, generating a large number of announcements that led to unacceptable booting times.

The problem was promptly corrected.

During development, the architects were constantly concerned with the number of servers and the

load the cluster could support, rather than the number of services that could be deployed on each server.

They had, therefore, tested the cluster with much fewer services than were later created by customers

in the field. Steve believes this scalability problem could have been predicted if this particular scaling

characteristic had not been overlooked.

The company was later acquired by a larger organization, adopting a more rigorous software devel-

opment process. The process included a dedicated quality assurance team that would write functional

and load tests as the code was being developed. Yet, there were no release requirements in terms of

scalability. If a customer complained that the cluster was not scalable in some dimension, the problem

would be fixed in the next release.

Steve believes that achieving software scalability requires a proactive approach, rather then a re-

active one. Developers should ask customers about the scaling aspects of their applications and try

to project the limits the system may hit. He also emphasizes the importance of repeating load tests

prior to releases and negotiating software quality trade-offs among project managers, software develop-

ers and customers. Nevertheless, the interviewee alerts that there are many other difficulties, such as

testing Internet-scale applications under realistic load and the pressure for developing features suffered

by start-up companies to gain market share. Finally, Steve believes that a methodology to treat software

scalability would be beneficial, yet he points out that there is a lot of discussion on the software engineer-

B.3. Summaries of Industry Cases 221

ing community about how and when companies should introduce more rigorous software development

processes.

B.3.4 Telephone Billing System

Daniel has over ten years professional experience in the software industry. He has worked with a number

of programming languages, databases and operating systems. He is currently a project manager. Daniel

describes the development of a large telephone billing system. When Daniel joined the project, 80%

of the system functionality was implemented. However, he estimates that only 15% of the code that

currently provides the system’s availability and scalability had been written.

The system is responsible for the billing of telephone calls. An telephone call is composed by a

number of messages that contain a series of information, such as the caller and callee identities, the

duration of the call, and who terminated the call. The system captures these messages from the tele-

com operator’s network, identifying each message, and reconstructing the call before it is saved on the

database to be made available to a number of business applications. The system is composed by modules

responsible for distinct tasks such as identifying, ordering and decoding messages, and composing calls.

The system has to deal with tens of thousands of messages per second, with over a hundred different

message types that are mapped to a number of distinct protocols. The resulting call is composed by over

100 fields.

The company was chosen by the telecom operator through a licitation process. For this reason,

both functional and non-functional requirements had been clearly defined. The request for proposal

(RFP) document included a number of international and governmental norms the system should comply

with, as well as the specific requirements from the telecom operator. At the time, the telecom operator

planned to expand its business and provided the current and the maximum expected load, as well as

the time frame between them. The project team was composed by experienced software developers in

the sector. They were particularly concerned with memory and disk usage, which had to be estimated

through prototyping tests for the commercial proposal.

After the licitation process was won, more details about the application domain were disclosed.

Even though the project team had inflated the original numbers provided by the telecom operator, the

actual load was greater than expected. In the system, large part of the processing was done in memory

and all messages, logs and events were stored in disk. Additionally, in order to prevent messages from

being lost on the network, the system kept each message on a memory buffer until the processing was

complete. With the new load estimate, both memory and disk would face exhaustion. Correcting the

problem required a major refactoring, with happened before the system was put into production.

The system was built with availability and scalability in mind. Tests during the development process

were limited due to the difficulty of simulating a real production load in the telecom sector, including the

volume of messages, the variety of protocols and their relationships. Both functional and non-functional

tests were repeated after the system refactoring. When completed, the system was tested in the actual

network with real load. Only then, it was put into production. The company constantly monitors the

system. Although the system has never halted due to scalability problems, it has on rare occasions

B.3. Summaries of Industry Cases 222

produced inconsistent results due to an extended network downtime and, consequently, an overflow of

the memory buffer. They have now migrated the system to a 64 bit machine, increasing the address

space.

Daniel admits that the team faced many problems during the system development, mostly due to

the lack of a formal project management, which they are now trying to address. He attributes the success

of the project to the team’s experience in the telecom sector and a proactive approach to uncover and

resolve scalability problems.

When enquired about scalability problems in general, Daniel blames the lack of precise require-

ments and the little importance given to non-functional tests.

B.3.5 Mobile Services

Andrew has been a professional developer for seven years. He tells the story of a start-up company

that specialized in mobile applications. Andrew has been involved with the architecture, implementation

and testing of the applications described. More specifically, the company provides entertainment and

information services on mobile phones through technologies, such as Short Message Service (SMS),

Multimedia Message Service (MMS) and Wireless Application Protocol (WAP). All applications are

similar in nature, receiving messages from telecom operators, processing these messages and sending a

response. The company has lately developed an integration platform that allows third party systems to

connect to the telecom operators.

Historically, the company developed bespoken systems, which were later adapted and sold to other

customers. In the early days, applications were developed in an ad-hoc manner, some as a monolithic

block. These applications regularly suffered from scalability problems, which were usually corrected

through workarounds. Problems were often caused by insufficient knowledge of the technologies being

used and a complete lack of process. The technical team had predicted many of the problems, but they

were under constant pressure from the business area to create new applications and maintain existing

ones. Some products, with nearly identical functionality, were implemented by distinct teams with dif-

ferent architectures and technologies. The company was incurring high costs to maintain these products,

when a single software would have been sufficient. The company was also loosing talents and lacking

staff to create new products.

As the company matured, they have drastically changed their vision, aiming to develop software

that can be reused to distinct customers. In the eight months prior to the interview, they started to follow

a more rigorous process. Business, technical and infrastructure teams now work together to model

the products as set of independent and reusable services that can be replicated to achieve the required

scalability. The code is instrumented and the services are constantly monitored. One difficulty is that

the company is launching new products into the market, for which the public acceptance, and therefore

the load, are hard to predict. For this reason, they currently focus on building application that can take

advantage of horizontal scaling.

Nevertheless, Andrew still considers the testing process far from ideal. Functional tests are per-

formed during development. Basic non-functional tests are only performed during deployment. Once

B.3. Summaries of Industry Cases 223

the system has gone into production, changes are normally made without repeating the tests. An excep-

tion is the integration platform they have recently built, which has been more thoroughly tested because

of QoS agreements.

When enquired about the major causes of scalability problems, Andrew blames the insufficient

knowledge and inexperience among developers about the technologies being used. He also believes

developers are overlooking basic computer science concepts. Companies need better professionals and

an alignment of interest between business and technical groups, Andrew concludes.

B.3.6 Web Application

Colin has been a professional developer for seven years. He is a certified database administrator (DBA)

and specializes in managing Web and e-mail servers. He also does consultancy work. He has joined his

current company in 2004, where he is responsible for managing the hardware infrastructure and Web

servers.

The company envisions and develops new Web-based products to be launched on the market by

their customers, telecom operators. As they specialize on novelty applications, their popularity are hard

to predict. Expected load is rarely discussed. Instead, they have a scalability strategy to support a varying

load. Their SLAs are only in terms of availability, never performance.

Applications have similar architectures—a number of Web servers running on commodities ma-

chines to which the load is dynamically distributed. They scale horizontally, by adding more hardware

as the demand for a particular application increases. This strategy is built into their business model. New

applications are normally deployed in shared servers, and may receive a dedicated server if they prove to

be a success. Load analysis is performed weekly, sometimes daily, and the number of servers is adjusted

according to the demand. They also maintain a few idle machines to support an increase in the load due

to a marketing campaign or some other reason. In the same way a product may have a sudden popularity,

it may quickly decrease, as when an offer gets to an end. For this reason, the company cannot do a large

upfront investment in hardware.

Historically, the company has never built systems to be scalable. It was assumed that the need

arising, they would find a solution to scale. Developers have done stress tests on applications, but

forgot to account for all the scaling characteristics. For example, on the past, they have considered the

number of requests, but overlooked the size of the data being received. As the system started to support

high resolution images and videos, the machine limits were reached with fewer requests than had been

predicted by the stress test.

Colin described a recent availability problem. A change in the cache implementation slowed down

the operations involving the database. This delay led users to retry their operations, causing a sudden

increase in the number of requests and bringing the system down. He admits developers had not expected

such a problem, but admits that if the company had to prepare for such situations, they would have

to maintain a very large number of idle machines. The interviewee considers as their main scalability

problem the cost of monitoring and managing all these machines, an activity that is very time consuming.

He believes the true limitation is financial. Could they afford commercial Web servers and more powerful

B.3. Summaries of Industry Cases 224

hardware they would not have scalability problems, because the supported load is informed upfront by

the vendor.

When enquired about the major causes for scalability problems, Colin estimates that in 90% of

the cases, the problem is on the code, not the architecture. Projects are usually under tight deadlines

and insufficient money. Designing for scalability requires a high investment in time and money. He

speculates that it is more economically viable to hire a consultant to solve scalability problems than try

to build scalability into the application. Thinking along the same lines, the interviewee adds that it is not

worth to spend too much time eliciting scalability requirements. Instead, developers should concentrate

on building an application that scales through hardware and carefully choose their supporting software,

such as Web servers and databases. Colin believes hardware scaling has no limits, particularly in the Web

world and considering today’s technologies, such as servers virtualization. He also admits he would not

specifically test for scalability because, at least in the Web world, it is reasonable to assume it is linear.

This may not be the best solution, but it is cheaper, he concludes.

B.3.7 Funding Compliance System

Iracema has ten years experience in the software industry. She has worked with a number of program-

ming languages and technologies. She was the a technical leader of the project being described and

responsible for the system architecture.

The interviewee works for a governmental institution that funds national businesses. In exchange

for funding, the institution requires the compliance with a number of rules. Occasionally, inspectors visit

randomly selected business to evaluate compliance. All aspects of the visit are logged into a system,

such as any irregularity found, documents requested and the decision to continue or cancel funding. The

system then generates a partially filled Microsoft Word report that is edited by the inspector and checked

back for eventual reference.

The system, which is now in its third incarnation, was developed in-house. It was the organization’s

first Java project. They chose to use an open source application server and a persistence framework to

communicate with five different databases.

The circumstances were far from ideal. The system was being built to support a process that had

not been fully defined. They were, therefore, aiming for a moving target. For internal reasons, the

project team had no control over the choice of infrastructure in which the system would run. In fact,

development started without the infrastructure had been decided on. The team first tried to follow the

RUP process, but even before getting to the implementation phase, pressures from the end user made

developers abandon the process. The first version of the system was then built in an ad-hoc manner,

based only on functional requirements. When the system went into production, the end user was not

satisfied with implemented features or the system’s performance. The second version started almost from

zero. This time, developers imposed a minimum process, which included use cases, sequence diagrams

and test cases. The system entered the User Acceptance Tests (UAT) phase, which concentrated mainly

on functionality. Performance was only measured subjectively, as perceived by the user playing the role

of the tester. The third version expanded the system’s set of features.

B.3. Summaries of Industry Cases 225

Some problems became apparent when the number of concurrent users increased during produc-

tion. For example, individual queries that during UAT were completed almost instantaneously, started

to take unacceptable times when executed concurrently. This particular problem was due to insufficient

knowledge of the Java persistence framework being used and was corrected through reconfiguration.

The system has also run out of disk when the users started to create reports which were much larger than

expected. These large reports were considered unnecessary by the organization and the problem was

solved by limiting the size of the report that the end user could create.

Looking back, Iracema recognizes a number of mistakes: They had only considered functional

requirements. Although they had been told how many users the system would have, they never simulated

the production load. In fact, load and stress tests had been completely overlooked. The system had been

tested only locally, so they never accounted for the network latency. The team also did not considered

the size of the reports or enquired whether other applications would be sharing the servers with their

system.

Regarding scalability problems in general, Iracema believes that planning is undervalued. People

only invest time and money when a problem occurs. Developers have to work under tight deadlines and

with limited money. Another problem is inexperience with new technologies and development of large

systems.

B.3.8 ETL System

Mathew has 8 years experience in the software industry. He has described a system that he has helped

to migrate from C++ to Java. The system involved a data Extraction, Transformation and Load (ETL)

process. Data was extracted from the customer datasources into an object model that was held in memory.

The system would then perform a n-1 comparison of all entities to remove duplicates before the data

was loaded into the database. These in-memory comparisons were the source of one of the system’s

scalability problems.

The company was a spin-off from a university and the system evolved from a research prototype

into a commercial product. For this reason, its first C++ implementation had not been driven by a

requirements specification. A few years later, the company decided to migrate the system to Java. The

migration consisted mainly in re-writing the code, while maintaining the original architecture. The

new system was tested thoroughly, considering the load generated by the leading players of the finance

sector, which at the time did not exceed 4GB of input data. Tests were always performed on a hardware

infrastructure that matched the customers production environment.

The company that historically targeted the financial sector, attempted to apply their solution to a

different problem space. A contract was signed with a data aggregator who aimed to combine different

datasources into a homogeneous set of data. It was initially agreed that the system would have to load 60

GB of data. The technical team suspected the ETL process would take a while for that amount of data, but

assumed it would work. As the data extractors started to be built, developers realized that the process was

taking much longer than expected. Meanwhile, more datasources had been incorporated to the contract,

and the system would have to handle 300 GB of data. An extrapolation performed by the developers

B.3. Summaries of Industry Cases 226

indicated that doing so would take no less than 12 years. The ETL process was then re-designed, leaving

all the deduplication and disambiguation to the database. The new implementation improved the system

performance in over 200%, achieving an acceptable processing time. As with the other customers, tests

were performed in a hardware infrastructure that matched the production environment.

Looking back, the interviewee concludes that the story could not have been much different. He

observes that this particular ETL problem could have been avoided if a DBA had been involved in the

early days of the company—databases are optimized to do bulk comparisons. Nevertheless, as with

many start-up companies, the system evolved from bespoken projects to a product. Although, other

forms of data extraction had often been discussed, the priority was always closing new business deals

and developing new functionality. The interviewee also explained that scalability requirements were

particularly hard to define. Processing time depended not only on the amount of data and number of

concurrent users, but also on the complexity of that data. Customers, themselves, rarely expressed

performance concerns.

Matthew considers that software development for scalable systems has become much easier over

the last few years. Organizations have now, at their disposal, a number of open source tools to address

common problems. He also emphasizes the importance of enforcing good design and programming prac-

tices. When enquired about the phase of the development lifecycle that is more important to scalability,

Matthew elected requirements, followed by design, testing and implementation.

B.3.9 Service Control System

John has five years experience in the software industry. He has worked on several open source projects

and is the technical leader of the system being described. His responsibilities include eliciting require-

ments, defining the system’s architecture, choosing tools and managing developers. When he joined the

company, the system was almost fully implemented and was already deployed on a customer site.

The system, which controls over the counter services, was first developed at a customer request. It

monitors the counters, distributes tickets, controls queues of people waiting to be served, suggests how

many counters need to be active at certain times of the day, and collects feedback from the people being

served.

The initial technical team was composed by one professional developer and two trainees. The

system was built in a very ad-hoc manner. The project manager elicited functional requirements with the

customer, without ever interacting with the technical team. There was not an overall architecture, each

developer designed the part of the system he was responsible for. There was very little communication

between team members. Functional tests were basic. The system’s performance was effectively tested

during production, when the first non-functional requirements started to appear.

At the time, the system was deployed in a bank with three agencies and a total of thirty users. It

controlled around seven hundred services and two thousand transactions. Some time later, the customer

deployed the system in more agencies, doubling the load. As the number of transactions increased,

database queries started to take too long. This problem was due to a bad configured object-relational

persistence framework. As the system was deployed in geographically distant agencies, the users expe-

B.3. Summaries of Industry Cases 227

rienced response delays and deadlocks. Errors were basic, such as badly designed reports and data being

transferred without compactation.

The company then started to negotiate with a second bank, with forty agencies and fifteen users per

agency. At this point, they started to see the potential of the system to become a commercial product. The

company then adopted a development process based on CMMI. They prioritized requirements, reduced

the release cycle, started to use a tool to manage requirements and bugs, tried to follow coding best

practices and wrote test cases. This time, the customer imposed a few non-functional requirements.

With the agreement of the customer, they estimated a future load that was 20% higher than the current

one. Yet, load tests were performed locally and only after the system had been deployed. Later, the

network latency caused problems.

At the time of the interview, negotiations with an even larger customer were taking place. The com-

pany has never considered the possibility to scale beyond their current customers and expect scalability

problems. In particular, they will need vertical scaling, which is not supported by the application. They

also expect problems with the synchronization of service counters.

Scalability problems usually took developers by surprise. Most problems were corrected with

workarounds, but twice they had to change the architecture drastically. There has never been a change

that was not triggered by a customer complaint. Looking back, John recognizes that some problems

were well known in the software community and that if load tests had been performed, most problems

would have been avoided. Unfortunately, developers were overwhelmed with tasks that had been badly

planned, he concludes.

John believes that the biggest causes of scalability problems are wrong tools, the application of

wrong patterns, little experience of developers with large systems, little concerned with the computa-

tional complexity of certain parts of the code, wrong assumptions about the scaling behavior of the

system, lack of load tests or system profiling, and lack of non-functional requirements. John elects

requirements as the most relevant phase for the development of scalable systems and warns that it is

difficult to predict load upfront. Implementation is elected as the second in order of importance.

B.3.10 Field Services Systems

Alan has worked for 11 years in the software industry. As a consultant, he has played a number of

roles, including requirements engineer, programmer, software architect, testing engineer and operational

support. He is currently working for a company that specializes in field services systems. In the system

described, Alan has been involved with the design, development, testing and support.

A field services system helps to manage complex field service operations. It includes scheduling

jobs, dispatching workers to specific locations and providing up-to-date and accurate information to

workers on the field. The systems developed by Alan’s company have, in average, over one hundred

users (workers), receiving each five to ten jobs per day through a mobile device. Each device downloads

roughly one thousand pages from the server at start up, and another two hundred pages during the day. In

addition to that, the system constantly receives GPS information from the mobile devices and performs

automatic synchronization. All these messages consume bandwidth and may create queues waiting for

B.3. Summaries of Industry Cases 228

processing in the system’s back-end server.

Alan explains that the system is heavily customized for different fields. The development process

usually involves a Request For Proposals (RFP) by a company wishing to buy an field service solution.

The RFP contains the functional specification and a few non-functional requirements, such as the num-

ber of users and mobile devices. When competition is won and the project starts, there is usually another

round of requirements elicitation. At this stage, the company agrees with hardware and network require-

ments, response time, load to be supported by each release, and how far the system should scale. The

company then creates the technical architecture, functional specification and a system integration plan.

The system is developed by concurrent workstreams: implementation, hardware and network, and inte-

gration. Testing includes unit test, system test, integration test, stress test and UAT tests. The customer

is normally involved in the tests.

Some scalability problems are discovered during the stress test and others avoided by monitoring

the system’s network. However, most scalability problems appear after the system has been put into

production—usually because the amount of data received by the system exceeds the company’s expecta-

tions. More data means more bandwidth usage, longer message processing times, increased queues size

and longer end-users waiting times. Devices are then forced to reconnect, spending more bandwidth and

incurring higher costs to the customer.

Alan explains that these problems happen because these systems cannot be tested at the production

levels. The company normally test the systems with at most ten users and three to four jobs every few

hours. Simulation cannot take into account the GPRS network, he clarifies. In addition, systems are

heavily customized, use different mobile devices, process different data and are deployed on different

networks. Differences are too great to directly transfer the experience with one customer to another. For

this reason, scalability problems are always expected. Alan does not see how it could be different.

Regarding scalability problems in general, the interviewee believes that projects usually are given

less money then necessary. For this reason, development time is reduced, the infrastructure is under-

specified, good tools are not used, tests are overlooked and developers are not prepared. Alan believes

that the most important phase for producing scalable systems is testing.

B.3.11 Communication Services

Christian has been in the software industry for 13 years. He was one of the original architects of the sys-

tem being described. In ten years with the company, he has also worked in the system’s implementation,

deployment, operations support and sales.

The company develops software for telephone operators, telecom operators and cable companies,

managing services and equipment for them. The set of services offered by the company is broad, vary-

ing from dial-up ISP authentication, to e-mail provisioning, to digital television. The system currently

supports over ten million users and over fifty million transactions a day.

The system, which is now in its fourth incarnation, was originally built by five people. Every

major change in architecture was driven by scalability concerns. From the outset, there was a scalability

question raised. Their first customer had over one million users and was planning to grow ten thousand

B.3. Summaries of Industry Cases 229

users a week. It was, therefore, a requirement that the system could grow from one to three million users

in three years.

The system’s first incarnation did not actually solve the scalability problem. After it went into

production, the system started to evolve to contain more services, reaching five different products and one

million devices connected to the network. Adding services required a considerable effort in configuration

and customization, forcing the system to go offline for long periods. The architecture was static and the

data structure was very monolithic. The company then decided to move from a database approach to a

object one, building an information model and decoupling business entities into separate objects with a

link between them. They could now store objects into different locations, scaling their data repository

and co-locating objects to gain performance.

The system’s second and third incarnations were built around CORBA. They were using horizontal

scaling—when a machine was reaching its limits, another instance of the system would be added to

spread the load. That solution was wasteful because the system had two types of end user with very

different usage profiles and one requiring a faster service than the other. Replicating a monolithic system

would not solve the problem for users requiring a faster service. The company, then, decided to break

the system down into services that could scale individually, spreading the load according to the type of

incoming request.

The fourth and current incarnation of the system was created because a very large prospective

customer had operational requirements—in terms of transaction rates—that the company could not meet.

Observing the technology trends in industry, the company opted for building a brand new system based

on Java 2 Enterprise Edition (J2EE). This system has been sufficient for their biggest customers, and

currently they have no scalability problems.

Christian recalls that over the years, the system faced a number of scalability problems, most of

which were expected. They tried to adopt RUP, but felt the process was too heavy for them at the

time. He explains that they deliberately chose the quick solution when under market pressure. On

one occasion, they had to rebuild their system completely due to performance and scalability problems.

Learned that lesson, the company always aimed to build systems with potential to scale. Machines would

initially be over-specified and new ones would be added when necessary. Christian’s experience is that

customers in their industry generally know how much they expect to grow in the next few years. Looking

back, Christian concludes, we have done the best we could with the tools we had.

When enquired about scalability problems in general, Christian said that people are normally not

aware that they will have scalability problems. They do not understand the problem space and do not

realize that requirements are not fixed. Even when people are aware of scalability issues, they believe

they will “cross that bridge when it comes to it”. The potential for scalability should be there from day

one. However, the interviewee adverts, the company must get to a certain size before they can create a

product properly. When companies are small, they have to cut corners to generate the revenue they need

to survive.

B.3. Summaries of Industry Cases 230

For Christian, requirements elicitation is the most important phase in the development of scalable

systems. On his experience, that is the phase that companies on his field have more time for, because

it is part of the sales process. Design is the phase that is most affected by time pressures. Performance

and scalability testing are often pushed into the field and problems are resolved as bug fixes in the next

release cycle.

B.3.12 Data Integration System

Paul has eight years experience in the software industry. He is a certified in Java and Websphere, and

has also worked as software architect.

The system described aggregates data from various external data sources and make them available

to a number of internal applications in a large transportation company. The system was highly asyn-

chronous and had two databases—an active and historical that kept one year’s worth of data. The system

dealt with over two million transactions in a day, including services to internal applications and batch

processes.

The system was built by a CMMI level five company. Roles within the company were well defined.

Business requirements and the main architecture were defined abroad. Paul’s team was responsible by

coding, deployment and maintenance. All code was revised and had to go through the formal valida-

tion of the architects. Functional and load tests were performed by a separate team. Non-functional

requirements were well defined, including the expected number of concurrent requests, availability and

response time. They constantly monitored the system’s CPU, bandwidth, memory, queues sizes, services

availability and response time. Paul describes a scalability problem triggered by external systems errors

and unexpected circumstances.

In addition to provide services to other applications within the company, the system performed batch

processing. These processes included tasks such as copying data from the active database to the historical

one, updating the active database with external data, and removing obsolete data. They were very heavy

processes that consumed a lot of the machine’s resources. In order to guarantee that the system could

continue to provide services to other applications, batches were scheduled to run in strict time frames, so

they would not overlap. The CPU was being heavily used almost 24 hours a day. Sometimes, however,

batches would overlap, drastically increasing the number of transactions the system had to handle and

causing unacceptable response times to client applications. The overlapping of batches could happen for

a number of reasons. For example, if an external datasource became unavailable, the system would have

to wait, delaying the execution of a batch. If a backup or maintenance process was run without previous

agreement, the CPU would get overloaded causing a batch processing to take longer then expected.

There were also occasions where an external system would send more messages than expected and again

batches would take longer to run.

These problems were expected by the company. Their solution was to have developers constantly

on call to stop the system, find a time where the CPU would be less busy and manually reschedule

batches. Looking back, Paul believes the company did the best it could. Keeping developers on call was,

at the time, the most economical solution.

B.3. Summaries of Industry Cases 231

When enquired about scalability problems in general, Paul lists three common reasons for a system

not to scale: bad coding, use of the wrong architecture to the problem, insufficient resources to support

the load imposed on the system. He emphasizes the importance of choosing the architecture, performing

load tests and experimenting with prospective technologies. Regarding the phase of the development

lifecycle, the interviewee elects requirements as the most important one, followed by design, test and

implementation.

B.3.13 Online Games

Anthony has ten years programming experience. He has a PhD and two postdocs in computer science.

He has also four months industrial research experience. Anthony founded a online gaming company

three years prior to the interview, but has not always been full-time dedicated to it. The system was

developed by four people. He is the responsible by the system’s back-end.

The system is a gaming infrastructure. Each game supports two online players and an unlimited

number of viewers. The system also includes an online chat, where participants can discuss and start

new games on virtual rooms. The Java back-end server has a number of components that implement the

logging statistics, the interaction with the database, and the logic of games and rooms. Load balance

occurs before the requests arrive at the Java back-end server. In theory, it is possible to redirect different

rooms to distinct Java servers, although that had not been yet necessary at the time of the interview.

The system was built without following any software development methodology. There was no

requirements or design phase. Developers went straight into the implementation, building what they

had in mind. The games the infrastructure would support were defined by a customer, who wanted

to provide a similar service to an international gaming website. Only functional tests were performed

before production. Some load testing was done after the first scalability problem became apparent.

Load was estimated by looking at the international gaming website, which had around eighty thou-

sand users. The company was developing a national website for a very small country, so they expected

no more than one thousand users. The number of users grew through advertisement and word of mouth.

The system was then licensed to companies in two other countries, considerably increasing the load on

the server.

Anthony admits not having thought about scalability at all. The first scalability problem was hit in

production, when the system reached two hundred users. Since then, the system has faced a number of

scalability problems. Causes varied from threads deadlock, to badly designed SQL in the ASP pages,

to improper use of regular expressions, to badly designed database maintenance routines, to network

downtime. Experienced problems were memory exhaustion in the gaming server, slowness in the chat,

database crashes, sudden disconnection of users, and others—either slowing down the system or making

it unavailable. Problems were fixed mainly by changing the technology, such as using NIO, Java locks

and a different database. The system has also gone through two major refactorings, none of then triggered

by scalability problems. Even though the system had faced a number of scalability problems before these

refactorings, scalability was not a concern when re-implementing the system.

Scalability problems got developers by surprise every time. Anthony says that even now, that the

B.4. Critical Evaluation 232

system is mature, scalability problems are still happening. Developers predict they will exhaust memory

again when the number of users increases further, but have decided to worry about it when the problem

occurs.

Looking back, Anthony does not see how the story could have been different. Scalability problems

could not have been foreseen, since he did not know the technologies well enough. Anthony also de-

clared that he would not have asked more questions to the customers and that knowing the application

domain better would not have helped. The interviewee believes systems evolve naturally. Given more

development time, Anthony would do more testing.

Anthony believes many systems face scalability problems because the customer is only interested

in functionality and is keen on getting new features. Scalability is not a priority until hitting the system.

The interviewee also believes that, at least in the gaming sector, developers should only worry about

scalability during testing, after the system has been fully implemented. He also declared that thinking

about scalability in the requirements phase is too early—Scalability is about optimizing bad parts of the

code, which can only be detected after the system has been fully built and tested, Anthony concludes.

B.4 Critical Evaluation
A benefit of this appendix is:

Benefit: A number of interviews with professional developers describing real scalability problems, with

reflections on the development mistakes, lessons learned and desired research directions.

Interviews were conducted in order to gain a better understanding of the treatment of scalability in

industry. While the results of such interviews were not not gathered by any scientific means, it helped

us to confirm our intuitions, develop a better understanding of the nature of problems normally faced in

industry, and provided us with a number of examples used throughout this thesis to motivate discussions

and to show the applicability of the scalability framework to different application domains and system

designs.

233

Appendix C

A Comparative Case Study Design

This section contains the plan for a comparative case study to assess the impact of the framework in

the software development lifecycle and in the scalability of the resulting system.. The plan was de-

signed as described by Kitchenham et al. (1995). Its structure is a follows: (1) objectives, (2) hypoth-

esis, (3) pilot project, (4) planning, (5) evaluation, (6) outcome, (7) risks, (8) concluding remarks.

C.1. Study Design: An Comparative Study 234

C.1 Study Design: An Comparative Study 1

C.1.1 Objectives

The study takes the form of a coding competition, open to undergraduate and graduate students. The

objective of the case is to conduct a small-scale, controlled study to assess the impact of the framework

in the software development lifecycle and in the scalability of the resulting system.

C.1.2 Hypothesis

1. The adoption of the proposed framework will lead to a deeper understanding of the scal-

ability requirements/capabilities of the system, and therefore, to the ability to better justify

scalability claims. Deeper understanding and better justification for scalability claims are

measured in terms of the explicit definition of scalability requirements, influencing factors,

measurable characteristics of the system and expected behavior for the full range of scaling

characteristics.

2. The adoption of the proposed framework for early-lifecycle scalability analysis will pro-

duce a more scalable system with respect to certain system qualities (e.g. performance,

resource usage, availability). The scalability is described by the causal impact that the scal-

ing of environmental and machine characteristics have on the satisfaction of goals associated

to measurable system qualities. The more scalable system will be the one that achieves the

higher overall utility over the full range of scaling characteristics.

C.1.3 Pilot Project

A pilot project should be representative of the type of project that would normally benefit from the

evaluated method. Although it can be argued that any software development will benefit from an upfront

scalability analysis, ideally, the project should involve large amounts of data, a high-level of concurrency

or complex calculations. As the time of witting, the project had not yet been defined.

Choosing students as subjects has relevant disadvantages:

1. An appropriate project for students would be too small and goals too simplistic to contain real

scalability issues.

2. The framework is likely to have a greater impact than it would on an study involving experienced

programmers. Controversially, students willing to participate in a coding competition are more

likely to be good programmers, who would naturally consider non-functional requirements. In

this case, the framework could be perceived as having little impact.

3. Students’ lack of experience may jeopardize the understanding of scalability issues and identifica-

tion of relevant factors that will impact scalability of the resulting system.

1This case study was canceled for reasons beyond our control.

C.1. Study Design: An Comparative Study 235

4. A case study using students as subjects could be perceived by the research community as having

less credibility.

The advantages of adopting a case study with students are:

1. Students can be more easily persuaded to participate on the study (by offering a money prize) and

are greater in number.

2. Students should have more time and are more likely to be open to new ideas.

3. The case study may highlight a deficiency in the computer science curriculum regarding early

analysis of non-functional requirements.

C.1.4 Method of Comparison

In order to test the hypotheses, the systems constructed with the aid of the scalability framework should

be compared against systems developed by two other groups: one that is oblivious of the true purpose

of the study and another that is told to aim for scalability but is not given the framework. This approach

will also allow the evaluation of the overhead caused by the learning and execution of the proposed

framework.

The hypotheses will be tested by means of questionnaires or interviews and through metrics col-

lected from the resulting system. Comparison will take into consideration the time to complete the

system, high-level design, low-level good-practice rules, achieved utility and preferences values and the

participants’ understanding of the scalability requirements and capabilities of the system.

C.1.5 Planning

The study will involve up to 30 students, divided into 3 groups. Group 1 will be oblivious of the true

purpose of the study. Groups 2 and 3 will be told to aim for scalability, but only group 3 will be given

the scalability framework.

All groups should receive a briefing and be told about the system, rules for the competition, their

right to withdraw and prize. Group 3 will also receive a full lecture on the scalability framework.

All groups will be given the same time, regardless the scalability analysis and will be entitled to

(reasonable) support by e-mail.

C.1.6 Prizes

Participants will be competing within their own groups for a prize of £500 (depending on sponsorship).

Groups 2 and 3 will be offered an extra £100 for the most scalable system. In reality, all groups will be

given an extra £100, regardless. This is just to discourage communication between the groups.

The winners will be decided according to:

• Quality of high-level design

• Values of preferences and utility

• Correctness of concurrency handling

C.1. Study Design: An Comparative Study 236

• Design and implementation of complex algorithm

• Clarity of coding and comments

• Quality of the report and running instructions

C.1.7 Deliverables

Groups 1 and 2 are only expected to submit one deliverable (in the end of the study):

• A (3-page maximum) description of the system including a brief overview of the system, basic

instructions for compiling and running the code, a simple class diagram outlining key classes and

methods (hence should not contain all the methods for all classes), a description of the implemen-

tation of the complex algorithm.

Group 3 should submit two deliverables:

• First Deliverable (half-way through the study):

- Completed scalability analysis questionnaire.

• Second Deliverable (in the end of the study):

- Completed scalability analysis questionnaire.

- A (3-page maximum) description of the system including a brief overview of the system, basic

instructions for compiling and running the code, a simple class diagram outlining key classes and

methods (hence should not contain all the methods for all classes), a description of the implemen-

tation of the complex algorithm.

Once the final deliverable has been submitted, all the participant will receive a questionnaire about

the study. The questionnaire will contain scalability related questions. The answers to the questionnaire

will not influence the decision on the winner. As the time of writing the questionnaires have not been

defined.

C.1.8 Evaluation

Systems will be analyzed and compared according to the following aspects:

• Does the high-level design of the system indicate a concern with scalability?

• What values of preferences and utilities have been achieved for the full range and distribution of

scaling characteristics for groups 2 and 3?

• Can the participant clearly express the scalability requirements and capabilities of the system?

• How well justified is the systems’ scalability?

• Have the participants taken into consideration scalability concerns? How early in the lifecycle?

• Have the participants adopted low-level good-practice rules to ensure performance and scalability

(e.g. in the choice of data structures and algorithms)?

C.1. Study Design: An Comparative Study 237

Hypothesis 1 should be validated by the means of a questionnaire to assess what scalability concerns

the students had in mind when building the system and how they justify their scalability claims. It is

expected that the group doing the scalability analysis will have thought more thoroughly about the issues

and will be able to more precisely justify claims. Additionally, the questionnaire can gather their opinion

about the ease of use and relevance of the framework, as well as identify any other effect not previously

envisaged.

Hypothesis 2 should be validated by comparing the systems from both groups in relation to their

ability to meet requirements as characteristics of the system scale. In addition, to meet requirements,

the systems should be compared according to the value of its preferences and utility, as defined in the

framework.

C.1.9 Expected Outcome

The described case study, by itself, is not sufficient to validate the framework, as is not a typical IT

system that would face scalability concerns and it is an one-off study. Nevertheless, it is expected to

contribute to the research as following:

1. Validation of both hypotheses as stated above.

2. A better-formalized and more detailed process for scalability analysis.

3. Insights on the evolution of the scalability analysis as the software development progresses.

4. The validation of the framework on a different context from the first case study.

5. Feedback from students on the ease of use, benefits and weak points of the framework.

6. Possibly, a practitioner paper showing the benefits of teaching scalability analysis at university.

7. Hopefully, a better understanding from the students of the importance of early-lifecycle analysis

of system qualities.

C.1.10 Risks

A case study with students has a few risks that should be considered. Main risks are:

1. Students may not cooperate. Students may find the proposed framework too complex/time con-

suming.

• This risk can be mitigated by organizing the case study in the form of a cash-incentive com-

petition.

2. Students project might be too small to show any advantage in adopting the process.

• Hypothetical scalability requirements will be enforced.

3. Case study with students may not be perceived as valuable by the research community. It may be

too time-consuming and with a limited value.

C.1. Study Design: An Comparative Study 238

• Reviewers for conferences are actually encouraged to not disqualify a case study only be-

cause it uses students as subjects?.

4. We may simply conclude that early-lifecycle analysis of non-functional requirements will produce

better quality software. This is no news to anyone.

• That might well be the case. Although, even if the study is not successful, it should help to

better structure the framework.

5. In order to be comparable, we might have to tell upfront which system qualities are being mea-

sured. That might mean that we will not be able to prove that the framework helps developers to

recognize potential scalability issues.

• That is probably the case. Although if they can still produce more scalable systems, the

framework has been useful.

6. Not telling the control group that the research is about scalability, might be perceived as cheating,

as they obviously will not be concentrating on the problem.

• Not telling the control group the actual objective of the research is not really a problem,

because in the real-world developers and are normally more concerned with the functional

side of the system and that is why non-functional concerns like scalability end up being

overlooked. The participants will be divided in three groups to overcome this problem:

i. A control group that should have the main focus on the functional requirements of the

system,

ii. An unaided scalability group that are explicitly told scalability should be a concern,

iii. A group using the scalability framework.

All of them should receive the same requirements document, but having different emphasis

on the briefing.

7. Control group will realize the actual objective of the framework when it is asked to answer the

scalability questionnaire. They might then pretend they thought about scalability more than they

actually have.

• The scalability questionnaire should only be received after submitting the final code. It

should be online, not letting students to go back to previous questions. Questions should be

careful planned not to give away what is coming next. Also, there should be a time limit

for answering the questionnaire, as we want to get the first reactions. Failure to do so will

invalidate the participants entry to the prize.

8. Participants may look us up on the Internet and find out what the research is actually about.

• Hide true identity of people behind the research. Control group should be given the briefing

by someone not related to the research. Submissions should be online and a specific e-mail

account should be set up for questions.

C.1. Study Design: An Comparative Study 239

9. Because groups are not competing with each other, they might interact, jeopardizing the study.

• An extra £100 should be offered to the best of all group winners. In reality, all winners would

receive the extra £100, as the resulting systems cannot be fairly compared.

10. Learning curve of the framework might mean that group performing the analysis will be in disad-

vantage regarding time.

• This is a question that should be included in the questionnaire. If we conclude the framework

is too high overhead, then we will have to re-think it, anyway. Furthermore, because the

groups are not competing between themselves, there is no problems about fairness.

11. We might not get enough volunteers.

• Participants should be informed that the study will only go ahead if a minimum number of

volunteers is achieved.

C.1.11 Concluding Remarks

This document has described a prospective case study based on a coding competition for students. The

main points are:

• The adoption of the scalability framework for early-lifecycle analysis should produce more scal-

able systems and provide a deeper understanding of the scalability requirements/capabilities of

software systems.

• The case study will involve up to 30 students and 3 distinct groups. The hypotheses will be tested

by means of questionnaires and through metrics collected from the resulting system.

• The case study, by itself, is not sufficient to validate the framework, as it is not a typical IT sys-

tem that would face scalability concerns and it is an one-off study. This problem is addressed by

Case Study 2, who uses a real-world system and experienced developers. This study can, however,

contribute to the research in many ways, such as a better formalized framework, a greater under-

standing of the overhead and benefits of scalability analysis and a comparison of the influence of

the framework in the scalability of the final system.

BIBLIOGRAPHY 240

Bibliography

Akao, Y. (1990), Quality Function Deployment QFD: Integrating Customer Requirements into Product

Design, Productivity Press.

Alazzawi, L. K., Elkateeb, A. M., Ramesh, A. and Aljuhar, W. (2008), Scalability Analysis for Wireless

Sensor Networks Routing Protocols, in AINA Workshop 2008: Proceedings of the 22nd International

Conference on Advanced Information Networking and Applications, IEEE Computer Society, pp.139–

144.

Alspaugh, T. (2007), Informal Conversation.

Anderson, K. M. (1999a), Data scalability in open hypermedia systems, in HYPERTEXT’99: Proceed-

ings of the tenth ACM Conference on Hypertext and hypermedia: returning to our diverse roots, ACM,

New York, NY, USA, pp.27–36.

Anderson, K. M. (1999b), Supporting industrial hyperwebs: lessons in scalability, in ICSE’99: Proceed-

ings of the 21st international conference on Software engineering, IEEE Computer Society Press, Los

Alamitos, CA, USA, pp.573–582.

Arlitt, M., Krishnamurthy, D. and Rolia, J. (2001), Characterizing the scalability of a large Web-based

shopping system, ACM Transactions on Internet Technology (TOIT) 1(1), 44–69.

Avesani, P., Bazzanella, C., Perini, A. and Susi, A. (2005), Facing Scalability Issues in Requirements

Prioritization with Machine Learning Techniques, in RE’05: Proceedings of the 13th IEEE Interna-

tional Conference on Requirements Engineering, IEEE Computer Society, Washington, DC, USA,

pp.297–306.

Avritzer, A., Kondek, J., Liu, D. and Weyuker, E. J. (2002), Software Performance Testing Based on

Workload Characterization, in Software Performance Testing Based on Workload Characterization,

ACM Press, pp.17–24.

Bahsoon, R. and Emmerich, W. (2008), An Economics-Driven Approach for Valuing Scalability in Dis-

tributed Architectures, in WICSA’08: Proceedings of the Seventh Working IEEE/IFIP Conference on

Software Architecture (WICSA 2008), IEEE Computer Society, Washington, DC, USA, pp.9–18.

BIBLIOGRAPHY 241

Barra, M., Cattaneo, G., Petrillo, U. F. and Scarano, V. (2001), JSEB (Java Scalable sErvices Builder):

Scalable Systems for Clusters of Workstations, in ISCC’01: Proceedings of the Sixth IEEE Symposium

on Computers and Communications, IEEE Computer Society, Washington, DC, USA, p.80.

Barroso, L. A. (2005), The Price of Performance, ACM Queue: Multiprocessors 3(7).

Barroso, L. A., Dean, J. and Hölzle, U. (2003), Web Search for a Planet: The Google Cluster Architec-

ture, IEEE Micro 23(2), 22–28.

Beck, K. and Andres, C. (2004), Extreme Programming Explained: Embrace Change (2nd Edition),

Addison-Wesley Professional.

Bengtsson, P. and Bosch, J. (1998), Scenario-Based Software Architecture Reengineering, in ICSR’98:

Proceedings of the 5th International Conference on Software Reuse, IEEE Computer Society, Wash-

ington, DC, USA, p.308.

Bennani, M. N. and Menasce, D. A. (2005), Resource Allocation for Autonomic Data Centers using

Analytic Performance Models, in ICAC’05: Proceedings of the Second International Conference on

Automatic Computing, IEEE Computer Society, Washington, DC, USA, pp.229–240.

Bertolino, A. and Mirandola, R. (2004), Software Performance Engineering of Component-Based Sys-

tems, in WOSP’04: Proceedings of the 4th international workshop on Software and performance,

ACM Press, New York, USA, pp.238–242.

Bhushan, B. and Patel, A. (1998), Requirements and the concept of cooperative system management,

International Journal of Network Management 8(3), 139–158.

Bivens, A., Gupta, R., McLean, I., Szymanski, B. and White, J. (2004), Scalability and performance

of an agent-based network management middleware, International Journal of Network Management

14(2), 131–146.

Blockeel, H. and Sebag, M. (2003), Scalability and efficiency in multi-relational data mining, SIGKDD

Explorations Newsletter 5(1), 17–30.

Boehm, B. (2006), A view of 20th and 21st century software engineering, in ICSE’06: Proceedings of

the 28th international conference on Software engineering, ACM, New York, NY, USA, pp.12–29.

Boehm, B. W. (1976), Software engineering, pp.1226–1241.

Boehm, B. W., Brown, J. R. and Lipow, M. (1976), Quantitative evaluation of software quality, in

ICSE’76: Proceedings of the 2nd international conference on Software engineering, IEEE Computer

Society Press, Los Alamitos, CA, USA, pp.592–605.

Bondi, A. B. (2000), Characteristics of Scalability and Their Impact on Performance, in WOSP’00:

Proceedings of the 2nd International Workshop on Software and Performance, ACM Press, pp.195–

203.

BIBLIOGRAPHY 242

Brataas, G. and Hughes, P. (2004), Exploring Architectural Scalability, in WOSP’04: Proceedings of the

4th International Workshop on Software and Performance, ACM Press, pp.125–129.

Buehrer, G. and Chellapilla, K. (2008), A scalable pattern mining approach to web graph compression

with communities, in WSDM’08: Proceedings of the international conference on Web search and web

data mining, ACM, New York, NY, USA, pp.95–106.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. (1996), Pattern-oriented software

architecture: a system of patterns, John Wiley & Sons, Inc., New York, NY, USA.

Callow, M., Beardow, P. and Brittain, D. (2007), Big games, small screens, Queue 5(7), 40–50.

Caporuscio, M., Marco, A. D. and Inverardi, P. (2005), Run-time Performance Management of the Siena

Publish/Subscribe Middleware, in WOSP’05: Proceedings of the 5th international workshop on Soft-

ware and performance, ACM Press, New York, USA, pp.65–74.

Capra, L., Emmerich, W. and Mascolo, C. (2002), A micro-economic approach to conflict resolution in

mobile computing, SIGSOFT Software Engineering Notes 27(6), 31–40.

Cecchet, E., Marguerite, J. and Zwaenepoel, W. (2002), Performance and scalability of EJB applications,

SIGPLAN Notices 37(11), 246–261.

Chen, Y. and Sun, X.-H. (2006), STAS: A Scalability Testing and Analysis System, Proceedings of 2006

IEEE International Conference on Cluster Computing pp.1–10.

Cheng, B. H. C. and Atlee, J. M. (2007), Research Directions in Requirements Engineering, in FOSE’07:

Prooceedings of 2007 Future of Software Engineering, IEEE Computer Society, Washington, DC,

USA, pp.285–303.

Cheng, S.-W., Garlan, D. and Schmerl, B. (2006), Architecture-based self-adaptation in the presence

of multiple objectives, in SEAMS’06: Proceedings of the 2006 international workshop on Self-

adaptation and self-managing systems, ACM, New York, NY, USA, pp.2–8.

Chiu, W. (2001), Design for Scalability — An Update. High Vol-

ume Web Sites, Software Group (AIM Division). Accessed from

http://www.ibm.com/developerworks/websphere/library/techarticles/hipods/scalability.html on

13 March 2009.

Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J. (1999), Non-Functional Requirements in Software

Engineering, Springer.

Clarke, E. M., Enders, R., Filkorn, T. and Jha, S. (1996), Exploiting symmetry in temporal logic model

checking, Formal Methods in System Design 9(1-2), 77–104.

Clements, P., Kazman, R. and Klein, M. (2002), Evaluating Software Architectures: Methods and Case

Studies, Addison-Wesley Professional.

BIBLIOGRAPHY 243

Coarfa, C., Mellor-Crummey, J., Froyd, N. and Dotsenko, Y. (2007), Scalability analysis of SPMD

codes using expectations, in ICS’07: Proceedings of the 21st annual international conference on

Supercomputing, ACM, New York, NY, USA, pp.13–22.

ComputerUser (2008), Scalability Definition. Accessed from http://www.computeruser.com/resources/

dictionary/noframes/nf.definition.html?bG9va3VwPTQ5ODY= on 18 August 2008.

Courtois, P.-J. and Parnas, D. L. (1993), Documentation for safety critical software, in ICSE’93: Pro-

ceedings of the 15th international conference on Software Engineering, IEEE Computer Society Press,

Los Alamitos, CA, USA, pp.315–323.

D’Antonio, S., Esposito, M., Romano, S. P. and Ventre, G. (2004), Assessing the scalability of

component-based frameworks: the CADENUS case study, SIGMETRICS Perform. Eval. Rev.

32(3), 34–43.

Darimont, R. and van Lamsweerde, A. (1996), Formal refinement patterns for goal-driven requirements

elaboration, in SIGSOFT’96: Proceedings of the 4th ACM SIGSOFT symposium on Foundations of

software engineering, ACM, New York, NY, USA, pp.179–190.

Deters, R. (2001), Scalability and information agents, SIGAPP Applied Computing Review 9(3), 13–20.

DoD (1995), Department of Defense Modeling and Simulation (M&S) Master Plan. DoD reference

5000.59.

Dromey, R. G. (1996), Concerning the Chimera [software quality], IEEE Software (1), 33–43.

Duboc, L., Letier, E., Rosenblum, D. and Wicks, T. (2008), Case Study in Eliciting Scalability Re-

quirements, in RE’08: Proceedings of the 2008 16th IEEE International Requirements Engineering

Conference, Barcelona, Spain.

Duboc, L., Rosenblum, D. and Wicks, T. (2007), A Framework for Characterization and Analysis of

Software system Scalability, in ESEC-FSE’07: Proceedings of the the 6th joint meeting of the Eu-

ropean software engineering conference and the ACM SIGSOFT symposium on The foundations of

software engineering, ACM, New York, NY, USA, pp.375–384.

Duboc, L., Rosenblum, D. S. and Wicks, T. (2006), A framework for modelling and analysis of soft-

ware systems scalability, in ICSE ’06: Proceedings of the 28th international conference on Software

engineering. Doctoral Symposium., ACM, New York, NY, USA, pp.949–952.

Egea-Lopez, E., Vales-Alonso, J., Martinez-Sala, A., Pavon-Mario, P. and Garcia-Haro, J. (2006), Sim-

ulation scalability issues in wireless sensor networks, IEEE Communications Magazine 44(7), 64–73.

Elssamadisy, A. and Schalliol, G. (2002), Recognizing and responding to ”bad smells” in extreme pro-

gramming, in ICSE’02: Proceedings of the 24th International Conference on Software Engineering,

ACM, New York, NY, USA, pp.617–622.

BIBLIOGRAPHY 244

EMC2 (2008), Documentum Platform. Accessed from http://uk.emc.com/ on 5 August 2008.

Emerson, E. A. and Sistla, A. P. (1997), Utilizing symmetry when model-checking under fairness as-

sumptions: an automata-theoretic approach, ACM Transactions on Programming Languages and Sys-

tems (TOPLAS) 19(4), 617–638.

Eschenauer, H., Koski, J. and Osyczka, A. (1990), Multicriteria Design Optimization: Procedures and

Applications, Springer-Verlag.

Farlex (2008), The Free Dictionary: Scalable. Accessed from http://computing-

dictionary.thefreedictionary.com/scalable on 18 August 2008.

Feather, M., Cornford, S., Dunphy, J. and Hicks, K. (2002), A Quantitative Risk Model for Early Lifecy-

cle Decision Making, in IDPT’02: Proceedings of the Conference on Integrated Design and Process

Technology.

Feather, M. S. (1987), Language support for the specification and development of composite systems,

ACM Transactions on Programming Languages and Systems (TOPLAS) 9(2), 198–234.

Fenton, N. E. and Pfleeger, S. L. (1996), Software Metrics: A Rigorous and Practical Approach, Inter-

national Thomson Computer Press, Boston, MA, USA.

Ficici, S. G. and Pfeffer, A. (2008), Simultaneously modeling humans’ preferences and their beliefs

about others’ preferences, in AAMAS’08: Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems, International Foundation for Autonomous Agents and

Multiagent Systems, Richland, SC, pp.323–330.

Fielding, R. T. and Taylor, R. N. (2000), Principled design of the modern Web architecture, in ICSE’00:

Proceedings of the 22nd international conference on Software engineering, ACM, New York, NY,

USA, pp.407–416.

Fielding, R. T. and Taylor, R. N. (2002), Principled design of the modern Web architecture, ACM Trans-

actions on Internet Technology (TOIT) 2(2), 115–150.

Finkelstein, A. and Dowell, J. (1996), A comedy of errors: the London Ambulance Service case study,

in IWSSD’96: Proceedings of the 8th International Workshop on Software Specification and Design,

IEEE Computer Society, Washington, DC, USA, p.2.

Gabriel, R. P., Northrop, L., Schmidt, D. C. and Sullivan, K. (2006), Ultra-large-scale systems, in OOP-

SLA’06: Prooceedings of Dynamic Languages Symposium archive Companion to the 21st ACM SIG-

PLAN symposium on Object-oriented programming systems, languages, and applications, ACM, New

York, NY, USA, pp.632–634.

Ghemawat, S., Gobioff, H. and Leung, S.-T. (2003), The Google file system, SOSP’03: Proceedings of

the nineteenth ACM symposium on Operating systems principles 37(5), 29–43.

BIBLIOGRAPHY 245

Giorgini, P., Mylopoulos, J., Nicchiarelli, E. and Sebastiani, R. (2002), Reasoning with Goal Models, in

ER’02: Proceedings of the 21st International Conference on Conceptual Modeling, Springer-Verlag,

London, UK, pp.167–181.

Goldsmith, S. F., Aiken, A. S. and Wilkerson, D. S. (2007), Measuring empirical computational complex-

ity, in ESEC-FSE’07: Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software engineering, ACM,

New York, NY, USA, pp.395–404.

Grama, A. Y., Gupta, A. and Kumar, V. (1993), Isoefficiency: Measuring the Scalability of Parallel Algo-

rithms and Architectures, IEEE Parallel & Distributed Technology: Systems & Technology 1(3), 12–

21.

Grumberg, E. M. C. O. and Peled, D. A. (1999), Model Checking, The MIT PRess.

Gustafson, J. L. (1995), Reevaluating Amdahl’s law, Multiprocessor performance measurement and

evaluation pp.92–93.

Gustavson, D. B. (1994), The Many Dimensions of Scalability, in Proceedings of the 39th IEEE Com-

puter Society International Computer Conference, pp.60–63.

Handley, M., Perkins, C. and Whelan, E. (2000), Session Announcement Protocol, RFC

2974, Network Working Group, Internet Engineering Task Force. Accessed from

http://www.faqs.org/ftp/rfc/pdf/rfc2974.txt.pdf on 3 April 2006.

Heindl, M. and Biffl, S. (2006), Risk management with enhanced tracing of requirements rationale in

highly distributed projects, in GSD’06: Proceedings of the 2006 international workshop on Global

software development for the practitioner, ACM, New York, NY, USA, pp.20–26.

Hill, M. D. (1990), What is Scalability?, ACM SIGARCH Computer Architecture News 18(4), 18–21.

Hoeben, F. (2000), Using UML models for performance calculation, in WOSP’00: Proceedings of the

2nd international workshop on Software and performance, ACM Press, pp.77–82.

Hopcroft, J. E., Motwani, R. and Ullman, J. D. (2006), Introduction to Automata Theory, Languages,

and Computation (3rd Edition), Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Hopkins, R. P., Smith, M. J. and King, P. J. B. (2002), Two Approaches to Integrate UML and Per-

formance Models, in WOSP’03: Proceedings of the 3rd international workshop on Software and

performance, ACM Press, pp.91–92.

Imafouo, A. (2005), An Scalability Survey, in ECDL 2005: Proceedings of the 9th European Conference

on Research and Advanced Technology for Digital Libraries — Doctoral Consortium, Vienna, Austria.

In, H., Boehm, B., Rodgers, T. and Deutsch, M. (2001), Applying WinWin to quality requirements: a

case study, in ICSE’01: Proceedings of the 23rd International Conference on Software Engineering,

IEEE Computer Society, Washington, DC, USA, pp.555–564.

BIBLIOGRAPHY 246

Industry Interviews (2007), Examples of Scalability Problems in Industry. Private communication.

Ip, C. N. and Dill, D. L. (1996), Better verification through symmetry, Formal Methods in System Design

9(1-2), 41–75.

ISO 9126 (1991), Software Product Evaluation - Quality characteristics and guidelines for their use.

Jackson, M. (2001), Problem frames: analyzing and structuring software development problems,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Jacobs, D. (2005), Enterprise software as service, Queue 3(6), 36–42.

Ji, Z., Zhou, J., Takai, M. and Bagrodia, R. (2006), Improving scalability of wireless network simulation

with bounded inaccuracies, ACM Transactions on Modeling and Computer Simulation (TOMACS)

16(4), 329–356.

Jiang, X., Safaei, F. and Boustead, P. (2005), Latency and scalability: a survey of issues and tech-

niques for supporting networked games, in Proceedings of the 13th IEEE International Conference on

Networks, 2005. Jointly held with the 2005 IEEE 7th Malaysia International Conference on Commu-

nication.

Jogalekar, P. and Woodside, M. (1998), Evaluating the Scalability of Distributed Systems, in HICSS’98:

Proceedings of the 31st Annual Hawaii International Conference on System Sciences, Volume 7, IEEE

Computer Society, Washington, DC, USA, pp.524–531.

Jogalekar, P. and Woodside, M. (2000), Evaluating the Scalability of Distributed Systems, IEEE Trans-

actions on Parallel and Distributed Systems 11(6), 589–603.

Jogalekar, P. P. and Woodside, C. M. (1997), A Scalability Metric for Distributed Computing Applica-

tions in Telecommunications, in ITC’97: Proceeding of the 15th International Teletraffic Congress,

Vol. 2a, pp.101–110.

Jones, T., Dawson, S., Neely, R., Tuel, W., Brenner, L., Fier, J., Blackmore, R., Caffrey, P., Maskell, B.,

Tomlinson, P. and Roberts, M. (2003), Improving the Scalability of Parallel Jobs by adding Parallel

Awareness to the Operating System, in SC’03: Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, IEEE Computer Society, Washington, DC, USA, p.10.

Kalinov, A. (2004), Scalability Analysis of Matrix-Matrix Multiplication on Heterogeneous Clusters,

in ISPDC’04: Proceedings of the Third International Symposium on Parallel and Distributed Com-

puting/Third International Workshop on Algorithms, Models and Tools for Parallel Computing on

Heterogeneous Networks, IEEE Computer Society, Washington, DC, USA, pp.303–309.

Kang, S., Lee, J., Jang, H., Lee, H., Lee, Y., Park, S., Park, T. and Song, J. (2008), SeeMon: scalable and

energy-efficient context monitoring framework for sensor-rich mobile environments, in MobiSys’08:

Proceeding of the 6th international conference on Mobile systems, applications, and services, ACM,

New York, NY, USA, pp.267–280.

BIBLIOGRAPHY 247

Kazman, R., Abowd, G., Bass, L. and Clements, P. (1996), Scenario-Based Analysis of Software Archi-

tecture, IEEE Software 13(6), 47–55.

Kazman, R., Asundi, J. and Klein, M. (2001), Quantifying the costs and benefits of architectural deci-

sions, in ICSE’01: Proceedings of the 23rd International Conference on Software Engineering, IEEE

Computer Society, Washington, DC, USA, pp.297–306.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. and Carriere, J. (1998), The architecture

tradeoff analysis method, in ICECCS’98: Proceedings. Fourth IEEE International Conference on

Engineering of Complex Computer Systems, pp.68–78.

Keller, S. E., Kahn, L. G. and Panara, R. B. (1990), Specifying Software Quality Requirements with

Metrics, in Tutorial: System and Software Requirements Engineering, IEEE Computer Society Press,

pp.145–163.

Kim, K.-H. and Ellis, C. A. (2001), Workflow performance and scalability analysis using the layered

queuing modeling methodology, in GROUP’01: Proceedings of the 2001 International ACM SIG-

GROUP Conference on Supporting Group Work, ACM, New York, NY, USA, pp.135–143.

Kitchenham, B., Pickard, L. and Pfleeger, S. L. (1995), Case Studies for Method and Tool Evaluation,

IEEE Software 12(4), 52–62.

Klein, M. H., Kazman, R., Bass, L. J., Carrière, S. J., Barbacci, M. and Lipson, H. F. (1999), Attribute-

Based Architecture Styles, in WICSA1: Proceedings of the TC2 First Working IFIP Conference on

Software Architecture (WICSA1), Kluwer, B.V., Deventer, The Netherlands, The Netherlands, pp.225–

244.

Kong, J., Bridgewater, J. and Roychowdhury, V. (2006), A General Framework for Scalability and Perfor-

mance Analysis of DHT Routing Systems, DSN’06: International Conference on Dependable Systems

and Networks pp.343–354.

Kosch, T., Adler, C. J., Eichler, S., Schroth, C. and Strassberger, M. (2006), The scalability problem of

vehicular ad hoc networks and how to solve it, 13, 22–28.

Koymans, R. (1992), Specifying Message Passing and Time-Critical Systems with Temporal Logic,

Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Kruchten, P. (1999), The Rational Unified Process: an introduction, Addison-Wesley Longman Publish-

ing Co., Boston, MA, USA.

Kumar, V. and Gupta, A. (1994), Analyzing Scalability of Parallel Algorithms and Architectures, Journal

of Parallel and Distributed Computing 22(3), 379–391.

Kwok, M.-M. and Wong, S. M.-J. W. (2008), Scalability Analysis of the Hierarchical Architecture for

Distributed Virtual Environments, IEEE Transactions on Parallel and Distributed Systems 19(3), 408–

417.

BIBLIOGRAPHY 248

Laitinen, M. (2000), Scaling down is hard to do [software management], IEEE Software 17(5), 78–80.

Laitinen, M., Fayad, M. E. and Ward, R. P. (2000), Thinking Objectively: The problem with Scalability,

Communications of the ACM 43(9), 105–107.

Lamparter, S., Ankolekar, A., Studer, R. and Grimm, S. (2007), Preference-based selection of highly

configurable web services, in WWW’07: Proceedings of the 16th international conference on World

Wide Web, ACM, New York, NY, USA, pp.1013–1022.

Law, D. R. (1998), Scalable Means More than More: A Unifying Definition of Simulation Scalability,

in WSC’98: Proceedings of the 30th conference on Winter simulation, IEEE Computer Society Press,

Los Alamitos, CA, USA, pp.781–788.

Lee, C. B. and Snavely, A. E. (2007), Precise and realistic utility functions for user-centric performance

analysis of schedulers, in HPDC’07: Proceedings of the 16th international symposium on High per-

formance distributed computing, ACM, New York, NY, USA, pp.107–116.

Letier, E. (2001), Reasoning about Agents in Goal-Oriented Requirements Engineering. Phd Thesis,

Universit Catholique de Louvain, Dpartement d’Ingnierie Informatique, Louvain-la-Neuve, Belgium.

Letier, E. and van Lamsweerde, A. (2002), Agent-based tactics for goal-oriented requirements elabora-

tion, in ICSE’02: Proceedings of the 24th International Conference on Software Engineering, ACM,

New York, NY, USA, pp.83–93.

Letier, E. and van Lamsweerde, A. (2004), Reasoning about partial goal satisfaction for requirements

and design engineering, in FSE’04: Proceedings of the 12th international symposium on Foundations

of software engineering, ACM, New York, NY, USA, pp.53–62.

Li, Q., Xu, M., Xu, K. and Wu, J. (2008), Evaluating Service Scalability of Network Architectures,

ICN’08: Proceedings of the Seventh International Conference on Networking 0, 434–438.

Liu, Y., Gorton, I., Liu, A. and Chen, S. (2002), Evaluating the Scalability of Enterprise JavaBeans

Technology, in APSEC’02: Proceedings of the Ninth Asia-Pacific Software Engineering Conference,

IEEE Computer Society, Washington, DC, USA, p.74.

Liu, Y. and Gorton, I. (2004), Accuracy of Performance Prediction for EJB Applications: A Statistical

Analysis., in SEM’04: Proceedings of the 4th Workshop on Software Engineering and Middleware,

pp.185–198.

Llado;, C. M. and Harrison, P. G. (2000), Performance Evaluation of an Enterprise JavaBean Server

Implementation, in WOSP’00: Proceedings of the 2nd international workshop on Software and per-

formance, ACM Press, New York,USA, pp.180–188.

Lu, N. and Bigham, J. (2006), An optimal bandwidth adaptation algorithm for multi-class traffic in wire-

less networks, in QShine’06: Proceedings of the 3rd international conference on Quality of service in

heterogeneous wired/wireless networks, ACM, New York, NY, USA, p.55.

BIBLIOGRAPHY 249

Luke, E. A. (1993), Defining and Measuring Scalability, in Proc. Scalable Parallel Libraries Conference,

IEEE Press, pp.183–186.

Lutu, P. E. N. (2002), An integrated approach for scaling up classification and prediction algorithms

for data mining, in SAICSIT’02: Proceedings of the 2002 annual research conference of the South

African institute of computer scientists and information technologists on Enablement through tech-

nology, South African Institute for Computer Scientists and Information Technologists, Republic of

South Africa, pp.110–117.

Lyu, M. R. (ed.) (1996), Handbook of software reliability engineering, McGraw-Hill, Inc., Hightstown,

NJ, USA.

Marbukh, V. (2007), Utility maximization for resolving throughput/reliability trade-offs in an unreliable

network with multipath routing, in ValueTools’07: Proceedings of the 2nd international conference

on Performance evaluation methodologies and tools, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, pp.1–10.

Masticola, S., Bondi, A. B. and Hettish, M. (2005), Model-Based Scalability Estimation in Inception-

Phase Software Architecture., in MODELS’05: Prooceedings of the 8th International Conference on

Model Driven Engineering Languages and Systems, pp.355–366.

McCall, J., Richards, P. and Walters, G. (1977), Factors in Software Quality, Vols 1-3, NTIS AD-A049-

014, AD-A049-015, AD-A049-055.

Menascé, D. (2003), Scaling Web Sites Through Caching, IEEE Internet Computing 7(4), 86–89.

Menasce, D. A. and Almeida, V. (2001), Capacity Planning for Web Services: metrics, models, and

methods, Prentice Hall PTR, Upper Saddle River, NJ, USA.

Messerschmitt, D. (1995), The convergence of telecommunications and computing: What are the impli-

cations today?, in CWS’95: Proceedings of the 27th Conference on Winter Simulation, IEEE Computer

Society Press, pp.1280 – 1287.

Meter, R. V. and Oskin, M. (2006), Architectural implications of quantum computing technologies,

Journal on Emerging Technologies in Computing Systems (JETC) 2(1), 31–63.

Microsoft (2005), Designing Distrubuted Systems with .Net. MSDN li-

brary. Accessed from http://msdn.microsofte.com/library/default.asp?url=/library/en-

us/vsent7/html/vxconwhtisscalability.asp on 3 July 2005.

Monch, C. (2002), On the assessment of scalability of digital libraries, in Proceedings of the Fourth

DELOS Workshop. Evaluation of Digital Libraries: Testbeds, Measurements, and Metrics.

Mos, A. and Murphy, J. (2004), COMPAS: Adaptive Performance Monitoring of Component-Based

Systems, in WCOP’04: Proceedings of the 9th International Workshop on Component Oriented Pro-

gramming, IEEE Computer Society, Washington, DC, USA.

BIBLIOGRAPHY 250

Müller, J. and Gorlatch, S. (2006), Rokkatan: scaling an RTS game design to the massively multiplayer

realm, Comput. Entertain. 4(3), 11.

Munsterman, T. P. (2008), Exploring Software Scalability. Thesis submitted for the degree of Master of

Science at the University of Twene.

Musa, J. D. (1993), Operational Profiles in Software-Reliability Engineering, IEEE Software 10(2), 14–

32.

Nadeau, T. P. and Teorey, T. J. (2002), Achieving scalability in OLAP materialized view selection, in

DOLAP’02: Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP,

ACM, New York, NY, USA, pp.28–34.

Noelle, M., Pantano, M. and Sun, X.-H. (1998), Communication Overhead: Prediction and its Influence

on Scalability, in PDPTA’98: Proceesings of the International Conference on Parallel and Distributed

Processing Techniques and Applications.

North, C. (2006), The Perceptual Scalability of Visualization, IEEE Transactions on Visualization and

Computer Graphics 12(5), 837–844. Student Member-Beth Yost.

Odersky, M., Spoon, L. and Venners, B. (2008), Scala: A Scalable Language. Accessed from

http://www.artima.com/scalazine/articles/scalable-language.html on 14 August 2008.

Page, D., Williams, P. and Boyd, D. (1993), Report of the Inquiry Into the London Ambulance Ser-

vice, Technical Report, The Communications Directorate, South West Thames Regional Authority.

Accessed from http://hsn.lond-amb.sthames.nhs.uk/http.dir/service/organisation/features/info.html.

Papavassiliou, S., Xu, S., Orlik, P., Snyder, M. and Sass, P. (2002), Scalability in global mobile informa-

tion systems (GloMo): issues, evaluation methodology and experiences, Wireless Networks 8(6), 637–

648.

Pastor, L. and Bosque, J. L. (2001), An efficiency and scalability model for heterogeneous clusters., in

CLUSTER’01: Proceedings of the 3rd IEEE International Conference on Cluster Computing, IEEE

Computer Society, Washington, DC, USA, p.427.

Petriu, D., Amer, H., Majumdar, S. and Abdull-Fatah, I. (2000), Using Analytic Models Predicting

Middleware Performance, in WOSP’00: Proceedings of the 2nd international workshop on Software

and performance, ACM Press, NYNew York, USA, pp.189–194.

Potts, C. (1995), Using schematic scenarios to understand user needs, in DIS’95: Proceedings of the 1st

conference on Designing interactive systems, ACM, New York, NY, USA, pp.247–256.

Quinn, M. (1994), Parallel Computing: Theory and Practice, 2nd edition, McGraw-Hill.

Rana, O. F. and Stout, K. (2000), What is scalability in multi-agent systems?, in AGENTS’00: Pro-

ceedings of the fourth international conference on Autonomous agents, ACM, New York, NY, USA,

pp.56–63.

BIBLIOGRAPHY 251

Rao, V. N. and Kumar, V. (1987), Parallel depth first search. Part I. implementation, International Journal

of Parallel Programming 16(6), 479–499.

Reiss, S. P. (2008), Controlled dynamic performance analysis, in WOSP’08: Proceedings of the 7th

international workshop on Software and performance, ACM, New York, NY, USA, pp.43–54.

Rivest, R. L. and Leiserson, C. E. (1990), Introduction to Algorithms, McGraw-Hill, Inc., New York,

NY, USA.

Robertson, S. and Robertson, J. (1999), Mastering the requirements process, ACM Press/Addison-

Wesley Publishing Co., New York, NY, USA.

Robinson, W. N. (1990), Negotiation behavior during requirements specification, in ICSE’90: Proceed-

ings of the 12th international conference on Software engineering, IEEE Computer Society Press, Los

Alamitos, CA, USA, pp.268–276.

Robu, V., Somefun, D. J. A. and Poutré, J. A. L. (2005), Modeling complex multi-issue negotiations

using utility graphs, in AAMAS’05: Proceedings of the fourth international joint conference on Au-

tonomous agents and multiagent systems, ACM, New York, NY, USA, pp.280–287.

Ruthruff, J. R., Elbaum, S. and Rothermel, G. (2006), Experimental program analysis: a new program

analysis paradigm, in ISSTA’06: Proceedings of the 2006 international symposium on Software testing

and analysis, ACM Press, New York, USA, pp.49–60.

Saaty, T. L. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York, NY, USA.

Sastry, K., Goldberg, D. E. and Pelikan, M. (2005), Limits of scalability of multiobjective estimation of

distribution algorithms, in Congress on Evolutionary Computation, IEEE, pp.2217–2224.

Scholz, U. and Rouvoy, R. (2007), Divide and conquer: scalability and variability for adaptive mid-

dleware, in ESSPE’07: International workshop on Engineering of software services for pervasive

environments, ACM, New York, NY, USA, pp.35–39.

SearchDataCenter (2006). Accessed from http://searchdatacenter.techtarget.com/sDefinition/0,,sid80

gci212940,00.html on 18 August 2008.

Shaw, M. and Garlan, D. (1996), Software architecture: perspectives on an emerging discipline,

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Shen, H., Kumar, M., Das, S. K. and Wang, Z. (2005), Energy-efficient data caching and prefetching for

mobile devices based on utility, Mobile Networks and Applications 10(4), 475–486.

Silva, D. D., Krieger, O., Wisniewski, R. W., Waterland, A., Tam, D. and Baumann, A. (2006), K42: an

infrastructure for operating system research, ACM SIGOPS Operating Systems Review 40(2), 34–42.

Silverman, R. (2000), A cost-based security analysis of symmetric and asymmetric key lengths. RSA

Laboratories Bulletin 13.

BIBLIOGRAPHY 252

Smith, C. U. and Williams, L. G. (2001), Performance Solutions: A Practical Guide to Creating Respon-

sive, Scalable Software, Addison-Wesley Publishing Company.

Sommerville, I. (2004), Software Engineering (7th Edition), Pearson Addison Wesley.

Sorensen, S.-A. (2007), Informal Conversation.

Steen, M. V., van der Zijden, S. and Sips, H. J. (1998), COMPSAC ’98: Software Engineering for

Scalable Distributed Applications, in Proceedings of the 22nd International Computer Software and

Applications Conference, pp.285–293.

Stephens, J. M. and Poess, M. (2004), MUDD: A Multi-Dimensional Data Generator, in WOSP’04:

Proceedings of the 4th international workshop on Software and performance, ACM Press, pp.104–

109.

Sun, X.-H. (2002), Scalability versus Execution Time in Scalable Systems, Journal of Parallel and

Distributed Computing 62, 173–192.

Sun, X.-H., Chen, Y. and Wu, M. (2005), Scalability of Heterogeneous Computing, in ICPP’05: Pro-

ceedings of the 2005 International Conference on Parallel Processing, IEEE Computer Society, Wash-

ington, DC, USA, pp.557–564.

Sun, X.-H. and Gustafson, J. L. (1993), Toward a better parallel performance metric, pp.23–39.

Sun, X. H. and Rover, D. T. (1994), Scalability of Parallel Algorithm-Machine Combinations, IEEE

Transactions on Parallel and Distributed Systems 5(6), 599–613.

TCSC (2008), IEEE Technical Committee on Scalable Computing (TCSC). Accessed from

http://www.ieeetcsc.org/ on 5 August 2008.

Tepfenhart, W., Rosca, D. and Woolley, D. (2002), A product focused, layered software development

framework, in SEKE’02: Proceedings of the 14th international conference on Software engineering

and knowledge engineering, ACM, New York, NY, USA, pp.473–475.

The 2020 Science Group (2006), Towards 2020 Science, technical report, Microsoft Corporation. Ac-

cessed from http://research.microsoft.com/towards2020science/ on 1 July 2006.

Tribastone, M. and Gilmore, S. (2008), Automatic extraction of PEPA performance models from UML

activity diagrams annotated with the MARTE profile, in WOSP’08: Proceedings of the 7th interna-

tional workshop on Software and performance, ACM, New York, NY, USA, pp.67–78.

University of Wiscousin-Madison (2006), Condor High Computing Manual Pages, version 6.7.20.

http://www.cs.wisc.edu/condor/manual/v6.7/.

van Lamsweerde, A. (2001), Goal-Oriented Requirements Engineering: A Guided Tour, in RE’01: Pro-

ceedings of the 5th IEEE International Symposium on Requirements Engineering, IEEE Computer

Society, Washington, DC, USA, p.249.

BIBLIOGRAPHY 253

van Lamsweerde, A. (2008), Systematic Requirements Engineering - From System Goals to UML Models

to Software Specifications, John Wiley & Sons.

van Lamsweerde, A. and Letier, E. (2000), Handling Obstacles in Goal-Oriented Requirements Engi-

neering, IEEE Transactions on Software Engineering 26(10), 978–1005.

van Lamsweerde, A., Letier, E. and Darimont, R. (1998), Managing Conflicts in Goal-Driven Require-

ments Engineering, IEEE Transactions on Software Engineering 24(11), 908–926.

Vanier, M. (2001), Scalable computer programming languages. Accessed from

http://www.cs.caltech.edu/rogramming languages.html on 14 August 2008.

Varian, H. R. (2003), Intermediate Microeconomics: A Modern Approach, 6th edition, W. W. Norton.

Verdickt, T., Dhoedt, B. and Gielen, F. (2004), Incorporating SPE into MDA: Including Middleware

Performance Details Into System Models, ACM SIGSOFT Software Engineering Notes 29(1), 120–

124.

Vetter, J. S. and McCracken, M. O. (2001), Statistical scalability analysis of communication operations

in distributed applications, in PPoPP’01: Proceedings of the eighth ACM SIGPLAN symposium on

Principles and practices of parallel programming, ACM, New York, NY, USA, pp.123–132.

von Behren, R., Condit, J., Zhou, F., Necula, G. C. and Brewer, E. (2003), Capriccio: scalable threads for

internet services, in SOSP’03: Proceedings of the nineteenth ACM symposium on Operating systems

principles, ACM, New York, NY, USA, pp.268–281.

Webopedia (2006), What is Scalable? Accessed from http://www.webopedia.com/TERM/s/scalable.html

on 18 August 2008.

Wei, Y. Z., Moreau, L. and Jennings, N. R. (2005), A market-based approach to recommender systems,

ACM Transactions on Information Systems (TOIS) 23(3), 227–266.

Weinstock, C. B. and Goodenough, J. B. (2006), On Systems Scalability, Techni-

cal Note CMU/SEI-2006-TN-012, Software Engineering Institute. Accessed from

http://www.sei.cmu.edu/publications/documents/06.reports/06tn012.html on 30 July 2008.

Weyuker, E. and Avritzer, A. (2002), A metric to predict software scalability, METRICS ’02: Proceed-

ings of the 8th International Symposium on Software Metrics pp.152–158.

Wikipedia (2008), Scalability. Accessed from http://en.wikipedia.org/wiki/Scalable on 18 August 2008.

Williams, L. G. and Smith, C. U. (2004), Web Application Scalability: A model-based approach. Tech-

nical report. Software Engineering Research and Performance Engineering Services.

Williams, L. G. and Smith, C. U. (2005), QSEM: Quantitative Scalability Evaluation Method, in Pro-

ceedings of the International Computer Measurement Group, pp.341–352.

BIBLIOGRAPHY 254

Woodside, M., Petriu, D. C., Petriu, D. B., Shen, H., Israr, T. and Merseguer, J. (2005), Performance

by unified model analysis (PUMA), in WOSP ’05: Proceedings of the 5th international workshop on

Software and performance, ACM Press, pp.1–12.

Wu, X. and Woodside, M. (2004), Performance Modeling from Software Components, in WOSP ’04:

Proceedings of the 4th international workshop on Software and performance, ACM Press, New York,

USA, pp.290–301.

Xu, D., Riley, G. F., Ammar, M. H. and Fujimoto, R. (2003), Enabling Large-Scale Multicast Simulation

by Reducing Memory Requirements, in PADS’03: Proceedings of the 17th workshop on Parallel and

distributed simulation, IEEE Computer Society, Washington, DC, USA, p.69.

Yang, Y., Zhang, J. and Kisiel, B. (2003), A scalability analysis of classifiers in text categorization, in

SIGIR’03: Proceedings of the 26th annual international ACM SIGIR conference on Research and

development in informaion retrieval, ACM, New York, NY, USA, pp.96–103.

Yen, J. and Tiao, W. A. (1997), A Systematic Tradeoff Analysis for Conflicting Imprecise Requirements,

in RE’97: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, IEEE

Computer Society, Washington, DC, USA, p.87.

Yokota, H. (2000), Performance and reliability of secondary storage systems, in WMSCI’00: Proceed-

ings of 4th World Multiconference on Systemics, Cybernetics and Informatics, pp.668–673.

Yu, W. (2008), Scaling Your Java EE Aplications. Accessed from

http://www.theserverside.com/tt/articles/article.tss?l=ScalingYourJavaEEApplications on 28th

July 2009.

Yuan, M. J. and Sharp, K. (2004), Developing Scalable Series 40 Applications: A Guide for Java Devel-

opers (Nokia Mobile Developer), Addison-Wesley Professional.

Zave, P. and Jackson, M. (1997), Four dark corners of requirements engineering, ACM Transactions on

Software Engineering and Methodology (TOSEM) 6(1), 1–30.

Zhang, R., d. S. Oliveira, B. C., Bivens, A. and McKeever, S. (2007), Scalable problem localization

for distributed systems: principles and practices, in InfoScale’07: Proceedings of the 2nd interna-

tional conference on Scalable information systems, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, pp.1–8.

Zhang, X. and Xu, Z. (1995), A semi-empirical approach to scalability study, SIGMETRICS ’95/PER-

FORMANCE ’95: Proceedings of the 1995 ACM SIGMETRICS joint international conference on

Measurement and modeling of computer systems 23(1), 307–308.

Zhang, X., Yan, Y. and Ma, Q. (1994), Measuring and Analyzing Parallel Computing Scalability, in

ICPP’94: Proceedings of the 1994 International Conference on Parallel Processing, IEEE Computer

Society, Washington, DC, USA, pp.295–303.

BIBLIOGRAPHY 255

Zirbas, J. R., Reble, D. J. and van Kooten, R. E. (1989), Measuring the scalability of parallel computer

systems, in Supercomputing’89: Proceedings of the 1989 ACM/IEEE conference on Supercomputing,

ACM, New York, NY, USA, pp.832–841.

	What Is Scalability?
	Motivation
	A Frequently Claimed Attribute
	A Poorly Defined Term
	An Often Overlooked Quality
	An Increasingly Important Quality

	Running Example
	Research Problem and Hypothesis
	Solution and Thesis Contributions
	Scope of this Work
	Clarifications and Assumptions
	Research Method
	Thesis Outline
	Summary

	Literature Review
	Background
	Experimental Program Analysis
	Goal-Oriented Requirements Engineering with KAOS

	Related Work
	The Various Contexts of Scalability
	Scalability --- Definition, Analysis and Prediction
	Software Architecture Evaluation
	Performance Analysis and Prediction
	Multiple Criteria Optimization
	Scalability Requirements
	Capacity Planning

	Summary

	Software Systems Scalability Defined
	On the Meaning of Scalability
	Scalability, Variation and System Goals
	Scalability and Quality Goals

	A Definition for Scalability
	The Scalability Framework: An Overview
	Critical Evaluation
	Summary

	Characterizing and Analyzing Scalability
	On Scalability Analysis
	Causes of Scalability Problems
	Elements of the Scalability Framework
	Quality (Scalability) Goals
	Scalability Questions and Answers/Claims
	Analysis Variables
	Analysis Functions
	Raw Data

	Scalability Analysis
	Critical Evaluation
	Summary

	Elaborating Scalability Requirements
	On Scalability and Requirements Engineering
	Challenges in Elaborating Scalability Requirements

	An Experience with KAOS
	Specifying Scalability
	Specifying Scaling Assumptions
	Specifying Scalability Goals

	A Systematic Process
	Process Overview
	Identifying Scalability Obstacles
	Assessing Scalability Obstacles
	Resolving Scalability Obstacles

	Critical Evaluation
	Summary

	Scalability Analysis Method
	The Method Description
	Define the Scalability Question
	Elaborate the Goal Model
	Identify, Assess and Resolve Scalability Obstacles
	Select Goals for Scalability Analysis
	Refine and Elaborate New Scalability Questions
	Instantiate Variables and Functions for the Scalability Analysis
	Perform the Analysis and State the Answer

	Critical Evaluation
	Summary

	Empirical Studies and Examples
	On the Evaluation of Techniques
	The Intelligent Enterprise Framework (IEF)
	Case Study 1: A Prototyping Study
	Objectives
	Hypothesis
	Pilot Project
	Planning
	Execution
	Evaluation
	Concluding Remarks

	Case Study 2: A Comparison of Alternative Designs
	Objectives
	Hypothesis
	Pilot Project
	Planning
	Execution
	Evaluation
	Concluding Remarks

	Case Study 3: Elaborating the Scalability Requirements of the IEF
	Objectives
	Hypothesis
	Pilot Project
	Planning
	Execution
	Evaluation
	Concluding Remarks

	Further Examples and Informal Study
	Examples of Instantiating Framework Elements
	Examples of the Elaboration of Scalability Requirements
	An Informal Study: The ``Realtime Banking System''

	Critical Evaluation
	Summary

	Conclusions
	Review of Research Problem and Goal
	Thesis Contributions
	Critical Evaluation
	Future Work
	Closing Remark

	Scalability Definitions
	Scalability Definitions in Scientific Literature
	Scalability Definitions in Informal Literature Many of the definitions was collected by WG06:OnSystems

	Industry Cases
	Motivation
	An Overview of the Industry Cases
	Summaries of Industry Cases
	ERP System
	Message Validator
	Cluster Infrastructure
	Telephone Billing System
	Mobile Services
	Web Application
	Funding Compliance System
	ETL System
	Service Control System
	Field Services Systems
	Communication Services
	Data Integration System
	Online Games

	Critical Evaluation

	A Comparative Case Study Design
	Study Design: An Comparative Study This case study was canceled for reasons beyond our control.
	Objectives
	Hypothesis
	Pilot Project
	Method of Comparison
	Planning
	Prizes
	Deliverables
	Evaluation
	Expected Outcome
	Risks
	Concluding Remarks

	Bibliography

