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The existence of low frequency waveguide modes of ion a@mwsives is demonstrated in magnetized
plasmas for electron temperature striated along the madiedt! lines. At higher frequencies, in a band
between the ion cyclotron and the ion plasma frequencyatadimodes develop and propagate obliquely
to the field away from the striation. Arguments for the sulosed formation and propagation of elec-
trostatic shock are presented and demonstrated numegri€alt such plasma conditions, the dissipation
mechanism is the “leakage” of the harmonics generated byé#ve steepening.
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Formation of shocks as described by Burgers’ equatiomasic equation in the form
[1] can be understood as a balance between the energy in-

put by an external source (a piston moving with velo€ity o' T.(x) 0 < 2 0’ ) ) 0
\ _ PISTOH | g Wit ALY — U — S (Vi+ 55 | v+Q, -5
for instance) and viscous dissipation, with kinematic vis- ~ 0t* M o2\ "t 022 “ot?
cosity coefficient. In one spatial dimension, this nonlin- , To(z) 02
ear problem can be solved exactly by a Cole-Hopf transfor- Ta T 92Y T Y (1)

mation to demonstrate, for instance, that the shock thick-
ness varies as- v/U with the basic parameters of the Wheret is the electrostatic potential, related to the rela-
problem. In principle, Burgers’ equation can apply for anytive density perturbations asp/T. = n = n./no. Since
continuous viscous fluid media, also plasmas. Experimenty€ are here only interested in cases Wher¢T; > 1,
performed in the strongly magnetized plasma of the RisgVe tookT; = 0in (1). In casel,, = constant, a linear
Q-machine [2] demonstrated that for moderate electron tgispersion relation is readily obtained from (1) by Fourier
ion temperature ratia"’e/TL,’ the Strong ion Landau damp_ tranSformlng with I’eSpect to time and space. This dISpeI‘-
ing prohibited the formation of shock. For large tempera-Sion relation contains two branches, onedok €2.; and
ture ratios, the ion Landau damping is reduced, and there @ne for(.; < w < €1, the latter containing also the ion
a possibility for forming steady state nonlinear shock-likecyclotron waves. The wave properties of the two branches
formS, propagating at a constant Speed [2, 3] are very different, as illustrated best by the angle between
In the present study we present a novel mechanism dhe group velocity and the wave-vector [6]. For very low
an effective energy dissipation; selective radiation orkiea frequenciesw < €;, these two vectors are almost per-
age” of short wavelength ion sound waves. We also demorendicular, while they are close to parallel whens> 2.
strate that electrostatic shocks can form as a balance bl the limit k;, — 0, the dispersion relation reduces to
tween these losses and the standard nonlinear wave stedp” — €2;)(w? — k°C?) = 0 containing ion sound waves
ening as described by the nonlinear term in the “simpleédnd the electrostatic ion cyclotron resonance.
wave” equationdu/dt + udu/dz = 0, [1, 4]. Studies in  IfweletT, = T.(z), with z along the magnetic field
two spatial dimensions are sufficient for illustrating the ba-andz in the transverse direction, we can still Fourier trans-
sic ideas, and the analysis of the present paper is restricté@rm with respect to time and thedirection. We denote
to 2D. the Fourier transformed electrostatic potentiakiyNor-
Magnetized plasmas are considered here for conditionsalizing frequencies and lengths so thh= w/<.; and
where the electron temperatufe varies in the direction ¢ = xQ.;/C;, respectively, we readily obtain the expres-
perpendicular to an externally imposed homogeneous magion
netic field [5, 6]. Such conditions occur often in nature for &2 ~ , 1 T, \ ~
plasmas out of equilibrium [7]. For the present analysis et Q-1 ( 2 T T (€)> Y,
it is essential that the ion cyclotron frequency is smaller v €
than the ion plasma frequency, i®.; < €,;. The rele- where we introduced a normalized propagation spéed
vant frequencies are assumed to be so low that an inertigw /£, )*(M /T,), andTy is a reference temperature. Thus,
less electron component can be taken to be in local Boltzy measures the ratio between the phase velocity along the
mann equilibrium at all times. We assume quasi-neutralitymagnetic field and a sound speed, so that constant
n. ~ n,. For a linearized fluid model we readily derive a would correspond to exactly non-dispersive wave propa-
gation. The expression (2) has the form of an eigenvalue
equation, withl /~* being the eigenvalue. We present nu-
merical solutions in Fig. [1. In the low frequency limit
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% ‘ ‘ ‘ ‘ ‘ { agating plane waves.
: : We consider now the low frequency limit of the branch
0e0 P-1.3042054541 of dispersion relation withv < €. Form > 1, the
—— Q-1/4y/-1.380479696] waveguide modes can decay for onevalue to modes
\\ | - = - 0=1/2=1.331133305 with otherm-values. Then = 0 mode has no decay to
> 0.5 /) \ =3/4y/=1.2005565074 other forward propagating modes, and will be the one con-
g \ sidered herg. For this highest phase velocity mode, with
y \ eigenmodey), (z), wave steepening will be the dominant
0 ; ‘ : S ; nonlinearity [1, 4]. The nonlinear terms couple the var-
ious modes to give products afmodes. These can be

1 % 3 P expanded as, for instance; (x)y;(z) = >_, Cuijqe(2),
/ \ - —. 0= .
05 i \n “o2il where we assume that the gef is complete and orthonor-
. ARy ,’/ ' Xy 0=2 mal [8]. For the lowest order waveguide mode we have, in
1 i . -~ -~
RILWAR O TR ay v particular,(jo0 = [*_12(2);(x)dz. For alarge class
P AVATER VAY I \\‘\ AU of relevant electron temperature profiles we can ignore all
/ (R 7 X i ~ i
05 WV Wy ! | higher order modes, and retain only, and introduce here
-10 -5 0 5 10 Co = o i (x)da. .For the Gaussian VB.I‘I?.'[IOI’]S ﬂ.(z)
3 studied here, we will havg, > ¢; for all j > 1, since

~

. . . 1o is the only eigenfunction that is positive everywhere.
FIG. 1. lllustrative examples of numerical solutions of (2) for Tq |owest order in the present low frequency limit we have

the electron temperature profile shown in the upper paned, an . ~ PSP . .
defined byl (€)/To = 1— 3D+ D exp(—€2/W?), wherew — 4 the relationet) /T, = 7 ~ u /C; between fluctuations in
3 relative density and the velocity in tHg-parallel direction.

andD = 24/23. Waveguide mode solutions for= 0, 1, 3, 3 o o th q heref
are shown in the middle panel. Free modes solutions obtdired urarguments concerning the mode structure therefore ap-

Q=237 2andy = 2 are shown in the lower panel. ply to the velocity variations as well.
Considering the limit of time scales much larger than the

ion cyclotron period, we find after some algebra the result

w < €, shown in the middle panel, the waves are con- | o

fined to the electron temperature striation (here denoted — + (Gouy = CTCSO)ai =0, 3)
“waveguide modes”), corresponding to a discrete set of z . _
eigenfunctions),,, with mode numbern. For the Gaus- With uj = u(z,1), where the numerical value df; is

; : ; that of v, in the limit of 2 — 0. Small polarization
fileT, dered here, the mod ber hat 017 . . P

sian profileT(z) considered here, the ”70 °e numaar drifts L B are ignored. We introduced a constant refer-

corresponds to the number of zero-crossinggf(z) [6].

For the three dimensional problem we would héawe in- ence sgund speet. We anticipate thatr ° here not

~ . o . much different from,, since the form of),(z) is close to
dexesy,, corresponding to the two directions perpendic-p ;) 7 (1o0|). The solutions of (3) have the well known
ular to B. From ¢, we can obtain the corresponding steepening of the initial condition. The characteristic time
~v depends orf2, and we find forQ = 0,%,1,2, that where £ is the characteristic scale length of the initial
75 = 1.3942,1.3805,1.3311, and1.2006, i.e. a relatively  perturbation alongB and maxw (¢t = 0)} is the maxi-
weak variation ofy, with 2. We note also that the eigen- mum value of the initial velocity perturbation. The model
functions change only little in spite of the large change inequation|(3) assum&go(x) and~, being used also when
§2. Only for €2 close to unity, say around 0.9 or larger, do() > (, but this approximation is acceptable for at least
we see significant variations iy (x) and~,. For shal- 0 < © < 0.75, as seen in the middle panel in Fig. 1. For
low temperature variations and narrow temperature ductshe basic ideas outlined in the present work, this restriction
we have only the lowest order mocﬁg(w). For~ smaller is of little consequence. Polarization drifts become increas-
than the minimum value of,(x)/T;, we have a contin- ingly larger as(? is increased, but these do not affect the
uum of eigenvalues with corresponding eigenfunctions. Irflynamics parallel td3, which is covered by (3).
all cases we useff, = %(TQ(O) + T, (Joo]). If we initialize the system with characteristic wave-

Forw > Q. the right hand side of (2) changes sign, andlengths corresponding to frequencies< €.;, i.e. £ >

the nature of the eigenmodes changes as well, to becon§é /{2, the short time evolution will be governed by (3),
free modes as seen in the lower panel in Fig. 1. If we lefnd we will have shorter and shorter scales developing as
the electron temperature striation vanish to have a uniforrfor the usual breaking of waves [1, 4]. This process is how-

T., then the free modes degenerate to two obliquely propever arrested when the characteristic length scales become
of the order of the effective ion Larmor radids, /€2.;,
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FIG. 2. Examples of numerical simulations showing the varia-

tions of the normalized potentidl = ey /T; as a function of po-  F|G. 3. Numerical simulation showing normalized potential

sition at a fixed time. The electron temperature enhancefsent ¢ — ¢y/T; and relative density; /o during the formation and

localized as a Gaussian in thedirection. We have = Q,,;7/5  propagation of a shock under the conditions mentioned lkefor

in both cases Whil@ci/Qm‘ = 0.05 and Qci/ﬂpi = 1in the left We havefe/Ti = 25, Qci/Qpi = % and 5TL1/7’L0 ~ 0.24, where

and right panels respectively. We have hggT; = 50. For sy, is the actual detected density perturbation at the time wher

clarity, only a part of the simulation domain is shown. the shock is fully formed. The background densitys normal-
ized to unity. Lower frame shows sample of shock fitting fer th
ion density.

where the modes become radiating, and are no longer con-

fined to the waveguide. We propose a phenomenological

expression for the process, best written in Fourier space iff; = constant. The width of the electron striation is here

a frame moving withCy, as W =28 Ap; = 3.9C,/N,;. Several values df,.(0)/T;

o0 Cole o Q. were investigated.
i 220G 0t = ———H <|k:|| _ “> . (4 Results illustrating the waveguide and the free modes are
ot 2 T (ky) Cio shown in Figl 2. The properties are clearly different and

consistent with the interpretation given before. The wave-
guide modes are confined to the electron striation, while
acterizes the time it takes for the energy of the> .-  the high frequency free modes are dispersing or “leaking”,
waves to be lost from the waveguide. We have= 7 (k;), ~ consistent also with laboratory experimental results [5]. It
but it will depend also on parameters such as the waveguid@ Important to emphasize that this apparent damping will
width as well as the other plasma parameters. We expebf found also in a fluid model. The observed effective
that increasing width gives increasirf, i.e. decreasing damping is caused by wave energy dispersing in space,
shock thicknesz. Within the present model the waveform @nd dissipated by linear ion Landau damping outside the

will steepen uninhibited until the shock thickness become§lectron temperature striations whéfg(|oc|) /T; = 1 in
of the order ofC, /).;, at which time the harmonic fre- all cases considered. Each step in the process is formally

guencies will exceef.; to become radiative and the high time—_reversible. In order to emphasi_ze the physical effe_cts
frequency wave energy is lost from the waveguide. Consel€ discuss here_, we consider only high temperature ratios,
quently, theB-parallel scale of the shock is controlled by Ze(0)/T; > 25, in order to reduce the effects of linear as

a quantity referring to thd3-perpendicular dynamics. well as nonl_lnear ion Landau damping. Such high tem-

We study the nonlinear propagation of low frequencyPerature ratios (even as large &s/7; = 100) can be

waves in an electron temperature striated magnetizeﬂbta'ned in (_jlscharge plasmas_ under laboratory condltl_ons
plasma numerically by usingZL-dimensional particle in  [9]- For nonlinear waves described by a Korteweg-de Vries
cell (PIC) code described elsewhere [6]. The code astKdV)equation, a shock-like structure is followed by Airy-
sumes explicitly the electrons to be locally Boltzmann dis-IYPe ripples, originating from the dispersion term in the
tributed and the resulting nonlinear Poisson equation iKdV-equation. These ripples are absent in our results, see
solved by iteration. We use a Gaussian variatiorfiqr) ~ F19-(3. Likewise, at the high temperature ratio used here
so thatT,(|oo|)/T; = 1, while T,(0)/T; > 1, where (with Csp > wyy,;, the ion thermal velocity), we find no

with u; = u(ky,t). The symbol® denotes the convolu-
tion product andH is Heaviside's step function7 char-
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FIG. 4. Shock velocity/ in units of Csy (upper panel) and sat-
urated shock thicknes& in units of Cso/Q.; (lower panel) as
function of the fully formed shock relative height; /ng, for dif-
ferent combinations of the parametérs/T; = 25 and 75, and
Q(»L/sz = % and%.
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tions due to finiteZ; ignored in|(2). Fo.;/$2,; = % we
find that an approximate five-fold increaseim; /n, corre-
sponds to approximatel0 % reduction inA. We demon-
strated also that the shock thicknésscales inversely pro-
portional to the width of the striation. We verified that
changes in the initialB-parallel scale length of the ini-
tial density profile do not change the saturated shock thick-
nessA for any dn;/ny. We studied also a weak magnetic
field limit, with Q.;/Q,; = i. Here, finite ion Larmor
radius effects (ignored in derivingl(1)) begin to be impor-
tant, since the striation is now only 10 ion Larmor radii
wide. For this limit we find that\ is almost constant. Even
weaker magnetic fields will require a fully kinetic theoret-
ical analysis to account for the effects of collisionless ion
gyro-viscosity|[10].

We here reported arguments for the formation of shocks
in electron striations in magnetized plasmas wkkp <
Q,, andT, > T,. By PIC-simulations we demonstrated
the formation and propagation of electrostatic shocks un-
der these conditions for a wide combination of parameters.
The decreasing shock thickness for increasing amplitudes
is found also for classical shocks as described by Burg-
ers’ equation, but in our case the dissipation mechanism is
leakage from the electron temperature striation of the short
scale lengths generated by the nonlinear wave steepening.
The ideas presented here can have wider applications.

ions being reflected by the shock. A backward propagating

rarefaction wave is of no concern here.

In Fig.[3 we show an example of the formation and prop-
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