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Abstract

Inhibition of the Human Immunodeficiency virus type-1 (HIV-1) protease enzyme

blocks HIV-1 replication. Protease inhibitor drugs have successfully been used as a

therapy for HIV-infected individuals to reduce their viral loads and slow the progres-

sion to Acquired Immune Deficiency Syndrome (AIDS). However, mutations readily

and rapidly accrue in the protease gene resulting in a reduced sensitivity of the protein

to the inhibitor. In this thesis, molecular dynamics simulations (MDS) were run on

HIV proteases complexed with the protease inhibitor saquinavir, and the strength of

affinity calculated through MMPBSA and normal mode analysis.

We show in this thesis that at least 13 residues can be computationally mutated in

the proteases sequence without adversely affecting its structure or dynamics, and can

still replicate the change in binding affinity to saquinavir caused by said mutations.

Using 6 protease genotypes with an ordered decrease in saquinavir sensitivity we use

MDS to calculate drug binding affinity. Our results show that single 10ns simulations of

the systems resulted in good concurrence for the wild-type (WT) system, but an over-

all strong anti-correlation to biochemically derived results. Extension of the WT and

multi-drug resistant (MDR) systems to 50ns yielded no improvement in the correlation

to experimental. However, expansion of these systems to a 10-repetition ensemble MDS

considerably improved the MDR binding affinity compared to the biochemical result.

Principle components analysis on the simulations revealed that a much greater con-

figurational sampling was achieved through ensemble MD than simulation extension.

These data suggest a possible mechanism for saquinavir resistance in the MDR system,

where a transitioning to a lower binding-affinity configuration than WT occurs. Fur-

thermore, we show that ensembles of 1ns in length sample a significant proportion of

the configurations adopted over 10ns, and generate sufficiently similar binding affinities.
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Chapter 1

Introduction

1.1 Biological Introduction

1.1.1 Proteins

Proteins are the most abundant and diverse biological macromolecule, making up over

half of a cell’s dry weight [85, 1]. Their importance is reflected by their remarkable

range of functions, which are indispensable to life; including enzymatic catalysis, intra-

and extra-cellular transport, control of cellular growth and differentiation, and defence

against pathogens and antigens [107].

Proteins are composed of chains of amino acids, ranging in length from, for exam-

ple, 51 monomers in ribonuclease A, to the largest protein Titin, containing 34,350

amino acids. These amino acid monomers are not all identical; although they all con-

tain a hydrogen atom, a carboxyl group and an amino group surrounding a central

carbon atom, they differ in the composition of their R group that is also attached

to the central carbon atom, shown in Figure 1.1. As the other chemical groups are

identical between different amino acids, the R group (also referred to as the side chain)

alone determines the amino acid’s biophysical properties such as its size, polarity and

hydrophobicity [85]. There are 20 standard amino acids encoded by the genetic code,

each with a distinctive side chain. These side chains are shown in Figure 1.2.
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Figure 1.1: Chemical structure of the shared chemical groups of amino acids. The
central carbon atom is denoted Cα, around which the functional groups are bonded.
The R group, highlighted in red, is also called the side-chain. This differs between
amino acids, giving them their different chemical properties [12].

These amino acids are joined together through a condensation reaction that covalently

joins the amino group of one with the carboxyl group of a second, forming a peptide

linkage (See Figure 1.3). For this reason, a protein chain is also referred to as a polypep-

tide chain [85]. The sequence of the amino acids in the polypeptide chain is referred

to as the protein’s primary sequence, and directly determines the biochemical proper-

ties of the protein, such as its size, shape and function by dictating the way that the

protein folds into its secondary and tertiary structures, and, in the case of multi-chain

proteins, its quaternary structure. When amino acids interact at a local level, they can

form three different local secondary structures:

1. α-helix: These right-handed helices form rod-like structures where the CO atoms

of an amino acid’s carboxyl group are hydrogen-bonded to the NH atoms in the

amino group of the amino acid four monomers ahead. In such structures, each

Cα atom is related to the next by a rise of 1.5Å along the helical axis, and a

rotation of 100◦.

2. β-sheet: Much as with α-helices, β pleated sheets occur through hydrogen-bond

interactions between CO and NH atoms of different amino acids. However, un-

like in α-helices, these non-bonded interactions occur between residues that are

located in adjacent chains lying in parallel to the plane of their chains. If the two

adjacent chains run in the same direction then they are termed parallel β-sheets; if

they run in opposite directions then they are termed antiparallel β-sheets. In con-

trast to α-helices, the axial distance of interacting residues in β-sheets is around

3.5Å.
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3. β-turn: As with the other two secondary structures, a β-turn in a polypeptide

chain is caused by hydrogen-bond interactions between the CO and NH atoms of

adjacent residues. However, in the case of a β-turn, this interaction is between

two amino acids four residues apart along the primary sequence. In bringing these

two residues in close enough contact for the hydrogen-bonding to occur, the inter-

vening amino acids curl around to form a tight turn. As β-turns abruptly change

the direction of a polypeptide chain, they are often found in close conjunction

with antiparallel β-sheets.

It is not just at the local level that amino acids can associate with one another.

Once a protein has formed its secondary structures, further large-scale spatial rear-

rangement of the protein occurs that bring distant regions of the primary sequence into

close proximity. This tertiary structure is stabilised through both non-bonded forces,

such as van der Waals interactions between hydrophobic residues, and covalent inter-

actions, such as disulphide bridges between two cysteine residues brought into close

proximity [85]. Disulphide bridges are often found in secreted or cell-surface proteins,

and are formed as shown in Equation 1.1.

−CH2 − SH + HS−H2C− ⇐⇒ −CH2 − S-S−H2C − + 2H+ + 2e− (1.1)

In order for the disulphide bridge to be formed, the protein must be in the presence of

an oxidative environment, which is why in eukaryotes this occurs in the rough endo-

plasmic reticulum, rather than the reducing environment of the cytosol.

Once the polypeptide chain has folded into its tertiary structure, it may associate

with other polypeptide chains to form the functional protein. The arrangement to

which these chains assemble into a complex is referred to as the protein’s quaternary

structure, and each polypeptide chain making up the complex is termed a subunit or

monomer. Each subunit of a multi-subunit protein complex does not have to be identi-

cal; that is, two different polypeptide chains can interact to form a functional protein.

In such cases, the protein is referred to as a heteromeric protein. In contrast, protein

complexes composed of identical subunits are referred to as a homomeric proteins [1].

When describing hetero- or homo-meric protein complexes, it is common to include the
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Figure 1.3: Chemical illustration of the formation of a peptide linkage between two
amino acids. Highlighted in blue are the atoms that are lost as water in the reaction. In
green are the carboxylic-oxygen and amino-hydrogen to aid visualisation. The peptide
bond is formed between carboxyl-carbon and amino-nitrogen of adjacent amino acids.
Figure adapted from Stryer (2000) [107].

number of subunits in the description. For example, HIV’s aspartyl protease enzyme is

composed of two identical polypeptide chains, and is therefore referred to as a homod-

imeric protein.

In theory, the quaternary structure of a protein should be deducible from its primary

sequence. Given a particular order of amino acids, their interactions on a local scale can

be determined, and subsequently the interactions of these secondary structures to form

the protein or subunit. However, the actualisation of this has proven to be much more

difficult, so alternative methods are employed to determine the tertiary or quaternary

structure of a protein:

1. X-ray crystallography. X-ray crystallography is a technique for determin-

ing the atomic position of macromolecules. Unlike NMR, however, the macro-

molecules must be in crystalline form for the method to work. A narrow beam of

x-rays with a wavelength of 1.5Å is directed through the protein crystal. While

most of the x-rays pass straight through the protein sample, those that pass in

close proximity of an atom will be deflected, forming a scattered diffraction pat-

tern in which overlapping electromagnetic waves that are in phase amplify each

other, and those out-of-phase interfere with each other and cancel each other
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out. The position and intensity of the spots in the resultant x-ray diffraction

pattern gives information about the position of the atoms in the crystal. The

crystal is rotated step-by-step through 180◦ and the process repeated to attain

the 3-dimensional structure of the protein, which is reverse-calculated from the

diffraction patterns by determining the positions of all the atoms and combining

it with knowledge of the amino acid sequence. The fidelity of this structure de-

pends on the resolution of the diffraction patterns attained. At a resolution of 6Å

the basic polypeptide chain can be distinguished, but little structural information

can be seen. As the resolution increases, groups of atoms 2.8Å - 4.0Å apart can

be distinguished, and at even higher resolutions, individual atoms 1.0Å - 1.5Å

apart can be distinguished. In turn, the resolution of the diffraction pattern is

determined by the perfection of the initial protein crystals, which is dependent

on both the crystallisation protocol and protein itself; some proteins, particularly

membrane proteins, are difficult to crystallise [1, 107].

2. NMR spectroscopy. As with x-ray crystallography, nuclear magnetic reso-

nance spectroscopy (NMR) is a technique for determining the atomic positions

of molecules. In contrast to X-ray crystallography, however, NMR data is deter-

mined from a solution of protein. This allows for protein-structure determination

under a wider range of physiological conditions, such as pH, temperature, and

salt concentration [130]. NMR exploits the fact that nuclei containing an uneven

number of nucleons (e.g. 1H, 14N, 13C, 31P which are abundant in biological

molecules) have a net spin and therefore generate a magnetic moment like a

dipole. By placing the molecule in a constant magnetic field, those nuclei with

a net spin will realign themselves to retain a low-energy configuration. Applying

an electromagnetic pulse results in the nuclei transitioning to a high-energy spin

state, however this pulse must be at the exact frequency that its photons con-

tain the energy required to transition the nucleus to this high-energy state. This

frequency, termed the resonance frequency, is unique for each atom, and more

importantly differs for a particular atom depending on its surrounding chemical

environment. Therefore the resonance frequency of a lone 1H hydrogen nuclei

will be different to the resonance frequency of the hydrogen nuclei in methane
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(CH4). The deviation in resonance frequency from a standard reference molecule

is termed the ‘chemical shift’, and this gives information on the chemical struc-

ture; for example a 13C chemical shift of 97ppm indicates that it is part of a CCl4

group [88, 94, 107, 130].

While chemical shifts reveal the functional groups present in the molecule, they do

not give information on the secondary or tertiary structure of the molecule. How-

ever, the phenomena of spin-spin coupling and nuclear Overhauser effect (NOE)

allow the molecule’s conformation to be elucidated. With spin-spin coupling,

non-equivalent hydrogen atoms that are separated by up to 3 covalent bonds will

couple their nuclear spins, appearing as split lines on an NMR spectrum. NOE

is the transference of magnetisation from an excited nucleus to an unexcited one

within 5Å as it relaxes back to its low-energy state. These appear as off-diagonal

points on a 2-D nuclear Overhauser enhancement spectroscopy (NOESY) spec-

trum and can be interpreted to determine the 3-D relationship between the nuclei

involved. 1H is most commonly employed for these analyses due to the natural

abundance of the isotope as well as its relative abundance in biological macro-

molecules [49, 94, 107].

3. Homology modelling. The principle behind homology modelling is that new

proteins usually evolve through modification of duplicated genes. Therefore pro-

teins with related functions often have similar sequences and basic structures.

Members of the serine protease family, for example, share 40% primary sequence

similarity, and have near identical tertiary structures. Therefore, by comparing

a protein’s primary sequence against those of other functionally-related proteins

with known structures, its own structure can be inferred [1]. This is a com-

putational method of structure prediction, and as more organisms’ genomes are

sequenced, and more depositories filled with the protein sequences determined,

this method will become more powerful.

1.1.2 Enzymes

As mentioned in Section 1.1.1, the function of certain proteins is to catalyse the in-

numerable chemical reactions that occur in biological systems, increasing their rate of
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reaction [107]. The reactions still occur in the absence of these catalysing proteins, but

in some cases their rates are so low that a single transition from reactant to product

may only occur once every year. The role of the enzyme, therefore, is to increase the

rates of biochemical reactions to levels such that the products are harness-able by bio-

logical systems [1].

In enzyme-catalysed reactions, the reactant molecules are referred to as substrates,

and in order for the enzyme to fulfil its role of accelerating the rate of transition to

products, it must bind to the substrate (or substrates if the reaction involves more

than one reactant species) to form an enzyme-substrate complex. After the reaction

has taken place, the resultant product (or products) is released by the enzyme, which

is then free to catalyse another reaction. As is described in more detail in Section 1.3.3,

enzymes also increase the rate of the reverse reaction by the same factor as the forward

reaction, so the products can be catalysed back into the reactant molecules by binding

to the enzyme. This is shown diagrammatically in Equation 1.2 [1, 85, 107].

E + S ⇀↽ ES ⇀↽ EP ⇀↽ E + P (1.2)

The region of the enzyme that the substrate binds to is called the active site. This is

a three-dimensional cleft in the surface of the protein, formed by distal residues that

come together as the protein folds into its tertiary or quaternary structure. The vol-

ume taken up by the active site comprises a relatively small percentage of the total

volume of the protein [107]. Figure 1.4 shows an example of the surface area taken

up by the active site in HIV-1’s aspartyl protease enzyme. The first step in catalysis

is the formation of an enzyme-substrate complex. In order for the complex to form,

the enzyme must form multiple non-covalent bonds with the substrates. Depending

on the chemical nature of the substrates and the active-site residues, the free-energy

change associated with binding ranges from -3 to -12 kcal/mol; weakly-interacting sub-

strates may only share hydrophobicity with the residues that make up the active site,

whilst strongly-interacting substrates may share electrostatic bonds, hydrogen bonds,

van der Waals interactions along with the shared hydrophobicity with the active site

residues. The shape of the active site is an important factor in the strength of the
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Figure 1.4: Cartoon representation of HIV-1’s aspartyl protease showing the residues
that form the surface area of the active site in red, and the remainder of the quater-
nary structure in grey wireframe. Note how the surface area of the enzyme’s active
site compares to the much larger surface area of the enzyme as a whole. The entire
catalytic activity of this enzyme derives from just two aspartic-acid residues located at
the bottom of the binding-groove running through the enzyme. This image was created
from the 1FB7 PDB file using VMD.

interaction, because while a single van der Waals force is weak, the combined effect of

multiple enzyme-substrate van der Waals bonds becomes a significant interaction. The

strength of the van der Waals interaction increases as the distance between the relevant

atoms decreases. However, as the atoms are brought closer together, strong repulsive

forces arising from the atoms’ electron clouds’ electrostatic repulsion abruptly increases

the pairwise potential energy. The interaction of these opposing forces results in an

equilibrium interatomic distance, termed the van der Waals contact distance, where

the pairwise potential energy is lowest (Figure 1.5). The complementarity between the

active site and the substrate in the enzyme-substrate complex is therefore important

as it ensures that the multiple van der Waals interactions are at their contact distance,

thereby increasing their strength [7].

Once the substrate binds the enzyme to form a complex, as long as it has enough

free energy to overcome the activation barrier, it will react to form the product. The

biochemistry underlying this is described in Section 1.3.3, but the different biologi-

cal mechanisms utilised by the enzyme to lower the activation barrier, and therefore
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Figure 1.5: van der Waals interaction energy graph showing how the energy of the
attractive and repulsive forces (in red) change as 2 atoms are brought closer together.
The interaction between these opposing forces results in the van der Waals interaction
energy (in blue), which is lowest at the ‘contact distance’ between the atoms. Figure
adapted from Berg et al. (2002) [7].

catalyse the reaction, will be described here:

• Substrate re-orientation. As previously mentioned, the shape of the active

site is complementary to that of its substrates. If a reaction involves multiple

substrates, they would only be able to fit into the active site in the particular

orientation that allows them to react. An example of this is the catalysis of pep-

tide bond formation; the peptide bond can only be formed between the carboxyl

group of one amino acid and the amino group of a second amino acid. So for this

reaction to take place, the active site of the enzyme must accommodate these

two amino acids in such orientation that the carboxyl group and amino group are

facing each other and close enough for the peptide bond to form between them

[85]. It used to be thought that the enzyme-substrate complementarity could be

described through a lock-and-key metaphor, where the shape of the active site

was exactly complementary to the substrate. However, Daniel E. Koshland Jr.’s

induced-fit postulate is now thought to be more accurate. This hypothesises that

the unbound active site is not necessarily complementary to the substrate, but
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once bound, the additional non-bonded forces acting on the enzyme cause it to

change shape such that it becomes complementary to the substrate [107]. HIV-1

protease provides an example of this; as seen in Figure 1.10, the active site runs

through the middle of the enzyme, with two pairs of anti-parallel β-strand ‘flaps’

forming the roof of the active site. Hornak and Simmerling (2007) hypothesised

that these flexible flaps are ‘open’ in the enzyme’s unbound state to allow entry

of substrate into the active site, and that upon substrate binding they undergo

configurational changes to close over the substrate, locking it in the active site

such that the catalytic residues are close enough to the substrate for catalysis to

occur. These flap conformations are shown diagrammatically in Figure 1.11 [34].

• Re-distribution of charge in the substrate. Enzymes can also catalyse

reactions by changing either the charge on the substrates, or by altering the

electron distribution of the substrates such that the reaction is more likely to

occur. This charge re-distribution can directly involve the side-chains in the

enzyme’s active site; in these cases the amino acids directly involved are termed

the catalytic residues [85]. A detailed example of this mechanism is described

for HIV-1 protease in Section 1.3.3. In brief, the enzyme’s two catalytic residues

cause a redistribution of electron charge both in the attacking water molecule

and in the peptide bond, destabilising the peptide bond and making it more

susceptible to attack. The catalytic residues then directly mediate the transfer

of a proton from the water molecule to the substrate, breaking the peptide bond

[71]. This catalytic mechanism can also be achieved by a metal ion co-factor,

such as zinc, copper or iron, present in the quaternary structure of the enzyme

[85].

• Induced strain in the substrate. Through the action of non-bonded forces

on the substrate upon formation of the enzyme-substrate complex, bonds in the

substrate can stretch, causing the substrate to adopt an unstable configuration.

This can make the substrate more reactive to attacking molecules [85]. In fact,

the unstable configuration that the enzyme forces the molecules to adopt is that of

the substrate’s transition structure for the reaction and the enzyme has its great-

est affinity for this transition structure. For enzymes employing this mechanism
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for a reversible reaction it is easy to see how it accelerates both the forward and

reverse reactions by the same amount; when either the reactant or the product

enters the active site, they are both conformationally strained into a structure

more closely resembling the transition-state structure between the two, allowing

the reaction to occur more readily in either direction. As the active site is most

complementary to the transition structure, it will have mismatch with both the

reactants and the products, so its catalytic activity will be determined by how

easily it can strain the molecule into the transition-state structure [14].

In order for the enzyme to strain its substrates into the transition-state structure,

it must undergo a certain degree of conformational change itself, brought about

by the additional non-bonded forces from the substrate molecules in its active

site. This, in combination with the fact that enzymes employing this mechanism

have highest complementarity to the transition structure, gives credence to the

induced-fit model of enzyme-substrate binding over the lock-and-key model. This

mechanism has had a large impact on drug design, as it was realised that for en-

zymes that employ this method, for the inhibitor to be most effective it must be

the most attractive to the enzyme. This requires that its structure resemble the

transition-state structure, for which the enzyme has highest affinity, rather than

the unbound substrate which is deformed into a more attractive structure by the

enzyme. The biological effect of inhibitors will be described in more detail later

in this section; the biochemistry of enzyme-inhibitor kinetics is described in detail

in Section 1.3.3 [85, 107].

The action of enzymes can be both enhanced and inhibited through the action of

specific atoms or molecules, termed activators and inhibitors respectively. These are

not ubiquitous for all enzymes; not all enzymes have activators, nor do all enzymes

have inhibitors [107].

• Activators. An enzyme activator is a species that reversibly binds to an enzyme

to increase its activity, whilst itself not undergoing any net change in the reac-

tion. It can therefore be considered the converse of reversible inhibition, which

is described later in this section. The activator may be an inorganic metal ion,
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such as Mg2+, or an organic molecule such as fructose 2,6-bisphosphate [85].

• Inhibitors. As mentioned earlier, an inhibitor is a species that interferes with

the normal action of an enzyme, preventing it from catalysing its reaction, either

in part or completely. There are two types of inhibitors: reversible and irre-

versible. Irreversible inhibitors act by either reacting with the enzyme, resulting

in an altered enzyme that is no longer enzymatically active [12] or by forming

very strong covalent or non-covalent bonds with the enzyme, resulting in such

a low dissociation constant that soon all enzyme molecules are saturated with

inhibitor and no substrates can enter the active site [107]. An example of an

irreversible inhibitor is the β-lactam class of antibiotics, which irreversibly bind

to the bacterial-enzyme glycopeptide transpeptidase. This inhibition prevents

the enzyme from catalysing the cross-linkage of peptidoglycan macromolecules

in the bacterial cell wall, thus inhibiting its growth [107]. In contrast, reversible

inhibitors bind to the enzyme to form an enzyme-inhibitor complex, but the asso-

ciation is weak and so the complex is only transient; the complex dissociates back

into free inhibitor and enzyme which is then able to bind substrate and catalyse

a reaction. Examples of reversible inhibitors include the viral protease inhibitors

such as saquinavir, targeting HIV; or telaprevir, targeting hepatitis C [85]. There

are two types of reversible inhibitors: competitive and non-competitive. Non-

competitive inhibitors bind to binding-sites on the enzyme at a site other than

the active site. This binding causes a change in the conformation of the enzyme,

particularly around the active site, that results in either inability of the substrate

to bind, or reduced catalytic activity of the enzyme due to its reduced effective-

ness to lower the activation barrier in its new conformation [12, 107].

Competitive reversible inhibitors have a different effect to non-competitive in-

hibitors because, instead of changing the enzyme’s conformation, they bind di-

rectly to the active site in place of the substrate. By binding to the active site, it

blocks the substrate’s access, and as a result that enzyme is unable to catalyse its

natural reaction [107]. The action of reversible inhibitors is therefore to reduce the

rate of reaction by reducing the proportion of enzymes available to bind substrate
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molecules at any point in time. This action can be overcome by increasing the

concentration of enzyme’s natural substrate so that is has a much greater chance

of binding to a substrate molecule rather than an inhibitor molecule. In order

for a competitive inhibitor to be effective, the enzyme must have as strong an

affinity as possible for it, to lower the dissociation constant and therefore increase

the time the inhibitor spends in the active site. This can be achieved by designing

the inhibitor to mimic the enzyme’s natural substrate; designing it to mimic the

substrate’s structure ensures that the enzyme’s affinity for the inhibitor is similar

in magnitude to its affinity for the substrate.

As mentioned earlier in this section, enzymes actually do not have the high-

est affinity for the substrate in its ground state. It was realised during the 1920s

that as an enzyme distorts the substrate into the transition-state structure, its

affinity for the substrate increases. The enzyme actually has its highest affin-

ity with the transition-state structure [128]. It was therefore theorised by Linus

Pauling in 1946 that unreactive compounds mimicking the enzyme’s substrate’s

transition-state structure would make a more powerful antagonist than a com-

pound resembling the ground state of the substrate [12]. Such inhibitors are

termed transition state analogs and the principle has proven to be very effective

in the design of novel inhibitors. An example of a transition state analog is the

HIV protease inhibitor indinavir. This peptidomimetic inhibitor was developed

by Merck & Co. and approved by the FDA as the third HIV protease inhibitor

in 1996. The Ki between HIV-1 protease and indinavir was shown to be 0.34 nM

[9] compared to a KD of 0.27 nM between the protease and its natural substrate

[46].

Due to the fallible nature of replicative enzymes such as DNA polymerase and reverse

transcriptase, enzymes can evolve to escape the effect of inhibitors. Mutations that

accumulate in the enzyme’s genetic sequence can result in an alteration in the protein’s

primary sequence. These primary sequence mutations can cause a decrease in the

binding affinity between the inhibitor and the enzyme, or they can cause an increase in

affinity for the enzyme’s natural substrate over the inhibitor. Alternatively, they can
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cause a drop in affinity for both inhibitor and substrate, but with a larger decrease for

the inhibitor such that the inhibitor’s effect is sequestered. To this mutated primary

sequence, further mutations can be added, resulting in an even greater resistance to

the inhibitor’s effect. Eventually the enzyme can accumulate enough mutations to

circumvent the effect of the inhibitor so that it is able to fulfil its catalytic role. This

may have resulted in a decreased affinity for the substrate compared to the original

enzyme, or a lowered catalytic function of the enzyme, but in the presence of the

inhibitor this mutant sequence restores the enzyme’s phenotype as best as it can. A

fuller description of enzyme mutations in the context of HIV-1 protease inhibition is

given in Section 1.2.4.

1.2 Virological Introduction

When viruses were first discovered in 1899, they were said to represent the most basic

form of life; being the smallest known life-form encoding the smallest number of pro-

teins required to sustain itself . As obligate intracellular parasites, they are unable to

replicate on their own, so require a host cell within which to propagate [47]. In the

simplest of terms, their sole purpose is to transport their genome into a host cell so that

the cell’s transcriptional and translational machinery can be hijacked and redirected

into producing the proteins encoded by its genome. These proteins’ sole purpose is

to either directly or indirectly produce new virions which can then infect other cells.

However, the apparently simplicity of viruses has since been shown to be a misconcep-

tion, and an entire field has been developed to study the complexities of viruses and the

interactions with their vast array of host cells. An example of such complexities is the

range of genetic material exhibited in viral genomes. Unlike eukaryotes and prokary-

otes, which consistently use double-stranded DNA as their genetic material, viruses

are known to utilise single-stranded DNA (e.g. Parvoviridae), double-stranded DNA

(e.g. Herpesviridae), single-stranded RNA (e.g. Coronaviridae), and double-stranded

RNA (e.g. Reoviridae) for their genomes. Furthermore, the DNA genomes can be

either linear or circular, and RNA genomes can be either positive-sense or negative-

sense. Viruses of the Retroviridae family store their genetic material as a positive-sense

RNA molecule, which is converted to a linear double-stranded DNA intermediary prior
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to transcription and translation [118]. This is especially interesting because this goes

against the Central Dogma of molecular biology, which states that the flow of genetic

material passes from DNA to protein through an RNA intermediary. It is testimony to

the variability of viruses that no single classification scheme is able to comprehensively

group viruses according to their basic properties. For example, the Baltimore classifi-

cation separates viruses into seven groups based on their genetic material. However,

virus families within a group do not share other properties such as whether the virions

are surrounded by a lipid envelope prior to infection, cell tropism, or the nature of the

disease they cause [47].

Nevertheless, despite their inability to replicate outside of a host cell, viruses are incred-

ibly successful; they are able to infect members of all 5 biological kingdoms [47], and

have caused several pandemics in human history. For example, the 1918-1919 influenza

pandemic infected over 500 million people worldwide and resulted in more deaths than

World War I. This pandemic was caused by an novel strain of influenza that evolved

in late 1918. The emergence of the HIV pandemic in 1983 has since resulted in over

33 million people infected worldwide by 2007, and the death of over 2 million [115].

The emergence of these novel forms highlights the incredibly high evolutionary rate

of viruses, which appears to be directed to aid in their transmissibility. For example,

the influenza virus’s genome is split into 8 genomic segments; co-infection of a host

cell by 2 different influenza viruses can result in co-packaging of segments from each

virus in the progeny virions, resulting in a virus with a novel genotype [118, 110]. Fur-

thermore, viruses with an RNA genome require a virally-encoded RNA-dependant

RNA polymerase to replicate its genome. These have no proof-reading 3′ exonucle-

ase activity and therefore the error rates in genome replication are approximately 1 in

10,000 nucleotides. As the average RNA genome is greater than 10kb, each replicated

genome will have at least one mutation. Combined with the high replication rate of

viruses, a large number of genetically-distinct progeny can be generated upon infection

[47]. In addition to emergence of new viral genotypes that cause global pandemics, this

has the effect of creating a low level of genetically-variable virions within an infected

species. This has important implications when a strong selective pressure such as drug

administration is applied to suppress the infection. In this situation any low-level ge-
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netic variants which are less suppressed by the drug will become the fittest genotype

and will therefore soon become the majority species and circumvent the drug. This is

most important in chronic viral infections such as HIV, where anti-retroviral drugs are

administered to suppress the virus and slow the progression to Acquired Immunode-

ficiency Syndrome (AIDS). Due to the presence of genetically-variable ‘quasi-species’

within an individual, the suppressive effect of a drug is only transient [86].

1.2.1 Global importance of HIV and AIDS

In 1981 the first case of a person presenting a collection of opportunistic infections and

tumours that were normally suppressed by the immune system was identified. As more

cases were identified, it was noticed that the opportunistic infections were associated

with a marked decrease in the levels of circulating T-helper lymphocytes, and so the

term Acquired Immunodeficiency Syndrome (AIDS) was coined to described the pre-

sentation of the opportunistic infections in the context of this immunosuppression. In

1983 a retrovirus, subsequently termed ‘Human Immunodeficiency Virus type 1’ (HIV-

1), was isolated from the blood of patients with AIDS, whose cell tropism was mediated

by the cellular receptor ‘cluster of differentiation 4’ (CD4). This receptor is present on

the surface of T-helper cells, regulatory-T cells, monocytes, macrophages and dendritic

cells, which explained how the retrovirus infection lead to immuno-compromisation and

subsequent presentation of AIDS.

Since that first case back in 1981, HIV has become a global pandemic, with an es-

timated 33 million people worldwide living with HIV in 2007. In 2007 alone, there were

2.7 million new HIV infections and 2 million deaths due to AIDS. It is projected that

by the year 2015, AIDS will have accounted for 115 million deaths in the 60 countries

most affected. The additional macroeconomic impact of the pandemic is vast, with

HIV predicted to reduce economic growth in high-prevalence countries by 0.5%-1.5%

over the next 10-20 years. Furthermore, the annual global resource allocated for the

prevention of new HIV infections, reduction of HIV-related illnesses, and mitigation

of the epidemic’s economic effects is 10 billion USD [115]. The global impact of the

emergence of HIV cannot be underestimated, and therefore there is significant scientific

interest in HIV treatment.
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1.2.2 HIV Genome, Structure and Life-Cycle

Under the Baltimore classification system HIV is a type VI virus, meaning that it is

encoded by a positive-sense, single-stranded RNA genome that replicates via a double-

stranded DNA intermediate [118]. Each of its genome’s two RNA strands is composed

of roughly 9,800 nucleotides, encoding 3 major structural genes; gag, pol and env, and

several non-structural accessory genes; tat, rev, nef, vif, vpr, vpu and, in some HIV

isolates, tev (see Figure 1.6).

Each of the three structural genes encodes a polyprotein product; the Gag polypro-

tein product of the gag gene is cleaved into p24, p6, p7 and p17, which together make

up the structure of the protein core that protects the RNA genome. The proteins

obtained from cleaving the Pol polyprotein are functional enzymes essential for viral

replication and maturation; reverse transcriptase converts single-stranded RNA into

double-stranded DNA, and so converts the HIV ssRNA genome into a dsDNA interme-

diate. Integrase is then responsible for inserting the dsDNA intermediate into the host

cell’s genome; the reason for this is explained further on in this section. The final protein

resulting from cleavage of the Pol polyprotein is protease. This enzyme is responsible

for cleaving the translated polyproteins into the functional proteins. This occurs dur-

ing, and after, the new HIV virion buds from the infected cell and ensures that the

progeny virion is a fully-mature infectious particle. The final structural polyprotein

is Env, which, when cleaved by host-cell proteases, forms two viral proteins that are

post-processed into gp120 and gp41 respectively. These two glycoproteins are located

in the envelope surrounding the virus particle when it buds out of the cell, and are

responsible for interaction and fusion with target cells, allowing cell entry. The pro-

teins attained from cleavage of the three major structural genes contain everything that

the HIV particle needs to form mature, infectious progeny viruses. However, without

the accessory proteins, the efficiency of viral transcription is low, and subsequently the

viral fitness is lower.

All members of the Retroviridae family share the same basic genetic organisation of

their major structural genes; immediately 3′ of the 5′ long terminal repeat (LTR) is
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gag, which leads directly onto pol, then further downstream is env, lying 5′ of the 3′

LTR. Where retroviruses differ is in the relative reading frames of their structural; gag,

pol and env are not all found in the same reading frame, which has an important effect

in regulating the relative levels of expression for each of these genes. In the case of

HIV-1, pol is positioned at a reading frame of (-1) relative to gag ; the start of the pol

gene actually overlaps the end of the gag gene by a single nucleotide. Gag and pol

are actually transcribed as a single polycistronic mRNA molecule, and as Pol lies in

a different reading frame it requires the cellular ribosome to undergo a frameshifting

event. This is achieved through the formation of an internal secondary structure in

the viral mRNA strand; a ‘hairpin’ structure is formed at the end of the gag gene in

conjunction with a ‘slippery’ sequence within the gag gene. Roughly 5% of the time the

translating ribosome will pause at this hairpin structure and move back one nucleotide,

resulting in it continuing to transcribe at a (-1) frameshift. Therefore, 95% of the time

only Gag is transcribed, and the other 5% of the time a Gag-Pol polyprotein product

is formed. This is important because the relative levels of viral protein products are

carefully orchestrated to ensure optimal fitness [47].

The structure of the mature HIV virion is shown in Figure 1.7. The diploid ssRNA

genome described above is complexed with viral proteins p6 and p7 resulting in a stable

nucleocapsid surrounding the RNA that prevents the genome being digested by host-cell

nucleases. Also packaged with the genome are the viral enzymes reverse-transcriptase

and integrase, as these are required to convert the genome into its dsDNA intermediate

in order for transcription to occur, so must be packed into the virion. Surrounding the

genome-nucleocapsid complex is the capsid, composed of multiple copies of the viral

p24 protein tessellated into a conical shape. Encompassing the capsid is a sphere of

viral-encoded (p17) matrix protein. HIV protease is located in the space between the

matrix and capsid because of its role in HIV maturation, which will be explained in

more depth further on. The outer layer (envelope) of the virion is a lipid bilayer origi-

nating from the plasma membrane of the host cell from which it originated. Spanning

the envelope are trimers of the viral glycoproteins gp120 and gp41. These are envelope

glycoproteins that determine the virus’s tropism; the virus can only infect those par-

ticular cells that contain receptors complementary to the gp120/gp41 trimers.
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gp41/gp120 trimers

cell membrane

matrix

capsid

diploid RNA genome

Figure 1.7: Cross-section of an immature HIV virion on the left, and a mature HIV
virion on the right. In purple are the gp41/gp120 trimers; in yellow is the lipid mem-
brane formed from budding out of the previous host cell; in maroon are the matrix
proteins; in green are the capsid proteins that form a protective fullerene cone around
the mature virus’s diploid genome, shown in red; attached to the RNA genome are in-
tegrase, reverse transcriptase, nucleocapsid proteins, Vpr and p6. Image adapted from
Ganser-Pornillos et al. (2008) [24].

The life-cycle of HIV is considered to start at the point of cell entry (Figure 1.8). The

mature HIV particle, having budded out of the previous cell, is contained within a

cell-derived envelope expressing the viral glycoproteins gp120 and gp41. The exter-

nal gp120 recognises and binds to the cellular receptor CD4, which is present on the

surface of immunological cells; primarily T-helper cells, monocytes, macrophages and

dendritic cells. HIV’s tropism is therefore limited to these particular cells. Once gp120

has interacted with CD4, it undergoes a conformational change allowing it to bind to

chemokine co-receptors CCR5 or CXCR4, ultimately resulting in gp41-mediated fusion

of the envelope surrounding the virion and the plasma membrane, allowing the virus

to enter the cell [47]. Once in the cytoplasm, the reverse transcriptase enzyme present

in the capsid begins to convert the RNA genome into a linear dsDNA intermediate

through a complex series of steps. Although two copies of the genome are present in

the particle, it is thought that this is only to increase the chance of successful DNA

synthesis through a process termed ‘copy choice’; if the reverse transcriptase encounters

a break in the genome template it can switch to the second RNA template to continue

synthesising the dsDNA intermediate [62]. If the two RNA genome strands are geneti-

cally distinct, then this copy-choice mechanism can result in genetic recombination of
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the two genotypes into a new genotype. This can accelerate the appearance of new

complex variants of the virus, which is important for generating resistant strains in

response to anti-retroviral treatments [62, 66]. Once DNA synthesis is complete, the

Figure 1.8: Cartoon showing the life-cycle of an HIV particle. The cycle starts at
cell-membrane binding and entry (a). Following entry, the RNA genome is released
into the cytoplasm (b) where it is reverse transcribed into its double-stranded DNA
intermediary (c). This is then transported to the nucleus where it integrates with the
host genome (d). This ‘provirus’ is then transcribed and translated by host cell machin-
ery to produce polyprotein products and the RNA genome (e), which are transported
to the cell membrane where they assemble and bud from the cell (f). Protease then
cleaves the polyproteins to form a mature infectious virion (g). Figure adapted from
Ganser-Pornillos et al. (2008) [24].

viral enzyme integrase cleaves the 3′ ends of the DNA genome, leaving exposed hy-

droxyl groups. The linear DNA, complexed with other viral proteins as a nucleoprotein

complex is actively transported through the nuclear membrane, and encounters the

host DNA in the nucleus. Catalysed by integrase, the 3′ hydroxyl groups attack the

phosphodiester bonds on the target DNA and form new bonds between host and viral

DNA, integrating it into the genome. Once the virus has integrated its dsDNA into the
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host’s genome, it is known as a provirus. Once integration has occurred, transcription

of the proviral DNA can occur. HIV uses the cellular transcription factors to transcribe

a small amount of full-length viral RNA, which is then spliced to form the mRNA for

Tat and Rev. These accessory proteins play an important role in viral gene expression

regulation; Tat is a gene-specific elongation factor which, at the start of transcription,

binds the viral mRNA at a stable stem-loop region termed the ‘transacting-responsive

element’ (TAR). The binding of Tat to this TAR increases the rate of transcriptional

elongation by over 30,000 [18]. This results in the accumulation of Rev, which acts

as a ‘shuttling’ protein, exporting the unspliced HIV transcripts into the cytoplasm.

The various different viral transcripts are then translated in different organelles, de-

pending on the product; the Env polyprotein (gp160) is synthesised in the endoplasmic

reticulum, while the Gag and Gag-Pol polyproteins are synthesised on cytoplasmic ri-

bosomes. Gag and Gag-Pol are then associated with two viral genomic RNA molecules

and transported to the plasma membrane, where the Env polyprotein has localised.

Budding occurs at the plasma membrane, generating an immature virion. Either dur-

ing or immediately after budding, protease cleaves the Gag and Gag-Pol polyproteins

to form a mature, infectious virion [47].

However, the genotype of the progeny virions are not necessarily identical to the geno-

type of the particle that infected the cell. The virally-encoded reverse transcriptase

that HIV uses to convert its single-stranded RNA genome into a double-stranded DNA

intermediary has no 3′ − 5′ exonuclease activity. Therefore, unlike the host cell’s DNA

polymerase, if a mismatched base is added to the nucleic acid chain during reverse tran-

scription, reverse transcriptase is unable to excise the mismatched base and replace it

with the correct one [28]. The fidelity of reverse-transcription has been calculated to be

very poor; having an error rate of approximately 1 in 2000-7000 nucleotides [90, 40, 84].

As the HIV genome is approximately 9.8kb in size, this means that the dsDNA interme-

diary will have approximately 3 mutations on average. Therefore the progeny virions

will have 3 mutations in their genomes compared to the virion that infected the cell.

These mutations can be ubiquitously spread through out the viral genome; if a muta-

tion results in non-infectious progeny then the mutation will be lost, but as the average

viral life cycle lasts just 1-2 days and up to 10 billion virions produced daily [31], this
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‘shotgun’ method will produce many genetically-distinct infectious virions.

As mentioned earlier, the rapid evolution of HIV within an individual is accelerated by a

process termed ‘copy-choice recombination’. This is a non-trivial method of producing

novel genotypes, with at least 10% of circulating strains being generated by recombi-

nation between different subtypes. If a cell is co-infected with two genetically distinct

virions, the progeny viruses may be heterozygous (containing an RNA strand from each

distinct genotype). Once this heterozygous virion infects a new cell, when the reverse

transcriptase swaps between genomes during dsDNA synthesis, a novel genotype can

be generated that recombines the two [63].

These two evolutionary methods employed by HIV result in extremely variable HIV

genotypes within an individual, within a population, and between populations. Within

an individual these methods of novel genotype generation result in a circulating pop-

ulation of ‘quasispecies’. In the constant selective pressure environment within an

individual, the quasispecies that are fittest will outcompete the less fit, but due to the

constant generation of new genetic variants there is always a low-level of these minor-

ity quasispecies. These quasispecies become important in the context of a change in

selective pressure through administration of anti-retroviral drugs. These drugs may

suppress the majority species to a low level of replication, but due to the high muta-

tion and recombination rate, a quasispecies may be generated that is less sensitive to

the drug and so has a higher replication rate than the other quasispecies. Eventually

a genotype is generated whose replicative capacity is close to the pre-drug genotype

in the presence of the drug. Viral loads increase, CD4+ numbers decrease again, and

so the drug’s effect has been circumvented [16]. For this reason antiretroviral drugs

are given as a cocktail called ‘highly active anti-retroviral therapy’ (HAART). HAART

consists of 3 or 4 drugs inhibiting different stages of the viral life cycle taken in combi-

nation. For example, a protease inhibitor to prevent viral maturation is taken alongside

a non-nucleoside reverse transcriptase inhibitor, which binds to RT preventing it from

performing its function. In addition, a nucleoside or nucleotide reverse transcriptase

inhibitor may be taken, which also prevents RT from performing its function.
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At the population level, transmission of mutant genotypes has resulted in genotypes

that are sufficiently distinct to be labelled as different ‘subtypes’. There are 9 dif-

ferent subtypes, labelled A to K, excluding E and I which were thought to exist but

were later found to be ‘circulating recombinant forms’ (CRFs). These subtypes are

predominant in different regions of the world; for example, subtype B is prevalent in

Europe and North and South America, while subtype C is predominant in Africa and

Asia. However, despite these genetic differences, it has been shown that all subtypes

show comparable viral load suppression upon administration of HAART [25]. There-

fore despite the genetic differences between subtypes, which typically differ by 25% to

30% of their genes’ nucleic acids [104], the mutations that confer resistance to HAART

inhibitors are not found naturally.

1.2.3 HIV Pathogenesis

Upon primary infection with HIV, the virus infects CD4+ cells in the blood, such as

TH lymphocytes, macrophages and dendritic cells. The infected cells then carry the

virus to the lymph nodes and spleen where the residing activated-TH lymphocytes are

infected. The favourable conditions for HIV replication in these lymphoid tissues re-

sult in a considerable expansion of the HIV population; up to 1010 progeny virions

are produced every day. During this ‘acute’ phase there is a transient depletion of

peripheral CD4+ cells and an associated high blood-plasma load of HIV (Figure 1.9).

As a result, an ‘acute-phase response’ is launched by the host’s immune system, where

CD8+ cytotoxic T lymphocytes (CTL) specific to HIV antigens are clonally-expanded,

and neutralising antibodies are produced. This humoral response results in circulating

viral loads dropping to undetectable levels, but the infected TH lymphocytes contain

the HIV provirus integrated into their genome and so act as a reservoir, producing

virions. Eventually the TH lymphocytes are destroyed by the virus or by CTLs that

recognise them as infected. Slowly the levels of CD4+ cells are depleted, which severely

immuno-compromises the host. Once the levels of CD4+ cells drop below a threshold

level, symptoms due to opportunistic infections such as Kaposi’s Sarcoma Herpesvirus

are presented in the host. This is referred to as the onset of AIDS, and rapidly leads

to death [85, 91].
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Figure 1.9: Course on an HIV infection described with respect to the circulating viral
levels and numbers of CD4+ cells. After initial infection by HIV and the subsequent
acute-phase response by the host, there is a long incubation period that can last many
years before CD4+ cells drop below a threshold level and are no longer able to suppress
opportunistic infections. The presentation of these infections marks the progression to
AIDS. Figure adapted from Purves et al. (2001).

The length of the incubation period is variable, depending on factors such as host ge-

netics, viral genetics, and environmental factors such as access to anti-retroviral drugs

(ARDs). Administration of ARDs during the incubation period can reduce the viral

loads to undetectable levels with an associated increase in CD4+ levels. The inhibitory

effect of the ARDs is only transient; due to high genetic variability of HIV, a popu-

lation arises that has a reduced susceptibility to the drugs and consequentially viral

loads increase and CD4+ levels decrease. The length of time taken for the virus to

escape the inhibitory effect is also variable, depending on factors such as host genetics,

viral genetics and drug adherence. As previously mentioned, the probability of a viral

population emerging with resistance to multiple drug that inhibit various stages of its

life cycle is much smaller than if a single drug is administered. Therefore currently

HAART prolongs the incubation period by co-administering 3 different inhibitors - one

that inhibits the HIV protease and two that inhibit reverse-transciptase.
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1.2.4 HIV-1 Protease Structure and Function

The protease enzyme of HIV-1 is a homodimeric aspartyl protease, composed of two

identical 99-amino acid ‘C’-shaped monomers that come together to form the functional

protein (Figure 1.10) [13]. Stabilisation of the dimer is achieved almost entirely through

Figure 1.10: Cartoon of the aspartyl protease of HIV, with the backbones of two
identical monomers coloured red and blue. The cartoon representation of the protein
backbone, showing the secondary and tertiary structures, is outlined by the surface
area of the protein, showing how the two subunits come together to form the active site
in the middle of the protein (a). The two catalytic aspartic acid residues are shown as
green van der Waals spheres. (b) denotes the flaps that cover the active site, (c) denotes
the flap elbows, (d) denotes the fulcrum, (e) denotes the cantilever, and (f) denotes the
dimerisation interface. Figure was created from 1HXB PDB file using VMD.

the interdigitation of the four N-terminal and four C-terminal residues’ β-strands in

each monomer. Due to the highly conserved nature of the sequence in this region,

interface inhibitors have been designed to block formation of the functional homodimer

by mimicking the C- or N-terminal sequence [23]. Dissociation of the dimer into com-

ponent monomers results in complete loss of enzymatic activity [56]. The active site of

the protease is formed at the dimer interface with each monomer providing a catalytic

Asp-Thr-Gly triad at positions 25 to 27 respectively. Of this catalytic triad, the as-

partic acid residues of each monomer interact directly with the substrates to catalyse
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the reactions [56]. The roof of the active site is composed of a pair of flexible, overlap-

ping ‘flaps’, each composed of two anti-parallel beta sheets connected by a beta turn.

The remaining topological features of HIV-1 protease’s structure are named according

to their hypothesised role in the flap opening mechanism; the fulcrum, cantilever and

flap elbows undergo a concerted downwards motion that results in the flaps opening

upwards and the catalytic aspartic acid residues shifting up further into the active site

(see Figure 1.11) [33, 113]. The flaps are therefore proposed to act as a gating mecha-

nism for controlling access to the active site [113].

Figure 1.11: Proposed mechanism for flap opening by Hornak et al. (2006). The flap
elbows, cantilevers, and fulcrums undergo a concerted downwards motion that results in
an upwards motion of the flaps and the catalytic aspartic acid residues. This facilitates
entry to the active site [33]. Image taken from Hornak et al. (2006).

Unlike the majority of the other HIV proteins, protease functions in the HIV parti-

cle itself, rather than in the cytoplasm or nucleoplasm of the host cell. As previously

described, when all the components of the progeny particle accumulate at the cell

membrane of the host cell, the particle buds out of the cell, taking some of the cell

membrane with it as an envelope. However, once budding has occurred the particle

is still not infectious, and is considered an immature virus. This is because the nec-

essary viral proteins are still joined as Gag and Gag-Pol polyprotein precursors from

the polycistronic translation, and require cleavage by HIV protease before they can re-
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configure to produce a mature HIV virion [47]. There are 12 protease cleavage sites in

the viral polyproteins: 5 in Gag (p17/p24, p24/p2, p2/NC, p7/p1 and p1/p6gag), 6 in

Gag-Pol (NC/TFP, TFP/p6pol, p6pol/PR, PR/RT, RT/p66, and p66/IN) and 1 in Nef

(see Figure 1.12) [72]. An important note is that protease itself is translated as part of

a polyprotein, so therefore to function as a dimer, it must cleave itself out. The mecha-

nism by which this happens is by dimerisation of the polyprotein and subsequently the

protease cleaves itself out by a trans-mechanism [51]. Following excision however, the

protease does not cleave the polyproteins in a random fashion, nor is each site cleaved

at the same rate. The binding cleft that runs through the protease and contains the

catalytic residues is able to complement 7 amino acids. This coincides with the speci-

ficity of the protease, which is determined by the nature of the 4 amino acids upstream

and 3 amino acids downstream of the scissile bond in the substrate. The amino acid

immediately upstream of the bond must be hydrophobic and unbranched at the Cβ

atom. The surrounding substrate residues are variable between cleavage sites, which

suggests why different cleavage sites have different rates [51]. Therefore, 3 related de-

terminants are thought to control the order of the proteolytic processing: the sequence

of the cleavage site, the structure around the cleavage site, and the accessibility of the

site to the protease [79].

The mechanism by which HIV protease catalyses the hydrolysis of the peptide bonds at

the cleavage sites is unknown, but is thought to occur via a general-acid/general-base

(GA/GB) mechanism [80, 114, 71]. This mechanism requires one of the catalytic aspar-

tic acids to be protonated and the other un-protonated; upon formation of the enzyme-

substrate complex (ES), the un-protonated aspartic acid polarises a water molecule,

making the oxygen atom electronegative (TS1 in Figure 1.13). The protonated aspar-

tic acid then donates its proton to the substrate’s oxygen atom, making the substrate’s

Cα atom unstable and therefore open to nucleophilic attack by the hydroxyl group of

the water molecule (INT). The water’s remaining proton is donated to the aspartic

acid, temporarily swapping the protonation states of the two catalytic residues. The

peptide bond of the substrate is then cleaved as the protonated aspartic acid donates

its proton to the nitrogen atom, and the proton on the substrate’s carboxylic acid

group passes back to the other aspartic acid (EP). The products are released and a
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new water and substrate molecule must enter the active site for catalysis to occur again

(E) [80, 71].

1.2.5 HIV-1 Protease Inhibitors

HIV-1 protease’s importance in the viral life cycle, combined with its unique recognition

motif not shared by host cell proteases, make it an ideal target for inhibition to disrupt

the viral life cycle. However, as HIV was a previously-unknown emergent pathogen,

new pharmaceutical agents needed to be created. Protease was therefore identified as

a prime-target for structure-assisted drug design. This approach utilises techniques

such as protein crystallography, NMR, computational molecular design, and combi-

natorial chemistry to guide the synthesis of inhibitory compounds. The first drug to

be developed using this rationale was saquinavir, which was developed on the concept

that HIV protease uniquely cleaves Tyr-Pro or Phe-Pro dipeptide sequences, unlike

its mammalian counterparts. Transition-state mimics were developed with the scissile

bond replaced with an un-cleavable hydroxyethylmine moiety. The hydroxyl group of

this moiety interacts with the two catalytic aspartic acid residues in the protease, sig-

nificantly contributing to the inhibitor’s potency [81]. The proline residue attached

to the scissile bond was also replaced with (S,S,S)-decahydro-isoquinoline-3-carbonyl

which was able to maintain important hydrogen bonds between water molecules that

connected the inhibitor to the flaps residues. The resultant inhibitor was shown to

be highly specific for the viral protease; causing only minor inhibition of human as-

partyl proteases, with a Ki of over 10,000nM for renin and pepsin[129]. The success of

saquinavir lead to the rapid development of new protease inhibitors (PIs) that improved

upon the design of saquinavir [126, 127]. There are currently 10 different approved pro-

tease inhibitors for use in HAART: amprenavir (not currently administered as it was

replaced by fosamprenavir), atazanavir, darunavir, fosamprenavir, indinavir, lopinavir,

nelfinavir, ritonavir, saquinavir and tipranavir [116]. The structures of these inhibitors

share many features (Figure 1.14) - they all contain the same un-cleavable hydroxyl

group that makes the important contacts with the catalytic aspartic acid residues. This

makes a large contribution to the binding affinity while its unreactivity ensures that

it remains in the active site so that the protease is unable to fulfil its role. They also

all contain many hydrophobic aliphatic and aromatic groups. These interact with the
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Figure 1.13: Proposed GA/GB mechanism by which HIV protease catalyses the hydrol-
ysis of its substrate’s peptide bond. (ES) Formation of the enzyme-substrate complex;
(TS1) Nucleophilic attack of the substrate by a water molecule which has been ionised
by the unprotonated aspartic acid residue (TS2) Covalent linkage of the hydroxy an-
ion to the peptide carbon results in breakage of the peptide bond, donation of the
aspartic acid’s proton to the amino terminus of the product, and donation of the prod-
uct’s carboxylic terminus’ proton back to originally-protonated aspartic acid (EP).
The products are released and the cycle can restart (E). Figure taken from Piana et
al. (2002).
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mainly lipophilic residues in the protease’s binding groove, increasing the change in

entropy of complex formation [81].3.4. The HIV Protease 103

Figure 3.15: The nine FDA approved inhibitors of HIV-1 protease.

bonded, accepting two hydrogens from the isoleucine 50 residues of both monomers and donating two

hydrogens to the carbonyl oxygen atoms of the inhibitor [22]. This has led to the suggestion of design-

ing inhibitors that replace the water molecule, providing added specificity to binding as well as being

more favourable due to entropic increase through the displacement of the original water molecule. An

implementation of this suggestion was carried out by Lam et al. (1994) at DuPont Merck [167]. They

designed an inhibitor that used a central cyclic urea with an oxygen atom that replaced the function of

the original water molecule. Unfortunately, as of yet no cyclic urea based designs have been approved

by the FDA, but several have been under clinical trials.

Over the last two decades, extensive experimental work has been conducted to determine and en-

hance the potency of a large array of inhibitors through the evaluation of the strength with which in-

hibitors bind to the protease. Enzyme Inhibition Assays (EIA) and Isothermal Titration Calorimetry

(ITC), discussed in Chapter 1, have been the main techniques employed for the determination of in-

hibitor binding affinities, which are provided in terms of inhibition constants (Ki) and/or directly in

terms of the free energy differences of ligand binding (∆Gb). Also common are assessments of IC50,

the concentration of inhibitor required to halve the enzymatic activity. Much of this accumulated wealth

of data has been deposited in a web-based database known as ‘BindingDb’ [16, 17]. Table 3.3 shows

the potency of the current FDA-approved inhibitors with the wildtype HIV-1 protease, extracted from

Figure 1.14: Chemical structures of the 9 currently-administered protease inhibitors. A
common feature of all inhibitors is the hydroxyl group near the center of each molecule.
This makes an important interaction with the catalytic aspartic acids while remaining
un-cleavable. Also of note are the many aliphatic and aromatic groups which interact
with the lipophilic residues of protease’s binding groove, helping stabilise the complex
[81]. Figure taken from Sadiq (2009).

By reversibly binding to the active site, protease inhibitors sequester the action of HIV

protease by preventing the polyproteins from entering. This means that they are not

hydrolysed into the function proteins, and therefore the progeny virions remain ‘im-

mature’ and non-infectious. The inhibitors are not 100% effective though, and so a

low level of viral replication still occurs under the drug presence. This low-level repli-

cation combined with the error-prone nature of its reverse transcriptase means that

genetically-diverse progeny are produced. While many of the mutations will be poly-
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morphisms common to the HIV genome and have no effect on the viral fitness, some

will confer a benefit to the virus - making it less susceptible to the inhibitory effect of

drug. As the drug places a strong selective pressure on the virus, any sub-populations

in an individual with an increased fitness in the presence of the drug will be selected

for and become the majority population. As it has a reduced susceptibility to the drug,

it will produce a greater number of mature progeny, resulting in a greater chance of an

even fitter population emerging that completely circumvents the action of the inhibitor.

Under protease-inhibitor monotherapy, this evolution of a drug-resistant population is

common. The response used to be to change the administered inhibitor to one with

a greater inhibitory effect on that population, but quickly a population would emerge

that was resistant to the new drug. Furthermore, multi-drug resistant (MDR) popula-

tions would arise with mutations that conferred a measure of resistance to more than

one drug. For this reason HAART was developed, as the chance of a mutant population

arising that circumvents the effects of all the drugs is much lower, and therefore the

time taken for a resistant population to emerge is much longer.

Mutations of HIV-1 protease are grouped into two classifications: primary and sec-

ondary (or accessory) mutations (Figure 1.15). Primary mutations confer reduced

susceptibility to one or more protease inhibitors by itself. They are commonly situated

around the substrate-cleft and are not polymorphisms seen naturally in viral popula-

tions of drug-näıve individuals, due to selective disadvantage compared to wild-type

without the drug present [44, 89, 105]. Examples of primary mutations are I50L, V32I,

I47V, G48V, V82F, I84V and L90M. These are not all necessarily located in the sub-

strate binding-cleft; for example, L90M is situated at the dimerization interface at the

base of the protein. The mutations that do occur at the active site have been shown

to directly alter the interactions between the protease and inhibitor. For example, the

G48V mutation alone is sufficient to cause reduced susceptibility to saquinavir due to

a steric conflict between the substituted valine and the P2 subsite of saquinavir and

a disruption of the hydrogen bonding between the residue and the P2 subsite [124].

However, the mechanism of action of the mutations located outside of the active site

is unknown [9, 67]. Therefore there is considerable interest in elucidating the action

of these mutations, and computational methodologies such as molecular dynamics sim-
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ulations are providing hitherto unforeseen insights. For example, molecular dynamics

simulations of the V82F/I84V MDR mutant suggest that these mutations change the

dynamics of the protease so that the flaps are more often in a semi-open configura-

tion rather than a closed-configuration (see Figure 1.11). Therefore the inhibitor has

a greater enthalpic penalty in closing the flaps upon complex formation [77]. This

also helps to explain how these mutations cause resistance to more than one inhibitor,

because a change in protease dynamics is likely to have the same dissociative effect

for multiple inhibitors. Another example is that of the L90M mutation, which confers

resistance to nelfinavir and saquinavir on its own. Simulations of a protease containing

this mutation bound to saquinavir, lopinavir and nelfinavir suggested that the mutant

side-chain changes an interaction with the backbone of residue 25, which subsequently

becomes slightly dislocated, resulting in a rotation of reside 84’s side-chain. This causes

the displacement of the inhibitor from its binding position [67].

Secondary mutations are regularly natural polymorphisms present in the various quasi-

species of a viral population. Therefore, unlike primary mutations, these mutations are

not deleterious to viral replication in the absence of the inhibitor. The appearance of

primary mutations in a drug-suppressed HIV population is commonly followed by the

acquisition of one or more secondary mutations, which either act to compensate any

deleterious effects of the primary mutation on the protease, or result in an additive

reduction in sensitivity to the protease inhibitor, or create a favourable context for the

emergence of a specific resistance mutation at a different position [32]. For example,

the L63P is a natural polymorphism in HIV, occurring in > 50% of drug-näıve viral

populations [108]. However, in the context of V82F and I84V, this mutation improves

the replicative capacity of the virus. Furthermore, in the context of M46L, this poly-

morphism improves the protease catalytic efficacy without affecting the inhibitor. The

mechanism by which these secondary mutations perform their actions is unknown [58].

Examples of secondary mutations are M36I, I54V, L10I and K20M.

50



141

 Special Contribution – December 2008 Resistance Mutations   Volume 16 Issue 5   December 2008

MUTATIONS IN THE PROTEASE GENE ASSOCIATED WITH RESISTANCE TO PROTEASE INHIBITORSn,o,p

Atazanavir
+/– ritonavirq

Fosamprenavir/
ritonavir

Darunavir/
ritonavirr

Indinavir/
ritonavirs

Lopinavir/
ritonavirt

Nelfinavirs,u

Saquinavir/
ritonavirs

Tipranavir/
ritonavirv

L
10
I
F
V
C

G
16
E

K
20
R
M
I
T
V

L
24
I

V
32
I

L
33
I
F
V

L
33
F

E
34
Q

M
36
I
L
V

M
46
I
L

G
48
V

F
53
L
Y

D
60
E

I
62
V

I
54
L
V
M
T
A

I
64
L
M
V

A
71
V
I
T
L

G
73
C
S
T
A

V
82
A
T
F
I

I
93
L
M

I
85
V

L
90
M

I
84
V

L
10
V

I
13
V

K
20
M
R

L
33
F

E
35
G

M
36
I

M
46
L

I
47
V

K
43
T

I
54
A
M
V

Q
58
E

H
69
K

T
74
P

V
82
L
T

N
83
D

L
90
M

I
84
V

L
10
I
R
V

L
24
I

G
48
V

I
62
V

I
54
V
L

A
71
V
T

G
73
S

V
77
I

V
82
A
F
T
S

L
90
M

I
84
V

N
88
S

L
10
F
I

D
30
N

M
36
I

M
46
I
L

A
71
V
T

V
77
I

V
82
A
F
T
S

L
90
M

I
84
V

N
88
D
S

I
50
L

L
10
F
I
R
V

K
20
M
R

L
24
I

V
32
I

L
33
F

M
46
I
L

I
47
V
A

F
53
L

I
54
V
L
A
M
T
S

L
63
P

A
71
V
T

G
73
S

V
82
A
F
T
S

L
90
M

I
84
V

I
50
V

L
10
I
R
V

K
20
M
R

L
24
I

V
32
I

M
36
I

M
46
I
L

I
54
V

A
71
V
T

G
73
S
A

V
77
I

V
82
A
F
T

L
90
M

I
84
V

L
10
F
I
R
V

V
32
I

M
46
I
L

I
47
V

I
54
L
V
M

G
73
S

V
82
A
F
S
T

L
90
M

I
84
V

I
50
V

V
11
I

V
32
I

I
47
V

I
54
M
L

T
74
P

L
76
V

L
76
V

L
89
V

I
84
V

I
50
V

L
76
V

L
76
V

MUTATIONS IN THE INTEGRASE GENE ASSOCIATED WITH RESISTANCE TO INTEGRASE INHIBITORS

Raltegraviry

N
155

H

MUTATIONS IN THE ENVELOPE GENE ASSOCIATED WITH RESISTANCE TO ENTRY INHIBITORS 

Enfuvirtidew

Maravirocx

Q
148

H
K
R

Y
143

R
H
C

G
36
D
S

V
38
A
M
E

Q
39
R

Q
40
H

N
42
T

N
43
D

I
37
V

See User Note

90 54

L

M

Amino acid, wild-type
Amino acid position

Major (boldface type;
protease only)o

Amino acid substitution
conferring resistance Minor (lightface type;

protease only)o

Insertion

MUTATIONS

Amino acid abbreviations: A, alanine; C, cysteine; D, aspartate; 
E, glutamate; F, phenylalanine; G, glycine; H, histidine; I, 
isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; 
P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, 
valine; W, tryptophan; Y, tyrosine.

Figure 1.15: Common drug resistance mutations in the protease gene for the associated
inhibitors. In bold are primary resistance positions for that inhibitor. Figure taken from
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1.3 Biochemical Introduction

1.3.1 Thermodynamics

Everything in the universe has to obey the laws of physics and chemistry, and biological

organisms and systems are no different. Therefore all enzyme-catalysed reactions must

adhere to the three laws of thermodynamics:

1. The total energy of a system and its surroundings is always constant.

In thermodynamics, the system is the matter contained within a defined region-

of-interest, and the surroundings is the rest of the matter in the universe outside

of this system. This first law states that regardless of the energy conversions

which occur during a reaction, the sum of the various types of energies stays the

same. Equation 1.3 shows this mathematically:

∆E = EB − EA

= Q−W (1.3)

where E is energy; EB is the energy of a system at the end of the reaction; EA is

the energy of a system at the start of the reaction; Q is the heat energy absorbed

by, or given to, the system during the reaction; and W is the work done by, or

done to, the system during the reaction. Due to the fact that energy is always

conserved, the change in energy of a system is equal to the sum of the heat gained

or lost by the system and the work done by or done to the system. It is important

to note that the change in energy of a reaction is only dependent on the energies

of the initial and final states, and not of any of the intermediate states taken to

reach this final state.

When energy is released from a chemical bond during a reaction, it is passed to

surrounding molecules in the system as an increase in translational, vibrational

and rotational energy; they have an increased thermal motion, which is analogous

to raising their temperature. As these molecules have increased thermal motion,

they will collide with their surrounding molecules, transferring thermal energy to

these molecules. Eventually this thermal energy is passed out of the system and
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into its surroundings. In the end, all the thermal energy passes out of the system,

which returns to its original temperature. Therefore all the energy stored in the

chemical bond was converted into thermal energy and then transferred out of the

system and into its surroundings. According to the first law of thermodynamics,

the change in energy of the system must be equal and opposite to the amount of

thermal energy transferred. This is shown in Equation 1.4:

∆E = −h (1.4)

Where h is the thermal energy transferred. The negative sign indicates that

the energy is transferred out of the system into its surroundings. However, the

increase in thermal energy during the course of a reaction may cause an increase

in the volume of the system. In this situation, in order to expand, the system

must do work to push against the pressure of its surrounding matter. The energy

used to do this work is equal to the pressure of the surroundings multiplied by

the change in volume of system (P∆V). According to Equation 1.3, the energy

used to do this work must decrease the energy of the system. Therefore an

amended function must be used that describes energy changes that occur when

both temperature and pressure or volume are altered. This amended function is

called enthalpy, and its mathematical equation is shown as Equation 1.5.

H = E + PV (1.5)

where H is the enthalpy of a system; E is the thermal energy of the system; P is

the pressure of the surroundings; and V is the volume of the system.

It is therefore the change in enthalpy of a system, rather than the change in

energy of a system, that is equal to thermal energy transferred to its surround-

ings. During a reaction, if ∆H decreases then there is a net release of thermal

energy to the surroundings, and the reaction is said to be exothermic. If ∆H

increases then the system had to absorb thermal energy from its surroundings

and is said to be endothermic. To be exact, Equation 1.4 should be amended to
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Equation 1.6:

∆H = −h (1.6)

In the context of biological processes, however, the volume change caused by a

reaction is so negligible that the P∆V term can be ignored. In such cases, the

enthalpic change in a reaction is equal to the energy released from the chemical

bond [1]:

−h = ∆H ∼= ∆E (1.7)

2. A reaction can only occur spontaneously if it results in a net increase

of entropy. Entropy is a measure of the disorder of a system; when a system

becomes more disordered, its entropy increases. The change in entropy of a

reaction where one mole of compound A is converted into one mole of compound

B is given by:

∆S = R ln
pB

pA
(1.8)

where ∆S is the change in entropy of the reaction; R is the gas constant; pA is

the probability of state A; and pB is the probability of state B [1]. As can be

seen, ∆S is directly proportional to the natural logarithm of pB
pA

, so a positive

change in entropy results from the probability of state B occurring being higher

than the probability of state A occurring (PB
PA

> 1).

The entropy of a system can decrease during a spontaneous reaction (where the

probability of the products occurring is lower than the probability of the reac-

tants) as long as the subsequent increase in entropy of its surroundings results

in a net increase. Therefore the formation of highly ordered structures seen in

biological processes, which have a negative entropy, can occur spontaneously due

to a larger increase in the entropy of its surroundings caused by the release of

heat energy from the reaction. This is written mathematically as:

∑
(∆Ssystem + ∆Ssurroundings) > 0 (1.9)

3. As the temperature of a system reaches absolute zero, all reactions
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cease and its entropy reaches a minimum state. This states that as the

temperature of a system approaches -273.15◦, both ∆S and S itself reach a con-

stant, which in the case of perfect crystalline substances is 0. This law is not of

any concern for biochemical reactions of living organisms, as they never naturally

approach absolute zero [29].

Of these three laws, the second law is of considerable importance in biochemistry, as

it states whether a process will occur spontaneously. However, the problem with using

entropy as an indicator of whether a biochemical reaction will occur spontaneously is

that it is not easily measurable, especially as it requires knowledge of ∆Ssurroundings,

which, in the case of a cellular reaction, is everything in the universe outside of the cell

[107]. For this reason a composite thermodynamic function called Gibb’s free energy

was defined which combines equations from the first and second laws of thermodynamics

without requiring consideration of any thermodynamic properties of the surroundings.

Gibb’s free energy equation is shown in Equation 1.10.

G = H − TS (1.10)

⇒ ∆G = ∆H − T∆S (1.11)

where G is Gibb’s free energy; H is the enthaplic function described in Equation 1.5;

T is the temperature; and S is the entropic function described in Equation 1.8.

Equation 1.11 shows that the change in Gibb’s free energy (∆G) during a reaction

in a system of volume (V) at a constant temperature (T) and pressure (P) is equal to

the change in enthalpy of the system (∆H) during the reaction minus the product of

the temperature and the change in entropy of the system (∆S) during the reaction.

The change in the Gibb’s free energy value is an important criterion as to whether

a reaction will occur spontaneously, and as can be seen from Equation 1.11, requires

no knowledge of any thermodynamic functions of the system’s surroundings. This is

because the surrounding matter’s entropic information is contained within the Gibb’s
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free energy equation, as shown in Equation 1.13.

−∆G = −∆H + T∆S

−∆G
T

=
∆H
T

+ ∆Ssystem (1.12)

⇒ −∆G
T

= ∆Ssurroundings + ∆Ssystem (1.13)

By taking a rearrangement of Equation 1.11 and dividing through by the temperature,

Equation 1.12 is attained. Of particular note is the term ∆H
T , which is the change in

enthalpy of the system during a reaction divided by the temperature. As shown in

Equation 1.6, in biological situations the change in enthalpy during a reaction (∆H)

is equal to the amount of thermal energy transferred to the surroundings (-h). This

addition of thermal energy in the system’s surroundings increases the number of dif-

ferent arrangements that the surrounding molecules can adopt, and therefore increases

its entropy. This transfer of thermal energy has a greater disordering effect at lower

temperatures than at high temperatures, and thus the change in entropy of the sur-

rounding matter during a reaction is equal to the amount of heat transferred from the

system divided by the temperature ( h
T). Therefore the change in Gibb’s free energy

during a reaction is a direct measure of the entropy change of the universe [1], as shown

in Equation 1.13. As mentioned previously in this chapter, a reaction will only occur

spontaneously if it causes a net increase in entropy in the universe. Applying this to

Equation 1.13 shows that for the change in entropy of the universe to increase, the

Gibb’s free energy change must become more negative.

• A positive ∆G means that the reaction cannot occur spontaneously as it causes

a net decrease in the universe’s entropy, and therefore requires an input of free

energy in order for the reaction to occur.

• A ∆G value of zero means that the system is at equilibrium as the reaction

proceeds at equal rates in the forward and reverse directions.

• A negative ∆G means that the reaction causes a net positive entropy change in

the universe and so the reaction occurs spontaneously.
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As with the change in enthalpy, the change in Gibb’s free energy of a reaction is only

dependent on the free energy of the products and the free energy of the reactants. The

free energy of the transitional products synthesised during this transformation has no

bearing on whether the reaction will occur spontaneously. Also, the ∆G of a reaction

gives no indication of its rate. A highly-negative ∆G simply indicates that the reaction

results in a greater entropic disorder in the universe, but does not therefore mean that

it occurs at a faster rate. The rate is governed by other thermodynamic properties,

which are discussed in more detail in Section 1.3.3 [1, 107, 85].

1.3.2 Reaction Kinetics

As discussed in Section 1.3.1, a reaction will proceed in the direction that has an

associated negative change in ∆G. However, when considering a reversible reaction,

such as that shown in Figure 1.14, even if the forward reaction (A + B→ C + D) has an

associated negative ∆G, the reverse reaction (C + D→ A + B) will still occur, though

at a marked lower rate.

A + B ⇀↽ C + D (1.14)

If the concentrations of C and D greatly exceed those of A and B, it is possible for the

overall reaction to proceed in the reverse direction. This is because in such situations

there are more molecules undergoing the reverse reaction than there are the forward

one, even though it occurs at a lower rate. This highlights that the ∆G of the reaction

depends not only on chemical potential energy of the molecules, but also on their

concentrations. Equation 1.15 reflects this amendment to the definition of Gibb’s free

energy.

∆G = ∆G◦ +RT loge
[C][D]
[A][B]

(1.15)

where ∆G◦ is the standard Gibb’s free energy change, and represents the ∆G when the

concentrations of the products and reactants are equal at 1.0M. This is therefore the

thermodynamic function calculated in Equation 1.11, and encompasses the intrinsic

characteristics of the reacting molecules; R is the gas constant; T is the temperature

(in Kelvin); and [A], [B], [C], and [D] are the concentrations of the various molecular

species involved in the reaction. This half of the equation reflects ∆G’s dependance on

the molecules’ concentrations [1, 107, 12].
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As mentioned in Section 1.1.2, enzymes catalyse reactions that occur naturally at a

particular rate. In the absence of an enzyme, the two molecular reactants come into

close proximity of each other due to random thermal motion, and make weak non-

covalent bonds with each other that persist until either the molecules react to form

the products, or their thermal motions pull the molecules apart again. The stronger

the transient bonds between the reactants, the slower their rate of dissociation. In

the situation where molecules A and B bind to form an AB complex, a proportion of

the reactants will be forming a complex whilst a proportion of the complexes will be

dissociating back into reactants. Each will have a rate of reaction, dependent on the

intrinsic properties of the molecules, and on their concentrations. These are shown in

Equations 1.16 and 1.17.

dissociation rate = koff [AB] (1.16)

association rate = kon[A][B] (1.17)

Keq =
kon
koff

=
[AB]
[A][B]

(1.18)

Kd =
1
Keq

=
koff
kon

(1.19)

where kon is the association rate constant; koff is the dissociation rate constant; Keq

is the equilibrium constant, also referred to as the association constant; and Kd is the

dissociation constant.

A reaction will proceed until it reaches an equilibrium point, at which the rates of

association and dissociation are equal. At this equilibrium point, the concentrations

of the products and reactants can be used to calculate the equilibrium constant (Keq)

of the reaction, which is a reflection of the ‘binding affinity’ between the two reactant

molecules (Equation 1.18). If two molecules have a greater affinity for each other, there

will be a greater concentration of the AB complex at equilibrium, and so Keq will sub-

sequently have a higher value; for this reason, Keq is also referred to as the association

58



constant. The reciprocal of Keq is the dissociation constant, and is occasionally used

in place of the association constant (See Equation 1.19). A larger Kd value indicates

a greater concentration of reactant molecules A and B at equilibrium, so therefore a

lower binding affinity [1].

In Section 1.3.1 it was shown that a reaction is at equilibrium when ∆G = 0. Substi-

tuting this into Equation 1.15, the equation for calculating the reaction’s equilibrium

constant from its free-energy change can be determined.

0 = ∆G◦
′
+RTloge

[C][D]
[A][B]

(1.20)

⇒ ∆G◦
′

= −RTloge
[C][D]
[A][B]

(1.21)

⇒ ∆G◦
′

= −RTlogeK ′eq (1.22)

⇒ K ′eq = e−∆G◦
′
/RT (1.23)

where ∆G◦
′

is the free-energy change for a biochemical reaction under standard bio-

chemical conditions; the standard state has a pH of 7 with the concentrations of H+

and H20 being 1.0M; R and T are the same as in Equation 1.15.

1.3.3 Enzyme Kinetics

As mentioned in Section 1.1.2, enzymes are catalysts that increase the speed at which

reactants will react to form products. By ensuring that, for example, two reactants

are brought together into a favourable orientation in the enzyme-substrate complex,

the enzyme is catalysing the reaction. However, this does not mean that the enzyme

alters the equilibrium of the chemical reaction; in a reversible reaction the enzyme also

increases the speed at which the reverse reaction occurs. In the previous example, the

enzyme is also able to bind to the products, placing them in a favourable orientation for

the reverse reaction to occur, reforming the reactant molecules; the enzyme increases

the kon and koff rates in Equation 1.18 by the same amount, keeping the equilibrium

at the same point. Therefore, enzymes have no effect on the free-energy change of a

reaction, nor do they affect the reaction’s equilibrium constant [107].
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When a molecule reacts to form a product, it does not alchemically mutate into the

product - it undergoes a series of chemical changes that step-by-step transform the

reactant into the product. These changes may be the addition of a functional group,

or simply the rotation of a bond or redistribution of electrons. At each intermediate

step the molecule has different thermodynamic properties, and so has an altered Gibb’s

free energy. In Section 1.3.1 it was shown that a reaction has a corresponding change

in Gibb’s free energy that dictates whether the reaction will occur spontaneously, and

that this is dependent only on the free energy states of the initial and resultant species.

However, the intermediate states become important when considering the rate of the

reaction, because if during a reaction the reactant molecule must adopt a geometry that

has a prohibitively high free energy, it is less probable that it will do so, and as such

the rate at which it transitions to product will be lower [107]. This is referred to as the

transition-state theory, and is shown diagrammatically in Figure 1.16 [15]. The config-

uration that the reactant molecule adopts with the highest free energy is termed the

transition state, and the change in free energy resulting from this conversion is termed

the activation barrier (∆G‡). Figure 1.16 shows the relationship between ∆G and ∆G‡.

Enzymes act to increase the rate of reaction by decreasing ∆G‡. By binding the sub-

strates to form an enzyme-substrate complex, a different reaction pathway is followed

by the substrates which has a reduced activation barrier. This increases the probabil-

ity that the substrates will be able to reach this state, and so the rate of reaction is

accelerated. It is important to note that enzymes are not simply chaperones whose sole

responsibility is to align substrates in the correct orientation to reach a lower activa-

tion barrier; they are regularly directly involved in the making and breaking of covalent

bonds in their substrates, often forming covalent bonds with the substrates themselves

[1]. This helps to explain why enzymes are so specific in both the reaction that they

catalyse and in their choice of substrates. For example, the GA/GB mechanism for

catalysis of peptide-bond hydrolysis requires an acid and a base to be appropriately

aligned for effective electron movement and transfer. This requires that the enzyme’s

quaternary structure can not only accommodate the peptide substrate and a water

molecule in its active site, but also that it can align them with respect to an acid
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Figure 1.16: Illustration of the transition-state theory for a spontaneous reaction. The
reactants have a certain amount of free energy (G). Energy is required to make the
reactants adopt the transition-state configuration, which has a higher G and is therefore
unfavourable. The free energy required to adopt this structure is the activation barrier
(∆G‡). As the reaction proceeds beyond this state, the ∆G gets more negative and
therefore proceeds spontaneously until the products are produced. The difference in
free energy between the reactants and the products is ∆G. In this example, ∆G < 0 so
the reaction occurs spontaneously. The enzyme-mediated reaction pathway (in blue)
has a reduced (∆G‡), making it easier to overcome the activation barrier, but the ∆G
of the reaction remains the same.
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side-chain and a base side-chain for the catalysis to occur. Therefore the quaternary

structure of the enzyme, and in particular of the active site cleft, is as important as its

catalytic residues. This reinforces the notion that mutations in residues spatially far

away from the catalytic residues can still have a pronounced effect on enzyme-substrate

binding; returning to the previous example, the mutation causes a mal-alignment of

the acid and base residues, this can result in the water not being held in the optimal

position for the water’s oxygen to attack the peptide’s carboxyl carbon, thus increasing

the reaction’s activation energy. This is so sensitive that replacing a catalytic glutamic

acid residue with an aspartic acid, which shifts the position of the catalytic carboxylate

ion by 1 Å, reduces the enzyme’s proteolytic activity in the order of a thousand-fold.

1.3.4 Inhibitor Kinetics

The biochemistry of competitive-reversible-inhibitor reaction kinetics is much the same

as that of enzyme-substrate kinetics, except that once bound by an inhibitor, no reac-

tion occurs (See Equation 1.24).

E,S, I ⇐⇒ ES −→ E + P

m (1.24)

EI

⇒ Ki =
[E][I]
[EI]

(1.25)

⇒ ∆Gi = RTlogeKi (1.26)

≡ Ki = e∆Gi/RT (1.27)

Therefore, the same kinetics that were applied to enzyme-substrate reactions can be

applied to competitive inhibitors. Equation 1.25 is the same as 1.19 but for competitive

inhibitors, and shows that the dissociation constant between the enzyme and inhibitor

(Ki) reflects the strength of binding between an enzyme and an inhibitor; the greater

the strength of attraction between the two, the lower the value of Ki. This dissociation

constant can then be used to directly calculate the change in free-energy upon inhibitor

binding (∆Gi), as shown in Equation 1.26. It can be seen from Equation 1.26 that the
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change in free-energy upon binding is directly proportional to the natural logarithm

of the dissociation constant, so an inhibitor that binds more strongly (reflected by a

smaller Ki) would have a more negative change in free energy. The rearrangement of

Equation 1.26 shown in Equation 1.27 is used more often, as biochemical techniques

such as Isothermal Titration Calorimetry are able to determine the change in free energy

associated with inhibitor binding, which can then be used to calculate the dissociation

constant [107, 103].

Isothermal Titration Calorimetry (ITC) is a method for measuring the temperature

change of a chemical reaction through the stepwise addition of one of the reactants to

another. Upon addition, the reaction causes a change in temperature of the system

depending on whether the reaction is endothermic or exothermic. ITC measures the

energy required to maintain the system at a constant temperature, so if the reaction

is exothermic, less energy is required by the ‘heating apparatus’ to keep the system at

a constant temperature. Conversely, an endothermic reaction requires an input of en-

ergy to counteract the thermal energy removed from the system for the reaction. From

the energy required to maintain the temperature, the change in enthalpy upon bind-

ing can be directly determined, and the change in entropy and free energy indirectly

calculated. Information such as the dissociation constant (Kd) and the stoichiometry

of binding can also be ascertained [101]. This principle can be extended to protein-

inhibitor binding to calculate the inhibitor’s kinetic parameters, though standard ITC

experiments are unable to provide accurate estimates of the binding affinity for strong

inhibitors. Therefore an adapted method called ‘displacement ITC’ (DITC) is used,

where the inhibitor is titrated into a solution containing a protein pre-bound to a weak

inhibitor. By displacing the weaker inhibitor, comparable values to standard ITC can

be attained. DITC has been successfully used to calculate thermodynamic data on in-

hibitors to HIV-1 protease, revealing information on how mutant proteases lower their

sensitivity to the inhibitors [70, 117].

While biochemical assays such as ITC are the standard for calculating inhibitor bind-

ing affinities, recent advances in computing have meant that computational method

for calculation are feasible. Thermodynamic analysis of computer simulation methods
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such as molecular dynamics or Monte Carlo simulations can be implemented to calcu-

late free energy, enthalpy and entropy changes upon inhibitor binding. These values

can then be compared against the biochemical assays for validation. The benefit of

the computational approach is that it can be used to generate binding affinities for

inhibitors that have not yet been synthesised, and so can be used to screen a range of

potential drug structures without having to synthesise them.

1.4 Computational Introduction

1.4.1 Molecular Modelling

Molecular modelling is the application of theoretical techniques to model the behaviour

of atoms and molecules, most commonly through time. For example, molecular me-

chanics can be used to model the Brownian motion of a gas molecule, or model the

movement of an ion through an ion channel, or model the binding of a ligand to its

receptor. Originally, the calculations required to describe the atomic or molecular be-

haviour were performed by hand, which meant that only the simplest molecules could

be described in this way. However, the advent of the computer, with its ability to repet-

itively perform the necessary calculations, meant that the molecular descriptions could

become more detailed, and the models theorised over longer periods of time [49]. As

the processor power of computers, and their ability to be networked together to allow

multiple computers to share workloads, has increased, the scope of molecular modelling

has increased to where it is now possible to describe the behaviour of an entire viral

capsid containing over 1 million atoms over 13 nanoseconds [22].

In order to model the behaviour of molecules, a description of the atomic interactions is

necessary. There are two main methods of describing their interactions: quantum me-

chanics and molecular mechanics. Quantum mechanics (QM) explicitly considers the

electrons of atoms, modelling the interactions between atoms as a function of their elec-

tronic distributions. Molecular mechanics (MM), conversely, ignores the electrons and

models the interaction between atoms as a function of their bond lengths, angles, di-

hedral angles and non-bonded forces. As QM explicitly includes electron distributions,

it gives a more accurate representation of the atomic interactions, but is subsequently
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much more computationally-demanding than molecular mechanics. Consequentially it

is intractable to perform QM calculations on biological systems, which typically contain

thousands of atoms [49]. However, a more recent alternative approach is the quantum

mechanics/molecular mechanics (QM/MM) hybrid which models the majority of the

system with a Newtonian (MM) representation, but describes a constrained region

around certain important atoms (such as catalytic residues in the active site) according

to a QM model. The benefit of this hybrid approach is that it allows for macromolec-

ular systems to be modelled with explicit electrons at biologically-important atoms in

a feasible timescale. However, this approach requires a coupling of the QM and MM

regions; those atoms interacting within both the QM region and the MM region require

special treatment which can introduce errors into the simulation [52].

1.4.2 Molecular Mechanics

At the heart of a molecular mechanical description of atomic interactions is the Born-

Oppenheimer approximation, which states that the motions of the nuclei can be de-

coupled from the motions of the electrons, and so because the mass of the electron is

so much less than the mass of the nucleus, any movements of the nucleus will have an

instantaneous movement of its surrounding electrons accordingly. Therefore the energy

of an atom can be written as a function of its nuclear co-ordinates alone, allowing the

electrons to be disregarded. Subsequently, molecular mechanics calculates the potential

energy of an atom through 5 relatively simple atomic interactions:

V(rN ) =
∑

bonds

ki
2

(li − li,0)2 (1.28)

+
∑

angles

ki
2

(θi − θi,0)2 (1.29)

+
∑

torsions

Vn
2

(1 + cos(nω − γ)) (1.30)

+
N∑
i=1

N∑
j=i+1

(
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj

4πε0rij

)
(1.31)

where V(rN ) is the potential energy, which is a function the positions (r) of N atoms,
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li is the bond length between two bonded atoms; li,0 is the ‘optimal’ bond length for

the equivalent bond; θi is the angle between two bonded atoms; θi,0 is the ‘optimal’

angle for the bond between the equivalent atoms; ω is the dihedral angle between the

two planes set by four bonded atoms; γ is the ‘optimal’ dihedral angle for the equiva-

lent bonded atoms; rij is the distance between two non-bonded atoms; and qi and qj

are the charges on two non-bonded atoms i and j. All the other terms (ki, Vn, σij ,

εij , ε0) are empirically-derived constants designed to reflect the differing nature of the

various atom constituents. So, for example, a bond between 2 carbon atoms will have

empirically-derived optimal li,0, θi,0, γ, ki, Vn, σij , εij , ε0 values, and these will be

different to a carbon-hydrogen bond, which will have its own empirically-derived values

[49, 17, 65].

This equation states that the potential energy of N atoms (V(rN )) is equal to the

sum of the contributions due to bonds deviating from an equilibrium value (Equation

1.28); the contributions due to bond angles deviating away from an equilibrium value

(Equation 1.29); the contributions due to rotations around a bond (Equation 1.30); and

finally the contributions due to the two types of non-bonded interactions - non-polar

van der Waals and polar electrostatic (Equation 1.31) [49]. This equation (also called

a force field) is primarily designed to reproduce structural properties of a system, and

as such the equilibrium values will be empirically parameterised to computationally

reproduce the structure. There are many different forcefields that differ in their equi-

librium values; there is no one correct forcefield as some perform better under certain

circumstances and with particular systems than others [49].

1.4.3 Molecular Dynamics

Molecular dynamics (MD) is a deterministic method of molecular modelling, which

means that subsequent states of the system can be predicted from its current state.

The subsequent states are generated by calculating the potential energy of the system

through molecular mechanics, and from this calculating the forces on each atom. These

forces can then be converted into an acceleration of each atom through Newton’s second

Law of Motion, which, when combined with the current atomic positions and velocities,

can calculate the future position of the atom based on the forces currently acting on it.
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By repeating this multiple times over very small timsteps, the motions of all the atoms

are generated with respect to time [49].

Molecular dynamics utilises a molecular mechanics forcefield to calculate the poten-

tial energy of all the atoms in a system. However, even using this heuristic method,

calculation of the potential energy of large biomolecular systems is computationally-

demanding. Therefore MD software packages employ techniques to increase the com-

putational efficiency with minimal effect on the potential energy calculation:

• Periodic Boundary Conditions. In order to simulate a biomolecular system

under in vivo conditions, it must be simulated in solvent. However, to effectively

simulate the effect of the solvent, the number of solvent molecules required would

be too large to efficiently compute. Therefore the system is placed in a cubic,

hexagonal, octahedral, rhombic dodecahedral or elongated dodecahedral cell con-

taining a relatively small number of solvent particles. The reason for choosing

these cell shape geometries is because they all allow tessellation in 3-dimensions.

Tessellating the cell in 3-dimensions enables the particles in a cell to experience

forces as though they were in a much larger bulk fluid. When an atom moves out

of the cell, it is replaced by an image particle that enters from the opposite side

[49].

• Hydrogen Constraints. MD simulations determine the future position of each

atom by determining its position, velocity and acceleration, and using these to

calculate its position at a future point in time. However, the length of time over

which the equations of motion are integrated must be relatively small because

as the atomic positions change, the forces experienced by the atoms summarily

change. If small enough timesteps are not used then the change in forces expe-

rienced by each atom is not correctly captured and subsequently the simulation

will not be realistic. The length of time over which the equations of motion are

integrated is therefore governed by the fastest oscillating atoms, as these will

experience change in forces acting on them most rapidly. In biomolecular sys-

tems these are the hydrogen atoms, which oscillate at a frequency that requires

timesteps of 1 femtosecond. However, the flexibility of covalent hydrogen bonds is
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often less important than the low-frequency motions of the biomolecular system

over much longer time periods. Therefore covalent bonds to hydrogen atoms are

kept rigid to allow the timestep to increase to 2 femtoseconds, which allows obser-

vation of large-scale motions over longer time periods for the same computational

cost [49].

• Non-bonded van der Waals Force Calculation Optimisation. The cal-

culation of the non-bonded contributions to the potential energy of each atom

is the most time-consuming part of the MD simulation because it must sum all

of the non-bonded potentials for every combination of atom pairs in the system.

Therefore, while the bonded terms in the MM equation are proportional to the

number of atoms in the system (N ), the non-bonded terms increase by N2. How-

ever, calculating the interactions between every pair of atoms in the system is

unnecessary because the non-polar van der Waals effect is proportional to r−6.

The contribution of distant atoms to the van der Waals energy term is therefore

insignificant enough to ignore. A cut-off distance is applied such that all atoms

beyond the cut-off are ignored in the van der Waals calculation. When used

in conjunction with the period boundary conditions, the maximum size of the

cut-off is limited to half the length of the cell to ensure that an atom does not

experience its own van der Waals force. A cut-off value of 10Å usually gives rela-

tively small errors [49]. However, determining whether each atom lies within the

cut-off distance for each timestep is almost as time-consuming as calculating the

energy itself. Therefore a ‘non-bonded neighbour list’ is utilised to identify which

atoms to include in the non-bonded calculation without having to recalculate its

distance. This method stores all the atoms within the cut-off distance, along

with all atoms slightly further away, in an array. Under the assumption that the

atoms within the ‘extended’ cut-off distance do not significantly change position

over 10 to 20 timesteps, only the contribution from those atoms are considered

for the force calculation over the 10-20 timesteps. The atom list is therefore only

updated every 10-20 timesteps, which reduces the required number of calculations

[49].

• Non-bonded Electrostatics Force Calculation. Unlike the van der Waals
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term, the electrostatics term only decreases by r−1, so therefore has significant

contributions at much longer ranges. The Ewald summation method is employed

in this thesis to deal with these electrostatic contributions. In this method, a

particle interacts with all the other particles in the simulation cell, and with all of

their images in the infinite array of periodic cells. The electrostatic component is

split into two parts: a short-ranged potential with a cut-off, and a periodic long-

ranged potential which can be represented by a finite Fourier series. To screen the

atomic charges at each atomic position, a Gaussian distribution of neutralising

charge is placed around each atom. These screening charges are constructed to

make the electrostatic potential due to the atom rapidly decay to nearly 0. The

sum of the atomic charges and the neutralising distributions are then calculated,

and a second charge distribution added to the system which exactly counteracts

the first neutralising distribution. As this second charge distribution is not effi-

ciently summed in ‘real space’, it is performed in ‘reciprocal space’ and then the

result converted back into real space.

The Ewald summation is computationally expensive; depending on the width

of the Gaussian distribution for the neutralising charge it can scale from N
3
2 up

to N2. This can be improved upon by using fast Fourier transform (FFT) to

compute the reciprocal space summation for the second set of neutralising distri-

butions, which scales as Nln(N). However, the FFT method requires that the

data are discrete values. Therefore the particle-mesh Ewald method is employed

to place a grid across the simulation box. The charges of the atoms are then

distributed among its 27 surrounding grid points so as to reproduce the potential

of the charge at the original location. FFT is then used to calculate the potential

due to the Gaussian distributions at the grid points, which corresponds to the

desired potential at each of the particles [49].

Having calculated the potential energy of each atom in the system through molecular

mechanics, the force acting on each atom as a result of its potential energy can be

calculated by:

→
Fi= −∇iV (1.32)
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where F is the force on atom i and ∇iV is the directional gradient of the potential

energy on atom i. From this vector force acting on each atom, it is possible to determine

the acceleration experienced by each atom as a result through Newton’s second Law of

Motion:
→
Fi= m· →ai (1.33)

where a is the acceleration experienced by atom i. This force-derived acceleration is

then combined with the atom’s position and velocity to calculate its position at a time

t + δt. However, at the first timestep there are no velocities carried over from the

previous timestep, so the initial distribution of velocities are chosen randomly from a

Maxwell-Boltzmann distribution such that the probability that atom i with mass mi

has a velocity vix in the x direction at temperature T is given by [17, 49]:

p(vix) =
(

mi

2πkBT

) 1
2

exp

[
−miv

2
ix

2kBT

]
(1.34)

To ensure that the total momentum of the system is zero, the sum of the components

of the atomic momenta along each axis is divided by the total mass of the system. This

value is then subtracted from the atomic velocities, resulting in an overall momentum

of zero for the system.

With the positions of the atoms attained from a static structure, the velocities randomly

assigned to each atom, and the accelerations calculated from the potential energy, the

finite differences method can be employed to integrate the equations of motion and

determine the future positions of the atoms. This method breaks down the integration

into many small stages separated of length δt. The equations of motion are integrated

between times t and t + δt over which the forces are assumed to be constant on each

atom. This is then repeated between times t + δt and t + 2δt using the positions and

velocities outputted from the previous timestep and recalculating the forces on each

atom at t + δt to recalculate the acceleration. The algorithms that implement the fi-

nite differences method assume that the positions, velocities and accelerations can be
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approximated as Taylor series expansions:

r(t+ δt) = r(t) + δtv(t) +
1
2
δt2a(t) +

1
6
δt3b(t) +

1
24
δt4c(t) + · · · (1.35)

v(t+ δt) = v(t) + δta(t) +
1
2
δt2b(t) +

1
6
δt3c(t) + · · · (1.36)

a(t+ δt) = a(t) + δtb(t) +
1
2
δt2c(t) + · · · (1.37)

b(t+ δt) = b(t) + δtc(t) + · · · (1.38)

where v is the vector velocity, a is the vector acceleration, c is the third derivative of

the vector positions with respect to time r(t) et cetera. There are many algorithms for

integrating these equations of motion in an MD simulation, the most common of which

is the Verlet algorithm.

1.5 Project Aims

Prior research involving molecular dynamics simulations of HIV-1 protease inhibitor

resistance can been divided into two main areas of interest:

1. Underlying structural basis behind the effects of various primary and secondary

mutations on protease inhibitor efficacy. Examples of this research include the

structural analysis of the I47A lopinavir-resistant mutation [41], and structural

comparisons between WT and V82F/I84V simulations [77]. This area is ret-

rospective in nature, as it tries to explain the underlying causes of identified

resistance mutations. It also has an important role in drug design, for example

in identifiying novel drug targets based on protease dynamics [78].

2. Identifying inhibitor resistance-level as a reflection of changes in the strength of

binding between protease and inhibitor. An example of this research is the work

done by Maschera et al. (1996) into dissociation rate constants for drug-resistant

protease mutants [59]. In contrast to structural understanding of resistance, this

is both prospective as well as retrospective in nature, because every genotype can

theoretically be simulated with every inhibitor to generate a strength of binding

between the two which can be directly correlated into a level of resistance. It is

not feasible to extend this to structural understanding because without knowledge
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of the resistance-phenotype of a genotype, it is difficult to know how to interpret

changes in dynamics.

Conception of this project began with the research undertaken by Wang et al. (2001).

They developed a value termed the ‘free energy/variability’ (FV) value that combined

the strength of binding between HIV-1 protease and an inhibitor, calculated using the

heuristic MM/PBSA method, with the variability of each position across the protease

[120]. This FV value represented the fold-change in drug resistance for a particular

mutation. Their results showed that they could accurately predict the phenotypic

effect a protease mutation had on inhibitors, with an average of 76% concurrence to

experimental results. However, they only collected data from their simulations over 120

picoseconds, yet work undertaken by Ishima et al. (1999) showed that the flaps move on

a timescale in the microsecond range [36]. Therefore, as the prediction accuracy shown

by Wang et al.’s results was very encouraging, it was decided to investigate whether

utilising this method over longer timescales, encompassing more of the protease’s dy-

namics, would yield an even greater prediction accuracy. Successful application of

nanosecond-timescale molecular dynamics to the calculation of a drug binding affinity

value would enable the methodology to be used as a diagnostic tool, where clinician

submits the genotype of the majority HIV population to an automated pipeline which

simulates the genotype complexed to the FDA-approved drugs and calculates a strength

of binding with respect to wild-type. With sufficient computational resource, a result

could be generated in days, rather than the two weeks for current diagnostics.

72



Chapter 2

Methodology

2.1 NAMD

As discussed in Section 1.4.3, there are multiple software packages written to implement

the theory of molecular dynamics, including CHARMM [10], AMBER [76], LAMMPS

[82] and NAMD [42]. During this research, the Nanoscale Molecular Dynamics (NAMD)

package was chosen to perform the simulations. The reason for this was primarily be-

cause NAMD was specifically designed to efficiently utilise parallel computers, thus

distributing the high computational requirement of simulation over multiple comput-

ers. Furthermore, the NAMD package incorporates various algorithms to reduce the

computational demand at each timestep, including the Particle Mesh Ewald algorithm,

and the multiple time-step velocity Verlet integration method [64]. These allow for

a faster performance on networked processors, such as those in Grid networks or in

supercomputers.

2.1.1 Input Files

In order to start a molecular dynamics simulation, NAMD requires 4 input files:

1. Forcefield file. This contains the empirically-derived force constants described

in Equations 1.28, 1.29, 1.30 and 1.31. These constants are specific for each

atom-pairing in the amino acids. For example, the equilibrium bond length and

angle for an N-H bond in arginine will be listed, but these will be different to an

N-H bond in aspartic acid, and will also be different from another N-H bond in
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arginine’s side-chain. Every force constant for every atom-pairing in all 20 amino

acids is given in the forcefield file. There are many forcefield files available, each

containing slightly different empirically-derived constants. The simulations run

during this research used the AMBER forcefield for description of proteins (ff03).

The standard forcefield, however, only provides force constants for the atom-

pairings found in amino acids. Therefore, as saquinavir contains atom-pairings

not found in amino acids, its own forcefield file had to be generated using the

General AMBER Force Field (GAFF).

2. PDB file. This contains the atomic coordinates of all the atoms in the system.

However, the file provides no information as to how the atoms are structurally

linked. Atomic coordinates in this file may be manipulated prior to simulation

using Visual Molecular Dynamics (VMD), which is a molecular visualisation pro-

gram designed for displaying, animating, manipulating and analysing biomolecu-

lar systems. This will be described in more detail below.

3. Topology file. This contains the complete description of all the interactions in

the system. This includes a list of all the atoms in the system along with their

connectivity to other atoms. In conjunction with the PDB file, this contain all

the structural information of the system.

4. Configuration file. This contains all the information NAMD requires to run

the simulation. Information contained includes location of forcefield file, PDB file

and topology file; number of timesteps over which to run; output filenames; and

size of system.

These four files together contain all the information necessary to run a molecular dy-

namics simulation. The generation of these files for the HIV-1 protease systems simu-

lated in this study will now be discussed. The initial atomic coordinates are attained

from the PDB files downloaded from the Protein Data Bank. This is loaded into VMD,

and the monomers (and ligand if present) are split into separate PDB files, leaving be-

hind all ions and water molecules that were resolved in the original file. If it is necessary

to mutate any residues in the protease, then each monomer in turn is loaded back into

VMD, and the ‘mutate’ command invoked on the residues, which alchemically mutates
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them into the specified mutation. The protonation state of each monomer is assigned

in this way; in the case of complex formation with saquinavir, the aspartic acid at

residue 25 on monomer A is designated as protonated, and that on monomer B desig-

nated as un-protonated. This α-protonated state was chosen after calculating the free

energy of binding between Hxb2-genotype HIV protease and saquinavir for the 4 pos-

sible protonation states (α-, β-, un- and di-protonated). The 4 systems were simulated

for 4ns and then analysed using MMPBSA and NMODE. The results showed that the

α-protonated state had the most negative ∆G, which was in agreement with literature,

so this protonation state was used. Hydrogen atoms, which are generally too small to

be resolved in the crystal structure, are also added at this point. Histidine residues

were protonated on their ε-nitrogen and un-protonated on their δ-nitrogen, as this is

their dominant form at physiological pH values. The caveat of the alchemical mutation

is that surrounding atoms are not moved to make way for the mutated atoms, so if a

small internally-located residue is mutated into a larger residue, there will be energetic

ramifications. This is resolved by minimisation of the protein prior to simulation, and

subsequently carefully allowing the protein freedom of movement around the mutated

residues to allow optimal reorientation of surrounding atoms.

Following mutation and rehydrogenation of the protease, the monomer files are con-

catenated with the inhibitor file to regenerate the protease complexed with the ligand.

Using the Leap module of the AMBER software package, the complex is placed in a

TIP3P water box whose sides are 14.0Å away from the surface of the protease. This

generates an approximately 40,000 atom box of water of the specified dimensions, then

removes all the water molecules in the center to form a cavity just large enough for

the protein to fit. This protocol forms a vacuum immediately surrounding the protein

which must be considered during the equilibration phase of the simulation. The reason

for placing the protein in such a large box of water is because during the course of a sim-

ulation the protein rotates and moves around, and so quite often will move to the edge

of the box. NAMD employs ‘periodic boundary conditions’ to the system, which means

that for force calculations it acts as though there are multiple boxes tessellating around

the water box, therefore simulating the water box extending to infinity. However, if the

water box is not sufficiently large, the protein may experience non-bonded forces from
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the protein in tessellated systems. Therefore it is prudent to place the protein in a large

water box. Leap is then used to calculate the total charge of the system; it creates a

grid with a 1Å spacing and calculates the Coulombic potential at each grid point and

then places counterions (Na+ or Cl−) at the points of highest or lowest electrostatic

potential in the solvent. As HIV protease systems are positively-charged, sufficient Cl−

ions were added to neutralise the system. Once the system is neutralised, Leap out-

puts a .pdb coordinate file of the whole system and a .top topology file which contains

both the topological and parametric information of all the atoms in the system. Aside

from the configuration file containing parameters for NAMD, these files contain all the

information required to run the simulation.

2.1.2 Simulation Protocol

Molecular dynamics codes, such as NAMD, have multiple parameters that allow the

user to specify exactly how they would like the simulation to run, allowing for either

more rigorous force calculations and therefore slower performance, or reduced cut-

off distances for non-bonded forces and therefore faster turnaround of results. The

configuration file contains the user’s exact specifications for their simulation and is a

required input for NAMD. All simulations were performed with an integrative timestep

of 2 femtoseconds. To allow this, all simulations were performed with the SHAKE

algorithm imposed on atoms covalently bound to hydrogen to constrain their high

vibrational frequencies [93, 49]. A non-bonded cut-off distance of 12Å was employed

for the particle mesh Ewald (PME) calculation of non-bonded electrostatic forces for

all simulations. Detailed below are the parameters specific for the minimisation and

equilibration phases of the simulation protocol.

• Minimisation. ‘Conjugate gradients’ and ‘steepest descents line search’ minimi-

sation algorithms were applied to the protease for 2000 timesteps (4 picoseconds).

Essentially these two methods attempt to minimise the energy of the protease by

altering its configuration towards the point on its potential energy landscape

where:
δf

δxi
= 0;

δ2f

δx2
i

> 0 (2.1)

where f is the molecular mechanics energy of the Cartesian coordinates of the
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atoms (xi). The line search algorithm achieves this by locating 3 points along a

specified direction through the landscape where the energy of the middle point

is lower than the two outer points. Through an iterative procedure, the config-

uration of the minimum energy point along this line is determined [49]. This

method only locates the minimum energy along the chosen direction, which in

all probability will not intersect the minimum energy configuration of the local

landscape. Therefore, subsequent line searches must be performed starting at the

result of the previous line search. The direction in which to perform the next line

search is determined by the conjugate gradients method. After 2000 iterations

the gradient of the landscape at the protein’s configuration should be low enough

that proximity to a minima is assured.

• Equilibration. The temperature of the system was set at 50 Kelvin and a re-

straining force of 4kcal/mol/Å2 applied to all non-hydrogen atoms in the complex.

This prevents the complex from gaining too much energy too rapidly and subse-

quently adopting erroneous configurations, and also allows the unrestrained water

to fill the vacuum left around the protein by Leap’s hydration protocol, which

also helps prevent undesired configurations [60]. The system was then heated to

300 Kelvin over 25,000 timesteps (50ps) while still restraining the non-hydrogen

atoms. Once the desired temperature was reached, it was maintained for all sub-

sequent simulation steps using a Langevin thermostat with a damping coefficient

of λ = 5/ps applied to all non-hydrogen atoms. The simulations were performed

under constant pressure through coupling the system to a Berendsen pressure

bath, with a target pressure of 1.01325 bar and a pressure coupling constant of

100 femtoseconds. Simulations were therefore run in a constant NPT ensemble.

The water molecules were allowed to equilibrate for 100,000 steps (200ps) be-

fore the restraints were slowly lifted off the protein. If VMD had been used to

mutate any residues,the restraints were removed for all atoms in a 5Å sphere

around each mutated residue in turn for 25,000 steps (50ps) before re-applying

to the non-hydrogen atoms. This was to allow the alchemically-mutated residues

the freedom to reorientate to a more energetically-relaxed configuration. As this
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may require the residue to deform the surrounding structure to ‘free’ itself, the

restraints on the surrounding atoms were lifted as well. The residues’ constraints

in each monomer were lifted simultaneously, so that a 5Å sphere around residue

90 in both monomers was released for 50ps before re-restraining both. Once all

mutated residues had been given time to re-orientate, the restraint forces were

gradually lifted off the ligand in 1kcal/mol/Å2 steps every 50ps to prevent it from

suddenly being given the freedom to dissociate from the protease. The restraints

were then gradually lifted off the protease in the same 1kcal/mol/Å2 step every

50ps. To give the protease time to configurationally and energetically relax be-

fore data collection, the simulation was further run until the total equilibration

time lasted 2 nanoseconds. This length of time was therefore dependant on the

number of mutated residues in the monomer.

Once equilibration had been completed, the simulation was able to be run as an all-atom

unrestrained molecular dynamics simulation for the desired length of time. Simulations

were run in 500,000-step sections (1ns), over which time, the coordinate positions of

all the atoms in the system were outputted to a binary .dcd file every 500 timesteps

(1ps). The coordinates and velocities outputted at the end of each 1ns section were

used in conjunction with the .top file to start the next simulation. This phase of the

protocol is referred to as either the ‘production-phase’ or the ‘data-collection phase’.

The coordinate file outputted at the end of a 1ns simulated section could be loaded into

VMD along with the .dcd file to visualise the simulation over that time period. VMD

could then be employed to structurally analyse the protein through RMSD or RMSF.

This will be described in more detail in Section 2.2.

2.2 Structural Analyses

2.2.1 Root Mean Square Analysis

Root Mean Square Deviation (RMSD) is a statistical measure of the similarity between

two sets of values. In the field of biology these values are commonly the atomic co-

ordinates of homologous proteins. The proteins first need to be structurally aligned

through the method of least-squares, which rotates one protein around its geometric
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centre to match its orientation to the other protein. Then the protein is translated such

that the sum of the distances between homologous pairs of atoms between the proteins

is minimised. Once aligned, the RMSD is performed as described in Equation 2.2:

RMSD =

√√√√ 1
N

N∑
i=1

di
2 (2.2)

where N is the number of superimposed atoms in each set of values, and di is the

Euclidean distance between the ith pair of superimposed values [123].

Most commonly only the Cα atoms from the backbones of each protein are consid-

ered. This is because proteins that do not share exact sequence similarity do not

necessarily share the same number of side-chain atoms. However, all amino acids share

the same core backbone atoms (NH-CH-CO2), so regardless of the protein’s genotype,

as long as the RMSD is performed over homologous subsets of the proteins’ structures,

it will calculate a measure of structural similarity. Furthermore, as the Cα atoms are

located in the structural backbone of the protein, they represent a good indication of

the tertiary- or quaternary-structure of the proteins.

There are different ways of applying RMSD in bioinformatics:

• Comparing the structures of two proteins. This is the most common use

for RMSD in bioinformatics; determining the overall structural similarity of two

proteins, whether unrelated or closely-related. In Equation 2.2, N is the number

of residues compared between the proteins, and di is the Euclidean distance be-

tween identical atoms in the two proteins. This is referred to as ‘global RMSD’ in

this thesis as the sum of the differences for each residue is divided by the number

of residues, giving a mean residue value across the whole protein.

• Comparing the structures of a single protein across a simulation. As

a simulation proceeds, the protein will naturally flex and distort, resulting in

the adoption of different conformations. Making N in Equation 2.2 the number

of residues under comparison, and di the Euclidean distance between identical

atoms in the two structures, the global RMSD between the initial structure and
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the structure at snapshot X is calculated. Plotting of the global RMSD between

the starting structure and snapshot X against snapshot number reveals how the

global structure of the protein changes through the simulation. This is referred

to as ‘evolution of global RMSD’ in this thesis.

• Comparing the structures of a protein against its average structure.

This is termed Root Mean Square Fluctuation (RMSF) and is a specialised case

of the previous RMSD applications. An average structure is generated through

determination of the mean Cartesian coordinate for each atom. This average

structure is then used instead of the initial starting structure for the RMSD

calculation, such that di is the Euclidean distance between structure X and the

average structure X̄. If X̄ is averaged from the snapshot structures across a

simulation, then the plotting of RMSF against snapshot number reveals how the

global structure of the protein fluctuates across a simulation.

• Comparing proteins on a per-residue level. Instead of averaging the RMSD

for each residue across the protein, the root-squared Euclidean distance is calcu-

lated between two structures for each residue and plotted against residue num-

ber, an indication of the regions of high and low structural similarity can be

determined. This is termed ‘profile RMSD’ or ‘profile RMSF’ in this thesis as

it provides information on the similarity across the proteins’ residue profiles.

Furthermore, by making N in Equation 2.2 the number of snapshots, and di

the Euclidean distance between an average structure’s residue and snapshot N ’s

residue, the average flexibility of that residue across a simulation can be plotted.

di can also be the Euclidean distance between the initial structure’s residue and

snapshot N ’s residue, which indicates the motion of that residue away from the

starting structure. This can then be repeated for each residue to show the mo-

tions of different regions of the protein through the simulation. This can be used

in conjunction with global RMSD to reveal more information about structural

differences; while global RMSD may show that two structures are different, it

contains no information about how they are different. Profile RMSD can then

show which regions cause the observed differences.
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RMSD and RMSF analyses in this research were performed by VMD through execution

of ‘tcl’ scripts that were written for this purpose. Different scripts were written to im-

plement either global RMSD/RMSF, or profile RMSD/RMSF. These scripts load the

proteins, and trajectories if necessary, into VMD. They then invoke VMD’s ability to

superimpose the proteins through the least-squares method, and then calculate either

the profile or global RMSD depending on the script. VMD also has a command to

calculate the average structure of a simulation, so the ‘tcl’ scripts written to implement

RMSF calculations invoke this command before calculating the RMSD to this average

structure. The scripts output the results to a plain text file which can then be loaded

into a graphing program such as Microsoft Excel for analysis.

RMSD is typically used in molecular dynamics simulations as an indicator of the sys-

tem having reached equilibrium. As the simulation proceeds, the system relaxes into a

more natural configuration by undergoing conformational changes. These changes will

be reflected by a change in RMSD; a plot of RMSD against time will show a gradual

increase as the system relaxes, then plateaus out once relaxed. The system will then

fluctuate around this relaxed configuration due to thermal motion of atoms and natural

fluctuations in the system. If the rate of change of RMSD against time is approximately

0, then the system is considered equilibrated from a structural perspective.

2.2.2 Principal Component Analysis

Principal component analysis (PCA) is a statistical technique used to reduce the com-

plexity of multivariate data to identify the combinations of variables which explain the

largest amount of variation within the multivariate data set. This is achieved by cre-

ating new variables, called principal components, which are linear combinations of the

original variables that explain as much of the information in the data as possible. The

first principal component describes the largest possible amount of information in the

data; the second principal component describes the second largest amount of informa-

tion not contained within the first principal component; the third principal component

describes the next largest amount of information not captured by the first two; and

so on. Although the total number of principal components is equal to the total num-

ber of variables in the data set, the first few principal components are usually sufficient
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to jointly describe the majority of the variation in the original multivariate data set [20].

Molecular dynamics trajectories are examples of multivariate data; each system typi-

cally has thousands of degrees of freedom [131]. Applying PCA to molecular dynamics

trajectories reduces the number of degrees of freedom, extracting the important con-

certed motions of groups of atoms from the random thermal atomic fluctuations. In

simulations involving proteins, these concerted motions reveal information about the

important, slow-timescale dynamics of the protein that are integral to the protein’s

thermodynamics, but would otherwise require long simulation times to observe [4].

The mathematical theory underpinning PCA on MD trajectories is as follows:

For a simulation with M snapshots, let ~x(t) = (x1(t), x2(t), ...x3N (t)) be the coordinate

vector of N atoms in a system at time t. From these vector coordinates, a covariance

matrix C is generated:

C =


c1,1 c1,2 · · · c1,3N

c2,1 c2,2 · · · c2,3N

...
...

. . .
...

c3N,1 c3N,2 · · · c3N,3N

 (2.3)

where the element ci,j is given by:

ci,j = M−1
M∑
t=1

(xi(t)− 〈xi〉)(xj(t)− 〈xj〉) (2.4)

where M is the number of snapshots, 〈xi〉 is the mean value of xi across the trajectory,

and 〈xj〉 is the mean value of xj across the trajectory. The eigenvectors and their

associative eigenvalues are calculated by diagonalising the covariance matrix C such

that:

Λ = V T CV (2.5)

82



where Λ is the diagonal matrix containing the 3N eigenvalues as its diagonal elements

and V is a square matrix containing the 3N eigenvectors:

Λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λ3N

 V =


v1(1) v2(1) · · · v3N (1)

v1(2) v2(2) · · · v3N (2)
...

...
. . .

...

v1(3N) v2(3N) · · · v3N (3N)

 (2.6)

The eigenvectors are numerically sorted according to their associated eigenvalue. The

eigenvectors with the largest eigenvalues are termed the principal components, and

represent the low-frequency correlated motions that contribute the largest fraction of

the total variance. These values, however, do not indicate when the eigenvectors move

in the simulation, so to determine this the eigenvector’s projection is calculated:

pi(t) = vi( x(t)− 〈x〉) (2.7)

where pi is the projection of the ith principal component; vi is the ith eigenvector; 〈x〉

is a vector of the average Cartesian position of each of the 3N coordinate vectors in

q(t) across the trajectory. To ensure that differences observed between configurations

across a simulation are due to structural fluctuations, the translational and rotational

motions of the protein are removed through the least-squares method (Section 2.2.1 for

more details) prior to analysis.

PCA was performed through two different software packages in this thesis. For the

majority of the thesis, the program PCAZIP [61] was used. The MD simulation tra-

jectory files were first converted from the .dcd files outputted by NAMD into .traj files

through the PTRAJ module in the AMBER software suite. On conversion to the .traj

format, all waters and ions were stripped from the system as they were unnecessary for

the PCA analysis. This also drastically reduced the file size. A ‘mask’ .pdb file contain-

ing the coordinates and internal indices of the protein’s Cα atoms was created through

execution of a Perl script that was written specifically for this purpose. The script loads

the PDB file containing the system’s initial structure into VMD and then uses VMD’s

commands to select only the Cα atoms. The coordinates and atom numbers associated
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with this selection is then outputted to the new PDB file. This ‘mask’ file contains

the atoms over which to perform the PCA; due to the time required to diagonalise the

covariance matrix, PCA was performed over just the backbone Cα atoms of the pro-

tease. The program was executed serially on a local computer, and took approximately

5 minutes to analyse the backbone atoms of a 10ns simulation. However, the maximum

number of snapshots the program could analyse was 10,000. Therefore, once the en-

sembles’ collective snapshots exceeded this number, PCAZIP could no longer be used.

Instead, the PCA was implemented through the PTRAJ module of AMBER. A script

was written that allows the user to specify the NAMD trajectory files over which the

PCA is to be performed and how many eigenvectors to calculate. The trajectories are

then automatically converted into .traj files containing just the complex, and then the

PTRAJ commands are invoked to perform the PCA. As with PCAZIP, PTRAJ is not

parallelised, and so the script took approximately 3 hours to implement the required

calculations on the extended WT and HM ensembles (Section 6.5).

As can be seen in Equation 2.4, in order to analyse a simulation through PCA, an

average structure over the trajectory must be created. For all non-ensemble simula-

tions in this thesis, the average structure was generated automatically by PCAZIP,

utilising every outputted snapshot in the simulation to determine each atom’s time-

averaged position. In Sections 6.4 and 6.5, PCA was used to analyse ensembles of

simulations. In these cases, the time-averaged structure was calculated by concatenat-

ing all replicate .dcd files into a single long file and then using PTRAJ to generate the

average structure from all snapshots. In this way, the principal components for each

replicate in an ensemble are comparable against the other replicates.

2.3 Free Energy Calculations

Free energy is considered to be the most important quantity in thermodynamics [49].

Through statistical thermodynamics, it can be shown that if the number of molecules in

a system is large, the behaviour of the system will be the same as the behaviour of the

individual molecules that make up the system. Therefore, a molecular dynamics simula-

tion of a single molecule can allow calculation of macroscopic thermodynamic properties
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if it is run for sufficiently long. This underpins the justification for using molecular dy-

namics simulations of a single molecule to calculate macroscopic thermodynamic quan-

tities such as the change in free energy upon ligand binding; a Boltzmann-distributed

ensemble of micro-states sampled across a simulation will represent the macroscopic

thermodynamic properties of the system at equilibrium. However, the Helmholtz free

energy of a system (A), which is equivalent to the Gibb’s free energy for systems with

constant NV T rather than NPT , can be written as [29]:

A = − 1
β
lnQNV T (q,p) (2.8)

where β = 1/kBT ; kB is the Boltzmann constant; and QNV T is the ‘partition function’,

which is the sum of all the Boltzmann factors. Through substitution, this equation can

be rewritten as:

A = − 1
β
ln〈eβH(q,p)〉 (2.9)

This equation states that the free energy is directly proportional to the ensemble av-

erage of the exponential of the Hamiltonian. Therefore, configurations with a high

energy make a significant contribution to the calculation of the free energy value of the

system [29]. Molecular dynamics simulations, however, preferentially sample the lower

energy configurations, and will never adequately sample the important high-energy re-

gions, and so lead to poorly converged and inaccurate free energies [49]. Nevertheless,

computational techniques for calculating the difference in free energy between two sys-

tems have been developed by exploiting the thermodynamic cycle principle. The

techniques range from computationally-demanding, yet highly accurate, methods such

as Free Energy Perturbation (FEP) and Thermodynamic Integration (TI) through to

more heuristic techniques such as Molecular Mechanics Poisson-Boltzmann Solvation

Area (MMPBSA) and Linear Response (LR) methodologies.

2.3.1 Thermodynamic Cycles

Equation 2.8 showed that in order to calculate an accurate free energy value, high-

energy states which have a low probability of being sampled are important. Unfor-

tunately, molecular dynamics and Monte Carlo simulations preferentially sample low-
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energy states, so will not adequately sample these high-energy states in a reasonable

timeframe. Accurate free energy differences between two states cannot therefore be

directly calculated. For example, if the difference in binding between 2 ligands to a

receptor were to be calculated:

R+ L1 → R · L1 (∆G1) (2.10)

R+ L2 → R · L2 (∆G2) (2.11)

Two simulations would need to be run where the ligand and receptor were gradually

brought from a large distance apart to formation of the complex. This would require

such a major reorganisation of the molecules involved (including the solvent) that ad-

equate sampling of the whole phase space would be difficult. However, Equations 2.10

and 2.11 above can be linked into the cycle shown in Figure 2.1.

Figure 2.1: Conversion of Equations 2.10 and 2.11 into a thermodynamic cycle.

Thermodynamic cycles work on the principle that free energy is a state function, so

the sum of the ∆G values around the cycle must equal 0 [49]. Therefore:

∆G2 −∆G1 = ∆G4 −∆G3 (2.12)

∆G3 represents the free energy difference of the unbound components in solution, and

though this is not a value that can be determined experimentally, it can be calcu-

lated computationally. Equally, ∆G4, which represents the free energy difference of

the complexes in solution, cannot be determined experimentally, but can be computed.

Therefore by ‘alchemically mutating’ L1 into L2 in both solution and in the receptor,
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∆G3 and ∆G4 can be calculated, and subsequently the ∆∆G3,4 between them, which

is exactly equal to ∆∆G1,2. This thermodynamic cycle perturbation approach therefore

calculates the difference in free energy of binding between the two ligands [49, 121].

This technique is employed by the computationally-demanding methods such as TI and

FEP. However, it can also be adapted to calculate the absolute difference in free energy

of binding in solution (Figure 2.2).

Figure 2.2: Thermodynamic cycle to calculate the change in free energy upon ligand
binding (∆Gbind(s)).

Here, (s) denotes ‘solvated’; (v) denotes ‘in vacuum’; ∆Gsol denotes the change in

free energy upon solvation for ligand (lig), receptor (rec), and complex (com). The

principles underlying thermodynamic cycles allow the ∆Gbind(s), which cannot be cal-

culated through standard molecular dynamics, to be indirectly determined through

Equation 2.13:

∆Gbind(s) = ∆Gbind(v) +
[
∆Gsolcom −

(
∆Gsollig + ∆Gsolrec

)]
(2.13)

Therefore, to calculate the the free energy change upon inhibitor binding, compu-

tational methods, such as MMPBSA, calculate these 4 free energy changes.

2.3.2 MMPBSA

The Molecular Mechanics/Poisson-Boltzmann Solvation Area method (MMPBSA) uses

the thermodynamic cycle approach (see Figure 2.2) to approximately calculate the

absolute change in free energy upon inhibitor binding in solution (Equation 2.13) [49].

To calculate the ∆Gbind (v) term, the in vacuo free energy of the ligand and the receptor
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is subtracted from the in vacuo free energy of the complex:

∆Gbind(v) = Gcom(v)− [Grec(v) +Glig(v)] (2.14)

where ∆Gbind(v) is the change in Gibb’s free energy upon ligand binding in a

vacuum; Gcom(v) is the Gibb’s free energy of the receptor-ligand complex in a vacuum;

Grec/lig(v) is the Gibb’s free energy of the separate protein and ligand components

respectively in a vacuum. To determine the free energy of each of the components, the

electrostatic, van der Waals, and internal molecular mechanics interaction energies are

calculated for each component, and then the energies of the receptor and ligand are

subtracted from the complex, such that:

GX(v) ≈ UX(v) = Uele + Uvdw + Uint (2.15)

where X denotes either complex, ligand or receptor; U denotes energy; ele denotes

non-bonded electrostatic forces; vdw denotes non-bonded van der Waals forces; and

int denotes internal forces. The internal energy (Uint) is caused by strain from the

deviation of bonds, angles and torsional angles away from their equilibrium values.

Therefore the ∆Gbind(v) is calculated as:

∆Gbind(v) ≈ ∆Ubind(v)

= ∆Uele + ∆Uvdw + ∆Uint (2.16)

where ∆Gbind(v) refers to the difference shown in Equation 2.14.

The solvation free energy ∆Gsol components of ∆Gbind(s) are the free energy changes

to transfer the molecule from vacuum to solvent. This is considered to have a polar

component and a non-polar component:

∆Gsol = ∆Gpol + ∆Gnp (2.17)

The non-polar contribution to the solvation free energy (∆Gsol
np) is further divided into

2 components: the van der Waals interaction between the molecule and the solvent,
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and the free energy change of forming a cavity in the solvent in which the molecule is

placed. Due to the short-range distances over which the van der Waals forces act, and

the major component of the free energy change associated with cavity formation arising

in the first layer of solvent molecules, the non-polar contribution can be calculated from

the solvent-accessible surface area (SASA) of the molecule:

∆Gsolnp = ∆Gvdw + ∆Gcav

= γSASA+ b (2.18)

where γ and b are empirically-derived constants that reflect the surface-tension of the

solvent and an off-set value respectively.

The polar contribution to the solvation free energy (∆Gsol
pol) is representative of the elec-

trostatic forces that occur between the charged atoms in the molecule and the solvent

upon solvation. This is more complicated than the other components of the ∆Gbind(s)

value, and different methods have been developed to calculate this. Of particular note

are the Poisson-Boltzmann (PB) implementation and the generalised-Born (GB)

implementation of the electrostatic component. Both of these methods consider the

solvent as an implicit continuum rather than considering every solvent molecule. This

assumption relies on the fact that individual molecules are unimportant in the associa-

tion reaction, but rather the solvent as a whole provides an environment which strongly

affects the behaviour of the solute molecule.

The PB method treats the solute molecule as a body of constant low dielectric and

the solvent as a continuum of high dielectric. The PB equation relates the electrostatic

potential at a point φ(r) to the charge density ρ(r):

∇ · ε(r)∇φ(r)− κ′φ(r) = −4πρ(r) (2.19)

where κ′ is a constant related to the Debye-Hückel inverse length (κ) and represents

the ionic strength; and ε(r) is the dielectric constant.
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This equation is solved by superimposing a cubic lattice onto the solute molecule and

surrounding solvent. The values of the electrostatic potential, charge density, dielectric

constant and ionic strength are then assigned to each grid point. As the atomic charges

do not necessarily coincide with the grid point, the atom’s charge is allocated to the

surrounding grid points such that the closer the atomic charge is to the grid point,

the greater the proportion of the total charge that grid point receives. The boundary

between the solvent and the solute is defined by the SASA; all grid points within this

boundary are assigned the dielectric constant of between 2 and 4, and all outside are

assigned a dielectric constant of 80. The electrostatic potential is then determined by a

finite difference formula which sums the potentials and dielectrics of surrounding grid

points. However, the potential at each grid point influences the calculation of neigh-

bouring grid points, so by repeating the calculation again with the updated charges,

the value changes. Therefore this calculation is re-iterated until the values converge.

This finite-difference Poisson-Boltzmann method is used to calculate the electrostatic

component of the solvation free energy by performing two sets of calculations using

the same grids but with dielectrics set at 80 and then set at 1. These represent the

electrostatic energy in solvent and in vacuum respectively. Subsequently, the difference

between these values is indicative of the change in electrostatic energy in transferring

from vacuum to solvent:

∆Gsolpol =
1
2

∑
i

qi
(
φ80
i − φ1

i

)
(2.20)

where the electrostatic energy of a charge qi in a potential φi equals qiφi. This sum-

mation is over all charges in the solute.

An alternative technique for calculating the polar contribution to the solvation free

energy is the generalised Born method. This is an approximation to the PB method

described above, and represents the solute molecule as a discrete set of overlapping

spheres with a point charge in the middle. As with PB, the solute is imbedded in an
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implicit polarisable dielectric continuum [39]. The ∆Gsol
pol is then calculated as:

∆Gsolpol =
1
2

∑
i 6=j

qiqj
rij︸ ︷︷ ︸

vacuum

− 1
2

(
1− 1

εw

)∑
i,j

qiqj
fGB (rij)︸ ︷︷ ︸

solvent

(2.21)

where εw is the dielectric constant of the solvent - set to 80; qi and qj are atomic

charges; fGBij is a smoothing function which depends on the inter-atomic distances and

atomic radii. The first term is the energy in a vacuum, from which is subtracted the

solvation energy term [49, 94].

If the GB method is implemented with the SASA method of calculating the non-polar

solvation free energy, and the molecular mechanics method of calculating the internal

energies of the components, the methodology is called MMGBSA. If, instead of the

GB method, the PB method is implemented to calculate the electrostatic component

of the solvation free energy, the methodology is called MMPBSA. Both were imple-

mented in this thesis through the MMPBSA module of the AMBER9 software suite.

Solvated ∆Gbind values were calculated across a trajectory for snapshots every 10ps

apart. As the NAMD protocol (Section 2.1.2) ran for 1ns at a time, outputting 1000

configurations every 1ps over this time, 100 snapshots over the 1ns were analysed by the

MMPBSA module. The 100 outputted ∆Gbind values were averaged to attain a mean

value over the 1ns. The molecular mechanics energies (∆Gbind(v)) were calculated us-

ing the SANDER module of AMBER9 with no cut-off for the non-bonded interactions.

The PBSA module was used to calculate both the PB and GB ∆Gsol
pol term with a grid-

spacing of 0.5Å, the intramolecular dielectric set to 1, and the continuum dielectric

set to 80. The potential was calculated after 1000 iterations. The MSMS module was

used to calculate the ∆Gsol
np term, with a probe radius of 1.4Å used to determine the

SASA, the surface-tension set to 0.00542kcal/molÅ2 and the off-set set to 0.92kcal/mol

[49, 94]. Furthermore, to decrease the computational requirements, only a single simu-

lation was performed, rather than the three for each of receptor (which, in this thesis,

was the protein HIV-1 protease), ligand and complex. The configurations for the sep-

arate protein and ligand were extracted from the complex simulations by deleting all

unnecessary molecules. So to attain the ligand configuration, the waters and protein
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were deleted. This methodology, while decreasing the required number of simulations

by one-third, makes the assumption that there is no change in configuration upon com-

plex formation by either the protein or the ligand. This is a fair assumption for this

thesis because saquinavir is an inflexible molecule [124], and the protease’s active site

region is considered to be relatively static compared to the rest of the molecule [77].

2.3.3 Configurational Entropy

While the MMPBSA and MMGBSA methodologies include the change in configura-

tional entropy of the solvent with the ∆Gsol
cav term of the non-polar contribution to the

solvation free energy, they do not include the change in free energy due to the decrease

in configurational entropy of the ligand and receptor upon complex formation. When

a ligand binds to a receptor, both components undergo a decrease in configurational

entropy as the non-bonded forces between the two restrict their degrees of freedom.

This change in configurational entropy upon complex formation can be sub-divided

into three components:

∆Sconf = ∆Stra + ∆Srot + ∆Svib (2.22)

where ∆Stra is the change in translational degrees of freedom; ∆Srot is the change in

rotational degrees of freedom; and ∆Svib is the change in vibrational degrees of freedom.

The free energies associated with each of these freedoms can be calculated according

to the equations below [98]:

Gtra =
3
2
RT −RT

[
5
2

+
3
2
ln

(
2πmkBT

h2

)
− ln(ρ)

]
(2.23)

Grot =
3
2
RT −RT

[
3
2

+
1
2
ln (πIAIBIC) +

3
2
ln

(
8π2kBT

h2

)
− ln(σ)

]
(2.24)

Gvib =
3N−6∑
i=1

[
1
2
hvi +

hvi

ehvi/kBT

]

−
3N−6∑
i=1

[
hvi

ehvi/kBT
−RTln

(
1− e−hvi/kBT

)]
(2.25)

These equations contain many constant terms that will not be described here. To cal-

culate the change in free energy associated with the loss of rotational, translational and
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vibrational entropy upon inhibitor binding, each of these three equations is applied to

the three component molecules and then their difference calculated as shown in Equa-

tion 2.14. Of particular note is the vi term in Equation 2.25, which is the vibrational

frequency of the normal mode. The normal modes of a linear molecule such as a

protein are the concerted set of harmonic motions that the covalently linked atoms

perform. For example, the core backbone of a protein is the chain [−C − C −N−]n.

Though there are other atoms and side-chains that branch off this chain, these are

ignored for this illustration. As the central carbon atom vibrates, it moves towards the

nitrogen atom. As its proximity increases, repulsion effects cause the carbon atom to

move away from the nitrogen atom, which in turn moves away. This carbon atom is

now traveling in the opposite direction towards the other carbon atom and the same

process happens. This results in all the atoms harmonically vibrating back and forth.

The frequency of the system’s harmonics is termed its normal mode. However, this cal-

culation assumes the protein’s oscillations occur within a single potential energy well,

which is not a valid assumption when performing the analysis over a trajectory - as

the trajectory proceeds, the protein’s conformation changes which regularly results in

movement across the configurational landscape to another potential energy well. This

results in the protein’s normal modes being different, which therefore alters the calcu-

lation of the vibrational degrees of freedom. For this reason, protein simulations show

high vibrational entropy variability.

Calculation of the change in free energy of binding associated with the change in free-

dom was performed using the NMODE module of the AMBER9 software package. This

calculates the vibrational, rotational and translational entropy as per Equations 2.23,

2.24 and 2.25, then sums these values to attain a Gconf for each of the ligand, protein

and complex. The sum of the ligand and protein values is then subtracted from the

complex to attain a −T∆Sconf term which can be subtracted from the ∆Gbind term

calculated through MM(PB/GB)SA to attain a more accurate change in free energy

of binding that includes the reduced configurational entropy. An important note is

that the NMODE program performs it own conjugate-gradient minimisation (see Sec-

tion 2.1.2 for more details) of the inputted configuration to ensure that the structure,

over which the normal mode analysis is performed, is at the bottom of the potential
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energy well. For this thesis, the minimisation was performed until the gradient of the

surrounding potential energy landscape was less than 10−4 kcal/molÅ. This means

that the outputted normal mode value is not necessarily the same structure that the

MMPBSA is performed on. Therefore caution must be taken when comparing the

MMPBSA output against the NMODE output. This minimisation step also makes the

NMODE calculation much more computationally-demanding than the MMPBSA cal-

culation, and for this reason each 1ns trajectory was only entropically analysed every

50ps. The average of these 20 snapshots gave a mean −T∆S value over the nanosec-

ond, which was combined with the ∆Gbind value from MMPBSA to generate the final

average free energy change upon complex formation over that nanosecond.

2.4 Supercomputing Resources

Running a molecular dynamics simulation on the 50,000 atom solvated HIV-protease

system over nanoscale time-lengths, and the subsequent analyses performed, requires

considerable computational resources. Running this system for 1 nanosecond using

NAMD would take approximately 256 hours (10.67 days) if run on a single processor.

Subsequent analyses would take approximately another 2 days. Under these circum-

stances, the turnaround of results for a 1 nanosecond simulation would take almost

2 weeks. This is unfeasible, especially if a comparison between two simulations was

required. In this case, the equilibration protocol of 2 nanosecond followed in this thesis

would take each simulation up to 3 nanoseconds, and would therefore take a total of

over 2 months (64 days) if run on a single processor computer.

However, NAMD was designed to be highly parallelisable, and scale well if simulta-

neously run across multiple processors. High performance computing (HPC) resources,

such as the Texas Advanced Compute Centre (TACC) in the USA, and the HECToR

machine in Edinburgh, each contain thousands of networked processors that facilitate

this parallelisation. By running the 2 aforementioned simulations across 64 processors

(32 for each simulation), the time taken to run the simulation is reduced to 24 hours

(1 day). Due to the requirements of processors communicating with each other, the

increase in scalability plateaus at 32 processors for the 50,000 atom HIV-1 protease
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system. The sheer number of total processors in current HPC resources means that not

only can each simulation be parallelised, but multiple simulations can be run simulta-

neously. In the final chapter of this thesis, 3200 processors were utilised across multiple

resources to simultaneously run 100 simulations of 12ns in length. While this is a lot of

processors, it was only a fraction of the 82,120 processors that these resources collec-

tively contain. Furthermore, the development of ‘grid-networks’, which are networks

of connected HPC resources such as TACC and the National Grid Service (NGS) in

the UK, means that processor availability is no longer a limitation to the turnaround

of results. Rather, the scalability of the analysis software is more limiting. For exam-

ple, the PCA and NMODE analyses performed by AMBER9 are serially-implemented,

which means that they can only run on 1 processor at a time. Therefore, while multiple

NMODE analyses can be run simultaneously, they will all take approximately 1.5 days

to calculate an average configurational entropy from 20 snapshots. Even more limiting

is the time taken to transfer data generated by the HPC resources to a backup or to

a local storage for analysis. Using the NAMD configuration parameters described in

this thesis, each simulated nanosecond generates 500Mb of data. As ‘SCP’ and ‘SFTP’

transfer data at approximately 200Kb/s, it takes around 45 minutes to transfer 1ns’

worth of trajectory data. This was especially noticeable when transferring the 100-

repetition 10ns ensemble data back to a local storage server from machines at TACC;

while it only took approximately 4 days to generate all the data, it took over 2 weeks

to transfer the 500Gb of data back.
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Chapter 3

Development of a local relational

database collating biochemical

and structural data on HIV

protease

3.1 Introduction

In order to investigate the use of molecular dynamics as a tool for calculating enzyme-

inhibitor binding affinities, it was first necessary to acquire relevant experimentally-

derived biochemical and biophysical data, and link where possible to genotypic and

structural data to allow the selection of appropriate structures for molecular dynamics

simulations. Atomic coordinates of proteins attained from X-ray crystallography and

nuclear magnetic resonance methods are publicly archived in the online depository, the

Protein Data Bank [87]. As of the 11th February 2009 this depository contained 55,795

structures, of which 174 were of HIV-1 and HIV-2 protease enzymes bound by substrate

peptides or inhibitors.

One aim of the research was to compare the computationally-derived Gibb’s free ener-

gies attained from the molecular dynamics simulations to the experimentally-derived

energies seen in vivo. An online resource for enzyme-inhibitor kinetic data, such as
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∆G, ∆H and Ki values exists in The Binding Database, which contains data attained

through Enzyme Inhibitor Assays and Isothermal Titration Calorimetry methods [8].

As with the Protein Data Bank, there are no restrictions on who may deposit data, nor

are there restrictions on how the data is deposited. As a result there is no standardisa-

tion of the database; some entries contain logK values while others do not, some entries

have uncertainties greater than 20% in their experimental values, some entries have

IC50 values while others do not, and few assays are performed under standardised tem-

peratures and pH values. A local database was designed and created that collated the

information contained in the structural and biochemical databases such that database

queries could be employed to extract relevant information. Sequences in the PDB are

indexed according to an internal indexing system termed a ‘PDB Identifier’, rather than

by the protein sequence, so cross-correlating the related biochemical data stored in the

BindingDb to the relevant sequences in the PDB is indirect and requires comparison of

the sequence genotypes. By organising the database in such a way that sequences are

standardised into single-letter amino acid code and cross-mapped through an internal

identifier, the relevant biochemical and biophysical data for a ‘sequence of interest’ with

a starting structure can be extracted with a simple SQL query statement.

3.2 Populating the local relational database

HIV protease data was obtained primarily from the Protein Data Bank for atomic

coordinates of protease from which to run MD simulations from, and the biochemical

data from the Binding Database for protease-inhibitor kinetic data such as IC50, Ki

and ∆G. Also, experimental data published in journals provided additional kinetic

data; however, as with the online depositories, the kinetic data is not presented in a

standardised format. For example, enzyme-inhibitor kinetic data is presented as IC50

or IC95 values; as EC50 or EC95 values; as ∆G values; as Ki values; or in the context

of mutant protease-inhibitor experiments, as fold changes with respect to their wild

type sequence. These data are valuable and were converted into a comparative value to

those calculated from the MD simulations. MMPBSA and normal mode analyses were

employed to calculate the binding affinity between the protease and its inhibitor in an

MD simulation; this outputs a change in free energy upon formation of the complex
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(∆Gcomplex). Therefore, the biochemical data were either converted into a ∆G value, or

if presented as fold changes with respect to a specific sequence, the respective calculated

∆G values were converted into a comparable fold change. Equation 1.26 was followed

to convert a Ki value into a ∆G value, and if the data were presented as IC50/95 values,

Equation 3.1 was employed to convert them to Ki values, which could then be converted

into a ∆G value. However, this required knowledge of the substrate concentration and

the Michaelis constant (KM) of the reaction, which was not always available.

Ki =
IC50(

1 + [S]
KM

) (3.1)

These conversions to ∆G values were performed manually on the data when necessary

to compare to a computed value. The data entered into the local database was there-

fore exactly as deposited in the online depositories, and the calculations performed

after extraction of the data.

Before the SQL database could be populated, the structure of the component tables

needed to be determined to ensure that the maximum information could be extracted

with the simplest query statement. Figure 3.1 shows the structure of the tables and

their relationship to each other in the form of a UML diagram. A description of each

of the tables in the database along with their relationship to each of the other tables is

detailed below.

• Sequence. This table is the reference point for the whole database. Each ta-

ble element is a unique sequence with an associated identifier which is used to

reference all the relevant data for that sequence. In this way, the protease se-

quence of any biochemical or crystallographic data that is added to the database

is checked against the sequences already present in the Sequence field, and if a

match is found the data is added with the associated Sequence ID identifier. If

the protease sequence of the new data is unique, then the sequence is added as an

element in this table and given a unique identifier equal to N + 1, where N is the

previous number of elements in the table. The associated data is then inserted

into the appropriate table with a Sequence ID field whose value corresponds to

that given to the protease sequence in this table.
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• Structure PDB. This table contains data extracted from the HIV-1 and HIV-2

protease PDB files. The fields in this table are Sequence ID, Resolution, Ligand,

and PDB Id. The Sequence ID field is directly associated with the field of the

same name in the Sequence table, so that a simple SQL query could return

the associated sequence with the PDB data. The Resolution field contains the

resolution of the X-ray crystallographic diffraction data, indicating the quality

of the atomic coordinates in the file. The Ligand field indicates the complexed

molecule in the file, if present. It is important to note that Sequence ID element

values are not unique; each identifier does not appear just once in this table

because proteases with the same sequence but different complexed molecules will

each have an element in this table, and will have the same Sequence ID value, but

their other fields will differ. The PDB Id field contains the identifier code used by

the PDB depository to locate the file; each deposited file has a unique identifier

that differentiates it from other files. This field is important because the atomic

coordinates contained in the PDB files are not stored in the local database, and

are manually extracted from the files in the PDB depository to attain the atomic

coordinates. This is described in more detail (Section 3.3) along with example

SQL queries.

• Binding EIA. This table contains the biochemical information on HIV-1 pro-

tease attained through the Enzyme Inhibition Assay experimental method and

archived in The Binding Database depository. The fields in this table are Se-

quence ID, Ligand, pH, Temperature, Ki, and IC50. As with the Structure PDB

table, the value of the Sequence ID field corresponds to the unique Sequence ID

value of the associated protease sequence in the Sequence table. This allows

for more complex SQL queries to be designed that can extract both crystallo-

graphic and biochemical data of a particular sequence from a single query, al-

lowing for a broad overview of the available data much more easily than having

to manually locate it within the various depositories. The Ligand field is the

same as in the Structure PDB table - it contains the name of the complexed

molecule in the experiment. It is important to note that the name of the ligand

entered into the database is not necessarily the same as in the original file. This
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is because at the time of database generation there was no standardisation of

nomenclature when depositing data into the online depository, so different au-

thors gave different names to ligands depending on their preference; for example,

for the HIV protease inhibitor saquinavir, some entries gave the drug name, others

gave the chemical IUPAC name (2S)-N-[(2S,3R)-4-[(3S)-3-(tert-butylcarbamoyl)-

3,4,4a,5,6,7,8,8a-octahydro-1H-isoquinolin-2-yl]-3-hydroxy-1-phenylbutan-2-yl]-2-

(quinoline-2-carbonylamino)butanediamide, and others gave the drug’s empirical

formula C38H50N6O5. The Binding Database has since improved the layout of its

entries, with the main ligand name given as the popular name, and with synonym

fields for alternative names. However the Synonyms table was used in conjunc-

tion with specific Perl scripts, used to automate data entry, to standardise the

ligand names in the Ligand fields of both the Binding ITC and Binding EIA

tables when the database was created.

The pH and Temperature fields contained the pH and temperature, respectively,

that the EIA experiments were performed under. These fields ensured that bio-

chemical data compared between different protease sequences were performed

under similar conditions. A change in either pH or temperature can affect an en-

zyme’s biophysical properties, so it would not be possible to determine whether

a difference in Ki was due to the difference in conditions or the difference in

sequence, when comparing results from experiments performed under different

conditions.

The Ki and IC50 fields contain the resultant data from the EIA experiments, but

not every entry contains both Ki and IC50 values. As described earlier in this

chapter, these values can be converted to ∆G and then directly compared to the

∆G values calculated from MD simulations. The result is the ability to create

an SQL query that extracts both the PDB file identifiers and biochemical data

associated with a particular protease sequence-inhibitor complex, so that the MD

simulation can be run from the atomic coordinates in the PDB file and the results

compared against the experimental data.

• Binding ITC. This table’s fields and purpose are the same as those of the Bind-

ing EIA table. The only difference is that the populated data is generated
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through the Isothermal Titration Calorimetry experimental method instead of

the Enzyme Inhibition Assay method.

• Variation. This table contains each sequence’s mutations from the experimental

wild-type sequence Hxb2. The fields are Sequence ID, Consensus, Position and

Mutation. As with all the other tables, the Sequence ID field provides a link to the

full sequence it originates from. Each entry in this table represents a single mu-

tation with respect to the experimental consensus sequence Hxb2. For each new

sequence added to the Sequence table, each amino acid is compared to the Hxb2

sequence, and if a mismatch is found, an entry is added to the Variation table

containing the Sequence Id of the new sequence in the Sequence table along with

the 1-letter code of the consensus amino acid, its position in the sequence, and the

1-letter code of the mutated residue. These are added to the Consensus, Position

and Mutation fields respectively. Each difference to consensus sequence found in

this way is added to this table, resulting in each Sequence ID being represented

in this table equal to the number of mutations in the sequence. For example, if

a new PDB file is added to the database, the first step is to take the protease’s

sequence and compare it against all the other sequence entries in the Sequence

table. If there is no match, then it is added to the table and the relevant data

added to the Structure PDB table with the corresponding Sequence ID. The

sequence is also compared to the Hxb2 consensus sequence residue-by-residue. If

a mismatch occurs, then an entry is created in the Variation table; each subse-

quent mismatch generates an additional entry in this table. An example of the

entries from a sequence with two mismatches to Hxb2 is shown in Table 3.1.

Table 3.1: Example output of Variation table for a sequence with 2 mutations from
Hxb2

Sequence IDa Consensus Position Mutation
1 G 48 V
1 L 90 M

a Internal identifier. Number shown only for example purposes.
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The purpose of this table is to be able to search through the collated data with re-

spect to the number of mutations a sequence has from the experimental consensus

sequence. For example, in Section 5.2, this was used to identify a series of thirteen

protease-saquinavir complexes for simulation; each simulated complex contained

one extra mutation compared to the previous one. So the first simulated-complex

had a single mismatched residue to the Hxb2 sequence, the second simulated-

complex had two mismatched residues, and the thirteenth complex had thirteen

mismatched residues. By creating a table containing the mutations within each

sequence located in the database, an SQL query can be created that outputs

the PDB identifiers associated with sequences containing N number of mutations

that also have experimentally-determined biochemical data in the database. This

will be described in more detail in Section 3.3.

• Synonyms. As described above in the Binding EIA table, the purpose of this

table was to contain the synonyms for each of the complexed ligands in data

attained from both PDB and The Binding Database depositories. The fields of

this table are Ligand and Synonym. The Ligand field contains the ‘common’

name for the ligand, for example indivavir, saquinavir or ritonavir. The Synonym

field contains alternative nomenclatures. Each entry in this table corresponds to

a single synonym, so ligands have multiple entries determined by the number of

different synonyms used. This table was used primarily through the Perl scripts

written to automate population of the database.

• Journals. This table contains the experimentally-derived biochemical data pub-

lished in journals rather than archived in online depositories. This table is less

populated than the other tables due to the manual task of data acquisition and

entry, compared to the automated process for the other tables. This table has

the fields Sequence Id, Ligand, Data and Reference. The Sequence Id and Ligand

fields functions the same as in the other biochemical-data tables, while the Data

field contains the published data for that protease-ligand complex. Due to the

various different ways in which authors publish their results (fold changes from

Hxb2, fold changes from their designated wild-type, Ki values, EC/IC50/95 values,

or ∆G values) this field is not uniform; the populated data is the same as the
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published data.

The collated data populating this database was substantial enough that manual entry

was unfeasible; at the time of database creation there were approximately 230 HIV

protease structures in the Protein Data Bank, approximately 100 HIV protease-ligand

complexes analysed by Isothermal Titration Calorimetry in The Binding Database,

approximately 2,500 complexes analysed by Enzyme Inhibition Assay in The Bind-

ing Database, and data for approximately 50 protease-inhibitor complexes in journals.

Therefore Perl scripts were written to automate as much of the database population as

possible, and to ease subsequent population when additional data is made available. A

description of the Perl files is given below:

• pdb data extractor.pl was written to extract the important information from

PDB files and write it to a text file in a standardised output, as shown in Fig-

ure 3.2. The reason for writing to a text file instead of immediately populating

the database is so that the data can be manually checked for any irregular data;

due to the non-standardised entry of data in PDB files, authors do not use the

same field tags for information.

Before the script could be run, a directory containing all the HIV protease PDB

files was manually created by downloading each file from the online depository.

Once done, the Perl script iterates over each file in the directory, and for each one

it performs a regular expression pattern match to pull out the lines containing

the PDB identifier, the ligand’s name, the sequence and the resolution. The lines

are split to extract the relevant information, which is then outputted to a text

file and delimited by tabs. Before the ligand name is outputted to the text file, it

is compared to the Synonyms field of the Synonyms table in the database with

the following SQL query:

SELECT Ligand FROM Synonyms WHERE Synonyms=‘$extracted ligand name’

If a match is found, then the ligand name pulled from the database is entered

into the text file instead of that in the PDB file. This is to ease analysis of the

database when all data associated with a particular ligand is required; by creat-
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Figure 3.2: Flow diagram showing how the Perl scripts are involved in the population
of the local database. A directory containing all the raw HIV protease PDB files is
analysed by the pdb data extractor.pl Perl script, which outputs a text file containing
tab-delimitated data to populate the local database. This text file is then analysed
by a second Perl script, sql pdb inserter.pl, which converts the tab-delimitated data
into the relevant SQL insert statements to populate the Sequence, Variation and
Structure PDB tables. A flow diagram showing the action of these scripts in more
detail is shown in Figures 3.3 and 3.4.

ing an SQL SELECT query to standardise the population of the database, the

SELECT queries required to extract the data from the database will be much

simpler.

Furthermore, before the sequence is added to the text file, it is converted to a

1-letter code in the Perl script. This is achieved by having a hash variable whose

keys are the 3-letter codes for each of the 20 amino acids, and whose values are

the 1-letter codes, as shown below:

%amino acids = (

‘Gly’ => ‘G’

‘Tyr’ => ‘Y’

... )

Using this hash variable, each 3-letter amino acid can be converted to its 1-letter

equivalent before being outputted to the text file. The actions of this script are
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Figure 3.3: Flowchart showing the sequential actions of the Perl script
pdb data extractor. This script requires as an input a directory containing raw PDB
files downloaded from the online PDB depository. It outputs a text file containing
the PDB identifier, the ligand, the sequence in 1-letter amino acid format, and the
resolution of the crystallographic data. These data are tab-delimited, with each line
comprising of data from a single PDB file. The context that this script operates in is
shown in Figure 3.2.

106



shown diagrammatically as a flow chart in Figure 3.3.

• sql pdb inserter.pl is the second Perl script written to populate the database

with data from the PDB files. It acts in concert with the pdb data extractor.pl

Perl script, which is described above (Figure 3.2).

The script takes as its input a text file containing tab-delimited data extracted

from multiple PDB files by the pdb data extractor.pl script. For each line in the

text file, this script splits the data and stores them into relevant variables so that

it can generate SQL INSERT statements with the data to populate the database.

This script also has a checking mechanism to ensure that data is not redundantly

being entered into the database. Once the script has split up the data in the

inputted text file, it generates the following SQL statement:

SELECT * FROM Structure PDB WHERE PDB Id=‘$pdb id’

This checks to see if the PDB identifier is already in the database. If a match

is found, then the data in that line is disregarded because the PDB identifier

is unique and so the associated data must already be present in the database.

If no match is found then the sequence is compared to the Sequence field of the

Sequence table, using the following statement, to determine whether it is a novel

sequence:

SELECT Sequence Id FROM Sequence WHERE Sequence=‘$sequence’

If a match is revealed, then the Sequence Id value is extracted and used with the

remaining data to generate an SQL INSERT statement to enter the data into the

Structure PDB table of the database.

INSERT INTO Structure PDB (Sequence Id, PDB Id, Ligand, Resolution)

VALUES (‘$seq id’, ‘$pdb id’, ‘$ligand’, ‘$resolution’)

If no Sequence Id match is found then the sequence is not already present in the

database. Therefore the sequence is added as a novel sequence with a unique
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identifier, using a simple INSERT statement similar to those given above. In

addition, the sequence’s mutations with respect to the experimental consensus

sequence (Hxb2) are determined. This is achieved by hard-coding the Hxb2

sequence into the Perl script and then dissociating the inputted sequence into

individual amino acids. Each amino acid in turn is compared to the associated

amino acid of the consensus sequence, and if they differ then the consensus amino

acid, position in sequence, and mutated amino acid are added to the database

with the following statement:

INSERT INTO Variation (Sequence Id, Consensus, Position, Mutation)

VALUES (‘$seq id’, ‘$consensus’, ‘$position’, ‘$mutation’)

Once entered, the script moves onto the next amino acid and carries on checking.

Any subsequent mutations are added to the database in the same way, such that

N rows in the table are inserted corresponding to the N mutations to Hxb2; each

row has the Sequence Id attribute either extracted from the Sequence table or

generated upon sequence insertion to the table to associate it to the particular

sequence. The actions of this scripts are shown diagrammatically in a flowchart

in Figure 3.4.

• sql itc inserter.pl was written to populate the database with the Isothermal

Titration Calorimetry data from The Binding Database online depository. The

curators of this database were kind enough to provide a raw dump of their data

on HIV protease, both from EIA and ITC experimental methods. This acted

as the starting input for both this Perl script, and the sql eia inserter.pl script

described below. Figure 3.5 shows how these two scripts act together to populate

the database with The Binding Database data, and which tables in the local

database are populated.

As can be seen in Figure 3.5, the sql itc inserter.pl Perl script is a semi-automative

script that requires user-input to populate the database. The user is given a choice

of the manner in which to populate the database; either automatically through

a file, or through script-directed manual entry. The reason for this is because

The Binding Database has no unique identifier that distinguishes experimental
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Figure 3.4: Flowchart showing sequential actions of the Perl script sql pdb inserter.
The script takes as its input the tab-delimited text file outputted by pdb data extractor
and checks whether the data is already present in the database. If not, it checks
whether the sequence is novel, and either extracts the associated Sequence Id value or
generates one depending on the outcome. The remaining data is then inserted into the
Structure PDB table along with the Sequence Id. A novel sequence is also compared
against Hxb2 consensus sequence and the nature and position of each mutation inserted
into the Variation table.
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Figure 3.5: Flowchart showing how the data from The Binding Database populates
the local database. The curators of TheBindingDb kindly gave us a file containing a
dump of their HIV protease EIA and ITC data. The two Perl scripts sql itc inserter
and sql eia inserter work in tandem to populate the Binding ITC and Binding EIA
tables respectively. Any novel sequences are added to the Sequence table, and their
mutations with respect to Hxb2 added to the Variation table. Individual entries can
also be added to the necessary table through the script-directed manual-entry option
of the associated script.
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data from each other. Therefore it is not possible to determine whether two very

similar entries are actually the same entry or two different entries that reinforce

each other. As a result, the Perl script was written so that on initial population

of the local database with the dump file, the user chooses the location of the

file and the program automatically inserts the data into the database. Then on

subsequent updates of the database, the user can choose to manually insert the

data if there is only one or two entries to be added, or to automatically upload

from a file if there are multiple entries to be added and they are sure that there

are no duplicate entries. Figure 3.6 shows the actions of this script in more de-

tail. The Binding Database data is dealt with by the script by the same method

as sql pdb inserter : the sequence is extracted and compared against those in the

Sequence table. If a match is found then the sequence’s Sequence Id is extracted

from the database and combined with the ligand name, pH, temperature, Ki and

IC50 data to update the Binding ITC table as an SQL INSERT statement. If

a match is not found for the sequence, then it is added to the Sequence table

and its mutations with respect to Hxb2 added to the Variation table; the Se-

quence Id given to the sequence is extracted and combined with the rest of the

data as before.

When the Perl script is run, it first displays a simple command-line menu ask-

ing the user whether they want to enter data from a file or manually. If they

choose to enter it manually then the program asks the user to enter the data with

prompts. For example, it will ask for the ligand name and pauses until the user

has entered it. Once the user enters it on the command line then it asks for the

pH and pauses again, and so on. If nothing is entered, the script confirms that

there is no data associated with that field and then proceeds without updating

the associated variable. The SQL INSERT statement generated does not then

contain the column or variable, and so the field in the table is left empty. The

automatic method also performs these actions if there is a missing value in the

file. This happens, for example, with Ki and IC50 values - usually either one or

the other is given, leaving the other field empty.
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Figure 3.6: Flowchart showing the sequential actions of the Perl script itc sql inserter.
The script takes as its input a file containing The Binding Database ITC information,
which the script sorts and outputs to the associated field in the Binding ITC table
or, for the protease sequence, the Sequence and Variation tables. Novel sequences
are treated in the same way as the sql pdb inserter Perl script. As the script has no
mechanism by which to check if the inputted information is already present in the
database, the script also allows for script-prompted manual entry of additional data.
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• sql eia inserter.pl is almost exactly the same Perl script as sql itc inserter. The

only differences are that it extracts the Enzyme Inhibition Assay data from The

Binding Database’s dump file rather than the ITC data. The data in the dump file

was organised such that the first line just had ‘EIA’. Following this was the data

attained through EIA methods, which made up the majority of the file. Then

there was a line with ‘ITC’ and following this was the data attained through ITC

methods. Therefore the script only evaluated the lines between the lines ‘EIA’

and ‘ITC’, whilst the sql itc inserter script evaluated from ‘ITC’ to the end of

the file. The second difference between these scripts, highlighted in Figure 3.5, is

the tables in the database that the script outputted to. Instead of the populating

the Binding ITC table, the script generates SQL INSERT queries to populate

the Binding EIA table. The fields in these two tables are identical, so the

script follows the same sequential actions as that shown in Figure 3.6, the only

difference between these two scripts is that at the final box in the flowchart, the

data is entered into the Binding EIA table.

3.3 Extracting data from the local relational database

Having created a local depository containing both biochemical and crystallographic

data on HIV protease, granting the ability to relate the biochemical data to the asso-

ciated sequences of the crystallographic data, a series of Perl scripts were written to

actualise this association. The reason for this is that although the biochemical and

structural data are linked through the Sequence Id field, SQL statements are still re-

quired to extract the related data. Therefore, Perl scripts were written to automate

this extraction within user-defined parameters. For example, one of the Perl scripts

will extract from the database, and display on the command-line, all of the associated

biochemical data for the PDB identifier entered by the user. A detailed description of

each of the Perl scripts is given below:

• biochem data extractor.pl was written to extract all of the biochemical data

associated with the protease sequence of a PDB file. The reason for this is that

molecular dynamics simulations use the atomic coordinates of a PDB file as the

starting configuration, and so in order to compare the binding affinities calcu-
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lated from the output of the simulation, this script will extract the corresponding

experimental data that can be converted into an appropriate comparable value.

When the script is run, it asks the user to input the PDB identifier they would

like associative data for. The script then checks that the PDB identifier is present

in the database, and if so it extracts the corresponding Sequence Id. This is then

used in the following SQL SELECT statement:

SELECT * FROM Binding EIA

WHERE Binding EIA.Sequence Id = $seq id

AND Structure PDB.Sequence Id = $seq id

AND Binding EIA.Ligand = Structure PDB.Ligand

where $seq id is the Perl variable containing the database’s internal sequence

identifier for the PDB file in question. This SQL statement extracts all the

fields from the elements in the Binding EIA table matching the Sequence Id

and containing the same inhibitor. This statement is then repeated for both the

Binding ITC and the Journals tables to extract all the biochemical data asso-

ciated with the same sequence-ligand pairing. The script then prints the output

of all three statements to the screen, or to a file if the user specifies a filename on

the command-line.

The reason for restricting the extracted biochemical data to inhibitors match-

ing that in the PDB file is because kinetic data from other inhibitors is not

comparable to the kinetic data calculated from the protease-inhibitor complex

in the MD simulation. The caveat to this is that the SQL statement formed by

the script requires the ligand names to be identical in both tables; although the

database-populating scripts have a measure of standardisation with respect to

ligand name entry, some synonyms may still not be recognised, or may be mis-

spelled. Therefore the user can choose to relieve this restriction, and so output

all biochemical data associated with the Sequence Id, through an option when

running the script.

• mutation data extractor.pl was written to extract all the associated biochem-
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ical data for a sequence N number of mutations away from a crystal structure.

The reason for writing this Perl script was because although the PDB crystal

structures provides a starting configuration for the MD simulations, there are too

few distinct PDB sequences to cover the range of protease sequences observed

clinically. Therefore it is necessary to computationally mutate a sequence away

from the crystal structure prior to simulation and so this script allows the user

to ascertain the validity of computationally-mutated MD simulations.

The script has two command-line arguments - the number of mutations from

the baseline sequence, which is mandatory; and a PDB file identifier, which is

optional. When the script is run, it first checks that the mandatory number of

mutations has been given on the command-line. Once confirmed, it forms the

following SQL SELECT statement:

SELECT * FROM Variation

GROUPBY Sequence Id

HAVING COUNT(Sequence Id) = $num

where $num is the Perl variable containing the number of mutations from the

baseline sequence specified by the user. This statement extract all the elements

from the Variables table that contain N number of rows with a specific Se-

quence Id value. For example, in the database the sequence associated with the

identifier Sequence Id=26 has two mutations with respect to Hxb2: I3V and

N37S. Therefore the Variables table has two rows relating to this Sequence Id,

both of which would be extracted by the SQL statement if the user specifies two

mutations when invoking the script. Any other sequences containing two rows in

the Variation table would also be extracted, and outputted to either the screen

or to a file if the user specifies so on the command-line. The nature of the muta-

tions is also outputted along with the Sequence Id, so an example output, if the

user specified 4 mutations when invoking the script, would look like:

Sequence 12: I3V N37S G48V L90M

Sequence 47: I3V L10I N37S L90M
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However, in addition to extracting the sequences with N numbers of mutations

from the Hxb2 consensus sequence, it is also important to extract the sequences

with N numbers of mutations from a crystal structure. For this reason the script

takes a second optional command-line argument specifying the PDB identifier

whose sequence is to act as the template sequence from which the number of mu-

tations will be determined. If the second argument is given, the script forms the

following SQL query to check that the PDB identifier is present in the database:

SELECT Sequence Id FROM Structure PDB WHERE PDB Id = ‘$pdb code’

where $pdb code is the Perl variable containing the user-inputted PDB identifier.

If the query returns no results then the script requests another identifier and

repeats the query. If a result is returned, then the script takes the outputted Se-

quence Id value and forms another SQL query to extract the sequence’s mutations

from the Variation table:

SELECT * FROM Variation WHERE Sequence Id = $seq id

where $seq id is Perl variable containing the sequence identifier extracted from

the previous SQL statement. The script stores each of the sequence’s mutations

from Hxb2 in an array. Then it forms the following SQL query to pull out all the

Sequence Id values present in the Variation table:

SELECT DISTINCT Sequence Id FROM Variation

With the range of sequences stored in an array, the script iterates over each stored

sequence in turn and extracts the mutations associated with it. These mutations

are then compared against those in the PDB’s sequence; if two opposite mutations

are found (e.g. I3V in the PDB sequence, and V3I in sequence X ) then these are

cancelled out so that sequence X ’s number of mutations from the PDB sequence

is one less than from Hxb2. If the PDB’s mutations are not present within

sequence X, then they are added such that sequence X ’s mutations from the

PDB’s sequence is N more than from Hxb2, where N is the number of mutations

from Hxb2 in the PDB’s sequence. The resultant mutations are then stored as
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a value in a hash table as a concatenated string (e.g. I3V,N37S,L90M) with the

Sequence Id as its key. The number of mutations from the PDB’s sequence is

then entered into a second hash table, with the Sequence Id as the key:

%mutations pdb = (

1 => 4

2 => 15

... )

The script then compares the value in each of the elements in this second hash

table against the mandatory user-determined number of mutations. If there is a

match, then the script prints to the screen, or to a file of the user’s specifications,

the Sequence Id associated with the match, along with the sequence’s string of

mutations extracted from the first hash table. Figure 3.7 shows the actions of

this script as a flow diagram.

This collection of scripts, both for database population and data extraction, was de-

veloped over the course of the research in response to the needs of the current line of

research.

3.4 Conclusions

There are presently no resources that collate together the structural data of proteins

archived in depositories such as the Protein Data Bank, and experimental biochem-

ical data on protein-ligand interactions archived in depositories such as the Binding

Database. The local database described in this chapter was specifically designed to

automate the retrieval of published structural and phenotypic data associated with

a genotype-of-interest, with the aim of using the structural data to run molecular

dynamics simulations and generate a biochemical value comparable to that in the

database. This approach of associating phenotypic data, such as biochemical data,

to high-throughput data, such as genotypic sequences, will become more necessary

as advances in genome sequencing technology allow the characterisation of host and

pathogen genetic variants at unprecedented levels [6, 119]. However, there is no stan-

dard measure for phenotypic assays; different assays give different measurements. For
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Figure 3.7: Flowchart showing the sequential actions of the Perl script muta-
tion data extractor. The script takes as its input two arguments: a mandatory number
of mutations, and an optional PDB identifier. If only the mandatory argument is given,
the script extracts from the database all the Sequence Id values of sequences with N
mutations from the Hxb2 consensus sequence, and these sequences’ associated muta-
tions. If the optional PDB identifier is given, the script extracts all the Sequence Id
values of sequences with N mutations from the PDB’s sequence, and these sequences’
associated mutations.
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example, drug resistance phenotype assays can result in measurements of IC50, Ki or

fold-change from a baseline sequence. While they all ultimately result in a measure-

ment of the protein’s sensitivity to a drug, these values cannot be directly compared

against the ∆G value outputted by an MD simulation. The solution implemented in

this research was to retain the measurements of the different biochemical assays in the

local database, and convert them to ∆G values comparable to computational results

when necessary.

The scripts written and implemented to ease population of the database and extrac-

tion of data result in a semi-automative method of maintaining and updating the

local database. However, due to the non-standardisation of online depository data-

formatting, it has not been possible to fully-automate this procedure. The manual

proof-checking necessary for certain aspects of database population limits the scalabil-

ity of the database. Expansion to include high-throughput data will require a standard

nomenclature to be adopted and adhered to. Nevertheless, the database makes an

important bridge between the computational assays which are playing more of a role

in the post-genomic era, the experimental biochemical assays which are currently the

gold-standard reference, and the structural data required to link the two.
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Chapter 4

Structural comparison of

proteases

4.1 Introduction

Currently, qualitative insights into proteins, such as HIV protease, are made through

inferences from static structures attained from x-ray crystallography or NMR spec-

troscopy [109, 112]. For example, a study of 8 high-resolution crystal structures by Tie

et al. (2005) proposed that two HIV-1 protease mutations V82A and I84V resulted in

fewer van der Waals contacts and hydrogen bonds between the protease and clinical

inhibitors, causing a reduced affinity between the two [112]. However, the stringent

experimental conditions required to pack the HIV protease molecules into an ordered

crystal complex may require the protein to adopt a unnatural configuration, which is

unsuitable to make kinetic and dynamic structural inferences from. Mutations that

confer reduced drug-sensitivity in vivo may not show altered phenotypes in a crystal

structure because they either manifest in a protein’s ‘natural’ configuration which is

not conducive for crystallisation, or because they alter the dynamics between the en-

zyme and its inhibitor which will not be apparent in a static structure. For example,

a molecular dynamics study carried out by Perryman et al. (2003) suggested a mech-

anism by which the V82F/I84V mutations contribute to drug resistance. Simulations

over 22ns showed that the mutant’s flaps were more flexible than the wild-type’s, and

spent a greater proportion of its time in a semi-open configuration. As a result, in-
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hibitor binding would demand a greater enthalpic penalty in order to close the flaps.

Therefore dynamic characterisation of proteins through computational methods such

as molecular dynamics should usefully be applied as a novel analytical technique for

the study of HIV drug resistance.

4.2 Comparison of static and dynamic structures

Research was initially concentrated on validating molecular dynamics as an analytical

addition to x-ray crystallography and NMR spectroscopy by investigating whether two

structurally-similar HIV-1 protease PDB structures would be shown to structurally-

diverge into unique quaternary structures in a molecular dynamics simulation. The

reasoning behind this is that the non-physiological conditions placed upon the pro-

tease enzyme during the crystallisation process combined with the restrictive number

of crystallisable conformations able to be adopted by the protease would mean that

two structurally-homologous crystallised HIV-1 protease enzymes would structurally-

diverge through conformational relaxation in molecular dynamics.

Two HIV-1 protease structures (PDB identifiers 1HXB and 1BDQ) were extracted

from the local database. These structures were chosen due to the large number of

differences between their genotypes; 1HXB contained two mutations from the Hxb2 ex-

perimental consensus sequence, 1BDQ contained nine differences from Hxb2 consensus,

and together 1HXB and 1BDQ were dissimilar at 10 amino acid positions (Table 4.1).

Table 4.1: Nature of 1HXB and 1BDQ’s mutations with respect to Hxb2 consensus

PDB Mutations from Hxb2a

1HXB I3V N37S
1BDQ T31S V32I L33V E34A E35G M36I N37E I47V V82I

a Mutations presented as ‘consensus’-residue-‘mutation’, e.g. I3V is isoleucine in Hxb2
at residue 3 mutated to a valine.

The reasoning behind selecting two structures with a large number of mutated residues

between the two is that conclusions are made on static structures of multidrug-resistant
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HIV protease enzymes as to how the mutations causes their effects on inhibitor-binding.

Showing that two structures, with many mutations between the two, diverge into sepa-

rate quaternary structures with little resemblance to the original crystal structure will

highlight the potential for inappropriate conclusion of inferring the molecular basis of

drug-resistance from a single crystal structure.

The two crystal structures were structurally-compared through profile RMSD (Sec-

tion 2.2.1) of their Cα backbone atoms, providing an indication of the similarity of the

proteins’ quaternary structures (Figure 4.1). These RMSD graphs cover both monomers

of the homodimer, with the first monomer covering residues 1 to 99 on the X-axis, and

the second monomer covering residues 100 to 198. It can be seen that with the excep-

tion of residues 30-50, and the corresponding residues 130-150 of the second monomer,

the RMSD between the two structures’ backbone Cα atoms ranges between 0.1 and

0.7Å. These values are small, and show that the two structures have almost exactly the

same quaternary structure. This was expected with both 1HXB and 1BDQ adopting

the same hexagonal P 61 space group symmetry, and therefore a similar configuration

during crystallisation.

122



R
M

S
D

 v
a
lu

e
s
 b

e
tw

e
e
n

 c
o

m
p

le
m

e
n

ta
r
y
 r

e
s
id

u
e
s
 i
n

 P
D

B
 s

tr
u

c
tu

r
e
s
 

1
H

x
b

 a
n

d
 1

B
d

q

0

0
.51

1
.52

1
1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1
1
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
8
1
1
9
1

R
e
s
id

u
e

RMSD

F
ig

ur
e

4.
1:

P
ro

fil
e

R
M

SD
co

m
pa

ri
so

n
be

tw
ee

n
th

e
C
α

ba
ck

bo
ne

at
om

s
in

th
e

cr
ys

ta
ls

tr
uc

tu
re

s
of

1H
X

B
an

d
1B

D
Q

.W
it

h
th

e
ex

ce
pt

io
n

of
re

si
du

es
30

-5
0

an
d

13
0-

15
0,

th
e

R
M

SD
be

tw
ee

n
co

rr
es

po
nd

in
g

ba
ck

bo
ne

at
om

s
is
∼

0.
5Å
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The RMSD peaks between residues 30-50 and 130-150 correspond to the flaps and

flap elbow regions of the protease structure . These regions are known to be flexible

[33, 34, 99], and in addition 8 of the 10 mutations between the two structures were

located in this region, with resultant alterations in the structures (Figure 4.2). The

backbone regions shown in red and orange represent residues 30 to 50 in each monomer

for 1HXB and 1BDQ respectively. The small deviations in the two backbone structures

are particularly apparent in comparison to the rest of the structure, where the two

backbones superimpose almost perfectly. These two structures were then used as the

Figure 4.2: Superimposed crystal structures of 1HXB and 1BDQ. The backbone atoms
and bonds are shown in dark-blue for 1HXB and light-blue for 1BDQ. Residues 30
to 50 in both monomers of each structure are shown in red for 1HXB and orange for
1BDQ, representing the regions of higher RMSD in Figure 4.1. The overall quaternary
structure of 1HXB is shown in grey. Figure was created using VMD.

starting configurations for the molecular dynamics simulations. The protocol followed

was similar to that described in Section 2.1.2: the protease molecule was placed in a

neutralised 10Å water box and minimised through the conjugate gradient minimisation

algorithm for 4 picoseconds. Following this, a force constraint of 25 kcal/mol/Å2 was

placed on all non-hydrogen protein atoms and the system simulated for 50 picoseconds

while the temperature was increased from 50 Kelvin to 300 Kelvin. This allowed the
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water in the surrounding water box to expand and fully solvate the protein. The tem-

perature was increased slowly over this time to ensure that any kinetic energy added

to the system was allowed to dissipate through the system. This ensured that the

protein did not gain too much energy to adopt an unnatural configuration or unfold.

Once solvated and heated, the constraints on the protein were lifted in 5 kcal/mol/Å2

increments every 10 picoseconds for 50 picoseconds. Again, this was done to ensure

that the sudden removal of constraint forces doesn’t give the system enough freedom

to adopt an unnatural configuration. The system was then simulated for a further 240

picoseconds for data collection.

The change in global RMSD with respect to the crystal structure were determined for

1BDQ and 1HXB (Figures 4.3 and 4.4 respectively). The global RMSD was calculated

for each outputted configuration by superposition and comparison to the initial crystal

structure’s backbone. Instead of outputting a value for each residue’s Cα atom, the sum

across the whole backbone was calculated and then divided by the number of residues to

generate an average RMSD across the whole protein. This acted as an indicator for the

similarity of the two proteins as a whole. The results show that once the proteins were

fully-relieved of the constraints placed upon them, they rapidly relaxed away from their

constrained configuration to a configuration that they stably flexed around. For 1BDQ,

relaxation took approximately 20 picoseconds, whence the gradient-plateau of global

RMSD with respect to 1BDQ crystal structure showed that it finds a stable configura-

tion, averaging 1Å away from the crystal structure, around which the natural thermal

vibrations, side-chain rotations, and natural quaternary structure motions caused small

∼ 0.1Å deviations, as indicated by the high-frequency oscillations. For 1HXB the relax-

ation time was approximately 40 picoseconds. However, although the gradient of change

in RMSD became markedly less steep at this timepoint, the data showed that there

was still a slight drift from ∼ 0.8Å global RMSD at 140 picoseconds to ∼ 1.0Å at 340

picoseconds. The simulation was therefore extended to 700 picoseconds to determine

whether the drift in global RMSD was significant or whether it was a low-frequency

natural movement that would indicate that the protease had relaxed into stable con-

figuration. The results, shown in Figure 4.4, show that the system remains stable until

approximately 450 picoseconds, when large-scale motions of the protease cause 0.4Å
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deviations for 150 picoseconds, before settling again at ∼ 1.1Å. Visual inspection of

the protease through VMD showed that this sudden change in RMSD was caused by

a small rotation in the backbone of the flaps region that resulted in subsequent flaps

residues becoming misaligned which affected the average RMSD value. This suggested

that the 1HXB system had relaxed by 140 picoseconds, so the outputted structures

of 1HXB and 1BDQ at the 340 picoseconds time-point were compared through profile

RMSD to determine whether the structures had diverged (Figure 4.5).

After 340 picoseconds, the proteases were much less ordered than their crystal struc-

tures, with different regions of the proteases showing different levels of similarity (Fig-

ure 4.6). It is also noticeable that the first monomer of each protease was significantly

less similar than the second monomer, and the two monomers did not mirror each

other. Therefore, although the monomers in the homodimeric protease were genotypi-

cally identical, random thermal fluctuations resulted in the two monomers fluctuating

independently of each other. This is in contrast to the crystal structures which showed

similar trends of similarity in each monomer; the peaks of deviation between the struc-

tures occured at residues 30-50 of both monomers, with surrounding residues being

significantly similar, particularly towards the C-terminus (residues 80-99). The peaks

of least similarity between 1HXB and 1BDQ at 340 picoseconds are between residues

32-50; 64; 92-104; and 164, with the rest of the dimer fluctuating between 1.0Å differ-

ence and 2.5Å. Figure 4.7 shows the locations of the residues with > 3.0Å RMSD, and,

as can be seen, these regions are all superficial on the protease, where the residues have

more freedom to move around. Comparing this figure to Figure 4.2, the reduction in

superposition of the backbones is noticeable through the structures.
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Figure 4.7: Superimposed structures of 1HXB and 1BDQ after 340ps of simulation. The
backbone atoms and bonds are shown in dark-blue for 1HXB and light-blue for 1BDQ.
Residues 32 to 50, 64, 92 to 104 and 164 are shown in red for 1HXB and orange for
1BDQ, representing the Cα residues that had an RMSD > 3.0Å. The overall quaternary
structure of 1HXB is shown in grey. Figure was created using VMD.

With the exception of residues 140, 141 and 142, the simulated proteases have structurally-

diverged away from their crystal structures, and away from each other (Figure 4.6).

These three residues that appear more structurally-converged are located on the flap

elbow of the second monomer, where they would be expected to have high flexibility

due to their location on the extremity of the protease with their side-chains point-

ing out into the solvent. Combined with the fact that the immediately-surrounding

residues show considerable divergence between proteases, these results suggest that the

convergence of these individual residues is not an indication of similarity between the

two when taken in the context of the tertiary structure in the cantilever region, but

rather that this flexible region in the structures happened to overlap at this particular

point in time when superimposed.

It can be seen from the fluctuations in Figures 4.4 and 4.3 that the protease structures

are dynamic, with each fluctuating by up to 0.4Å around its average relaxed structure.

It could therefore be argued that considering the similarity of two single structures at a

single time-point in the simulation is not sufficient to conclude that the two structures

have diverged; it could be argued that both 1HXB and 1BDQ diverged away from their
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similar crystal structures to a common structure with a global RMSD of ∼ 1.0Å away

from starting structures, about which the two proteases fluctuate out-of-phase, giving

the impression of different structures at a single point in time. Therefore, analysis of

the simulations’ structures was extended to include this dynamic nature; each snapshot

of the 140 picoseconds between 220ps and 340ps of 1HXB’s simulation was compared

to each snapshot of the same timeframe in 1BDQ’s simulation through global RMSD

analysis. This covers the spread of configurations that each protease samples and will

remove the effect of out-of-phase sampling where the two structures are sampling the

same range of configurations at the same frequency but at different time-points. In

addition, in order to get a more detailed indication of the configurational fluctuations

of a protease, each snapshot between 200ps and 340ps was compared against all other

snapshots in the same protease’s simulation through global RMSD. This intra-protease

simulation analysis acts as a ‘background’ fluctuation by which to compare the inter-

protease fluctuations; if all three analyses (1HXB vs. 1HXB, 1BDQ vs. 1BDQ and

1HXB vs. 1BDQ) show similar ranges and means of RMSD values, then it can be

concluded that they sample the same configurations. Conversely, if the inter-protease

RMSD values are significantly higher than the intra-protease RMSD values, then it

can be said that they have structurally-diverged. Three matrices were generated with

notation as shown in Equation 4.1:

Am,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 (4.1)

where m is the number of analysed snapshots in one simulation; n is the number of

analysed snapshots in the second simulation; ai,j is the global RMSD value of the ith

snapshot of the first simulation superimposed to the jth snapshot of the second sim-

ulation. For example, in the 1HXB vs. 1BDQ matrix, position a120,110 is the global

RMSD value between 1HXB’s 120th snapshot (at time-point 340ps) and 1BDQ’s 110th

snapshot (at time-point 330ps). In the intra-protease matrices, the values down the

main diagonal (entries ai,j where i = j) all equal 0 because the protease’s snapshot is

being compared against itself. These values were therefore not considered when eval-
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uating the matrices because they would skew any statistical consideration of the set

of values. For each matrix, the frequency distribution of RMSD values was generated

with 0.05Å intervals (Figure 4.8, together with summary statistics (Table 4.2).

Table 4.2: Statistics of the inter- and intra-protease RMSD matrices

Statistics Inter- & intra-protease RMSD (Å)
1HXB vs. 1BDQ 1HXB vs. 1HXB 1BDQ vs. 1BDQ

Range 0.90 - 1.53 0.43 - 1.22 0.45 - 1.17
Mean 1.21 0.83 0.81
Modea 1.25 0.85 0.85

STDEVb 0.09 0.13 0.11

a Most populous interval used in the generation of the frequency distribution.
b is the standard deviation.

The results show that upon configurational relaxation, structures 1HXB and 1BDQ

diverge into discrete configurations whose quaternary structures differ by an average

of 1.21Å(Figure 4.8). Upon relaxation, each protease configurationally flexes around

an average structure, as shown by the small variations in ∆RMSD in Figures 4.4 and

4.3 and also by the normal distribution of RMSD frequencies (Figure 4.8). These

conformational fluctuations experienced by each protease are similar in magnitude,

with a similar range of RMSD distribution (Figure 4.8 and Table 4.2). However, 1BDQ

shows a smaller standard deviation around its mean, about which a higher proportion

of the snapshots in its simulation adopt. 1HXB, meanwhile, has a similar mean RMSD

frequency but has a more diffuse normal distribution about this mean, with a higher

proportion of snapshots > 0.90Å apart. This indicates that 1BDQ spends more of its

time around a particular configuration while 1HXB tends to sample other configurations

more frequently.

133



F
ig

ur
e

4.
8:

Fr
eq

ue
nc

y
di

st
ri

bu
ti

on
s

of
gl

ob
al

R
M

SD
va

lu
es

fo
r

in
tr

a-
an

d
in

te
r-

pr
ot

ea
se

co
m

pa
ri

so
ns

.
T

he
da

ta
us

ed
to

ge
ne

ra
te

th
e

fr
eq

ue
nc

y
di

st
ri

bu
ti

on
s

ca
m

e
fr

om
th

e
R

M
SD

va
lu

es
co

nt
ai

ne
d

in
th

e
m

at
ri

ce
s

de
sc

ri
be

d
in

E
qu

at
io

n
4.

1.
T

he
gr

ap
h

sh
ow

s
th

at
th

e
st

ru
ct

ur
al

di
ffe

re
nc

es
ob

se
rv

ed
be

tw
ee

n
1H

X
B

an
d

1B
D

Q
ar

e
du

e
to

th
e

pr
ot

ei
ns

sa
m

pl
in

g
di

ffe
re

nt
co

nfi
gu

ra
ti

on
s,

an
d

th
at

th
e

ra
ng

e
of

co
nf

or
m

at
io

na
l

flu
ct

ua
ti

on
is

si
m

ila
r

fo
r

ea
ch

pr
ot

ei
n.

134



The results also show that the configurations adopted by each protease do not overlap,

as the RMSD values between the two proteases range from 0.90Å to 1.53Å (Figure 4.8).

This indicates that upon relaxation to the configuration about which they fluctuate,

the proteases adopt a distinct range of configurations that never comes within 0.9Å

of each other. This strongly suggests that the homologous structures adopted by two

genotypically-variable proteases upon crystallisation relax into morphologically-distinct

structures upon equilibration and subsequent simulation. This could have a significant

impact on predicting how drug-resistance mutations cause their effect in genotypically-

diverse, but crystallographically-similar, structures.

4.3 Further comparison of simulated structures

To ensure that the results observed between 1HXB and 1BDQ were not unique to the

systems chosen, and that they are reproducible, the study was repeated by comparing

1HXB and 1A8G in the same manner. 1A8G was chosen because it is genotypically

identical to the Hxb2 sequence, giving it two mutations from the 1HXB structure: V3I

and S37N, putting it intermediate between 1HXB and 1BDQ.

As with the other two systems, the ligand was removed from 1A8G’s structure so that

the system was simulated as an ‘apo-protein’. The same minimisation and equilibra-

tion protocol was followed as previously described for 1HXB and 1BDQ, and following

this the system was simulated for 340ps for data collection. The final 120 picoseconds,

between 220ps and 340ps was structurally analysed through global RMSD with respect

to its crystal structure, which showed a rapid ∆RMSD away from the crystal structure

upon constraint-removal, which reached a plateau at 1.0Å and fluctuated around this

structure. Following this, the matrix shown in Equation 4.1 was generated between

the same 120 snapshots of 1HXB, and the 120 snapshots between 220ps and 340ps for

1HXB, giving a frequency distribution graph (Figure 4.9).

135



0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

0
.0

0
0
.1

0
0
.2

0
0
.3

0
0
.4

0
0
.5

0
0
.6

0
0
.7

0
0
.8

0
0
.9

0
1
.0

0
1
.1

0
1
.2

0
1
.3

0
1
.4

0
1
.5

0

R
M

S
D

 (
A

n
g

)

Number of occurences

1
H

x
b
 v

s
. 

1
H

x
b

1
B
d
q
 v

s
. 

1
B
d
q

1
H

x
b
 v

s
. 

1
B
d
q

1
A
8
g
 v

s
. 

1
A
8
g

1
H

x
b
 v

s
. 

1
A
8
g

F
ig

ur
e

4.
9:

Fr
eq

ue
nc

y
di

st
ri

bu
ti

on
s

of
in

tr
a-

an
d

in
te

r-
pr

ot
ea

se
gl

ob
al

R
M

SD
va

lu
es

fo
r

1H
X

B
,

1B
D

Q
an

d
1A

8G
.

T
he

da
ta

us
ed

to
ge

ne
ra

te
th

e
fr

eq
ue

nc
y

di
st

ri
bu

ti
on

s
ca

m
e

fr
om

th
e

R
M

SD
va

lu
es

co
nt

ai
ne

d
in

th
e

m
at

ri
ce

s
de

sc
ri

be
d

in
E

qu
at

io
n

4.
1.

T
he

gr
ap

h
sh

ow
s

th
at

th
e

1H
X

B
-1

A
8G

in
te

r-
pr

ot
ea

se
R

M
SD

va
lu

es
co

nc
ur

w
it

h
th

e
1H

X
B

-1
B

D
Q

in
te

r-
pr

ot
ea

se
re

su
lt

s,
an

d
th

e
1A

8G
in

tr
a-

pr
ot

ea
se

fr
eq

ue
nc

y
di

st
ri

bu
ti

on
co

nc
ur

s
w

it
h

th
e

ot
he

r
in

tr
a-

pr
ot

ea
se

di
st

ri
bu

ti
on

s.

136



These data show a continuation of the pattern seen between 1HXB and 1BDQ (Fig-

ure 4.9), with the intra-protease RMSD values forming normal distributions with similar

means but varying standard deviations, and the inter-protease RMSD values forming

positively-translated taller, tighter normal distributions (Table 4.3).

Table 4.3: Summary statistics of the frequency distributions of 1HXB-1A8G inter- and
1A8G-1A8G intra-protease matrices

Statistics Inter- & intra-protease RMSD (Å)
1HXB vs. 1A8G 1A8G vs. 1A8G

Range 0.85 - 1.55 0.44 - 1.10
Mean 1.18 0.82
Modea 1.15 0.90

STDEVb 0.10 0.11

a Most populous interval in the generation of the frequency distribution.
b is the standard deviation.

Comparing the summary statistics in Table 4.3 to Table 4.2, and the frequency distri-

butions in Figure 4.9 to Figure 4.8 it can be seen that the 1A8G results tie closely to

the 1HXB-1BDQ results, and therefore support the conclusions drawn from the 1HXB-

1BDQ analysis. Interestingly, the 1HXB-1A8G inter-protease distribution is slightly

translated towards the intra-protease distributions, with a mean value of 1.18Å com-

pared to 1.21Å for the 1HXB-1BDQ distribution. This could be because 1A8G has

less mutations than 1BDQ, which would suggest that the more mutations a protease

has from 1HXB, the further from 0Å the mean RMSD value between the two becomes.

It is important to note that the range of RMSD values between the 1HXB and 1A8G

are the same as for 1HXB and 1BDQ, but in the 1A8G comparison the distribution is

more negatively skewed.

4.4 Conclusions

The results in this chapter can be best described through the proteases’ potential en-

ergy surfaces, also called a hypersurface or a ‘configurational landscape’. The potential

energy of a protein is a function of its configuration, such that as atomic movements
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cause bonds to rotate and stretch, the potential energy of the protein changes. By

reducing the dimensionality of the protein’s configuration down to two functions, these

can be plotted on perpendicular axes. The potential energy of the configuration is

then plotted on the third perpendicular axis, creating a configurational landscape (Fig-

ure 4.10). This configurational landscape has peaks and troughs, where peaks indicate

higher-energy configurations, and troughs indicate lower-energy configurations. The

underlying thermodynamics dictate that proteins will adopt configurations that min-

imise its potential energy.

Figure 4.10: Hypothetical configurational energy-landscape. Parameters 1 and 2 on
the X- and Z-axes are a function of the protein’s configuration such that the posi-
tion on the X-Z plane is a function of the protein’s configuration. The configura-
tional plane is stretched in the Y-axis to represent the potential energy of the pro-
tein’s configuration. Troughs in the landscape indicate local configurations with min-
imum energy, the lowest of which is termed the global minimum. The arrows give
an example of hypothetical sampling locations of the simulated structures. Figure
adapted from a Scientific American image titled ”The Landscape” and downloaded
from <http://singularidad.wordpress.com/category/humanidades/filosofia/>.

If a fourth axis of time is added, then as time proceeds, the position of the protein will

tend towards local energy minima, about which they configurationally sample. In order

to go against the gradient and head towards the ‘peaks’, energy needs to be provided

to adopt the necessary configurations. This energy is provided in the form of thermal
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energy; the higher the thermal energy of the protein, the greater the probability of

adopting high energy configurations. This is important because it allows the protein

to reach other local minima in its configurational landscape. Results attained from in

vitro protein experiments such as ITC are averaged from approximately 1016 molecules

(for a 1.6ml protein solution at 30µM concentration [37]), therefore the entire range of

configurations available to the protease will be thoroughly represented. To accurately

replicate experimental data, the same range of conformations needs to be sampled com-

putationally.

However, 1HXB, 1A8G and 1BDQ do not share a common configurational landscape

as they do not share the exact same structure; each system contains atoms and bonds

not possessed by the other two systems, so therefore adopt configurations unattainable

by the other two. However, if the X-Z configurational plane is restricted to a function

of just the backbone atoms, then the results can be described across a shared configu-

rational landscape. While this loses configurational information of the side-chains, the

overall global quaternary structure is contained in the backbone, which is sufficient to

configurationally distinguish the proteases [92]. The crystal structures of the proteases

can be postulated to be located at or near the zenith of an energy peak (Figure 4.10).

The process of minimisation and equilibration allows the protease to relax into a con-

figuration with less potential energy, which would be reflected by a movement down the

peak. Due to the slight variations in the crystal structures combined with variation in-

troduced through the random assignment of thermal energy at the first timestep of the

molecular dynamics simulation, each protease is unlikely to take the same path down

the peak. This can lead to the proteases residing in different local energy minima. In

these simulations it is suggested that the 1HXB structure resided in a different energy

minima than that reached by 1BDQ and 1A8G. As a result, the mean RMSD values

between 1BDQ/1A8G and 1HXB were approximately equal at 1.2Å. The differences

in range, standard deviation, and mean RMSD values of the 1BDQ and 1A8G intra-

protease results (Figure 4.9) may have been a result of differences in the distribution

of thermal energy in the systems leading to different conformational sampling of the

minimum. These results suggest that the systems only sample a single energy minimum

over 340 picoseconds, indicating that they need to be simulated for longer.
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Chapter 5

Validation of molecular dynamics

simulation protocol

5.1 Introduction

It was argued in Chapter 4 that MD simulations can complement static structural

analysis of proteins, and subsequently shown that MD simulations can reveal novel

structures unavailable through crystallography. However, MD simulations are still re-

liant on these static structures as initial configurations from which to start, and this

severely limits the range of protein genotypes that can be simulated. In the case of

HIV-1 protease, only 150 unique genotypes were present in the local database described

in Chapter 3, which is significantly less than the potential, and observed, number of

clinically-observed genotypes. This is due in part to the difficulty of crystallising pro-

teins, and also the complete inability of some proteins to crystallise due to their flex-

ibility, shape, or polarity. As a result, in order to be able to simulate every possible

HIV-1 protease genotype, the crystal structures need to be computationally-mutated

into the sequence of interest. This, however, introduces side-chain atomic coordinates

that are not verified experimentally, with the potential to cause abnormal movements

or configurations that would not be observed in vivo. For example, computationally

mutating a small residue, such as glycine (-H) into a larger residue, such as lysine

([−CH2]4 −NH3
+) in the interior of a globular protein without changing the surround-

ing tertiary structure to compensate could result in atoms coming in too close contact
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and as a result the energies of the protein being distorted. The same principles ap-

ply when changing residue polarity upon mutation, and these must all be taken into

consideration with the computational mutation-protocol. Therefore, it was investigated

whether the mutational protocol (Section 2.1.1) was robust. The limit of the number of

residues that can be computationally-mutated while still retaining structural integrity

was also determined. Further research was then undertaken to computationally-mutate

a crystal structure into a second structure with a different genotype. By simulating the

crystal structure against the homo-genotypic mutated structure and comparing struc-

tural and energetic results, an indication of the quality of the mutational protocol could

be determined.

5.2 Limits of computational residue-mutation protocol

Initial investigations on the limits of the computational mutation protocol concentrated

on how many residues could be mutated in the dimer before affecting the protease’s

structural integrity. In comparison to the simulations performed in Chapter 4, these

simulations were run with an inhibitor complexed so that the binding affinity between

the two could be calculated from the simulation. By comparing this computed binding

affinity to experimentally-determined binding affinities, the quality of the mutated-

protease’s simulation could be ascertained. Therefore, the chosen genotypes to which

the crystal structures will be mutated must have associated experimentally-determined

biochemical data. In order to achieve this, the local database described in Chapter 3

was explored with the Perl script mutation data extractor.pl (Section 3.3). This script

was repeatedly invoked with its two command-line arguments: potential PDB start-

ing structures, and an integer N where 1 ≤ N ≤ 13. For each invocation, the script

outputted a file containing the sequences with N mutations from the specified crystal

structure and associated experimentally-derived data for that genotype.

Using this Perl script, a series of thirteen protease genotypes were identified in the

database, each with a different number of mutations from a crystal structure complexed

with the protease inhibitor saquinavir, and each with an associated experimentally-

derived binding affinity value for that genotype complexed with saquinavir. The output
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was a list of PDB structures from which to start the simulations, and for each system

a list of the required mutations to convert it to a genotype with associated binding

affinity data (Table 5.1).

Table 5.1: Initial PDB and nature of mutated residues for each of the 13 mutational-
chain systems

Mutations Nature of mutations from initial PDB Initial PDB
0 - 1HXB
1 V48G 1FB7
2 Q7K, I84V 1FB7
3 Q7K, V48G, M90L 1FB7
4 V3I, V48G, V82A, M90L 1FB7
5 Q7K, L33I, V48G, L63I, M90L 1FB7
6 V3I, Q7K, L10I, L33I, V48G, L63I 1FB7
7 Q7K, L33I, V48G, L63I, V82F, I84V, M90L 1FB7
8 V3I, Q7K, L33I, V48G, L63I, V82A, I84V, M90L 1FB7
9 Q7K, I13V, E35D, M36I, S37N, R41K, R57K, H69K,

L89M
1HXB

10 V3I, Q7K, L33I, M46I, V48G, I54V, L63I, V82A,
I84V, M90L

1FB7

11 Q7K, I13V, E35D, M36I, S37N, R41K, V48G, R57K,
H69K, L89M, M90L

1FB7

12 Q7K, L10I, M36I, S37D, M46I, V48G, R57K, L63P,
A71V, G73S, I84V, I93L

1FB7

13 Q7K, I13V, E35D, M36I, S37N, R41K V48G, R57K,
H69K, V82F, I84V, L89M, M90L

1FB7

Having determined the nature of each computationally-mutated system, each initial

PDB structure was mutated accordingly by following the pre-simulation protocol de-

scribed in Section 2.1.1. This protocol differed from the equilibration protocol described

in Chapter 4 due to the increased caution that needed to be followed to ensure the mu-

tated residues reorientate into a more natural, relaxed configuration. To achieve this,

before the global constraints were gradually lifted from the protein complex, the con-

straints were lifted for a 5Å sphere surrounding each mutated residue in sequential order

for 50 picoseconds. The reason for lifting the constraints on the immediate surround-

ing region was because the mutated residue may need to displace surrounding atoms in

order to ‘un-trap’ itself and reach a comfortable orientation. This is most necessary for
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any mutations internalised within the globular protease, where the close-packed tertiary

structure means that a larger side-chain of a mutated residue could get trapped in a

high-energy configuration. Once each mutated residue had been given time to reorien-

tate itself, it is re-constrained while the next mutated residue is released. Once the final

mutation has been re-constrained, the constraints on the whole protein are gradually

released and the protein given time to equilibrate. The whole process of minimisation

and equilibration was increased from the 220 picoseconds protocol in Chapter 4 to a 2

nanosecond protocol to allow sufficient minimisation. Following on from the equilibra-

tion protocol, data was collected for a further 2 nanoseconds to give the systems time

to sample more of their configurational landscape. Simulations were therefore run for a

total of 4 nanoseconds, which was significantly more computationally-demanding than

previous simulations. Therefore these simulations were parallelised across 32 proces-

sors on the Leeds site of the National Grid Service (NGS). Four simulations were run

concurrently across 32 processors at a rate of 8 hours/ns. Therefore each simulation

took 32 hours (1.3 days), requiring 1024 computer-hours to achieve this. The entire

mutational-chain was completed in 128 hours (5.3 days), requiring 14,336 computer-

hours. Trajectory data was transferred back to a local server for analysis via ‘GSISCP’.

Before the data could be analysed, it needed to first be ensured that any variations

between systems were not a result of differences between the two different starting struc-

tures; 1HXB and 1FB7. Therefore three extra 2 nanosecond simulations were therefore

run on the Leeds site of the NGS: 1FB7 crystal structure, 1HXB mutated into 1FB7,

and 1FB7 mutated into 1HXB. By cross-comparing the results of these simulations with

the un-mutated system in the mutational chain (1HXB crystal structure), any adverse

effects on the simulations due to the choice of starting crystal structure could be ascer-

tained. Profile-RMSF comparison of the four simulations showed significant overlap,

suggesting that there is no significant difference in the dynamics of the 2 crystal struc-

tures, nor that the mutation protocol affects these dynamics. Furthermore, calculation

of the ∆Gbind for each system resulted in all systems falling within error of each other

(Table 5.2). These results suggest that the choice of starting structure does not affect

either the structural dynamics or the energetics of the protease-saquinavir complexes.

Therefore, any deviations within the mutational chain will not be attributed to the
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differences in starting structure or the mutational protocol employed.

Table 5.2: Binding free energy values for the control-simulations

System ∆Gbind (kcal/mol)
1HXB crystal -17.53 ± 1.05
1FB7 crystal -16.55 ± 2.12
1HXB -> 1FB7 -16.38 ± 1.98
1FB7 -> 1HXB -16.72 ± 1.59

Once all the simulations had been completed, their structural dynamics were compared

through profile RMSF of the backbone Cα atoms (Figure 5.1). For each system, the

time-averaged position of each Cα atom was determined, and the RMSF of this atom

calculated across the simulation. This generated a value for each of the system’s 198

Cα atoms that represented the average movement of that atom around the average

structure across the simulation. The results show considerable overlap between the

systems’ profile RMSF values, with all systems fluctuating to approximately the same

degree across their simulations, and the regions of relative flexibility and rigidity con-

curring between systems. This suggests that the mutation protocol is robust enough

to mutate and configurationally relax up to 26 residues in the protease dimer whilst

retaining the structural dynamics. Furthermore, the residues mutated in this study

were spread throughout the protease’s quaternary structure (Figure 5.2(d)), indicating

that the location of the mutated residue is not a concern in this system.

The profile RMSF of the 1HXB un-mutated system (Figure 5.1) gives an indication

of the structural and dynamic constraints of the protease’s quaternary structure. The

residues with RMSF values below 0.5Å can be considered as ‘rigid regions’ which show

little fluctuation over the simulation; those with fluctuations between 0.5Å and 1.0Å are

less restrained in their movements; and those with fluctuations greater than 1.0Å are

flexible regions that show considerable movement over the simulation. Figures 5.2(a)

and 5.2(c) display these RMSF gradings superimposed onto the protease’s backbone

structure for the un-mutated system and the system with 13 mutations respectively.

This shows that the regions of low fluctuation were restricted to the core of the glob-
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ular protease for both systems. This is to be expected because these residues are

tightly-packed, with many surrounding atoms, restricting their torsional, rotational

and translational freedom of movement. The regions of higher RMSF are distal to

these inflexible core residues, and generally are solvent-accessible, while the residues

with the highest fluctuations are located at the external β-turn structures around the

flaps, flap-elbows, cantilever and fulcrum. These regions are known to be highly mo-

bile in molecular dynamics simulations [77, 33]. Therefore these results show that the

structural dynamics across the simulations were not impeded through the mutational

protocol and that the motions observed were in concurrence with theoretical dynamics.

Minor differences observed between RMSF profiles of each system and the un-mutated

system (Figure 5.1) were compared against the location of the mutated residues to

determine whether they were correlated. The results showed that the regions of RMSF

variation did not significantly coincide with the location of the mutations. For example,

the RMSF differences observed between the un-mutated system and the 13-mutations

system (Figure 5.2) occur around the extremities of the protease structure, but these

do not coincide with the location of the distal mutations. This suggests that the ob-

served RMSF variations were not an artefact of the mutation but rather due to natural

configurational fluctuations of the protease.

An important note about the results of this mutational chain is the mutational protocol

was not performed on just a single PDB starting structure; the chain contained systems

with mutations in both 1HXB and 1FB7 crystal structures. Therefore, as all the sys-

tems showed overlapping profile RMSF values, this suggests that mutational protocol is

transferrable between crystal structures. However, this does not indicate that all pro-

tease crystal structures can withstand 13 mutations in each monomer, nor that other

crystal structures can be confidently mutated at all. Nevertheless, 1FB7 and 1HXB

currently represent the only two crystal structures complexed with saquinavir, so these

results suggest that the mutation protocol is robust enough for the protease systems

complexed with saquinavir. The genetic diversity between the HIV-1 protease amino

acid sequences of different subtypes is approximately 5%-6% of the total sequence,

which means that HIV-1 subtypes differ from each other by approximately 6 residues

in their protease protein sequence [45]. The mean number of saquinavir-associated mu-
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(a) (b)

(c) (d)

Figure 5.2: Cartoon representation of un-mutated HIV-1 protease ((a) and (b)), and
1FB7 with 13 mutations in each monomer ((c) and (d)). (a) and (c) show the regions of
average RMSF > 1.0Å (in green) and < 0.5Å (in red) across the proteases’ 2ns simula-
tion. Intervening regions (0.5Å ≤ RMSF ≤ 1.0Å) are shown in grey. (b) and (d) show
the locations of the proteases’ mutations with respect to Hxb2 consensus sequence as
orange van der Waals spheres. This is to give an indication of the relationship between
the ∆RMSF and the location of the mutations in the quaternary structure. Images
were created using VMD from the final outputted configuration of each simulation.

147



tations in protease during anti-retroviral therapy is 3.8 [57], of which only one or two

key mutations are necessary for resistance to saquinavir [32]. Therefore the ability to

mutate up to 13 mutations in a crystal structure means that a large proportion of the

important mutations across multiple subtypes can be represented computationally.

Having determined the dynamical stability of the mutated systems, the binding affini-

ties were calculated over the 2ns production-phase through MMPBSA and MMGBSA

methodologies combined with normal mode analysis (Section 2.3.2). These were then

compared against the equivalent experimentally-derived Ki values, which were ex-

tracted from the local database and converted into a comparable ∆G value (Equa-

tion 1.26). The MMPB(GB)SA ∆G values for each system were calculated as the

average of 200 equally-spaced snapshots over the 2ns simulation, and the normal mode

analysis calculated as the average of 10 equally-spaced snapshots. The error bars of

the resultant ∆G value were calculated as:

σT =
√
σ2
H + σ2

S (5.1)

where σT is the standard deviation of the ∆G value; σH is the MM(PB/GB)SA stan-

dard deviation; and σS is the normal mode standard deviation. Experimentally-derived

data have no error bars because there were no standard deviations associated with the

ITC or EIA data in The Binding Database (Figure 5.3). Therefore there were no ex-

perimental errors by which to compare the computational results.

The results showed that the MMPBSA methodology consistently returned average

binding affinity values closer to experimental values than MMGBSA. In every sys-

tem the MMGBSA results were ∼ 11kcal/mol more negative than the corresponding

MMPBSA results, and shared the same error bar size. This is to be expected because

the Generalised-Born equation implemented in MMGBSA for calculating the accessi-

ble surface area of the protein to the solvent is an approximative model to the exact,

but more computationally-demanding, Poisson-Boltzmann equation implemented in

MMPBSA [73]. The error bars were similar in magnitude because the majority of

the standard deviation was due to the configurational entropy calculated by normal
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mode analysis, which was common to both methods. As both methods themselves

are heuristic, and therefore trade absolute accuracy of other methods, such as Ther-

modynamic Integration (TI), for an increase in turnaround of results, both continuum

solvation methods were implemented in this study to determine whether the more

relatively-computationally demanding MMPBSA method would yield more accurate

results than MMGBSA. The results showed that in all circumstances the MMPBSA

method performed considerably better - in three cases attaining values whose corre-

sponding experimental values fell within its error bars. In no circumstances did this

happen with the MMGBSA results, with the closest value 7.0kcal/mol more negative

than experimental. Therefore, due to the Poisson-Boltzmann equation outperforming

the Generalised-Born methodology in all circumstances, combined with the increase

in computational resource available due to greater access to Grid computers and su-

percomputers described in Section 2.4, the MMPBSA methodology was utilised for all

subsequent energy calculations, and the MMGBSA methodology was not pursued any

further.

In comparing the computed MMPBSA results to the experimentally-determined values

(Figure 5.3), two main trends can be observed: for the first 7 systems (un-mutated

to 6 mutations) the computational results fluctuate around the experimental results,

ranging from 5kcal/mol more negative than experimental at system 0, to 5kcal/mol

less negative than experimental at system 3. For systems 2 and 4, the experimen-

tal values lie within the computational error bars, and for systems 5 and 6 they fall

just outside of computational error. However, the second 7 systems show a markedly

different trend, with all MMPBSA values consistently 7kcal/mol more negative than

experimental. The correlation coefficient between MMPBSA results and experimental

data across the entire chain is r = −0.24, but when considering the first and second 7

systems independently, the correlation coefficients become r = −0.14 and r = 0.75 re-

spectively (Figure 5.4). This shows that the second 7 systems’ ∆G values were strongly

correlated with the experimental data, whilst the first 7 were not. In order to investi-

gate the cause of these results, the MMPBSA and configurational entropy components

of the computational ∆G were examined (Table 5.3).
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Figure 5.4: Correlations between computational free energy changes, calculated through
MM/PBSA, and the corresponding experimental free energy changes for systems 0 to 6
(a) and 7 to 12 (b) of the mutational-chain. The linear regression lines show the lines of
best fit between the correlative values. Each correlation’s coefficient of determination
is also given; this is the square of the correlation coefficient, which is -0.14 for (a),
and 0.75 for (b). This indicates there is no correlation between computational and
experimental results for the first 7 systems, and a strong positive correlation for the
second 7 systems.
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Table 5.3: Comparison of the thermodynamic components of computed ∆G to the
experimental ∆G

System Thermodynamics (kcal/mol)
∆HC

a T∆SCb ∆GCc ∆GEd

0 -42.22 -24.69 -17.53 -12.50
1 -45.30 -29.20 -16.10 -12.45
2 -39.32 -24.06 -13.36 -11.97
3 -39.64 -32.13 -7.51 -12.79
4 -38.81 -26.59 -12.22 -11.97
5 -45.30 -30.63 -14.67 -11.78
6 -45.38 -35.25 -10.13 -11.97
7 -42.26 -25.65 -16.61 -10.37
8 -49.51 -32.33 -17.18 -11.78
9 -43.22 -25.80 -17.42 -12.19
10 -46.74 -30.42 -16.32 -9.99
11 -46.96 -27.31 -19.65 -12.19
12 -45.37 -29.69 -15.68 -7.67
13 -48.40 -30.71 -17.69 -10.37

a Computationally-determined using MMPBSA methodology.
b Computationally-determined using normal mode analysis.
c Computationally-determined as ∆HC − T∆SC.
d Experimentally-derived through EIA or ITC.

The decomposition of the ∆G reveals that the ∆H and ∆S components are equally

variable across the mutational chain, with ranges of 10.70kcal/mol and 11.19kcal/mol

respectively. However, the strong correlation previously observed between the second

7 systems’ computational ∆G and experimental ∆G is lost upon decomposition. The

correlation between the second 7 systems’ ∆H and experimental data was r = 0.12, and

for the systems’ T∆S the correlation was r = −0.25. Therefore the strong correlation

observed for the ∆G was due to the combination of the two components rather than a

particular contribution.

The cause of the change in trends between the first and second 7 systems could not be

explained through the stabilising effect of a mutation common to the second 7 systems.

Visual inspection of the systems through VMD also did not reveal any significant struc-

tural differences between the systems, such as as more open configuration of the flaps
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Table 5.4: Decomposition of the enthalpic energy values for the mutational-chain sys-
tems

System Enthalpic energy (kcal/mol)
VdW a Eleb PBsur

c PBcal
d PBtot

e

0 -68.50 -32.90 -8.35 67.53 -42.22
1 -71.93 -44.52 -8.43 79.57 -45.30
2 -69.15 -25.88 -8.31 64.02 -39.32
3 -73.03 -42.40 -8.19 83.99 -39.64
4 -66.46 -35.39 -8.43 71.47 -38.81
5 -75.75 -32.89 -8.30 71.64 -45.30
6 -72.13 -42.80 -8.42 77.96 -45.38
7 -73.88 -37.02 -8.28 76.92 -42.26
8 -73.21 -42.86 -8.53 75.09 -49.51
9 -76.39 -32.72 -8.49 74.37 -43.22
10 -73.27 -43.89 -8.45 78.87 -46.74
11 -73.91 -47.59 -8.49 83.02 -46.96
12 -71.87 -40.64 -8.58 75.72 -45.37
13 -73.18 -51.84 -8.68 85.29 -48.40

a Non-bonded van der Waals energy.
b Non-bonded electrostatic energy.
c Non-polar contribution to solvation free energy.
d Polar solvation contribution to solvation free energy.
e Change in enthalpy upon inhibitor binding.

[77], or the lateral movement of saquinavir out of the active site [96], and the profile

RMSF analysis showed that the dynamics of all 14 systems were similar. Therefore,

the underlying cause of the strong correlation to experimental data in systems 7 to 13

remains unclear.

5.3 Conclusions

Simulations of particular HIV protease genotypes are either run from crystal structures

of the genotype of interest, or, less commonly, an alchemical mutation of 1 or 2 residues

is performed on the nearest crystal structure [77, 100, 96]. Both methods are strongly

reliant on the experimental generation of crystal structures. However, there are cur-

rently only approximately 230 HIV protease structures in the Protein Data Bank, which

is not enough to cover the range of possible genotypes in vivo. Therefore, to extend the

range of simulations beyond the key primary mutations that are currently simulated to
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Table 5.5: Decomposition of the entropic energy values for the mutational-chain systems

System Configurational entropy (kcal/mol)
TStra TSrot TSvib TStot

0 -13.58 -11.81 0.70 -24.69
1 -13.58 -11.82 -3.79 -29.20
2 -13.58 -11.79 1.31 -24.06
3 -13.58 -11.81 -6.74 -32.13
4 -13.58 -11.85 -1.16 -26.59
5 -13.58 -11.81 -5.24 -30.63
6 -13.58 -11.83 -9.84 -35.25
7 -13.58 -11.82 -0.25 -25.65
8 -13.58 -11.85 -6.90 -32.33
9 -13.58 -11.81 -0.40 -25.80
10 -13.58 -11.84 -5.00 -30.42
11 -13.58 -11.82 -1.91 -27.31
12 -13.58 -11.83 -4.28 -29.69
13 -13.58 -11.88 -5.25 -30.71

a Change in translational entropy upon inhibitor binding.
b Change in rotational entropy upon inhibitor binding.
c Change in vibrational entropy upon inhibitor binding.
d Change in the total entropic contribution to free energy upon inhibitor binding,
calculated as TStra + TSrot + TSvib.

genotypes containing multiple accessory mutations, a greater number of residues will

need to be alchemically-mutated. However, there has not yet been a study examining

the effect of mutating multiple residues in HIV protease.

The results in this chapter showed that the mutation protocol followed was able to

mutate up to 26 residues in the homodimer without adversely affecting the proteases’

quaternary structures. Furthermore, the dynamics of alchemically-mutated proteases

were almost identical to those of un-mutated proteases over 2ns. Two different starting

crystal structures were mutated within the mutational-chain with structural and dy-

namic results comparable to un-mutated. Therefore the mutation protocol was shown

to be robust enough to be transferrable between HIV protease systems. However, these

results cannot be interpreted for alternative proteins, such as HIV reverse transcriptase,

where residues may have less freedom of movement, or adverse interactions between the

mutated side-chain and surrounding residues results in a non-physiological structure.
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(a) (b)

Figure 5.5: Anterior (a) and lateral (b) cartoon views of HIV protease, showing the
backbone structure in ice-blue and the surface outline in grey. The side-chain of lysine
at residue 7 in each monomer is shown as red van der Waals spheres. The location
of this residue is at a β-turn near the dimer interface, distant to the active site, and
superficial to the protease. The side-chain points out into the solvent. Figure was
created from the final outputted configuration of system 12 (See Table 5.1) at 2ns
production-phase using VMD.

The MMPBSA binding affinity results revealed 2 different relationships between the

mutational-chain and experimental data; the first 7 systems gave results that fluctu-

ated around their corresponding experimental values, but showed no correlation to the

∆∆G between consecutive experimental datum. The second 7 systems, conversely,

showed a strong correlation to the experimental ∆∆G, but was consistently 7kcal/mol

more negative than the corresponding experimental value. A possible cause of change

in relationship was shown to be the van der Waals interactions between the protease

and ligand, however, this could not be localised to a common mutation between the

second 7 systems. Although the underlying cause of the differing relationships to the

experimental data was not ascertained, these results were still encouraging as 8 of the

13 consecutive computational ∆∆G values gave the same trend as the equivalent ex-

perimental ∆∆G. Furthermore, only systems 11 and 13 were incorrectly calculated as

having a more negative ∆G value than the 1HXB un-mutated system, which contains

2 differences to wild-type: I3V and N37S, both of which are natural polymorphisms

that confer no drug resistance on their own [105, 77]. These results suggests that the

methodology is able to recognise the alchemical mutations’ effect on the strength of
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interaction between the protease and saquinavir. Therefore, even though the method-

ology is unable to quantify the absolute binding affinity value correctly, if it is able

to correctly identify the directional effect of mutations on the binding affinity, then it

has clinical applications. As a result, it was decided to apply the simulation protocols

and MMPBSA/normal mode analyses from this chapter to a smaller chain of protease

genotypes containing an increasing number of drug-resistant mutations observed in vivo

to determine whether it could correctly order their binding affinities to saquinavir.
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Chapter 6

Computational reproduction of a

series of increasing drug-resistant

proteases

6.1 Introduction

In Chapter 5.2 it was shown that up to thirteen residues could be computationally mu-

tated in each of protease’s monomers whilst still retaining backbone fluctuations that

correlate with an un-mutated simulation. This has practical implications because it

validates the ability to mutate the constrained set of starting 3-dimensional structures

into potentially any HIV protease genotype observable in vivo. However the binding

affinity values calculated between HIV protease and saquinavir were not able to con-

sistently replicate in vitro values calculated through biochemical techniques such as

enzyme inhibition assay (EIA) or isothermal titration calorimetry (ITC). The results

showed that on mutating up to six residues in each monomer, the binding affinity val-

ues calculated through MMPBSA and normal mode analysis produced values within

the bounds of experimental error, but inconsistently. Beyond six mutations, however,

there appeared to be a shift such that the computational results followed the trend of

changes in binding affinity, but the absolute values were consistently around 7kcal/mol

more negative than experimental. Though the underlying cause for these observations

was not determined, each half of the mutational chain contained qualities that were
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promising for the continuation of the methodology to determine whether MMPBSA and

normal mode analysis can replicate the decrease in drug sensitivity of a series of pro-

tease systems containing an ordered increase in protease-inhibitor resistance mutations.

The motivation for this study came from a paper by Ohtaka et al. (2003) who performed

high-precision isothermal titration calorimetry to titrate one of six different protease

inhibitors (indinavir, nelfinavir, saquinavir, ritonavir, amprenavir and lopinavir) into a

solution of one of six HIV protease genotypes. From the outputted data they calculated

the change in free energy, enthalpy, and entropy of inhibitor binding for each of the

36 combinations of inhibitors and proteases [69]. From this data-set the 6 saquinavir

systems were most pertinent to this study, as previous binding affinities had been cal-

culated with respect to saquinavir. Table 6.1 shows the the subset of the data used as

reference values for the computational calculations.

Table 6.1: Mutations and associated thermodynamic values for the 6 HIV-1 protease
genotypes complexed with saquinavir published in Ohtaka et al. (2003).

Protease genotype AKA Thermodynamics (kcal/mol)
∆G ∆H −T∆S

wild-type WT -13.0 1.2 -14.2
L10I, L90M DM -12.0 3.6 -15.6
M46I, I54V FL -11.9 5.1 -17.0
V82A, I84V AS -11.8 3.7 -15.5
M46I, I54V, V82A, I84V QM -10.0 8.5 -18.5
L10I, M46I, I54V, V82A, I84V, L90M HM -8.5 10.4 -18.9

This table shows not only the change in binding affinity for each genotype, but also the

thermodynamic mechanism by which the mutation causes a reduction in drug affinity.

For example, the [L10I, L90M] genotype has a more positive change in free energy

upon formation of a complex with saquinavir than the wild-type, indicating that this

binding is less likely to happen spontaneously. Examining the enthalpic and entropic

contributions shows that the cause of this less negative ∆G is a more positive change in

enthalpy. The entropic contribution is actually more negative, but this is not enough to

offset the positive increase in enthalpy, so overall the free energy change is less negative.
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For clarity, each protease genotype is given a two-letter short-hand code (see Table 6.1):

the wild-type genotype is termed WT, the [L10I, :L90M] residues are located in the

dimerisation (DM) region of the protease, the [M46I, I54V] residues are located on the

flaps (FL), the [V82A, I84V] residues are located in the active site (AS), the [M46I,

I54V, V82A, I84V] genotype is termed the quadri-mutant (QM), and the final genotype

is termed the hexa-mutant (HM). The location of these mutations on the quaternary

structure is shown in Figure 6.1.

Figure 6.1: Location of the 6 mutations associated with Table 6.1 on HIV-1 protease’s
quaternary structure. The backbone structure and surface-area outline are shown in
grey; for each monomer: residue 10 is shown in dark-blue; residue 46 is shown in green;
residue 54 is shown in yellow; residue 82 is shown in red; residue 84 is shown in orange;
and residue 90 is shown in ice-blue. Image was created in VMD from structure 1FB7.

Combinations of these mutations occur frequently in patients undergoing HAART ther-

apy, with the HM genotype resulting in multi-drug resistance to the 6 inhibitors de-

scribed in the paper by Ohtaka et al. [69]. This gives these mutations clinical relevance

and therefore a good template by which to determine whether MMPBSA and normal

mode analysis of MD simulations is able to replicate trends in drug-resistance caused

by specific mutations.
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6.2 Reproduction of trend of drug-resistance

Each of the 6 genotypes was created by applying the mutation protocol (Section 2.1.1)

to the α-chain mono-protonated 1FB7 crystal structure. Thermodynamic analysis of

the four different possible protonation states of the two catalytic aspartic acids showed

that the most thermodynamically-favourable protonation state was with the α-chain

protonated and the β-chain un-protonated (data not shown), consistent with the lit-

erature [80, 125]. Therefore this protonation state was followed for generation of the

proteases’ initial configurations. Following the 2 nanosecond equilibration protocol,

simulations were run for a further 10 nanoseconds for data analysis. The reason for the

increase in the length of the data analysis beyond the 2 nanoseconds previously run

was because data from the mutational chain study (Section 5.2) showed that extending

the simulations to 2 nanoseconds was insufficient for consistently calculating a binding

affinity value comparable to in vitro experimental data. This may have been due to

insufficient configurational sampling over 2ns. Data published in the literature also

suggested that low-frequency motions that involve important configurations only occur

across longer timescales [33]. This coincided with access to a greater number of Grid

computers, including TeraGrid resources, that made running simulations for this length

of time feasible. Each of the 6 protease genotypes was therefore simulated in complex

with saquinavir for 12 nanoseconds (2 nanoseconds equilibration protocol followed by

10 nanoseconds production-phase) and then the average binding affinity value across

a simulation’s production-phase calculated using MMPBSA to compute the enthalpic

component of the free energy, and normal mode analysis to compute the configurational

entropic component. The MMPBSA calculation was averaged from 1000 snapshots

over the 10 nanosecond simulation, with 100 equally-spaced snapshots analysed every

nanosecond. The normal mode calculation was performed on 50 snapshots, with only 5

equally-spaced snapshots per nanosecond due to the increased computational expense

of calculation.

Prior to comparing the computational binding affinities to the experimental ones, de-

termination of equilibration was achieved through examination of the stability of the

∆H and T∆S components of the binding free energy across each simulations, and also
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the stability of the energy terms that comprise the ∆H such as the electrostatic and van

der Waals forces between the protease and saquinavir. If the values have not stabilised

then the protease has not reached equilibrium and so any thermodynamic value may

be erroneous. Figure 6.2 shows the evolution of the component terms that comprise

the enthalpic value outputted by MMPBSA. It can be seen that in all systems the

component energies are stable across the entire 10 nanosecond simulation. This shows

that the mutation and equilibration protocol are sufficient for each system to reach a

stable value by the start of the data collection. Also of note are the absolute values for

each system; each Y-axis has the same range, and it can be seen that while the non-

polar solvation free energies, van der Waals energies, and ∆H values are equivalent

between systems, the electrostatic energies (red) and polar contributions to solvation

free energies (yellow) are the most variable between system. This supports the results

seen in Section 5.2 where the major differences observed between systems arose from

these same two enthalpic components. However, unlike in the mutational-chain study,

none of the systems contain mutations to a lysine residue. In fact, none of the systems

undergo changes in side-chain polarity: in the DM system the two neutral non-polar

leucine residues are mutated into neutral, non-polar isoleucine and methionine residues;

in the FL system the neutral, non-polar methionine and isoleucine residues are mutated

into neutral, non-polar isoleucine and valine residues respectively; in the AS system the

neutral, non-polar valine and isoleucine residues are mutated into neutral, non-polar

alanine and valine residues respectively; and the QM and HM systems are comprised

of variants of each of the double-mutants. Therefore the simulated systems’ differences

in electrostatics with respect to the wild-type system are not a direct indication of the

change in non-bonded electrostatic force between the drug-resistance mutation and the

inhibitor. However the change in electrostatic force between the protease as a whole and

the inhibitor causes the major source of difference in ∆G between simulated protease

genotypes.
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The component entropic terms (T∆Svib, T∆Stra, T∆Srot, and −T∆Stotal which is the

configurational entropy), as with the entropic component terms in the mutational-chain

study (Section 5.2) and the rotational and translational components of the configura-

tional entropy, are almost constant across the 10 nanosecond simulation, and show very

little variation between systems (Figure 6.3). The vibrational component however is

more variable between systems, and unlike the rotational and translational components,

is not constant across a simulation. The variability between the systems is expected

because their differing genotypes results in an altered numbers of atoms in the protein,

and so subsequently a differing number of possible configurations that the protease

can adopt. The variation in the vibrational entropy within a simulation is not unique

to HIV-1 protease, and does not indicate that the entropies have not converged. The

T∆Svib variation across a simulation is attributed to the methodology of the normal

mode analysis, which is implemented to calculate it. This does not calculate the vibra-

tional entropy of the protein itself, but rather of the most accessible local minimum.

This therefore assumes that the protein resides in a single local-minima across the whole

simulation, which causes variation to occur when the protein configurationally flexes,

resulting in a different local minima to become most accessible to it. Calculation of

the rotational and translational entropies uses a different methodology that does not

rely on the energy landscape, and so does not vary in the same way [106, 74, 26]. Even

though the vibrational entropy shows variation between snapshots within a simulation,

the mean value around which they vary does not drift through the course of the simu-

lation.

In addition to determining the convergence of the energy terms as a measure of simula-

tion reliability, the stability of each system’s quaternary structure across their respec-

tive simulation was determined through global RMSD and global RMSF calculations.

RMSD was performed with respect to each system’s post-mutation, pre-minimisation

structure, and results showed that each system rapidly adopted a structure ∼ 1.0Å

away from this initial structure, about which they stably fluctuated around. RMSF

was performed with respect to each system’s average structure, which was generated

from the time-averaged position of the Cα atoms across the 10ns data-collection phase

using VMD. The results showed that all systems fluctuated stably around their average
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structure, with an average peak-to-peak amplitude of ∼ 0.5Å. Having ascertained that

the data-collection phase of the simulations showed structural and energetic stability,

the computed binding affinity values can be confidently compared against the experi-

mental values.

The ∆G results from the simulations are shown in Table 6.2 compared to the corre-

sponding experimental results [69]. The computed ∆HC and T∆SC are not compared

to experimental values because the MMPBSA methodology calculates the solvation

electrostatic term as a free energy which is not decomposed into the enthalpic and

entropic contributions, meanwhile the T∆S value is only a calculation of the change in

configurational entropy upon complex formation [49].

Table 6.2: Calculated ∆GC and its constituent ∆HC and T∆SC in comparison to the
experimental ∆GE published by Ohtaka et al. (2003).

System Thermodynamics (kcal/mol)
∆HC

a T∆SC
a ∆GC

a ∆GE
b ∆∆Gc

WT -41.90 -31.74 -10.16 -13.00 +2.84
DM -44.39 -33.59 -10.80 -12.00 +1.20
FL -44.50 -31.31 -13.19 -11.90 -1.29
AS -47.25 -27.68 -20.62 -11.80 -8.82
QM -49.35 -28.43 -20.92 -10.00 -10.92
HM -57.99 -33.23 -24.76 -8.50 -16.26

a computationally-determined. b experimentally-determined.
c ∆GC - ∆GE.

Comparison of the computed ∆G to the experimentally-derived ∆G shows an anti-

correlation, with the computational results calculating the ∆G of the HM system to be

14.60kcal/mol more negative than the WT system. Therefore the computational results

are presenting the multi-drug resistant HM system to be more strongly attracted to

the inhibitor drug than the wild-type system. The computational results also show the

three double-mutant genotypes to be more attracted to saquinavir than the wild-type,

but less than the MDR genotype. The correlation coefficient between the computational

and experimental results is r = −0.86 (Figure 6.4). That such a strong anti-correlation

is formed over 6 different systems suggests that the methodology is able to recognise
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an effect caused by the mutations, but is unable to quantify it properly. These results

are particularly interesting in the context of concurrent simulations run and analysed

by collaborators using the same protease genotypes and pre-simulation protocols, but

complexed with the alternative inhibitors published in Ohtaka et al. (2003): ritonavir,

lopinavir, indiavir, nelfinavir, and amprenavir. MMPBSA and normal mode analysis

averaged over 10ns resulted in correlation coefficients of r = 0.93, r = 0.81, r = 0.67,

r = 0.44, and r = −0.79 respectively for the above inhibitors complexed with the 6

protease genotypes. These represent a spread of results ranging from strongly posi-

tively correlated to strongly negatively-correlated, but none show a significant lack of

correlation implying that the ability of the computational methodology to quantify the

mutations’ effects are inhibitor-specific.

Figure 6.4: Correlation between computational and experimental ∆G values. The
graph shows strong anti-correlation between computational and experimental results,
with a correlation coefficient

√
R2 = r = −0.86. The experimental results do not

contain error bars as none were published [69].

Closer examination of the decomposed binding affinity values (Table 6.2) show that the

anti-correlation observed between ∆GC and ∆GE is due to the enthalpic component

of the calculated ∆GC, with a correlation coefficient of r = −0.97 to the experimen-

tal data, while the configurational entropy component has a correlation coefficient of
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r = −0.07 representing no correlation to the experimental data. The enthalpic compo-

nent of the binding energy was therefore decomposed further to ascertain whether the

correlation could be attributed to any specific protein-inhibitor interaction (Table 6.3).

Table 6.3: Correlation between computed enthalpic energy terms and experimental
binding affinities

System Thermodynamics (kcal/mol)
Elea PBele

b PBsol
c PBcal

d VdWe ∆GE

WT -44.93 40.24 76.77 85.17 -73.74 -13.00
DM -44.06 36.51 72.12 80.58 -72.45 -12.00
FL -50.05 36.15 77.97 86.20 -72.41 -11.90
AS -36.07 36.88 64.51 72.95 -75.69 -11.80
QM -33.60 36.08 61.26 69.67 -77.01 -10.00
HM -70.27 22.70 84.39 92.97 -72.12 -8.50
CCf -0.53 -0.89 0.17 0.18 -0.02 N/A

a is the non-bonded electrostatic energy between the protease and inhibitor.
b is the sum of PBcal and Ele.
c is the solvation free energy calculated by the Poisson-Boltzmann method.
d is the hydrophobic component of PBsol.
e is the non-bonded van der Waals energy between the protease and inhibitor.
f is the correlation coefficient (r).

The results show that differences in the PBele component of the ∆HC value between

systems is the cause of the strong anti-correlation to ∆GE, with a correlation coefficient

of r = −0.89. This PBele component is the sum of the electrostatic component of the

solvation free energy and the non-bonded electrostatic energies between the ligand and

protease. It was previously observed that the enthalpic differences between the systems

were due to the non-bonded electrostatic energies (Figure 6.2), but this data shows that

these differences are actually anti-correlated to the experimental binding affinities. It

must be noted, however, that while this anti-correlation is strong, the error bars of the

WT, DM and FL systems overlap and so the anti-correlation is manifested mainly in

the AS, QM and HM results, which are significantly more attracted to saquinavir than

WT (Figure 6.4). This may be due to a greater configurational landscape that needs

to be sampled as the number of mutations increases in order to accurately calculate

the binding affinity value. In order to determine whether the latter proteases insuffi-

ciently sampled their configurational landscape, principle component analysis (PCA)
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was performed on the WT and HM systems. This method is able to separate out the

random high-frequency thermal fluctuations from the important lower-frequency cor-

related structural motions which allow analysis of sampled configurations over their

trajectories. The projection of WT and HM’s two most significant modes were plotted

against time (Figures 6.5(a) and 6.6(a)), revealing that neither system were sufficiently

sampling their configurations: the WT system stably sampled configurations for ap-

proximately 6ns, whereupon the secondary mode begin to show drift towards previously

unsampled conformation. Meanwhile, the HM system’s primary mode took approxi-

mately 3ns to begin stably sampling configurations, whilst its secondary mode begins

drifting by 8ns. These results are best described by the frequency at which the pro-

jections are sampled over the simulation. The frequency distribution of the primary

and secondary PCA modes for the WT system reveal a normal distribution for the sec-

ondary mode’s projections, but with the primary mode’s projections showing a slight

bimodal distribution (Figure 6.5(b)). The frequency distribution for the HM system,

however, shows a much less ordered sampling, with the primary mode’s projections

showing positive skew and the secondary mode showing negative skew (Figure 6.6(b)).

This suggests that the 10ns simulation is insufficient for the HM system to effectively

sample its conformational landscape. Although Figures 6.5(c) and 6.6(c) are not di-

rectly comparable to one another, the increased number of distinct conformations in

the HM system’s landscape over the WT system is apparent. The PCA results indi-

cated that while the WT system showed a near-normal distribution of conformational

sampling across its 10ns simulation, the HM system was much more disordered and

required longer simulation time in order for it to effectively sample its much larger

conformational landscape. Therefore the research needed to be directed towards im-

proving this conformational sampling, particularly for the AS, QM and HM systems,

in order to hopefully attain a more accurate binding affinity value. Two methods were

concurrently pursued to improve the sampling: extension of the simulations to 50ns,

and repetition of the simulations, such that they are expanded into an ensemble.
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(a)

(b)

(c)

Figure 6.5: PCA on 10ns WT simulation. (a) Evolution of first 2 modes’ projections
across time. (b) Frequency distribution of the first 2 modes’ projections shown in (a).
(c) The first 2 modes’ projections plotted against each other, with the blue line directing
its configurational sampling through the simulation. Red dashed lines indicate sampled
conformations.
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(a)

(b)

(c)

Figure 6.6: PCA on 10ns HM simulation. (a) Evolution of first 2 modes’ projections
across time. (b) Frequency distribution of the first 2 modes’ projections shown in (a).
(c) The first 2 modes’ projections plotted against each other, with the blue line directing
its configurational sampling through the simulation. Red dashed lines indicate sampled
conformations, and the green dashed line a poorly sampled conformation.
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6.3 Extended single-trajectory simulations

The results in Section 6.2 indicated that the 10 nanosecond simulations were still not

sufficiently sampling configurations, which may have resulted in the anti-correlation to

experimental results published by Ohtaka et al.. Therefore the WT and HM systems

were extended to 50ns and subsequently analysed to determine whether the sampling

and calculated binding affinity to saquinavir improve. The reason for choosing these

two systems was because they represent the two extreme ends of the drug-resistance

trend, and therefore they have the greatest difference in binding affinity. If the rela-

tionship between these two systems cannot be reversed upon simulation extension then

there is no need to extend the other simulations because the overall trend still has not

been altered.

In order to accomplish 100 nanoseconds of MD simulations, the Lonestar machine at the

Texas Advanced Compute Center (TACC) was utilised. This machine is able to perform

the required NAMD force calculations at a rate of approximately 7 hours/simulated-ns

for a 50,000 atom system when parallelised across 32 of its processors. Therefore, as

both simulations were able to be run concurrently, the extension of 80 nanoseconds took

11.67 days and required 17,920 computer-hours. In comparison, the two 22 nanosec-

ond simulations performed by Perryman et al. (2004) took 314.29 days to run on two

computers, each running on a single 2-GHz Xeon processor [77]. This clearly shows the

importance of Grid-computing at the ‘peta-scale’ range in order to attain a turnaround

of results to allow such studies to become tractable [95].

Structural analysis of the simulations through RMSD show slight yet distinct dynamic

differences between WT and HM (Figure 6.7). While both proteases rapidly adopt a

conformation ∼ 1.0Å away from the initial structure, the long-timescale dynamics show

motions hitherto unseen in the 10 nanosecond simulations. The WT protease displays a

very gradual drift (0.006Å/ns) away from this adopted configuration to another ∼ 1.3Å

away from the initial structure, with little oscillation except for the high-frequency ther-

mal motions of the protease. Conversely, the HM protease displays a low-frequency

oscillation with a peak-to-peak amplitude of 0.2Å, peaking at ∼ 1.0Å and ∼ 1.2Å, and
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a period of approximately 5 nanoseconds. In order to determine whether HM was oscil-

lating between two major configurations across this simulation, PCA was performed on

the simulation’s trajectory, and the first two principle components plotted against each

other (see Figure 6.8(a)). The results show that for the trajectory between 22ns and

36ns, where two full oscillations of the global RMSD occur, the HM system samples

between two ends of a constrained region of the configurational landscape, and that its

sampling of this region follows a normal distribution (6.8(b)). Therefore the structures

of both WT and HM can be considered structurally equilibrated across the 50ns.

Having ascertained that both WT and HM structures were stable across their respec-

tive simulations, the binding affinity values were calculated. Before comparing the

computed values to the experimental data, the evolution of the component terms that

comprise the binding affinity values across the simulations needed to be determined to

ensure the systems are energetically stable. The results revealed that for both WT and

HM there was little difference in both their enthalpies and entropies compared to their

respective 10ns simulations. The components of the enthalpic contribution to WT’s ∆G

value remain fluctuating around the same values (Figure 6.9(a)), and the vibrational

entropy retains its variability around the same value through to 50ns (Figure 6.9(b))

whilst the rotational and translational entropies remain constant. The same can be

seen in the enthalpic (Figure 6.10(a)) and entropic (Figure 6.10(b)) components of the

HM system. While this shows energetic stability across the whole 50ns, it also suggests

that the computed ∆G values are not going to change for either system, and therefore

will not reverse the anti-correlation.

The MMPBSA and normal mode analysis of the extended systems calculate the ∆G

values to be -8.20kcal/mol and -26.17kcal/mol for the WT and HM systems respec-

tively (Table 6.4). Therefore the results of the 50ns simulations show no improvement

upon the results across 10ns; in fact, when considered in the context of the results of

the 10ns simulations for AS, DM, FL and QM, the correlation actually becomes more

strongly anti-correlated, with a correlation coefficient of r = −0.90. However, although

the HM ∆G becomes more negative, and the WT ∆G becomes less negative, the HM

system fell within the error bounds of the original 10ns results, and the WT system
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(a)

(b)

Figure 6.8: PCA of HM’s trajectory between 22ns and 36ns, corresponding to 2 RMSD
oscillations in Figure 6.7. (a) The primary and secondary modes’ projections plotted
against each other. Configurations for each nanosecond are shown in different colours,
and a black dotted line depicts the overall direction of configurational sampling. (b)
Distribution of frequencies of the primary and secondary modes’ projections. The
normal distribution indicates stable sampling of configurations.
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(a)

(b)

Figure 6.9: Evolution of the energy components that make up the enthalpic (a) and
entropic (b) contributions to WT system’s free energy change upon saquinavir bind-
ing across the 50ns simulation. All components are consistent across the simulation,
showing the system was energetically at equilibrium.
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(a)

(b)

Figure 6.10: Evolution of the energy components that make up the enthalpic (a) and
entropic (b) contributions to HM system’s free energy change upon saquinavir bind-
ing across the 50ns simulation. All components are consistent across the simulation,
showing the system was energetically at equilibrium.
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was 0.2kcal/mol outside of the original 10ns results. Therefore it could be argued that

the extension to 50ns had no effect on improving the correlation to experimental values

for the HM system, and that it worsened the WT correlation. This suggests that the

proteases did not undergo the significant improvement on configurational sampling that

was hypothesised to improve the accuracy of the computed binding affinity value. In

order to determine the extent of the configurational sampling undertaken through the

50ns compared to the 10ns simulation, PCA was performed across the 50ns trajectory,

and subsequently the data for the first 10ns compared against the dataset as a whole.

Table 6.4: ∆G values for the 50ns WT and HM simulations

Pr Binding affinities (kcal/mol)
Exp 1-10ns STDEVa 11-50ns STDEVa 1-50ns STDEVa

WT -13.00 -10.16 1.94 -6.24 4.99 -8.20 4.63
HM -8.50 -24.76 3.12 -27.58 3.90 -26.17 3.73

a Standard deviation. Calculated between the ∆G values outputted each nanosecond
from the MMPBSA and normal mode analyses.

The comparison between the configurational sampling of the original 10ns simulation

and the extended 50ns simulation is shown for the WT system (Figure 6.11(a)) and

the HM system (Figure 6.11(b)). The results for the WT system show that between

10 and 50ns, which correspond to the pink regions not covered by the blue regions in

Figure 6.11(a), the protease samples an extended range of the motions sampled within

10ns. This is best described by visualisation of these projections on the protease struc-

ture. Figure 6.12 shows the superposition of two protease structures that represent the

extremes of the correlated motions comprising the WT system’s primary eigenvector.

So for example, the fulcrum and cantilever regions of the protease show correlated dy-

namics such that when the fulcrum moves from the pink structure to the grey structure,

there is a corresponding movement in the cantilever from the pink structure towards

the grey structure. Upon extension of the simulation from 10ns to 50ns, Figure 6.11(a)

shows that the maximum extent of correlated motions increases. So the additional

structures sampled were those where pink and grey structures deviated by an even

greater amount at the ringed regions.
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(a)

(b)

Figure 6.11: The projections of the first 2 principle components plotted against each
other for the WT system (a) and the HM system (b). In pink are shown the adopted
configurations for the 50ns simulation, and in dark-blue the configurations adopted in
the first 10ns.
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Figure 6.12: Visualisation of the primary eigenvector on the WT protease’s quaternary
structure. The two superimposed structures represent the minimum and maximum
ranges of the WT system’s correlated motions over the 50ns simulation that comprise
the primary eigenvector. The red dashes highlight the major regions of correlated
motions.
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As can be seen, the correlated motions corresponding to the primary eigenvector all

occur at the extremities of the structure. The structure and volume of the active site

are unaffected, and may therefore explain why there is little change in the strength of

binding between the protease and saquinavir. Analysis of the second and third eigen-

vectors (data not shown) also reveals that these correlated motions do not impact the

active site.

Analysis of the principle components of the HM system show very similar results.

Although the exact locations and extent of the correlated motions on the structure do

not concur, the extension of the simulation to 50ns resulted in an increased range of the

correlated motions observed within 10ns (Figure 6.11(b)). Sampling of a conformation

representing a different potential energy well would be observed as an occupied region

with few conformational data points linking it to the other conformational region. This

would be because the space connecting the two regions would represent the ‘higher en-

ergy’ region connecting the two wells that are energetically-unfavourable and therefore

would not be sampled frequently. As the conformational landscapes in Figures 6.11(a)

and 6.11(b) do not show this, it suggests that the structures are confined to a single

conformational region which it thoroughly samples. These PCA results, in conjunc-

tion with the calculated binding affinity values, show that running the simulations for

50ns does not improve upon the results after 10ns, and does not significantly improve

the configurational sampling undertaken by the protease. It is likely therefore that

alternative methods must be employed to address this.

6.4 Ensemble simulations

In addition to the research carried out in Section 6.3, improvements on the results of

Section 6.2 were investigated by extending the HM and WT systems to ensemble MD

simulations. As with the simulation length extension in Section 6.3, only these two

systems were considered for replication because they represent the extreme ends of the

chain in terms of drug-sensitivty. Therefore, both WT and HM systems were simulated

another 9 independent times to attain 10 systems, each 10ns long. The total simulation

time for these two ensembles was 216 nanoseconds (HM and WT both run another 9
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times for 2 nanoseconds equilibration and 10 nanoseconds production-phase), which is

over double the length of time of the simulation extension in Section 6.3. In order to

achieve a turnaround of results in a comparable timeframe to the simulation extensions,

these simulations were run concurrently on the Ranger machine at the Texas Advanced

Compute Center (TACC). This machine has 62,976 processor cores [35], so utilising 576

of these to concurrently run the 18 replicate systems across 32 processors required only

a fraction of the total number of processor cores available. Ranger was able to perform

the required NAMD force calculations at a rate of approximately 8 hours/simulated-

ns for the 50,000 atom protease system when parallelised across 32 of its processors.

Therefore the time required to run all 18 systems through 12 nanoseconds was 4 days,

and required 55,296 computer-hours. Comparing this to that of Perryman et al., a 4,243

fold increase in turnaround time was achieved by utilising the power of concurrently

running simulation across a Grid network [77]. Even in comparison to the simulation

extension performed on the Lonestar machine, the ensemble method was able to achieve

a 7.88 fold increase in turnaround time. This shows that, without considering the ac-

curacy of the methodology, utilising Grid computers and supercomputer facilities for

ensemble MD results in a much faster turnaround of results than long-timescale MD

simulations. The development of automated scripts such as the Binding Affinity Cal-

culator (BAC), which is integrated into the Application Hosting Environment (AHE)

to automate the task of generating a system of any genotype ready for simulation;

farming the simulations to Grid networks and supercomputers; performing equilibra-

tion and simulation of the system; bringing the outputted files back; and analysing

them through MMPBSA and normal mode analysis [95, 97], makes the aim of ‘using

molecular dynamics simulations to aid clinicians in their decision of drug therapy to

administer’ more tractable when the necessary simulations can be run in 4 days with

the clinician only needing to know the genotype of the HIV protease.

Structural analysis of the simulations was performed through global RMSD for the

WT (Figure 6.13(a)) and HM (Figure 6.13(b)) ensembles. The results showed that all

repetitions for both ensembles were structurally stable across their simulation; their

high-frequency and low-frequency fluctuations show significant overlap. RMSF analy-

sis of the repetitions with respect to the time-averaged structure also showed that the
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structures fluctuate stably around their average structure across the simulation (data

not shown). Having determined the structural stability of the 20 simulations, the bind-

ing affinity values for each system could be calculated and the result averaged over the

10 repetitions.

Table 6.5: Comparison of ∆H, T∆S and ∆G values for the WT and HM 10-repetition
10ns ensembles

Repetition WT (kcal/mol) HM (kcal/mol)
∆H T∆S ∆G ∆H T∆S ∆G

0a -41.90 -31.74 -10.16 -57.99 -33.23 -24.76
1 -43.46 -28.47 -14.99 -47.74 -30.35 -17.38
2 -45.55 -30.84 -14.71 -46.15 -29.53 -16.62
3 -43.85 -30.14 -13.71 -40.55 -29.93 -10.62
4 -39.10 -30.98 -8.12 -53.98 -29.59 -24.39
5 -54.39 -31.26 -23.12 -39.40 -31.95 -7.45
6 -50.84 -30.60 -20.24 -47.61 -28.14 -19.47
7 -44.55 -29.69 -14.86 -44.17 -30.78 -13.39
8 -43.19 -30.85 -12.34 -41.14 -29.62 -11.53
9 -39.70 -32.53 -7.17 -42.64 -31.85 -10.79

MEAN -44.65 -30.71 -13.94 -46.14 -30.50 -15.64
STDEV 4.73 1.11 4.98 6.00 1.49 5.90

a Repetition 0 refers to the original 10ns simulation run in Section 6.3.

The ‘MEAN’ row in Table 6.5 gives the mean ∆G for the WT ensemble as -13.94

±4.98 kcal/mol, and for the HM ensemble as -15.64 ±5.90 kcal/mol. This still makes

the HM protease system more attracted to saquinavir than the WT system, but this is

a marked improvement on both the results of the single 10ns simulation in Section 6.2

and the extended 50ns simulation in Section 6.3. A comparison of the ∆G values by

each method is given in Table 6.6. This shows that while all three simulation methods

gave WT results comparable to the experimental, the ensemble average gave the best

result, with only a 0.94kcal/mol deviation between the experimental results and the

computed ensemble mean. Furthermore, while the HM results were still more negative

than the WT results, the HM ensemble average was only 7.14kcal/mol more negative

than experimental compared to the 19.08kcal/mol difference for the 50ns simulation.

The error bounds of the HM and WT ensembles overlap (Table 6.5) so it is possible

that the ensemble methodology has reversed the correlation to a positive one, but that
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(a)

(b)

Figure 6.13: Evolution of WT (a) and HM (b) ensembles’ global RMSDs with respect
to their post-mutation pre-simulation structure. Each ensemble contains 10 repetitions,
and run for 2ns equilibration followed by 10ns data-collection. The data shows that
all the repetitions within an ensemble show stability across the simulation, and show
strong correlation to other repetitions in the ensemble. All repetitions therefore show
structural equilibration by 2ns.

183



more repetitions are required to make the distinctions more apparent.

Table 6.6: Comparison of the outputted ∆G value by the 3 methods researched in this
chapter

System ∆G (kcal/mol)
Experimental 10ns single 50ns single 10-rep ensemble

WT -13.00 -10.16 -8.20 -13.94
HM -8.50 -24.76 -27.58 -15.64

The results also show that both the WT and HM ensembles show large ranges in the

∆G values between repetitions, with WT showing a 15.95kcal/mol range between sim-

ulations, and HM showing a 17.31kcal/mol range. These ranges are larger than the

average ∆G values, which highlights the caution of relying on a single simulation to

generate a result; had WT repetition 7 been run in conjunction with HM repetition

5, the computational results would have concurred with experimental, and the con-

clusion would have been made that the methodology was sufficient for reproducing

the trend in saquinavir resistance. It is also important to note that the variation in

∆G values between simulations was far greater than any variation previously observed

across a simulation, which indicates that a much greater chance of reaching novel con-

formations is achieved through the random assignment of velocities at the first MD

time-step combined with the minimisation protocol than is achieved through natural

conformational sampling in unrestrained simulation over longer time periods. The con-

formational sampling of the ensemble methodology was investigated through PCA of

the WT and HM ensembles.

The frequency distribution of the primary eigenvector (Figure 6.14(a)) was encourag-

ing because it showed that all repetitions followed a normal-distribution. This means

that within each repetition the protease was stably sampling a particular conformation

over the length of its simulation, which gives further indication that the structures were

equilibrated. It also reinforces the observations made in Section 6.3 that once the struc-

ture has minimised to a particular energy minima on the conformational landscape, it
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(a)

(b)

Figure 6.14: PCA of the 10-repetition WT ensemble. (a) Frequency distribution of the
primary mode’s projections for each of the 10 repetitions. Results show a high degree
of overlap in sampling, and all show normal distribution in their projections. (b) Fre-
quency distribution of the secondary mode’s projections for each of the 10 repetitions.
Results show almost complete overlap in the sampling of this mode, which means there
is little difference in these correlated motions between repetitions.
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(a)

(b)

Figure 6.15: PCA of the 10-repetition HM ensemble. (a) Freqency distribution of the
primary mode’s projections for each of the 10 repetitions. The results show reasonable
overlap between repetitions, but with a greater overall range of configurations than
WT. (b) Frequency distribution of the secondary mode’s projections for each of the 10
repetitions. The results show a normal distribution of sampling for all repetitions, and
significant overlap between repetitions.
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does not leave this minima over the course of its simulation. While there was signifi-

cant overlap between the projection of the primary eigenvector for different repetitions,

they fell into distinct regional distributions suggesting they sampled different regions

of the same mode. Correlation of the modal projection value for each repetition to its

corresponding ∆H value gives a correlation coefficient of r = −0.89, which is a signifi-

cant anti-correlation. Therefore, if you consider the entropy as a constant value for the

system, the calculated binding affinity value gets more negative as the primary mode’s

projection gets larger. This means that the correlated motions which comprise the pri-

mary mode directly affect the strength of binding between the protease and inhibitor,

and subsequently the regions of these motions that are sampled across a simulation

determine its accuracy to experimental. To determine whether this is unique to the

motions of the primary eigenvector, the correlation between the modal values of the

secondary eigenvector (Figure 6.14(b))to the ∆H value was calculated. The resultant

correlation coefficient was r = 0.29, which was not significant.

The frequency distribution of the projections of the primary eigenvector for the HM en-

semble were calculated to determine their correlation to the ∆H value (Figure 6.15(a)).

The resultant correlation coefficient was r = −0.05, which represents no correlation be-

tween the two sets of values. Therefore the strong correlation between the correlated

motions of the WT system and the binding affinity value do not follow through to

the HM system. It is important to note that the motions comprising the primary

eigenvector of the WT system are not necessarily the same as the motions comprising

HM’s primary eigenvector, so these results do not indicate a disassociation between

these motions and the ability to determine drug sensitivity. The correlation between

the modal values of the frequency distribution of the second eigenvector’s projections

(Figure 6.15(b)) and the ∆H value was calculated to be r = 0.52. Values between 0.40

and 0.69 indicate a modest correlation [20], so therefore although the HM system does

not show correlation to the most significant correlated motions, it does show moderate

correlation to the second-most significant motions. Further analysis showed that there

was no significant correlation to subsequent eigenvectors (data not shown).

Having determined that there is very strong correlation between WT’s primary eigen-
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vector’s correlation motions and the binding affinity value, and moderate correlation

between HM’s secondary eigenvector’s correlated motion and the binding affinity value,

the location and magnitude of these motions needed to be visualised to see if there

was any similarity between the two. The results showed that the correlated motions

of WT’s primary eigenvector (Figure 6.16(a)) and HM’s secondary eigenvector (Fig-

ure 6.16(b)) were very similar. The correlated motions were concentrated around the

extremities of the structure, particularly the fulcrum and cantilever regions of the right-

hand monomers in the figures. The active site remains relatively static except for the

flaps and loop regions that enclose the top. In contrast, the correlated motions of HM’s

primary eigenvector, which resulted in no correlation to calculated ∆H, showed the

structure stretching and contracting across its horizontal axis (data not shown). The

similar location of the correlated motions was encouraging, as it narrowed the cause

of the differences between replicate simulations, and between WT and HM systems,

down to a single eigenvector. However, as the results have shown that the ∆G results

across a simulation do not significantly change, and that the adopted configuration

is much more dependant on the initial minimisation and equilibration protocol rather

than the sampled configurations during the simulation, only running 10 replicates for

each system is not sufficient for the protease to sample all the possible configurations

in the eigenvector that correlates with the ∆H.

6.5 Extended ensemble simulations

Following these encouraging results, the HM ensemble was extended to 100 repetitions

and the WT ensemble extended to 20 repetitions. The reason for extending the HM en-

semble further than the WT was because the 10-repetition WT ensemble already gave

results that concurred with experimental data whereas the 10-repetition HM ensemble

showed improvement upon the single-trajectory simulation but still did not completely

concur. Therefore, due to the difficulty of analysing such a large amount of data, both in

terms of technical limitations of the software used, and the time required to analyse 100

repetitions, this was only performed on the HM ensemble. However, the WT ensemble

was extended to 20 repetitions to ensure that the results still agreed with experimental.
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(a)

(b)

Figure 6.16: Location and magnitude of the correlated motions comprising WT’s pri-
mary eigenvector (a) and HM’s secondary eigenvector (b). PCA performed for each
system across their 10-repetition 10ns ensemble. Results show strong similarities be-
tween the proteases in the location of the correlated motions.
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Due to the amount of computational resource made available at this time, running

the ensemble simulations was no longer the rate-limitation in turnaround of results.

Instead file transfer from the supercomputers back to the central storage, and per-

forming the MMPBSA and normal mode analysis became more time-prohibitive than

running the simulations. In order to extend the HM ensemble to 100 repetitions and the

WT ensemble to 20 repetitions, 100 extra 12 nanosecond (2ns equilibration and 10ns

data collection) simulations were run. These were run concurrently on the Lonestar

and Ranger machines at TACC, the Leibniz-Rechenzentrum (LRZ) at München, and

the High End Computing Terascale Resources (HECToR) supercomputer of UK Na-

tional Supercomputing Service. Collectively, these resources contain 82,120 processor

cores [35, 53, 54, 3], so it was possible to comfortably run all 100 simulations simultane-

ously across 3,200 processors. All simulations were therefore completed in 4 days. This

generated 600Gb of data which then needed to be transferred back from the various

supercomputers around the world to the centralised location where they were analysed.

This transfer was non-trivial, and required the development of in-house scripts to help

speed up the transfer-rate. The subsequent normal mode analysis is not able to be

parallelised, and so because the method performs its own minimisation of the structure

prior to configurational energy calculation, this took approximately 1.5 days to analyse

1 nanosecond.

Global RMSD analysis of the structures showed that all simulations for both WT and

HM rapidly relax to a structure about which they stably fluctuate for the course of the

simulation (data not shown). Due to the difficulty in presenting such large amounts of

data, only select simulations, and the statistics of the ensemble as a whole will be pre-

sented. The average of the extended ensembles, and their comparisons to the original

ensembles and experimental data, are shown in Table 6.7. The average ∆G of 20-

repetition WT ensemble retains its concordance to Ohtaka et al.’s experimental value,

with both the component enthalpies and configurational entropies retaining a stable

average as the number of repetitions increased. However, the HM ensemble actually

became more negative, moving back in the direction of the single trajectory results

(see Section 6.2). The cause of this increased negativity was the enthalpic component

(∆H) of the free energy, which became 1.09kcal/mol more negative when averaged
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over 100 repetitions instead of the original 10. Conversely, the entropic component

remained stable, which indicates that the cause of the increased negativity in the HM

binding affinity value is stronger non-bonded forces between the protease and inhibitor

averaged across repetitions 10-99 compared to 0-9. Decomposition of the ∆H and T∆S

into their component energies showed that the distribution of the ∆Hele values becomes

more negative across 100 repetitions than across 10, whilst the other components re-

main stable (data not shown). Therefore the non-bonded electrostatic forces caused

the ∆G 100-repetition average to become more negative in the HM system.

Table 6.7: Thermodynamics of the extended WT and HM ensembles

Pr Thermodynamics (kcal/mol)
Rep 0-9 Rep 10-99 Rep 0-99

∆H T∆S ∆G ∆H T∆S ∆G ∆H T∆S ∆G
WT -44.65 -30.71 -13.94 -45.02 -31.67 -13.36 -44.85 -31.21 -13.63
HM -46.14 -30.50 -15.64 -47.37 -30.68 -17.54 -47.23 -30.64 -17.11

The range of ∆G and ∆H values does not change upon extension of the WT ensemble

(Tables 6.8 and 6.9), indicating that the range of configurations required to calculate

the binding affinity value is captured within the first ten repetitions. However, this is

not the case for the HM system, where the standard deviations and increased range of

∆G and ∆H values indicates that the protease has many more configurations that it

needs to sample, and which cannot be captured within 10 repetitions. The extended

ensemble for HM also highlighted the benefit of running more repetitions in an en-

semble over extending a simulation for sampling configurations. The average standard

deviation of ∆H values across a 10ns simulation was 2.96kcal/mol, with some simu-

lations giving standard deviations as low as 1.12kcal/mol. In contrast, the average

standard deviation of ∆H values across the first nanosecond of all 100 simulations was

7.23 kcal/mol. In fact, taking the enthalpic and entropic values from the first nanosec-

ond of each simulation in the ensembles gives ∆G values of -13.18kcal/mol for WT and

-16.09kcal/mol for HM. These differ by 0.45kcal/mol for WT and 1.02kcal/mol for HM,

which fall within the error bounds of the 10ns-ensemble. This is further emphasised

by comparing the distribution of ∆H values for both WT and HM systems across 1ns
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ensembles and 10ns ensembles (Figures 6.17(a) and 6.18(a)). The comparison shows

that the ∆H values are normally-distributed within 1ns for both WT and HM, and

that extending each repetition to 10ns does not significantly change the magnitude or

the distribution. In the HM system, the ∆H distribution (Figure 6.18(a)) does show

a slight over-representation of values < −54.0kcal/mol which would contribute to the

1.02kcal/mol more negative ∆G mean. In comparing the T∆S distributions for the 1ns

and 10ns ensembles of both WT and HM (Figures 6.17(b) and 6.18(b)) the results show

that the 1ns ensemble does not follow the normal-distribution adopted by the full 10ns

ensemble. However, this does not necessarily mean that 1ns is not a sufficient length

of time to calculate a configurational entropy value; it may indicate that an insufficient

number of snapshots were used to calculate the entropy. The analysis protocol per-

formed by the BAC averages the entropy from 1 snapshot every 200ps, which means

that only 5 values are calculated for a 1ns simulation. The results of Table 6.10 showed

that the configurational entropy remains almost a constant value across simulations,

and the average T∆S value across the 1ns ensembles only differed by 0.38kcal/mol for

WT and 0.76kcal/mol for HM. Therefore, by calculating the configurational entropy

from more snapshots per nanosecond, a normal distribution similar to the 10ns ensem-

ble may be attained. Although an increased number of snapshots per nanosecond was

not implemented, the minimum required number of nanoseconds to attain the normal

distribution observed at the 10ns ensemble was investigated (Figure 6.19). The results

showed that by 5ns the distribution was almost exactly the same as at 10ns. To cal-

culate the configurational entropy over 5ns utilises 25 snapshots, so this suggests that

either the binding affinities can be averaged over 5ns to attain a normal distribution of

entropies, or they can be averaged over just the first nanosecond where the configura-

tional entropy is averaged over 25 snapshots, which corresponds to 1 every 40ps. This

would allow the binding affinity of an ensemble to be calculated from simulations with

2ns equilibration and 1ns data-collection; ensuring that the structures simulated over

that time sample configurations resulting in a normal distribution of enthalpies and

entropies.
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(a)

(b)

Figure 6.17: Comparison of frequency distributions of the ∆H component (a) and
T∆S component (b) of the binding free energy across the WT ensemble. The blue
bars represent the consideration of only the first nanosecond of production-phase for
each repetition; the red bars consider the whole 10ns simulation. The graphs were
normalised by dividing the frequency by the total number of values to allow direct
comparison between 1ns and 10ns.
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(a)

(b)

Figure 6.18: Comparison of frequency distributions of the ∆H component (a) and
T∆S component (b) of the binding free energy across the HM ensemble. The blue
bars represent the consideration of only the first nanosecond of production-phase for
each repetition; the red bars consider the whole 10ns simulation. The graphs were
normalised by dividing the frequency by the total number of values to allow direct
comparison between 1ns and 10ns.
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Table 6.8: ∆G statistics of the extended WT and HM ensembles

Pr ensemble ∆G statistics (kcal/mol)
Lower range Upper range Mean STDEV

0-9 -20.24 -7.17 -13.94 6.10
WT 10-19 -19.79 -8.49 -13.36 6.49

0-19 -20.24 -7.17 -13.63 6.30
0-9 -24.76 -7.56 -15.64 6.90

HM 10-99 -27.20 -5.59 -17.54 7.74
0-99 -27.20 -5.59 -17.11 7.60

Table 6.9: ∆H statistics of the extended WT and HM ensembles

Pr ensemble ∆H statistics (kcal/mol)
Lower range Upper range Mean STDEV

0-9 -54.39 -39.10 -44.65 5.14
WT 10-19 -50.20 -39.93 -45.02 5.42

0-19 -54.39 -39.10 -44.85 5.28
0-9 -57.99 -39.40 -46.14 6.00

HM 10-99 -58.34 -35.99 -47.24 6.42
0-99 -58.34 -35.99 -47.12 6.41

Table 6.10: T∆S statistics of the extended WT and HM ensembles

Pr ensemble T∆S statistics (kcal/mol)
Lower range Upper range Mean STDEV

0-9 -32.53 -28.47 -30.71 1.11
WT 10-19 -35.18 -27.15 -31.67 2.01

0-19 -35.18 -27.15 -31.21 1.68
0-9 -33.23 -28.14 -30.52 1.48

HM 10-99 -33.73 -27.31 -30.71 1.48
0-99 -33.73 -27.31 -30.64 1.48
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From these results, the conclusion was made that the variation of binding affinities

within an ensemble is due almost solely to differences in the enthalpic component,

with the entropic component essentially a constant value at ∼ 31kcal/mol for WT and

∼ 30.5kcal/mol for HM. The small variations observed in the entropic component were

due to limitations of the normal mode analysis methodology, whereas the variations

observed in the enthalpic component were representative of the different configurations

that must be considered collectively to calculate a binding affinity comparable to ex-

perimental. That the range of ∆G encompasses the experimental value for both WT

and HM further reinforces the conclusion that individual binding affinity values are

unimportant, and that the population as a whole, and the population’s ∆H distribu-

tion must be analysed. Although it was determined that the number of configurations

sampled by an ensemble does not increase as the simulation length is extended beyond

1ns, it was also determined that while a 10-repetition ensemble is enough to sample

sufficient configurations to calculate a WT binding affinity value comparable to ex-

perimental, 100 is not enough to sample sufficient configurations to calculate an HM

binding affinity comparable to experimental.

PCA of both the WT and HM systems was restricted to the first nanosecond of data-

collection because the amount of data created by each ensemble was too great for either

PCAZIP or PTRAJ programs to handle. As the results in this chapter showed that

analysis of the first nanosecond was a sufficient representation of the 10ns simulation

as a whole, the configurational sampling of the two extended ensembles were analysed

from their first nanosecond. The primary eigenvector of 20-repetition 1ns WT ensem-

ble showed a correlation coefficient of r = −0.63 to each repetition’s ∆H value. While

the correlation is not as strong as with the primary eigenvector of the 10ns simulation,

this is still a significant correlation. Visual inspection of the location of the correlated

motions comprising the primary eigenvector show that they are almost identical to

those in Figure 6.16(a) (data not shown). Plotting the projections of primary principle

component against the secondary principle component show that there is almost no

additional sampling of these eigenvectors by doubling the number of repetitions (Fig-

ure 6.20). This suggests that the WT conformational landscape is effectively sampled

within 10 repetitions.
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Figure 6.20: Projections of the first 2 principle components of the WT 20-repetition
1ns ensemble plotted against each other. In pink are the configurations adopted across
the whole ensemble, and in dark-blue are the configurations adopted by the first 10-
repetitions. The results show that little additional sampling is achieved upon extension
to 20 repetitions for the WT system.

Analysis of the frequency distribution of the principle component for each of the 100 1ns

HM repetitions revealed a very strong correlation between a repetition’s modal projec-

tion and its average ∆H (data not shown). The correlation coefficient between the two

was r = 0.90, which means that the regions of the correlation motions captured by the

primary eigenvector that are sampled by the repetition are directly correlated to the

strength of binding between the protease and the inhibitor. Visualisation of the loca-

tion of these correlated motions showed that they are almost identical to those motions

of the secondary eigenvector for the 10-repetition 10ns simulation (Figure 6.16(b)).

Subsequent eigenvectors analysed showed no correlation to the ∆H, indicating that

these motions alone are responsible for the calculated binding affinity value. The fre-

quency distribution of the primary eigenvector’s projections across the whole ensemble

highlighted the cause of the erroneous calculated binding affinity value for this system

(Figure 6.21(b)).
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(a)

(b)

Figure 6.21: Frequency distribution of the primary eigenvector’s projections for the
20-repetition 1ns WT ensemble (a) and the 100-repetition 1ns HM ensemble (b). (a)
Results show a normal distribution about the projection which shows moderate corre-
lation to a ∆H of ∼ −44kcal/mol. (b) Results show a bimodal distribution; the large
peak corresponds to simulations where the ∆H is ∼ −50kcal/mol; and the small peak
corresponds to simulations where the ∆H is ∼ −38kcal/mol, which corresponds to a
decreased sensitivity to the inhibitor.
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The bimodal distribution has a dominant peak at a projection of -1 and a much

smaller peak at +7. The average ∆H for the 1ns simulations that fall in the larger

peak is ∼ −50kcal/mol, while those that fall in the smaller peak have an average ∆H

of ∼ −38kcal/mol. Taking the entropy of the system to be constant at -30kcal/mol

(taken from Table 6.5), these peaks represent binding affinities of ∼ −20kcal/mol and

∼ −8kcal/mol for the larger and smaller peaks respectively. In contrast, the frequency

distribution of the primary eigenvector’s projections across the 20-repetition 1ns ensem-

ble show a normal distribution. The modal projection shows moderate correlation to a

∆H value of ∼ −44kcal/mol which, when considered with a T∆S value of -31kcal/mol

(value taken from Table 6.5) gives a binding affinity of ∼ −13kcal/mol.

6.6 Conclusions

The results presented in this chapter show that MMPBSA and normal mode analysis

of a single molecular dynamics simulation of HIV-1 protease complexed with saquinavir

is insufficient for calculating a binding affinity value. The single trajectories of the 6

protease systems simulated in Section 6.2 resulted in a strong negative correlation to

experimental data published by Ohtaka et al. (2003). However, subsequent expan-

sion of the WT and HM systems into ensembles showed considerable overlap in the

ranges of ∆G values exhibited by their constituent simulations. Therefore, all types of

correlation; from strongly-positive, to no-correlation, to the strongly-negative correla-

tion observed, are possible from combinations of the individual simulations contained

within the ensembles. While energy analysis of single trajectories of single simulations

has been successfully applied to HIV-1 protease complexed with a protease-inhibitor

[120, 50], these findings strongly suggest that the results would not be consistently

reproducible, and therefore this methodology is not suitable as a diagnostic tool for

predicting drug-resistance phenotype from the genotype.

Although expansion of the WT and HM systems into ensembles was shown through

PCA to improve the conformational sampling, it was still not able to replicate the ex-

perimental drug-resistance trend. While the extended WT ensemble gave an average

∆G only 0.63kcal/mol more negative than the experimental value, the average ∆G
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across the HM ensemble was 8.61kcal/mol more negative than the experimental value

and 3.48kcal/mol more negative than the computational WT value. Therefore, while

a mean of the ∆G values within an ensemble was sufficient for the WT system, it was

insufficient for the HM ensemble. The spread of ∆G values within each ensemble was

shown to be moderately-to-highly correlated to a set of concerted motions in the pro-

tease; the WT ensemble showed a normal distribution of the frequency about which

it sampled these motions, with the modal configuration’s binding affinity equivalent

to the experimental binding affinity. The HM ensemble, conversely, showed an uneven

bimodal distribution of the frequency at which it sampled these motions. The domi-

nant peak’s modal configuration had a binding affinity of approximately -20kcal/mol,

whilst the minor peak’s modal configuration had a binding affinity of -8kcal/mol. These

results therefore suggest a hitherto unseen dynamic in the HM protease where it tran-

sitions between a configuration with a stronger affinity to saquinavir than the WT

protease, and a configuration with a weaker affinity to saquinavir than the WT pro-

tease. These transitions could act as a mechanism by which the HM protease reduces

its sensitivity to saquinavir; the infrequent transitions to configurations with a reduced

binding affinity to saquinavir could cause the expulsion of the inhibitor. Meanwhile,

these configurational dynamics may have less of an effect on the substrate because the

ES complex only need to transiently form in order for the catalysis to occur, whereas

the competitive inhibitor fulfills its role by staying as an EI complex for as long a pos-

sible, thus preventing the enzyme from being able to catalyse any reactions.

However, this is an interpretation of the results, and does not address the fact that

the HM ensemble’s minor peak corresponds to the experimental binding affinity value

of -8.5kcal/mol, and therefore the larger peak at -20kcal/mol brought the average value

down to -17.11kcal/mol in the 100-repetition ensemble. It may be due to the pre-

simulation protocol that was followed for all simulations; the mutation and subsequent

minimisation protocol may result in the minimisation of the structure towards one of

two configurational minima. The majority of the time the structure is directed into a

non-physiological configurational well which should not be considered, and only occa-

sionally does the structure minimise down the gradient towards the minimum repre-

senting physiological configurations. A third interpretation of these results is that this
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ensemble is not sufficiently large enough to correctly sample the required landscape.

The configurations relating to the minor peak only became apparent upon extension

of the ensemble to 100 repetitions, so it may be necessary to extend the ensemble even

further to see how these frequency distribution of these correlated motions changes. It

may be that the smaller peak becomes more significant, and with a better sampling

of those configurations, the modal value of the peak shifts towards a less negative ∆G

configuration that subsequently brings the ensemble average to a less negative value

than the WT system. Extension of this work should therefore concentrate on expansion

of the HM ensemble to determine whether these low-frequency configurations become

more significant.
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Chapter 7

Final discussion and future work

7.1 Final discussion

The aim of this thesis was to investigate whether explicit-solvent, nanosecond-timescale

molecular dynamic simulations of HIV-1 protease complexed with saquinavir could be

analysed through the heuristic MMPBSA methodology to calculate an accurate binding

affinity value, which would allow prediction of the effects of drug-resistance mutations.

This would have clinical applications, where it could be used for the prediction of drug-

resistance phenotype straight from the viral genotype much faster than current clinical

methods. In this thesis a local SQL database was generated to address the lack of a

collective resource for genotypic, structural and biochemical data on HIV-1 protease.

This database connected the various data according to the sequence of the protease on

which the experiment was performed, which allowed for the rapid collation of the data

for a particular sequence using a simple SQL query. In Chapter 5 it was shown that up

to 13 mutations in each monomer (26 residues in the homodimer) could be computa-

tionally alchemically-mutated in the protease without adversely affecting the structure

or flexibility of the protease. This novel study is important as it showed that HIV-1 pro-

tease can be computationally converted into a wide array of genotypes, thereby greatly

increasing the possible numbers of genotypes that can be simulated through molecular

dynamics. This has a significant impact on its practical applications, as simulations of

drug-resistant protease genotypes observed in vivo will not be restricted to those with

previously-determined crystal structures.
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In Chapter 6, it was shown that single trajectory molecular dynamics simulations of

HIV-1 protease complexed with saquinavir were insufficient for accurate calculation of

a binding affinity, and are therefore insufficient for calculation of a change in drug re-

sistance between genotypes. Molecular dynamics ensembles of the wild-type (WT) and

multi-drug resistant (MDR) proteases were shown to improve conformational sampling,

and for the WT system was able to calculate an accurate binding affinity, but was unable

to do so for the MDR system. This was suggested to be due to an insufficient number

of repetitions in the MDR ensemble, which meant that the configurational landscape

was not adequately sampled. This indicates that the number of replicates required to

adequately sample a system’s configurational landscape is specific to that system, mak-

ing automation of the simulations, which is necessary for clinical application, difficult

because the required number of replicates in an ensemble is unknown. This can be

addressed by consistently running a set number of replicates for each simulation that

will guarantee configurational sampling for all systems, but this is inefficient and not

conducive for a rapid turnaround of results. Furthermore, this negates the benefit of

calculating the binding affinity through the heuristic MMPBSA method; if the rapid

calculation of a binding affinity for a single simulation is offset by the requirement to

analyse hundreds of simulations in order to attain an accurate value, then the method

is not time-effective or resource-efficient. Thermodynamic Integration (TI) is a highly-

accurate method of calculating the change in binding affinity between two systems. Its

accuracy comes at the cost of a prohibitively-high computational demand - requiring

approximately 40 simulations, each several nanoseconds in length [21]. However, the

findings of this thesis show that the computational requirements for analysing an en-

semble through MMPBSA is of the same order as TI. With the availability of Grid

networks and supercomputers at an unprecedented level, application of TI to the sys-

tems studied in this thesis should be considered.

A requirement for practical application of MMPBSA analysed MD simulations is a

rapid turnaround of results, in the order of days instead of weeks for current diagnos-

tic methods. The production of new supercomputers such as HECToR at Edinburgh,

and Legion at University College London, along with the ever-increasing network of
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computers available for scientific research means that multiple simulations can be run

simultaneously, thereby greatly increasing the throughput. The number of available

processors has meant that the limitation in the turnaround of results has become the

speed at which parallel processors can communicate with each other. It was shown in

this thesis that it is possible to run a 3ns molecular dynamics simulation in 18-24 hours.

However, the greater bottleneck was the post-simulation processing - transferring the

data back from the various supercomputers for analysis, and the non-parallelised normal

mode analysis and PCA. Together these require another day per 2 or 3 simulations to

generate a result. Therefore, with the current availability of computational resources, it

is possible to generate a binding affinity value for a single simulation in approximately 2

days, though transferring the data for a 100-repetition ensemble takes approximately 1

week with standard ‘SCP’ or ‘SFTP’. The ability to perform the post-processing anal-

yses on supercomputers will greatly enhance this, and allow the turnaround of results

in approximately 2 days.

Another finding in this thesis is a previously un-postulated mechanism of drug re-

sistance in the HM system of Ohtaka et al. (2003), based on principle components

analysis of the HM ensemble. This system was shown to transition between configura-

tions with a strong affinity for saquinavir, to configurations with an affinity lower than

the WT system at an approximately 30% frequency. This transitioning would result

in a higher chance of dissociation of the enzyme-inhibitor complex. However, while

a concerted set of motions has been shown to be correlated to the calculated ∆G, it

is unlikely that all residues included in these correlated motions are necessary, so the

PCA should be re-calculated for subsets of the WT and HM backbones to determine

the key residues involved. This would lead to an understanding of how their configu-

rations result in a lower binding affinity. This may be due to the a transient reduction

in the interaction energy between protease and saquinavir, similar to the mechanism

postulated for the D30N mutation, or it may be due to a transient reduction in the

hydrogen bonding pattern, as therosied for the N88S mutation[122]. Similar dynamic

mechanisms have been theorised for the V82F/I84V mutant, which was postulated to

more frequently adopt a ‘semi-open flaps’ configuration that results in the inhibitor

having a greater enthalpic cost upon binding [77].
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7.2 Future work

In light of the results presented in this thesis, it is apparent that further work is nec-

essary to understand why the HM ensemble is unable to calculate an accurate binding

affinity through the MMPBSA methodology. It was shown that particular correlated

motions in each system were strongly associated with the strength of binding between

the protease and saquinavir, but the mechanism by which these motions affect the

binding was not ascertained. Therefore, future work should focus, in the first instance,

on determining the key residues whose motions correlate with the calculated binding

affinity. Recognising which residues affect the binding affinity will enable the mech-

anism of drug resistance in the HM system to be theorised. However, this does not

address the inability to calculate an accurate binding affinity for the HM ensemble. In

order to determine whether this was due to a lack of configurational sampling, the HM

ensemble should be expanded to observe whether an improvement on the average ∆G

with respect to the experimental value is attained. Performing PCA on the expanded

HM ensemble will determine whether an improvement in configurational sampling is

achieved. Analysis of the other 4 protease genotypes in the paper by Ohtaka et al. is

necessary to determine whether the inability to calculate a binding affinity value for the

HM system occurs in this system alone, or whether the anti-correlation still persists.

Therefore, the 4 remaining systems should be expanded to ensembles and analysed

through PCA in the same manner as presented in this thesis. Due to the findings in

this thesis, the number of snapshots for normal mode calculations should be increased

to approximately 25 per nanosecond. The increase in computational resources available

at present facilitates the subsequent increased computational requirements.

Another consideration, that was not addressed in this thesis, is the change in free

energy associated with conformational change upon complex formation. For each sys-

tem a single simulation of the complex was run, and the conformations of the receptor

and ligand necessary for calculation of the change in free energy upon ligand bind-

ing (Equation 2.14) attained by removing the unnecessary atoms in the complex file.

Therefore there are no values representing the change in internal energy upon ligand

binding through the simulations. This was to reduce the computational requirements
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for each simulation as otherwise 3 separate simulations would have to be run for the

ligand, receptor, and ligand-receptor complex, which would nearly triple the required

computational resources. However, with the increase in available computational re-

sources since conception of this research, addressing this issue should be addressed to

give a more realistic free energy calculation. However, while this may improve the

results, this should be considered against the substantial increase in computational re-

source required which goes against the aim of rapidly generating binding energies using

a heuristic methodology.

Future work beyond these HIV-1 protease systems should be considered with caution;

the findings in this thesis are applicable only to this system. Therefore, these findings

cannot apply to, for example, the reverse transcriptase enzyme of HIV. There are also

other clinically-relevant viral protease enzymes against which inhibitors have been de-

signed; for example hepatitis C virus (HCV), human cytomegalovirus (HCMV), herpes

simplex virus type 1 (HSV-1) and picornavirus [75]. The findings in this thesis may

have some application to these enzymes, but as they have no structural homology to

the HIV protease, the proposed mechanism of resistance is not cross-applicable. Nev-

ertheless, the mutation and equilibration protocol employed by the BAC, and utilised

in this research, should be robust enough to mutate and structurally-equilibrate other

crystal structures. This is reinforced by the utilisation of this protocol by collaborators

for MD simulations of HIV reverse-transcriptase, which is considerably larger and less

globular than HIV protease. The findings of this thesis also suggest that simulations on

other systems should be run as short-timescale ensembles, but that the number of repli-

cates required to attain a binding energy value will be dependant on its configurational

landscape.
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[6] Beerenwinkel, N., Däumer, M., Oette, M., Korn, K., Hoffmann, D., Kaiser, R.,

Lengauer, T., Selbig, J. and Walter, H. (2003) “Geno2pheno: estimating phe-

notypic drug resistance from HIV-1 genotypes” Nucleic Acids Research 31 13

3850-3855.

[7] Berg, J. M., Tymoczko, J. L. and Stryer, L. (2002) Biochemistry, fifth edition

(International edition). New York: W. H. Freeman and Company.

[8] The Binding Database (2007) Viewed 3rd November 2005,

<http://www.bindingdb.org>.

208



[9] Boden, D. and Markowitz, M. (1998) “Resistance to Human Immunodeficiency

Virus Type 1 Protease Inhibitors” Antimicrobial Agents and Chemotherapy 42

11 2775-2783.

[10] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan,

S. and Karplus, M. (1983) “CHARMM: A program for macromolecular energy,

minmimization, and dynamics calculations” Journal of Computational Chemistry

4 187-217.
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