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ABSTRACT 
 
This paper deals with the following question associated with congestion pricing in a general 
network with either fixed or elastic travel demand: what is the maximum efficiency loss of a 
general second-best pricing scheme due to inexact marginal-cost pricing in comparison with 
the first-best pricing or system optimum case? A formal answer to this question is provided 
by establishing an inefficiency bound associated with a given road pricing scheme. An 
application of the methods is provided for the practical trial-and-error implementation of 
marginal-cost pricing with unknown demand functions. 
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1. INTRODUCTION 
 
Roadway congestion is a source of enormous economic costs. In principle, many of these 
costs can be prevented, as they result from socially inefficient choices by individual drivers. 
A number of regions have considered alleviating roadway congestion by introducing 
congestion pricing. Indeed, road pricing has become one of the priorities on transport policy 
agendas throughout the world. An increasing number of congestion pricing schemes have 
been proposed, tested or implemented worldwide. Examples include the US's value pricing 
scheme, recent EU green and white papers, Dutch initiatives, electronic road pricing schemes 
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in Singapore and Hong Kong, and the London congestion charging scheme that was 
introduced in February 2003. It is increasingly believed that road pricing may offer an 
effective instrument to manage travel demand, and to raise revenue that may, for instance, be 
used for transport improvements, and a new generation of road-use pricing technologies will 
be widely considered for introduction on many congested road networks.  
 
From a theoretical perspective, road pricing has been a subject of substantial researches for a 
few decades by transportation economists and scientists. The initial idea of road pricing was 
put forward by Pigou (1920), who used the example of a congested road to make points on 
externalities and optimal congestion charges. Seminal works on both intellectual and 
practical developments after Pigou’s idea include Walters (1961), Beckmann (1965), Vickrey 
(1969), Dafermos and Sparrow (1971), Dafermos (1973) and Smith (1979a). The key 
objective of road pricing is to achieve an optimal flow distribution pattern, which minimizes 
the total network travel time in the case of fixed demand, or maximize the total economic 
benefit in the case of elastic demand, by charging users on congested links in the network. It 
is widely recognized that the System Optimum (SO) can be decentralized as a Wardropian 
User Equilibrium (UE) (Wardrop, 1952), by charging tolls on all links according to the 
principle of marginal-cost or first-best pricing. The optimal toll on a road link is equal to the 
difference between the marginal social cost and the marginal private cost, which can 
internalize the user externalities and thus achieve a SO flow pattern in the network (Yang and 
Huang, 1998). It is also recognized that, in spite of its perfect theoretical basis, the first-best 
pricing scheme is of little practical interest. The problem stems from the fact that it is 
impractical to charge users on each network link in view of the operating cost and public 
acceptance. Due to the imperfection of the first-best pricing from a political and technical 
implementation perspective, the second-best charging schemes are more practically relevant, 
and indeed have received ample attention recently. A wide variety of second-best pricing 
schemes in general networks are developed to determine the optimal tolls for system 
performance optimization, under given physical and economic pricing constraints. Readers 
are suggested to refer to Yang and Huang (2005) and Lawphongpanich et al. (2006) for 
recent comprehensive treatments of the first-best and second-best pricing problems in general 
networks. 
 
Among the various social, economic and technical issues associated with congestion pricing 
in general traffic networks, the following question is of particular interest here: what is the 
maximum efficiency loss of a general second-best pricing scheme due to inexact marginal-
cost pricing in comparison with the first-best pricing or system optimum case? Clearly, a 
formal answer to this question should prove to be very important and meaningful for design 
and evaluation of actual pricing schemes in the presence of pricing constraints.  
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In this paper we make a full investigation of the posted questions in the spirit of ‘price of 
anarchy’, a term that was first dubbed and used recently for bounding the inefficiency of 
equilibria in non-atomic congestion games (Papadimitriou, 2001). The price of anarchy for a 
non-atomic congestion game is determined by looking for the worst possible ratio between 
the total cost incurred by players in an equilibrium situation and in an outcome of minimum-
possible total cost or system optimum; it has been examined by, for example, Roughgarden 
(2003), Chau and Sim (2003), Roughgarden and Tardos (2004), Perakis (2004), and Correa et 
al. (2004, 2005). It is suggested that readers refer to Roughgarden (2005) for a recent 
comprehensive review of this emerging research subject. 
 
The paper is organized below. In next section, we present our bounding results of the 
efficiency loss in terms of total system travel time minimization for an arbitrary congestion 
pricing scheme with fixed demand; we show that our new bounding formula can generate the 
existing results of price of anarchy for self-routing in the special case of zero pricing, and 
lead to zero efficiency loss or maximum efficiency gain in the special case of first-best 
pricing. In Section 3, we extend the bounding methods to the general congestion pricing 
scheme with elastic demand using social welfare as a system performance measure. In 
Section 4, we propose and discuss briefly an alternative bounding approach to the problems 
of interest. In Section 5, we provide an application of the proposed efficiency bounding 
methods for the practical trial-and-error implementation of the congestion pricing problem 
with unknown demand functions. General conclusions and suggestions for further researches 
are given in Section 6. 
 
 

2. EFFICIENCY GAIN AND LOSS OF PRICING WITH FIXED DEMAND 
 
2.1 Traffic Equilibria and Inefficiency Measure 
 
Let ( ),G N A  denote a transportation network, with a set of nodes N  and a set of links A , 

together with a set of Origin-Destination (OD) pairs .W  Let wR  denote the set of all 

simple paths connecting OD pair ,w W∈  ( )0w wd d >  the demand for travel of users 

between OD pair ,w W∈  and rwf  the flow of users on path .wr R∈  For given OD 

demands, the feasible set, vΩ , of link flow vector, ( )T: ,av v a A= ∈  with ‘T’ denoting 

transpose of a vector, can be expressed as follows: 

  ( ): , , ,  0, ,
w w

v a a rw ar rw w rw w
w W r R r R

v a A v f a A f d f r R w W
∈ ∈ ∈

⎧ ⎫⎪ ⎪Ω = ∈ = δ ∈ = ≥ ∈ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑  (1) 

where 1arδ =  if route r  uses link a  and 0 otherwise. Let at  denote the travel time on 
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link a A∈ . For simplicity, ( )a a at t v=  is assumed to be a strictly increasing, convex and 

differentiable function of flow av  on link a  only (separable case), i.e., ( )d d 0a a at v v >  

and ( )2 2d d 0,  a a at v v a A≥ ∈ .  

 

Consider a general pricing scheme, ( )T: 0,au u a A= ∈ ≥  where au  is the toll charge on 

link a A∈  in equivalent time unit. Let ( )ue uev v u=  be the corresponding UE link flow 

vector associated with pricing scheme .u  It is well known that uev  is the solution to the 
following standard UE program with fixed demands and separable link cost functions (Sheffi, 
1985): 

( ) ( ){ }ue ue

0

arg min  d
a

v

v

a av a A

v v u t u
∈Ω

∈

= = ω + ω∑∫  (2) 

Note that hereinafter, for simplicity, uev  always denotes ( )uev u , the UE link flow 

associated with link toll charge u  under consideration, the un-tolled UE link flow 
corresponds to ( )uev u  at 0u = . 

  
Alternatively, the UE problem can be formulated as the following equivalent Variational 
Inequalities (VI) in terms of link flow variables (Smith, 1979b; Dafermos, 1980). Find 

ue
vv ∈Ω  such that 

 ( )( ) ( )Tue ue 0,  for any vt v u v v v+ − ≥ ∈Ω  (3) 

It is known that if ( )a at v  is continuous and monotonically increasing in av , then there 

exists a unique link flow solution, ( )ue ,v u  for given pricing scheme 0.u ≥  Then the total 

system travel time at UE under a pricing scheme u  is given by 

 ( )( ) ( )( ) ( )ue ue ue
a a a

a A

T v u t v u v u
∈

=∑  (4) 

On the other hand, the standard SO model that minimizes the total system travel time is given 
by 

( ) ( )min  
v

a a av a A

T v t v v
∈Ω

∈

=∑  (5) 

If ( )a at v  is monotonically increasing and convex in av , then ( )a a at v v  is strictly convex 

and hence the solution to the SO problem (5) is unique. Let sov  denote the unique link flow 
solution of the SO problem, the corresponding minimum system travel time associated with 

SO link flows is denoted by ( )so .T v  

 
For a given general pricing scheme ,u  we define the ratios: 
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( )
( )( )

( )
ue

ue
fd so

T v u
u

T v
ρ =  (6) 

 ( )
( )( ) ( )
( ) ( )

ue so
ue ue
fd fdso 1

T v u T v
u u

T v
−

φ = = ρ −  (7) 

where ‘ fd ’ denotes the case of fixed demand. Clearly, ( )ue
fd 1,uρ ≥  and ( )ue

fd 0.uφ ≥  The 

latter measure, as a result of ( )ue
fd ,uρ  represents the relative gap in system performance 

measure of total travel time between the UE flow pattern under the current second-best 
pricing scheme u  and the system-optimal one.  
 
As already pointed out, a first-best marginal-cost pricing scheme can drive a UE flow pattern 

to the system optimum. In other words, ( )( ) ( )mc

ue so
u u

T v u T v
=

=  and ( ) mc
ue
fd 0,u uu

=
φ =  where 

mcu  denotes the first-best marginal-cost pricing link toll vector: 

( )mc so so ,  a a a au v t v a A′= ∀ ∈  (8) 

where ( ) ( )d da a a a at v t v v′ =  denotes the derivative of link cost function in link flow. 

Therefore, one may regard ( )ue
fd uφ  as the relative efficiency loss associated with a general 

second-best pricing scheme u  in comparison with the first-best one mcu . This efficiency 
loss also determines the room or potential for further improvement of the second-best pricing 
scheme per se. 
 
If 0,u =  then the ratio ( )ue

fd 0uu
=

ρ  in (6) becomes the measure of the inefficiency or price 

of anarchy of the selfish user equilibria (Roughgarden, 2005). This ratio can also be regarded 
as the efficiency gain of a marginal-cost pricing scheme, because, as already mentioned, it 
can drive a UE flow pattern to the system optimal one, or completely remove the inefficiency 
of selfish user equilibria. 
 
2.2 Bound for Efficiency Gain and Loss  
 
Our purpose here is to find an upper bound of ( )ue

fd uρ  for a given pricing scheme ,u  

thereby quantifying the maximum efficiency loss of the second-best pricing scheme u . As a 
special case, such a bound will naturally give the maximum efficiency gain that can be 
achieved through a first-best pricing scheme in comparison with the non-tolling case, as just 
mentioned. In a similar spirit of Correa et al. (2005) who considered inefficiency bound in the 
absence of toll pricing, from VI (3) we have 

 ( ) ( ) ( ) ( )( ) ( )ue ue ue ,  a a a a a a a a a a a v
a A a A a A

T v t v v t v t v v v v u v
∈ ∈ ∈

≤ + − + − ∀ ∈Ω∑ ∑ ∑   (9) 
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For each link cost function ( )a a at t v=  and nonnegative UE link flow ue 0,av ≥  we define 

the following parameter for each link a A∈ , associated with link toll charge au :  

 ( ) ( ) ( )( ) ( )
( )

ue ue
ue

ue ue0
, , max

a

a a a a a a a a
a a a a v

a a a

t v t v v v v u
t v u

t v v≥

− + −
γ = , if ( )ue ue0 ′≤ ≤a a a au v t v  (10) 

 ( ) ( ) ( )( ) ( )
( )

ue ue
ue

0
, , max

a

a a a a a a a a
a a a a v

a a a

t v t v v v v u
t v u

t v v≥

− + −
γ = , if ( )ue ue′≥a a a au v t v  (11) 

Here, 0 0 0=  by convention, the reason for using the two different definitions (10) and 
(11) is given later in Remark 2. 
  

 

Flow

Travel Cost

0

+

av

( )a at v

( )ue
a a at v u+

ue
av

0
at

0
a at u+

au

( )a a at v u+
( )a at v

-

( ) ( )a a a a at v v t v′+

( )ue
a at v

( )ue ue
a a av t v′

 
Figure 1. Geometric illustration of the numerator of eqn. (10) for ( )ue ue0 a a a au v t v′≤ ≤  

 

We first consider the case of ( )ue ue0 .a a a au v t v′≤ ≤  Because the denominator in (10) is fixed, 

our task here is to solve the following one-dimensional maximization problem for av : 

 ( ) ( ) ( )( ) ( )ue ue
10

max  
a

a a a a a a a a av
F v t v t v v v v u

≥
= − + −  (12) 

Note that it is assumed that ( )a at v  is monotonically increasing and convex and hence 

( )1 aF v  is strictly concave. Figures 1 plots the area corresponding to the numerator of eqn. 

(10) for ( )ue ue0 a a a au v t v′≤ ≤ , where the term, ( ) ( )( )ue
a a a a at v t v v− , has a positive value 

corresponding to the area of the rectangle denoted by ‘+’ and the term, ( )ue
a a av v u− , has a 

negative value corresponding to the area of the rectangle denoted by ‘-’. Let 

( )1d d 0,a aF v v =  we have 

 ( ) ( ) ( )* * * ue
a a a a a a a at v v t v t v u′+ = +  (13) 
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As illustrated in Figure 2, a unique solution * ue0 a av v≤ ≤  is obtained for ( )ue ue0 a a a au v t v′≤ ≤ , 

because the left hand side of eqn. (13) is a strictly increasing function of av  for increasing 

and convex ( )a at v , and the right hand side is less than or equal to ( ) ( )ue ue ue
a a a a at v v t v′+ .  

 
 

Flow

Travel Cost

0 ue
av

( ) ( )a a a a at v v t v′+

( )a at v

*
av

( )ue ue
a a av t v′

0
at

au

 
Figure 2. Geometric illustration of the solution to equation (13) 

 
 

Next, we briefly examine the case of ( )ue ue
a a a au v t v′≥ . Define 

 ( )
( ) ( )( ) ( )

( )
( )( )

( )

ue ue ue ue

2 1a a a a a a a a a a a a a a
a

a a a a a a

t v t v v v v u t v u v v u
F v

t v v t v v

− + − + −
= = − +  (14) 

Clearly, this function is continuously differentiable for 0av >  and has the properties that 

( )2lim 1
av aF v→+∞ = − , ( )0 2lim

av aF v→ = −∞  and ( )ue
2 0aF v = , a maximum point must exist in 

the interior of ( )0,+∞ . Again let ( )2d d 0,a aF v v =  we have 

 ( ) ( ) ( )( ) ( ) ( )( )ue ue ue 0a a a a a a a a a a a a a a a a at v u v t v t v u v v u t v v t v⎡ ⎤⎡ ⎤ ′+ − + − + =⎣ ⎦ ⎣ ⎦  

It simplifies into: 

 
( ) ( ) ( )

( ) ( )

ue

2ue
a a a a a a a a

a a a a a

t v u t v v t v
v u v t v

+ ′+
=

′
 (15) 

In addition, the derivative of the right hand side in (15) is  

 ( ) ( )
( ) ( )2d da a a a a

a
a a a

t v v t v
v

v t v

⎞⎛ ′+
⎟⎜⎜ ⎟′⎝ ⎠

= ( ) ( ) ( ) ( ) ( )
( ) ( )

2

22

2
0a a a a a a a a a a

a a a

v t v t v v t v t v

v t v

′ ′′− −
<

⎡ ⎤′⎣ ⎦

 

There is a unique solution to eqn. (15). Thus one can conclude that there exists one unique 
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positive solution *
av  for maximizing ( )2 aF v . For illustration, Figure 3 plots the curves of 

( )2 aF v  for ( ) ( )6.0 0.9 200 pt v v= +  with ue9,  85u v= =  and 1,2,3,4.p =  It is clear that 

there exists a unique maximum point for each curve.  
 

 

-3

-2

-1

0

1

0 200 400 600 800 1000 1200

v

F
2(

v)

p=4

p=3

p=2

p=1

 

( )

ue      9,  85

6.0 0.9
200

p

u v

vt v

= =

⎞⎛= + ⎜ ⎟
⎝ ⎠

 
Figure 3. The general shape and maximum of function (14) 

 
For a given class C  of link cost functions (for example, a family of linear cost functions or 
polynomials of a certain degree) and a pricing scheme u  with ( )ue ue ,v v u=  we define 

  ( ) ( )ue

, 
, max , ,

a
a a a at a A

u t v u
∈ ∈

γ = γ
C

C �  (16) 

With this definition, the following theorem follows immediately. 
 
Theorem 1  Let ( )ue uev v u=  be a UE link flow pattern associated with a pricing scheme 

u , with separable link cost functions drawn from a given class C , and let sov  be an SO link 
flow solution, then  

 ( )( ) ( ) ( )ue so1
1 ,

T v u T v
u

≤
− γ C

 ( )ue ue 0 ,  a a a aif u v t v a A′≤ ≤ ∀ ∈  (17) 

 ( )( ) ( )( ) ( )ue so1 ,T v u u T v≤ + γ C  ( )ue ue ,  a a a aif  u v t v a A′≥ ∀ ∈  (18) 

 
Proof:  The proof is similar to Correa et al. (2005) in the absence of toll pricing. We 

consider the case of ( )ue ue0 , .a a a au v t v a A′≤ ≤ ∀ ∈  A similar proof applies for 

( )ue ue , .a a a au v t v a A′≥ ∀ ∈  From definitions (10) and (16), we have  
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( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ue ue ue ue ue

ue ue ue

, ,

                                                         , ,

a a a a a a a a a a a a a a a
a A a A

a a a
a A

t v t v v v v u t v u t v v

u t v v u T v
∈ ∈

∈

− + − ≤ γ

≤ γ = γ

∑ ∑

∑ C C
 (19) 

Substituting (19) into (9) yields ( ) ( ) ( ) ( )ue ue, ,  .a a a va A
T v t v v u T v v

∈
≤ + γ ∀ ∈Ω∑ C  Let 

so ,v v=  we have (17).    ■  
 
Theorem 1 simply states that, for the UE problem with fixed demand under a pricing scheme 
u , we have: 

(i)  if ( )ue ue0 ,  a a a au v t v a A′≤ ≤ ∀ ∈   

 ( ) ( )
ue
fd

1
1 ,

u
u

ρ ≤
− γ C

 (20) 

 ( ) ( ) ( )
( )

ue ue
fd fd

,
1

1 ,
u

u u
u

γ
φ = ρ − ≤

− γ
C
C

 (21) 

(ii)  if ( )ue ue ,  a a a au v t v a A′≥ ∀ ∈  

 ( ) ( )ue
fd 1 ,u uρ ≤ + γ C  (22)  

 ( ) ( ) ( )ue ue
fd fd 1 ,u u uφ = ρ − ≤ γ C  (23) 

 

Remark 1  In the special case of marginal-cost pricing, we have ( )ue ue
a a a au v t v′=  for all 

.a A∈  Then, it follows that * ue
a av v=  from (13), and ( )ue, , 0a a a at v uγ =  from eqn. (10). As 

a result, ( ), 0,uγ =C  ( )ue
fd 1uρ =  and ( )ue

fd 0,uφ =  which simply implies that there is no 

efficiency loss in the system under a marginal-cost pricing scheme. Similarly, we can apply 

eqn. (11) for ( )ue ue ,  .a a a au v t v a A′= ∈  In this case, from eqn. (15) we have a unique solution 

of the equation given by * ue ,  .a av v a A= ∈  Then, from eqn. (11), ( )ue, , 0a a a at v uγ = . We thus 

obtain the same results: ( ), 0,uγ =C ( )ue
fd 1uρ =  and ( )ue

fd 0.uφ =  

 

Remark 2  We have adopted two different definitions of ( )ue, ,a a a at v uγ  given in (10) and 

(11) respectively for the two cases of ( )ue ue0 a a a au v t v′≤ ≤  and ( )ue ue ,a a a au v t v′≥  which, as 

pointed out in Remark 1, give rise to consistent values of ( )ue, , 0a a a at v uγ =  at a marginal-

cost pricing scheme: ( )ue ue ,  .a a a au v t v a A′= ∈  Two separate definitions for the two cases are 

necessary, otherwise, the bound may become meaningless. First, from (20) or (17), the 
bound is meaningful only if ( )0 , 1,u≤ γ ≤C  which indeed holds for the current definition 
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(10) for the following simple reason. As already mentioned, for ( )ue ue0 ,a a a au v t v′≤ ≤  we 

have * ue0 ,a av v≤ ≤  thus ( )ue 0a a av v u− ≤  and ( ) ( )( ) ( )ue ue ue.a a a a a a a at v t v v t v v− ≤  This implies 

that ( ) ( )ue ue
1 a a a aF v t v v≤  for ue0 a av v≤ ≤ . As a result, ( ) ( )ue ue

10
0 max  

a
a a a av

F v t v v
≥

≤ ≤  in (12) 

or ( )ue0 , , 1.a a a at v u≤ γ ≤  If, however, we extend definition (10) to the case of 

( )ue ue′≥a a a au v t v , then it is possible that ( )ue, , 1a a a at v uγ >  when au  is sufficiently large. To 

see this, we can choose a constant av  slightly greater than ue ,av  then the term ( )ue
a a av v u−  

in (10) is positive and always increases with au . Because the negative term 

( ) ( )( )ue
a a a a at v t v v−  is bounded (as av  is upper-bounded by, for example, total traffic 

demand) and ( )ue ue
a a at v v  is a positive constant in (10), ( )ue, ,a a a at v uγ  becomes much greater 

than 1 as au  becomes large. Second, from (18) or (22), ( ),uγ C  should not always go to 

positive infinity for meaningful ,u  otherwise, the presented bound becomes ineffective. 

This is precisely fulfilled by the definition of ( )ue, ,a a a at v uγ  in (11) for ( )ue ue′≥a a a au v t v . On 

the contrary, if we extend definition (11) to the case of ( )ue ue0 a a a au v t v′≤ ≤ , then the value of 

( )ue, ,a a a at v uγ  may become too large to be a sensible bound if au  is sufficiently small. This 

can be seen in the extreme case of 0au =  and zero free-flow travel time, because 

( )ue, ,a a a at v uγ → +∞  as 0av →  in this case. 

 
Note that the bounding formulas (17) and (18) assume that the toll charge is either 
uniformly less (or greater) than the corresponding congestion externality for all links in the 
network. It is obviously unrealistic in practice. Toll charge for a link in a network can be 
either less or greater than the corresponding congestion externality in a second-best pricing 
scheme, such as the sequential experimental pricing scheme to be considered later. It is 
therefore necessary to establish an inefficiency bound for general second-best pricing 
schemes that can accommodate both possibilities. To do this, we now consider the following 
relaxation for the inefficiency bounding. 
 
Let 1A  and 2A  be the link sets consisting of those links whose toll charges are less than 

and greater than their congestion externalities, respectively 

( ){ }ue ue
1 0 , ;a a a aA a u v t v a A′= ≤ < ∈ ( ){ }ue ue

2 ,a a a aA a u v t v a A′= > ∈  (24) 

If ( )ue ue
a a a au v t v′=  then a  can be classified into either 1A  or 2.A  With this classification, 

we denote 
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( ) ( )
1

ue
1 , 

, max , ,
a

a a a at a A
u t v u

∈ ∈
γ = γ

C
C �  for ( )ue ue

10 ,  a a a au v t v a A′≤ ≤ ∈   (25) 

( ) ( )
2

ue
2 , 

, max , ,
a

a a a at a A
u t v u

∈ ∈
γ = γ

C
C �  for ( )ue ue

2,  a a a au v t v a A′≥ ∈  (26) 

where ( )ue, ,a a a at v uγ �  are defined respectively by (10) and (11) for 1a A∈  and 2.a A∈  

Then from the basic inequality (9), it follows that 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 2

ue ue ue
1 2

ue
1 2

, ,

, ,

a a a a a a a a a
a A a A a A

a a a
a A

T v t v v u t v v u t v v

t v v u T v u T v
∈ ∈ ∈

∈

≤ + γ + γ

≤ + γ + γ

∑ ∑ ∑

∑

C C

C C
   (27) 

As before, using definition (6) and let so
a av v=  in (27), we have 

( ) ( )
( ) ( )ue so2

1

1 ,
1 ,

u
T v T v

u
+ γ

≤
− γ

C
C

   

that is 

( ) ( )
( )

ue 2
fd

1

1 ,
1 ,

u
u

u
+ γ

ρ ≤
− γ

C
C

  (28) 

To sum up, we state the following Theorem. 
 
Theorem 2  Let ( )ue uev v u=  be a UE link flow pattern associated with a pricing scheme 

u , with separable link cost functions drawn from a given class C , and let sov  be an SO link 
flow solution, then  

 ( )( ) ( )
( ) ( )ue so2

1

1 ,
1 ,

u
T v u T v

u
+ γ

≤
− γ

C
C

 (29) 

 
Note that the above general results in Theorem 2 depend on the specific instance, because 
they depend on the toll and the marginal cost in each link. We next look at the special case 
with a class of BPR (Bureau of Public Road) link cost functions and show how the bound 
result in this case can get ride of the dependence of the network topology.  
 
2.3 Bound with BPR Link Cost Functions 
 
For a given positive integer p , let pC  denote the set of the following convex BPR-type cost 

function that is widely used in road traffic assignment 

( ) ( )0 ,  p
a a a a at v t v a A= + α ∈  (30) 

where 0 0at ≥  and 0aα ≥ . 

 

For given toll charge ,au  ( )ue ue
10 ,  a a a au v t v a A′≤ ≤ ∈ ,  eqn. (13) with specific cost function 
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(30) becomes 

   ( ) ( ) ( )10 * * * 0 uep p p

a a a a a a a a a at v v p v t v u
−

+ α + α = + α +  (31) 

and  

 
( )
( )

1
ue

*

1

p p
a a a

a
a

v u
v

p

⎞⎛ α +
⎟⎜=
⎟⎜ α +

⎝ ⎠
 (32) 

Let  

 ( ) ( )ue ue ue p

a a a a a a a au v t v p v⎡ ⎤′= κ = κ α⎣ ⎦  (33) 

where the term ( )ue ue
a a av t v′  is the link congestion externality at UE link flow ue

av  and aκ  is 

a link-specific proportionality constant. With eqn. (33), eqn. (32) is simplified into 

( )
( )

1

* ue1
1

p
a

a a

p
v v

p
⎞⎛ + κ

= ⎟⎜
+⎝ ⎠

 (34)  

where 10 1,  .a a A≤ κ ≤ ∈  Thus, it follows from (10) that 

( ) ( ) ( )( ) ( )
( )

( )
( ) ( ) ( )

( )
( )
( ) ( )

( )( )
( ) ( )

( )

ue * * * ue
ue

ue ue

1 1

ue ue ue ue

ue 0 ue

1

0 u

, ,

1 1 1
1 1

1 1 1

1 1
1 1

a a a a a a a a
a a a a

a a a

p pp pa a a
a a a a a a a

p

a a a a

p
a a

a

a a a

t v t v v v v u
t v u

t v v

p p p
v v v p v

p p p

v t v

p p p
p

p p

t v

− + −
γ =

⎞ ⎞⎛ ⎛
⎞ ⎞ ⎞⎛ ⎛ ⎛+ κ + κ + κ⎟ ⎟⎜ ⎜− α + − κ α⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜+ + +⎝ ⎝ ⎝⎜ ⎟ ⎜ ⎟⎠ ⎠ ⎠

⎝ ⎝⎠ ⎠=
+ α

⎞⎛+ κ + κ
− κ⎟⎜+ +⎝ ⎠=

+ α ( )
( )ue

e

p

a ap vα

 

and 

( ) ( )
1

ue
1 , 

, max , ,
a p

p a a a at a A
u t v u

∈ ∈
γ = γ

C
C �  

( ) ( )
( )
( )

( )
1

1

ue

0 ue, 

1 1
1 1

max
a p

p
a a

a
p

a apt a A
a a a

p p p
p

p p
v

t v∈ ∈

⎞⎛+ κ + κ
− κ⎟⎜+ +⎝ ⎠= α

+ αC
 

 ( ) ( )
( )1

1

1 1
max

1 1

p
a a

aa A

p p p
p

p p∈

⎛ ⎞+ κ + κ
≤ − κ⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (35) 

because 0 0at ≥  for all .a A∈  Note that a pt ∈C  is dropped in (35) because the term to be 

maximized becomes independent of specific cost functions in the class with the same number 
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of power p .   

 

Next we consider the case where ( )ue ue
a a a au v t v′≥  or 21,  a a Aκ ≥ ∈ . By definition (11), we 

have 

( )
( ) ( )( ) ( )

( )( )
ue ue

ue

00
, , max

a

p p
a a a a a a a

a a a a pv
a a a a

v v v v v u
t v u

t v v≥

α − + −
γ =

+α
 

( ) ( )( ) ( )
( )( )

ue ue

0
max

a

p p
a a a a a a a

pv
a a a

v v v v v u

v v≥

α − + −
≤

α
 (36) 

where the inequality holds for any positive value of numerator and 0 0at ≥  for all .a A∈  

This is true because, for the maximization of ( )ue, ,a a a at v uγ  and the inequality (9), we only 

need to consider ,av  for which ( ) ( )( ) ( )ue ue 0.
p p

a a a a a a av v v v v uα − + − >  This means that the 

maximum value of ( )ue, ,a a a at v uγ  can be obtained by taking 0 0at =  for the specific class of 

BPR link cost functions. 
 
Now we are at the stage to find the optimal *

av  for the maximization problem (36). Define 

 ( )
( ) ( )( ) ( )

( )( )
ue uep p

a a a a a a a

a p
a a a

v v v v v u
F v

v v

α − + −
=

α
 (37) 

Let ( )d d 0,a aF v v =  we have 

 
( ) ( )

( )
( ) ( )

( )

ue ue * *

1 1ue *

p p p p

a a a a a a a a a
p p

a a a a a

v p v v p v

p v p v
+ +

α + κ α α +α
=

κ α α
 (38) 

where aκ  is defined in (33). Solving the equation yields 

 * ue1
1

a
a a

a

ppv v
p p

⎛ ⎞⎛ ⎞ κ+
= ⎜ ⎟⎜ ⎟ + κ⎝ ⎠⎝ ⎠

 

Then from (36), we have 

 ( )
11ue

ue
*

1, , 1 1
1

pp

a a
a a a a a a

a a

v ppt v u
v p p

++ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ + κ
γ ≤ κ − = κ −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟+ κ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 

and 

 ( ) ( )
2 2

1

ue
2 , 

1, max , , max  1
1a p

p

a
p a a a a at a A a A

a

p pu t v u
p p

+

∈ ∈ ∈

⎡ ⎤⎞⎛⎞⎛ + κ
γ = γ = κ −⎢ ⎥⎟⎜⎟⎜ + κ⎝ ⎠⎝ ⎠⎣ ⎦C
C  (39) 

where a pt ∈C  is again dropped from the second “max” for the same reason for (35).  
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If we further assume that the second-best pricing scheme, u , is chosen such that aκ ≡ κ  for 

all ,a A∈  then finally we arrive at 

( )
( ) ( )

( )

1

1

1 1
, if  0 1

1 1
,  

1 1, if  1
1

p

p
p

p p p
p

p p
u

p p
p p

+

⎧
⎞⎛+ κ + κ⎪ − κ ≤ κ ≤⎟⎜⎪ + +⎪ ⎝ ⎠γ = ⎨

⎪ ⎡ ⎤⎞ ⎞⎛ ⎛ + κ
κ − κ ≥⎪ ⎢ ⎥⎟ ⎟⎜ ⎜+ κ⎝ ⎝⎪ ⎠ ⎠⎣ ⎦⎩

C  (40) 

 
Clearly, if 0κ =  ( )0 ,u =  or in the absence of toll pricing, we have 

( ) ( )
1

0
, 1

p
p

p u
u p p

+
−

=
γ = +C  (41) 

as a result, 

 ( ) ( ) ( )
11

ue
fd 0

1 1 1
1

p
p

u
p

u p p
−+

−

=

⎞⎛ρ ≤ = − +⎜ ⎟− γ ⎝ ⎠C
 (42) 

 ( ) ( ) ( ) ( )
11 1

ue ue
fd fd0 0 1 1 1 1

p p
p p

u uu u p p p p
−+ +

− −

= =

⎞⎛φ = ρ − ≤ + − +⎜ ⎟
⎝ ⎠

 (43) 

We thus have the same result of the price of anarchy for non-atomic congestion game with 
polynomial link cost functions established in the literature (Roughgarden and Tardos, 2002) 
(here it should be noted that Roughgarden and Tardos (2002) considered general polynomials 
with nonnegative coefficients and degree at most p , rather than monomials of degree p  

plus a constant considered above). If we further assume that 1p =  in (41)-(43) then we 

have =1 4,γ ue
fd 4 3ρ =  and ue

fd 1 3,φ =  the same result as obtained by Roughgarden and 

Tardos (2002) for a class of linear cost functions. For BPR type link cost functions with 
4,p =  we have 5 44 5 0.5350,γ = ≈ ue

fd 2.1505ρ =  and ue
fd 1.1505.φ =  In addition, ue

fd 1ρ →  

and ue
fd 0φ →  as 0p →  (without traffic congestion), but ue

fdρ →∞  and ue
fdφ →∞  as 

p →+∞  (with severe congestion). 

 
Furthermore, if 1aκ ≡ κ ≡  for all a A∈ , or in the case of a perfect marginal-cost pricing 

scheme: ( )ue ue
a a a au v t v′=  for all a A∈ , we obtain ( ), 0uγ =C  from (40) and thus 

( )ue
fd 0.uφ =  This result simply implies that “there is no efficiency loss” or “the UE flow 

pattern is also system-optimal” under the marginal-cost pricing scheme. 
 
Example 1  Consider a traffic network with the BPR-type link cost function (30). Let 

( )uev u  be the UE link flow pattern on the network associated with a pricing scheme u . If 



Final version for publication in Transportation Research Part E (5 May 2009) 
 

 -15-

we assume that ( ) ( )ue ue ue p

a a a a a au v t v p v⎡ ⎤′= κ = κα⎣ ⎦  for each link ,a A∈  then, from (21) and 

(22), the relative efficiency loss in relation to the system optimum, associated with u , is 
given by 

 ( )
( )
( )

( )
ue
fd

,
,   if  0 1

1 ,

, ,   if  1

p

p

p

u
uu

u

⎧ γ
≤ κ ≤⎪⎪ − γφ ≤ ⎨

⎪
γ κ ≥⎪⎩

C

C

C

 (44) 

where ( ),p uγ C  is given by (40) for the class of BPR-type link cost function pC .  

 
Figure 4 plots the relationships between parameter κ  in the interval 0 3.0≤ κ ≤  and the 
maximum efficiency loss ( )ue

fd uϕ  for 1p =  (linear), 2p =  (quadratic), 3p =  (cubic) 

and 4p =  (BPR functions of degree 4). In this figure, the values of efficiency loss at 0u =  

correspond to the early bounding results (43) without pricing. 
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Figure 4. The maximum inefficiency loss associated with a second-best 

pricing scheme for BPR-type cost functions 
 
 

3. EFFICIENCY GAIN AND LOSS OF PRICING WITH ELASTIC DEMAND 
 
3.1 Traffic Equilibria and Inefficiency Measure 
 

Suppose the OD demand is a function of the equilibrium OD travel time or cost between that 
OD pair (for simplicity, we consider separable demand functions only), namely 
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( )w w wd D= μ  where 0wμ ≥  is the minimum path cost between OD pair .w W∈  We 

further assume that the demand function is a strictly monotone, invertible and decreasing 
function of travel cost. Let ( ) ( )1 ,  w w w w wD d B d w W−μ = = ∈  denote the inverse or benefit 

function, which can be regarded as an amount that a user is willing to pay for his or her travel 
(inclusive of toll charge if any), or a benefit that he or she can obtain from this travel. In this 
case, the following social welfare (or net economic benefit) can serve as a meaningful system 
performance measure (Yang and Huang, 1998): 

( ) ( ) ( )
0

, d
wd

w a a a
w W a A

S v d B t v v
∈ ∈

= ω ω−∑ ∑∫  (45) 

where ( ) ,  w wB d w W∈  is a decreasing function. The elastic demand UE formulation with a 

pricing scheme ( )T: ,au u a A= ∈  is given as 

 
( )

( ) ( ){ }
,,

0 0

max  d d
w a

v d

d v

w a av d w W a A

B t u
∈Ω

∈ ∈

ω ω− ω + ω∑ ∑∫ ∫  (46) 

and the elastic demand SO formulation is given by:  

( )
( ) ( )

,,
0

max  d
w

v d

d

w a a av d w W a A

B t v v
∈Ω

∈ ∈

ω ω−∑ ∑∫  (47) 

where ,v dΩ  is defined by: 

 ( ){ }, , , , 0, 0v d v d v f f d f dΩ = = Δ Λ = ≥ ≥  (48) 

where Δ  and Λ  are the link/path and OD/path incidence matrix, respectively. 
 

Let ( ) ( )( )ue ue,v u d u  be the solution of the UE problem (46) associated with a pricing 

scheme u  and ( )so so,v d  be the solution of the SO problem (47), respectively. For the 

elastic-demand traffic equilibrium problem, we define the inefficiency of selfish user 
equilibria under a given pricing scheme u  as follows: 

( ) ( )
( ) ( )( ) ( )

so so
ue
ed ue ue

,
   1

,
S v d

u
S v u d u

ρ = ≥  (49) 

( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
so so ue ue

ue
ed ueso so

ed

, , 11    0
,

S v u d u S v u d u
u

uS v d
−

φ = = − ≥
ρ

 (50) 

where ‘ ed ’ denotes the case of elastic demand. Clearly, ( )ue
ed 1uρ ≥  and hence ( )ue

ed 0uφ ≥  

hold since the UE does not maximize the objective function defined by (45). Again we 
attempt to seek an upper bound of ( )ue

ed uρ  and hence the upper bound of ( )ue
ed uφ  to quantify 

the maximum efficiency loss of a general second-best pricing scheme in comparison with the 
social optimum case. As a special case by letting 0u = , our bounding result will naturally 
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quantify the maximum potential of raising total social welfare or maximum efficiency gain 
by a marginal-cost pricing scheme.  
 
The price of anarchy with elastic demand was examined by Chau and Sim (2003) in the 
absence of toll pricing. Here we first use a simple example to show that finding the bound of 

ue
edρ  in the elastic demand case is not as manageable as in the fixed demand case, even if all 

functions of the system are linear (see, Chau and Sim, 2003, with errors corrected here). 
 
Example 2  Consider a network with one OD pair and one link, where the link travel time 
function is ( ) ,  0t v av b a= + ≥  and the benefit function ( ) ,  0.B d md n m= + <  The UE 

solution and the corresponding social welfare without pricing are 

 ue ue ,n bv d
a m
−

= =
−

 ( ) ( )
( )

2
ue ue

2,
2
m n b

S v d
a m
−

= −
−

 

The SO solution and the corresponding social welfare are 

 so so ,
2
n bv d
a m
−

= =
−

 ( ) ( )
( )

2
so so,

2 2
n b

S v d
a m
−

=
−

 

Hence, we have 

 
( )
( )

( )
( )

12so so 2
ue
ed ue ue

,
1

2,
S v d m a a

m m a m aS v d

−
⎞⎛− ⎞⎛ρ = = = − ⎟⎜ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

  

Unlike the bounded for the fixed demand case ( 4 3  for linear cost function), there is no 

deterministic upper bound independent of .m  In the fixed demand case, the price of anarchy 
of the UE is not too severe since it is bounded, and thus the efficiency gain of the marginal-
cost pricing is mild. However, in the presence of elastic demand, as considered in this simple 
example of a linear setting, the price of anarchy of an elastic-demand UE can be dramatic if 

0m→  regardless of the value of parameter a  (it can be easily checked that in this case the 
elasticity of demand becomes ‘−∞ ’ or the demand becomes perfectly elastic). 
 
3.2 Bound for Efficiency Gain and Loss 
 
In what follows, we attempt to derive a pseudo-approximation bound of ue

edρ  in terms of the 

social welfare and user benefit at a given user optimum solution and the parameter ( ),uγ C  

established in previous section. Then, we consider how to obtain a relaxed upper bound that 
depends on the class of link cost functions and the demand elasticity only to get ride of the 
specific demand functions. The relaxed upper bound will suffice for us to determine the 
welfare gap between a second-best pricing scheme and the system optimum (or the first-best 
pricing scheme), the gap will completely disappear as the second-best pricing scheme 
approaches the first-best one. We first introduce the following lemma (Chau and Sim, 2003). 
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Lemma 1  If ( )w wB d  is a non-increasing function of wd  for 0,wd >  then  

( ) ( ) ( )( )
ue

ue ue

0 0

d d
w wd d

w w w w w w
w W w W w W

B B B d d d
∈ ∈ ∈

ω ω≤ ω ω+ −∑ ∑ ∑∫ ∫  (51) 

 
Proof:  Since ( )w wB d  is non-increasing, we have 

( ) ( ) ( )
ue

ue ue d ,  
w

w

d

w w w w w
d

d d B d B w W− ≥ ω ω ∈∫  (52) 

which can be rewritten as  

( ) ( ) ( ) ( )
ue

ue ue

0 0

d d ,  
w wd d

w w w w w wB B d d B d w Wω ω≤ ω ω+ − ∈∫ ∫    (53) 

Summing up over all OD pairs w W∈  leads to (51).   ■ 
 
Theorem 3  Let ( )uev u  be an elastic-demand UE link flow pattern associated with a 

pricing scheme u , with separable cost functions drawn from a given class C , and let sov  
be an SO link flow solution, then 

 ( ) ( )( ) ( ) ( )ue ue ue
ed 11 1 , , if  0 , a a a au u u u v t v a A′ρ ≤ + ω − γ ≤ ≤ ∀ ∈C  (54) 

 ( ) ( ) ( )
( ) ( )ue ue ue2

ed
1 ,

, if  , 
1 , a a a a

u u
u u v t v a A

u
+ω γ

′ρ ≤ ≥ ∀ ∈
+ γ

C
C

 (55) 

where  

 ( )
( )( )

( ) ( )( ) ( )
ue

ue ue
1 ue ue   for 0 , 

, a a a a

U d u
u u v t v a A

S v u d u
′ω = ≤ ≤ ∀ ∈  (56) 

   ( ) ( )
( ) ( )( ) ( )

so
ue ue

2 ue ue   for , 
, a a a a

U d
u u v t v a A

S v u d u
′ω = ≥ ∀ ∈  (57) 

and ( ) ( )( )ue ue,S v u d u  is the social welfare defined in (45) at UE associated with pricing 

scheme ;u  ( )( )ueU d u  and ( )soU d  are the user benefits at UE with pricing scheme u  

and at SO, respectively: 

 ( )( ) ( )
( )ue

ue

0

d
wd u

w
w W

U d u B
∈

= ω ω∑ ∫ ; ( ) ( )
so

so

0

d
wd

w
w W

U d B
∈

= ω ω∑ ∫  (58) 

 

Proof:  Since ( )ue ue,v d  is an equilibrium solution, from VI formulation of the elastic-

demand traffic equilibrium problem with a pricing scheme ,u  we have: 
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( )( )( ) ( )( ) ( )ue ue ue ue
,0,  ,a a a a a w w w w v d

a A w W

t v u v v B d d d v d
∈ ∈

+ − − − ≥ ∀ ∈Ω∑ ∑  (59) 

Substituting (51) into (59) yields 

 ( )( )( ) ( ) ( )
ue

ue ue

0 0

d d 0
w wd d

a a a a a w w
a A w W w W

t v u v v B B
∈ ∈ ∈

+ − + ω ω− ω ω≥∑ ∑ ∑∫ ∫  

It can be rewritten as 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( )

ue

ue ue

0 0

ue ue

d d

                                        0

w wd d

w a a a w a a a
w W a A w W a A

a a a a a a a a
a A a A

B t v v B t v v

t v t v v v v u

∈ ∈ ∈ ∈

∈ ∈

⎧ ⎫⎪ ⎪ω ω− − ω ω−⎨ ⎬
⎪ ⎪⎩ ⎭

+ − + − ≥

∑ ∑ ∑ ∑∫ ∫

∑ ∑
 

If ( )ue ue0 ,  ,a a a au v t v a A′≤ ≤ ∀ ∈  from definitions (10) and (16) or using eqn. (19) directly, 

we have: 

 ( ) ( )( ) ( ) ( ) ( )( )ue ue ue, , , 0S v u d u S v d u T v u− + γ ≥C  (60) 

Using definition (49) and let ( ) ( )so so, ,v d v d=  in (60), we obtain 

 ( )
( )( )

( ) ( )( )
ue

ue
ed ue ue1 ,

,
T v u

u
S v u d u

ρ ≤ + γ C  

Using ( )( ) ( ) ( )( ) ( )( )ue ue ue ue, ,T v u S v u d u U d u= − +  we thus obtain (54) with ( )1 uω  

given by (56). 
 

If ( )ue ue ,  ,a a a au v t v a A′≥ ∀ ∈  using definition (11) and (16), we have  

 ( ) ( )( ) ( ) ( ) ( )ue ue, , , 0S v u d u S v d u T v− + γ ≥C  (61) 

Let ( ) ( )so so, ,v d v d=  in (61), we have 

 

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )( )

so so so so
ue
ed ue ue ue ue

so
ue
ec ue ue

ue
ec 2

,
1 , 1 ,

, ,

          1 ,
,

          1 ,

T v U d S v d
u u u

S v u d u S v u d u

U d
u u

S v u d u

u u u

−
ρ ≤ + γ = + γ

⎞⎛
⎟⎜= + γ −ρ +

⎜ ⎟
⎝ ⎠

= + γ −ρ +ω

C C

C

C

 

This yields the second case result given in (55) with ( )2 uω  defined in (57).   ■ 

 
Next, we eliminate the uniformity magnitude assumption of link toll charges u  to include 

both possibilities of ( )ue ue0 a a a au v t v′≤ ≤  and ( )ue ue
a a a au v t v′≥  in a single bound. Using the 

same definitions of 1,A  2 ,A  ( )1 ,uγ C  and ( )2 , ,uγ C  as in the fixed demand case, we now 

have the following Theorem. 
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Theorem 4  Let ( )uev u  be an elastic-demand UE link flow pattern associated with a 

pricing scheme u , with separable cost functions drawn from a given class C , and let sov  
be an SO link flow solution, then 

 ( ) ( )
( )

( ) ( ) ( ) ( )
( )

ue 1 1 1 2 2
ed

2 2

1 , , ,
1 , 1 ,

u u u u u
u

u u
− γ γ ω + γ ω

ρ ≤ +
+ γ + γ

C C C
C C

  (62) 

where  ( )1 uω  and ( )2 uω  are defined by (56) and (57), respectively. 

 
Proof:  Like the proof of Theorem 3 and using the relation (27), the counterpart of eqn. 
(60) or (61) becomes 

 ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )ue ue ue
1 2, , , , 0S v u d u S v d u T v u u T v− + γ + γ ≥C C  (63) 

Substituting ( )( ) ( ) ( )( ) ( )( )ue ue ue ue,T v u S v u d u U d u= − +  and ( ) ( ) ( ),T v S v d U d= − +  

into (63) yields 

 
( )( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )
ue ue

1 2

ue
1 2

1 , , 1 , ,

                                   , , 0

u S v u d u u S v d

u U d u u U d

− γ − + γ

+ γ + γ ≥

C C

C C
 (64) 

Using definition (49) and let ( ) ( )so so, ,v d v d=  in (64), we have 

( ) ( )
( )

( )
( )( )

( ) ( )( ) ( ) ( )
( ) ( )( )

( )

ue so

1 2ue ue ue ue
ue 1
ed

2 2

, ,
, ,1 ,

1 , 1 ,

U d u U d
u u

S v u d u S v u d uu
u

u u

γ + γ
− γ

ρ ≤ +
+ γ + γ

C C
C
C C

 

By the definitions of ( )1 uω  and ( )2 uω , we obtain (62).   ■ 

 
Theorem 4 is particularly useful for establishing the inefficiency bound or efficiency loss for 
practical second-best pricing schemes with elastic demands. Once ( )ue

ed uρ  is determined, we 

can calculate the efficiency loss, ( )ue
ed ,uφ  of the second-best pricing scheme 

straightforwardly using eqn. (50). 
 
3.3 Selection of Practical Bounding Parameter Values  
 
For calculation of the inefficiency bounds established above, we have to ascertain the values 
of parameter ( )1 uω  and ( )2 uω  defined in (56) and (57). If the demand function is 

known, it is straightforward to calculate ( )1 uω  and ( )2 ,uω  based on the known demand 

function and the relevant SO and UE solutions with pricing. Here is a simple example.  
 
Example 3  Consider the following negative exponential demand function: 
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 0
0

exp 1d d
⎡ ⎤⎞⎛ μ

= −α −⎢ ⎥⎟⎜ μ⎝ ⎠⎣ ⎦
 (65) 

where 0α >  is a cost sensitivity parameter and 0μ  is the minimum free-flow travel time 

and 0d  is the maximum demand when 0.μ = μ  

 
The inverse demand function is given by 

 0
0

11 ln d
d

⎞⎛ ⎞⎛
μ = μ − ⎟⎜ ⎟⎜ ⎟α ⎝ ⎠⎝ ⎠

 

The user benefit, ,U  is given by 

 0 0
0 00

1 11 ln d 1 ln 1
d x dU x d

d d
⎡ ⎤⎞ ⎞⎛ ⎛⎞ ⎞⎛ ⎛

= μ − = μ − −⎢ ⎥⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟α α⎢ ⎥⎝ ⎝⎠ ⎠⎝ ⎝⎠ ⎠⎣ ⎦
∫  

and, in the absence of pricing, the social welfare, S , is given by 

 0 0 0
0 0

1 1 11 ln 1 1 lnd dS U d d d d
d d

⎡ ⎤⎞ ⎞⎛ ⎛⎞ ⎞⎛ ⎛
= −μ = μ − − −μ − = μ⎢ ⎥⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟α α α⎢ ⎥⎝ ⎝⎠ ⎠⎝ ⎝⎠ ⎠⎣ ⎦

 

Let U Sω=  be the ratio of the user benefit to social welfare for any ( ),dμ , then 

 
0

0

0
0

11 ln 1
1 ln1

dd
dU d

S dd

⎡ ⎤⎞⎛ ⎞⎛
μ − −⎢ ⎥⎟⎜ ⎟⎜α ⎞⎛⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦ω = = = + α − ⎟⎜

⎝ ⎠μ
α

 (66) 

 
In practice, the demand function is usually unknown. In this case, if parameters, ( )1 uω  and 

( )2 uω , are bounded, then their approximate values should suffice to serve our purpose of 

bounding the inefficiency. This is due to the fact that in eqns. (54) and (55) 

( )( ) ( )11 1 , 1.0;u u+ ω − γ →C  ( ) ( )
( )

21 ,
1.0

1 ,
u u

u
+ω γ

→
+ γ

C
C

 

as ( ), 0uγ →C  for any limited values of ( )1 uω  and ( )2 .uω  Moreover, in eqn. (62) 

  ( )
( )

( ) ( ) ( ) ( )
( )

1 1 1 2 2

2 2

1 , , ,
1.0

1 , 1 ,
u u u u u
u u

− γ γ ω + γ ω
+ →

+ γ + γ
C C C
C C

  

as ( )1 , 0uγ →C  and ( )2 , 0uγ →C  for any limited values of ( )1 uω  and ( )2 .uω  To put it 

differently, with approximate values of ( )1 uω  and ( )2 ,uω  the convergence of a sequential 

experimental pricing scheme or the nearness of a given current second-best pricing scheme to 
the first-best one in its neighborhood, can still be well understood, without requiring the 
specific demand functions. The following lemma is useful for gauging a practical value of 
ω . 
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Lemma 2  If the demand function ( ) ,d D= μ  where 0μ ≥  is the generalized travel cost, 

inclusive of toll charge, if any, is monotonically decreasing and convex, then 

1 1 2 d
U E
S

μ≤ ω = ≤ −  (67) 

where U  and S  denotes the user benefit and social welfare for any realized ( ),dμ  and 

dEμ  is the price elasticity of demand at ( ),d μ  defined by 

 ( ) ( ) ( )d
   0

dd
D

E D
d d

μ μ μ μ′= = μ ≤
μ

 (68) 

 
Proof:  Consider Figure 5, where T td=  denotes the total travel time cost with t  being 
the travel time, R ud=  denotes the toll revenue with u  being the toll charge, and CS  
denotes the consumer surplus (or net user benefit) given by the area under the demand curve 

and above the line segment ab . 
 

Demand

Travel Cost

o

Demand function

( ),d μ

T

R

CS

t

u

( )d D= μ

a b

c

 
Figure 5. Geometric illustration of the proof of Lemma 2 

 
By definition 

1U U CS R T T
S U T CS R CS R

+ +
ω = = = = +

− + +
 

thus, 

1 1 T
CS

≤ ω≤ +  

since , , 0.R T CS ≥  Because the demand function, ( ) ,d D= μ  is monotonically decreasing 
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and convex, clearly we have abcCS ≥ Δ , where abcΔ  is the area of the triangle abc  with 

bc  being the tangent line of the demand curve at point ( ), .d μ  One can easily find that 

 
( )
21

2abc
d

D
Δ = −

′ μ
  where ( ) 0D′ μ <  

Hence, from definition (68) and in view of d T R Tμ = + ≥  with 0,u ≥  we have 

 
( )

1211 1 1 1 2 1 2
2 d d

T d TT E E
CS D T R

−

μ μ⎞⎛ ⎞⎛< ω≤ + ≤ + − = − ≤ −⎟⎜ ⎜ ⎟′ μ +⎝ ⎠⎝ ⎠
 

The proof is completed.   ■ 
 

Lemma 2 shows that 1U Sω= ≥  is upper-bounded by ( )1 2 dEμ−  at any realized ( ),dμ  

for any monotonically decreasing and convex demand function and any pricing scheme .u  
As we have seen from the proof, the upper bound is exactly matched for linear demand 
functions without pricing.  
 
Example 4  Consider again Example 3 with negative exponential demand function (65). 
Applying the formula of the price elasticity of demand yields 

( )
0 0 0

d
ln

dd
D dE d

d d d
μ ⎞ ⎞μ ⎛ ⎛μ α μ μ
= = − = −α = −α⎟ ⎟⎜ ⎜μ μ μ⎝ ⎝⎠ ⎠

 

From eqn. (66), we have 1 dEμω = − , which meets 1 1 2 .dEμ≤ ω ≤ −  

 
From Lemma 2 and eqn. (56), we readily have 

 ( ) ( )1 ue
1 1 2 du Eμ≤ ω ≤ −  (69) 

where ( )
uedEμ  is the price elasticity evaluated at equilibrium demand, ( )ued u , associated 

with pricing scheme u . 
 
As to ( )2 uω  defined by eqn. (57), its bound in terms of price elasticity of demand is 

somewhat complicated, because the user benefit, ( )soU d , and the social welfare, 

( ) ( )( )ue ue,S v u d u , are evaluated at two different points, SO and UE, respectively. We have 

to examine the following two cases shown in Figure 6, separately. 
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Demand

Travel Cost

o

Demand function

( )d D= μ

a b

c

h

f g

SO

UE

( )so so,d μ

( )ue ue,d μ

 
Demand

Travel Cost

o

Demand function

( )d D= μ

a b

c

h

f g

UE

SO( )so so,d μ

( )ue ue,d μ

 
(a) UE on the right-hand side of SO (b) UE on the left-hand side of SO  

 
Figure 6. Geometric illustration of determination of parameter bound 

 
Case 1: UE located on the right-hand side of SO. This case is shown in Figure 6 (a) where 

so ueμ ≥ μ  and so ued d≤ , and thus, ( ) ( )( )so ueU d U d u≤ . From definition (57), Lemma 2 

and , ( ) ( )( ) ( )ue ue so so, ,S v u d u S v d≤ , we readily have 

 
( )

( ) ( ) ( )
( ) ( )( )

( )( )
( ) ( )( ) ( )

so so ue

2so so ue ue ue ue ue
1 1 2

, , , d

U d U d U d u
u E

S v d S v u d u S v u d u
μ≤ ≤ ω = ≤ ≤ −  (70) 

where ( )
uedEμ  is again the price elasticity of demand evaluated at UE under pricing scheme 

u . We thus have the same bounds of ( )2 uω  as those of ( )1 uω  in (69). 

 
Case 2: UE located on the left-hand side of SO. This case is shown in Figure 6 (b), where 

so ueμ ≤ μ  and so ued d≥ . We thus obtain immediately that 

 

( ) ( )
( ) ( )( )

( )
( ) ( )( ) ( ) ( )( )
( )

( ) ( )( )

so ue
bfgh

2 ue ue ue ue ue ue

ue
bfgh

ue ue
abc

1
, , ,

                                                
,

U d U d
u

S v u d u S v u d u S v u d u

U d
S v u d u

Δ
≤ ω = ≤ +

Δ
≤ +

Δ

 (71) 

where bfghΔ  and abcΔ  denote the areas of trapezoid bfgh  and triangle abc , respectively. 

Moreover, from ( ) ( )ue so ue so ueac d d d= μ −μ − , we have 
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( )( )

( ) ( )

( )( )
( )( )

so ue so ue

bfgh
ue

ue ue soabc
so ue

2 2so so ue ue

ue so ue ue

2so 2so

ue ue

2so

ue

1
2

1
2

         1  

         1

         

d

d

d d

dd
d d

d d
d

E

E

μ

μ

μ + μ −Δ
=

Δ μ −μ
−

⎞⎛ ⎞ ⎞⎛ ⎛μ − μ⎟⎜= − ⋅⎟ ⎟⎜ ⎜⎜ ⎟μ μ −μ⎝ ⎝⎠ ⎠⎝ ⎠
⎞⎛ ⎞⎛ μ
⎟⎜= − ⎟⎜⎜ ⎟μ⎝ ⎠⎝ ⎠

≤

 (72) 

where 

 ( )
so ue ueso

so ue ueued
d dE

d
μ − μ

= ⋅
μ −μ

 (73) 

is the price elasticity of demand in terms of the shrinkage ratio defined by the two points UE 

and SO. It is evident that ( ) ( ) ( )so

ue soued d dE E Eμ μ μ≈ ≈  as the current pricing scheme approaches 

the first-best one. Substituting eqn. (72) and (70) into (71) yields  

 ( ) ( )
( ) ( )( ) ( ) ( )( )

so 2so

2 ue ue ue ue
1 1 2

, d d

U d
u E E

S v u d u
μ μ≤ ω = ≤ − +  (74) 

Summarizing the above discussion on both cases, we can see that ( )2 uω  is upper bounded 

by the term of the right-hand side in (74) in terms of proper price elasticity of demand 
associated with UE and SO points. 
 
For the general network case, because the user benefit and social welfare are additive with 
respect to OD pairs, we have immediately that 

 

( )( )
( )( )

( )( )

ue ue ue

ue

1 ue ue ue ue

ue

1 2
max 1 2

                                                         max 1 2

w

w
w

w

w

w

w d w w
w W w W w W

dw W
w w w

w W w W w W

dw W

U E S S
E

S S S

E

μ

μ∈ ∈ ∈

∈

∈ ∈ ∈

μ

∈

−
ω = ≤ ≤ −

= −

∑ ∑ ∑
∑ ∑ ∑  (75) 

where ue
wU , ue

wS  and ( )
ue

w

wdEμ  denotes, respectively, the user benefit, social welfare and 

price elasticity of demand associated with OD pair w W∈  at UE. Similarly, 

( ) ( )( )
so

2so

2 ue ue ue
max 1 2 w

w

w
w W

d dw W
w

w W

U
E E

S
μμ∈

∈

∈

⎞⎛ω = ≤ − +⎜ ⎟
⎝ ⎠

∑
∑

 (76) 

where so
wU  and ( )so

ue
w

wdEμ  denotes, respectively, the user benefit at SO and the price elasticity 
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of demand in terms of shrinkage ratio between UE and SO, associated with OD pair w W∈ .  
 
If the demand within the considered range is inelastic or if 1 0dEμ− ≤ ≤  and 

( )so

ue
1 0w

wdEμ− ≤ ≤ , then we have 11 3≤ ω ≤  and 21 4.≤ ω ≤  The practical value of elasticity 

of travel demand is approximately in the range between 0.3−  and 0.5−  (see, Oum et al. 
(1992) and Goodwin (1992), for surveys of travel demand elasticity), and one may thus 
choose a practical value of 1ω  within the range of 11.0 2.0≤ ω ≤  and 2ω  in the range of 

21.0 2.25≤ ω ≤ . Once an appropriate value of ω  is selected based on an approximate value 

of the price elasticity of demand (or qualitative property of the demand function, the bounds 
can be calculated in a simple manner as the fixed demand case, without requiring the specific 
demand function form. Note that knowing the approximate elasticity of demand is far less 
than knowing the demand function itself. Also, from a practical viewpoint, demand elasticity 
can be estimated based on the observed change in demand in response to a change in price 
without necessarily knowing its explicit function form.     
 
We conclude this section by providing the following remark on the two types of inefficiency 
bounds established thus far for networks with fixed and elastic demands. 
 
Remark 3  The inefficiency bounds for the elastic demand case established in this section 
cannot be generalized to those for the fixed demand case established in Section (2). This is 
due to the different measures of system inefficiency/efficiency in the two cases. The ratio of 

ue so ue
ed S Sρ =  in (49) for the elastic demand case is valid only for 0S > , here soS  and 
ueS  denote social welfare S  at SO and UE. For the fixed demand case, one may regard 

S T= −  (negative total system travel time), in this case applying definition (49) gives rise 
to so ue so ue so ue 1.0S S T T T T= − − = ≤ , a meaningless ratio contrary with the inefficiency 

measure (6) for the fixed demand case. Indeed, for fixed demand case we have 0.0dEμ =  

and thus 1 2 1.0ω = ω =  in (75) and (76), then from (54) and (55) we always have 
ue so ue
ed 1.0S Sρ = ≤ , which again failed to measure the system inefficiency for the fixed 

demand case. 
 
  

4. ALTERNATIVE APPROACH TO EFFICIENCY BOUNDING 
 

In the previous analysis, we defined ( )ue, ,γa a a at v u  differently for the two cases of 

( )ue ue0 a a a au v t v′≤ ≤  and ( )ue ue
a a a au v t v′≥ , and then reached a bound of the efficiency loss by 
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introducing the following relaxation ( 1A  and 2A  are relaxed to the whole set A  in the 

summation of link travel time) in (27):  

( ) ( ) ( )
1

ue ue ue ue ue;a a a a a a
a A a A

t v v T v t v v
∈ ∈

≤ =∑ ∑  ( ) ( ) ( )
2

a a a a a a
a A a A

t v v T v t v v
∈ ∈

≤ =∑ ∑  

This relaxation may, however, potentially make the inefficiency bound loose. To avoid this 
relaxation, we now propose an alternative approach.  
 

Redefine a unified ( )ue, ,a a a at v uγ  for all links, irrespective of their levels of toll charge: 

 ( ) ( ) ( )( ) ( )
( ) ( )

ue ue
ue

ue ue0
, , max

a

a a a a a a a a
a a a a v

a a a a a a

t v t v v v v u
t v u

t v v t v v≥

− + −
γ =

+
 (77) 

and 

 ( ) ( )ue

,
, max , ,

a
a a a at a A

u t v u
∈ ∈

γ = γ
C

C �  (78) 

Then we do not need to do further relaxation as previously in (27). Instead, in the same spirit 
as before, we have the following straightforward results by reference to Theorem 2 and 
Theorem 4.  
 
i) The bound for traffic equilibria with fixed demand: 

 ( ) ( )
( )

ue
fd

1 ,
1 ,

u
u

u
+ γ

ρ ≤
− γ
C
C

 (79)  

 
ii) The bound for traffic equilibria with elastic demand 

  ( ) ( )
( )

( ) ( ) ( )( )
( )

1 2ue
ed

,1 ,
1 , 1 ,

u u uu
u

u u
γ ω + ω− γ

ρ ≤ +
+ γ + γ

CC
C C

  (80) 

 
Here, to find the value of ( ), ,uγ C  the key problem is still to determine the maximum of the 

following function for given au :  

( )
( ) ( )( ) ( )

( ) ( )
ue ue

ue ue

a a a a a a a a
a

a a a a a a

t v t v v v v u
F v

t v v t v v

− + −
=

+
 (81) 

Any analytical solution for ( )max  aF v  is difficult, if not impossible, even for the specific 

polynomial cost functions examined in the previous section. 
 
 

5. APPLICATION TO PRACTICAL PRICING SCHEMES 
 
Yang et al. (2004) developed an efficient and practical trial-and-error implementation scheme 
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of the first-best marginal-cost pricing problem when the demand function is unknown, as is 
generally the case in practice. The central idea of the scheme is to adjust the link toll charges 
in a sequential manner, by observing and comparing the users’ responses (observed aggregate 
link flows) and the intended or targeted flow levels adopted for determination of toll charges. 
An exact first-best or marginal-cost pricing scheme is ensured if the observed and targeted 
link flows match each other. Specifically, the sequential experimental pricing scheme and its 
convergence property can be described below (Yang et al., 2004). 
 
Sequential Experimental Pricing Scheme:  At a general trial ( )0,1,2,k k = , with the 

link toll charge calculated by  

 ( )( ) ( ) ( ) ,  k k k
a a a au v t v a A′= ∈  (82) 

where ( ) ,  k
av a A∈  is the intended or targeted link flow for the current link toll charge. Let 

{ }( )ˆ :k
av a A∈  be the revealed link flow pattern observed after imposing the current toll 

charge { }( ) :k
au a A∈ , then the targeted link flow for determination of link tolls for 

subsequent trial experiment is given by 

  ( )( 1) ( ) ( ) ( ) ( )ˆ ,  k k k k k
a a a av v v v a A+ = + α − ∈  (83) 

 

Theorem 5  If the predetermined sequence { }( )kα  in (83) satisfies the conditions:  

 ( )0 1k< α ≤ ; ( )

1

k

k

∞

=

α = +∞∑ ; ( )2( )

1

k

k

∞

=

α < +∞∑  (84) 

then the sequential experimental pricing scheme generates the link flows and link tolls with 
the following convergence property:  

( ) so;k
a av v→  mck

a au u→ ; ( ) ( )ˆ 0k k
a av v− →  

as k →∞  for any link a A∈ .  
 
Theorem 5 simply states that the link tolls determined through the sequential pricing 
experiments converge to the first-best, marginal-cost pricing link tolls that give rise to the SO 
link flows, as the number of trials goes to infinity. Nevertheless, because the actual number 
of pricing trials could be very limited, one could end up with an inexact marginal-cost, or a 
second-best, pricing scheme. In this case, it is vital to determine the bound of the inefficiency 
or welfare loss of the current link toll pattern, thereby assessing whether or not further pricing 
experiments are needed. 
 
The desirable inefficiency bound can be easily calculated using the bounding method 
developed in previous sections, with no more than the information needed for the pricing 
experiment itself. What are needed are the individual link cost functions, the current link toll 
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charges and the easily available link flows observed after implementing the pricing scheme. 

Let ( )T
垐 :au u a A= ∈  be the current estimated toll charge, and ( )垐v u  be the observed link 

flow after implementing ˆ.u  Because the observed link flow pattern is in user equilibrium, 
then from eqn. (33), for each link ,a A∈  one can calculate 

( )
ˆˆ ,  

ˆ ˆ
a

a
a a a

u a A
v t v

κ = ∈
′

 

In the case of the BPR link cost function: 

( )
4

0 1 0.15 a
a a a

a

vt v t
C

⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (85)  

where 0
at  and aC  are respectively the link free-flow travel time and link capacity, we have  

 
4

0

ˆˆ ,  
ˆ0.6

a a
a

a a

u C a A
t v

⎞⎛
κ = ∈⎟⎜

⎝ ⎠
 (86) 

From (35) with 4,p =  ˆ0 1,a≤ κ ≤  1,a A∈  we obtain 

( ) ( ) ( )
( )

( ) ( )
( )

1

1

1
4

5
4

垐1 1 ˆˆBPR,
1 1

垐1 4 4 1 4 ˆ                4
1 4 1 4

ˆ1 4 ˆ                4 4
5

p
a a

a

a a
a

a
a

p p p
u p

p p
⎞⎛+ κ + κ

γ ≤ − κ⎟⎜
+ +⎝ ⎠

⎞⎛+ κ + κ
= − κ⎟⎜

+ +⎝ ⎠

+ κ ⎞⎛= − κ⎜ ⎟
⎝ ⎠

 (87) 

From (39) with 4,p =  ˆ 1,aκ ≥  2 ,a A∈  we obtain 

( )
1

2

4 1

5

1ˆBPR, 1
1

4 1 4                1
1 4 4

4 1 4 1
5 4

p

a
a

a

a
a

a

a
a

a

p pu
p p

+

+

⎡ ⎤⎞⎛⎞⎛ + κ
γ ≤ κ −⎢ ⎥⎟⎜⎟⎜ + κ⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎞⎛ + κ⎞⎛= κ −⎢ ⎥⎟⎜⎜ ⎟+ κ⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎞⎛ + κ
= κ −⎢ ⎥⎟⎜ κ⎝ ⎠⎣ ⎦

 (88) 

 
Note that, if the demand is fixed, we obtain the maximum inefficiency given by (28), with 

1γ  and 2γ  provided by (87) and (88) and ˆ aκ  as in (86), based on the observed link 

flows. Then the estimated bound of the relative efficiency loss is followed by eqn. (7). If the 
demand is elastic, we have to use eqn. (62) to determine the maximum inefficiency with the 
above 1γ  and 2γ . The estimated bound of the relative efficiency loss is then readily 

calculated by eqn. (50).  
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Example 5  We now illustrate application of the inefficiency bounding methods for the 
trial-and-error pricing scheme with unknown demand functions developed in Yang et al. 
(2004). Consider the same example used in Yang et al. (2004), with the network shown in 
Figure 7. The OD demand functions are given below: 

1 7 1 7 1 7 2 7 2 7 2 7( ) 600exp( 0.04 );    ( ) 500exp( 0.03 )D D→ → → → → →μ = − μ μ = − μ   

3 7 3 7 3 7 6 7 6 7 6 7( ) 500exp( 0.05 );    ( ) 400exp( 0.05 )D D→ → → → → →μ = − μ μ = − μ  

The BPR link cost function (85) is used with the input data given in Table 1. 
 

Table 1. Input data for the network in Figure 7 

a  1 2 3 4 5 6 7 8 9 10 11 
0
at  6 5 6 7 6 1 5 10 11 11 15 

aC  200 200 200 200 100 100 150 150 200 200 200 

 
 

1

4

2

7

6

5

3

1

2

3

4
5

6

7

8
9

10

11

 
 

Figure 7. The network used for Example 5 
 
 
We consider bounding the efficiency loss for the inexact marginal-cost pricing schemes in the 
sequential experimental pricing process for the elastic demand case with the above demand 
functions. The sequential pricing experiment starts with an initial un-tolled UE link flow 
pattern, using a sequence of ( )( ) 1 1k kα = +  that satisfies condition (84). Four levels of 

parameter omega are chosen: 1 2 1.5,  2.0,  2.5,  3.0ω = ω =  in the bounding formula (62).      

 
The bounding results are shown in Figure 8, together with the actual efficiency loss. Note 
that the actual efficiency loss and the bound with the actual value of ω  become known only 
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if the demand functions are known and they are presented in the figure for comparative 
analysis. With appropriate a priori values of ,ω  one can see that the bounds established with 
unknown demand functions are effective and indeed useful. It tells us whether a sufficiently 
good approximate marginal-cost pricing scheme is already found, without resorting to 
demand functions. Indeed, irrespective of the chosen value of parameter ω , the actual and 
the maximum relative welfare gaps given by the formula all approach zero as the experiment 
continues and the tolls under trial reach the optimum, although the inter-medium bounds 
depend on its specific values. It is worthwhile to note that the bound with the actual ω  is 
located in between the bounds for 1.5ω=  and 2.0.ω=  This confirms our early 
observation that the practical ω  value is within the range of 1.0 2.25.≤ ω≤   
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Figure 8. The upper bound of the relative efficiency loss in the sequential 

experimental pricing process with elastic demands 
 
 

6. CONCLUSIONS 
 
In this paper we examined the efficiency loss of a second-best congestion pricing scheme in 
general networks due to inexact marginal-cost pricing, with either fixed or elastic demand. 
We established the upper bound of the efficiency loss of a given congestion pricing scheme 
in the spirit of ‘price of anarchy’ that appeared in recent literature for bounding the 
inefficiency of equilibria in non-atomic congestion games. We show that our new bounding 
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formula can generate the existing price of anarchy results for self-routing in the special case 
of zero pricing, and lead to zero efficiency loss or maximum efficiency gain in the special 
case of first-best marginal-cost pricing. In the general case of any given second-best pricing 
scheme, the inefficiency bound can be calculated with limited information. An application of 
the proposed inefficiency bounding methods is provided to assess the accuracy of inexact 
marginal-cost pricing in the sequential experimental pricing process with unknown demand 
functions developed previously.  
 
We acknowledge that the method developed in this study is restricted to the standard traffic 
equilibrium problem, it can be further extended in a few manners: 1) to generalize the results 
to the case of non-separable and asymmetric link cost and OD demand functions (Perakis, 
2004); 2) to extend the bounding method to the general traffic restraint and road pricing 
problem in capacitated networks (Yang and Bell, 1997; Correla et al., 2004); and 3) to bound 
the efficiency of second-best anonymous toll patterns for multiclass-user transportation 
networks (Yang and Huang, 2004). 
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