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Abstract

Myelomeningocele (MMC), the most severe form of spina bifida
(SB), causes neurological deficit. Injury to the spinal cord is thought
to begin in utero. We investigated whether brain–specific proteins
(BSP) would enable us to monitor the development of MMC-related
tissue damage during pregnancy in an animal model with naturally–
occurring SB (curly tail/loop tail mouse, n=256). Amniotic fluid lev-
els of the neurofilament heavy chain (NfH), GFAP and S100B were
measured by standard ELISA techniques. The amniotic fluid levels
of all BSP were similar in SB and control mice on embryonic days
(E) 12.5 and 14.5, whereas a significant increase was observed for
GFAP in SB mice on E16.5. All BSP were significantly elevated in
SB mice on E18.5. The rapid increase of GFAP which is parallelled
by a moderate increase in NfH and S100B suggests that spinal cord
damage starts to accelerate around E16.5. The macroscopic size of
the MMC was related to NfH level on E16.5 and E18.5, suggesting
that axonal degeneration is most severe in large MMC. Amniotic fluid
BSP measurements may provide important information for balanc-
ing the risks and benefits to mother and child of in utero surgery for
myelomeningocele.

Keywords neurofilaments, NfH, glial fibrillary acidic protein, GFAP, S100B,

surrogate marker, biomarker, fetal surgery, neural tube defects, spina bi-

fida
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Introduction

Myelomeningocele (MMC) is a clinically important neural tube defect that

arises during embryonic development as a result of abnormal primary neu-

rulation.1 Common physical problems associated with MMC include vary-

ing degrees of sensorimotor neurological deficit, urogenital and intestinal

dysfunction, skeletal malformations and hydrocephalus. The widely ac-

cepted concept of a predominantly intrinsic aetiology for the sensorimotor

deficit in MMC has recently been challenged by data derived from ani-

mal models with surgically created MMC.2–4 It was suggested that direct

trauma to the exposed fetal spinal cord might occur in utero, thereby elic-

iting secondary damage to the spinal nerves, so that timely in utero cov-

erage of the MMC may improve the postnatal outcome.2,5,6 Although it

was suggested previously that a Cesarean section may minimise mechan-

ical stress during labour, and improve postnatal outcome,7 severe damage

to the exposed spinal cord may have already occurred long before birth.

Support for this idea comes from detailed immunohistochemical investiga-

tion of surgically created MMC, which demonstrated massive spinal cord

astrocytosis at fetal stages,2 and electrophysiological examination which

suggested substantial axonal loss at similar stages.8,9 Both astrocytosis

and axonal loss are pathological features which can be monitored by mea-

suring brain-specific proteins.10

In the present experimental study we were interested in monitoring

the onset and development of the spinal cord injury in MMC at a cellular
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level. The model chosen was the curly tail/loop tail mouse model, which

has a high frequency of naturally–occurring spina bifida (SB).11 Astrocyto-

sis was estimated by quantifying glial fibrillary acidic protein (GFAP) and

S100B.12,13 Neuro–axonal injury was estimated by measuring the neuro-

filament heavy chain (NfH).14 The study aimed to determine the extent of

spinal cord injury in relation to gestational age and size of the SB lesion.

Material and Methods

Mouse strains and sample collection This study and experimental pro-

cedures have been approved by the local ethics committee according to

the Declarations of Helsinki and as required under the Animals (Scien-

tific Procedures) Act 1986 of the UK Government. The rules of laboratory

animal care (NIH publication No. 86-23) were followed.

Mutant curly tail and loop tail mice were maintained as separate colonies

on a 12 h light–dark cycle (lights on from 07.00 to 19.00). Doubly heterozy-

gous males (Lp/+; ct/+) were mated overnight with homozygous curly tail

females (+/+; ct/ct) which were checked for copulation plugs the following

morning. The day of finding a plug was designated as embryonic day (E)

0.5. Matings generated litters with three different phenotypes: 40.5% of

mice had straight tails, 25.5% had curly tails, and 34% had spina bifida

(SB), usually with a curly tail. SB animals always showed lesions in the

lumbosacral region that extended to the tip of the tail. Experimental litters

were collected by sacrificing pregnant females by cervical dislocation at
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E12.5, E14.5, E16.5 and E18.5. The extraembryonic membranes were in-

cised and amniotic fluid was poured directly into a 1.5 mL Eppendorf tube.

Approximately 50 to 100 µL of amniotic fluid could be collected per fe-

tus. Samples were immediately snap–frozen in liquid nitrogen. The coded

samples were then stored at -70◦C until further analysis.

Control animals (n=134) were those that had neither an MMC lesion

nor sensorimotor deficit of the hind–limbs. Animals with either a straight or

curly tail were included in the control group. MMC lesions were classified

as either large or small based on the ratio of total body size to MMC size

(see Figure 1 and Table 1). A ratio smaller than 10 indicated a large MMC

whereas a ratio larger than 10 represented a small MMC. Of 122 animals

with a macroscopically visible SB, the MMC was large in 36 cases and

small in 84 cases. Two MMC animals were inadvertently discarded before

classification of lesion size.

Brain–specific proteins The phosphorylated neurofilament heavy chain

(NfHSMI35 ), glial fibrillary acidic protein (GFAPSMI26 ) and S100B were quan-

tified as described.12–14 The structure of these proteins is largely con-

served across species and the assays have previously been used on tis-

sue from another mouse model.10 Due to the small sample volume a max-

imum of two BSP could be measured per animal.

Statistical analysis All statistical analyses were performed and graphs

prepared using SAS software (version 8.2, SAS Institute, Inc., Cary, North
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Carolina, USA). Because of non–Gaussian distribution of the BSP data,

the median values and the 25–75 % interquartile range (IQR) are shown.

Independent variables were compared using the non-parametric Wilcoxon

test. If significance was based on small numbers the results were checked

by the Fisher’s exact test. The cut–off for categorical data analysis was

set to the 100% cumulative frequency of the indicated control group. The

linear correlation between continuous variables was evaluated using the

Spearman correlation coefficient (α=0.05). Linear regression analysis was

performed using the least–squares method. P–values <0.05 were consid-

ered as significant.

Results

In control mice there was no correlation between gestational age and ei-

ther GFAP or NfH levels. In contrast S100B concentration increased with

age in control mice (R=0.58, p<0.01). This correlation was caused by a

significant increase in S100B between E16.5 and E18.5 (p<0.01).

GFAP The concentration of amniotic fluid GFAP differed significantly be-

tween control and SB groups (F7,153=37.89, p<0.001, Figure 2). Post–hoc

analysis revealed that this was due to a 100–fold increase of GFAP level

in SB mice at E16.5 (p<0.001, Table 2). At E18.5 GFAP levels in the am-

niotic fluid of SB mice were still approximately 50–fold higher compared to

controls (p<0.001).
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The analysis of GFAP concentration in relation to SB lesion size did not

reveal any significant difference between large and small MMC lesions.

S100B The concentration of amniotic fluid S100B differed significantly

between control and SB groups (F7,99=7.62, p<0.001). Post-hoc analysis

revealed a significant difference between SB and control mice at E18.5

(p<0.05, Table 1), but not at earlier stages. There was a correlation

(R=0.69, p<0.01) between S100B and GFAP in SB (n=16) but not in con-

trol (n=16) mice.

The analysis of S100B concentration in relation to SB lesion size did

not reveal any significant difference between large and small MMC lesions.

NfH The concentration of amniotic fluid NfH differed significantly between

control and SB groups (F7,91=3.66, p<0.01). Post–hoc analysis revealed a

significant difference between SB and control mice at E16.5 (p<0.01) and

at E18.5 (p<0.01, Table 2).

Moreover, the analysis of NfH concentration in relation to SB lesion size

revealed a significant difference (F5,37=7.98, p<0.001). A large MMC was

associated with higher amniotic fluid NfH levels than a small MMC lesion

at both E16.5 (p<0.001) and E18.5 (p<0.01, Figure 3).
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Discussion

The findings of this study demonstrate a 100–fold increase in amniotic fluid

GFAP at E16.5 in SB mice when compared to controls. We interpret this

sudden, dramatic increase in GFAP concentration as indirect evidence that

spinal cord injury may accelerate at this time.

GFAP levels started to rise in SB mice at E16.5 compared to the rela-

tively uniform levels observed in SB and control mice at E12.5 and E14.5,

and in controls at later stages. GFAP levels remained significantly higher in

SB compared to control mice at E18.5, but the difference was less marked

(≈50–fold). This could possibly be due to a protein “wash–out pattern” as

observed for S100B in human cerebrospinal fluid.15 Alternatively it may be

caused by post–translational modifications such as citrullination16 or ag-

gregate formation, both of which could potentially interfere with the binding

characteristics of the capture antibody in the ELISA. Finally, one needs to

consider a “burnt–out” pattern, in which the overall loss of astrocytes on

E16.5 is so great that further damage to remaining cells at the site of the

MMC results in a less marked elevation of GFAP.

In support of our hypothesis, there is evidence that GFAP concentra-

tion is also elevated in human amniotic fluid taken from second-trimester

pregnancies with spina bifida and other neural tube defects.17–19 Interest-

ingly, Van Regemorter et al.19 describe a mean GAFP concentration of 1

ng/mL in spina bifida pregnancies samples prior to 24 weeks, but a con-

centration of 3 ng/mL in amniotic fluids of spina bifida pregnancies beyond
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24 weeks (Table 2 in19). This finding parallels our observation of an in-

creased GFAP concentration in late-stage mouse fetuses with SB. On the

other hand analysis of a large number of human second trimester pregnan-

cies revealed that staining for cells containing GFAP did not improve the

diagnostic sensitivity or specificity of amniotic fluid alpha–fetoprotein and

acetylcholinesterase.20 It may be that the measurement of GFAP protein

itself, rather than staining for GFAP positive cells may be a more sensi-

tive technique, particularly if the release of GFAP into the amniotic fluid is

secondary to the death of astrocytes at the site of the MMC lesion.

Amniotic fluid S100B levels have not been investigated systematically

with regard to spina bifida, but one group found S100B to be of use in

general prenatal screening.21,22 In the present study there was a moder-

ate, but significant, increase in amniotic fluid S100B at E18.5, although

this was not confined to SB animals. The finding of an increase in S100B

concentration at late gestation even in control amniotic fluids suggests a

possible physiological role for this protein. Indeed, S100B has cytokine

properties which can be neurotrophic at certain concentrations (reviewed

in23). Additionally, the measurement of S100B from body fluids might re-

flect sources other than the nervous system, such as placenta, adipose

tissue, testis and skin.21,24–26 The finding of a correlation between S100B

and the relatively specific astrocytic marker GFAP (R=0.69), however, sug-

gests that the rise of S100B in late gestation may be at least in part due to

activation of the glial system. The pathological role of the glial system in
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SB has not been investigated in detail and we would like to speculate that

preservation of tissue homoeostasis may be one important function. Ad-

ditionally astrocytic hypertrophy is observed rapidly after axonal injury,27

which might be of relevance in SB, as seen below.

The results for NfH were similar to those for GFAP, with a significant

increase in amniotic fluid NfH being observed in SB fetuses at E16.5 and

E18.5. Moreover, the concentration of NfH correlated directly with the size

of the MMC, at both E16.5 and E18.5. Hence, NfH levels were significantly

higher in mice with a large SB lesion than in those with a small MMC.

In previous human studies, concentrations of NfH in the cerebrospinal

fluid and plasma have been related to disability on clinical scales.28–31

Moreover, in a mouse model of chronic experimental autoimmune en-

cephalomyelitis, the NfH content of tissue homogenate was related to

spinal cord atrophy.10 In a study focused on neuroprotection, NfH was

used as a secondary outcome measure and correlated with motor func-

tion.32 The present results suggest that the NfH concentration in amniotic

fluid might provide a tool to estimate the extent of axonal loss in vivo in SB

pregnancies.

In utero surgery is now offered as a clinical treatment for meningomye-

locele,6 although the optimal timing of the intervention remains a critical

issue.5 This and other aspects of human in utero surgery for MMC are cur-

rently being investigated by a multicentered prospective study in the USA:

Management of Myelomeningocele Study (MOMS, www.spinabifidamoms.com).
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On the basis of the present results, it would be important to establish cut–

off levels related to fetal–age for GFAP and NfH in normal human amniotic

fluid. In pregnancies with fetal SB a slight increase of GFAP and NfH would

be in keeping with the expected slowly progressive pathology, and would

indicate that surgery might be a viable option. On the other hand, once an

accelerating increase in BSP concentration was observed, suggestive of

dramatic tissue loss, it might be considered that in utero coverage would

offer only limited benefits, and should be weighed carefully against the

risks for mother and child.
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Table 1: Classifying MMC size in curly tail/loop–tail fetuses.
Lengths shown are the ranges typically seen in the study. Ra-
tio = Total body length / MMC length.

Gestational age
Size E16.5 E18.5 Ratio
Total body length (mm) 15–18 26–28 —
Large MMC length (mm) 3-5 4-6 < 10
Small MMC length (mm) 1.5 2 > 10
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(A)

(B)

Figure 1: The curly tail/loop tail mouse model. Large (A) and small (B)
MMC lesions are shown. See Table 1 for a precise definition of MMC size.
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Figure 2: Amniotic fluid levels of GFAP in control (closed circles) and SB
mice (open circle). Note that for clarity of the figure, all zero values are
plotted in the hatched area and concentrations are presented in [ng/mL],
the text and Table 2 however, refer to [pg/mL].
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control (CTRL), SB mice with small MMC and SB mice with large MMC at
E16.5 and E18.5. There was no statistically significant difference between
the NfH concentration in small MMC and controls.


