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Abstract

One of the fundaments of associative learning theos that surprising events drive
learning by signalling the need to update one’sebel It has long been suggested
that plasticity of connection strengths betweenroes: underlies the learning of
predictive associations: Neural units encoding eiased entities change their
connectivity to encode the learned associativengtre Surprisingly, previous

imaging studies have focused on correlations batwegional brain activity and

variables of learning models, but neglected howsegheariables changes in inter-
regional connectivity. Dynamic Causal Models (DCM$neuronal populations and
their effective connectivity form a novel technigte investigate such learning

dependent changes in connection strengths.

In the work presented here, | embedded computdtieaming models into DCMs to
investigate how computational processes are refiiebyy changes in connectivity.
These novel models were then used to explain fM&h drom three associative
learning studies. The first study integrated a BdaeéWagner model into a DCM
using an incidental learning paradigm where auglitmues predicted the
presence/absence of visual stimuli. Results shothatl even for behaviourally
irrelevant probabilistic associations, predictiomoes drove the consolidation of
connection strengths between the auditory and Viateas. In the second study |
combined a Bayesian observer model and a nonli¥aM, using an fMRI
paradigm where auditory cues differentially preelictvisual stimuli, to investigate
how predictions about sensory stimuli influence onoésponses. Here, the degree of
striatal prediction error activity controlled thé&gticity of visuo-motor connections.
In a third study, | used a nonlinear DCM and datanf a fear learning study to
demonstrate that prediction error activity in thewygdala exerts a modulatory

influence on visuo-striatal connections.

Though postulated by many models and theories aleaming, to our knowledge
the work presented in this thesis constitutes trst @irect report that prediction

errors can modulate connection strength.



Acknowledgements

Throughout my years at the FIL, my supervisor Kl&mo Stephan gave me a
combination of support, guidance, advice and freetio pursue my own ideas, that
was extraordinary and for which | am immensely gt Huge thanks also to Karl
Friston, my other supervisor, whose comments amggjestions never failed to be
insightful, and his exceptional ability to combintechnical expertise with
philosophical thinking will forever be an inspiringgxample. Both have
fundamentally shaped my views on science and the aforesearch | intend to

pursue.

| have learnt from so many people at the FIL thean’t begin to mention them all,
but | want to especially thank Jean Daunizeau éaiching me all | know about
Bayesian observer models as well as instilling aega dislike of ad hoc non-
principled models, Jon Roiser for interesting destons and general statistical
guidance, Nathaniel Daw for great help on the caatmnal modelling, Quentin

Huys for interesting discussions and patience éxiplgq about Kalman filters,

Guillaume Flandin for his truly endless patienceghwny even more endless SPM
guestions, Mohammed Seghier for all the interestlisgussions about DCM, and
everyone at the Monday afternoon Neurobiology mesti for valuable comments
and insights and general good fun. Of course | alant to thank Andre, Rosalyn,
Justin, CC, Guillaume, Mohammend, Wako and Benbiing such great office

mates!

In the last five years England and London becamehome, and | would also like
say thanks to the people who made my life theramazing: my fellow Wellcome
Trust PhD students Louise, Rosie, Kieran, Curti Rave, for our ever more lavish
dinners, Sinterklaas poems and general moral sugpmughout the PhD; my
climbing friends for introducing me to a world witertical features; Nick, Paul, Al,
Che, Tim, Jim, lan, Adam, Dave (both), Duc, andeesaly all the girly climbing

club members, Eu Lee, Manchi, Caroline, Fran andimg the Valentine Road
crew; Marianne, Jonathan and Cas and of course &ferrand Marieke for having

me stay over for the last months; Jovanka for tleekly Sunday morning calls,



Lonneke, Piet, Nienke, Jasper, and of course Feantk Marieke, who are always

there.

Finally, I do not know how to express my gratitudemy family for their support
and love. Mama, dankjewel voor de wandelingen ekelijgse telefoontjes. Papa,
jouw emails zijn altijd de liefste en leukste. Pagtama, Mies en Rein, ik ben weer

thuis.



Table of Contents

1.

INEFOAUCTION ... e e e e s 14
1.1 ASSOCIAtiVe I€AIMING ....covvviiiiieeeeetimmmm ettt ee e ee e 15
111 Neuronal prediCtion €rTOrS ...........uuuuiiiieeeeeeeiie e 16
1.1.2 Predictive COAING ........uuiiiiiii e e ee e 22
1.1.3 Plasticity during associative learning ............cccccveinineeeeeeennnnnnn. 24
1.2 Models of associative learning...........cccceeeeeeeiiiiieeeiiiiie e 28
1.2.1 Model-based analysis methods..........eeeeviieeeiiiiiieeiiiin ... 28
1.2.2 Reinforcement learning models.........cccceeeniiiiiiiiiiiiii e 30
1.2.3 Bayesian ideal observer models ... eeeeviiieeiiiiiieiiiiiineennn.. 36
1.2.4 RW vs Bayesian MOdelS .........ooooiiiiaeeeeeeiiie e 39
1.3  Summary of experimental Work............ccoeeeviiiiiiiiiii e, 40
MEENOOS ...t ettt e e aeeaes 41
2.1 Dynamic Causal Modelling for fIMRI ... 41
211 Connectivity models and DCM.........coocceaeiiiiiiiiiiieeeeeeeeen 41
2.1.2 BilINEAr DCM ...ttt e e e e e aaeees 44
213 290rder DCM ... 45
214 Parametric modulation of conNections .............ccccccceeeiereeiiinnnnns 46

2.2 Bayesian Inference and Model CompariSON e ccevveeeeeeeviieeeeinnnn..... 46

221 Within subject Bayesian inference .......ooooeeeieeiiiiiinineeeieeenees 46
2.2.2 Group level Bayesian inference ........cccceccvvviiieeeiiie e, 51
A Dual Role for Prediction Error in Associatiearning..........ccccoeeeevvvieeeenns 54
3.1 INEFOAUCTION ....ciieiieiieeee e e 55
3.2 Methods & Statistical analysis...........ccceeiiiiiiiiii e 58
3.21 SUDJECES it 58
3.2.2 Experimental Design — fMRI ..........ooviecii e 58
3.2.3 fMRI Data ACQUISITION ......cccovuiiiiiimmme e e 61
3.24 Data ANAIYSIS ....covvieiiiiieiei et e 1.6
3.25 Rescorla-Wagner model..............ouueemceiiiiieeeeeee e 62
3.2.6 DM e 69
3.3 RESUILS ... 71



3.31 SPM FESUIS ..o, 12.

3.3.2 Learning dependent changes in CONNECHVILY ow..vvvvnneeeeeiieiiinnn. 75
3.4 DISCUSSION ...ttt ettt e e et e aeeees 77
3.4.1 RW model: predictions & prediCtion error cceeu.......ocooevevvvivnnneennn. 78
3.4.2 Role of prediction errors beyond reinforcetdearning.................. 79
3.4.3 Changes in connectivity between auditory\asdal areas.............. 81
3.44 Predictive coding in visual COMeX .....ummmeieiiriieeeiiiiieeeeeiiieeeeennnn. 82
3.45 Limitations and future direCtioNns. ... oo 83

4. Striatal Prediction Error Activity Drives CordicConnectivity Changes During

ASSOCIAtIVE LEAINMING ..evviiiiiii et i e ettt e et e e e et e e e e e e e aneeeeneans 85
4.1 INEFOAUCTION ... e e e e 85
4.2 Methods & Statistical analysis...........ccceeeiiiiiiiiiii i 87

421 CONAITIONING . ..ceiieieiii e e e e eeees 87.
4.2.2 SUMUII L.t 89
4.2.3 fMRI Data ACQUISITION .......vuuniiiee it 90
4.2.4 Data ANAIYSIS ....ooevieiiiieeiei et ettt 0.9
4.3 RESUILS ... e e s 98
431 Behavioural data............oouiuiiiiiiiiiee e 98
4.3.2 Analyses of fIMRI data.................tmeeeeeeeeiee e 101
4.3.3 NONINEAr DCM ......cciiiiiiiiiiiiiiiiei ettt 106

4.4 Discussion

5. Amygdala Modulates Cortico-Striatal ConnectiGnging Fear Acquisition.114

5.1 INFOAUCTION ....ceiiiiiiiiiieeeeee e 114
5.2 Methods & Statistical analysiS...........ccceeiiiiiiiiiiiiiii e, 117
5.2.1 Experimental Design — fMRI ...........uuieeeeei e 117
5.2.2 SUDJECES ..ot 118
5.2.3 fMRI Data ACQUISILION .......cccvviiiiiiimmmme e e e e e 118
524 fMRI Data ANAlYSIS .....coovviiiiieee it 119
5.2.5 SPM CONrASES......iiiiiiiiiiiiiii s s 119
5.2.6 DM L e 121
5.3 RESUILS ..t 124
5.3.1 SPM IESUILS ... M2
5.3.2 DCM FESUILS ...ttt 127
5.4 DISCUSSION ....uutiiiiiiiiiiiiia s mmmmmm e e eas 131



54.1 Prediction errors in the amygdala? ..., 131

5.4.2 Amygdala influences CS+ processing in thé@msstriatal circuit 133

5.4.3 Limitations and future direCtions...... . ..eveeiinnneeiiiiiiie e 134
General CONCIUSIONS ........ouuuuiiii oot e e e eeees 136
6.1  COoNtribBULIONS......cooiiii i 136
6.2 LIMITALIONS ... e 137
6.2.1 Effective connections are not anatomical egtians.................... 138
6.2.2 Interpreting CauSality ................. e e vveeee e e e 138
6.2.3 Exploring and defining model space .....ceeevvieeeiiiiineennennn..... 138
6.3  FULUIrE RESEAICN.......ciiiiiiiiiiieeeet e 139
6.3.1 MEG to resolve temporal resolution.......cccccccccevieeiiiiiiiiiiinnneeenn. 139
6.3.2 Pharmacology .......cccooeviiiii e 140
6.3.3 Associative learning, connectivity & schizophia ....................... 140



List of Figures

Figure 1.1.
Figure 1.2.
Figure 1.3.
Figure 1.4.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure B.1.

Dopamine firing reflects prediCtionGs. .............cccovviiviiiiiiieeiieiiiinnn. 18
Modulation of synaptic plastiCity............cooeeiiiimiiiiiiinieeeeieieinn 26
Neuronal network implementing predictaror signalling. ................. 32
Bayes' RUIE. ........cooiii e 37
Experimental deSign. ....... ..o eeceemriieeeee e 60
Cue-outcome association strengths...........coooceviiiiiiiiiie e, 7.6
DCMs of learning effects on audio-vist@nnectivity.......................... 71
FMRI TESUILS. ... 73
Learning effects on audio-visual CORNEY...................ccevvvuieeeennnnnn... 77
Experimental deSign. ....... ..o eeceamr oo 89
Trial-by-trial probability and volatifiestimates. ...........cccooevvvveieeeennnnnn. 92
The effect of outcome probability onsRahd error rates. ................... 100
Main effects and modulation of outcastisulus processing. ............ 104
DCMs tested to establish the optimdbgenous connectivity. .......... 107
DCMs testing the respective roles ¢apen and PMd. ..................... 109
Timeseries of a single trial. ... 118
Main and time effects for face and &rsionuli..................ccoevvinnnnnnn. 125

3- and 4-area nonlinear DCMs to madelshock x time interaction. .129

Graph illustration of the volatility @el. ..................cccciiiiii s 149

10



List of Tables

Table 1.1. Overview of conditioning paradigmsS............ccuuuiiriieiiiiiiiiiiiieee e 21
Table 3.1. Probabilistic relationship between aargliind visual stimuli. ............... 61
Table 3.2. Contrast weights for parametrically matkd regressors. ..................... 67
Table 3.3. MNI coordinates and Z-values for siguifitly activated regions........... 75
Table 4.1. MNI coordinates and Z-values for sigmifitly activated regions......... 105
Table 4.2. BMS with regard to endogenous conndgthetween PPA, FFA and

PIM. e 107
Table 4.3. BMS among all tested DCMS ... eeeeviieeeeiiieeee e eeee e, 108
Table 5.1. Design and stimulus freQUENCY. .......cceuuiieiiiii i, 201
Table 5.2. Contrast definnitions. ............oceermiiiii e 120
Table 5.3. MNI coordinates and Z-values for sigrifitly activated regions......... 126
Table 5.4. BMS results for the 3 area model................eiiiiiiiiiiiiiiis 3
Table 5.5. BMS results for 4-area Model. ... ceeviiiiiiniiiiiiiiiiiieeeceeees 130

11



Outline and Aims

The aim of this thesis was to assess the role edliption errors and connectivity
changes in associative learning, using a combinaifoformal learning models and
DCM for fMRI. A range of associative learning taskss used with increasing
behavioural relevance of the associative relatigmsshThis thesis is organized as

follows:

Chapter 1 — Introduction — This chapter is divided into tparts. The first part gives
a brief overview of the field of associative leami and discusses in more detail the
role of prediction errors and synaptic plasticilyne second part describes and
compares classical reinforcement learning modeld Bayesian ideal observer
models, both of which were used to model the behmal and fMRI data described

in this thesis.

Chapter 2 —Methods — This chapter is divided into two pafise first part describes
DCM, including both the original formulation andnavel extension which allows
for second order modulation. Both these tools bélused for hypothesis testing in
the subsequent chapters. The second part des&dyesian model selection, which
is used to decide which of a group of models isbibst model for a given dataset. In

subsequent chapters this tool is applied to botMB@nd behavioural data.

Chapters 3-5— Results chapters — These chapters describe perieental work:
the aims, the hypotheses / models tested, thepsmtdithe outcomes of three studies.

The specific goals of each study were the following

= To investigate associative learning of task-irral@vassociations, at the level
of the sensory cortex, and more specifically to teschanges in connectivity

between the sensory areas involvEtigpter 3).

= To explore stimulus independent and stimulus baurgrise processing when

subjects learn dynamically changing relationshigsvieen sensory stimuli and

12



to identify an underlying second order connectivitgdel for the SPM results
(Chapter 4).

= To investigate prediction error processing in arersive reinforcement
learning paradigm, the connectivity parametershefunderlying causal model
(Chapter 5).

Chapter 6 — General Discussion and Conclusion — This chgptevides a general
discussion and the conclusions of this work; presés contributions to the field;

and suggests directions for future research.
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Chapter 1

Introduction

In order to interpret incoming sensory informatiand predict future events, our
brains need to construct models of the world teatesent how external events are
causally linked. In his 1898 dissertation on anim&tlligence, Edward Thorndike
first proposed a theory of associative learningnimals (Thorndike E.L., 1898). He
posed the so-called ‘law of effect’, arguing tresirhing consists of the establishment
of associations that are formed when response®boeed by rewards. This theory
formed the basis of a century of stimulus-resparak stimulus-stimulus associative

learning.

It is easy to see how predicting relevant stimuliie environment such as food and
predators can boost adaptive fitness, allowingtorgeek out juicy fruits and avoid
painful shocks in cognitive neuroscience experimeHbwever phenomena like the
mismatch negativity and sensory preconditioning Section 1.1.2and3.1) show
that the brain’s predictions about the environmenat not limited to behaviourally
relevant stimuli. One hypothesis is that sensorycqmion rests upon active
prediction of the environment rather than just peessreception of sensory
information. Here, sensory perception is a recgriimput-match-prediction loop
where beliefs about the environment are contingougldated to predict future

sensory inputs.

After decades of animal research into the neuralhaeisms of associative learning
in animals, functional neuroimaging has alloweddgtension of these investigations
to human subjects. This thesis combines two reamwelopments in human
functional magnetic resonance imaging (fMRI) method) the use of formal
associative learning models to explain measured BOiesponses and (ii)
physiologically motivated models of brain conneityiv Changes in connectivity

have long been thought to be central to the phygiohl implementation of learning

14



(see (Hebb, 1949)), and in the work presented lessgciative learning models are
embedded in physiological models of connectivityingestigate changes during
associative learning. Within this novel framewossaciative learning is investigated
in three paradigms, in which the probabilistic stins associations range from

affectively neutral to noxious, static to changiagd incidental to task relevant.

This chapter is divided into two parts. In theftfipart | will give an overview of the
fundaments of associative learning, including tbéam of prediction errors in both
reward and non-reward based contexts, the hypeattaspredictive coding as a
fundamental mechanism of brain functioning, and theurophysiological

mechanisms underlying associative learning. Therskgart of this chapter then
describes classical and Bayesian learning modats, their advantages and

limitations for investigating associative learnipigpcesses.

1.1 Associative learning

Behavioural research on how humans and animal$ learpredict positive and
negative stimuli in their environment was pioneetsd lvan Pavlov in the late
nineteenth century. Originally studying the digestisystem and the chemical
composition of saliva, Pavlov observed that dogstetl salivating before food was
actually delivered. Upon closer examination it §gined that the salivating response
commenced when a bell was rung by his assistantlicate that the food was ready.
Pavlov abandoned the study of saliva chemistrawodr of further investigating this

‘psychic secretion’ response, as he termed it.

In classical, or Pavlovian, conditioning, a motigaally significant unconditioned
stimulus (US; the food stimulus, often also termeeinforcer’), elicits an
unconditioned response (UR; salivation). When dacéfely neutral conditioned
stimulus (CS; the bell) regularly precedes the th8,CS will eventually also elicit
salivation as a conditioned response (CR) ($able 1.1). This formation of
stimulus-stimulus associations is fundamentally ongnt as it allows animals and

humans to predict and prepare for biologically imi@ot events.

15



Later experiments showed that temporal pairing ofi@ and reinforcer alone is not
enough to learn a cue-outcome association. Thisdea®nstrated by a phenomenon
called ‘blocking’ ((Kamin LJ, 1969), seEable 1.1). In the first stage of a blocking
paradigm, an initially neutral cue A is paired wétreinforcer, and another neutral
cue B is presented but never paired. After stagé\ yill elicit a conditioned
response, but B will not. In a second stage, Arissented in combination with
another cue X, and B with Y, and both compound ewesepeatedly paired with the
reinforcer. After stage 2, Y will elicit a conditied response, whereas X will not,
even though both cues have been paired with aoreif equally often. This can be
explained by noting that for the AX compound, Thanforcer could be fully
predicted by A alone, rendering X redundant, wherka the BY compound, B
could not explain the reinforcer, leaving it ‘free’ be associated to Y. This suggests
that when a reinforcer is completely predicted bg tue(s), no further learning
occurs; in other words, A had ‘blocked’ learning @ssociation between X and the

reinforcer.

Based on this effect, Kamin concluded that sim@yipg of the cue and reinforcer
is not enough; the presence of the reinforcer dide tsurprising in order to establish
an association (Kamin LJ, 1969). This notion ofosise lies at the heart of nearly all
associative learning theories. The basic ideaas sghmismatch between predicted
and actual outcome signals that the internal megekdictions are wrong and need
to be updated. Such surprising events are knowprediction errors. The next
section reviews accumulating neurobiological evaterthat the brain indeed

processes surprising events differently from predievents

1.1.1 Neuronal prediction errors

1.1.1.1Dopamine & Ventral striatum

Dopamine (DA) neurons in the ventral striatum incagues strongly increase their
firing rate when salient or rewarding stimuli aresented. These rewarding stimuli
can be primary rewards, such as food and wateralsat arbitrary cues that are
predictive of primary rewards (Ljungberg et al.,929Romo and Schultz, 1990).
These DA responses generalise to stimuli that aeregptually similar to the reward-

predicting cues, and the responses show other abastics that parallel those

16



reported in behavioural studies, such as blocksege Table 1.1; (Waelti et al.,
2001)).

In a seminal series of studies, Schultz and calleagcarefully investigated the
nature of this phasic dopamine firing during cleakconditioning using single unit
recordings in the macaque ventral tegmental arda)\(Mirenowicz and Schultz,
1994;Mirenowicz and Schultz, 1996;Romo and Schdl@80;Schultz, 1998). When
a monkey is first presented with an arbitrary visuge followed by a juice reward,
the dopamine neurons strongly increase firing spo@se to the reward, but not in
response to the cue (deigure 1.1). Over time, as the monkey learns the cue-reward
association, firing rates increase when the cuelfiis presented. This response
parallels the behaviourally observed conditionexgpomse to the cue, which has now
become a reward in itself. Furthermore, as thecisson is learned, rewards evoke
progressively smaller increases in firing; when teward is fully predicted, firing
rates no longer increase. Finally, firing ratesrease to below baseline when a
predicted reward is omitted. This pattern of resesnsuggest that what the
dopamine neurons respond to is not reward perwatsbprediction error. When the
reward is presented before the association is deliihis unpredicted and increased
firing rates reflect the large difference betweeadiction and observed outcome.
When the reward is fully predicted by the cue iicitd no response, but the
presentation of the cue itself is surprising anésdelicit an increased response.
When a predicted reward is omitted, the differelme®veen the outcome (no reward)

and prediction (reward) is negative, leading teprdssion of responses.

Further research has shown that this predictioor esignal is sensitive to many
different aspects of the reward stimuli. For exampirediction errors are specific to
the context in which the association has been éshr(Nakahara et al., 2004), and
firing rates in response to the cue are proportioméoth the magnitude (Bayer and
Glimcher, 2005) and the probability (Fiorillo et.,al003) of the reinforcer.

Furthermore, to maintain the reward sensitivityrowdarge range of values, the gain
is adjusted to the variance of the reward valuél@roet al., 2005). These and many
other studies support the hypothesis that the Ddsares in the VTA signal aspects

of reward prediction error (Schultz and Dickinsg@00).
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Figure 1.1. Dopamine firing reflects prediction erors. Changes in
dopamine neuron firing reflect the prediction esraf appetitive events. For each
panel, the top graph represents the accumulatée spunt per time bin, and each
dotted line in represents one recording sessiorerevieach dot is a spike. CS =
conditioned stimulus, R = primary reward (juicEdp. Before learning, the juice
drop is not predicted, resulting in a positive pcédn error, and increased firing in
response to the juicéiddle. After learning, the CS predicts the reward, anel th
dopamine neurons increase firing rate in respoogée reward-predicting CS, but
not to the predicted rewarBottom. When after learning the reward-predicted CS is
presented, but the reward is omitted, this resuolta negative prediction error and
suppressed firing of the DA neurons at the time revgard should have occurred.
(From (Schultz et al., 1997)).

Inspired by the results from these animal experimedMRI studies have
subsequently shown that in humans the VTA alsoardp to the difference between
expected and actual rewards (D'Ardenne et al., 200®re frequently and
prominently, however, these studies found rewastligtion error responses in the
ventral striatum, e.g. in the context of primaryodorewards (McClure et al.,
2003;0'Doherty et al., 2003;Pagnoni et al., 2008/Rpiez et al., 2006) to money
(Abler et al., 2006;Hare et al., 2008;Seymour et2007;Yacubian et al., 2007) and
even attractive faces (Bray and O'Doherty, 200TesE findings can be explained
by noting that (i) the ventral striatum is a prim#arget of dopaminergic projections
from the VTA (Joel and Weiskopf, 2000), and (i)ettBOLD signal reflects
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postsynaptic field potentials (and thus input tcaega) more strongly than firing rate
(and thus output from an area) (Logothetis et @012. Thus, it is likely that ventral
striatal BOLD activity in relation to reward pretlan errors is partially, although
probably not completely, a downstream reflection refvard prediction error
responses of DA neurons in VTA. A recent study atlyelinked dopamine and
reward-seeking behaviour in humans (Pessiglionealget 2006). Behaviourally,
subjects treated with DA agonist levodopa were midely to choose more
rewarding actions than subjects on DA antagonisopeasidol. Furthermore, the
striatal prediction error response to rewardinmsti as observed in previous studies
was modulated by dopaminergic drugs. The degrethisfmodulation determined

how much the subject’s behaviour was affected byditugs.

The human and animal studies described above $grengport the hypothesis that
DA neurons encode reward prediction error and thettral striatal activity as
measured with fMRI reflects these prediction errdiisis does not mean, however,
that processing in the ventral striatum is limitedeward-based learning and is not
involved in other forms of associative learning. n@iioning and associative
learning has long been dominated by animal reseancti training animals to do
behavioural tasks is inherently reward-based; @mnat simply ask a monkey or rat
to press a button, they have to be rewarded tmdAsa result there has been a bias
towards reward-based tasks, and comparativelye littiterest in investigating
associative learning and striatal processing dadctiffely neutral and task-irrelevant
stimuli. This has changed somewhat since the advfemiman neuroimaging, and a
few recent studies have given some hints as tan#tere of striatal processing of
affectively neutral stimuli. fMRI results showedttthe ventral striatum responds to
nonrewarding, unexpected stimuli (Zink et al., 20p®portional to the salience of
the stimulus (Zink et al.,, 2006). Furthermore, \agti in the ventral striatum
increases in responses to cues predicting a naffettively neutral stimulus and to
novel stimuli per se (Wittmann et al., 2007;Wittmaat al., 2008).

These results suggest that rather than just caodingrds or reward prediction errors,
the striatum may have a more general role in psingssalient and unexpected
events. One of the proposed functions of this tsirisesponse is to reallocate
resources to unexpected stimuli in both rewardreovdreward contexts (Zink et al.,

2006), which will be discussed in the next section.
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1.1.1.2Affectively neutral prediction errors

In a pioneering fMRI study of prediction error s&® regarding causal associative
learning for affectively neutral stimuli subjectsalned the relationships between
various cues (fictitious drugs) and outcomes (fmtis syndromes) (Fletcher et al.,
2001). At the start of the experiment, when theiremwmnent was still unpredictable,
activity in the right dorsolateral prefrontal cortéDLPFC) and the putamen was
high, and decreased as the associations were leginged. Furthermore, activity in
the DLPFC was higher on trials with unexpected carag to expected outcomes.
The authors suggest this response pattern reflécteghitive’ prediction errors
because the learned associations were not rewastibdut nevertheless task-

relevant.

In a subsequent study, Corlett et al. investiggtediiction error responses for two
well-known conditioning effects: backwards blockiagpd unovershadowing (see
Table 1.1, (Corlett et al., 2004)). Subjects were instructed predict allergic
reactions of a fictitious patient in response tdaia food items. In a first stage, two
food items A and X were presented together, folldug an allergic response. Two
other food items, B and Y were also paired anadfedld by an allergic response. In a
second stage A was presented alone, followed bgllargic response, and B was
also presented alone, but not followed by an altenesponse. Because A could fully
account for the allergic response observed with Axe compound, X became
disassociated from the allergic response, whickniswn as backwards blocking.
Conversely, because B could not explain the altergsponse observed in the BY
compound, Y alone will now explain the allergic pesse, so Y has been
‘unovershadowed’ by B. If these processes indeedirpchen X followed by an
allergic response and Y not followed by an allergisponse will be more surprising,
i.e. have a larger prediction error, than vice &ensdeed Corlett et al. showed
exactly such a prediction error response in thatatn as well as in the same part of
the right DLPFC (Corlett et al., 2004) as was desti@ted previously (Fletcher et
al., 2001;Turner et al., 2004).
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Table 1.1. Overview of conditioning paradigms. Overview of
conditioning paradigms described in the main tskipwing the different training

stages, the testing phase and the conditionedmssturing testing

Stage 1 Stage 2 Stage 3 Test Response
Classical A - reinforcer A +
Conditioning
Blocking A - reinforcer AX-> reinforcer X 0
Control B - nothing BY - reinforcer Y +
Backwards AX - reinforcer  A-> reinforcer X 0
Blocking
Unover- BY - reinforcer B - nothing Y +
Shadowing
Preventative A - reinforcer AB-> nothing B -
Learning
Superlearning A - reinforcer AB-> nothing BC- reinforcer C ++
Higher order A > Reinforcer  B>A->reinforcer B +
conditioning

Given that the ventral striatum responds to noyéWittmann et al., 2007) and that
in the study by Fletcher et al. unpredictabilitydamovelty were correlated, it is
possible that the observed striatal and DLPFC ptiedi error responses were simply
due to novelty of the outcomes. However, Turnealeshowed that this was not the
case in a very carefully controlled study employthg phenomena of preventative
and superlearning (s€kable 1.1 (Turner et al., 2004)). Here, in a first phase a
stimulus gets associated with an outcome (A+)h&nrtext phase a novel stimulus, is
combined with A, but not followed by the outcomeB{\ This generates a negative
prediction error, and B acquires a strong negataasal potential. In a third phase,
the B is paired with a third stimulus and followbg the outcome (BC+). This
generates a strong positive prediction error, anacquires a very strong positive
causal potential. When contrasting this with addad blocking paradigm, in which
the stimuli were presented the same number of firbesh superlearning and

preventative learning events, which only differeahfi control events in terms of the
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size of the prediction errors, but not in termso¥elty, showed increased activity in

the DLPFC as well as in the striatum.

These studies demonstrated that prediction ertagsgrole in learning associations
that do not involve reward prediction, and thathbthte striatum and the prefrontal
cortex are involved in processing these ‘cognitiyeédiction errors. However,
although unrelated to reward, these predictionrerape still relevant to the subject
in the sense that their task is to make accurageligtions and making correct
predictions is rewarding in itself. Therefore, aannot claim that learning here is
entirely unrelated to any form of reward. Importgnthought, the reward of being
correct is entirely orthogonal to the presencebseace of the allergy outcome. This
is in contrast with reward based studies wheregmas of the outcome (i.e. the
reward) always results in a positive reward preaiicterror, and absence of the
outcome in a negative reward prediction error. kinlreward-based prediction
errors, the prediction errors observed in the stwdiscussed above are independent
of whether the error was in the positive (unexpegcpeesence of outcome) or
negative (unexpected absence of outcome) direditionther words, the prediction
errors were unsigned, which might be explainedhgyfact that the actual outcome

itself is not relevant, only how surprising thiscame was.

Summarising, in circumstances where the only reievaeasure ishow much

surprise the outcome engenders, i.e. for affegtimelutral contexts, the dorsolateral
prefrontal cortex and the striatum encode a sigiependent prediction error
((Corlett et al.,, 2004;Fletcher et al., 2001;Turredr al., 2004). It should be
emphasised again though that the learned assowdbere are still relevant to the
task. However, in recent years it has been sugdiéisée coding of prediction errors
is at the heart of every cognitive process, inclgdiow-level sensory perception
(Friston et al., 2006;Rao and Ballard, 1999). Taetsection will discuss this theory

of predictive coding as a basic mode of brain fiomct

1.1.2 Predictive coding

Why would the brain aim to predict irrelevant eweand stimuli? The theoretical
notion of predictive coding proposes that the brhas two primary objectives:
inferenceabout the causes of sensory input k@dning the relationship between the

inputs and the causes. This is achieved by constgua generativemodel of how
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causes in the world elicit sensory inputs; givemscensory inputs, this model can
be inverted taecognisethe causes of this input. In this scheme, eacél let/the
processing hierarchy receives bottom-up sensomyt ifipm the level below and top-
down predictions from the level above (Garrido let 2009b). Prediction error, i.e.
the difference between the true and estimated pilityadistribution of the causes, is
minimised at all levels of the hierarchy by adjogticonnection strengths through

synaptic plasticity (Friston, 2005a)).

One of the most basic and robust paradigms to dstrate@ neuronal responses to
unexpected stimuli is the oddball paradigm. Heresentation of an oddball stimulus
in a sequence of standard stimuli elicits a neggtivtential as measured using EEG,
which is known as the mismatch negativity (MMN) @atial. The MMN is observed
in all sensory domains (auditory (Baldeweg, 2006%ual (Stagg et al., 2004);
somatosensory (Akatsuka et al., 2007)) and camberatood in light of a predictive
coding framework (Garrido et al., 2009b). Predictierrors are minimised by
adjusting connection strengths through synaptistjglify upon repeated presentation
of the stimuli. These adjustments are reflected rogwsiologically by the
disappearance of the MMN (Baldeweg et al., 2006t6&n, 2005a), which is elicited
again when an oddball is presented. This adjustnseatso reflected by repetition
suppression in the visual domain, as observed iRIffummerfield et al., 2008).
Here, the likelihood of stimulus repetition was npaated and repetition

suppression was reduced in response to improbabipared to probable repetitions.

There is increasing evidence that perceptual legris just one of many processes
that can be explained in a predictive coding fraomwFriston et al., 2006;Garrido
et al., 2009a;Rao and Ballard, 1999) and is alsdhat heart of higher level
processing: In an fMRI study, an expectation to e®s was induced by asking
subjects to report whether presented stimuli waces or not. Forward connectivity
between face sensitive visual areas (FFA) to thetél cortex to was modulated by
the prediction errors. Incorrect predictions ineeh FFA-> prefrontal connectivity,
whereas correct predictions increased prefrogtaFFA connectivity (Summerfield
and Koechlin, 2008). Other studies have shown ptiedi coding like mechanisms
for sensory integration (Bays and Wolpert, 2007kBfaore et al., 1998), predictive
attenuation of tactile stimulation (Bays et al.08)) and even for social interactions
(Shergill et al., 2003;Wolpert et al., 2003). Théiseings support the notion that the
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fundamental function of the brain could be to emcath implicit and probabilistic

model of the environment (Friston et al., 2006).

1.1.2.1Functions of neuronal prediction error signals

The effect that various forms of prediction errtvdve on neuronal functioning

depends on several factors. Firstly, the speafigitd scope of the projections of the
prediction error encoding neurons determine whether signal is broadcasted
widely, or selectively affects a small group of rens. For example, cholinergic and
dopaminergic projections from the nucleus basafis &TA have widespread

connections to the cortex (Lewis, 1991). Resultafapal error messages could then
selectively affect neurons involved in processimigimation at the same time as the
prediction error signal via postsynaptic neurorat thct as coincidence detectors.
Alternatively, the prediction error signal could t&dayed only to a selected group of

neurons, directly affecting behavioural reactions.

Secondly, the way in which the neurons affect postptic signalling might differ.
The postsynaptic effects may be very short-lived airectly affect immediate
behaviour or attention, or they might control sgreof predictions by inducing
short-term or long-term changes in synaptic sttemgSuch learning-dependent

plasticity will be discussed in the next section.

1.1.3 Plasticity during associative learning

1.1.3.1Synaptic plasticity during associative learning

Already in 1949, Donald Hebb suggested that chaimgesnnectivity are central to
the physiological implementation of associatiorriésg (Hebb, 1949). The previous
section described how the brain actively generateslictions of sensory signals
based on an internal model of the world and congpé#nese expectations to the
actual incoming information. Predictive coding thHes propose that prediction
errors are minimised by adjusting the synapticcaffies or connections strengths

between different levels of the processing hiemarch

Brain connectivity is defined by three key propestii) the current strength of a
connection ii) the change in the strength of tliarection over time, and iii) how

this change is controlled. These three aspects egmond to distinct
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neurophysiological mechanisms. For glutamatergicapges, the main excitatory
synapses in the brain, connection strength dependshe number and state of
AMPA receptors (Malinow & Malenka 2002). Changessynaptic strength, i.e.
plasticity, is regulated by NMDA-dependent mecharsisnodulating the number of
AMPA receptors expressed at the synapse (Genoux Mowktgomery, 2007).
Because of its unique molecular properties the NMi28eptor can function as a
‘coincidence detector’ of afferent and efferentiatyt, and as such initiate synaptic
plasticity. Presynaptic transmitter release contamhi with postsynaptic
depolarisation allows a calcium influx through MDA receptors, which triggers
trafficking as well as phosphorylation of glutantgie AMPA receptors. These
properties make NMDA receptors ideally suited fes@iative learning processes
that involve concomitant activity in different (egensory) areas of the brain. Indeed
NMDA-dependent mechanisms have been found to pl&gyarole plasticity in
learning and memory processes in the brain (eg.(8&snoux and Montgomery,
2007;Gu, 2002;Ji et al., 2005;Morris, 1989;Tyelgt2008)).

Finally, synaptic plasticity itself is influencedy bmodulatory transmitters like
dopamine, serotonin and acetylcholine, mainly tgloahanges in NMDA receptor
function ((Gu, 2002), sed-igure 1.1). For example, dopamine (DA) and
acetylcholine (ACh) regulate the trafficking, insen and endocytosis of NMDA

receptors into the cell membrane. As such, chdalisemechanisms strongly
modulate NDMA dependent LTP and LTD in visual crrtéBrocher et al.,

1992;Kirkwood et al., 1999) and auditory cortex (Nexate and Hsieh, 2003). The
phosphorylation of the NMDA receptors, which detem@s the conductance
properties, is modulated by DA and serotonin (5H€reptors (Jiao et al,
2007;Salazar-Colocho et al., 2007;Wolf et al., 2008 summary, excitatory brain
connectivity is determined by (i) AMPA receptorgpeessing synaptic strength, (ii)
NMDA receptors controlling synaptic strength, anil) (modulatory transmitters

regulating this control (s€eigure 1.2).

25



Synaptic
strength

control
- AMPAR trafficking
- functional state of AMPARSs

Synaptic NMDAR i

plasticity 3
modulate NMDAR function by
changing
- membrane potential
- intracellular signal

transduction pathways
- functional state of NMDARs

Modulation of
synaptic plasticity

Figure 1.2. Modulation of synaptic plasticity. Modulation of synaptic

plasticity of excitatory, glutamatergic synapses bseveral modulatory
neurotransmitters via NDMA signalling. (Adapted rfro(Stephan et al., 2006)).
NMDAR = NMDA receptor, AMPAR = AMPA receptor, ACh acetylcholine, NE

= norepinephrine, 5SHT = serotonin, DA = dopamine.

1.1.3.2Associative learning induced plasticity in the segscortex

The previous section described the cellular medmasiof synaptic plasticity that
underlie associative learning processes. In lirth tivehavioural observations, Friston
suggested that when ‘value-dependent modulatientended to the inputs of neural
value systems themselves, initially neutral cues @equire value’ (Friston et al.,
1994). Here, discriminative conditioned responses accompanied by value-
dependent plasticity of receptive fields, as réédan the selective augmentation of
unit responses to valuable sensory cues. Electsaplbgical and fMRI measures of
activity in the sensory cortices indeed show sugcanges in CS processing as the
cues become associated with affective outcomesradsun the superior colliculus
and auditory cortex are known to have a frequenaytiich they fire preferentially,
known as the best frequency (Weinberger, 2007 ctilphysiological studies in rats
and big brown bats have shown a ‘centripetal’ Hestjuency shift towards the
frequency of the conditioned tone when the tongaised with an aversive stimulus
such as a painful electric shock (Ma and Suga, 2U6mberger, 2004). Similarly, in

humans, BOLD responses in the auditory cortex alamced in response to tones
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paired with aversive outcomes (Thiel et al., 2002kl et al., 2002a). In contrast,
however, Morris et al. observed a decreased respim<S+ (CS regularly and
consistently paired with an outcome) compared te (C3 never or rarely paired
with an outcome) stimuli in a similar fear conditiog study using PET (Morris et
al., 1998). At first this seems at odds with thecglophysiology results. However,
the electrophysiologically observed best frequesbyft results in a small and
narrowly tuned increase, which is accompanied bgleareased response in the
surrounding frequencies. It is conceivable that tdecrease swamps the small
augmentation, so that a focal narrowing of the nignturve as found in animals,
actually results in a regional deactivation becanfsthe courser spatial resolution.
The direction of the observed changes notwithstayydhese results all point in the
direction of conditioning dependent plasticity infS Qorocessing in the auditory

cortex.

Similar findings were reported in the visual corteshere BOLD responses in the
visual cortex increased to a visual stimulus tred been associated with a noxious
outcome (Carlsson et al., 2006). Such changes ioeptial processing are not
limited to aversive outcomes; Seitz et al. showmdgased stimulus sensitivity when
visual orientation gratings were paired with liquévards, even when subjects were

unaware of the visual stimulus (Seitz et al., 2009)

In conclusion, recent studies show plasticity i@ slensory cortices for CS processing
in the context of aversive or appetitive conditranilt is unclear as to whether such
changes also occur when associations between hstitnali are learned, a question

that will be addressed @hapter 3.

1.1.3.3The role of ACh

ACh is one of the most important modulators of gfitaplasticity in the context of
associative learning in the perceptual domain. &mmple, the role of nucleus
basalis dependent ACh release in auditory cortastigity has been extensively
studied in aversive conditioning experiments inn@als, showing receptive field
plasticity and behavioural memory formation to baimy dependent on muscarinic
receptors (Weinberger, 2007). Also in humans, theaaced BOLD response to
tones associated with shocks is abolished uponrasimgition of the ACh antagonist

scopolamine (Thiel et al., 2002b;Thiel et al., 280Zurthermore, admistration of
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scopolamine abolished both behaviourally obserepetition priming as well as the
associated repetition suppression in the visuakgaThiel et al., 2002c). Finally,
interaction of ACh and NMDA dependent mechanisnygeap to be crucial for long

term consolidation of conditioning-induced synapiiasticity (Ji et al., 2005).

These findings are starting to elucidate the mesh@by which cortical plasticity is
regulated during conditioning and other forms afagsative learning. The aim of the
work presented in this thesis was to create biolllyi plausible models of
connectivity to asses connectivity changes durisgpeiative learning. In the future
these models could be used to directly test thieentes of the neuromodulators
discussed here on connection strengths and thesinitey dependent-changes, i.e.

plasticity (seeChapter 6)

1.2 Models of associative learning

This section starts with a general discussion oflehtased analysis methods, and
then review how two classes of computational modals provide a framework to

investigate aspects of associative learning abétavioural and physiological level.

1.2.1 Model-based analysis methods

A model is a representation that contains the eisgesiructure of some event or
process in the real world. In psychology and bigjognodels' are often informal,
consisting of boxes with arrows between them, sagtprotein synthesis cascade
models or the working memory model (Baddeley andap@996). In mathematics
and physics, ‘models’ are more formal, in the foofnequations that putatively
underlie observed processes. In recent years systenroscience research has seen
a strong increase in the use of formal modellimgptéques concerning reinforcement
learning (e.g. (Glascher and Bichel, 2005;Pessigliet al., 2006;Seymour et al.,
2004)), decision making (e.g. (Beck et al., 20081Bes et al., 2007)), and brain
connectivity assessed by fMRI and electrophysiol@iyen et al., 2008;Kiebel et al.,
2008;Stephan et al., 2007a).

Indeed both types of models adhere to the defmitiba model as ‘a representation
of a process in the real world.” An often overlodkiact is that any inferential

analysis of data essentially tests a model. Bec#lusee models are not always
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explicitly described as such, there is a perceigistinction between model-based
and other research. A good example of such unrésegmodel testing is classical
statistical inference. This is essentially a tdstary simple models of the world: A
one-sample t-test on the effect of variable A omeomeasure B effectively
compares a model of the world in which A affects ¢eneration of B, to a model of
the world where A does not affect B. Here, the madehe world is simplified to

the extent that it only contains A to predict Byarther factors that might affect B
are considered ‘noise’, or errors in the predictadnthe model. In summary, the
recent increase in ‘model-based’ approaches inom@aging does not break away
from classical analysis methods, but merely camstt an evolution towards more

explicitly defined and complex models.

1.2.1.1Model complexity

Models are by definition simplifications; if a mddecluded every aspect of the real
world, it would no longer be a model, but it wolnd the world itself. Simplification
allows us to distil and probe those aspects ofwbdd that we are interested in. A
good model has the right balance between complexity fit: on the one hand, it
should be simple enough not to be misled by noise, experiment specific
variations that do not generalise across expersnéb the other hand, if a model
cannot account well for important aspects of theeokations, then it may not be
complex enough. In other words, in order to creagpod model, one has to make
simplifying assumptions about the causes of eventke real world, and all other
causes that are not represented by the model evilfribute to the noise, or error in

the model predictions.

Critically, whether a given model is worse or bettean another model depends on
the phenomenon that is to be explained. In otherdsyothere is no single ‘true’
model of the world, just different models with @ifént (levels of) simplifications
that can account for different situations and téféerent hypotheses. This underlines
the importance of selecting the optimal model fagiven question and data set. A
generic statistical framework for handling this kdage is Bayesian model selection
(Penny et al. 2004; Stephan et al. 2009). This agar was used for each study
contained by this thesis and will be describedataiin Chapter 2.
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1.2.2 Reinforcement learning models

1.2.2.1RW model

The first and most influential theoretical modelasfsociative learning was proposed
by Rescorla & Wagner in the early seventies (Reéscamd Wagner, 1972), and is
based on Pavlovian classical conditioning learrfseeSection 1.). The Rescorla-

Wagner (RW) model describes this learning proceserims of the strength of the
association formed between the CS and the US. @sie principle is that the change

in associative strengtAV, at a particular trial is directly proportional to the size of

the prediction error:
AV, =aB(A - th) (1.1)

Here, the prediction errof/, _th) is the difference between the actual outcome

A, on a trialt, and the predicted outcomE\/t , Which is based on the summed

prediction across all cues preseatand S are learning constants that determine the

weight of the incoming information (i.e. the prea error) relative to the
information accumulated on previous trials (i.ee fhrediction). On each trial, the

change in associative strengftV, is added to the current associative strength

such that the associative strength reflects theutative information from all

observed trials.

V

t+1

=V, +AV, (1.2)

The values of the learning constamt&nd S reflect properties, such as salience and

motivational value, of the CS and US stimuli, regtpely. Note that each stimulus
has an associated learning constant, but that 8t pazadigms there is only one type
of CS and one type of US, or the properties of@$s and USs are assumed to be
constant across stimulus types. As a result, toelymt of these two constants is
another constant, which is the overall learning.rétowever, when for example the
salience of two different cues is very differenheocan use different associated

learning rates (cfChapter 3).
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During learning, when the outcome is incompletelgdicted, the prediction error

will be positive and the associative strength wiltrease. On the next trial, the
prediction error will be slightly smaller, and thile increase in associative strength
will also be slightly smaller. Once the outcome dsmpletely predicted, the

difference between outcome and prediction is zand, the associative strength will

remain unchanged. This happens when learning laabed an asymptote. However,
when an outcome is predicted but omitted, the ptixati error is negative, and the
associative strength will be reduced. Because éhening constants determine the
size of the update, they will determine how quidklg asymptote is reached, but not
the actual level of the asymptote. The level of disgmptote is determined by the

conditioning schedule, and reflects the averageevaf A .

Thus, when the association between the CS and $is donstant but probabilistic,
say the CS predicts a US reward with an 80% prdibglthen association strength
V will asymptote at 0.8 (given that is either 1 or 0). Note that the learning rate
determines both the speed at which the asymptoteaished and the size of the

fluctuations around the asymptote after learningpimplete.

1.2.2.2Delta rule model: Connectionist implementationted RW model

Although the RW model describes how associationsnfdetween (internal
representations of) CS and US stimuli, it doespnovide a mechanistic explanation
of the learning process. McLaren proposed a newg&bork that could compute the
prediction error using a negative feedback assemdny a potential mechanism
underlying error-based learning (McLaren, 1989)tHis model, the weight of the
connections between the signal (CS input) and resp(prediction based on the CS)
are controlled by a facilitatory unit F that itsefcontrolled by direct excitation by
the reinforcer and a negative feedback from thpaese unit (seBigure 1.3). Thus,
the prediction based on the presentation of a @®nstantly updated depending on
the prediction error. The response unit perfealyroduces the predictions from the
RW model. The modulation of connection strengthgiadiction errors as proposed
by this neural network is at the heart of the wpr&sented in this thesis where we
aimed to investigate the role of prediction errarsnodulating connection strengths

during different types of associative learning.

31



A -V,
@t O
Reinforcement

C Signal ]

Figure 1.3. Neuronal network implementing prediction error

Response

signalling. Schematic simplification of the original neuroaasembly proposed by

McLaren for how prediction errors shape neuronalhections encoding associations
(after (McLaren, 1989)). The response unit delivrpredictionV, driven by the

signal unit which received the CS input. This drtyiinput to the response unit is

modulated by the facilitatory unit F. Activity initself is controlled by the excitatory

output from the US unit, carrying information abotlte reinforcesd and an
inhibitory output from the response unit, carrythg negative of the predictiot, .

By summation of these two inputs, activity in Heefs the prediction error.

1.2.2.3Determining the learning rate

Determining the learning rate is one of the mositentious issues with regard to the
RW and related models. There are two main appreatheetermine the learning
rate or any other constant parameter. The firstagmh is to decide on a learning
rate based on previous literature and knowledgetahe particular task and stimuli
at hand (e.g. see (O'Doherty et al., 2003;Petretial., 2008)). For example, when
the differences between a CS+ and CS- are smaihitg is likely to be quite slow,
so a small learning rate is appropriate (e.g. (Reatret al., 2008)). This approach is
the easiest to implement but theoretically problgenas one can never be sure that
the used learning rate is indeed the optimal onmote principled approach is to fit
the parameters to the data ($&mapter 2 for a more detailed discussion of model
fitting using Expectation Maximisation algorithned see (Behrens et al., 2007) for
an example). Once the optimal learning rate has lestablished, one can then test
whether the predictions of the model explain aificant proportion of the variance.
From a theoretical point of view this is the optimagproach, but it is sometimes
difficult to implement. For example when the datavery noisy (e.g. reaction time
data, or BOLD responses) it might be difficult todf the optimal values, and
estimation might get stuck in a local maximum. Gwybrid approach often used to

determine the learning rate is to define a rangpladsible learning rates, and do a
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stepwise analysis of the proportion of variancelarpd by models with different
learning rates within this range (e.g. see (denedudt al., 2009;Glascher and
Bichel, 2005;Seymour et al., 2004)).

1.2.2.4Limitations, extensions and alternatives of the iRddel

The RW model was a great step forward in formaigimught and theories about
associative learning, and can explain a wide raofjebehaviourally observed
learning phenomena, including classical conditignand extinction, as well as
blocking, preventative learning and superlearnges¢ribed infable 1.1). However,
the RW model is not appropriate in all situatiorihere are a number of
behaviourally observed phenomena which cannot p&aieed by the reinforcement
learning models discussed above. For example, the rodel predicts that the
history of conditioning has no influence on its g@et status; only the current
association value is important. However, experimdtave shown that a previously
conditioned stimulus actually needs fewer trials remch the same level of
conditioning, i.e. there is facilitated acquisitiafter extinction. Related to this is the
observation that when a CS is not presented fdnikeafter a CS-US association has
been extinguished, that there is partial recovergnfextinction, and furthermore that
exposure to the US alone can reinstate the CS-B&i@tion. Another example that
RW models cannot deal with is higher-order conditig (seeTable 1.1). When a
novel cue is paired with a conditioned excitorihia absence of a reinforcer, the RW
model would predict that the novel cue becomesraliioned inhibitor, but instead
it becomes a conditioned excitor as well. Thisipgieffect also works when the CSs
are paired before the CS-US association is learfsethsory preconditioning;
discussed irChapter 3). Finally, the RW model predicts that presentingcvel
stimulus without a US should not affect later cdioding. However, latent inhibition
(or CS-preexposure effect) is a well establisheseolation that after exposure to a
CS without the US, conditioning to the CS is retatdBelow we will discuss two
alternative models that are originally based on RW model and can model a

number of the phenomena discussed above.

1.2.241 Pearce & Hall attentional model

A crucial property of the standard RW model is fiett the learning rate is constant.

In other words, the balance between current ob8enscompared to predictions
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based on past observations is unchanging. One veoqdéct, however, that once an
association has been learned, the learning rateea@ses. Attentional theories of
associative learning are one class of models thatlldw for changes in the learning
rates. For example the model proposed by Pearceal& tHe prediction error does
not directly impact on the associative strengtht kather controls how much
attention is allocated to the next stimulus (Pearme Hall, 1980). The associability

is determined by the following equation
a, = y‘/]t—l - zvt—NlET‘ + (l_ y)at—l (1.3)

Here the associability of the CS with the outcomedmined by the absolute value
of the prediction error at the previous trial, dhd associability at the previous trial.
The relative contributions of these terms are deiteed by the parametey. The
underlying idea is that the more attention is paidh stimulus, the more readily it
will become associated with the reinforcer, andeoa association is learned and the
US fully predicted, the associability is low. Thimodel can explain certain
phenomena like latent inhibition, where the RW niddéds. However, one of the
drawbacks of the Pearce-Hall model is that becande the absolute value of the
prediction error is used, the association of thead8 US can only ever increase.
This results in the rather inelegant solution ofihg to invoke a second learning
process in the form of modelling the inhibitory @sation of the same CS, i.e. the
CS-noUS association. The net prediction is thersthe of the associative and ‘anti-

association’ of the CS and US:

SV =SV -V, (1.4)

A further problem is that introducing the paramejerto determine weighting of

current and past information only shifts the prableaused by the constant learning
rate in the RW model. One still needs to somehoterddne the constant value of

the parametey that determines the shape of the learning curve.

1.2.2.4.2 Temporal difference learning models

Because the RW model can only capture betweendffietts, it cannot account for

within-trial effects such as second-order conditignor sensitivity to stimulus
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timing (cf. Figure 1.1). Temporal difference (TD) learning models areitelly a
real-time extension of the RW models that allow émenodelwithin trial timing
effects, and are therefore particularly suiteddpl@n the DA prediction error signal.
The main assumption of TD models is that the ptexic/; should be interpreted as
the total, discounted sum of future rewards expmkétem timet to the end of the
trial (Sutton and Barto, 1990). The strategy iuse a vectox that describes the
presence of a sensory cue for each time bin inaj and another vectow that
carries weights of predicted rewards in those thims. On each trid] the predicted

valueV, is the linear product of the weightg and the presence or absence of the

CS, as encoded by the stimulus vectqr
\% :Z\Nixi,t (1.5)

At each time point the prediction errdycan be calculated as the difference between

the prediction and the reward at that time poinsmll future rewards until the end
of the trial. At the end of each trial, the weiglase updated depending on the

prediction errors and the learning rate:

Aw, =azxi,151 (1.6)
t

As the outcomes become associated with the cueswtights shift from the
outcome to the cue. Thus, after learning, the cwbgh itself are unpredicted, will
elicit a positive prediction error because theydprea positive summed reward until
the end of the trial. TD models can explain higbeter conditioning because the
reward associated with a particular cue simplytshd a preceding cue (Seymour et
al., 2004). The behaviour of the TD models depearzhgly on the number and the
size the time bins into which a trial is divided.T® model with only one time bin is

exactly the same as an RW model.

1.2.2.5Concluding remarks

The RW model formed the basis of a wide range ofrdrased learning models.

This model can explain a number of observed legrmphenomena, including

! Note that for TD models, t denotes time withirheatthan between trials
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classical conditioning and blocking, although ilsgo predict a number of others,
such as higher-order conditioning and latent irtlahi Extensions of the model
including TD models and the Pearce-Hall model caroant for some of these. That
does not mean, however, that the RW model is idyalnd that these alternatives are
necessarily ‘better’ models. Whenever choosing a@ehd is important to keep in
mind its limitations and properties and select dppropriate model for a particular
dataset. For example, when one is not interestadaddelling within trial learning
effects, because the time resolution of the dats amt allow for this (cfChapter

3), there is no point using a TD model, becauseripl reduces to an RW model. In
other words, it is important to choose a model taat capture the phenomena one is

interested in, but is not unnecessarily complex.

1.2.3 Bayesian ideal observer models

Bayesian methods for reinforcement learning canréeed back to the 1960s, but
until recently they have only been used very spogdlg. Part of the reason for this
is that non-Bayesian approaches described in #naqus section tend to be easier to
implement and work with. The main difference betwefe classical RW vs.
Bayesian learning models is that the former usatpsstimates of the associations,
whereas Bayesian methods are based on using futepar distributions,
considering not only the probabilities of the asastions, but also the uncertainty
about theses probabilities. In other words, the rmefithe posterior distribution
reflects the current estimate of the associatioangth, and the variance of this
distribution reflects the uncertainty about thisireate. This principled approach to
balancing previous knowledge and current infornmatie formalised by Bayes

Theorem:
p(21y) 0 p(yI9) ) (1.6)

Here, p(z9 | y) is the posterior belief about statés(e.g. trial-by-trial estimates of
associations) given the data based on the optimal combination of the likelittoo

p(y|9) and the prior belief in the model parametg(s?). Bayes theorem ensures

2 Here we will refer to the term RW model for thés®f simplicity, but note that this can be repbhce
by any prediction error-based learning model wiffxed learning rate, including TD and Q-value
learning models.
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optimal integration of current beliefs based on tpagormation, and current
information by weighing the prior and the likelirbdy their respective precisions

(seeFigure 1.4).

The application of Bayesian models to neuroscierak cognition research focused
initially on domains of perception and sensorimototegration (Bays et al.,
2006;Kording et al., 2007;Rao and Ballard, 1999;lby and Sahani, 2008;Wolpert
et al., 1995). More recently, however, the Bayesipproach has been applied to
modelling learning processes, for which it is esifely suited, because it specifies
how to optimally update beliefs in light of new éence. Thus, application of
Bayesian techniques has been extended to investgedange of learning processes,
from sensorimotor learning (Bestmann et al., 20G8) conditioning and
reinforcement learning (Behrens et al., 2007;Cdlervet al., 2006;Daw et al.,
2005;Yoshida et al., 2008).

0.7
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— Likelihcod
0.6 ) —— Posterior
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Figure 1.4. Bayes' RuleBayes' Rule optimally combines prior knowledge
(green) with new data (blue) by weighing their esgtjve uncertainties, to express a
posterior belief (red). In this example the premisof the prior is greater than that of
the likelihood, therefore the mean of the postedistribution is closer to the prior

than to the likelihood. Note that when two disttibns are combined in a Bayesian
fashion the resulting distribution always has ahbigprecision than each of the

source distributions.
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1.2.3.1Prediction errors in Bayesian models

Although in the update equations of a Bayesianniegr model there is no
mathematical equivalent of the prediction erronfrBW models, surprise does play
an important role. Like in RW models, a surprisiegent (i.e. a large distance
between prior and likelihood) will result in a larghift of the posterior belief,
whereas a fully predicted event (i.e. likelihoodlarior fully overlap) results in no
shift at all. Thus, Bayesian surprise is refledigdhe distance between the posterior
and prior distributions of the beliefs (Itti andIBia 2005).

1.2.3.2Limitations of Bayesian ideal observer models

Bayesian ideal observer models are ideal in theesémat they follow Bayes rule,
and thus generate predictions by optimally comlgiratt available information. The
catch here is the term ‘available’. A Bayesian mplillee any other model, is ideal
only within the context of a given model structu@onsider for example the
following situation: In a paradigm in which assdwa probabilities fluctuate
sinusoidally around an average of 0.5, then aftdarge number of trials the
Bayesian observer will have a very strong belieft tthe association is at 0.5, and
from that point onward, the belief will effectivebe stuck at 0.5, failing to capture
the sinusoidal shape of the fluctuations. Thisaditun generalises to any belief after
a very large number of observations; the prior W#lve a very small variance,
because every new observation reduces the vari@wapared to an RW model,
this is effectively equivalent to a learning ratattover time asymptotes to zero. One
solution for this is to reset the priors every tithe probability has changed (e.g.
(Bestmann et al., 2008)), but this assumes thatnbdel ‘knows’ when to reset
itself. Thus, this Bayesian is clearly not a vegog in this circumstance, even

though it does, at every trial, optimally combihe tavailable information.

A more generic solution to this particular problento introduce an extra parameter
that estimates the variability of the environmexich that when variability is high,
e.g. every time the contingencies have changedatiance of the prior is increased.
This is the Bayesian equivalent of introduction lsamging learning rate (see
(Behrens et al., 2007), ar@hapter 4). With this extension, information about the
variability of the environment will be optimally ntined to weigh prior beliefs and

new information.
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In summary, ‘ideal’ observers are ideal in the settst they optimally combine all
the information that they can represent. One of ahguments against Bayesian
models is that any phenomenon can then be explainaa "ideal” fashion given the
right model structure. This illustrates how theeafposed question whether humans
are ideal Bayesian observers is not a very infarmabne. Rather, the question
should be what behaviour and brain processes canddelled by which particular

model.

1.2.4 RW vs Bayesian models

The most crucial distinction between standard ceggment learning models and
Bayesian update models, is that the former reptdberstate variables of the model
(e.g. the contingencies) as point estimators, vaweréne latter provides a full
posterior distribution, where the mean reflects thadief about the estimated
contingency and the variance denotes the unceytabout this beliéf This

difference has a number of important consequences.

First of all, because the history of observed ev@&how recorded by two quantities,
the mean and the variance of the parameters, Bayesodels have a ‘memory’ of

the trial history: For a point estimate model (wmithchanging learning rate), each
new trial carries the same weight with respectpdating the estimate. It does not
matter whether it has just observed 10 or 100 mreta of an 80% pairing of a
stimulus and outcome; estimates on th8 a110F" trial changed with equal ease. In
contrast in the Bayesian models this weight is propnal to the number of trials

that have been observed; the distribution of théetbabout the association for a
Bayesian observer model will be much narrower af@ trials than after 10 trials

(cf. Figure 1.4).

This leads to the second difference, which is thathe RW models, the learning
rate, which determines how much a belief is updéi@sed on new information, is
determined by the researcher, or is estimated tremmeasured data (e.g. reaction
times). For the Bayesian models, however, the lbalabetween old and new
information is determined by the structure of thedel and the observed series of

events.

% Note that one could also include higher order rspdach as the skewness and kurtosis, but most
models make Gaussian assumptions about the distrilswof state variables.

39



In summary, RW models are simpler to implement @and model a large number of
observed conditioning and reinforcement learningnamena. However, recently
there has been a shift towards the use of Bayediaarver models which can take
into account uncertainty about the estimates imirzcipled way. As such, Bayesian
ideal observer models are part of a more genegakétical framework which will be

discussed in more detail @hapter 2.

1.3 Summary of experimental work

Chapters 3-5describe the empirical research conducted forth@sis to investigate
the role of prediction errors and connectivity ol in associative learning, using a
combination of formal learning models and DCM fMRI. A range of associative
learning tasks was used with increasing behaviotet@vance of the associative
relationships. InChapter 3 a combination of bilinear DCMs and a RW learning
model is used to investigate changes in connegtiviitween sensory cortices as
unchanging and task-irrelevant relationships betwa#ectively neutral sensory
stimuli are being learnedhapter 4 describes a study with dynamically changing
CS-US associations in which subjects respondedfectavely neutral targets. These
target stimuli were chosen to be preferentiallycessed by different visual areas,
which made it possible to assess the stimulus fgigciof the prediction errors in
visual cortex and striatum. Nonlinear DCM was comekli with a Bayesian observer
model that could optimally account for the changprgbabilistic associations to
explore the role of the striatum in gating sensoton connections. Finally in
Chapter 5 a pre-existing dataset is used for a nonlinear DxfMy to investigate the
role of the amygdala modulating corticostriatal mections in a fear conditioning

paradigm.
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Chapter 2

Methods

Abstract

The first section of this chapter describes then&#dr and nonlinear
implementations of DCM for measured BOLD time seriata. Both
implementations of DCM were used in this thesistast different
hypotheses related to changes in connectivity dur@ssociative
learning. The second part describes Bayesian mamlettion, which
was used to select the optimal model from setsaoficlate models
accounting for fMRI and behavioural data. In thipter | will give a
general description for both analysis tools; speaifetails for each
implementation will be described in the resultsptbes(Chapters 3 -

5).

2.1 Dynamic Causal Modelling for fMRI

2.1.1 Connectivity models and DCM

Over the past decades, the predominant approagimtive neuroimaging has been
to investigate functional specialisation of braagions, based on the assumption that
there is local specialisation of information pragiag. Although there is no doubt
that such local specificity exists, this approashclearly incomplete given that
locally processed information must be integratedsaime stage. The aim of
connectivity models is to investigate experimegtafiduced changes in cortical
pathways rather than cortical areas to look at tfanal integration rather than
specialisation. There are two conceptually distiagproaches to connectivity
analysis of fMRI timeseries. On the one hand thare models offunctional

connectivity, defined as statistical dependenciestwben spatially remote
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neurophysiological events, and on the other hartetrare models oéffective
connectivity, which is defined as the influence ammuronal system exerts over
another (Friston et al., 1993a).

Models of functional connectivity describe statiatidependencies among the data,
thereby providing a characterisation of the funwio interactions, or context-
dependent coherence between different timeseriestdf et al., 1993b). A simple
example of functional connectivity analysis woultshsist of generating brain maps
that represent voxel-wise correlations of localivitgt with the timeseries of a
particular ‘seed’ region of interest (ROI). Thesaps can then be compared e.g.
under different experimental conditions. Functionahnectivity analyses can be a
useful exploratory device, because to characterisenctional network they do not
rely on strong a priori assumptions about the ugiggy mechanisms. At the same
time, this is also one of the main limitations, &ese this lack of specificity prevents
one from testing detailed hypotheses about theedivity of the underlying neural
network. Moreover, the lack of causal (directedgef precludes explanations at a
mechanistic level as to the nature of the inteoastibetween the different temporally

correlated areas.

Effective connectivity explicitly models the inflnee that one neuronal system
exerts over another, rather than just their stedistiependencies. It is congruent with
the notion of ‘synaptic efficacy’ between individugeurons or neuronal populations.
The aim of models of effective connectivity is ttain regional effects as detected
by for example a voxel-wise GLM analysis, in terofsinterregional connectivity.
Unlike the exploratory approach of functional cocthety methods, models of
effective connectivity are mechanistic models, whiequire a clear neuranatomical
delineation of the areas that are modelled, as aslh clear hypothesis about how
these areas affect each other. Any type of effectionnectivity analysis involves
two steps: A first step in which the anatomicakarwill form the nodes in the model
are selected, and a second step in which the ae$dtips between the nodes are
described.

DCM is a model of effective connectivity to makeferences about the neural
processes underlying a measured time series. Ltker omodels of effective

connectivity DCM allows one to investigate the mmalms underlying the observed
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dynamics of complex neural systems in terms of eonon strengths and their
context-specific modulation. DCM views the brain asdeterministic nonlinear
dynamic system that is subject to external inputsthe form of experimental
manipulations, and that produces outputs (Fristoal.e 2003). DCM assumes that
brain responses are driven by changes in the imgtiiter than by endogenous noise
or "innovations", as is assumed by other modelsfigictive connectivity (e.g. SEM
and autoregressive models (Mcintosh and GonzalestLi 1994)). These
experimental inputs can enter the system and ebsjponses in one of two ways:
Firstly they can enter as driving inputs, for exéenthe presence of an auditory
stimulus would directly affect an auditory cortexde. The second way inputs
influence the system is more indirectly, by modulgtthe coupling between the
nodes, for example effects of attention to visumgut could modulate a top-down

connection from frontal to primary visual areas.

Moreover, while other models, such as structurallatign modelling (SEM,

(McIntosh and Gonzales-Lima, 1994)) operate atl¢hwel of the measured signal,
implicitly assuming an identity mapping between nmo@mal processes and
(hemodynamic) measurements, DCM accounts for thinear coupling between
the measured hemodynamic responses and the umgderigural activity of interest
(Penny et al., 2004b). In DCM the generative mameisists of two levels. Causal
effects in a cognitive system are modelled at theedying (hidden) neuronal level
using a parsimonious but plausible neurobiologioaldel. The modelled neuronal
population dynamics are then transformed into apeseific BOLD signals using a
biologically informed hemodynamic forward model €fthan et al., 2007d). The
general idea is to model interactions among cdrtiegions by optimising the

parameters of a reasonably realistic underlyingroreal model such that the
modelled BOLD timeseries matches the experimentailyasured timeseries as

closely as possible.

In a further diversion from conventional models affective connectivity, which
model instantaneous effects, DCM is a time serieslehin which the temporal
evolution of the neural state vector is a functadrthe current state as well as the
inputs and the system architecture. By modellingg Btate changes a given node

depend on theurrent stateof any other node it is influenced by, DCM allowrse to
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determine thealirectional influence between areas, equivalent to causdioakhips

in the sense of control theory.

The most important application of DCM is that inclae used to answer questions
about the modulation of effective connectivity.the original formulation bilinear
DCMs allow one to infer that a particular experit@manipulation (e.g. a cognitive
set, learning, or a pharmacological manipulatiomdoiate a pathway, rather than a
cortical region (sesection 2.1.2for details andChapter 3 for implementation).
Bilinear DCMs preclude an important aspect of naatanteractions, namely how
the connection between two neuronal populatiorenabled or gated by activity in
other populations. Therefore in a recent extengiloBCM the bilinear approach is
extended such that now the effective connectivigtwleen nodes is not only
modulated by external inputs but also by activityother nodes. In these nonlinear
(second order) DCMs the modulation of connectioas thus be assigned to a
particular neuronal population in the system (&ection 2.1.3for details on

nonlinear DCMs an€hapters 4 and 5for implementation).

2.1.2 Bilinear DCM

In the bilinear formulation of DCM, the states otiltiple interacting brain regions
are modelled as a set of coupled bilinear diffea¢tquations (Friston et al., 2003).
The neuronal states, which represent the neuramallgtion activity of the modelled
brain regions, change in time according to the esy connectivity and
experimentally controlled inputs These inputs can enter the model in two different
ways; they can either elicit responses throughctlirfluences on specific regions
(“driving inputs”, e.g. sensory inputs) or they adrange the strength of connections
between regions (“modulatory inputs”, e.g. taslke@s or learning). The hidden

neural dynamics are modelled by the following lafin differential equation:
dz _ i ()
Pl A+> u;BY z+Cu (2.1)
i=1

Here, z is the state vector (with each state variable esgmting the population
activity of one region in the modet)is continuous time, angl is thei-th input to the
modelled system. In this state equation, tAematrix represents the fixed

(endogenous) strength of connections between regima theB™...B™ matrices
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represent the modulation of these connections kgg@nous) inputs, as an additive
change. Finally, th€ matrix represents the influence of exogenous inpatgach

area. Note that DCM allows one to make inferendasue changes in effective
connections between areas, which do not necessaritgspond to direct anatomical

connections but may be via intermediary regions.

The hidden neuronal dynamics described Eyuation 2.1 are transformed to
predicted BOLD responses by a hemodynamic forwasdeh(Friston et al., 2003).
Given measured BOLD responses, this model can berted, using a Bayesian
estimation scheme, to obtain maximum a posteristimates of the parameters in
Equation 2.1 (Friston et al., 2003). Finally, the probability the data given a
particular model can be estimated by integrating the dependency of the joint
density on the model parameters. This estimatewknas the model evidence or
marginal likelihood, can be used to compare thedgees of competing models, and
thus to test different hypotheses of the underlymegiral network generating the
measured responses. This procedure, known as Bayesidel selection, will be

described in detail i®ection 2.2

2.1.3 2" Order DCM

As mentioned above, effective connectivity représeime influence of one neuronal
population on another, corresponding to the notién‘synaptic efficacy’. The
bilinear term in DCM models the effect of experirt@nmanipulations on
connections between neuronal populations. Howebes, framework precludes an
analysis with respect to the neuronal source afethmmodulations, and thus omits an
important aspect of neuronal interactions: how eations between two neuronal
populations are gated by activity in other popoladi These gating mechanisms are
known to be mediated through interactions betwseapstic inputs and are central to
learning and attentional modulation. Therefore,oalinear extension to DCM has
been developed which allows one to assign the natidal of network interactions to

specific neuronal populations (Stephan et al., 2008

In the original bilinear implementation of DCM ftMRI, the temporal change of the
neuronal state vector is modelled using a bilireggproximation that governs the

dynamics of the system. In nonlinear DCMs, thignke#r approximation is extended
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to second order such that the hidden neural dyrsaare modelled by the following

equation:

% = [A+ Zui B® +ijD“)Jx+Cu
i=1 =1

(2.2)

Here,Equation 2.1is extended with the? matrices, which encode how connection
strengths are modulated or gated by activity ira g gor details, see (Stephan et al.,
2008)). In this thesis, the second order extensdnDCM was employed to
investigate the influence of the putamen and amggda network connectivity
during associative audio-visual learning and dufey acquisition (se€hapters 4

and 5, respectively).

2.1.4 Parametric modulation of connections

In most DCM studies to date, the inputs constitutime bilinear modulations of the
network interactions are context dependent, sucitastion or task instructions (see
e.g. (Grol et al., 2007;Stephan et al., 2007b)esEhinputs are simply either ‘on’ or
‘off’, and are conceptually related to the maineeff regressors in classical GLM
analyses using mass univariate models (e.g. SP&wsen.fil.ion.ucl.ac.uk/spm).

However, it is also possible to assess modulatwas ¢thange parametrically, for
example dosage of a pharmacological interventiorther temporal evolution of

learning. The form of these parametric modulatopuis corresponds to that of so-
called "parametrically modulated regressors" inlassical GLM analysis. In the

bilinear and nonlinear DCMs described@hapters 3 and 4 association strengths
were estimated using two different learning modaig] entered the DCMs as direct

or indirect modulatory input.

2.2 Bayesian Inference and Model Comparison

2.2.1 Within subject Bayesian inference

In order to estimate the parameters of the forwaatlel the DCMs are inverted
using a Bayesian inversion approach. The inversioa particular DCM involves

approximation of the posterior probability of thearpmeters of the model,
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p(z9 |y, m), given a particular dataset and model. The pastesiproportional to the

product of the prior probability and the Iikelihoq1(y|z9, m), following Bayes'’ rule:

p( |y, m) 0 p(y |2, m)p( | m) (2.3)

The aim of the model inversion is to find the paetens J that maximise the
posterior probability, using empirical priors fdret hemodynamic parameters and
conservative shrinkage priors for the neural caogplparameters. The parameter
estimation scheme uses a Gauss-Newton gradientemtesembedded in an
Expectation-Maximisation (EM) algorithm, which igstribed in detail elsewhere
(Friston et al., 2002b). In short, in the E-step fosterior mean and covariance are
updated, and during the M-step the hyperparamefetise noise covariance matrix
are updated. The posterior densities of the nepaedmeters can then be used to
make inferences about the effective connectivaygxample to test how certain one

can be that a particular parameter exceeds a ylartithreshold (usually zero).

However, one typically needs to compare alternatnaels representing different
hypotheses about the connectivity of the networld aelect the optimal model
before making inferences about the model paramefdre optimal model is the
model that has the greatest probability of reprixsgrthe underlying system that
produced the measured dataset; this probabilitygnmvn as the model evidence
p(y| m), and accounts for both model fit and model coxipig(Pitt and Myung,
2002). The model evidence can be found by integgatut any dependencies on the

estimated model parametefsfrom Equation 2.3
p(y |m) = [ p(y |9, m)p(s | m)d:s (2.4)

Unfortunately in most cases this integral cannotsbésed analytically, and is
difficult to compute numerically (for one exceptiseeSection 2.2.1.1 Therefore,

instead of evaluating the integral Equation 2.4, approximations to the model
evidence must be used (Friston et al., 2007;Pehra).,e2004a). Commonly used
approximations are the Akaike Information CriteriOhlC, (Akaike, 1974)), the

Bayesian Information Criterion (BIC, (Schwarz, 1978nd the negative free energy
(F). All of these methods approach the true modielesce by optimising a bound on

the integral inEquation 2.4 The difference between these approximations 8 ho
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they treat the trade-off of model accuracy (modgldnd model complexity. It is
important to penalise the model evidence for comiple because model fit will
increase monotonically with complexity, but at sopoent the mode will start fitting
noise, thereby reducing the generalisability of thedel. Therefore the optimal
model provides the best balance between modelnfit @mplexity. In all three
approximations of the model evidence (AIC, BIC aRyj the accuracy is the
expected log likelihood of the data under an apipnating posterior density on the

parameterg(J) , which is optimised iteratively.

For the AIC and BIC the approximation to the logdabevidence for modeh can
be given by

_ p
BIC = accuracym) ——logn
ym) 5109 (2.5)

AIC = accuracym) - p

wherep is the number of parameters amdhe log of the number of observations
(e.g. scans). When looking at the complexity terinbecomes clear that the BIC
pays a heavier penalty than the AIC (whegn/2>1, i.e. whem >8). Therefore
the BIC will favour simpler models whereas the AMII be biased towards more
complex models. Because this could lead to cordtewi results, generally models
are only considered to be different in fit when tlesults from the AIC and BIC
concur. The AIC and BIC were used@mapter 3 to select the optimal DCM out of

a number of models.

The AIC and BIC are useful and easy approximatiohghe model evidence.
However, because the complexity term scales ligeavith the number of
parameters, they both fail to account for redung@mémeterisation; when adding a
parameter that has identical effects than anothararpeter on predicting
measurements, the complexity terms of both AIC &h3 would increase even
though the ‘true’ complexity would not change. @ftmodels will have (partial)
dependencies amongst parameters, and in this tase@IC/BIC approach will
overestimate model complexity. In the negative faergy approach the complexity
is the Kullbach-Leibler divergence between the apnating posterior and the prior
density, reflecting the amount of information ohtad about the model parameters

from the data.
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F =accuracym) - KL[q(s), p(& | m)] (2.6)

Under the Laplace approximation (i.e. assuming that conditional density is a

multivariate Gaussian), the complexity term splite three terms

KL[a(®), (8 1m)] = Y5/Cs| = Y5ICuy| + ¥4 1ty = 115 G5 {1ty — 125)

2.7)

where |Cl,| and |C |are the determinants of the prior and posterioradance

Jly

matrices, andu, and /i, the prior and posterior means. The first term iases the

complexity with theeffectivedegrees of freedom, taking into account dependsnci
amongst parameters, i.e. additional redundant peteasn do not increase the
complexity. The second term decreases the pendiltytihe degree of independence
that the parameters haaeposteriorj because in a good model the parameters are as
precise and independent as possible The third $aows that the complexity penalty
increases the larger the difference between thog pnd posterior means, i.e. when
suboptimal priors are used. Thus the free energy &ften a better approach to
approximate the log evidence than the AIC/BIC, aad used irChapters 4 and 5

to decide between different competing DCM models.

For any of these model evidence approximationsddtermine how strong the
evidence is in favour of one model, one can sinacpinpute the model evidence ratio
of the two models, also known as the Bayes Faciogquivalently the difference
between the log evidences. If the difference inldigeevidences is greater than about
three (i.e. the Bayes factor is larger than 20% #hconsidered as strong evidence in

favour of a particular model (Raftery, 1995).

2.2.1.1A special case: Bayesian GLM for response spee dat

Linear Gaussian models constitute a rare case where is an analytical solution to
the model evidence, instead of having to resorantoapproximation as described
above. This analytical solution, under the assumnptinat the data and design matrix
are Gaussian, can be viewed as the Bayesian versiarGLM. Like in a classical

GLM, the model to be tested is described by a desimtrix which includes
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regressor for all explanatory variables of the nhodsing flat priors, one can then
calculate the model evidence for different modsls dunction of the model fit (sum
of squared residuals) and the complexity (the nundferegressors in the design

matrix). This linear model has the following form:

Y = X,B +E
ol 18,02, m)= (27) 20 exr{_ (Y = xB)" (v - X,B)J 2.8)

207

This is the probability of the datéd (e.g. response speeds), given the design matrix
X, parameterg3, and normally distributed erraoss- N(O, 02). In order to compute

the model evidence, or probability of the data gitlee model, the parameters and

hyperparameteg need to be integrated out:

p(Mm=[[ kY80, » @& d
r-d)/2 112 r(d— r—l) (%)r+l—d 00)

Herer is the number of parameters in the design madriis, the number of data-

= (2m)"*|x " x

points and

A :YT(I —X(XTX)_le)Y (2.10)

is the sum of squared residuals. Therefore thenlodel evidence is

log(p(Y |m)) = % log(277) - /2|quXT XD

(2.11)
+log(r(d -r -1))+(r +1—d)|0g(/y2)

Model evidences can then be compared either detied of the individual subject,
using the Bayes Factor, or at the group level usimg of the group Bayesian model

selection tools described below (s&ection 2.2.2
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2.2.2 Group level Bayesian inference

2.2.2.1Fixed effects analysis: Group Bayes Factor

The Bayes Factor approach describedSaction 2.2.1is suitable for comparing

different models for one particular dataset, fomraple from a single subject.

However, one will often want to make inferencesub® group of subjects, and
select the model that best explains multiple dégagessuming that the datasets of
different subjects are independent, one can simphjtiply the Bayes factors for

each model across all subjects, known as the GBayes Factor (GBF, e.g. see
(Stephan et al., 2007c)). This fixed effects analysill be used inChapter 3 to

select the optimal DCM from three competing models.

2.2.2.2Bayesian random effects analysis

Combining BMS results from a group of subjects irelyon fixed-effects analyses
such as described above assumes that all subgides’are generated by the same
model. As a result they fail to account for growgtenogeneity and are vulnerable to
outliers. Stephan et al. developed a novel randdfacts Bayesian analysis
framework to cope with these shortcomings (Stepéiaml., 2009). This method
allows one to quantify the probability that a pautar model generated the data for
any randomly selected subject, relative to othed&m They showed that this
approach of calculating a conditional density ofdeloprobabilities given the model
evidence for individual subjects, is superior biathusing the group Bayes factor (as
described above), and to applying frequentist téstdhe log evidences. This
superiority was especially evident in the caseaojée intersubject heterogeneity and

in the case of outliers (Stephan et al., 2009).

Instead of assuming that the data were generateldebyame model for all subjects,
this approach computes a density from which modets sampled to generate
subject-specific data. In other words, it searcfosthe conditional estimates of

model  probabilies r=[r,...r,], that generate indicator variables,

M=

m, =[m,.....m], where m, 0{01}, and for any givemnO{1....N}, Y 'm, =1.

=
I,

1

These indicator variables prescribe the modelifenith subject, wherg(m,, ) =r, .

Since the model probabilities follow a Dirichlet distributiorp(r|a), the
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conditional expectations«érk>q =a/(a, +...+a,) encode the expected probability

that thek-th model will be selected for a randomly seleebject. For details about
the hierarchical Bayesian model that is invertedttain the Dirichlet parameters

of the posteriorp(r | y;a) see (Stephan et al., 2009).

After optimisation ofa , the posterior can be used for group level Bayesiadel
comparison, where the results can be reportedvieraedifferent ways. Firstly one

can simply report the estimate @f:[al,...,aK] for each of the models, where
a, —1 represents the number of subjects in whigh generated the observed data.
One can also use the posterip(r | y;a) to compute the expected multinomial
parameteré'k>, and thus calculate the expected likelihood ofimiitg a particular

model for any randomly selected subject

(ro), =a/la,+..+ay) (2.12)

Either of these models can then be used to rankntigels at the group level. A third
option is to usep(r | y;a) to quantify anexceedance probabilitydefined as the

belief that a particular modelis better than any other of the models testedngilie
group data. In this thesis we have adopted theocapprto report both the Dirichlet
parametersa and the exceedance probabilities when discussiagésults of our
analyses. We have used this novel random effeggedtan model selection tool to
show that behavioural data were well described bgmhisticated Bayesian learning

model inChapter 4, and to select the optimal DCM @hapters 4 and 5

2.2.2.3Model space partitioning in Bayesian random effeatalysis

The Bayesian random effects analysis can be usedmyp to compare specific
models, but also to test for differences betweetspd ‘model space’, provided that
each subspace contains the same number of mogelthe design is fully factorial
(Stephan et al., 2009). For example, one may waistompare the effect of adding or
leaving out a particular connection, irrespectife@mmy other differences between the
tested models. This model space partitioning canrdgarded as the Bayesian

equivalent of a main effects analysis in a clase\OVA.
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This analysis exploits the agglomerative propeftthe Dirichlet distribution: Once
the parametergs, for all K models have been estimated, for each subset oélmad
new Dirichlet density can be calculated simply lidiag the a, for all models

belonging to that particular subset. The resuliigchlet can be used to compare
subsets of models in exactly the same way as thviglual models, for example to

calculate the exceedance probabilities.

Model space partitioning will be used @hapter 5 to compare the addition and
removal of endogenous connections and second orddulations in a 2x3 factorial
design.
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Chapter 3

A Dual Role for Prediction Error in Associative Learning

Abstract

In this fMRI experiment subjects implicitly learndgtle association
between the presence (or absence) of a task-iamlexsual stimulus
and the presence (or absence) of a task-irrelemaditory stimulus.
Using a Rescorla-Wagner (RW) model to describe edna@ution of

fMRI responses during learning, it was shown th&lLB activity in

primary visual cortex (V1) and the ventral striatwwavaried with

prediction errors, or surprising events, regardiesether this surprise
concerned the unexpected presence of a visual lssmar its

unexpected absence. Furthermore, DCM analyses sudjget this
response in V1 is due to prediction error dependdr@nges in
connections from the auditory cortex (Al). To omowledge, this is
the first empirical evidence that (i) V1 respondsprediction errors
engendered by audio-visual probabilistic relatioresnd, more
generally, that (ii) prediction errors during asatice learning drive
synaptic plasticity. This finding has important icptions for our
understanding of general mechanisms of percepteatning and

inference in the human brain.
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3.1 Introduction

Among the fundaments of adaptive behaviour is thibtyato predict future events.
This ability is crucial to functions ranging fronerssory processing to decision
making. In psychology and neuroscience, predictlmas been studied most
extensively in the context of Pavlovian and instemtal conditioning tasks, which
measure how organisms anticipate (and act on)tafédg significant events such as
food delivery or electric shocks. A recent serié$umctional neuroimaging studies
has investigated the neurophysiological basis efliption and learning in humans.
Using Pavlovian and instrumental conditioning tagkese studies have identified
several areas where BOLD signals correlate withl-trise estimates from formal
learning models like TD learning (Sutton and Baf©98) or the Rescorla-Wagner
model (RW) (Rescorla and Wagner, 1972). In paricuBOLD activity in areas
including the striatum and the dorsolateral pretbreortex (key dopaminergic
targets) has been shown to covary with bptedictions and prediction errors
(Corlett et al., 2004;Fletcher et al., 2001;Glasciwed Bichel, 2005;Jensen et al.,
2007;McClure et al., 2003;0'Doherty et al., 2004gpglione et al., 2006;Seymour et
al., 2004;Turner et al., 2004).

In all of these previous studies, the learned aasons had direct relevance for
behaviour, either because they were linked to reéiwgror punishing outcomes (e.g.
(McClure et al., 2003;0'Doherty et al., 2004;Seymet al., 2004) or because
subjects received feedback on their performancer(Aat al., 2004;Corlett et al.,
2004;Fletcher et al., 2001;Turner et al., 2004).cémtrast, it is unclear whether
incidental learning of stimulus-stimulus associagioi.e. learning of associations that
are irrelevant for current behavioural goals, drawson the same neuronal
mechanisms. A paradigm that shows that these tgpessociations are learned is
‘sensory preconditioning’. Here, in a first stag#ie subject is exposed to
behaviourally meaningless €S, associations and, in a second stage, t¢ IS
pairings. In a third and final stage, the presémabf a C$ alone generates a
conditioned response, indicating that the subjegstnhave learned the initial &S
CS association (Brogden, 1939;Gewirtz and Davis, 2000

In this study we used a factorial design that edgehthe first stage of a classical

sensory preconditioning paradigm. Healthy volurgeperformed an audio-visual
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target detection task, while being exposed to eastr of concurrent audio-visual
"distractor" stimuli Figure 3.1). These stimuli possessed statistical regularities
which enabled prediction of the visual distractwni the preceding auditory cue
(Figure 3.2. Critically, however, these statistical assoociasi were completely
irrelevant to the target detection task. Any leagnbf these associations would
therefore be of an incidental (task-unrelated) reatand, in the absence of
behavioural responses to the learned associaticnsjd only be inferred
neurophysiologically. This paradigm capitalisedpoaevious work by Mcintosh et al.
(MclIntosh et al., 1998) who used positron emissanography (PET) to show that
learning of associations between sensory stimu$ vedlected by activity in early
visual cortex. However, the use of PET permittely ansimple conditioning scheme
and precluded a full investigation of dynamic chesn the brain’s representation of
the learned association. Here, we employed a nafireed conditioning scheme and
used fMRI to study learning-dependent changes iainbractivity over time.
Additionally, we assessed learning-dependent clsarigeeffective connectivity

between auditory and visual cortex using DCM.

Using a 4-factorial design (cTable 3.J), this study characterised learning in terms
of the temporal evolution (learning; factor 1) afth brain activity and interregional
connectivity in response to a visual stimulus whpsssence or absence’(Vs. V;
factor 2) was predicted in 2 contexts, establidhe@ types of auditory conditioning
stimuli (CS+ vs. CS-; factor 3), each of which abble present or absent on each
trial (A" vs. A; factor 4). In other words, in contrast to claabsisensory
preconditioning paradigms, we could not only inigege differential learning,
depending on CS type but could also assess whetberonsequences of an absent
CS were learned. It should be noted that both & @nd CS- contexts (or blocks)
were balanced in terms of stimuli; thgriori probabilities of the auditory CS and of
the visual stimulus occurring on a given trial waterays 50%. Critically, the task
was not related to these auditory and visual stimaubjects performed a target-

detection task on unrelated stimuli that were presesporadically.

One of the features of our factorial paradigm &t tin half the trials the auditory CS
is absent. This necessitates an additional cuenthsts the beginning of each trial,
which was a visual trial onset (TO) cue. In otheords, learning of stimulus

associations in this paradigm has two componentsrelated to the auditory CS and
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another related to the visual TO cue. As a consezgjeany model of the learning
process must be able to formulate how a net piedias computed from the
associative strengths of the two cue componentschdse the RW model since it is
the simplest and most generic model of associdégening that accounts for cue
interactions (seeDiscussion Section 3.4or details). The RW-model has been
validated extensively, using behavioural data ftwsth humans and animals and can
account for many aspects of associative learniegr@ and Bouton, 2001;Schultz
and Dickinson, 2000). In our study, the trial-wagsociative strength predicted by
the RW model was used to construct regressors yoxel-wise general linear model
of fMRI data and modulatory inputs for DCMs (Fristet al., 2003) of the effective
connectivity between auditory and visual areas.cHBipally, we addressed the

following two questions:

1. In the absence of any behavioural responses toatitko-visual stimulus
associations, can we obtain neurophysiologicalencé that the brain learns
these associations? Specifically, can we find bragions whose activity
correlates with learnifigas predicted by a generic model of associative
learning (i.e., the RW model)? Candidate areasuded early visual cortex
and the striatum. Furthermore, do these areas shmgponse profile across
cue-outcome combinations that reflects a match émtwprediction and

outcome or rather a prediction error response?

2. Since the predictive auditory cue temporally presethe visual outcome,
learning should modify neuronal activity in earligwal cortex in response to
auditory cues. Can these putative learning-relateaihges in visual cortex
activity be explained by changes in the effectiganectivity from auditory to
visual cortex (cf., (McIntosh et al., 1998;McLarenal., 1989)? Specifically,
do these changes conform to changes in associstieagth under a RW

model of learning?

Before describing our experiment, two importantiés should be highlighted. First,
the goal of this fMRI study was not to pinpoint tegact mathematical form of

incidental learning by comparing different modefsagsociative learning. Instead,

* Throughout the chapter, we will use the collogtéain "learning curve" to denote the vector of
predicted associative strength over time, T@é.in Equation 1.
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we used the simplest model of associative leartivag could accommodate our
paradigm. In the Discussiorséction 3.4, we argue why the RW model can be
considered an appropria@ priori learning model for our particular paradigm,
relative to other models of associative learningcddid, it is important to note that
within a given experimental condition the predicted outesrand prediction errors
are perfectly anti-correlated when mean-correcteeAppendix A for details). This
means they cannot be distinguished as alternatrediqiors of observed brain
responses. However, with our factorial design oa@ analyse the pattern of
parameter estimateacross experimental conditions, contrasting expected and
unexpected cue-outcome combinations. This enab$edo udistinguish, voxel by
voxel, brain responses that reflected a match leitwgredicted and actual trial
outcomes from responses that encode prediction ersurprise.

3.2 Methods & Statistical analysis

3.2.1 Subjects

Sixteen healthy volunteers, 25.3 +3.3 years of dgean age + SD, 8 female)
participated in the study. The subjects had nahjsdf psychiatric or neurological
disorders. Written informed consent was obtainednfrall volunteers prior to the
study, which was approved by the National Hospitat Neurology and

Neurosurgery Ethics Committee.

3.2.2 Experimental Design — fMRI

The central idea of this study was to present stbjeith "distractor” stimuli that
were linked by predictive associations: two augitstimuli served as conditioning
stimuli (CS) and differentially predicted whether wot a visual stimulus would
follow. Critically, the volunteers performed an alated detection task on separate
auditory and visual targets; for this task, thedptve relationships between the
distractor stimuli were completely irrelevant. Stiim were presented using
Cogent2000 (www.vislab.ucl.ac.uk/Cogent/index.htr#ij initial sound matching
task and the subsequent learning study (4 x 10 meérg all completed inside the
scanner. Subjects were debriefed with a post-scastgpnnaire to assess whether

they had learned the experimental contingencies.
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3.2.2.1Sound matching

Preceding the learning experiment, subjects hadatch the two CS (450 Hz and
1000 Hz) and the auditory target stimulus (whitesadourst) for perceived loudness.
Stimuli were presented sequentially and dichotyca&lubjects adapted the volume of
the 1000 Hz tone to the 450 Hz tone until they eed them to be of equal
loudness. This procedure was repeated eight tinmeb the results averaged.
Subsequently, subjects matched the perceived lesgsdsfehe white noise burst to the
pure tones, each repeated four times. The adapiedhes, as a percentage of the
volume of the low tone were 94.0 = 6.2 % (mean 3 &Dthe high tone, and 104 +

4.9 % for the white noise burst.

3.2.2.2Differential conditioning

During the experiment, subjects were exposed @radting blocks of trials in which
one of two auditory conditioning stimuli (high atalv tone) predicted the presence
(CS+) or omission (CS-) of a subsequent visualdtisiwith a fixed probability of
80% (Figure 3.1andTable 3.1). On each trial, a CS was presented (A+) with 50%
probability. On 50% of all trials, a visual stimslwas present (V+). Every trial was

preceded by a visual trial-onset (TO) cue.

Our paradigm thus used a 4-factor design with tilewing factors for each trial: i)
CS context (CS+ vs. CS-), ii) CS presence (A+ v9, #) visual outcome (V+ vs.
V-) and iv) learning (or time). We used a mixed igesin which CS type was
blocked, whereas the presentation of the CS andgavisutcome were randomized
(event-related) within blocks. CS+ and CS- blocksevmcompletely balanced so that
in each block of 10 trials, five CS and five outestimuli were presented. Within
each subject, the auditory CS+ and CS- and thelaglilistic relation to subsequent
visual stimuli were fixed throughout the experimenhte assignment of tones to the
two CSs was counterbalanced across subjectsnileli the subjects the high tone
served as CS+ (and the low tone as CS-), and eiahe other half of the subjects.
Each of the foursessions consisted of 20 blocki)dfials, interspersed with periods
of rest (12 s), in which subjects fixated on aftiio@a cross. Blocks and sessions were

balanced across and within subjects.
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3.2.2.3Target detection task

To ensure continuous attention to auditory andalisargets per se (but not their
statistical associations), subjects performed awoant target detection task. The
target stimuli were randomly interspersed betwaglstand consisted of either a
white noise burst or a circle. Target stimuli ocedron average once per block (at
most twice). In total, 40 auditory and 40 visuaigtt stimuli were presented,

randomised within conditions and sessions.

“Distractors” Targets
A
| 1n===-=-== |
1 1] |
Auditory ! Eﬁ& or% n CDIR
| I D 1] |
L h "
! |
1
. 1
Visual =l M
= Y
L e 1
B Trial onset cue
P el T —_—
vFi><ation cross , Auditory D lvisual D | Target |
|_I_|_l_ — 1 1 77 1
0 200 400 600 800 1000 1200 1400 2000
+500
Time (ms)

Figure 3.1. Experimental design.A) Stimuli presented during the
experiment. The ‘distractor’ stimuli, whose asstioies were being learned
incidentally, comprised two auditory conditioninginauli (CS) corresponding to
high- and low-frequency tones and one visual unitimmed stimulus (US)
consisting of three concentric squares. The tasgetuli, to which the subjects
responded, comprised a white noise burst and &ecBf Temporal sequence of a
single trial. Both the CS and US could be eithexspnted or omitted. The average
trial duration was 2 seconds. The trial onset (€@ was a small central dot (100
ms); the auditory CS was presented for 500 msirsga400 ms after trial onset. The
visual stimulus was presented 750 ms after trisegralso for 500 ms. The inter-trial
interval (ITl) was jittered, ranging from 350 — 1B3ns, and target stimuli were

inserted only in the longest ITls, lasting for 308.
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CSs* auditory stimulus CS auditory stimulus
5 present: A* absent: A . present: A* absent: A-

g g &

E g 40% 10% E g 10% 40%

2 g 10% 40% 2 3 40% 10%

> 2 > 2
P(V*|A*)= 80% P(V*IA*)= 20%
P(VIA*) = 20% p(V-|A*) = 80%
P(V*IA) = 20% p(V*IA) = 80%
p(V]A’) = 80% p(V|A7) = 20%

Table 3.1. Probabilistic relationship between auddry and visual

stimuli. Contingency tables showing the proportion of a etieh type occurring

during CS+ and CS- blocks respectively. Below tlablds are the resulting
conditional probabilities of the visual stimulusifg present (or absent), given the
presence (or absence) of the auditory conditiotieliis (CS); these probabilities

can be inferred by comparing the frequencies wiglgioh column of the table.

3.2.3 fMRI Data Acquisition

A 3 Tesla Siemens Allegra MRI scanner (Siemensrigen, Germany) was used to
acquire T1-weighted fast-field echo structural iem@nd multi-slice T2*-weighted
echo-planar volumes with blood oxygenation levgladelent (BOLD) contrast (TR
= 2.08 secs). For each subject, functional datae eequired in 4 scanning sessions
of approximately 10 minutes each. 306 volumes vwaguired per session (1224
scans in total per subject). The first 6 volumesaéh session were discarded to
allow for T1 equilibrium effects. Each functionafain volume comprised 34 2 mm
axial slices with a 2 mm inter-slice gap, and aplame resolution of 3x3 mm. The
field of view covered the whole brain, except foe tterebellum and brainstem. The

total duration of the experiment was approxima6lymins per subject.

3.2.4 Data Analysis

3.2.4.1Functional neuroimaging analysis

fMRI data were analysed using the statistical safevpackage SPM5 (Wellcome
Trust Centre for Neuroimaging, London, UK; httpww.fil.ion.ucl.ac.uk/spm). The

1200 images from each subject were realigned toecbrfor head movements,
corrected for movement-by-distortion interactioAsdersson et al., 2001), spatially

normalized to the Montreal Neurological InstitudNI) template brain, smoothed
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spatially with a 3-dimensional Gaussian kernelmh8full width half maximum and
re-sampled to 3x3x3 mm voxels. The data were thedetled voxel-wise, using a
GLM that included regressors for all experimenital$ as well as regressors for the
target detection task. Trial-specific effects weredelled by trains of delta functions
convolved with three hemodynamic basis functionscémonical hemodynamic
response function, and its temporal and disperdiernvatives). Additionally, the

time-dependent associative strengths from the Rles@dagner model g@'t; see

Equation 3.1) and their partial derivatives with respect torfélag rate (see next
Section) were used as parametric modulators of é@akspecific regressor. The
data were high-pass filtered (cut-off 128 secoridsjemove low-frequency signal
drifts, and a first-order autoregressive model wsed to model the remaining serial
correlations (Friston et al., 2002a). Contrast iesagf parameter estimates encoding
trial-specific effects were created for each subged entered separately into voxel-
wise one-sampld-tests (df = 15), to implement a second-level ramdeffects
analysis. We report regions that survive clusteelecorrection for multiple
comparisons (family-wise error, FWE) across the Mhbrain at P<0.05. Since
previous studies demonstrated the role of thetstmaand the prefrontal cortex in
associative learning (e.g. (Corlett et al., 200=tgHer et al., 2001;0'Doherty et al.,
2004), we performed an additional search restritieithese areas, using anatomical
masks generated from the PickAtlas toolbox (Matdga al., 2003). Again, we only

report activations that survived a small volumerection (SVC) at P<0.05.

3.2.5 Rescorla-Wagner model

We used a RW model of associative learning to gdeepredictors of learning-
dependent changes in brain activity (as indexedhey BOLD signal) and inter-
regional connectivity over time. The basic prineif this model is that the size of
the trial-specific prediction error, i.e. the degref surprise incurred by an event,
determines the change in associative strength. Eherirain of observed events a
learning curve was computed and fitted to the fMRta. Trial-specific cueing was
modelled by means of two separate componentsHigere 3.1): the visual TO cue
TO, which was present on every trial and the aungi@S per se which was present

on half the trials. This allowed us to model leagnhieffects on trials where no CS
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was present. In the RW framework, the predicte¢ame on triak, ¢ , is the sum

of the associative strengths of each cue component:
Wj;tﬂ :#t t& (/]t _@j)xui,t (3.1)
where

@ =2 xu, (32)

On each trialt, Equation 3.1 is calculated separately for each cue component,
indexed byi (i.e., the auditory CS, and TO), whilg; indexes which of the cue

components is actually present on ttial), indicates the actual outcome at trial
being 1 for V and 0 for V; ¢ is the learning rate that determines how strotiggy
prediction error affects the update of the predictiSeparate components are
summed inEquation 3.2, where ¢ is the summed prediction of whether a visual

stimulus will be presented at triglandj indexes whether this is a CS+ or CS- tfial.

3.2.5.1Learning rate

A challenge when applying the RW model to our ekpent was to determine an
appropriate learning rate. In principle this can dmne by fitting the model to
behavioural data and using the resulting learnaig to construct regressors for the
fMRI analysis. However, our experimental desigrilmirhtely precluded behavioural
responses; instead, learning could only be assemsedphysiologically in terms of
changes in cortical activity and inter-regional mectivity. Alternative strategies are
to choose the learning rate based on principlediderations (e.g. (O'Doherty et al.,
2004)) or using model comparison (Glascher and Blic2005). Since we knew
from a previous study that learning should occuh@visual cortex (Mcintosh et al.,
1998), we adopted the approach by Glascher and eBi&lascher and Bichel,

2005) of optimising the value of, to best explain putative learning-induced

® When considered for a single cue per trial, Equmali can also be seen as a simple model of Hebbian
or associative plasticity. In this contenqr(,ft encodes the associative strength, which changes
according to the second term in Equation 1. Thé®eiative term comprises a (pre-synaptic) input

U;, encoding the outcome on any trial, and a (pos&gstjo) prediction error.
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responses within the main area of interest, theavisortex. Because our volunteers
did not notice the statistical associations (and tlearning was presumably slow)
and since another study of perceptual associagaming showed small learning

rates . below 0.1 (Glascher and Buchel, 2005), we tedtedfdllowing values of
&5 In separate models: 0.01, 0.025, 0.05, 0.075,Wel found thatsees=0.075 gave

the best fit to the data in primary visual cortex the main contrast of interest (i.e.,
the 4-way interaction in a random effects secomgll@nalysis); this learning rate
was then used for further analysis across theeebtiain and for the connectivity
analyses described below. Importantly, we usedrst-drder Taylor expansion
around the learning ratecs=0.075 to make the model less dependent on the
particular choice of learning rate and to accowntifter-subject variability in the
shape of the learning curves. This was implemerigdincluding the partial

derivative of the learning curvey with respect to the learning ratg as an

additional parametric modulator in the GLM for fiWRI data.

Given that there was no prior hypothesis abouedsifices between the learning rates
of CS+ and CS- trials, the analyses described vperdormed using identical
learning rates for both CS types. However, theltestom the GLM analysis of the
fMRI data showed that learning effects were largafiven by CS+ trials, which
suggested that for CS- trials a smaller learning saould have been chosen than for
CS+. This prompted additional analyses to test possibility. We examined
whether (i) a selective decrease of the learnitgyfaax CS- trials improved the ability

to detect learning effects during this trial typ@d, more generally, whether (ii) the

parameter estimates for the partial derivativesi{eflearning curveg with respect
to the learning rates, ) indicated that the learning rate for either C$4C&- trials

was different fromec<=0.075.

With respect to the first point, the data were mabgsed using lower learning rates
for CS- trials £=0.05 and 0.025, i.él; and"/; of the learning rate=0.075 used for
CS+ trials). Specifically, the critical interactid€S presence visual outcomex
RW learning restricted to CS- trials) was examitedheck whether these lower

learning rates would give evidence of learning@#eluring CS- trials. This contrast
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was first tested across the whole brain, and suilesdty restricted to those regions

which showed significant learning effects for C8als.

To address the second issue, the parameter estifoatde partial derivatives (with

respect to the learning rates) of the learning esinwere examined. If the learning
rate for either CS had been set too high or tog v parameter estimates for the
partial derivative would have deviated significgnthcross subjects, from zero. All
learning-related contrasts were tested for CS+@8dtrials separately. Again, this
analysis was first performed across the whole basid subsequently restricted to

those areas which showed significant learning &ffec

Finally, because of its short duration and smaié sthe TO cue is less salient than
the CS. Since in the RW model the learning ratdecef stimulus properties

including salience (Rescorla and Wagner, 1972), can be assumed to be
considerably smaller thag.g. In this study &, was assumed to be four times
smaller thans.g. It should be noted that violations of this asstiampare unlikely to

have a dramatic effect because the inclusion ofifresatives enables the model to

cope with deviations from the assumed learningsrats was described above.

3.2.5.2Statistical analysis of learning effects

The association strengths of the different cue anmrepts with the visual outcome
were determined from the series of observed cuesou# combinations using
Equation 3.1 and the learning rates established as describ@eeahis resulted in
the four "partial" learning curves shownkigure 3.2A: two curves (TO and CS) for
each CS type (CS+ and CS-). As describedfyation 3.2 the predicted outcome
on a given trials the sum of the predictions for each cue compbtiex is present;
Figure 3.2B shows this summed prediction for each CS typéheeipresent or

absent.

Each of the 8 trial types resulting from the thfaetorial design (CS+/CS» (A*/A

) x (V'IV) was represented by a separate regressor in therajeinear model.
Importantly, learning would be reflected by timesbing, context-dependent brain
responses to the visual stimuli. Learning is theneeh fourth experimental factor that
changes, over time, how differential brain respertsevisual stimuli depend on the

presence of an auditory CS and whether it is ptedem a CS+ or CS- context.
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Specifically, the emergence of these differentedponses should follow the time-
course predicted by the RW model. In other woréarrling is expressed as a 4-way
interactionCS typex CS presence visual outcome< RW learnin§. The primary
goal of our GLM analyses was therefore to test ithiisraction. To establish which
CS was driving this interaction, we also tested smaple (3-way) interaction€S

presencex visual outcome< RW learningwithin each CS type. Finally, to test for

responses reflecting the predictiog { entailed by the auditory CS, independently
of the prediction error 4, — ¢') elicited by the visual outcome, we tested thea3w

interactionCS typex CS presenc& RW learning,which is independent of visual

outcome.

In order to test for these learning effects, thetiplalearning curves served as
parametric modulators for their respective regness@iven that each trial always
had a trial onset cue, all 8 trial type regresseese modulated by the TO learning
curve. Because the CS was present on only halfritle (A" trials), these provided

another 4 regressors, resulting in a total of I2p&tric modulators.

The linear summation of these partial learning ear{as predicated kyquation
3.2) was achieved by defining appropriate statistazaitrasts for the general linear
model. By assigning equal contrast weights to tegrassors for both cue
componentsTable 3.2, it was possible to test for their summed infleenso that
the interaction contrasts were effectively opeatin the compound learning curves

as shown irFigure 3B.

® Note that when th€Sis absent on a specific trial, this trial can bsigned unambiguously to the
CS or CSfactor because trials were blocked by CS type.
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curves. Trial-specific cueing was modelled with teomponents: the visual trial

onset cue (TO), which was present on every triadi he auditory CS, which was

present on half the trials. This allowed us to mdekrning effects on trials, when no

CS was present. To yield the summed learning cume@d@) on each trial the

associative strengths of the cues present on tl@tare summed, as shown in

Equation 3.2. For example, on a CS+A+ trial, bbih auditory CS and the TO were

present, therefore the total prediction would keesbm of the two blue curves. On a

CS+A- trial, the auditory CS is not present, therefthe total prediction is identical

to the light blue curve, as only the TO is pres@tiese partial learning curves were

used as regressors in the SPM analysis. Notedhstihg is slower in the absence of

an auditory CS than in its presence and faste€C&r than for CS- trials.

Table 3.2. Contrast weights for

parametrically moduated

regressors.Contrast weights to test for the 4-way and 3-wagractions, across

all 12 modulators. This contrast definition effgety linearly sums all parametric

modulators per trial type as described by Equegi@n

CS+ block CS- Block
A+ A- A+ A-
V+ V- V+ V- |V+ V- V+ V-
) ] TO|-1 1 1 -1 1 -10-1 1
4-way interaction
cs|-1 1 1 -1
TO | 1 1 -1 -1/-1 -1 1 1
3-way interaction
Cs |1 1 -1 1
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3.2.5.3Prediction error versus prediction

An important feature of our factorial design istthanabled us to determine whether
the responses of a particular brain region reftete prediction of the visual target
or the prediction error. This is important becaws® cannot include separate
regressors based on predictions and predictiomseimdhe same design matrix. This
is due to the form of the RW equation, in whichdacéons and prediction errors are
perfectly correlatedwithin a given experimental condition), after mean-coroect
(seeAppendix A for further details). However, in a factorial desigkeliours such a
distinction can be made by analysing the patterrmparameter estimatescross
conditions, contrasting conditions that correspameéxpected and unexpected cue-
outcome combinations. Specifically, the factoriakign provided us, in a mirror-
symmetric fashion, with two expected outcomes amal inexpected outcomes for
each CS type. For example, on CS+ trial8yAand AV trials represented expected
cue-outcome combinations (conditional probabilitB@%) whereas A/~ and AV”*
trials consisted of unexpected cue-outcome comibimat(conditional probability =
20%); cf. Table 3.1). This means one can effectively compare expeced
unexpected trials (with low and high predictionoerrespectively), with a contrast
that is orthogonal to the presence or absenceeofifual outcome and its prediction.
This enabled us to distinguish, voxel by voxel, ilbraesponses that reflected
expected visual outcomdsom those that representathexpectedor surprising
outcomes During learning, brain regions encoding predictierrors should show
increasing activation on trials where the outconas wnexpected according to the
learned contingencies and decreasing (or non-chghgictivation on trials where
the outcome was expected. We will call such arvattin pattern a "prediction error
response”; this activation pattern would be exmkdtsurprise was the driving force
for learning. In this case, surprising events, @dgction errors, signal the need for
learning in order to update predictions. This ideaot only a core component of
associative learning models (Schultz and Dickin&@®0;Shanks, 1995), but is also
central to predictive coding theories of percepfibriston, 2005a;Rao and Ballard,
1999): that the brain should concentrate resouwrnagpresenting surprising sensory

events.

Note that our factorial analysis was not gearedato® detecting prediction error

responses only. It was equally capable of findipgasite activation patterns, i.e.
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increasing activation on trials where the predictibased on the learned
contingencies matched the outcome and decreasingo(@changing) activation on
trials where the prediction did not match the oaoteqcf. Baier et al. 2006). Notably,
for our particular design, both types of responsasid be identified by the same
statistical test, i.e. the 4-way interacti@$ typex CS presence visual outcomex
learning (see above). Since it is only the direction of theraction that differs
between the two types of responses, our factogalgth enabled an analysis that

simultaneously tested for these two aspects ofcasce learning.

3.2.6 DCM

3.2.6.1Choice of areas and time series extraction

The goal of the present DCM analysis was to explagn(3-way) simple interaction
CS presence visual outcomes RW learningor CS+ trials in V1 (see SPM findings

in the Results Section) by a simple model, in whiltl strength of the A1V1
connection was modulated as a function of the R@diptions, ¢ (i.e., learning

curves;Figure 3.2. Representative Al time-series were chosen kynte$or the
main effect of CS presence, and V1 time series wgetected by testing for the
simple interaction described above. We did not rhoke 4-way interaction with
DCM because the SPM analysis showed that the lgamefifect was driven by the
CS+ (seesection 3.3.Xor the full SPM results).

As the exact locations of activation maxima var@ar subjects, we ensured the
comparability of our models across subjects by gisstombined anatomical-
functional constraints in selecting the subjectedpetime series (cf. (Stephan et al.,
2007c)). Specifically, we thresholded the subjeetesfic SPMs aP<0.05 and chose
the local maximum within 8 mm of the group actieatimaxima in primary auditory
cortex (Al) and primary visual cortex (V1) as imést by a probabilistic
cytoarchitectonic atlas in MNI space (Eickhoff éf 2005). As a summary time-
series, we computed the first eigenvector acrdssugkra-threshold voxels within a
radius of 4 mm around the chosen local maximum.r@leave were able to extract
time series in 14 out of 16 subjects. In 2 subjéé¢iscould not be defined due to the
lack of a significant interaction that met the amaical and functional criteria

described above. These 2 subjects were excludedtire DCM analysis.
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3.2.6.2DCM specification

The question addressed by DCM was whether leareiifgcts in V1 could be
explained by changes in the connectivity of a semgliditory-visual network. Our
DCMs modelled the entire time-series, i.e. datanfadl trials or conditions, trying to
explain regional activations by condition-dependeh&nges in connectivity. We
tested three simple models that could potentialgoant for the interaction we found
in V1. These models were fitted separately to esatfject's data and compared using
BMS (Penny et al., 2004a). In these models, audiéord visual stimuli from all
trials elicited activity directly in their respee#i primary sensory areas (Seigure
3.3). These driving inputs were modelled as individeraénts. The first model only
had a connection from Al to V1, whereas the se@ndithird model included the
reciprocal connection (sddgure 3.4). The A1-V1 connection in model 1 and 2,

and the V1Al connection in model 3 were modulated by the Haata product
(point-wise multiplication) of the RW associativieesigth ¢’ and a vector encoding

visual outcome (1 for visual stimulus present, 6l isual stimulus absent) during
CS+ trials. In the first two models, this modulgtoeffect corresponds to the
interaction of the auditory CS+ prediction with thisual outcome and models a
learning-dependent contribution from CS+ resporiseauditory cortex to visual

cortex responses that depends on whether the \8oallus was present or not (cf.,
a prediction error that rests on top-down signatenf auditory areas). In the third
model, which represented a control suggested by a@hehe reviewers, this

modulatory effect acted on the reverse connectieny1—Al.
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Figure 3.3. DCMs of learning effects on audio-visuaconnectivity.
For all three models, the primary auditory (Al) atelial (V1) areas are both driven
by their respective sensory inputs. The first m¢t#d) had a single connection from
Al to V1; in model 2 (M2), the V1 Al connection was added. In both M1 and M2,
the A1- V1 connection was allowed to change during CS+stda a function of the
visual outcome (V+ vs. V-) and the Rescorla-Waglearning curve ¢. This
modulatory effect corresponds to the interactiothef auditory CS+ prediction with
the visual outcome and models a learning-deperwteritibution to V1 responses by
CS+ related activity in Al; this contribution depsnon whether the visual stimulus
was present or not (in other words, a predictionremediated by top-down signals
from Al). In the third model, instead of the A¥1 connection, the VAl
connection is modulated by the learning signal.

3.3 Results

The post-scan debriefing questionnaire showednbaé of the subjects had become
aware of the contingencies between the auditoryasuhl stimuli. Prior to the fMRI
data analysis subjects’ performance on the targetction task was verified. On

average, subjects responded to 93 + 3% of thettatigeuli.
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3.3.1 SPM results

First, we examined the 4-way interactiGf® typex CS presencs visual outcomex
RW learning We found learning-dependent responses in thegpyimisual cortex
and bilateral putamen that survived whole-braimexiion for multiple comparisons
(seeFigure 3.4 A, B. To characterise the nature of this interactiwg, tested the
simple interaction €S presence visual outcomex RW learning within each CS
type. This showed that the 4-way interaction wasedr mainly by learning during
the CS+ blocks (seeigure 3E for the parameter estimates of the visual cortasg).
shown inFigure 3.4 A B testing the simple interaction for CS+ trialscaffed
almost identical results in the visual cortex amel putamen as the 4-way interaction
(see alsoTable 3.3. In contrast, no evidence of learning, i.e. ngn#icant

interaction of CS presence and outcome with legrniras found for CS- trials.

The nature of the simple 3-way interaction was stlet V1 and the putamen
showed an increased response when an expected stsunalus was omitted, or
when an unexpected visual stimulus was presented AV and AV™ trials).
Critically, this response to surprising visual artes increased over time as the
association was learned, following the form of B¥/ learning curve. Conversely,
V1 responses to predicted stimuli diminished duteayning. The putamen showed
the same pattern of responses bilaterally; thisvaoin extended into the insula

bilaterally (se€lable 3.3.

Because previous studies have implicated the mybPFC in prediction (error)
processing (Corlett et al., 2004;Fletcher et a01), we used an anatomically
defined fronto-striatal mask to test the 3-way liattion CS typex CS presence
RW learning which characterizes responses to the predictitailed by the auditory
CS, independent of the visual outcome. During learnthe right dorsolateral
prefrontal cortex (DLPFC) became increasingly activhen a visual stimulus was
predicted compared with when it was not; activiggsvhigher for CS+Aand CS-A
trials compared with CS+Aand CS-A trials (compare the probabilities Figure
3.2). As above, we characterized the nature of theag-imteraction by testing the
associated simple interactions, confirming it wasoadriven by CS+ trials
(Figure3.4 Q. The same pattern of activation was found inléffiieputamen, but this

activation did not survive correction for multiptemparisons.
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Figure 3.4. fMRI results. (A) Significant activations in V1 as a function of

RW learning, for the 4-way interaction (CS typéCS presence visual outcomex

RW learning; red), and the same interaction restlito the CS+ trials (simple 3-way
interaction, blue) displayed on the mean structirelge across all subjects. The
caudate activation is also showB) The same interaction in the putamen bilaterally.
(C). Significant 3-way interaction CS type CS presencex RW learning in the
DLPFC and left putamen (red). Again the interaci®uiriven by the CS+ trials, as
shown by the simple interaction CS preserc®W learning for CS+ trials only
(blue). (D) shows the parameter estimates for the 4-way ictierain peripheral V1:
(CS typex CS presence visual outcome< RW learning), where error bars denote
standard error across subjects. For all trials bichvan auditory CS was presented
(A+), the modulatory effects of both the TO (ligltlours) and the auditory CS (dark
colours) were estimated, whereas on A- trials ¢idyTO was present. The estimates
show that (mainly for CS+ trials, in blue), theseain increased (summed) response to
trials with a surprising outcome, (for CS+ these #ire A+V- and the A-V+ trials)
and a decreased response to the unsurprising (#aM+ and A-V-). The activation

in the putamen showed the same pattern of respo(BEBeshows the parameter
estimates for the 3-way interaction (CS typ€S presence RW learning) in the
dorsolateral prefrontal cortex (DLPFC). This représ increased responses when a
visual stimulus was predicted to be presented,rdbgss of the visual outcome.
Again, the estimates show that the interactioncefie mainly driven by CS+ trials

(blue), showing an increased response to A+ trials.

73



3.3.1.1Learning rate

Following Glascher and Buchel (Glascher and BluckeQ5) the optimal learning
rate for the RW model was determined, evaluatirggghimary contrast of interest
(that is the 4-way interaction in a random effeséxond level analysis) under
different learning rates in the primary visual eart(as defined by a probabilistic
cytoarchitectonic atlas (Eickhoff et al.,, 2005). déb fits under five different

learning rates, suggested thgt= 0.075 was the optimal learning rate (for detaiis

the selection of the learning rates, Begure 3.2andSection 3.2.5.1 Given that the

learning effects were driven by the CS+ trials, ex@mined whether any learning
effects could be detected for lower CS- learningggaNo learning effects were
found at either a corrected level (P<0.05) or atiacorrected level (P<0.001) for the
CS- trials at either of the two lowered learningesal/s and %5 of the original

learning rate), either across the whole brain, tenvrestricted to those regions
showing significant learning effects for CS+ triglse., V1, the striatum and

dorsolateral prefrontal cortex - DLPFC).

Furthermore, none of the trial-type specific tedtthe partial derivatives indicated a
learning rate that was different froms=0.075 for the CS- or CS+ trials. If the
learning rate had been set too high or too low pr@ameter estimates for the partial
derivative would have deviated significantly, acr@sibjects, from zero. Again, this
analysis was first performed across the whole baasid subsequently restricted to
those areas in which significant learning effeasl lheen found, and did not show
any significant effects, neither at a correcteegshold (P<0.05) nor at uncorrected
thresholds (P<0.001).

Taken together, these additional analyses showadeahselective decrease of the
learning rate for CS- trials did not improve ourilio to detect learning effects

during this trial type, and that there no evidefmeeither CS+ or CS- trials that a
learning rate different from the chosen0.075 is more appropriate for modelling
learning effects in the data. This means that &lo& bf learning effects during CS-

trials was not due to a suboptimal choice of leagmate for CS- trials.
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Table 3.3. MNI coordinates and Z-values for signifiantly activated regions.

MNI coords.
Foci of activation X y z Z score Cluster size
Four-way interaction:
CS typex CS presencex visual outcomex RW learning
L occipital lobe* -6 -75 -9 4.25 41
L insula and putamen* -30 18 6 4.84 84
L putamen** -24 12 6 3.85 20
R insula and putamen* 36 12 3 4.72 82
R putamen** 27 6 -3 4.48 35
L caudate/thalamus* -9 -15 15 4.70 40
L S2 cortex* 51 27 24 4.39 93
L middle temporal gyrus* -57 -39 -3 3.88 26

Simple (3-way) interaction:

CS presencex visual outcomex RW learning (restricted to CS+)

L occipital lobe* -9 -78 -3 4.31 36

L insula and putamen* -33 12 3 4.55 57
L putamen** -27 12 6 3.63 10

R insula and putamen* 36 12 3 3.98 57
R putamen** 27 9 0 3.94 32

L caudate/thalamus* 21 -9 9 4.32 54
L caudate** -15 -9 21 4.19 14

R caudate** 15 12 18 4.24 7

L S2 cortex* -60 -33 15 4.15 87

L middle temporal gyrus* -57 -36 -6 4.30 34

R posterior insula* 39 12 -12 5.01 38

3-way interaction:

CS typex CS presencex RW learning

R inferior frontal gyrus** 42 27 12 4.39 10

*significant at P<0.05 (FWE whole-brain clusteré¢eorrected)
** gignificant at P<0.05 (SVC)

3.3.2 Learning dependent changes in connectivity

Since the learning effect was mainly driven by Gffacks, we focused on changes
in connectivity between auditory and visual cosickiring incidental learning of the
predictive attributes of CS+ trials (séeégure 3.5. Bayesian model comparison

showed that a DCM with a single connection from tAlv1 (model 1, cfFigure
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3.3 was superior to alternative models with reciptaznnections (GBF in favour
of model 1: 2.%¥10" and 2.%10'® when compared to model 2 and model 3,
respectively). Across subjects, the AY1 connection in the optimum model had an
average strength of 0.10 §P = 0.003, df = 13, t = 3.57). During CS+ triaisis
connection was significantly modulated by learnidgpending on whether the visual
stimulus was present or not (i.e., C84V" vs. V) x @in Figure 3.5. Note that the
modulatory variable in the DCM corresponds to the&eraction of the auditory
prediction with the visual outcome during CS+ sialt accounts for a learning-
dependent contribution from CS+ responses in anditmrtex to visual cortex
responses that depends on whether the visual stimuas present or not (cf., a
prediction error mediated by top-down signals fraaditory areas). Quantitatively,
the strength of this modulation was -0.01 (® = 0.028, df = 13, t = 2.49). This
corresponds to learning-induced changes in coniggctianging from 2% (for
CS+A trials) to 8% (for CS+Atrials)7 (Figure 3.5).

Critically, the negative sign of the modulatory g@eter reflects the nature of the
visual responses to auditory afferents under CiisirV1 responses to predicted
visual stimuli diminished during learning and th&€l explained this through a
decrease in the strength of the A¥1 connection. This is exactly consistent with an
increase in the ‘explaining away’ of predicted abinput under predictive coding;

in other words, if top-down predictiong (seeEquation 3.2 from auditory cues

decrease the amplitude of V1 prediction erfol —¢' |, a better prediction
corresponds to a decrease in effective connecti@ynversely, V1 responses to
unpredicted, (i.e., absent) visual stimuli increhsguring learning. This was
modelled in the DCM through an increase in the-A4l connection strength; again
this is consistent with an increase in V1 predict@ror amplitudd A, — ¢’ |, when
predictions are violated. In summary, AY1 influences depended on whether the
visual outcome was expected or surprising and werssistent with an ‘explaining

away’ role. The emergence of this effect conformedhe learning curve provided
by the RW model.

" As shown byEquation 3.2, the overall strength of a connection, given glsimodulatory
parameter, is the sum of the intrinsic connecttoangth &) and the modulatory paramet®) (
multiplied with its associated input)( In the present case, the asymptotic magnitudbeoinput
function is 0.8 for CSA™ trials and 0.2 for C®\" trials (seeFigure 3.5).
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Figure 3.5. Learning effects on audio-visual connéwity. Bayesian
model comparison showed that the DCM with a sirggianection from Al to V1
was superior to the other models. Across subjetfiesfe was a significant
"endogenous" or "fixed" strength of the A¥1 connection (0.10s-1, P=0.003) and
a significant learning-induced modulation (mageataows) of this connection
(P=0.028). The insets show the parameter estinfatedbe main effects in both Al
and peripheral V1. The magenta arrows indicate trmvmain effect in peripheral
V1 is modulated by changes in connectivity from #1V1 during CS+ trials: over
time the response to surprising visual outcomepisegulated, whereas the response
to unsurprising visual outcomes is down-regulabéate that in this plot the magenta
arrows designate the direction in which V1 respergeange due to modulation of
connectivity; for quantitative information on thmmodulatory effect, see the main

text.

3.4 Discussion

Mcintosh and colleagues showed that after a prigdiatelationship between an

auditory stimulus and a visual stimulus had beamled, the auditory stimulus alone

was able to evoke responses in the visual cortetr(fdsh et al., 1998). The current

study extended this work, pairing a visual stimulugh a predictive auditory

stimulus in a 4-factorial design, with the fact@S type (CS+, CS-), CS presence

(A", AY), visual stimulus presence (W) and learning (over time). Both CS+ and

CS- blocks were exactly balanced in terms of sgnstimulation, so that the priori
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probabilities of the auditory CS and of the visstinulus occurring on a given trial

were always 50%. Critically, the volunteers did moake any responses to the
stimuli whose associations were being learnedeadst they performed a target-
detection task on unrelated stimuli. Our factod@sign enabled us (i) to characterise
changes in neurophysiological responses due taddamassociations that were
incidental to behaviour, and (i) to investigateettrer activity in specific brain areas,
and the connection strengths amongst them, reflegtenatch between predictions

and outcome or prediction errors respectively.

The results demonstrate that during incidentalniear of audio-visual associations
changes in both regional activity and underlyingwrgectivity reflect prediction
errors. Furthermore, learning-dependent responsedgsual cortex were elicited,
even in the absence of visual stimuli. This findoan be explained by changes in
top-down influences from auditory regions that emesistent with predictive coding

models of perceptual inference.

3.4.1 RW model: predictions & prediction error

The goal of this study was not to pinpoint the éxaathematical form of learning by
comparing different models of associative learnimgtead, we focused on changes
in regional activity and interregional connectivithat could be explained by a
specific learning model, namely the RW model. The RWdel is a generic and
well-established model of associative learning tied been successful in modelling
a wide range of learning processes (Pearce ancbBpR001;Rescorla and Wagner,
1972;Schultz and Dickinson, 2000). We chose thisiehbecause it is the simplest
learning model appropriate for our particular paged In the absence of interactions
among multiple cues per trial, the RW model is reathtically equivalent to a
Hebbian model of associative learning (Montague Beihs, 2002). A crucial aspect
of our paradigm, however, is that on each trialribe prediction resulting from two
interacting cue components (the auditory CS andvitigal trial onset cue) must be
considered (see Methods Sections for details). Txsludes the use of any
associative learning model that cannot accommociageinteractions (e.g. Hebbian

models). In contrast, the RW model accommodatasaspect gracefully.

The RW model has one problematic limitation, howewas detailed iR\ppendix A,

in its equation predictions and prediction erraies gerfectly correlated under mean-
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correction. In situations where mean-correctiomandatory (e.g., when using them
to form interaction terms) this makes it impossibdedisambiguate/interpret their
contributions to a dependent variable. However, fdstorial design in our study

allows us to circumvent this problem, as it comgsigonditions that correspond to
congruent and incongruent prediction/outcome coatibns, respectively.

Analysing the 4-way interaction between our expenital factors, we found that
responses in the primary visual cortex and therpatawere sensitive to surprising
events; over time, these areas became significamihe active when presented with
a surprising cue-outcome combination. Learning wesnger for the CS+ blocks

than for the CS- blocks, which is in line with pi@ys behavioural evidence
(Fletcher et al., 2001;Wasserman et al., 1993)vieue fMRI studies in humans

have demonstrated that BOLD activity in the stmatis correlated with (signed)

prediction errors during reinforcement learningn§kn et al., 2007;McClure et al.,
2003;Menon et al., 2007;0'Doherty et al., 2004;®@&ty et al., 2003;Seymour et
al., 2004) and other associative learning tasksl¢@cet al., 2004). In these studies,
the learned associations, and the sign of thetregydrediction errors, were of direct
relevance for behaviour. The current study shows e putamen is sensitive to
unexpected outcomes even when the cue-stimulugiatiea is learned incidentally

and has no relevance to behaviour. However, inrashto the previous studies, the
pattern of putamen activity does not appear to dresitive to the direction of the

prediction error, only to its amplitude. This difé@eice may reflect the fact that
learning was perceptual as opposed to operanthkr evords, the occurrence of an
unpredicted or surprising event may play the réleegative reward, irrespective of
whether the surprising event entailed the presaricabsence of a stimulus. This

issue will be discussed further in the Section mdjtive coding below.

3.4.2 Role of prediction errors beyond reinforcement leaning

Our finding that learning-induced responses in prynvisual cortex and the
putamen reflected prediction errors accords withaaic principle emerging from
many previous studies: prediction errors, or ssgrconstitute a driving force for
learning because they signal the need for learmngrder to update predictions
(Schultz et al., 1997;Schultz and Dickinson, 200@y&s, 1995). Although the role

of prediction errors has been mainly explored &nforcement learning so far, there
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is growing evidence that prediction errors may l@adly important for learning

statistical relationships that are affectively meutnd behaviourally irrelevant. In
other words, the same mechanisms that optimiséetr@ing of stimulus-response
links may operate during the perceptual learningtohulus-stimulus associations
(Friston, 2005a;Rao and Ballard, 1999). Evidena tirganisms learn predictive
associations between initially neutral stimuli &8 in classical conditioning effects
such as sensory preconditioning (Brogden, 1939mestorms of sensory learning
also exhibit such features, e.g. the mismatch negyaparadigm, in which responses
to sensory stimuli decrease with predictability I(aveg, 2006;Friston, 2005a),
regardless of whether stimuli are attended. A meisha similar to predictive coding

has been proposed in the motor domain for canmeilaif self-generated events
(Blakemore et al., 1998;Shergill et al., 2005;Walpet al., 1995). Moreover, the
learning of predictive relationships that are difedy neutral and task-irrelevant
may engage similar computational and neural meshaias those for predicting
significant events (Wittmann et al., 2007;Zink ket 2006).

The results of the present study support the ndhiahthe role of prediction errors in
learning transcends the simple reinforcement ofglis-response links and plays a
more pervasive and general role in various formieafning. Indeed a hallmark of
adaptive systems is their ability to minimise sisipg exchanges with their
environment (Friston et al., 2006). This entailfuatinents to their internal models
of the environment so that potentially surprisinger® can be predicted. Almost
universally, this adjustment involves changes ie #ystem's connections; it is
therefore perhaps a little surprising that moswiones imaging studies on learning
and conditioning have exclusively searched forrbeaeas whose activity correlated
with specific variables of a particular learning aeb (e.g., prediction or prediction
error), but have not investigated how these vaggmbhange interactions among areas
(although some studies have investigated learngpgeddent changes in connectivity
without using a learning model; (Buchel et al., 998cintosh et al., 1998)). Changes
in connectivity are central to the physiologicalpiementation of learning; it has
long been suggested that plasticity in connectimngths between neurons underlies
the learning of predictive associations (Hebb, 3949t simply, two neural units
encoding associated entities increase their symaptinections to encode the learned

associative strength of the stimuli. More precisdr RW and similar ‘caching’
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models (Daw et al., 2005) the connection strengtmeet should carry the predicted
association at time (McLaren et al., 1989;Schultz and Dickinson, 2000his
hypothesis requires models of effective connegtiviit which connection strengths
vary as a function of the associative strengthipted by the learning model. To our
knowledge, the present study has implemented thmoach for the first time,
modelling how learning, as described by a RW modebdulates the effective

connectivity, as assessed by a DCM, between primadjtory and visual areas.

3.4.3 Changes in connectivity between auditory and visuareas

In accordance with the considerations above, westigated whether the learning-
related changes in visual cortex responses coukeixplained by a simple model of
effective connectivity, in which the strength of A¥1 connection changed as a
function of the associative strength predicted bg RW model. We modelled
observed responses in the primary visual cortemégns of a simple 2-area DCM in
which activity in the visual cortex was modelled twyo components, (i) a direct
effect of visual stimulation and (ii) a modulatiof the A1-V1 connection by the
interaction of the time-evolving prediction withetlvisual input (in CS+ blocks; see
Figure 6). Across subjects, this DCM showed a significamrgye in the strength of
the Al- V1 connection congruent with the pattern of respsna V1: the ALV1
connection strength increased on trials where theal outcome did not match the
auditory prediction and decreased on trials wheegliption and outcome matched.
In other words, the learning-induced changes in—AIL connection strength
reflected the same pattern of surprise or predictioors as the regional activity in
V1. This demonstrated that the response of V1 soali stimuli was modulated by
learning-dependent changes in top-down auditorjuemices that were consistent
with the notion of predictive-coding, a generalnfievork for perceptual inference

and learning that is discussed in the next se¢kaston, 2005a).

Although connections in models of effective connetgt do not need to correspond
to monosynaptic anatomical connections, it is @ériest to note that the surprise-
related response in visual cortex appears to likeirperipheral visual fieldegure
3.3 A), and anatomical connections from primary auditmoytex to peripheral visual
cortex have been demonstrated in recent monkeyiestu@Falchier et al.,
2002;Rockland and Ojima, 2003). Additionally, numes fMRI studies have
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demonstrated that auditory stimulation or auditattention affect activity in visual
cortices during simultaneous processing of visu@inidi (e.g. (Baier et al.,
2006;Mclntosh et al., 1998;Watkins et al., 2006)).

3.4.4 Predictive coding in visual cortex

In previous neurophysiological studies of reinfonemt learning, a negative
prediction error, i.e. the unexpected absencerefrdorcer (e.g. a reward), often led
to a decrease in neuronal or BOLD activity (McCluee al., 2003;Schultz,
1998;Tobler et al., 2007). Such directed excursaresthought to reflect the fact that
the prediction error is a signed quantity: it sigraot just that predictions need to be
updated, but in which direction. In contrast, inr study we found an increase in
striatum and visual cortex activity not only foraxpectedly presented stimuli, but
also for the unexpected absence of a stimulus.|&imithe strength of the A1V1
connection decreased whenever the visual outconseewpected, and it increased

whenever the outcome was surprising.

A useful perspective that explains our two mairdiiiigs (the implicit encoding of

surprise by V1 responses and its mediation by iegrdependent changes in input
from the auditory cortex) is provided by the franoekv of predictive coding.

Predictive coding posits a hierarchy of connectesinbareas in which each level
strives to attain a compromise between informagibout sensory inputs provided by
the level below and predictions (or priors) proddey the level above (Friston,

2003;Murray et al., 2002;Rao and Ballard, 1999;Seniield et al., 2006). The

central learning principle is to establish a goaetlel of the world, which is achieved
by changing connection strengths such that predicgéirrors are minimised at all
levels of the hierarchy. The hierarchy of a pres&tcoding architecture is often
defined anatomically (in terms of forward and baakdvconnections) and within one
sensory modality, but it is equally possible torak#e cross-modal predictive coding
relationships (cf. (von Kriegstein and Giraud, 2006 the present study, a temporal
hierarchical relation between auditory and visualaa is induced by presenting the

auditory cue prior to the visual stimulus.

Predictive coding may be a general principle ofirbfanction in which statistical
relationships in the world are monitored, even whiegy are not attended and not

relevant for ongoing behaviour. This would allove thrain to ignore predictable and
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therefore uninteresting events in the environmérgreby enhancing the saliency of
unexpected events. A good example of this notigivien by the so-called mismatch
negativity (MMN), the difference between the evesiated potential to an
unexpected "deviant" and predictable "standardhuii (Naatanen et al., 2001).
Importantly, the relationship between the MMN agmdrhing was not established on
the basis of behavioural data; in fact, it wasiaflit not even recognised (Naatanen
et al.,, 1978). This relationship was only subsetjyemferred from striking
relationships between the probability of deviamd aeurophysiological time-series
(e.g. (Csepe et al.,, 1987;Pincze et al., 2002).rebtrtheories of MMN, which
interpret it as a paradigmatic example of learnbased on predictive coding
(Baldeweg, 2006;Friston, 2005a), have recentlyiveceempirical support by DCM
studies of electroencephalographic measurementad@a al., 2006;Garrido et al.,
2007). These studies demonstrated that MMN camberstood as a prediction error
signal, which results from deviant-induced changesnter-regional connection
strengths. A similar conclusion is offered by thhegent study. Here, we found that,
at least during CS+ trials, BOLD responses in &feancreased when the prediction
provided by the auditory cue did not match the eghsnt visual stimulus
(analogous to MMN elicited by deviants). This siser signal progressively
increased as the predictive properties of the anditue were learnt. Moreover, in
direct analogy to DCM studies of the MMN (Davidadt, 2006;Garrido et al., 2007),
we found a decrease in the -A¥1 connection strength on "standard" trials (where
the prediction by the auditory cue was correctl] an increase on "deviant" trials
where the visual outcome did not match the preaticby the auditory cue. In the
context of predictive coding, learning involves armn efficient suppression of
sensory events, which is manifest by an appareticteon in evoked responses,
mediated by top-down predictions (which explain pwbhottom-up sensory
afferents). Within the framework of our bilinear BICthis is modelled as a decrease
in top-down effective connectivity for visual stithuthat match the current

prediction.

3.4.5 Limitations and future directions

We conclude this chapter by discussing a numbémitations of the present study.

First, because we wished to study brain respomsesimulus associations that were
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irrelevant to behaviour, we did not obtain behaxébevidence for learning. Instead,
as with the MMN paradigm described above, learniiegy characterised
neurophysiologically as a change in activity overet Chapter 4 will describe the
results of a follow up experiment with stimuli trdd require a behavioural response
and thus provide a behavioural assessment of #meitey process. It might be useful
to emphasise that a neurophysiological characte&rsaf incidental associative
learning processes only requires that the stadistissociations between the CS/US
stimuli are irrelevant for task performance. In tast, it is not essential that the CS
and US stimuli themselves are behaviourally irrateyIn fact, the stimuli had some
behavioural relevance insofar as they constitut&ralitors to which responses must

be suppressed.

Secondly, the DCM presented here does not makeassymptions about where in
the brain the predicted associative strength isutatled; i.e. which brain area exerts
the modulatory influence onto the A1 connection. Given the responses that
were observed in the putamen, it is possible thatrhodulation of the AbV1
connection is mediated via this region. Testing klyisothesis, however, requires the
inclusion of non-linear terms in the neuronal statgiation of DCM which goes
beyond its bilinear mathematical framewoi®hapter 2 described a nonlinear
extension of DCM (Stephan et al., 2008), whichwvaiamne to investigate the source
of the modulatory influencesChapter 4 describes how this approach has been
applied to a different associative learning studgvertheless, notwithstanding these
limitations, the current study has presented a Inoembination of dynamic system
models and formal learning theory, which were ugethodel human neuroimaging
data. This is a further step towards the long-teomal @f constructing invertible
models that unite the neurophysiological and comuptal aspects of learning (cf.
(Stephan, 2004)).
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Chapter 4

Striatal Prediction Error Activity Drives Cortical
Connectivity Changes During Associative Learning

Abstract
Both perceptual inference and motor responses laapesl by our
estimates of probabilistic relations among eventshe world. Here,
we investigated how (failures of) learned prediesicabout sensory
stimuli influence subsequent motor responses. In asBociative
learning paradigm auditory cues differentially poteld subsequent
visual stimuli. Critically, the predictive strengthof cues were
unknown and varied over time, requiring subjectsctmtinuously
update estimates of stimulus probabilities. This agit inference,
which we modeled using a hierarchical Bayesian miese was
reflected behaviourally: speed and accuracy of maesponses
significantly increased with trial-by-trial predadiility of visual
stimuli. Dynamic causal modeling of fMRI data shatbat activity in
the putamen (i) increased the more surprising tbheent visual
stimulus was and (ii) enhanced the strength of eotions from visual
areas to dorsal premotor cortex by non-linear gafirhus, the degree
of striatal trial-by-trial prediction error actiyitcontrolled the plasticity

of visuo-motor connections.

4.1 Introduction

One of the major reasons for the remarkable flé#gband adaptive repertoire of
human behaviour is that the human brain can cortstand rapidly update, estimates

of conditional probabilities that describe causalationships in the world. For
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example, human subjects can infer changing comtitiprobabilities among sensory
events (Behrens et al., 2007;Brodersen et al., 2@&n when these probabilities
are currently not relevant for behaviour (den Oudeml., 2009). Such learning of
stimulus probabilities has been shown to be redtbdiy activity changes in visual
(Summerfield et al., 2008;Summerfield and Koech®@08), auditory (Pincze et al.,
2002) and somatosensory areas (Akatsuka et al7)208e general principle, across
all modalities, is that sensory responses incresgtsethe size of prediction error, i.e.
the more surprising they are. This is in accordamitle current theoretical accounts
of brain function, e.g. predictive coding (Frista2)05a;Rao and Ballard, 1999),
which posit a fundamental role of prediction errdos adaptive behaviour and

learning.

Efficient learning of probabilities can be useddom predictions which guide motor
behaviour. For example, once the predictive stiemfta cue has been learned, the
premotor cortex shows preparatory activity (Cramdhand Kalaska, 2000;Tanji and
Evarts, 1976;Wise and Mauritz, 1985) and reaciimes$ decrease (e.g. (Bestmann et
al., 2008;Requin and Granjon, 1969;Strange e2@05).

A critical question is what neurobiological meclans underlie the adaptive
changes in motor behaviour that are needed whedicpians fail, e.g. in rapidly

changing environments. According to predictive ogdiheories, any prediction error
should induce learning and thus synaptic plasticityconfiguring connection

strengths in somato-motor networks such that ptiedicerror is eventually

minimised both at sensory and motor levels (Fristod Stephan, 2007). In a similar
vein, Bestmann et al. (Bestmann et al., 2008) sstgdethat "... the brain tries to
minimise prediction error ... that is then continsky channelled into motor regions
to control the excitability of expected motor ougu In this study, we provide direct
empirical evidence for this idea, exploiting recadvances in computational models
of learning (Behrens et al., 2007) and nonlineaM3 of fMRI data (Stephan et al.,
2008). In particular, we link the physiological rhanisms proposed by predictive
coding, i.e. prediction error dependent changesomnectivity, to a large body of

literature which have described prediction err@panses in the striatum (Corlett et
al., 2004;Jensen et al., 2007;McClure et al., 20@8pn et al., 2007;0'Doherty et
al., 2004;0'Doherty et al., 2003;Seymour et alQ80Specifically, we show that the

observed learning-dependent changes in BOLD agtigite compatible with a
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mechanistic model in which the strengths of visumteon connections are modulated

by prediction error related activity in the striatu

4.2 Methods & Statistical analysis

Twenty healthy right-handed volunteers, 24.4 +y#&ars of age, (mean age = SD, 10
female) took part in this study. The participantsd mo history of psychiatric or
neurological disorders. Written informed consenswbtained from all volunteers
prior to participation, which was approved by thatinal Hospital for Neurology

and Neurosurgery Ethics Committee.

The central idea of this paradigm was to presenigigants with auditory stimuli

that differentially predicted upcoming visual stimuParticipants had to report
whether the visual stimulus was a face or a hotlibey were instructed that the
relation between auditory and visual stimuli waslyailistic, that these probabilistic
relations were changing unpredictably in time amat there was no underlying rule
to be learned or discovered. They were neither inéal about the magnitude or
distribution of the probabilistic relations nor aibdhe temporal intervals at which

they changed.

4.2.1 Conditioning

On each trial, one of two auditory cue stimuli (C8d C%) was followed by a
visual target stimulusHgure 4.1A). Participants were instructed to respond as
quickly as possible by button press (right middhel andex finger, counterbalanced
across subjects) and report whether the targetiktgiwas a face (F) or a house (H).
Auditory and visual stimuli were presented for 388 and 150 ms, respectively. In
order to prevent automatic responses or guess#sthm inter-trial interval (2000 +
650 ms) and visual stimulus latency (150 = 50 mejenjittered randomlyHigure
4.1A).

The two tones differentially predicted the identitfythe visual target stimulus, and
these contingencies were changing in tirkggre 4.1B). Because each CS was
followed by one of two stimuli (F or H), the probkiy of one visual stimulus, given

a particular auditory CS, was one minus the prdibglof the other visual stimulus:

87



p(FICS)=1- (H|CP), U{2} (4.1)

To prevent that participants' responses could aseld by learned expectations (e.g.
about the relative frequencies of the visual stimwe constrained the sequence of
changes in probabilities such that at any pointinre the marginaprobabilities of
faces and houses were identical. First, the prdibabif one visual outcome given
CS was the same as the probability of the other Visuecome given CS(compare
Figure 4.1B):

p(FICS)= f H| CS) (4.2)

Secondly, each block contained equal numbers afaraty intermixed Cgand C3
trials. With these two manipulations, we ensuredt ttm any given trial, before the
CS was presented, tlaepriori probability of a face (or house) occurring wasae/
50%. Thus, any expectations about the visual stimmobuld exclusively be evoked

by and were time-locked to (the onset of) the augistimulus.

Each subject completed five sessions of 200 tresh. In each session, the
predictive strengths of the two CS types were chmngseudorandomly over time,
taking one of 5 different discrete levels of préidie association; the probability of
the visual outcome stimulus{gomd could be (i) strongly predictivgpE 0.9), (i)
predictive f = 0.7), (iii) non-predictived = 0.5), (iv) anti-predictive = 0.3), and
(v) strongly anti-predictivep(= 0.1). Each predictive level was presented aloekb
of stimuli once per scanning session. Predictivelbllengths varied between 14-20
trials per CS type, so that participants could pr@dict when exactly a change in
contingencies would occur. Furthermore, blocks pitidictive cues alternated with
short blocks (6-10 trials) containing non-predietigues (i.ep = 0.5) in order to

avoid complete reversals of the contingencies.
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Figure 4.1. Experimental design(A) Timeline for a single trial. At trial

onset the auditory cue stimulus (CS) was presefimied00 ms. The visual stimulus
lasted for 150 ms and was presented 150 + 50 rastht CS. The inter-trial interval
lasted for 2000 ms on average (+ 650 r{B). Temporal evolution of the probability
of a face p(F), occurring given either CS. Note that the phility of a house being

presented is simply the mirror image of this segaen

4.2.2 Stimuli

Eight pictures of neutral facial expressions drdvem the Ekman Series of Facial
Affect (Ekman and Friesen, 1976) and eight pictwkebouses were used as visual
stimuli. Stimuli were matched for overall luminanemd presented on a gray
background. The auditory stimuli were matched forcewed loudness under
scanning conditions as described previoushdpter 3). The frequencies of the
auditory stimuli used in this experiment were 125and 500 Hz, and the adapted
volume of the high tone was 98 + 4.1 % (mean + i) respect to the low tone.

To maintain identical visual input conditions, afisual stimuli were presented
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centrally and for a duration of 150 ms to preveatcades, and subjects were
required to fixate a central cross throughout tkpgeeiment. Stimuli were presented

using the software package Cogent (www.vislab.aalldCogent).

4.2.3 fMRI Data Acquisition

A 3 Tesla head scanner (Allegra Magnetom, Siemeedi®dal, Erlangen, Germany)
was used to acquire a T1l-weighted fast-field edhactiral image and multi-slice
T2*-weighted echo-planar volumes with blood oxygeralevel dependent (BOLD)
contrast (TR = 2.73 sec, TE = 30 ms). Furthermorney po the functional scans, a
By field map was acquired using a gradient echo fieégb sequence. Functional data
were acquired in five scanning sessions of apprateiy eight minutes each. 189
volumes were acquired per session (945 scans a@h petr subject). The first six
volumes of each session were discarded to allowlforequilibrium effects. Each
functional brain volume comprised 42 axial slicaghv2 mm thickness and a 2 mm
inter-slice gap and an in-plane resolution of 3x3.nThe field of view was chosen
to cover the whole brain, except for the brainstéfhe total duration of the

experiment was approximately 90 minutes per subject

4.2.4 Data Analysis

4.2.4.1Behavioural data analysis

First, the data were screened for outliers in readimes. Responses faster than 150
ms were excluded. We then tested whether the laligioins of reaction times (RT)
and response speeds (RS; i.e. inverse reactiors)tisi®wed significant deviations
from normality using a Kolmogorov-Smirnov test. &nRS, but not RT, were well
described by a Gaussian distribution, the formerewentered into a repeated-
measures analysis of variance (ANOVA) with outcompebability, CS type
(CS/CS) and outcome type (F/H) as within-subject factoffie Greenhouse-
Geisser correction was employed where significam-sphericity was detected. We
tested for any main effects and interactions betvibese factors that were expressed
in the RS. Furthermore we also assessed the mi@ct @f outcome probability on
error rates.
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4.2.4.2Bayesian learning model

The above ANOVA indicated that there was a sigaificacceleration of reactions
with increasing probability (for details, s&esults Section 4.3and Figure 4.3C).
This simple linear model of the behavioural datantd very realistic, however,
because it assumes instantaneous and precise kigavt# the probabilities that
generated the stimulus sequence. In reality, thécgmnts had to estimate these
unknown probabilities from the observed stimulugusnce. One possibility is that
subjects behave like Bayesian observers which moally update their estimates of
the hidden contingencies by combining prior infotioa from the past with current
observations in the present. As describedCimapter 1, in standard Bayesian
observer models, the learning rate, and thus tla¢iwve influence of past vs. current
observations on the estimates, is unchanging. Tibisever, is not an ideal approach
for our experimental paradigm where the underlyimgbabilistic associations are
changing in an unknown and irregular fashion. lnhsan environment, an optimal
learner would not only estimate the probabilitimst also their instability in time, i.e.
volatility, and would increase the weight of cuiresbservation relative to past

experience with increasing volatility of the enviroent.

Behrens et al. (2007) developed a hierarchical Biaye learning model that
represents such an ideal observer (Behrens €0dl7). Given a series of observed
events, this model estimates, at any given pointinte, the posterior probability
density function (PDF) of both the probabilisticasiations and the volatility of the
environment Figure 4.2. Here, we adopted this model (sé@pendix B for
implementation details) and used the posterior noddhe PDFs as estimates of the
probability and volatility. In order to verify thahe probability estimate of this
Bayesian model were better linear predictors of ibbavioural RS than the true
probabilities that generated the stimulus sequemegjsed Bayesian model selection
as described in the next section. Given the clepesority of probability estimates
from the Bayesian model in explaining the behavabdata, they were subsequently

used in the analyses of the fMRI data.
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Figure 4.2. Trial-by-trial probability and volatili ty estimates.(A,
top): evolution of the posterior probability densitynfiiion (PDF) ofp(F|CS) across
the entire experimentA, bottom) The posterior mean gi(F|CS) (solid line) for
session three clearly tracks the underlying blockedbabilities (dashed line).
Because blocks of stable probabilities are shanyever, the estimated probabilities
never quite reach their true values during a gilsotk. Note that the estimates
change rapidly at block transitions. When an unetgik stimulus occurs, the
estimates briefly move towargs= 0.5 (visible as "spikes" in the trajectory of the
posterior mean).

(B, top) The posterior PDF of the volatility shows theiadly high uncertainty about
the volatility of the environment, which convergasthe course of the experiment.
The estimated posterior mean of the volati{By bottom) decreases over the course
of a block, particularly when the probability isryénigh or very low p = 0.9 ancb =
0.1), and spikes between blocks. Additional spikiékin blocks are present when an

unexpected stimulus occurs.

4.2.4.3Bayesian model selection (BMS)

When comparing different models for observed diatg, critical that the decision is
not only based on the relative fit, but also on tledéative complexity of the
competing models (Pitt and Myung, 2002). For conmgacompeting models, both
of behavioural and of fMRI data, BMS provides anpipled foundation for such

model comparisons (Penny et al., 2004a). In thidystwe used a novel hierarchical
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method for BMS that allows for group-level randoiffieets inference about the
relative goodness of multiple competing models Qtfapter 2 and (Stephan et al.,

2009)). In brief, for all models considered we canga the evidencg(y|m), i.e.
the probability of the datgy being generated by modeh, for each subject.

Integrating out the model parameters, the modedenge balances fit and
complexity, enabling one to compare non-nested isodéh different levels of
complexity. For the linear models that were apptedhe behavioural data, there is
an analytic expression for the model evidence (Seapter 2 for details). For the
nonlinear DCMs of the fMRI data described belowe wsed the negative free
energy approximation to the log model evidence (fefiston et al., 2007;Stephan et
al., 2007d).

Subsequently the models were compared at the demeh using a new method for
random effects BMS (Stephan et al., 2009). Thishe@uses hierarchical variational
Bayes to infer the posterior density of the mogeds se This rests on treating the
model as a random variable and estimating the petexma of a Dirichlet
distribution describing the models' probabilitiesOne can then use the cumulative

probability density ofp(r | y;a) to quantify anexceedance probabilitg, , i.e. our

belief that a particular modglis more likely than any other model (of tkemodels
tested), given the group data. Exceedance prohasiéire particularly intuitive when
comparing two models (as in our analysis of theab&tural data; seEigure 4.3D).
For example, when comparing two modeats, andm,, the probability thatm, is a

more likely model tham, can be written as
¢, =p(r>0.5]ya) (4.3)

This hierarchical Bayesian approach has been showe considerably more robust
than either the conventional fixed effects analysisig group Bayes factors (Penny
et al., 2004a), or frequentist tests applied to ehaelidences, especially in the

presence of outliers (Stephan et al., 2009).

4.2.4.4Functional neuroimaging analysis

fMRI data were analysed using the SPM5 softwar&gge (Wellcome Trust Centre
for Neuroimaging, London, UK; http://www.fil.ion.uac.uk/spm). The 915 EPI

images from each subject were corrected for geaenelistortions caused by
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susceptibility-induced field inhomogeneities. A danmed approach was used which
corrects for both static distortions and changeshese distortions due to head
motion (Andersson et al., 2001;Hutton et al., 200B)e static distortions were
calculated for each subject by acquiring @fidld map and processing it using the
FieldMap toolbox implemented in SPM5 (Hutton ef a004). The images were then
realigned and unwarped using SPM5 (Andersson et2@8D1) which allows the
measured static distortions to be included in temtion of distortion changes
associated with head motion. The data were temgonaderpolated, using the
middle slice in time as a reference, to accounsfice-timing effects. The structural
image was then coregistered with the mean unwarpedtional image and
processed using the unified segmentation procadykemented in SPM5, with the
default tissue probability maps. This procedure loio@®s segmentation, bias
correction and spatial normalization through theeision of a single unified model
(Ashburner and Friston, 2005). The same normatisaparameters were then
applied to normalise the unwarped and realignedifaRyes. Finally the EPI images
were smoothed spatially with a three-dimensionalssan kernel of 8 mm full

width half maximum and re-sampled to 3x3x3 mm vexel

The data were then modelled voxel-wise, using theMGor each of the 20
participants. In the GLM, correct and error trimlesre modelled as separate events.
For correct trials, face and house trials were ledas the two main conditions of
interest. These were collapsed across the two rdiffeCS types, because the
predictive strengths of the two CSs were countariidd over time and thus no
differential effects were to be expected (analysisthe behavioural data also
indicated the absence of such effects). Conditpeesic effects were modelled in an
event-related fashion, convolving a sequence ofadkinctions with a canonical
hemodynamic response function. The probability nestes from the Bayesian
observer as well as the subject-specific respopseds were included as first-order
parametric modulators of face and house trials stiedt the delta functions
representing the presence of a face were modulateatie trial-specific probability
estimate that a face should have occurred onrikis(équivalently for house trials).
We also included the volatility estimates from Ba&yesian observer as parametric

modulators (orthogonalised to the probability estiés). Finally the 6 parameter
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vectors from the realignment procedure were induae regressors of no interest to

account for variance caused by head motion.

After computing subject-specific contrast imagesraérest, random effects group
analyses across all 20 subjects were performest@fret al., 2005), using one-sided
one-sampld-tests and testing for both positive and negattévations. We report
any activations that survived whole brain corratt the cluster-level (P<0.05). For
anatomically constrained priori hypotheses concerning stimulus-specific visual
areas, putamen and ACC, we used masks and reptvatems that survived
correction at the cluster-level within the regidnirderest (P<0.05). For the putamen
and ACC, these masks were generated using the faskfolbox (Maldjian et al.,
2003); for stimulus-specific visual areas, we usedbuilt localiser contrasts that

were orthogonal to all other contrasts of interest.

Firstly we assessed the main effect of probabithgt is, in which brain regions the
activity reflected the probability of the stimulescurring, independently of which
stimulus it was. We tested both for activationd thareased with the likelihood of
the outcome and for activations that increasedete likely, i.e. more surprising, the
outcome was. In other words, this contrast testegdtimulus-independent responses
that reflected predicted or surprising outcomespeetively. Given the results from
our previous study (den Ouden et al., 2009),aopriori hypothesis was that activity

in the putamen would increase the more surprigiegoutcome was.

Secondly, we tested for stimulus-by-probabilityenatctions, that is, probability-
dependent responses that differed between facesauses. Oua priori hypothesis
was that activity in stimulus-specific areas shadedle inversely with the probability
of the presented stimulus. In other words, respo$¢he fusiform face area (FFA)
to face stimuli should decrease the more likelygresentation of a face had been on
a given trial, and responses of the parahippocarmplzade area (PPA) to houses
should decrease with the probability of a housendgiresented. This can be
regarded equivalently as testing for surprise-ddpenincreases in the activity of
stimulus-specific areas. To accommodate inter-stibjariability in the exact
location of FFA and PPA, we performed a regionrdéiest analysis. Concerning
the functional definition of FFA and PPA, we didtmeed a separate localiser scan

since our factorial design provided an in-builtdbser contrast (i.e. the main effect
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of faces versus houses). Note that this contrastti®gonal to the contrast testing
for interactions and can thus be used to definemnsgof interest. In each subject the
individual maximum within an 8 mm radius from theogp maximum of face- and
house-specific responses (Sesble 4.1) was determined. Subsequently, given these
voxels with individually maximal stimulus-specifigj we tested for (orthogonal)
stimulus-by-probability interactions by entering tharameter estimates of regressors
encoding trial-by-trial stimulus probability estitea into two-tailed one-sampte
tests. In other words, this procedure tested whefhee- and house-specific
responses in FFA and PPA, respectively, were meetlildoy the trial-by-trial

probability estimate of a face or a house occurring

4.2.4.5Nonlinear DCMs

Numerous studies have demonstrated previouslyatttatity in the putamen reflects
prediction errors or surprise (e.g. (den Ouden kt 2009;Jensen et al.,
2007;McClure et al., 2003;0'Doherty et al., 2004gnglione et al., 2006)).
According to theoretical models of learning, theesbf prediction errors should
control the magnitude of synaptic plasticity, ahds changes in connection strength,
that underlies the learning process (Friston, 20@8karen et al., 1989;Schultz and
Dickinson, 2000). In this study, we tested thisiamtdirectly by modelling how
activity in the putamen gated the information fléhem visual areas to the dorsal
premotor cortex (PMdfFigure 4.5. We expected that increased activity in the
putamen, induced by a surprising face, should gsestrength of the FFAPMd
connection, thus enhancing the influence of fadermation on PMd activity and
facilitating an update of the motor plan. This tygfeanalysis, which requires one to
study non-linear (second order) modulatory effemts connectivity, has become
possible with the recent introduction of nonlindx€Ms described irChapter 2
(Stephan et al., 2008).

4.2.45.1 DCM specification

Based on our SPM results, we constructed a nomlib€2M including the right
putamen, PPA and FFA, and the left PMd. As showRigure 4.4 andTable 4.1,
several other areas showed a surprise dependegmnses and are likely to be
involved in the visuomotor transformation; the gretsmodel with the above four

regions should be regarded as the most parsimonnmeel that enabled us to test
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whether surprise-related activity in the putamenedavisuomotor connections.
While putamen, FFA and PPA showed peak activatiortie right hemisphere, we
included the left premotor cortex as participanesravresponding with their right
hand.

We constructed and compared several alternativeetsod basic DCM shown by
Figure 4.5A included connections from FFA and PPA to the Piftj modulations
of these connections by activity in the putamenicviwas driven by the trial-by-
trial probability estimates provided by the Bayedi@arning model. The endogenous
connectivity structure of this DCM was subsequemibtimised systematically by

BMS (seeFigure 4.5for a graphical representation of all models @ste

After the endogenous connections had been optimisedconducted a final and
critical model comparison. Since the putamen aed?lld showed similar surprise—
related activationsHigure 4.4), we wanted to establish the specificity of ourdelo
and demonstrate that putamen activity gated visatemconnections, instead of
PMd gating visuo-putamen connections. We therefested a DCM, in which the
roles of the PMd and the putamen were reversed, iandhich PMd activity

modulated the connection between the visual amedishe putamerFjgure 4.50).

4.2.45.2 Time series extraction

Since the exact locations of activation maximae@racross participants, we ensured
the comparability of our models across participantscombining anatomical and
functional constraints in selecting the subjectedfetime series (cf. (Stephan et al.,
2007c)). In brief, a regional time series was ettd if (i) it passed a threshold of
P<0.05 (uncorrected) and (ii) was located withia #ame anatomical structure as
and within a certain radius from the group maximior FFA and PPA (identified
by the contrast testing for main effect of faces teuses, F>H and H>F,
respectively) the individual maxima were requiredbte within an 8 mm radius
around the group maxima. For the putamen and PMent{ified by the contrast
testing for a [negative] main effect of probabilitthe individual maxima were
required to be within a 16 mm radius around theigrnmaximum (PMd) and within
the putamen as defined by the participants’ indigldstructural scan. As a summary
time series, we computed the first eigenvector sscrall supra-threshold voxels

within a radius of 4 mm around the chosen local imar. Overall, following this
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procedure, we were able to extract time seriesafbofour areas in 15 out of 20
participants. We could not obtain a putamen tim@esen three participants and a
PMd time series in two participants due to the la€kan activation that met the
anatomical and functional criteria described ab&iace we could not specify the

complete model in these patrticipants, they werduebed from the DCM analysis.

4.3 Results

4.3.1 Behavioural data

On average, subjects responded correctly on 94% 3mean + SD) of the trials, on
5% of the trials they gave the wrong response esged multiple buttons, and on the

remaining 4% they did not respond before the erttietrial.

Averaging reaction times (RT) across the blocksdiferent association levels
showed that subjects did learn the changing coatioigs, such that subjects
responded faster to more likely outcomegyQre 4.3A). The difference in average
RT between unexpecteg@ £ 0.1) and expected outcomgs= 0.9) across subjects
was 32 ms Kigure 4.3A). However, the Kolmogorov-Smirnov test for normali
showed that the RT distributions differed signifitg from a normal distribution in
13 out of 20 subjects; they were skewed towarddatger RT (P<0.05, Bonferroni
corrected). However, in accordance with previouskwe.g. Carpenter & Williams
1995), response speed (RS) distributions wereigoifisantly different from normal

in all but 4 subjects, and therefore these werd tmefurther analysis.

A repeated measures ANOVA significantly refuted tha#l hypothesis that RS did
not differ across experimental conditions (F(2.8.44=43.9; P<0.001). A post hoc
test showed that RS increased linearly with thébabdity of the outcome target
(P<0.001 Figure 4.3A). Furthermore, subjects responded slightly fastéaces than
to houses, (P<0.05), and slightly faster to tngih a high-frequency CS compared
to trials with a low-frequency CS (P<0.05). Howevier neither case was there an
interaction with probability (F=1.03; P=0.4 and F&® P=0.6), nor a threeway
interaction between all factors (F=1.17, P=0.3¥)pveing that there was no
differential learning for the different event typésrepeated measures ANOVA also

rejected the null hypothesis that error rates did differ across experimental
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conditions (F(1.5; 334.0)=12.52; P<0.001). Agalrere was a significant main effect
of probability (P<0.001), such that subjects mad®arerrors to more unexpected
outcomesfkigure 4.3B).

Finally, we used BMS to decide whether the trialtiigl probability estimates of the
Bayesian learning model or the true (but unknowippbilities that had generated
the stimulus sequence were better linear predicbtle RS. The distribution of the
log evidences across subjecisgire 4.3C) and the subsequent BMS at the group
level indicated that the Bayesian learning modes wastly superior: the exceedance

probability in favour of the Bayesian learning mbaeas 100% igure 4.3D).
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Figure 4.3. The effect of outcome probability on R$ and error

rates. RTs(A) and percentage of erro(B) are shown as a function of outcome
probability (mean + standard error (SE)). Correitls were averaged within each
level of probability and collapsed across CS arstiai outcome type (F/H). Subjects
speed up and make fewer errors the higher the pildlaof the outcome.(C)
Difference in log model evidence for using the lthg-trial probability estimates
from the Bayesian model versus the true probadslitas linear predictors for
behavioural measured response speeds. In all bmutstbjects, there is greater
evidence for the Bayesian modgD,) The Dirichlet density describing the probability
of modelm; (based on the probability estimates from the Baye&arning model)
relative to the alternative modet, (based on the true, blocked probabilities), given
the measured response speeds across the groupsh@ded area represents the
exceedance probability ofy being a more likely model tham,. This exceedance
probability of ®; = 100.0% was strongly favouring; as a more likely model than
mp,
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4.3.2 Analyses of fMRI data

The main results of our SPM analysis are summarnigaghically inFigure 4. 4
Note that panels A, B and F show the results ofhemlerbrain analysis, whereas
panels C, D, E and G result from region of intemslyses that were either defined
by orthogonal localiser contrasts (panels C andoDan anatomical mask (panel
E,G); see th&ection 4.2for details.

The key questions of interest for this study is rabterization of stimulus-
independent and stimulus-specific surprise resgoagsd connectivity analyses. For
completion, the results of additional analyses wimgorted, including a detailed
analysis of the main effects of the stimuli as vasllan analysis of regional responses
associated with the volatility of the probabilistissociations. Although the use of a
volatile environment was not a phenomenon of prymaterest for this study, but
merely a means of enforcing continuous learningl (@wis maximising induction of
synaptic plasticity and hence connectivity changié$y noteworthy that our analysis

of volatility effects replicated previous resulig Behrens et al. (2007).

4.3.2.1Stimulus main effects in FFA and PPA

As expected, the mid fusiform gyrus was activatedarstrongly tdacestimuli than

to housestimuli (FFA, Figure 44A andTable 4.1), and the parahippocampal gyrus
showed the opposite effect (PPAgure 4.4BandTable 4.1). In the random effects
analysis main effect for houses in the PPA has ehngueater spatial extent than the
main effect for faces in the FFA. This is possibilie to the greater variability in the
location of the FFA than the PPA: At the group letlee FFA activation is
significant at whole brain corrected level onlytire right hemisphere, but at the left

FFA is significant within an ROI for the fusifornys (Table 4.7).

4.3.2.2Regional responses reflecting stimulus-indepensgergrise

Activity in the bilateral putamen decreased sigifitly with increasing probability
of the visual stimulus, regardless whether facehouse stimuli were presented
(Table 4.1andFigure 4.4E). In other words, putamen activity increased tharem

surprising the presented stimulus was, given tlé&hy-trial probability estimates of
the Bayesian learning model. Several areas thahaoéved in preparation of motor

responses showed equivalent stimulus-independentiserrelated responses. These
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included the left dorsal premotor cortex (PMd) htigntraparietal sulcus and right

superior parietal gyrusT@ble 4.1andFigure 4.4F). The homotopic counterparts of

these areas in the opposite hemisphere also showedised responses to surprising
stimuli, but these activations did not survive whbrain correctionTable 4.7).

4.3.2.3Surprise-related responses in stimulus-specifi@aare

Using the main effect of stimuli, we functionallefthed FFA and PPA in each
participant (for details on group main effects, sepplementary material). In each
subject, we then determined the peak voxels irt iR and right PPA that showed
maximally selective face and house responses, ctgply, and tested for
(orthogonal) stimulus probability interactions, i.e. a difference in tm@dulation of
stimulus-specific responses by the probabilityhait tstimulus occurring. In the FFA,
there was a pronounced negative modulation oegpanses to faces by the trial-by-
trial probability estimates for faceg € -2.05+ 0.52). In other words, FFA responses
to facesncreasedwith the magnitude of prediction error, i.e. thermsurprising the
occurrence of a face was. In contrast, the moduladi FFA responses to houses by
the trial-by-trial probability estimates for houseas marginal £ = -0.09+ 0.78; see
Figure 4.4C). This interaction was significanp € 0.037).

When examining activity in PPA, we found that iesponses to houses showed a
strongly negative modulation by the trial-by-tr@bbability estimates for houses (

= -2.29 + 0.54; seeFigure 4.4D). That is, in analogy to the FFA results, PPA
responses to housegreasedhe more surprising the presentation of a house ima
contrast, PPA responses to faces were positivelgulated by the trial-by-trial
probability estimates for face@ & 1.91+ 0.67); this corresponds to a decrease in
activity the more surprising the presentation daee was. Again, as for FFA, this
interaction was significanp(< 0.001)

In summary, responses of PPA and FFA to their predestimuli were strongly
modulated by surprise (or prediction error) abdutse stimuli (i.e. showed a
negative modulation by trial-by-trial probabilitystenates for these stimuli as
provided by the Bayesian observer model), and mhiglulation by surprise was

significantly higher than for their non-preferreaili.
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4.3.2.4Volatility dependent brain activations

For completion, we also tested in which areas #gtincreased or decreased with
the trial-by-trial volatility estimates. Followintpe results by Behrens et al., (2007),
who demonstrated that ACC activity correlated withlatility estimates during
reward learning, we tested whether volatility erngdin the ACC would also be
present in our learning paradigm which did notude any rewards. Indeed, activity
in the dorsal and rostral ACC and the ventromegia@frontal cortex correlated
significantly with the volatility estimateg &ble 4.1andFigure 4.4G).
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Figure 4.4. Main effects and modulation of outcomestimulus

processing.All parameter estimates show mean + SE acrossublects and all
activations are displayed on the average anatora@zal.A) Main effect of F>Hin
the right FFA, also showing the left FFA activati@ee supplementary materieh)
Main effect of H>F in the bilateral PPAC) Parameter estimates across subjects
(located at the individual maxima in the F>H costria the FFA) of the modulatory
effect of stimulus probabilities. There was a pnamzed negative modulation of FFA
responses to faces by the trial-by-trial probapiéstimates for faces3(= -2.05+
0.52). In contrast, the modulation of FFA respongesiouses by the trial-by-trial
probability estimates for houses was margifak=(-0.09+ 0.78). This interaction
was significant f = 0.037).D) Parameter estimates across subjects (located at the
individual maxima in the H>F contrast in the PPA)tbe modulatory effect of
stimulus probabilities. PPA responses to houseswstioa strongly negative
modulation by the trial-by-trial probability estites for housesZ=-2.29+ 0.54). In
contrast, PPA responses to faces were positiveldutated by the trial-by-trial
probability estimates for faceg§ € 1.91+ 0.67). This interaction was significamt €
0.001) (E, top) Bilateral effect of surprise in the anterior putamé¢Bottom)
Parameter estimates from the putamen showing thative dependency on both
p(F) and the p(H)(F, top) Bilateral effects of surprise in dorsal premotortex
(PMd) and the parietal cortexBottom) Parameter estimates for the left PMd,
showing the same surprise dependent effect as thampn. G) Parametric
modulation of the VMPFC/ ACC by volatility.
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Table 4.1. MNI coordinates and Z-values for signifiantly activated regions.

MNI coords.
Foci of activation X y z Z score

Surprise effects: negative correlation with p(F) ad p(H)

Motor areas

L precentral gyrus (dorsal -18 -18 60 4.13
premotor cortex)*

R precentral gyrus (dorsal 33 -15 57 3.40
premotor cortex)**

R intraparietal sulcus* 42 -33 39 4.02
L intraparietal sulcus ** -42 -39 39 3.72
R superior parietal gyrus* 15 -60 63 4.16
L superior parietal gyrus** -15 57 63 3.42
Striatum

R putamen 27 3 6 3.42
L putamen 24 15 3 3.39

Probability effects: positive correlation with p(F) and p(H)
No significant activations.
Volatility effects: positive contrast

Ventromedial prefrontal ctx 3 48 -9 3.64

*k

ACC -12 45 9 4.11
Ventral ACC / subgenualctx -6 36 -3 357
L caudate/thalamus* 21 -9 9 4.32

Volatility effects: negative contrast
No significant activations.

Main effects of sensory stimulation
House>Face

R parahippocampal gyrus 30 -51 12 7.01

L parahippocampal gyrus -24 57 -18 6.70
Face> House

R mid fusiform gyrus 45 57 24 542

L amygdala 21 12 -9 431

L mid fusiform gyrus -45 54 -21 3.47

* significant at P<0.05 FWE cluster-level correctamtoss the
whole-brain

** significant at P<0.05 cluster-level corrected opriori region
of interest
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4.3.3 Nonlinear DCM

Based on our SPM results, we constructed a nomliD€aM including the right
putamen, PPA and FFA, and the left PMd as parsiousninodel for testing whether
surprise activity in the putamen gates visuomotmnnections. This initial DCM
included connections from FFA and PPA to PMd andaalulatory influence from
the putamen on these connectioRgy(re 4.5- ml), and thus included the minimal
number of connections necessary to test the hypisthall additional models were
derived by expanding this basic architecture. Hargal BMS was then used to
select the optimal model at the group level (Stepdtaal., 2009).

In a first step, all possible combinations of erslugus connections between the
PPA, FFA and PMd were compared using Bayesian ntmtaparisonKigure 4.5 -
m;.4). Compared to all other models, there was greatetence for the model with
full connectivity between all these areaBalfle 4.2. Model 4, including full
reciprocal connectivity between the sensory andnpter areas was clearly the best

model (exceedance probabiligy = 0.99).

In a subsequent step, two more models were tesiedbdk at endogenous
connections to the putamen from the sensory anchqta cortex. Firstly a model
was tested in which connections from the sensopasarto the putamen were
included, to test whether there was any direcuarice of these areas on the putamen
(Figure 4.5 - mg). This model turned out to be worse than the mdiad did not
include these connectiong (= 0.99). Secondly, because there are known tarbetd
projections from the premotor cortex to putamenh(leg al., 2007;Takada et al.,
1998), m included a direct connection from the PMd to tlwamen Figure 4.5 -
mg). Here, the evidence forgmvas still greater than for gnalthough less decisively
than for the other modelsg( = 0.64). Note that this does not mean that this
connection does not exist anatomically, but juat this unlikely to play a major role

in the process modelled here.
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Figure 4.5. DCMs tested to establish the optimal ewgenous

connectivity. Set of 6 DCMs testing the hypothesis that the mpatanodulates

connectivity between the sensory and motor cortickEsigned to establish the
optimal endogenous connectivity. The dotted lines #he connections that are
included in addition to the most parsimonious madel m, was the optimal model

(see main text).

Table 4.2. BMS with regard to endogenous connectiyi between PPA, FFA and

PMd
Dirichlet Exceedance
parametersa probability @
m; 1.79 0.00
m, 5.79 0.15
ms 1.81 0.00
my 9.62 0.84

Thus, the optimal model was a model with reciprooahnections between PMd,
FFA and PPA (sedrigure 4.6A). In this model, the parameter estimates that
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described gating effects of putamen activity onueisnotor connections, were
consistently positive across subjects (PPRMd: d = 0.01+ 0.003 (mearx SE),p =
0.010; FFA->PMd: d = 0.011+ 0.004,p = 0.017). Therefore, in accordance with our
hypothesis, prediction error related activity ire thutamen significantly modulated

the strength of visuo-motor connections.

However, because putamen and PMd showed similpriserrelated activations (cf.
Figure 4.4), it was necessary to demonstrate the specifatipur model and exclude
the possibility that, instead of putamen activigtigg visuo-motor connections, the
PMd might be gating visuo-putamen connections. &foee a final crucial model
comparison was made to verify the directionalityttod putamen influence. In this
model (m) the role of the putamen and the PMd were swappecdh that PMd
activity modulated the connection between FFA/PR#Al @he putamenFgure
4.6C). BMS showed that this reversed model was clesnfgrior to the original
model; the exceedance probability that the dataewmore likely to have been
generated by the original model rather than byréversed model, was 99%igure
4.6D). Finally, Table 4.3 we report a final comparison of all models at gnce

showing once more thaty1s the optimal model.

Table 4.3. BMS among all tested DCMs

Dirichlet Exceedance
parametersa probability @

m; 1.55 0.02

m, 3.60 0.16

ms 1.57 0.02

my 4.82 0.36

Mms 2.83 0.08

Mg 4.12 0.23

my 3.50 0.14
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Figure 4.6. DCMs testing the respective roles of pamen and

PMd. A) A basic DCM (cf m, Figure 4.5) for investigating modulation of visuo
motor connections by prediction error related ditivn the putamenB) The optimal
DCM (cf my, Figure 4.5), resulting from a systematic modeirske procedure,
included full connectivity between the PMd, PPA d&teA. Activity in the putamen
significantly enhanced the connections from the FAFA to the premotor cortex: p
= 0.010 and p = 0.017 for the modulation of the PHMMd and FFA> PMd,
respectively.C) Alternative DCM in which the roles of the putamen and the PMd
were swapped (cf mTable 4.3)D) The Dirichlet density describing the probability
of model my (panel B) relative to the alternative mode} (Panel C), given the
measured fMRI data across the group. The shadedrapesents the exceedance
probability of m, being a more likely model than,. This exceedance probability of
®; = 99.1% was strongly favouring, as a more likely model tham,

109



4.4 Discussion

In this study, we used an associative learning gigna in which auditory cues
differentially predicted subsequent visual stin(fdices or houses) to which subjects
made a speeded response. We ensured that on amytgal thea priori probability

of a face (or house) occurring was always 50%. Thny expectations about the
visual stimulus were entirely dependent on thetanglicue. Critically, the predictive
strengths of cues were unknown and varied over ,tireguiring subjects to
continuously update their estimates of cue-stimuassociations and thereby
maximising demands on changes in network connéctiwa synaptic plasticity. We
modeled this dynamic inference process using altbical Bayesian observer that
inferred the associations from the observed cueem¢ combinations, taking into
account the volatility of the environment (Behratsal., 2007). These trial-by-trial
probability estimates were subsequently used afiqtoe variables in the analysis of
both behavioural and fMRI data. Behaviourally, spesnd accuracy of motor
responses significantly increased with trial-bwltrpredictability of visual stimuli
(Figure 4.3. Analysis of the fMRI data showed that FFA andAPRflected
prediction errors that were specific for their preéd stimulusKigure 4.4A,B). In
contrast, both the putamen and dorsal premotorexorepresented stimulus-
independent prediction errors in that their agfivitcreased the more surprising the
current visual stimulus was regardless of its typmure 4.4E,F. Comparing a
series of nonlinear DCMs by Bayesian model selactiee found that the activity in
dorsal premotor cortex was best explained by a modevhich prediction error
related activity in the putamen enhanced the sthenfjconnections from FFA and

PPA to premotor cortex by a non-linear gating medra Figure 4.5).

Two recent studies have shown that during learoingtimulus probabilities visual
areas show increased responses to unexpected wistca@imes (den Ouden et al.,
2009;Summerfield and Koechlin, 2008). Both studresyever, only used a single,
and relatively unspecific, stimulus type (squarad gabor patches, respectively). It
thus remained unclear whether this representedergk stimulus-independent or a
stimulus-specific surprise response. Moreover, fhebabilities used remained
stationary throughout both studies. An additionalithtion of the previous study
(den Ouden et al., 2009;Summerfield and KoechldQ& was that it investigated

incidental learning of stimulus associations andil@¢othus not provide direct
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behavioural evidence for learning. All of the abdiwritations were avoided by the
design of the current study.

Our present results show a double dissociation gnfaee- and house-specific areas
that represents a stimulus-specific surprise respdfigure 4.4A-D). While FFA
responses to faces increased with the magnitudeedfiction error, i.e. the more
surprising the occurrence of a face was, its resp®mo houses were unaffected by
prediction error. In PPA, responses to houses ase@ with the magnitude of
prediction error whereas responses to faces evereateed with prediction error. In

both cases, this stimulusprobability interaction was significant.

In contrast to the visual areas, the bilateral mata, left dorsal premotor cortex, right
intraparietal sulcus and superior parietal gyruswad a stimulus-independent
prediction error responsé&ifure 4.4F. That is, whenever an unexpected stimulus
was presented, independently of whether this wésca or house, the activity in
these areas increased. The parietal activationscaextensive with the dorsal visual
stream and play an important role in attentionafiestation (Corbetta and Shulman,
2002). Their increased activity in response to 8sirmy stimuli may therefore reflect
increased attention to the unexpected visual stirfrulcontrast, the surprise-related
activity in the premotor cortex is more likely teflect the updating of the motor plan
that becomes necessary when the prediction evokeldebauditory cue turns out to
be wrong (Mars et al., 2007;Nakayama et al., 20@8pally, prediction error
responses in the putamerigure 4.4E) have been reported by numerous previous
studies, and for very different types of learnifigis suggests that the putamen is
generally sensitive to violations of learned cogéincies, whether these
contingencies signal reward (Jensen et al., 200C]Me et al., 2003;Menon et al.,
2007;0'Doherty et al., 2004;0'Doherty et al., 2@@¥mour et al., 2004), guide
decision making (Corlett et al., 2004), or pred&tget stimuli (as in the current
study), and even when these contingencies areei@viourally relevant at all (den
Ouden et al., 2009).

The above considerations imply that the increasgrefotor activity for surprising
visual outcomes could at least partially be dua te-weighting of stimulus-specific
visual inputs that is controlled by the degree m@&dgction error encoded by activity

in the putamen. In other words, the strength ofmeations from FFA and PPA to
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premotor cortex, which provide information abow¢ #ippropriateness of the planned
action, might change from trial to trial, depending the mismatch between
predicted and observed visual outcome that is Heghdy the putamen. To address
this hypothesis, we used a recently developed neati DCM (Stephan et al., 2008),
which allowed us to model how connections from FAl PPA to premotor cortex
were modulated or gated by ongoing activity in pagamen. Anatomically, there are
indirect projections from the putamen to the presnatortex via the thalamus
(Alexander and Crutcher, 1990;Schultz, 2000) whadfuld mediate this gating
process. To demonstrate the directionality of thechanism, we compared this type
of model to a control model in which the role oétputamen and premotor cortex
were reversed, i.e. the connections from visuabar® the putamen were now
modulated by premotor activityFigure 4.6C). Bayesian model selection showed

that the original model was clearly superior to dtternative oneKigure 4.6D).

Previous neurophysiological and neuroimaging irigasibns of associative learning
have focused on identifying region-specific preidicterror responses, e.g. in the
ventral tegmental area (D'Ardenne et al., 2008;Yaruet al., 2006) or the striatum
(Corlett et al., 2004;Jensen et al., 2007;McClute ak, 2003;Menon et al.,
2007;0'Doherty et al., 2004;0'Doherty et al., 2@@Bultz and Dickinson,
2000;Seymour et al., 2004;Tobler et al., 2006), ilmte not investigated effects of
prediction errors on connectivity. An exception we precursor to the present
study (den Ouden et al., 2009). As in the presemtys this previous work used an
audio-visual associative learning paradigm and doarprediction error response in
the putamen bilaterally and in visual cortex. Hoamwvhe DCM in this previous
study only described an anatomically uninformeduirice of prediction errors per
se on connectivity, but did not specify their s@jrbecause the required nonlinear

models where not yet established at the time ofyaisa

To our knowledge, the present study is the firsdémonstrate that trial-by-trial
prediction error related activity in a specific i@y (here the putamen) controls the
plasticity of connections among other regions. Tikisn accordance with several
theoretical concepts which have proposed that ilegrshould be implemented
neurophysiologically by prediction error dependesynaptic plasticity (Friston,
2005a;McLaren et al., 1989;Schultz and Dickinso80®. Deploying synaptic

plasticity depending on the magnitude of predictaror is an intuitively sensible
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mechanism: the larger the prediction error, thexgnrethe need for changing one's
predictions and hence to reorganise the neuroséisyproducing these predictions.
The model in the present study represents predi@roor dependent learning as a
nonlinear (second order) interaction between ostftdm FFA/PPA and putamen
that target the dorsal premotor cortex. Severatot@alogical mechanisms for this
type of plasticity have been suggested by invase@rdings studies, including
nonlinear dendritic integration of inputs due tdtage-dependent ion channels or
activation of dendritic calcium conductances bykspmpagating action potentials

(for details and references, see (Stephan etG8)2

In summary, the present study has used a combmatiofMRI, computational

learning models and DCM to demonstrate that legrmduced synaptic plasticity in
the human brain during a simple audio-visual asdmei learning task can be
characterized in terms of prediction error depehdehanges in effective
connectivity. Such approaches may become usefulnfadel-based inference about
neurophysiological processes that cannot usualbtingied non-invasively but are of
clinical importance, such as synaptic plasticity &s regulation by neuromodulatory
transmitters (Stephan et al., 2006). An importantirie step will be to combine
model-based approaches as the present one withmabalogical designs that

manipulate prediction error dependent changesastigity.
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Chapter 5

Amygdala Modulates Cortico-Striatal Connections Duing
Fear Acquisition

Abstract
This DCM study is based on a dataset which hasiquely been
analysed using conventional statistical parametapping by Petrovic
et al. (Petrovic et al., 2008). In the originaldstihe authors focussed
on the role of the fusiform gyrus and the amygdal@rocessing of
learned affective values for faces. In the currgnidy the acquired
fMRI data were reanalysed, focussing on the rol¢ghefamygdala in
CS+ processing. In this reanalysis, using DCM anklSB we
compared different putative mechanisms of amygdalalvement in
learning the CS+US association. Specifically, wevesiigated
amygdala-dependent gating of corticostriatal cotoes during

processing of CS+ stimuli.

5.1 Introduction

A wealth of research in both animals and humaneg Identified a critical role of the
amygdala in Pavlovian fear learning, in which afeetvely neutral conditioned
stimulus (CS) is presented with an aversive undardid stimulus (US), such as an
electric shock (e.g. see(LeDoux, 2003;Maren, 200Ajjer a number of paired
presentations, a CS alone elicits a fear resposisey as freezing or increased
sweating. Amygdala damage in both humans and asimedults in severely
impaired fear conditioning (Bechara et al., 199&iBét al., 2005;LaBar et al., 1995).
For example, LaBar et al showed reduced conditiakéu conductance responses to
a CS associated with a loud noise burst in unghtesmporal lobectomy patients
with temporal lobe epilepsy patients (LaBar et B395).
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The exact details of the physiology of fear leagninechanisms in the amygdala are
yet to be elucidated, but it is generally agreeat $ensory information from the
cortex and thalamus is received by the basolapamlof the amygdala (Delgado et
al., 2006). The lateral part especially is consideas the ‘gatekeeper’ to the
amygdala (LeDoux, 2007). The underlying mechani$rthe CS+ induced activity
might be as follows: CS-US convergence induces gynglasticity in lateral
amygdala such that after conditioning CS infornmati® conveyed more effectively
by the lateral amygdala, via intra-amygdala coripast to elicit activation in the
central amygdala. The central amygdala is nornmaily activated by behaviourally
relevant USs, as it interfaces with the motor syséend prefrontal areas, controlling
the expression of conditioned behavioural and artoa fear responses (LeDoux,
2007).

In humans, a number of studies have shown diffeder@sponses in the amygdala to
stimuli that have been associated with an aversikeome (CS+), compared to
stimuli that do not predict an aversive stimulusS{C However, while all studies
show overall increased activity in the amygdaléheo CS+ compared to the CS- (e.qg.
(Buchel et al., 1998;LaBar et al., 1998;Marschrtaale 2008;Tabbert et al., 2005)),
the precise timecourse of these differential respstis variable. Several studies have
reported an initial increase in the response to &#nuli in the amygdala, followed
by a later decrease (Buchel et al., 1998;LaBad.et1898;Marschner et al., 2008)
whereas some studies show a differentiation betw@®f and CS- during the late
acquisition phase, such as a study by Tabbert. ettadre differentiation between
CS+ and CS- within the amygdala was observed duainigte acquisition phase
(Tabbert et al., 2005). One explanation for thesemnsistent results could be that the

speed of learning differs between these differamagigms.

Learning speed will depend on several featureshef ¢onditioning paradigm,
including the similarity of the CS+ and CS-, theeesiveness of the US, and the
reinforcement schedule. Easily differentiated C3th wleterministic reinforcement
schedules are likely to induce very fast learniagd might show differentiation
within the first couple of trials (e.g. (Marschnet al., 2008)). A complementary
explanation could be that two processes evolve Isameously in different parts of
the amygdala that cannot be resolved at the spedgdlution of human fMRI.

Results in favour of this suggestion come from radgudies, in which single cell

115



recordings in the dorsal subnucleofs the lateral amygdala in rats during fear
conditioning showed differential responses in tvigtidct cell populations (Repa et
al., 2001). Cells in the dorsal tip of lateral amgty, exhibited short-latency
responses (<20 ms) that were only transiently cb@nGells in the more ventral part
of the lateral amygdala, had longer latency respendut maintained enhanced
responding throughout training. This sustainedeasp could reflect the fear/anxiety
induced by the CS+, whereas as Marschner et agjestigthe transient signal is
reminiscent of prediction error response (Marscheteal., 2008): The amygdala
encodes sensory contingendiesapidly learn CS—US associations, so that when t
CS is first paired with the US, this surprisingratius elicits a large response, but
when the CS-US association is subsequently lealittd, response is elicited and
the response decreases. However, to fully tessdoh a prediction error response,
one would have to test not only the learned resptms: presented US, but also to its
absence. In the study by Marschner et al. thismveapossible because the CS+ was

always followed by a US.

The study presented here is a reanalysis of aqusli published dataset (Petrovic et
al., 2008). We used a refined model for the inig&®M analysis, obtaining results
that go beyond those reported by Petrovic et all support the prediction error
hypothesis proposed by Marschner et al. (Marscehex., 2008). In a subsequent
step, we used DCM to investigate the mechanismbosi fear learning in the
amygdala can influence corticostriatal processihgomditioned stimuli. It has long
been thought that the amygdala guides and initietetor responses to affective
stimuli, with the ventral striatum playing a pivbtale as the interface between the
extended amygdala and motor systems coordinatsgpreses to conditioned stimuli
(e.g. (Haber et al., 1995;Mogenson et al., 1980)re specifically, it has been
suggested that output from the basal amygdala @osthatum controls actions in
response to conditioned stimuli ((LeDoux, 2007)tHe present study, we therefore
compared a set of nonlinear DCMs embodying differerechanisms how the
amygdala might mediate the processing of sensdoynmation in the striatum and

prefrontal cortex.
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5.2 Methods & Statistical analysis

5.2.1 Experimental Design — fMRI

The dataset used in the current study was previamlysed by Petrovic et al. who
used a conventional SPM analysis to investigaferdiftial CS processing for social
stimuli(Petrovic et al., 2008). While being scanmesthg fMRI, the participants were
subjected to a fear conditioning paradigm where weoally presented faces were
associated with aversive electric shocks in a 5@¥farcement schedule. Two
further faces were presented but never associatédavshock (i.e. 0% contingency
reinforcement schedule). For each of the CS types,of the faces directly looked
into the camera, whereas for the other stimulusgdwee was averted (s&égure
5.1). Since Petrovic et al. did not find very stronghbvioural or fMRI effects for
gaze direction, this factor was neglected in thesent reanalysis. The basic design
thus had a 2x2 factorial structure, the factorsn@peCS type (CS+: 50%
reinforcement; CS-: 0% reinforcement) and trialcome (US present vs. absent).
However, due to the use of a 0% reinforcement adeetiere are, by definition, no
CS- US trials; therefore, the design included dhbifferent trial types. Additionally,
we focused on learning effects, distinguishing leetm trials in the first vs. the

second half of the experiment. This resulted ina types overall.

The subjects were instructed for each presentedlttadecide as quickly as possible
whether the face was in the centre or offset (by) to the left or right of the visual
field. On any given trial, the face appeared folD 98s, with a stimulus-onset
asynchrony (SOA) that was jittered betw@€rB and 14.4 seconds for each trial (see
Figure 5.1). For the CS+US trials, the electric shock wasvdetd at the end of the
face presentation, for a duration of 1 ms at 80%thaf most painful sensation
imaginable as determined by a visual analogue gtalaletails see (Petrovic et al.,
2008)). Each subject completed 30 trials of eactheffour CSs, being exposed to a

total of 30 shocks. The total scanning duration @asin.

Although the majority of the subjects £ 20/27) could not correctly identify which
faces were associated with the shocks in a postrewrpntal interview, both skin
conductance responses (SCR) and explicit ratingsvett that the cue-shock

association had been learned; in the second halthef experiment the skin
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conductance response (SCR) to (unpaired) CS+ stimas larger than to CS-
stimuli, and subjects rated CS- faces as morebikeand CS+ faces as less likeable,
after the experiment than before. Furthermore,guiaimeinforcement learning model
to specify regressors, analysis of the fMRI datewstd increasing activity in both

amygdala and fusiformyrus in response to the CS+ stimuli (Petrovicle2808).
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Figure 5.1. Timeseries of a single trialThe CS stimuli were presented for
990 ms, and in case of the CS+ stimuli, these ¥a@ved in 50% of the cases by a
painful electric shock at the end of the CS preséori. Subjects performed an offset
detection task on the CS stimuli.

5.2.2 Subjects

27 healthy male subjects (aged 18-36 years) withhistory of neurological or
psychiatric disorder were included in this studyritt¥n informed consent was
obtained from all volunteers prior to the study,iehhwas approved by the National

Hospital for Neurology and Neurosurgery Ethics Cattea.

5.2.3 fMRI Data Acquisition

A 1.5 Tesla Siemens Sonata MRI scanner (Siemetandem, Germany) was used to
acquire T1-weighted fast-field echo structural iem@nd multi-slice T2*-weighted
echo-planar volumes with blood oxygenation levgiatelent (BOLD) contrast (TR
=3.96 s, TE = 50 ms). For each subject, 360 seame acquired in one continuous

session. The first four volumes of each sessionewlscarded to allow for T1
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equilibrium effects. We used a 30° tilted orbitaftal sequence (Deichmann et al.,

2002) with a flip angle of 90° covering the whbkain in 44 slices.

5.2.4 fMRI Data Analysis

fMRI data were analysed using the statistical safewpackage SPM5 (Wellcome
Trust Centre for Neuroimaging, London, UK; httpww.fil.ion.ucl.ac.uk/spm). The
356 images from each subject were realigned toecorfor head movements,
corrected for movement-by-distortion interactioAsdersson et al., 2001), spatially
normalized to the Montreal Neurological Institut®¥NI) template brain and
smoothed spatially with a 3-dimensional Gaussiamedeof 8 mm full width half
maximum. The data were then modelled voxel-wisénguga GLM that included
regressors for six experimental trial types (démxtibelow) consisting of trains of
delta functions convolved with the canonical henmayic response function. The
data were high-pass filtered (cut-off 128 secortidsjemove low-frequency signal
drifts, and a first-order autoregressive model wsed to remove serial correlations
(Friston et al., 2002a). In distinction to the poess analysis (Petrovic et al., 2008),
we used a more precise temporal model of the stisnansets, and a more
appropriate microtime bin for defining regressomsinimising the overall timing
error across slices). Contrast images of parametémates encoding effects of
interest were created for each subject and entsgpdrately into voxel-wise one-
samplet-tests (df = 26), to implement a second-level randeffects analysis. We
report regions that survive cluster-level corraetior multiple comparisons (family-
wise error, FWE) across the whole brainPat0.05, or for predefined regions of
interest (small volume correction, SVC) B0.05. These regions of interest

included the amygdala, striatum and the prefrordeiex.

5.2.5 SPM contrasts

In order to assess these learning effects at aopbysiological level, the three
different trial types (se€able 5.1) were split between the first and second halhef t
experiment, following previous fear conditioningidies, (Buchel et al., 1998;LaBar

et al., 1998), resulting in 6 regressors.

The contrasts used in the current analysis areribesicin Table 5.2 In order to

assess the main effect of ‘face’ stimulation, thgressors for CS+USC were not
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used in order not to contaminate our results witick events. Because ‘face’ stimuli
are known to activate the fusiform gyrus (e.g. €bapter 4), we will refer to the
face responsive part of the fusiform gyrus as theiférm face area (FFA) for
simplicity. One should keep in mind, however, thia@ nonspecific nature of the
contrast (‘face’ vs ‘fixation’) prevents any strorgaims about the degree of
specificity for face stimuli exhibited by the iddred area.

The main effect of pain contrast was restrictedC®t+ trials, as CS- stimuli were
never paired with a painful stimulus. The cruciahtrast to test for learning effects
was the change in response to the presence orcbséshocks over time. Since we
were specifically interested in the roles of theasim, amygdala and prefrontal
cortex in fear learning, we performed an additiorestricted search in these areas,
using anatomical masks generated from the Anatoogtbbx (amygdala, (Eickhoff
et al., 2005)) and the PickAtlas toolbox (prefromtartex mask included the inferior,
middle and superior frontal gyrus, and striatum,aldfian et al., 2003)). The
Anatomy toolbox is a probabilistic cytoarchitectoratlas based on histological
investigation of a group of post mortem brains, s the PickAtlas is based on

topographical landmarks alone. Thus, the Anatoroibtaix was used preferably.

Table 5.1. Design and stimulus frequencyNote that the design is not
entirely factorial, because by definition there ae CS- US trials, resulting in 3
different trial types.
shock (US) no shock
CS+ 30 30
CS- 0 60

Table 5.2. Contrast definnitions.

early late
CS+ CS+US CS- CS+ CS+US CS-
main effect of ‘face’ 1 0 1 1 0 1
main effect of ‘pain’ -1 1 0 -1 1 0
pain x time (+) 1 1 0 1 -1 0
pain x time (-) 1 1 0 1 -1 0
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5.2.6 DCM

5.2.6.1DCM specification

As described in the results section below and asvshin Figure 5.2 the SPM
analysis demonstrated that amygdala, striatum esfdgmtal cortex showed a time x
shock interaction, such that the response to amiteth CS+ over time increased,
whereas the response to a CS+ paired with a shexleased. Based on these SPM
results, a set of alternative nonlinear DCMs wemmnstructed that could all
potentially account for the interactions observed these areas. All DCMs
additionally included the FFA as an input regioattivas driven by the face stimuli;
the sensory effects of shocks entered the systarthei amygdala (sdegure 5.3).
These driving inputs were modelled as individuatrégg. The direct input into the
amygdala represents a lumped influence via thressipe pathways since the
basolateral amygdala receives noxious informatiomfthe insula, the thalamus and

the parabrachial nucleus (Shi and Davis, 1999).

In order to reduce computational complexity, theND@nalysis proceeded in two
steps. The first step was to determine the mostylikmechanism, in terms of shock-
induced modulation of connection strengths, for l@xmng the shock x time
interaction in the amygdala. This was done usingdaiced 3-area model that did not
include the PFC. The second step was to investigateshock x time interactions in
striatum and PFC could be best explained in tefnm®nolinear gating of connections
to the striatum and prefrontal cortex by amygdalaidy. This hierarchical approach
was necessary for computational reasons: testingelavant variants of the full 4-

area DCM would have taken a very long time.

In the first step, three 3-area DCMs that all cadglain the shock x time interaction
in the amygdala, were constructed and fitted todht (sed-igure 5.3A). In the

first model, the time modulation for both the pdignd unpaired CS+ trials affected
the self-connection of the amygdala; this moddeot$ learning that was occurring
within the amygdala, such that over time the respoto paired CS+ would be
dampened and to unpaired CS+ stimuli it would bleaened. In a second model,
both trial types were allowed to modulate the catioe from the FFA to the

amygdala. This model reflects how transfer of th&+CGnput to the amygdala

changed over time, depending on whether it wasgaaith a shock or not. Finally,
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in a third model the effects of the paired and umgoh CS+ were modelled

separately: the unpaired CS+ modulated the BPBAygdala connection, whereas
the paired CS+ affected the intrinsic self conmediof the amygdala. Note that the
sensory effects of shocks entered the system egiarthygdala; therefore the opposite
arrangement (i.e. the paired CS+ modulating the PBAiygdala connection) was

not a sensible alternative.

In the second step, the 3-area model that wasifigehtis optimal in the first step
was extended to include the PFC as fourth regiah was systematically varied
along two dimensions. The main question of intevess$ to test systematically for
modulatory (gating) influences on the FF& Striatum and Striatufx PFC
connections that depended on amygdala activity sgere 5.3B). Either of these
gating connections alone could potentially expléive observed shock x time
interaction in the striatum and prefrontal cortexa the reciprocal connections
between these areas. Secondly, although the ols8R#I results could in principle
be explained without any connections from the jomfl cortex and the striatum to
the amygdala, there is evidence for such anatonticahections (e.g(Haber and
Fudge, 1997)) , and therefore we also tested whétbhkision of these connections
improved the model. In summary, the 4-area modeiged across two dimensions:
() gating influences by the amygdala and (ii) ppetal and striatal connections to
the amygdala (sdeigure 5.3B)

5.2.6.2Choice of areas and time series extraction

As the exact locations of activation maxima var@er subjects, we ensured the
comparability of our models across subjects by giscombined anatomical-
functional constraints in selecting the subjectedfetime series (cf. (Stephan et al.,
2007c)). As a summary time-series, we computedfitise eigenvector across all
supra-threshold voxels within a radius of 4 mm adbthe chosen local maximum
for the left FFA, left amygdala, right striatum aledt dorsolateral prefrontal cortex
(DLPFC). For the amygdala, we thresholded the sitgpecific SPMs aP<0.05
(uncorrected) for the shock x time interaction aledermined the local maximum
within a mask combining the main effect of pain (& same threshold) with an
anatomical mask of the amygdala generated fronptbkabilistic cytoarchitectonic
atlas in MNI space (Eickhoff et al., 2005). For tteiatum and PFC, the subject
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specific SPMs for the shock x time contrast wese dhresholded &<0.05. For the
striatum the individual maximum within an anatonhiceask (putamen, (Maldjian et
al., 2003)) was determined, and for the PFC theimamx within 8 mm from the

group maximum.

The left rather than the right prefrontal activatiwas included in the DCM based on
the pattern of parameter estimates of the intemactivhereas the left PFC showed
the same interaction pattern as the amygdala aiadusn, the interaction in the right
PFC was driven by the changing response to paifd t@als, and could be due to
habituation to the pain response alone (see paeanestimates irFigure 5.2).
Finally, for the FFA, the maximum within 8 mm ofetlgroup maximum from our
previous study ([-45 -54 -21], séehapter 4) was chosen. The reason to use the
maximum from this previous study was the nonspeciéiture of the ‘face’ contrast
in this study; in the previous study a more spediface>house) contrast was used.
Figure 5.2 shows the parameter estimates across subjectstfi®raxtracted areas.
Time series could be extracted for all four aread6 out of 27 subjects. In the
remaining subjects, one or more of the areas aoatldbe defined due to the lack of a
significant interaction that met the anatomical &umttional criteria described above
(amygdala: 6; FFA: 0; PFC: 3; striatum: 7). Thesbjacts were excluded from the
DCM analysis.

5.2.6.3Model comparison

The optimal models for each of the two sets of DQ@ls and 4-area model, see
Figure 5.3 were determined using BMS. In brief, the negatixee energy (F)
approximation to the model evidence for each sutged each model were used to
estimate the exceedance probability and Dirichtetmetersa . Given the factorial
nature of the tested model space for the 4-areselsode were able to use model
space partitioning in order to test for the effedt$i) varying the modulatory effects
of the amygdala and (ii) including or excluding trefrontal/striatal connections to

the amygdala respectively.

5.2.6.4Group level inference on parameters

Because in one subject the parameter estimateatddvby more than 3 standard

deviations from the rest of the group, normalitguaeptions were violated, rendering
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standard parametric statistical tests inappropri@teerefore, to test whether the
coupling parameters were consistently differentmfraero across subjects, we
applied a nonparametric test (Wilcoxon’s signedkréest) and report Bonferroni

correctedp-values.

5.3 Results

5.3.1 SPM results

As expected, whenever a face was presented, cothpatmseline fixation, activity
in the primary visual cortex and the fusiform famea increased (sélable 5.3.
Furthermore, the main effect of pain showed wideag@rincreases in activity in a
collection of brain areas known as the ‘pain matrircluding the insula and
amygdala bilaterally, anterior cingulate cortex @ brainstem, primary and
secondary somatosensory cortex (S1 and S2) onight (stimulation was on the
left). The critical shock x time interaction corgtavas significant in the amygdala,
prefrontal cortex and the ventral striatum (putajrerch that over time responses to
the unpaired CS+ increased but to the paired C8tedsed Table 5.3andFigure
5.2). Although the resolution of our fMRI procedureepiudes any definite
conclusions, the activation in the amygdala wastied medially and might have

been situated in the central nucleus.
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Figure 5.2. Main and time effects for face and shdécstimuli. Panels
A-C show the SPM for the pain x time interaction a group level, with sections
showing the amygdala, striatum and prefrontal eorter illustrative purposes, the
SPM is thresholded @t <0.001 (uncorrected, df = 26), and displayed section of
the averaged anatomical scan. Pdhethows the main effect of face presentation
within the fusiform gyrus anatomical mask, at thens threshold. PaneisH show
the associated parameter estimates from the indilidcal maxima (as determined
following the functional and anatomical constraidéscribed in the main text) across
the 16 individuals who were included in the DCM lgais. Note that these parameter
plots are only displayed for illustrative purposasd are not used for further
inference tests. The amygdala, striatum and lefPBC E-G) all show the same
pattern of interaction: over time the response paiged CS+ decreases, whereas the
response to the CS+ alone increas@ssliows the interaction contrast in the right
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medial PFC; here the interaction is driven by tkerdasing response to the painful

stimulus, while the response to the unpaired C8yssthe same.

Table 5.3. MNI coordinates and Z-values for signifiantly activated regions.

MNI coords.

Foci of activation X y z Z score Cluster size
Main effect of ‘face’
L occipital cortex* -16  -104 6 7.82
R occipital cortex* -16  -104 6 7.66
L fusiform gyrus® -26 -84 -18 Inf

L FFA — DCM** -45 54 -24  5.60
R fusiform gyrus* 34  -66 -12 7.67

R FFA — DCM** 45 -57 -24 543
Main effect of ‘pain’
L insula* 40 -14 16 6.74
R insula® -38  -16 14 5.91
L amygdala* 34 2 22 6.27
R amygdala* 30 2 22 4.58
L thalamus* 8 -4 6 5.42
R thalamus* 8 2 10 4.54
R S1# 34 -30 66 5.25
Acc*' 2 26 24 4.87
Interaction ‘pain x time (+)’
L amygdala** 12 2 -16 3.83 32
L dorsolateral PFC ** -18 46 38 4.02 62
R dorsomedial PFC** 10 38 36 4.03 103
R Putamen / Ventral striatum** 20 8 -6 4.16 48

Interaction ‘pain x time (-)’
No activations above threshold

*significant atP<0.05 (FWE whole-brain cluster-level corrected)
** gignificant atp <0.05 (SVC)

" Given the rather unspecific nature of these cetrahe activations are all part
of one large cluster. These activations are afliB@ant at cluster level as well
as for height level whole brain correction, andstéu sizes are therefore not
reported.
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5.3.2 DCM results

Due to the computational demands of nonlinear DC&&pecially with increasing
numbers of areas, an initial set of 3-area DCMs f¥iesd to determine which
connection should be modulated to optimally model pain x time interaction
observed in the amygdala (segure 5.3A). BMS showed that the optimal model
was m where the time effect for both shock and non-shtocds affected the
connection from the FFA to the amygdala (Sesble 5.4. In this model, the
parameter estimates describing the modulatory enfte of time on the connection
from the FFA to amygdala was consistently negdiivethe shock trials (medirp

= -0.19,Pcorr = 0.0008 ), and consistently positive (mdana 0.16,P¢,r = 0.0008 )
for the no-shock trials, consistent with the insiag response to no-shock trials and

the decreasing response to shock trials.

In a second step, this optimal 3-area model wasnebetd to include the left PFC and
systematically varied to test for the modulatofjuience of the amygdala on forward
connections from the sensory to striatal and preéfloareas. This variation was
along two dimensions: (i) connections which wer¢éedanonlinearly by amygdala

activity (3 options) and (ii) existence vs. abseatbackward connections from PFC
and striatum to amygdala (2 options). Given thi8 factorial model space for the 4-
area DCM (sedrigure 5.3B), model space partitioning could be applied ta tes
separately whether there was convincing evidenae (fio modulation by the

amygdala of the FF2 STR and STR> PFC connections and (ii) endogenous

connectivity from the prefrontal cortex and striatto the amygdala.

With respect to the former, there was clear evidefmr modulation of both
connections by amygdala activity: the exceedanobaiility that models including
both modulatory influencesrg andmg) had a higher probability of having generated
the group data set than models including just autadry influence on the FF&
STR connectionnfy and my) or on the STR> PFC connectionsng and ms), was
80% (seeTable 5.5.

However, concerning backward connections to thegaial, the evidence was less
clear. Models without these connections §) fared marginally better than models
that did include themrmty.g), but the difference was small; the exceedancbaimdity

8 Because we used a nonparametric inference metferkport the median rather than the mean.
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that the data were more likely to have been geedréaty a model without the
amygdala connections was 0.53, versus 0.47 for mmotat did include these
connections (se&able 5.95. Given this lack of differentiability between theo

model classes, one would prefer the more parsinasninodel class, i.e. without

backward connections (cf. Occam's razor).

From this analysis based on model space partitipitiis apparent that modefs
(both modulatory influences, no backward connesfi@hould be used for inference
about the model parameters. This was corroborage8MS amongst all models
treated individually: here, modek had the highest exceedance probability of all six
models kp = 0.42, se§able 5.5°.

In modelmg the parameter estimates describing gating effefctamygdala activity
on ascending connections were consistently posiivess subjects (FFAstriatum:
meand = 0.23, Pcor = 0.0018; striatum»PFC: meand = 0.013,Pcor = 0.019).
Furthermore, the time dependent modulatory effetthe paired and unpaired CS+
trials were consistently different from zero, reguoing the results of the reduced 3-
area model (unpaired CS+: melanr -0.14,P.or = 0.0018, paired CS+: medn=
0.10,Pcorr = 0.0018).

° It is possible that this lack of evidence to digtiish between these two sets of models is dueto t
fact that one of the two connections does increaseel fit, but the other one doesn’t. Thus to fully
test for evidence for the presence of either afehtevo fixed connections, one needs to extend the
model space and add an additional 6 models, whidhde either the STRAMY connection or the
PFC>AMY connection. We did indeed run these models, thedresults stay the same; there is no
good evidence in favour of including either of the®nnections. However, for reasons of brevity
these results are not included here.
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Figure 5.3. 3- and 4-area nonlinear DCMs to modelht shock x

time interaction. (A) Shows the reduced (3-area) model to determineitaeof
the modulatory learning effect. In;rthe time x pain interaction modulated the self-
connection of the amygdala. In the,mhock and non-shock trial x time interaction
modulated the FFAamygdala connection. Inanthe effect of the shock and non-
shock trials was separated, such that the selfeztiion was affected specifically by
the interaction of shock x time.

(B) Shows the full (4-area) DCM testing, in a factbriashion, firstly for the
presence of a gating influence of the amygdalaff-5striatum connectiomg, and

my), the striatum®PFC connectionn, andmg), or both of thesen; andmg), and



secondly for the presence of backward connectioo® the prefrontal cortex and

striatum (absent imf;_3 and present imy_).

Table 5.4. BMS results for the 3 area model.

my

mp

Dirichlet Exceedance
parametersa probability xp
2.66 0.00
15.60 1.00
1.74 0.00

Table 5.5. BMS results for 4-area modeModels varied with regard to the

presence or absence of backwards connections tantlygdala, and the modulatory

influence of the amygdala on forward connections.

Amygdala activity modulating:

FFA-> STR
FFA>STR STR-> PFC total
STR-> PFC
my my mg My3
absent | a=3.19 o=2.53 o =546 a=11.2
Backwards
connections xp = 0.086 xp = 0.043 xXp =0.415 Xp = 0.53
f’:lorr:hedala my ms Ms My.q
y9 present | « = 3.27 =258 = 4.97 a=10.8
xp = 0.092 xp = 0.046 xp = 0.317 xp =0.47
My 4 Mz Mze
Total a=6.5 a=5.1 a=10.4
xp = 0.14 xp = 0.06 xp = 0.80
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5.4 Discussion

This study was a reanalysis of a previously publisfear conditioning fMRI study,
in which four different face stimuli were presentedsubjects (Petrovic et al., 2008).
On each trial, subjects had to decide whether tbsemted face was off centre or not.
Two of these faces (CS+) were followed by a shotk & 50% contingency, while
the other two faces (CS-) were never paired witlshack. Skin conductance
responses (SCR) showed that subjects slowly leatinedpredictive relationships
between the faces and the shocks; the SCR for if@d)aCS+ trials significantly
increased from the first to the second half of éxperiment compared to the CS-
trials. This result suggests that learning happeatter slowly; if learning occurred
within a few trials, one would not expect to findticeable differences between the
first and second half of the experiment. The faeat bnly 25% of the subjects could
identify, on post-experimental debriefing, whictcéa were associated with shocks
further corroborates this notion (Petrovic et @Q08). This slow timescale of
learning seems to be at odds with previous feaditioning studies in humans,
where responses to unpaired CS+ rapidly adapt @uehal., 1998;LaBar et al.,
1998;Marschner et al., 2008), and is likely to e do the fact that in the current
study, there were two CS+ and two CS- stimuli, thate all very similar (compare
Figure 5.1). Furthermore, the task was unrelated to the @&ulis in that subjects
had to detect displacement of the stimulus, whiduld probably direct attention
away from the the stimulus identity. This differerh most previous studies, where
subjects did attend the stimulus identity, perforgna gender discrimination task
(Kalisch et al., 2006). This prolonged time coua$dearning allowed us to look at
the differences in BOLD responses during the &iredl second half of the experiment

to assess changing responses to paired and ung:grettials.

5.4.1 Prediction errors in the amygdala?

The amygdala is the prime anatomical substratdéefar conditioning, especially the
lateral nucleus where CS and US inputs convergiicing synaptic plasticity which

changes amygdala responses to CS+ stimuli. Refsnitsthe current study support
this central role of the amygdala, which was thly dmain structure to show both a
main effect of painful stimulation and an interaatiof pain and time. The nature of
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this interaction was such that while the respomseirtpaired CS+ increased, the
response to paired CS+ trials decreased. Thisrpatferesponses is reminiscent of
the prediction error responses describe@lmapter 3; both the surprising presence

and absence of a shock elicits an increased respons

Previous studies indeed suggested that the amygdaémsitive not only to noxious
stimuli, but also to how predictable these stinaué. In general amygdala responses
to a noxious stimulus are rapidly attenuated / touabed, due to feedforward
inhibition mechanisms in the amygdala itself (LeRo2007). When comparing
predictable versus unpredictable stimulation, neigtlies find that the amygdala
responds more to unpredictable stimulation (but (€&slsson et al., 2006)). In a
cross-species study of mice and humans, Herry afidagues reported that the
amygdala responds more strongly to unpredictablgions stimuli than to
predictable ones, and even responds to temporaédigpability per se, which might
be aversive in itself (Herry et al., 2007). Furthere, using fMRI, Knight and
colleagues have shown that amygdala activity irsgdawhen experimental
contingencies were changed during Pavlovian feaditioning. This implies that the
amygdala might be particularly important for formimew associations among
stimuli with behavioural relevance (Knight et €004). In the present study, we
built on this previous line of research and invgettd where, in a simple network
model of associative learning of aversive stimsyinaptic plasticity was most likely
expressed to account for the shock x time intevactesponses identified by an
initial SPM analysis. We were particularly inteexstwhether there was evidence for

modulatory (gating) influences by the amygdala ortico-striatal connections.

Model comparison of a set of three DCMs showed tietshock x time interaction
was best explained by a model in which both paaed unpaired CS+ trials were
allowed to modulate the FFA amygdala connection. In this model processing of
the CS+ input to the amygdala changed over timpew@ing on whether it was
paired with a shock or not. These modelling restriten healthy volunteers are
nicely consistent with anatomical studies in ansnahd lesion studies in patients.
Amaral et al. showed that in macaques the amygdadatensively connected to the
fusiform gyrus and the primary visual cortex (Amaea al.,, 2003). In addition,
Vuilleumier et al. reported that patients with ardgta lesions do not show the

increased response to fearful faces the occipivaieg and fusiform gyrus that
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healthy controls exhibit, and furthermore that tlewel of amygdala damage

predicted the level of visual modulation (Vuillewenket al., 2004).

5.4.2 Amygdala influences CS+ processing in the corticasgatal circuit

The SPM results indicated a central role of the gaala in fear conditioning;
although two other areas, the striatum and the RI¥D, showed the time x shock
interaction, only the amygdala showed an additionain effect of pain. Comparing
a set of 4-area nonlinear DCMs we showed that theemwed shock x time
interaction in the striatum and PFC could be medkby a gating influence of the
amygdala on the connectiona from the FFA to thamen and from the putamen to

the PFC, respectively.

As described in the introduction, the amygdala &l Wnown to mediate the effects
of conditioned reinforcers on behaviour. It hasrbeaggested that the underlying
mechanism is a modulation of cortico-striatal dit€lby amygdala activity (LeDoux,

2007;Mogenson et al., 1980). The striatum, espgcie ventral part, is a site of

convergence for amygdala and prefrontal project{bteber and Fudge, 1997). Such
connections would allow the amygdala to initiate tnotor response to affective
stimuli and affect subcortical habit memories puty stored in striatal circuits.

The ventral striatum has long been considered tarbénterface between cortical
areas involved in processing the emotional valeoicastimuli and cortical areas

mediating motor responses to those stimuli (e.gbg et al., 1995;Mogenson et al.,
1980)).

Finally, given the extensive anatomical connectitrosn the prefrontal cortex and
striatum to the amygdala (Haber et al., 1995;Hadret Fudge, 1997), we tested
whether there was any evidence that these connseqtiayed a functional role in the
fear conditioning paradigm used in the current wtu@ur model comparison
approach did not provide such evidence. This mightexplained by previous
observations that the (ventral) PFC seems to plagieamostly in fear extinction

rather than fear acquisition (Sotres-Bayon e28i09).
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5.4.3 Limitations and future directions

The amygdala, striatum and PFC showed a patterasponses that was similar to
the pattern of prediction error responses to néectife CS+ stimuli observed in a
previous study Chapter 3): unexpected shocks elicited a larger responsthas
unexpected shocks, as did the unexpected absemgestobck. However, there are
possible other interpretations of these findings. €&ample, it is possible that two
separate processes together explain the obsergponse pattern. The increased
response to the unpaired stimulus could reflectitiveeased (negative) affective
value that the CS+ has acquired as it becomesiassbaevith the shock (e.g. (Friston
et al.,, 1994;LeDoux, 2007;Morris and Dolan, 2004phereas the decreasing
response to the paired CS+ could be due to halmtuttd the shock itself. These two
processes would probably take place in differenbnsalei of the amygdala
(LeDoux, 2007). However, because of the fast stimpresentatior-{gure 5.1) and
the long duration of the BOLD response, it is difit to temporally separate the
response to the CS+ and to the (presence or abséhtke shocks, nor can we,
because of the limited spatial resolution of staddiMRI methods, distinguish

between processes in the different subnuclei oathggdala.

There are a number of different approaches thdticshed light on these questions.
One could use electrophysiological recordings wttielite a much higher temporal
resolution. However, scalp-based recording metlmoth as MEG or EEG do not
allow one to measure activity in subcortical stowes, including the amygdala, with
sufficient signal-to-noise ratio. A better optiongim be to use an adapted paradigm,
in which the CS+ US association probability is ajiag over time. This would allow
one to separate habituations responses, whichilaly In the form a of a linear
decay function, from a prediction error like resp@nwhich would be proportional to
the current association strength. Furthermore, @ndd use very high resolution
fMRI optimised for the amygdala to image the preesstaking part in the different

subnuclei, for example responses to the CS+ and e

In conclusion, despite the fact that we remain sehat agnostic to the exact
interpretation of the time dependent responseldramygdala, striatum and PFC in
this fear conditioning paradigm, the results frams tstudy support a role for the

amygdala in influencing CS+ processing in cortitiagal pathways. The functional
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role of such a mechanism may reside in providimgtsi and cortical regions with
information about the emotional valence of the CS+d$sociation. In other words,
the modulatory influence exerted by the amygdalacortico-striatal connections
could represent the mechanism by which the amyguai@ates motor responses to
affective stimuli, including habit formation througstriatal circuits, and emotional

colouring of the fear experience in the prefroctatex.
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Chapter 6

General Conclusions

6.1 Contributions

The aim of this thesis was to establish experimiemtadels which characterise
synaptic plasticity in terms of connectivity chasdeetween neural populations in a
range of associative learning tasks. Specifically,wanted to investigate the role of
prediction errors in mediating this plasticity.@mapter 1 we discussed animal work
suggesting that changes in connectivity underkenmg (Genoux and Montgomery,
2007;Gu, 2002;Ji et al., 2005;Morris, 1989;Tyelet2008). Furthermore, prediction
errors, or surprising events, are thought to sigin@lneed for updating beliefs; they
thus play a central role for associative learnm@mnimals and humans (Section
1.1.10). Indeed, surprise appears to be at the heartobfonly to reward-based
learning, but any form of (associative) learnigg¢tion 1.1.2 Taken together, this
suggests that surprising outcomes could drive thedulation of connection
strengths, i.e. synaptic plasticity, during assthéalearning. Although a large
number of animal electrophysiology and human fMfRbges have shown surprising
outcomes to elicit responses in the striatum anskmsory areas, to our knowledge,
the notion that surprise dependent changes of ctinitg mediate learning has not

been investigated empirically means before.

In this thesis, | employed standard and Bayesiaocative learning models (see
Section 1.2)to estimate the surprise engenderedbgerved events, and combined
these with plausible physiological models of conivéty (Chapter 2) to investigate

surprise dependent modulation of connections dwuasspciative learning.

In Chapter 3, | used a carefully balanced design with auditargs predicting visual
outcomes to investigate whether previously desdrilesponses in the visual cortex
were driven by predictions or prediction errorsitiCally, learning was shown to

occur at a neurophysiological level, even though dlidiovisual associations were
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irrelevant to the behavioural task and outsidestigiects’ awareness. We observed
prediction error dependent responses in the (pergbhprimary visual cortex and the

ventral striatum, as predicted by an RW model sbastive learning. This response
could be explained in terms of changes in conniggtifrom auditory to visual

cortex, where the connections were modulated bytédiction errors.

In Chapter 4 we extended the paradigm from the previous studh ghat the
learned associations were now task-relevant. Irs thiudy we employed a
hierarchical Bayesian ideal observer model thalccoapture changing audiovisual
associations. Again both sensory areas and thatustri showed prediction error
dependent responses; in the sensory areas, thmnseswas specific to the presented
visual stimulus, whereas the striatal responsdeatefd prediction errors per se. In
parallel to these striatal responses we observedigiion error responses in the
motor planning areas. Using a nonlinear DCM, wewsdt) for the first time, that
these prediction error responses in motor plan@airgas could be explained by a
modulation of sensory-motor connections by the iptemh error dependent output of

the striatum.

In Chapter 5 we reanalysed a pre-existing fMRI dataset to investigarediction
error like responses in the amygdala during feaditmning. Here we showed that
prediction errors modulate amygdala processingeokary input, and furthermore
that amygdala activity modulates cortico-striatahicections as neutral cues become

associated with noxious outcomes.

Model selection to decide between different DCM&ede on Bayesian model
comparison methods as describe€hapters 3-5 In Chapter 3 the selection of the
best model was based on the group Bayes factorchwhias calculated by
multiplying the individual Bayes factors for eaalbgect. However, this fixed effects
approach does not take into account random vanstio optimal model structure
across subjects. Therefore,Ghapters 4-5we used a newly developed second level

Bayesian random effects analysis which accountsidoh random effects.

6.2 Limitations

In addition to the limitations of the specific dgrss and paradigms discussed in the

results chaptersOhapter 3-5), what follows are some general considerationshen
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use and usefulness of dynamic causal models. DEGNMRBI is a state-space model
that explains observed BOLD responses in speafipons of the brain in terms of
changes in effective connectivity between thesasar€rucially, this connectivity
can be modulated by external inputs, or, in cagdehonlinear DCM extension, by

outputs from other areas.

6.2.1 Effective connections are not anatomical connectien

One common misconception about DCMs is that thesgmee of an effective
connection between two areas equates to a singi@psg at the anatomical level.
Instead, an effective connection may also be a samnof multisynaptic

connectivity between two areas. In other words,r@main agnostic with respect to
the precise anatomical nature of the connectionatVéiffective connectivity does
reflect is a causal influence of one area on amotRer example, the visual to
premotor connections described @hapter 4 are unlikely to be monosynaptic
connections; yet we showed a directed causal infleefrom the sensory to the

premotor areas.

6.2.2 Interpreting causality

The course temporal resolution of the fMRI as veslithe smoothness of the BOLD
response itself do not allow for interpretation®wathbtemporal causality in cortical
network models of fMRI data. This often leads te tjuestion how one can then
make a claim about causal influences between are®&CM for fMRI. This is
explained by the fact that the shape of the moddd®LD responses differ when
areas receive direct external inputs versus imoum fanother area. Direct inputs with
elicit a sharp peak and then rapid decline, wheiredewnstream areas the response
rises and falls more slowly. Thus, causality in D@ fMRI is determined by the

shape of the modelled BOLD response.

6.2.3 Exploring and defining model space

DCM is a method for hypothesis testing and has Viemifed use as an explorative
tool. Completing a full search of all possible misd®r hypotheses, within a given
set of nodes and inputs is simply too computatigndémanding as soon as one

deals with models with more than two areas. Comdmteexample a nonlinear DCM
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with 4 areas, as employed @hapter 4-5. Currently, each model of that sort takes
roughly 30 minutes to run on a standard PC. Lesiogplify the model space and
assume that we know where the driving and moduylatguts enter, so that all we
have to do is explore the endogenous connectiongbanodel space. There are 12
potential endogenous connections, so systematictdbting for all possible
combinations of endogenous connections would rés@f = 4096 models, i.e. over
2000 hours or 85 days of processing time per stbjstill disregarding the
modulatory inputs and connections. Thus, one hasatice principled decisions as to
which models constitute a sensible set of modeles$ty constraining model space

using biological and theoretical constraints.

Even if one could exhaustively search model spand,use a partitioning approach
(Chapter 2) to investigate the contribution of different cections and modulatory

inputs, questions might always arise as to whetieeright areas have been included
in the model. Because one cannot compare modédiseade to different datasets, it
is not possible, in the context of DCM for fMRI, tmmpare models that include
different nodes. However, it is important to keapmind here again that DCM is a
hypothesis-driven method, set up to test very s$igetiechanistic hypotheses about
interactions between different areas in the brahus, rather than trying to build a
model of the entire brain, only areas that are ghouo be involved in the process

regarding the underlying hypothesis, should beuthet!.

Finally, it is important to keep in mind (aChapter 1, Section 1.3 that there is no
single ‘right’ model of the world that can describe world in all its facets; there are

only better or worse approximations to particulspexts of reality.

6.3 Future Research

6.3.1 MEG to resolve temporal resolution

Due to the course temporal resolution of fMRI adlvas the smoothness of the
BOLD response in combination with the rapid stinsullesigns used in the work
described in this thesis, it was not possible t@stigate the within trial temporal

evolution of prediction responses evoked by thescaad prediction error responses

evoked by the outcomes. Magnetoencephalography (M@&Guld provide an
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excellent tool to evaluate within-trial predictioasd learning. These data could then
be combined with TD learning models or extensiohBayesian models that model
within trial timing effects, in combination with DM for M/EEG (Kiebel et al.,
2008).

6.3.2 Pharmacology

As was described in the introduction, brain coninggtspeaks to three key issues:
synaptic strength, changes in synaptic strengthstjeity), and modulation of this
plasticity. Synaptic plasticity is likely to undixl the changes in effective
connectivity during associative learning as denmamstl in the work presented in
this thesis. Having established experimental moadél€onnectivity in two very

simple, non-reward based associative learning pgresdin Chapters 3-4 these

could now be repeated using pharmacological maaijouls, to investigate the role
of different neurotransmitters. The most obviousdidate to start with would be
ACh receptor agonists and antagonists. ACh is drleeomost important modulators
of synaptic plasticity in the context of associatlearning in the perceptual domain;
in humans in has been shown to affect perceptaahileg effects such as the MMN
(Baldeweg et al.,, 2006) and repetition priming @rhet al., 2002c), as well as
associative fear learning using auditory cues (Tétiel., 2002b;Thiel et al., 2002a).
DCM would be an ideal tool to investigate the madoly effects of these

neurotransmitters on effective connectivity in husa

6.3.3 Associative learning, connectivity & schizophrenia

Connectivity is the basis of physiological neurgbrmation processing and may be
central to the pathophysiology of various neuratagjand psychiatric diseases, most
notably schizophrenia (for detailed reviews seeis{én, 2005b;Stephan et al.,
2006)). The mechanistic models of connectivity utyileg the associative learning
paradigms discussed @hapter 3-4 were deliberately designed to be suitable for
assessing changes in connectivity in patients withizophrenia. The behavioural
tasks are extremely simple, such that patientdceasily perform them, and yet they
evoke consistent changes in connection strengthsthé future, using simple

physiological models of this sort in combinationttwformal theoretical learning
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models may help to obtain a mechanistic understanai abnormalities of synaptic

plasticity in schizophrenia.
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Publications and Other Work During the PhD

Chapter 3 has been published in Cerebral Cortexx Qleden et al., 2009). A paper
based on Chapter 4 has been submitted to NeurdrClaapter 5 is in preparation for
submission to Journal of Neuroscience. Furthermdrecontributed to the
development of the nonlinear DCM, discussed in @ra@, which has been
published in Neuroimage (Stephan et al., 2008)elation to the Bayesian learning
model presented in Chapter 4, | collaborated omrtteal work considering the
brain as a Bayesian observer of the environmerit dgan Daunizeau, which is
currently submitted to PlosOne. During my PhD loatontributed to patient and
fMRI studies investigating aberrant salience in izgphrenia patients in
collaboration with Jonathan Roiser. One of theseliss has been published in
Psychological Medicine (Roiser et al., 2009), arsgeond one is currently submitted
to Neuroimage. Finally, during my PhD | publishedtpapers based on work prior
to my PhD (den Ouden et al., 2005a; den Ouden,e2@05b), and co-authored one
further paper (Blakemore et al., 2007).
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Appendix A

Prediction vs. Prediction Error in the Rescorla-Wager
(RW) Model

Here we show that predictions and prediction ercoraputed by the RW model are
linearly related under mean-correction. In fact @identical to the negative of the
other. This linear dependence between predictiond grediction errors is
problematic for GLM analyses since it precludes asefe testing for the
contributions of prediction errors and predictiemshe dependent variable. Note that
whenever there is any experimental factor othem tha learning process itself, it is
necessary to model the interaction among theserfaahd learning, and this requires
mean-correction of the vectors involved before cotimg their Hadamard product
(cf. (Friston et al., 1997). In SPM, these intei@tterms are known as "parametric

modulation".

At trial t, the prediction erroPE; is the difference between the predicted outcgme

and the actual outcomt
PE =4 —¢ (A1)

The prediction (error) at tridl is the sum of the mean-corrected prediction (grror
and the mean:

PE, =PE_,, +PE (A.2)

corr,t

Q = ¢)corr,t + @ (A3)

For typical reinforcement schemes, the outcoA@ takes on the values 1
(unconditioned stimulus is present) or 0 (uncoondiid stimulus is absent). For both
trial types, the mean-corrected prediction errogxactly the negative of the mean-

corrected prediction, as we will show below:
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Forat=1

PE =1-¢ (A.4)
PE=1-¢ (A.5)
PE, +¢ =1 (A.6)

Substitutingequations A.2,3,5into Equation A.6 gives:

PE ot = ~%eons (A.7)
Similarly, fori; =0,

PE=-¢ (A.8)

PE =-¢, (A.9)
Substitutingequations A.2,3,8into Equation A.9 gives:

PEcors = ~%eorr s (A.10)

This shows that independent of the outcomehe meancorrected prediction error is

always the negative of the meancorrected prediction
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Appendix B

Bayesian Volatility-Based Associative Learning Mode

We start with the premise that subjects represeitfer the causes of their sensory
inputs and optimise their behaviour on the basithisf inference. From a Bayesian
perspective, the brain is aserverof its own sensory signals. This means subjects
invert some forward or generative model of sensmputs to represent the

unobserved (hidden) causes of that input.

Any learning then relies strongly on the subjeatsdel of the world (the perceptual
model), which can have dramatic effects on botldipted behaviour (Kording et al.,
2007;Trepel et al., 2005) and modelled neurophggiohl signals (Pessiglione et al.,
2007;Tom et al., 2007).

In what follows, we describe the volatility-baseergeptual model used in this study
to estimate the volatility and probabilities of tlddserved events. This model
subsumes the set of probabilistic assumptions i@ lencoded in order to represent

the causes of paired audio-visual stimuli.

The perceptual model generates sensory inpye.g, experimental stimuli) from
hidden causesx (e.g, experimental factors or environmental states) ean be
expressed in terms of a likelihood modefu| x) and prior beliefsp(x). The states
of the world x are unknown to the subject but might be under exyatal control.
In our exampleu is a series of cue-outcome pairs, presented tolikerver andk
encodes an experimentally controlled cue-outconsecation that is hidden from

the subject. The prior belief itself is decomposeid a hierarchy of conditional

probability density functions, as will be descrili@llow.

Let u, be the outcome at triakbe a multinomial random variate such that:
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p(u |, r )= Mult(y |r )

1
-
—
o

, (B.1)

where(rti )izl""n is anx1 vector of probabilities describing completelg tistribution

of then possible outcomes.

This forms the likelihood of our generative modgbte that from there on, we will
consider that each of the cues is associated with its own likelihood, and

consequently, its own generative model. This mehaseverything we state below
is conditional on the given cue. As a consequeti@Bayesian inversion of such a
set of generative models is also conditional orhear, and has to be replicated for

all different cues.

This vector of cue-outcome association probabdlifiellows a priori the following
Dirichlet distribution:

- ) ©2

This transition density is actually a martingale, it is a first order Markov process

whose current first order moment is equal to iessvmus realization:
{ry=r_. (B.3)

Furthermore, the precision of the transition frém to "t is parameterized by a

scalar quantit)yt , Wwhich measures the volatility of the environment:

34 =exp(-y)+1
E (B.4)

The volatility itself is assumed to vary over tirae a martingale, and the above
parameterization makes a simple AR(1) model passibl
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(%[ K)= (| v K
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where K is the prior variance of the volatility, i.e. thelatility’s volatility.
The prior onK itself is supposed to be non-informative, i.e.:
p(K)O1.

To summarize, the generative model assumes thewiioly cascade of events

(illustrated in the graph iRigure B.1):

1- A value for the volatility varianc& is randomly drawn from its prior pdf
p(K).

2- This value determines the transition pdf of theatibty. Then, a first value
v, is randomly drawn fronp(y; [\, K).

3- Knowing the volatilityv, then allow us to derive the transition density for
Then, a first value for the cue-outcome associgtiabability is drawn from
p(rt|rt_1,vt).

4- This finally defines the likelihood of the outcontself: the first outcomey,

is then drawn randomly fronp(q ‘L{C, [ )

5- The steps 3, 4 and 5 are repeated in time, giveggto three time series for

the volatility v,, the cue-outcome association probabifityand the observed

outcomesy, .
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Figure B.1. Graph illustration of the volatility model. u= observed
outcome at trialt; r, = cue-outcome association probability= volatility; K =

variance of the volatility.

Then, the model assumes that the observer actupdlgtes its posterior belief ‘on

the fly’, in the light of incoming data, in a Kalmdilter-like manner. The joint
posterior pdf over the full set of unknown vari&blmamelyx:{ K,v, r}, then

follows the following prediction and update steps:

prediction:p(r, % K|u.,) = [[ p(elt ves) (VI v K) 02 v0 Ky ) deydy
p(r v Klu.) p(ul 1)
0V K|ug) p(u|r) drdy di

updatep(r, v K\%)=m o

These two steps are iterated as long as new datme@asured and, after each cue-
outcome observation, yield estimates of both theeoli cue-outcome association
probability r, and the environmental volatility,, as well as an estimator of the static
volatility’s variance K, given all previously observed data. The trajectofr these
estimates as a function of time (ttipthen served as predictors for behavioural data
(response speeds) and neuroimaging data (BOLD mespoin SPM and DCM

analyses).
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Abbreviations

Brain Areas and Neural Properties

5HT Serotonin

Al Primary auditory cortex

ACC Anterior cingulate cortex

ACh Acethylcholine

AMPA a-amino-3-hydroxyl-5-methyl-4- isoxazole-piopate
AMY Amygdala

DA Dopamine

DLPFC Dorsolateral prefrontal cortex
FFA Fusiform face area

LTP/D Long term potentiation/depression
NE Norepinephrine

NMDA N-methyl-D-aspartate

PFC Prefrontal cortex

PPA Parahippocampal place area

S1 Primary somatosensory area

S2 Secondary somatosensory area
STR Striatum

V1 Primary visual cortex

VTA Ventral tegmental area
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Methodological Terminology

AIC
AR(1)
BF
BIC
BMS
BOLD
DCM
df
EEG
EM

EPI

fMRI
FWE
GLM
ME
MEG
MNI
MRI
PDF
PET
RO

RT

Akaike information criterion
First order autoregressive moving-averagel@ho
Bayes factor

Bayesian information criterion
Bayesian model selection
Blood oxygen level dependent
Dynamic causal modelling
Degrees of freedom
Electroencephalography
Expectation-Maximization
Echo-planar imaging

Free energy

Functional magnetic resonance imaging
Family wise error

General linear model

Main effect
Magnetoencephalography
Montreal neurological institute
Magnetic resonance imaging
Probability density function
Positron emission tomography
Region of interest

Reaction time
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RS

SD

SEM

SPM

SVC

SCR

Response speed

Standard Deviation

Structural equation modelling
Statistical parametric mapping
Small volume correction

Skin conductance response

Theoretical Terminology

CR

CsS

MMN
nIDCM

RW

UR

usS

TD learning
TO cue

PE

Conditioned response
Conditioned stimulus

Mismatch negativity

NonLinear dynamic causal model
Rescorla Wagner

Unconditioned response
Unconditioned stimulus
Temporal difference learning
Trial onset cue

Prediction error
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