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Abstract 

One of the fundaments of associative learning theories is that surprising events drive 

learning by signalling the need to update one’s beliefs. It has long been suggested 

that plasticity of connection strengths between neurons underlies the learning of 

predictive associations: Neural units encoding associated entities change their 

connectivity to encode the learned associative strength. Surprisingly, previous 

imaging studies have focused on correlations between regional brain activity and 

variables of learning models, but neglected how these variables changes in inter-

regional connectivity. Dynamic Causal Models (DCMs) of neuronal populations and 

their effective connectivity form a novel technique to investigate such learning 

dependent changes in connection strengths. 

In the work presented here, I embedded computational learning models into DCMs to 

investigate how computational processes are reflected by changes in connectivity. 

These novel models were then used to explain fMRI data from three associative 

learning studies. The first study integrated a Rescorla-Wagner model into a DCM 

using an incidental learning paradigm where auditory cues predicted the 

presence/absence of visual stimuli. Results showed that even for behaviourally 

irrelevant probabilistic associations, prediction errors drove the consolidation of 

connection strengths between the auditory and visual areas. In the second study I 

combined a Bayesian observer model and a nonlinear DCM, using an fMRI 

paradigm where auditory cues differentially predicted visual stimuli, to investigate 

how predictions about sensory stimuli influence motor responses. Here, the degree of 

striatal prediction error activity controlled the plasticity of visuo-motor connections. 

In a third study, I used a nonlinear DCM and data from a fear learning study to 

demonstrate that prediction error activity in the amygdala exerts a modulatory 

influence on visuo-striatal connections.  

Though postulated by many models and theories about learning, to our knowledge 

the work presented in this thesis constitutes the first direct report that prediction 

errors can modulate connection strength. 
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Outline and Aims  

The aim of this thesis was to assess the role of prediction errors and connectivity 

changes in associative learning, using a combination of formal learning models and 

DCM for fMRI. A range of associative learning tasks was used with increasing 

behavioural relevance of the associative relationships. This thesis is organized as 

follows: 

 

Chapter 1 – Introduction – This chapter is divided into two parts. The first part gives 

a brief overview of the field of associative learning, and discusses in more detail the 

role of prediction errors and synaptic plasticity. The second part describes and 

compares classical reinforcement learning models and Bayesian ideal observer 

models, both of which were used to model the behavioural and fMRI data described 

in this thesis.  

Chapter 2 –Methods – This chapter is divided into two parts. The first part describes 

DCM, including both the original formulation and a novel extension which allows 

for second order modulation. Both these tools will be used for hypothesis testing in 

the subsequent chapters. The second part describes Bayesian model selection, which 

is used to decide which of a group of models is the best model for a given dataset. In 

subsequent chapters this tool is applied to both DCMs and behavioural data.  

Chapters 3-5 – Results chapters – These chapters describe the experimental work: 

the aims, the hypotheses / models tested, the set up and the outcomes of three studies. 

The specific goals of each study were the following: 

� To investigate associative learning of task-irrelevant associations, at the level 

of the sensory cortex, and more specifically to test for changes in connectivity 

between the sensory areas involved (Chapter 3). 

� To explore stimulus independent and stimulus bound surprise processing when 

subjects learn dynamically changing relationships between sensory stimuli and 
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to identify an underlying second order connectivity model for the SPM results 

(Chapter 4). 

� To investigate prediction error processing in an aversive reinforcement 

learning paradigm, the connectivity parameters of the underlying causal model 

(Chapter 5). 

Chapter 6 – General Discussion and Conclusion – This chapter provides a general 

discussion and the conclusions of this work; presents its contributions to the field; 

and suggests directions for future research. 
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Chapter 1 

1.  Introduction  

Introduction 

In order to interpret incoming sensory information and predict future events, our 

brains need to construct models of the world that represent how external events are 

causally linked. In his 1898 dissertation on animal intelligence, Edward Thorndike 

first proposed a theory of associative learning in animals (Thorndike E.L., 1898). He 

posed the so-called ‘law of effect’, arguing that learning consists of the establishment 

of associations that are formed when responses are followed by rewards. This theory 

formed the basis of a century of stimulus-response and stimulus-stimulus associative 

learning.  

It is easy to see how predicting relevant stimuli in the environment such as food and 

predators can boost adaptive fitness, allowing one to seek out juicy fruits and avoid 

painful shocks in cognitive neuroscience experiments. However phenomena like the 

mismatch negativity and sensory preconditioning (see Section 1.1.2 and 3.1) show 

that the brain’s predictions about the environment are not limited to behaviourally 

relevant stimuli. One hypothesis is that sensory perception rests upon active 

prediction of the environment rather than just passive reception of sensory 

information. Here, sensory perception is a recurring input-match-prediction loop 

where beliefs about the environment are continuously updated to predict future 

sensory inputs.  

After decades of animal research into the neural mechanisms of associative learning 

in animals, functional neuroimaging has allowed for extension of these investigations 

to human subjects. This thesis combines two recent developments in human 

functional magnetic resonance imaging (fMRI) methods: (i) the use of formal 

associative learning models to explain measured BOLD responses and (ii) 

physiologically motivated models of brain connectivity. Changes in connectivity 

have long been thought to be central to the physiological implementation of learning 
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(see (Hebb, 1949)), and in the work presented here, associative learning models are 

embedded in physiological models of connectivity to investigate changes during 

associative learning. Within this novel framework associative learning is investigated 

in three paradigms, in which the probabilistic stimulus associations range from 

affectively neutral to noxious, static to changing, and incidental to task relevant.  

This chapter is divided into two parts. In the first part I will give an overview of the 

fundaments of associative learning, including the notion of prediction errors in both 

reward and non-reward based contexts, the hypothesis of predictive coding as a 

fundamental mechanism of brain functioning, and the neurophysiological 

mechanisms underlying associative learning. The second part of this chapter then 

describes classical and Bayesian learning models, and their advantages and 

limitations for investigating associative learning processes. 

1.1 Associative learning 

Behavioural research on how humans and animals learn to predict positive and 

negative stimuli in their environment was pioneered by Ivan Pavlov in the late 

nineteenth century. Originally studying the digestive system and the chemical 

composition of saliva, Pavlov observed that dogs started salivating before food was 

actually delivered. Upon closer examination it transpired that the salivating response 

commenced when a bell was rung by his assistant to indicate that the food was ready. 

Pavlov abandoned the study of saliva chemistry in favour of further investigating this 

‘psychic secretion’ response, as he termed it.  

In classical, or Pavlovian, conditioning, a motivationally significant unconditioned 

stimulus (US; the food stimulus, often also termed ‘reinforcer’), elicits an 

unconditioned response (UR; salivation). When an affectively neutral conditioned 

stimulus (CS; the bell) regularly precedes the US, the CS will eventually also elicit 

salivation as a conditioned response (CR) (see Table 1.1). This formation of 

stimulus-stimulus associations is fundamentally important as it allows animals and 

humans to predict and prepare for biologically important events.  
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Later experiments showed that temporal pairing of a cue and reinforcer alone is not 

enough to learn a cue-outcome association. This was demonstrated by a phenomenon 

called ‘blocking’ ((Kamin LJ, 1969), see Table 1.1). In the first stage of a blocking 

paradigm, an initially neutral cue A is paired with a reinforcer, and another neutral 

cue B is presented but never paired. After stage 1, A will elicit a conditioned 

response, but B will not. In a second stage, A is presented in combination with 

another cue X, and B with Y, and both compound cues are repeatedly paired with the 

reinforcer. After stage 2, Y will elicit a conditioned response, whereas X will not, 

even though both cues have been paired with a reinforcer equally often. This can be 

explained by noting that for the AX compound, The reinforcer could be fully 

predicted by A alone, rendering X redundant, whereas for the BY compound, B 

could not explain the reinforcer, leaving it ‘free’ to be associated to Y. This suggests 

that when a reinforcer is completely predicted by the cue(s), no further learning 

occurs; in other words, A had ‘blocked’ learning an association between X and the 

reinforcer. 

Based on this effect, Kamin concluded that simply pairing of the cue and reinforcer 

is not enough; the presence of the reinforcer has to be surprising in order to establish 

an association (Kamin LJ, 1969). This notion of surprise lies at the heart of nearly all 

associative learning theories. The basic idea is that a mismatch between predicted 

and actual outcome signals that the internal model’s predictions are wrong and need 

to be updated. Such surprising events are known as prediction errors. The next 

section reviews accumulating neurobiological evidence that the brain indeed 

processes surprising events differently from predicted events  

1.1.1 Neuronal prediction errors 

1.1.1.1 Dopamine & Ventral striatum 

Dopamine (DA) neurons in the ventral striatum in macaques strongly increase their 

firing rate when salient or rewarding stimuli are presented. These rewarding stimuli 

can be primary rewards, such as food and water, but also arbitrary cues that are 

predictive of primary rewards (Ljungberg et al., 1992;Romo and Schultz, 1990). 

These DA responses generalise to stimuli that are perceptually similar to the reward-

predicting cues, and the responses show other characteristics that parallel those 
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reported in behavioural studies, such as blocking (see Table 1.1 ; (Waelti et al., 

2001)). 

In a seminal series of studies, Schultz and colleagues carefully investigated the 

nature of this phasic dopamine firing during classical conditioning using single unit 

recordings in the macaque ventral tegmental area (VTA) (Mirenowicz and Schultz, 

1994;Mirenowicz and Schultz, 1996;Romo and Schultz, 1990;Schultz, 1998). When 

a monkey is first presented with an arbitrary visual cue followed by a juice reward, 

the dopamine neurons strongly increase firing in response to the reward, but not in 

response to the cue (see Figure 1.1). Over time, as the monkey learns the cue-reward 

association, firing rates increase when the cue itself is presented. This response 

parallels the behaviourally observed conditioned response to the cue, which has now 

become a reward in itself. Furthermore, as the association is learned, rewards evoke 

progressively smaller increases in firing; when the reward is fully predicted, firing 

rates no longer increase. Finally, firing rates decrease to below baseline when a 

predicted reward is omitted. This pattern of responses suggest that what the 

dopamine neurons respond to is not reward per se, but its prediction error. When the 

reward is presented before the association is learned, it is unpredicted and increased 

firing rates reflect the large difference between prediction and observed outcome. 

When the reward is fully predicted by the cue it elicits no response, but the 

presentation of the cue itself is surprising and does elicit an increased response. 

When a predicted reward is omitted, the difference between the outcome (no reward) 

and prediction (reward) is negative, leading to a depression of responses.  

Further research has shown that this prediction error signal is sensitive to many 

different aspects of the reward stimuli. For example, prediction errors are specific to 

the context in which the association has been learned, (Nakahara et al., 2004), and 

firing rates in response to the cue are proportional to both the magnitude (Bayer and 

Glimcher, 2005) and the probability (Fiorillo et al., 2003) of the reinforcer. 

Furthermore, to maintain the reward sensitivity over a large range of values, the gain 

is adjusted to the variance of the reward value (Tobler et al., 2005). These and many 

other studies support the hypothesis that the DA neurons in the VTA signal aspects 

of reward prediction error (Schultz and Dickinson, 2000).  
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Figure 1.1. Dopamine firing reflects prediction errors. Changes in 

dopamine neuron firing reflect the prediction errors of appetitive events. For each 

panel, the top graph represents the accumulated spike count per time bin, and each 

dotted line in represents one recording session, where each dot is a spike. CS = 

conditioned stimulus, R = primary reward (juice) Top. Before learning, the juice 

drop is not predicted, resulting in a positive prediction error, and increased firing in 

response to the juice. Middle. After learning, the CS predicts the reward, and the 

dopamine neurons increase firing rate in response to the reward-predicting CS, but 

not to the predicted reward. Bottom. When after learning the reward-predicted CS is 

presented, but the reward is omitted, this results in a negative prediction error and 

suppressed firing of the DA neurons at the time the reward should have occurred. 

(From (Schultz et al., 1997)). 

 

Inspired by the results from these animal experiments, fMRI studies have 

subsequently shown that in humans the VTA also responds to the difference between 

expected and actual rewards (D'Ardenne et al., 2008). More frequently and 

prominently, however, these studies found reward prediction error responses in the 

ventral striatum, e.g. in the context of primary food rewards (McClure et al., 

2003;O'Doherty et al., 2003;Pagnoni et al., 2002;Rodriguez et al., 2006) to money 

(Abler et al., 2006;Hare et al., 2008;Seymour et al., 2007;Yacubian et al., 2007) and 

even attractive faces (Bray and O'Doherty, 2007). These findings can be explained 

by noting that (i) the ventral striatum is a primary target of dopaminergic projections 

from the VTA (Joel and Weiskopf, 2000), and (ii) the BOLD signal reflects 
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postsynaptic field potentials (and thus input to an area) more strongly than firing rate 

(and thus output from an area) (Logothetis et al. 2001). Thus, it is likely that ventral 

striatal BOLD activity in relation to reward prediction errors is partially, although 

probably not completely, a downstream reflection of reward prediction error 

responses of DA neurons in VTA. A recent study directly linked dopamine and 

reward-seeking behaviour in humans (Pessiglione et al., 2006). Behaviourally, 

subjects treated with DA agonist levodopa were more likely to choose more 

rewarding actions than subjects on DA antagonist haloperidol. Furthermore, the 

striatal prediction error response to rewarding stimuli as observed in previous studies 

was modulated by dopaminergic drugs. The degree of this modulation determined 

how much the subject’s behaviour was affected by the drugs.  

The human and animal studies described above strongly support the hypothesis that 

DA neurons encode reward prediction error and that ventral striatal activity as 

measured with fMRI reflects these prediction errors. This does not mean, however, 

that processing in the ventral striatum is limited to reward-based learning and is not 

involved in other forms of associative learning. Conditioning and associative 

learning has long been dominated by animal research, and training animals to do 

behavioural tasks is inherently reward-based; one cannot simply ask a monkey or rat 

to press a button, they have to be rewarded to do so. As a result there has been a bias 

towards reward-based tasks, and comparatively little interest in investigating 

associative learning and striatal processing of affectively neutral and task-irrelevant 

stimuli. This has changed somewhat since the advent of human neuroimaging, and a 

few recent studies have given some hints as to the nature of striatal processing of 

affectively neutral stimuli. fMRI results showed that the ventral striatum responds to 

nonrewarding, unexpected stimuli (Zink et al., 2003) proportional to the salience of 

the stimulus (Zink et al., 2006). Furthermore, activity in the ventral striatum 

increases in responses to cues predicting a novel, affectively neutral stimulus and to 

novel stimuli per se (Wittmann et al., 2007;Wittmann et al., 2008).  

These results suggest that rather than just coding rewards or reward prediction errors, 

the striatum may have a more general role in processing salient and unexpected 

events. One of the proposed functions of this striatal response is to reallocate 

resources to unexpected stimuli in both reward and non-reward contexts (Zink et al., 

2006), which will be discussed in the next section.  
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1.1.1.2 Affectively neutral prediction errors  

In a pioneering fMRI study of prediction error signals regarding causal associative 

learning for affectively neutral stimuli subjects learned the relationships between 

various cues (fictitious drugs) and outcomes (fictitious syndromes) (Fletcher et al., 

2001). At the start of the experiment, when the environment was still unpredictable, 

activity in the right dorsolateral prefrontal cortex (DLPFC) and the putamen was 

high, and decreased as the associations were being learned. Furthermore, activity in 

the DLPFC was higher on trials with unexpected compared to expected outcomes. 

The authors suggest this response pattern reflected ‘cognitive’ prediction errors 

because the learned associations were not reward-based, but nevertheless task-

relevant.  

In a subsequent study, Corlett et al. investigated prediction error responses for two 

well-known conditioning effects: backwards blocking and unovershadowing (see 

Table 1.1; (Corlett et al., 2004)). Subjects were instructed to predict allergic 

reactions of a fictitious patient in response to certain food items. In a first stage, two 

food items A and X were presented together, followed by an allergic response. Two 

other food items, B and Y were also paired and followed by an allergic response. In a 

second stage A was presented alone, followed by an allergic response, and B was 

also presented alone, but not followed by an allergic response. Because A could fully 

account for the allergic response observed with the AX compound, X became 

disassociated from the allergic response, which is known as backwards blocking. 

Conversely, because B could not explain the allergic response observed in the BY 

compound, Y alone will now explain the allergic response, so Y has been 

‘unovershadowed’ by B. If these processes indeed occur, then X followed by an 

allergic response and Y not followed by an allergic response will be more surprising, 

i.e. have a larger prediction error, than vice versa. Indeed Corlett et al. showed 

exactly such a prediction error response in the striatum as well as in the same part of 

the right DLPFC (Corlett et al., 2004) as was demonstrated previously (Fletcher et 

al., 2001;Turner et al., 2004). 
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Table 1.1. Overview of conditioning paradigms. Overview of 

conditioning paradigms described in the main text, showing the different training 

stages, the testing phase and the conditioned response during testing 

 Stage 1 Stage 2 Stage 3 Test Response 

Classical 
Conditioning 

A � reinforcer   A + 

      

Blocking A � reinforcer AX � reinforcer  X 0 

Control B � nothing BY � reinforcer  Y + 

      

Backwards 
Blocking 

AX � reinforcer A � reinforcer  X 0 

Unover- 
Shadowing 

BY � reinforcer B � nothing  Y + 

      

Preventative 
Learning 

A � reinforcer AB � nothing  B - 

Superlearning A � reinforcer AB � nothing BC � reinforcer C ++ 

      

Higher order 
conditioning 

A � Reinforcer B�A�reinforcer  B + 

      

 

Given that the ventral striatum responds to novelty, (Wittmann et al., 2007) and that 

in the study by Fletcher et al. unpredictability and novelty were correlated, it is 

possible that the observed striatal and DLPFC prediction error responses were simply 

due to novelty of the outcomes. However, Turner et al. showed that this was not the 

case in a very carefully controlled study employing the phenomena of preventative 

and superlearning (see Table 1.1; (Turner et al., 2004)). Here, in a first phase a 

stimulus gets associated with an outcome (A+). In the next phase a novel stimulus, is 

combined with A, but not followed by the outcome (AB-). This generates a negative 

prediction error, and B acquires a strong negative causal potential. In a third phase, 

the B is paired with a third stimulus and followed by the outcome (BC+). This 

generates a strong positive prediction error, and C acquires a very strong positive 

causal potential. When contrasting this with a standard blocking paradigm, in which 

the stimuli were presented the same number of times, both superlearning and 

preventative learning events, which only differed from control events in terms of the 
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size of the prediction errors, but not in terms of novelty, showed increased activity in 

the DLPFC as well as in the striatum.  

These studies demonstrated that prediction errors play a role in learning associations 

that do not involve reward prediction, and that both the striatum and the prefrontal 

cortex are involved in processing these ‘cognitive’ prediction errors. However, 

although unrelated to reward, these prediction errors are still relevant to the subject 

in the sense that their task is to make accurate predictions and making correct 

predictions is rewarding in itself. Therefore, one cannot claim that learning here is 

entirely unrelated to any form of reward. Importantly, thought, the reward of being 

correct is entirely orthogonal to the presence or absence of the allergy outcome. This 

is in contrast with reward based studies where presence of the outcome (i.e. the 

reward) always results in a positive reward prediction error, and absence of the 

outcome in a negative reward prediction error. Unlike reward-based prediction 

errors, the prediction errors observed in the studies discussed above are independent 

of whether the error was in the positive (unexpected presence of outcome) or 

negative (unexpected absence of outcome) direction. In other words, the prediction 

errors were unsigned, which might be explained by the fact that the actual outcome 

itself is not relevant, only how surprising this outcome was.  

Summarising, in circumstances where the only relevant measure is how much 

surprise the outcome engenders, i.e. for affectively neutral contexts, the dorsolateral 

prefrontal cortex and the striatum encode a sign-independent prediction error 

((Corlett et al., 2004;Fletcher et al., 2001;Turner et al., 2004). It should be 

emphasised again though that the learned associations here are still relevant to the 

task. However, in recent years it has been suggested that coding of prediction errors 

is at the heart of every cognitive process, including low-level sensory perception 

(Friston et al., 2006;Rao and Ballard, 1999). The next section will discuss this theory 

of predictive coding as a basic mode of brain function. 

1.1.2 Predictive coding 

Why would the brain aim to predict irrelevant events and stimuli? The theoretical 

notion of predictive coding proposes that the brain has two primary objectives: 

inference about the causes of sensory input and learning the relationship between the 

inputs and the causes. This is achieved by constructing a generative model of how 
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causes in the world elicit sensory inputs; given some sensory inputs, this model can 

be inverted to recognise the causes of this input. In this scheme, each level of the 

processing hierarchy receives bottom-up sensory input from the level below and top-

down predictions from the level above (Garrido et al., 2009b). Prediction error, i.e. 

the difference between the true and estimated probability distribution of the causes, is 

minimised at all levels of the hierarchy by adjusting connection strengths through 

synaptic plasticity (Friston, 2005a)). 

One of the most basic and robust paradigms to demonstrate neuronal responses to 

unexpected stimuli is the oddball paradigm. Here, presentation of an oddball stimulus 

in a sequence of standard stimuli elicits a negative potential as measured using EEG, 

which is known as the mismatch negativity (MMN) potential. The MMN is observed 

in all sensory domains (auditory (Baldeweg, 2006), visual (Stagg et al., 2004); 

somatosensory (Akatsuka et al., 2007)) and can be understood in light of a predictive 

coding framework (Garrido et al., 2009b). Prediction errors are minimised by 

adjusting connection strengths through synaptic plasticity upon repeated presentation 

of the stimuli. These adjustments are reflected neurophysiologically by the 

disappearance of the MMN (Baldeweg et al., 2006;Friston, 2005a), which is elicited 

again when an oddball is presented. This adjustment is also reflected by repetition 

suppression in the visual domain, as observed in fMRI (Summerfield et al., 2008). 

Here, the likelihood of stimulus repetition was manipulated and repetition 

suppression was reduced in response to improbable compared to probable repetitions.  

There is increasing evidence that perceptual learning is just one of many processes 

that can be explained in a predictive coding framework (Friston et al., 2006;Garrido 

et al., 2009a;Rao and Ballard, 1999) and is also at the heart of higher level 

processing: In an fMRI study, an expectation to see faces was induced by asking 

subjects to report whether presented stimuli were faces or not. Forward connectivity 

between face sensitive visual areas (FFA) to the frontal cortex to was modulated by 

the prediction errors. Incorrect predictions increased FFA � prefrontal connectivity, 

whereas correct predictions increased prefrontal � FFA connectivity (Summerfield 

and Koechlin, 2008). Other studies have shown predictive coding like mechanisms 

for sensory integration (Bays and Wolpert, 2007;Blakemore et al., 1998), predictive 

attenuation of tactile stimulation (Bays et al., 2006), and even for social interactions 

(Shergill et al., 2003;Wolpert et al., 2003). These findings support the notion that the 
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fundamental function of the brain could be to encode an implicit and probabilistic 

model of the environment (Friston et al., 2006). 

1.1.2.1 Functions of neuronal prediction error signals 

The effect that various forms of prediction errors have on neuronal functioning 

depends on several factors. Firstly, the specificity and scope of the projections of the 

prediction error encoding neurons determine whether the signal is broadcasted 

widely, or selectively affects a small group of neurons. For example, cholinergic and 

dopaminergic projections from the nucleus basalis and VTA have widespread 

connections to the cortex (Lewis, 1991). Resulting global error messages could then 

selectively affect neurons involved in processing information at the same time as the 

prediction error signal via postsynaptic neurons that act as coincidence detectors. 

Alternatively, the prediction error signal could be relayed only to a selected group of 

neurons, directly affecting behavioural reactions.  

Secondly, the way in which the neurons affect postsynaptic signalling might differ. 

The postsynaptic effects may be very short-lived and directly affect immediate 

behaviour or attention, or they might control storage of predictions by inducing 

short-term or long-term changes in synaptic strengths. Such learning-dependent 

plasticity will be discussed in the next section.  

1.1.3 Plasticity during associative learning 

1.1.3.1 Synaptic plasticity during associative learning 

Already in 1949, Donald Hebb suggested that changes in connectivity are central to 

the physiological implementation of association learning (Hebb, 1949). The previous 

section described how the brain actively generates predictions of sensory signals 

based on an internal model of the world and compares those expectations to the 

actual incoming information. Predictive coding theories propose that prediction 

errors are minimised by adjusting the synaptic efficacies or connections strengths 

between different levels of the processing hierarchy.  

Brain connectivity is defined by three key properties: i) the current strength of a 

connection ii) the change in the strength of this connection over time, and iii) how 

this change is controlled. These three aspects correspond to distinct 
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neurophysiological mechanisms. For glutamatergic synapses, the main excitatory 

synapses in the brain, connection strength depends on the number and state of 

AMPA receptors (Malinow & Malenka 2002). Changes in synaptic strength, i.e. 

plasticity, is regulated by NMDA-dependent mechanisms modulating the number of 

AMPA receptors expressed at the synapse (Genoux and Montgomery, 2007). 

Because of its unique molecular properties the NMDA receptor can function as a 

‘coincidence detector’ of afferent and efferent activity, and as such initiate synaptic 

plasticity. Presynaptic transmitter release concomitant with postsynaptic 

depolarisation allows a calcium influx through the NMDA receptors, which triggers 

trafficking as well as phosphorylation of glutamatergic AMPA receptors. These 

properties make NMDA receptors ideally suited for associative learning processes 

that involve concomitant activity in different (e.g. sensory) areas of the brain. Indeed 

NMDA-dependent mechanisms have been found to play a key role plasticity in 

learning and memory processes in the brain (e.g. see (Genoux and Montgomery, 

2007;Gu, 2002;Ji et al., 2005;Morris, 1989;Tye et al., 2008)).  

Finally, synaptic plasticity itself is influenced by modulatory transmitters like 

dopamine, serotonin and acetylcholine, mainly through changes in NMDA receptor 

function ((Gu, 2002), see Figure 1.1). For example, dopamine (DA) and 

acetylcholine (ACh) regulate the trafficking, insertion and endocytosis of NMDA 

receptors into the cell membrane. As such, cholinergic mechanisms strongly 

modulate NDMA dependent LTP and LTD in visual cortex (Brocher et al., 

1992;Kirkwood et al., 1999) and auditory cortex (Metherate and Hsieh, 2003). The 

phosphorylation of the NMDA receptors, which determines the conductance 

properties, is modulated by DA and serotonin (5HT) receptors (Jiao et al., 

2007;Salazar-Colocho et al., 2007;Wolf et al., 2003). In summary, excitatory brain 

connectivity is determined by (i) AMPA receptors, expressing synaptic strength, (ii) 

NMDA receptors controlling synaptic strength, and (iii) modulatory transmitters 

regulating this control (see Figure 1.2).  
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Figure 1.2. Modulation of synaptic plasticity. Modulation of synaptic 

plasticity of excitatory, glutamatergic synapses by several modulatory 

neurotransmitters via NDMA signalling. (Adapted from (Stephan et al., 2006)). 

NMDAR = NMDA receptor, AMPAR = AMPA receptor, ACh = acetylcholine, NE 

= norepinephrine, 5HT = serotonin, DA = dopamine.  

1.1.3.2 Associative learning induced plasticity in the sensory cortex 

The previous section described the cellular mechanisms of synaptic plasticity that 

underlie associative learning processes. In line with behavioural observations, Friston 

suggested that when ‘value-dependent modulation is extended to the inputs of neural 

value systems themselves, initially neutral cues can acquire value’ (Friston et al., 

1994). Here, discriminative conditioned responses are accompanied by value-

dependent plasticity of receptive fields, as reflected in the selective augmentation of 

unit responses to valuable sensory cues. Electrophysiological and fMRI measures of 

activity in the sensory cortices indeed show such changes in CS processing as the 

cues become associated with affective outcomes: Neurons in the superior colliculus 

and auditory cortex are known to have a frequency to which they fire preferentially, 

known as the best frequency (Weinberger, 2007). Electrophysiological studies in rats 

and big brown bats have shown a ‘centripetal’ best frequency shift towards the 

frequency of the conditioned tone when the tone is paired with an aversive stimulus 

such as a painful electric shock (Ma and Suga, 2005;Weinberger, 2004). Similarly, in 

humans, BOLD responses in the auditory cortex are enhanced in response to tones 
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paired with aversive outcomes (Thiel et al., 2002b;Thiel et al., 2002a). In contrast, 

however, Morris et al. observed a decreased response to CS+ (CS regularly and 

consistently paired with an outcome) compared to CS- (CS never or rarely paired 

with an outcome) stimuli in a similar fear conditioning study using PET (Morris et 

al., 1998). At first this seems at odds with the electrophysiology results. However, 

the electrophysiologically observed best frequency shift results in a small and 

narrowly tuned increase, which is accompanied by a decreased response in the 

surrounding frequencies. It is conceivable that this decrease swamps the small 

augmentation, so that a focal narrowing of the tuning curve as found in animals, 

actually results in a regional deactivation because of the courser spatial resolution. 

The direction of the observed changes notwithstanding, these results all point in the 

direction of conditioning dependent plasticity in CS processing in the auditory 

cortex.  

Similar findings were reported in the visual cortex, where BOLD responses in the 

visual cortex increased to a visual stimulus that had been associated with a noxious 

outcome (Carlsson et al., 2006). Such changes in perceptual processing are not 

limited to aversive outcomes; Seitz et al. showed increased stimulus sensitivity when 

visual orientation gratings were paired with liquid rewards, even when subjects were 

unaware of the visual stimulus (Seitz et al., 2009).  

In conclusion, recent studies show plasticity in the sensory cortices for CS processing 

in the context of aversive or appetitive conditioning. It is unclear as to whether such 

changes also occur when associations between neutral stimuli are learned, a question 

that will be addressed in Chapter 3.  

1.1.3.3 The role of ACh 

ACh is one of the most important modulators of synaptic plasticity in the context of 

associative learning in the perceptual domain. For example, the role of nucleus 

basalis dependent ACh release in auditory cortex plasticity has been extensively 

studied in aversive conditioning experiments in animals, showing receptive field 

plasticity and behavioural memory formation to be mainly dependent on muscarinic 

receptors (Weinberger, 2007). Also in humans, the enhanced BOLD response to 

tones associated with shocks is abolished upon administration of the ACh antagonist 

scopolamine (Thiel et al., 2002b;Thiel et al., 2002a). Furthermore, admistration of 
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scopolamine abolished both behaviourally observed repetition priming as well as the 

associated repetition suppression in the visual cortex (Thiel et al., 2002c). Finally, 

interaction of ACh and NMDA dependent mechanisms appear to be crucial for long 

term consolidation of conditioning-induced synaptic plasticity (Ji et al., 2005).  

These findings are starting to elucidate the mechanisms by which cortical plasticity is 

regulated during conditioning and other forms of associative learning. The aim of the 

work presented in this thesis was to create biologically plausible models of 

connectivity to asses connectivity changes during associative learning. In the future 

these models could be used to directly test the influences of the neuromodulators 

discussed here on connection strengths and their learning dependent-changes, i.e. 

plasticity (see Chapter 6) 

1.2 Models of associative learning 

This section starts with a general discussion of model-based analysis methods, and 

then review how two classes of computational models can provide a framework to 

investigate aspects of associative learning at the behavioural and physiological level.  

1.2.1 Model-based analysis methods 

A model is a representation that contains the essential structure of some event or 

process in the real world. In psychology and biology, 'models' are often informal, 

consisting of boxes with arrows between them, such as protein synthesis cascade 

models or the working memory model (Baddeley and Della, 1996). In mathematics 

and physics, ‘models’ are more formal, in the form of equations that putatively 

underlie observed processes. In recent years systems neuroscience research has seen 

a strong increase in the use of formal modelling techniques concerning reinforcement 

learning (e.g. (Gläscher and Büchel, 2005;Pessiglione et al., 2006;Seymour et al., 

2004)), decision making (e.g. (Beck et al., 2008;Behrens et al., 2007)), and brain 

connectivity assessed by fMRI and electrophysiology (Chen et al., 2008;Kiebel et al., 

2008;Stephan et al., 2007a).  

Indeed both types of models adhere to the definition of a model as ‘a representation 

of a process in the real world.’ An often overlooked fact is that any inferential 

analysis of data essentially tests a model. Because these models are not always 
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explicitly described as such, there is a perceived distinction between model-based 

and other research. A good example of such unrecognised model testing is classical 

statistical inference. This is essentially a test of very simple models of the world: A 

one-sample t-test on the effect of variable A on some measure B effectively 

compares a model of the world in which A affects the generation of B, to a model of 

the world where A does not affect B. Here, the model of the world is simplified to 

the extent that it only contains A to predict B; any other factors that might affect B 

are considered ‘noise’, or errors in the prediction of the model. In summary, the 

recent increase in ‘model-based’ approaches in neuroimaging does not break away 

from classical analysis methods, but merely constitutes an evolution towards more 

explicitly defined and complex models.  

1.2.1.1 Model complexity 

Models are by definition simplifications; if a model included every aspect of the real 

world, it would no longer be a model, but it would be the world itself. Simplification 

allows us to distil and probe those aspects of the world that we are interested in. A 

good model has the right balance between complexity and fit: on the one hand, it 

should be simple enough not to be misled by noise, i.e. experiment specific 

variations that do not generalise across experiments. On the other hand, if a model 

cannot account well for important aspects of the observations, then it may not be 

complex enough. In other words, in order to create a good model, one has to make 

simplifying assumptions about the causes of events in the real world, and all other 

causes that are not represented by the model will contribute to the noise, or error in 

the model predictions.  

Critically, whether a given model is worse or better than another model depends on 

the phenomenon that is to be explained. In other words, there is no single ‘true’ 

model of the world, just different models with different (levels of) simplifications 

that can account for different situations and test different hypotheses. This underlines 

the importance of selecting the optimal model for a given question and data set. A 

generic statistical framework for handling this challenge is Bayesian model selection 

(Penny et al. 2004; Stephan et al. 2009). This approach was used for each study 

contained by this thesis and will be described in detail in Chapter 2. 
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1.2.2 Reinforcement learning models 

1.2.2.1 RW model 

The first and most influential theoretical model of associative learning was proposed 

by Rescorla & Wagner in the early seventies (Rescorla and Wagner, 1972), and is 

based on Pavlovian classical conditioning learning (see Section 1.1). The Rescorla-

Wagner (RW) model describes this learning process in terms of the strength of the 

association formed between the CS and the US. The basic principle is that the change 

in associative strength tV∆  at a particular trial t is directly proportional to the size of 

the prediction error: 

)( ∑−=∆ ttt VV λαβ       (1.1) 

Here, the prediction error )( ∑− tt Vλ  is the difference between the actual outcome 

tλ  on a trial t, and the predicted outcome ∑ tV , which is based on the summed 

prediction across all cues present. α and β  are learning constants that determine the 

weight of the incoming information (i.e. the prediction error) relative to the 

information accumulated on previous trials (i.e. the prediction). On each trial, the 

change in associative strength tV∆  is added to the current associative strength tV , 

such that the associative strength reflects the cumulative information from all 

observed trials.  

ttt VVV ∆+=+1        (1.2) 

The values of the learning constants α and β  reflect properties, such as salience and 

motivational value, of the CS and US stimuli, respectively. Note that each stimulus 

has an associated learning constant, but that in most paradigms there is only one type 

of CS and one type of US, or the properties of the CSs and USs are assumed to be 

constant across stimulus types. As a result, the product of these two constants is 

another constant, which is the overall learning rate. However, when for example the 

salience of two different cues is very different, one can use different associated 

learning rates (cf. Chapter 3).  
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During learning, when the outcome is incompletely predicted, the prediction error 

will be positive and the associative strength will increase. On the next trial, the 

prediction error will be slightly smaller, and thus the increase in associative strength 

will also be slightly smaller. Once the outcome is completely predicted, the 

difference between outcome and prediction is zero, and the associative strength will 

remain unchanged. This happens when learning has reached an asymptote. However, 

when an outcome is predicted but omitted, the prediction error is negative, and the 

associative strength will be reduced. Because the learning constants determine the 

size of the update, they will determine how quickly the asymptote is reached, but not 

the actual level of the asymptote. The level of the asymptote is determined by the 

conditioning schedule, and reflects the average value of λ .  

Thus, when the association between the CS and the US is constant but probabilistic, 

say the CS predicts a US reward with an 80% probability, then association strength 

V will asymptote at 0.8 (given that λ  is either 1 or 0). Note that the learning rate 

determines both the speed at which the asymptote is reached and the size of the 

fluctuations around the asymptote after learning is complete.  

1.2.2.2 Delta rule model: Connectionist implementation of the RW model 

Although the RW model describes how associations form between (internal 

representations of) CS and US stimuli, it does not provide a mechanistic explanation 

of the learning process. McLaren proposed a neural network that could compute the 

prediction error using a negative feedback assembly, as a potential mechanism 

underlying error-based learning (McLaren, 1989). In this model, the weight of the 

connections between the signal (CS input) and response (prediction based on the CS) 

are controlled by a facilitatory unit F that itself is controlled by direct excitation by 

the reinforcer and a negative feedback from the response unit (see Figure 1.3). Thus, 

the prediction based on the presentation of a CS is constantly updated depending on 

the prediction error. The response unit perfectly reproduces the predictions from the 

RW model. The modulation of connection strengths by prediction errors as proposed 

by this neural network is at the heart of the work presented in this thesis where we 

aimed to investigate the role of prediction errors in modulating connection strengths 

during different types of associative learning.  
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Figure 1.3. Neuronal network implementing prediction error 

signalling. Schematic simplification of the original neuronal assembly proposed by 

McLaren for how prediction errors shape neuronal connections encoding associations 

(after (McLaren, 1989)). The response unit delivers a prediction tV  driven by the 

signal unit which received the CS input. This driving input to the response unit is 

modulated by the facilitatory unit F. Activity in F itself is controlled by the excitatory 

output from the US unit, carrying information about the reinforcerλ  and an 

inhibitory output from the response unit, carrying the negative of the prediction tV . 

By summation of these two inputs, activity in F reflects the prediction error.  

1.2.2.3 Determining the learning rate 

Determining the learning rate is one of the most contentious issues with regard to the 

RW and related models. There are two main approaches to determine the learning 

rate or any other constant parameter. The first approach is to decide on a learning 

rate based on previous literature and knowledge about the particular task and stimuli 

at hand (e.g. see (O'Doherty et al., 2003;Petrovic et al., 2008)). For example, when 

the differences between a CS+ and CS- are small, learning is likely to be quite slow, 

so a small learning rate is appropriate (e.g. (Petrovic et al., 2008)). This approach is 

the easiest to implement but theoretically problematic, as one can never be sure that 

the used learning rate is indeed the optimal one. A more principled approach is to fit 

the parameters to the data (see Chapter 2 for a more detailed discussion of model 

fitting using Expectation Maximisation algorithms, and see (Behrens et al., 2007) for 

an example). Once the optimal learning rate has been established, one can then test 

whether the predictions of the model explain a significant proportion of the variance. 

From a theoretical point of view this is the optimal approach, but it is sometimes 

difficult to implement. For example when the data is very noisy (e.g. reaction time 

data, or BOLD responses) it might be difficult to find the optimal values, and 

estimation might get stuck in a local maximum. One hybrid approach often used to 

determine the learning rate is to define a range of plausible learning rates, and do a 
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stepwise analysis of the proportion of variance explained by models with different 

learning rates within this range (e.g. see (den Ouden et al., 2009;Gläscher and 

Büchel, 2005;Seymour et al., 2004)).  

1.2.2.4 Limitations, extensions and alternatives of the RW model 

The RW model was a great step forward in formalising thought and theories about 

associative learning, and can explain a wide range of behaviourally observed 

learning phenomena, including classical conditioning and extinction, as well as 

blocking, preventative learning and superlearning (described in Table 1.1). However, 

the RW model is not appropriate in all situations. There are a number of 

behaviourally observed phenomena which cannot be explained by the reinforcement 

learning models discussed above. For example, the RW model predicts that the 

history of conditioning has no influence on its present status; only the current 

association value is important. However, experiments have shown that a previously 

conditioned stimulus actually needs fewer trials to reach the same level of 

conditioning, i.e. there is facilitated acquisition after extinction. Related to this is the 

observation that when a CS is not presented for a while after a CS-US association has 

been extinguished, that there is partial recovery from extinction, and furthermore that 

exposure to the US alone can reinstate the CS-US association. Another example that 

RW models cannot deal with is higher-order conditioning (see Table 1.1). When a 

novel cue is paired with a conditioned excitor, in the absence of a reinforcer, the RW 

model would predict that the novel cue becomes a conditioned inhibitor, but instead 

it becomes a conditioned excitor as well. This pairing effect also works when the CSs 

are paired before the CS-US association is learned (sensory preconditioning; 

discussed in Chapter 3). Finally, the RW model predicts that presenting a novel 

stimulus without a US should not affect later conditioning. However, latent inhibition 

(or CS-preexposure effect) is a well established observation that after exposure to a 

CS without the US, conditioning to the CS is retarded. Below we will discuss two 

alternative models that are originally based on the RW model and can model a 

number of the phenomena discussed above.  

1.2.2.4.1 Pearce & Hall attentional model 

A crucial property of the standard RW model is fact that the learning rate is constant. 

In other words, the balance between current observations compared to predictions 
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based on past observations is unchanging. One would expect, however, that once an 

association has been learned, the learning rate decreases. Attentional theories of 

associative learning are one class of models that do allow for changes in the learning 

rates. For example the model proposed by Pearce & Hall, the prediction error does 

not directly impact on the associative strength, but rather controls how much 

attention is allocated to the next stimulus (Pearce and Hall, 1980). The associability 

is determined by the following equation 

( ) 111 1 −−− −+−= ∑ t
NET

ttt V αγλγα
     (1.3) 

Here the associability of the CS with the outcome determined by the absolute value 

of the prediction error at the previous trial, and the associability at the previous trial. 

The relative contributions of these terms are determined by the parameter γ . The 

underlying idea is that the more attention is paid to a stimulus, the more readily it 

will become associated with the reinforcer, and once an association is learned and the 

US fully predicted, the associability is low. This model can explain certain 

phenomena like latent inhibition, where the RW model fails. However, one of the 

drawbacks of the Pearce-Hall model is that because only the absolute value of the 

prediction error is used, the association of the CS and US can only ever increase. 

This results in the rather inelegant solution of having to invoke a second learning 

process in the form of modelling the inhibitory association of the same CS, i.e. the 

CS-noUS association. The net prediction is then the sum of the associative and ‘anti-

association’ of the CS and US: 

∑∑∑ −= tt
NET

t VVV       (1.4) 

A further problem is that introducing the parameter γ  to determine weighting of 

current and past information only shifts the problem caused by the constant learning 

rate in the RW model. One still needs to somehow determine the constant value of 

the parameter γ that determines the shape of the learning curve.  

1.2.2.4.2 Temporal difference learning models  

Because the RW model can only capture between trial effects, it cannot account for 

within-trial effects such as second-order conditioning or sensitivity to stimulus 
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timing (cf. Figure 1.1). Temporal difference (TD) learning models are basically a 

real-time extension of the RW models that allow one to model within trial timing 

effects, and are therefore particularly suited to explain the DA prediction error signal. 

The main assumption of TD models is that the prediction Vt should be interpreted as 

the total, discounted sum of future rewards expected from time t to the end of the 

trial (Sutton and Barto, 1990). The strategy is to use a vector x that describes the 

presence of a sensory cue for each time bin in a trial, and another vector w that 

carries weights of predicted rewards in those time bins. On each trial1, the predicted 

value tV  is the linear product of the weights iw  and the presence or absence of the 

CS, as encoded by the stimulus vector tix , : 

∑=
i

tiit xwV ,         (1.5) 

At each time point the prediction error tδ can be calculated as the difference between 

the prediction and the reward at that time point plus all future rewards until the end 

of the trial. At the end of each trial, the weights are updated depending on the 

prediction errors and the learning rate: 

t
t

tii xw δα∑=∆ ,        (1.6) 

As the outcomes become associated with the cues, the weights shift from the 

outcome to the cue. Thus, after learning, the cues, which itself are unpredicted, will 

elicit a positive prediction error because they predict a positive summed reward until 

the end of the trial. TD models can explain higher-order conditioning because the 

reward associated with a particular cue simply shifts to a preceding cue (Seymour et 

al., 2004). The behaviour of the TD models depend strongly on the number and the 

size the time bins into which a trial is divided. A TD model with only one time bin is 

exactly the same as an RW model. 

1.2.2.5 Concluding remarks 

The RW model formed the basis of a wide range of error-based learning models. 

This model can explain a number of observed learning phenomena, including 

                                                
1 Note that for TD models, t denotes time within rather than between trials 
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classical conditioning and blocking, although it fails to predict a number of others, 

such as higher-order conditioning and latent inhibition. Extensions of the model 

including TD models and the Pearce-Hall model can account for some of these. That 

does not mean, however, that the RW model is invalid, and that these alternatives are 

necessarily ‘better’ models. Whenever choosing a model it is important to keep in 

mind its limitations and properties and select the appropriate model for a particular 

dataset. For example, when one is not interested in modelling within trial learning 

effects, because the time resolution of the data does not allow for this (cf. Chapter 

3), there is no point using a TD model, because it simply reduces to an RW model. In 

other words, it is important to choose a model that can capture the phenomena one is 

interested in, but is not unnecessarily complex.  

1.2.3 Bayesian ideal observer models 

Bayesian methods for reinforcement learning can be traced back to the 1960s, but 

until recently they have only been used very sporadically. Part of the reason for this 

is that non-Bayesian approaches described in the previous section tend to be easier to 

implement and work with. The main difference between the classical RW2 vs. 

Bayesian learning models is that the former use point estimates of the associations, 

whereas Bayesian methods are based on using full posterior distributions, 

considering not only the probabilities of the associations, but also the uncertainty 

about theses probabilities. In other words, the mean of the posterior distribution 

reflects the current estimate of the association strength, and the variance of this 

distribution reflects the uncertainty about this estimate. This principled approach to 

balancing previous knowledge and current information is formalised by Bayes 

Theorem:  

( ) ( ) ( )| |p y p y pϑ ϑ ϑ∝       (1.6) 

Here, ( )yp |ϑ  is the posterior belief about states ϑ  (e.g. trial-by-trial estimates of 

associations) given the datay , based on the optimal combination of the likelihood 

( )ϑ|yp  and the prior belief in the model parameters ( )ϑp . Bayes theorem ensures 

                                                
2 Here we will refer to the term RW model for the sake of simplicity, but note that this can be replaced 
by any prediction error-based learning model with a fixed learning rate, including TD and Q-value 
learning models.  
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optimal integration of current beliefs based on past information, and current 

information by weighing the prior and the likelihood by their respective precisions 

(see Figure 1.4).  

The application of Bayesian models to neuroscience and cognition research focused 

initially on domains of perception and sensorimotor integration (Bays et al., 

2006;Kording et al., 2007;Rao and Ballard, 1999;Whiteley and Sahani, 2008;Wolpert 

et al., 1995). More recently, however, the Bayesian approach has been applied to 

modelling learning processes, for which it is exquisitely suited, because it specifies 

how to optimally update beliefs in light of new evidence. Thus, application of 

Bayesian techniques has been extended to investigate a range of learning processes, 

from sensorimotor learning (Bestmann et al., 2008) to conditioning and 

reinforcement learning (Behrens et al., 2007;Courville et al., 2006;Daw et al., 

2005;Yoshida et al., 2008).  

 

Figure 1.4. Bayes' Rule. Bayes' Rule optimally combines prior knowledge 

(green) with new data (blue) by weighing their respective uncertainties, to express a 

posterior belief (red). In this example the precision of the prior is greater than that of 

the likelihood, therefore the mean of the posterior distribution is closer to the prior 

than to the likelihood. Note that when two distributions are combined in a Bayesian 

fashion the resulting distribution always has a higher precision than each of the 

source distributions.  
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1.2.3.1 Prediction errors in Bayesian models  

Although in the update equations of a Bayesian learning model there is no 

mathematical equivalent of the prediction error from RW models, surprise does play 

an important role. Like in RW models, a surprising event (i.e. a large distance 

between prior and likelihood) will result in a large shift of the posterior belief, 

whereas a fully predicted event (i.e. likelihood and prior fully overlap) results in no 

shift at all. Thus, Bayesian surprise is reflected by the distance between the posterior 

and prior distributions of the beliefs (Itti and Baldi, 2005).  

1.2.3.2 Limitations of Bayesian ideal observer models 

Bayesian ideal observer models are ideal in the sense that they follow Bayes rule, 

and thus generate predictions by optimally combining all available information. The 

catch here is the term ‘available’. A Bayesian model, like any other model, is ideal 

only within the context of a given model structure. Consider for example the 

following situation: In a paradigm in which association probabilities fluctuate 

sinusoidally around an average of 0.5, then after a large number of trials the 

Bayesian observer will have a very strong belief that the association is at 0.5, and 

from that point onward, the belief will effectively be stuck at 0.5, failing to capture 

the sinusoidal shape of the fluctuations. This situation generalises to any belief after 

a very large number of observations; the prior will have a very small variance, 

because every new observation reduces the variance. Compared to an RW model, 

this is effectively equivalent to a learning rate that over time asymptotes to zero. One 

solution for this is to reset the priors every time the probability has changed (e.g. 

(Bestmann et al., 2008)), but this assumes that the model ‘knows’ when to reset 

itself. Thus, this Bayesian is clearly not a very good in this circumstance, even 

though it does, at every trial, optimally combine the available information.  

A more generic solution to this particular problem is to introduce an extra parameter 

that estimates the variability of the environment, such that when variability is high, 

e.g. every time the contingencies have changed, the variance of the prior is increased. 

This is the Bayesian equivalent of introduction a changing learning rate (see 

(Behrens et al., 2007), and Chapter 4). With this extension, information about the 

variability of the environment will be optimally combined to weigh prior beliefs and 

new information. 
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In summary, ‘ideal’ observers are ideal in the sense that they optimally combine all 

the information that they can represent. One of the arguments against Bayesian 

models is that any phenomenon can then be explained in an "ideal" fashion given the 

right model structure. This illustrates how the often-posed question whether humans 

are ideal Bayesian observers is not a very informative one. Rather, the question 

should be what behaviour and brain processes can be modelled by which particular 

model.  

1.2.4 RW vs Bayesian models 

The most crucial distinction between standard reinforcement learning models and 

Bayesian update models, is that the former represent the state variables of the model 

(e.g. the contingencies) as point estimators, whereas the latter provides a full 

posterior distribution, where the mean reflects the belief about the estimated 

contingency and the variance denotes the uncertainty about this belief3. This 

difference has a number of important consequences.  

First of all, because the history of observed events is now recorded by two quantities, 

the mean and the variance of the parameters, Bayesian models have a ‘memory’ of 

the trial history: For a point estimate model (with unchanging learning rate), each 

new trial carries the same weight with respect to updating the estimate. It does not 

matter whether it has just observed 10 or 100 instances of an 80% pairing of a 

stimulus and outcome; estimates on the 11th or 101st trial changed with equal ease. In 

contrast in the Bayesian models this weight is proportional to the number of trials 

that have been observed; the distribution of the belief about the association for a 

Bayesian observer model will be much narrower after 100 trials than after 10 trials 

(cf. Figure 1.4).  

This leads to the second difference, which is that for the RW models, the learning 

rate, which determines how much a belief is updated based on new information, is 

determined by the researcher, or is estimated from the measured data (e.g. reaction 

times). For the Bayesian models, however, the balance between old and new 

information is determined by the structure of the model and the observed series of 

events.  
                                                
3 Note that one could also include higher order modes, such as the skewness and kurtosis, but most 
models make Gaussian assumptions about the distributions of state variables.  
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In summary, RW models are simpler to implement and can model a large number of 

observed conditioning and reinforcement learning phenomena. However, recently 

there has been a shift towards the use of Bayesian observer models which can take 

into account uncertainty about the estimates in a principled way. As such, Bayesian 

ideal observer models are part of a more general theoretical framework which will be 

discussed in more detail in Chapter 2.  

1.3 Summary of experimental work  

Chapters 3-5 describe the empirical research conducted for this thesis to investigate 

the role of prediction errors and connectivity changes in associative learning, using a 

combination of formal learning models and DCM for fMRI. A range of associative 

learning tasks was used with increasing behavioural relevance of the associative 

relationships. In Chapter 3 a combination of bilinear DCMs and a RW learning 

model is used to investigate changes in connectivity between sensory cortices as 

unchanging and task-irrelevant relationships between affectively neutral sensory 

stimuli are being learned. Chapter 4 describes a study with dynamically changing 

CS-US associations in which subjects responded to affectively neutral targets. These 

target stimuli were chosen to be preferentially processed by different visual areas, 

which made it possible to assess the stimulus specificity of the prediction errors in 

visual cortex and striatum. Nonlinear DCM was combined with a Bayesian observer 

model that could optimally account for the changing probabilistic associations to 

explore the role of the striatum in gating sensorimotor connections. Finally in 

Chapter 5 a pre-existing dataset is used for a nonlinear DCM study to investigate the 

role of the amygdala modulating corticostriatal connections in a fear conditioning 

paradigm.  
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Chapter 2 

2.  Methods 

Methods 

Abstract 

The first section of this chapter describes the bilinear and nonlinear 

implementations of DCM for measured BOLD time series data. Both 

implementations of DCM were used in this thesis to test different 

hypotheses related to changes in connectivity during associative 

learning. The second part describes Bayesian model selection, which 

was used to select the optimal model from sets of candidate models 

accounting for fMRI and behavioural data. In this chapter I will give a 

general description for both analysis tools; specific details for each 

implementation will be described in the results chapters (Chapters 3 - 

5). 

2.1 Dynamic Causal Modelling for fMRI 

2.1.1 Connectivity models and DCM 

Over the past decades, the predominant approach in cognitive neuroimaging has been 

to investigate functional specialisation of brain regions, based on the assumption that 

there is local specialisation of information processing. Although there is no doubt 

that such local specificity exists, this approach is clearly incomplete given that 

locally processed information must be integrated at some stage. The aim of 

connectivity models is to investigate experimentally induced changes in cortical 

pathways rather than cortical areas to look at functional integration rather than 

specialisation. There are two conceptually distinct approaches to connectivity 

analysis of fMRI timeseries. On the one hand there are models of functional 

connectivity, defined as statistical dependencies between spatially remote 
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neurophysiological events, and on the other hand there are models of effective 

connectivity, which is defined as the influence one neuronal system exerts over 

another (Friston et al., 1993a). 

Models of functional connectivity describe statistical dependencies among the data, 

thereby providing a characterisation of the functional interactions, or context-

dependent coherence between different timeseries (Friston et al., 1993b). A simple 

example of functional connectivity analysis would consist of generating brain maps 

that represent voxel-wise correlations of local activity with the timeseries of a 

particular ‘seed’ region of interest (ROI). These maps can then be compared e.g. 

under different experimental conditions. Functional connectivity analyses can be a 

useful exploratory device, because to characterise a functional network they do not 

rely on strong a priori assumptions about the underlying mechanisms. At the same 

time, this is also one of the main limitations, because this lack of specificity prevents 

one from testing detailed hypotheses about the connectivity of the underlying neural 

network. Moreover, the lack of causal (directed) effects precludes explanations at a 

mechanistic level as to the nature of the interactions between the different temporally 

correlated areas.  

Effective connectivity explicitly models the influence that one neuronal system 

exerts over another, rather than just their statistical dependencies. It is congruent with 

the notion of ‘synaptic efficacy’ between individual neurons or neuronal populations. 

The aim of models of effective connectivity is to explain regional effects as detected 

by for example a voxel-wise GLM analysis, in terms of interregional connectivity. 

Unlike the exploratory approach of functional connectivity methods, models of 

effective connectivity are mechanistic models, which require a clear neuranatomical 

delineation of the areas that are modelled, as well as a clear hypothesis about how 

these areas affect each other. Any type of effective connectivity analysis involves 

two steps: A first step in which the anatomical areas will form the nodes in the model 

are selected, and a second step in which the relationships between the nodes are 

described.  

DCM is a model of effective connectivity to make inferences about the neural 

processes underlying a measured time series. Like other models of effective 

connectivity DCM allows one to investigate the mechanisms underlying the observed 
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dynamics of complex neural systems in terms of connection strengths and their 

context-specific modulation. DCM views the brain as a deterministic nonlinear 

dynamic system that is subject to external inputs in the form of experimental 

manipulations, and that produces outputs (Friston et al., 2003). DCM assumes that 

brain responses are driven by changes in the input, rather than by endogenous noise 

or "innovations", as is assumed by other models of effective connectivity (e.g. SEM 

and autoregressive models (McIntosh and Gonzales-Lima, 1994)). These 

experimental inputs can enter the system and elicit responses in one of two ways: 

Firstly they can enter as driving inputs, for example the presence of an auditory 

stimulus would directly affect an auditory cortex node. The second way inputs 

influence the system is more indirectly, by modulating the coupling between the 

nodes, for example effects of attention to visual input could modulate a top-down 

connection from frontal to primary visual areas.  

Moreover, while other models, such as structural equation modelling (SEM, 

(McIntosh and Gonzales-Lima, 1994)) operate at the level of the measured signal, 

implicitly assuming an identity mapping between neuronal processes and 

(hemodynamic) measurements, DCM accounts for the nonlinear coupling between 

the measured hemodynamic responses and the underlying neural activity of interest 

(Penny et al., 2004b). In DCM the generative model consists of two levels. Causal 

effects in a cognitive system are modelled at the underlying (hidden) neuronal level 

using a parsimonious but plausible neurobiological model. The modelled neuronal 

population dynamics are then transformed into area-specific BOLD signals using a 

biologically informed hemodynamic forward model (Stephan et al., 2007d). The 

general idea is to model interactions among cortical regions by optimising the 

parameters of a reasonably realistic underlying neuronal model such that the 

modelled BOLD timeseries matches the experimentally measured timeseries as 

closely as possible.  

In a further diversion from conventional models of effective connectivity, which 

model instantaneous effects, DCM is a time series model in which the temporal 

evolution of the neural state vector is a function of the current state as well as the 

inputs and the system architecture. By modelling how state changes in a given node 

depend on the current state of any other node it is influenced by, DCM allows one to 
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determine the directional influence between areas, equivalent to causal relationships 

in the sense of control theory.  

The most important application of DCM is that it can be used to answer questions 

about the modulation of effective connectivity. In the original formulation bilinear 

DCMs allow one to infer that a particular experimental manipulation (e.g. a cognitive 

set, learning, or a pharmacological manipulation) modulate a pathway, rather than a 

cortical region (see section 2.1.2 for details and Chapter 3 for implementation). 

Bilinear DCMs preclude an important aspect of neuronal interactions, namely how 

the connection between two neuronal populations is enabled or gated by activity in 

other populations. Therefore in a recent extension to DCM the bilinear approach is 

extended such that now the effective connectivity between nodes is not only 

modulated by external inputs but also by activity in other nodes. In these nonlinear 

(second order) DCMs the modulation of connections can thus be assigned to a 

particular neuronal population in the system (see Section 2.1.3 for details on 

nonlinear DCMs and Chapters 4 and 5 for implementation). 

2.1.2 Bilinear DCM 

In the bilinear formulation of DCM, the states of multiple interacting brain regions 

are modelled as a set of coupled bilinear differential equations (Friston et al., 2003). 

The neuronal states, which represent the neuronal population activity of the modelled 

brain regions, change in time according to the system's connectivity and 

experimentally controlled inputs u. These inputs can enter the model in two different 

ways; they can either elicit responses through direct influences on specific regions 

(“driving inputs", e.g. sensory inputs) or they can change the strength of connections 

between regions (“modulatory inputs", e.g. task effects or learning). The hidden 

neural dynamics are modelled by the following bilinear differential equation: 

( ) CuzBuA
dt

dz m

i

i
j +







 += ∑
=1

          (2.1) 

Here, z is the state vector (with each state variable representing the population 

activity of one region in the model), t is continuous time, and ui is the i-th input to the 

modelled system. In this state equation, the A matrix represents the fixed 

(endogenous) strength of connections between regions and the B(1)...B(m) matrices 
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represent the modulation of these connections by (exogenous) inputs, as an additive 

change. Finally, the C matrix represents the influence of exogenous inputs on each 

area. Note that DCM allows one to make inferences about changes in effective 

connections between areas, which do not necessarily correspond to direct anatomical 

connections but may be via intermediary regions. 

The hidden neuronal dynamics described by Equation 2.1 are transformed to 

predicted BOLD responses by a hemodynamic forward model (Friston et al., 2003). 

Given measured BOLD responses, this model can be inverted, using a Bayesian 

estimation scheme, to obtain maximum a posteriori estimates of the parameters in 

Equation 2.1 (Friston et al., 2003). Finally, the probability of the data given a 

particular model can be estimated by integrating out the dependency of the joint 

density on the model parameters. This estimate, known as the model evidence or 

marginal likelihood, can be used to compare the goodness of competing models, and 

thus to test different hypotheses of the underlying neural network generating the 

measured responses. This procedure, known as Bayesian model selection, will be 

described in detail in Section 2.2.  

2.1.3 2nd Order DCM 

As mentioned above, effective connectivity represents the influence of one neuronal 

population on another, corresponding to the notion of ‘synaptic efficacy’. The 

bilinear term in DCM models the effect of experimental manipulations on 

connections between neuronal populations. However, this framework precludes an 

analysis with respect to the neuronal source of these modulations, and thus omits an 

important aspect of neuronal interactions: how connections between two neuronal 

populations are gated by activity in other populations. These gating mechanisms are 

known to be mediated through interactions between synaptic inputs and are central to 

learning and attentional modulation. Therefore, a nonlinear extension to DCM has 

been developed which allows one to assign the modulation of network interactions to 

specific neuronal populations (Stephan et al., 2008).  

In the original bilinear implementation of DCM for fMRI, the temporal change of the 

neuronal state vector is modelled using a bilinear approximation that governs the 

dynamics of the system. In nonlinear DCMs, this bilinear approximation is extended 
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to second order such that the hidden neural dynamics are modelled by the following 

equation:  

CuxDxBuA
dt

dx m

i

n

j

j
j

i
i +





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



++= ∑ ∑

= =1 1

)()(

      (2.2) 

Here, Equation 2.1 is extended with the D(j) matrices, which encode how connection 

strengths are modulated or gated by activity in area j (for details, see (Stephan et al., 

2008)). In this thesis, the second order extension of DCM was employed to 

investigate the influence of the putamen and amygdala on network connectivity 

during associative audio-visual learning and during fear acquisition (see Chapters 4 

and 5, respectively). 

2.1.4 Parametric modulation of connections  

In most DCM studies to date, the inputs constituting the bilinear modulations of the 

network interactions are context dependent, such as attention or task instructions (see 

e.g. (Grol et al., 2007;Stephan et al., 2007b)). These inputs are simply either ‘on’ or 

‘off’, and are conceptually related to the main effect regressors in classical GLM 

analyses using mass univariate models (e.g. SPM, see www.fil.ion.ucl.ac.uk/spm). 

However, it is also possible to assess modulators that change parametrically, for 

example dosage of a pharmacological intervention or the temporal evolution of 

learning. The form of these parametric modulatory inputs corresponds to that of so-

called "parametrically modulated regressors" in a classical GLM analysis. In the 

bilinear and nonlinear DCMs described in Chapters 3 and 4, association strengths 

were estimated using two different learning models, and entered the DCMs as direct 

or indirect modulatory input.  

2.2 Bayesian Inference and Model Comparison 

2.2.1 Within subject Bayesian inference  

In order to estimate the parameters of the forward model the DCMs are inverted 

using a Bayesian inversion approach. The inversion of a particular DCM involves 

approximation of the posterior probability of the parameters of the model, 
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( )myp ,|ϑ , given a particular dataset and model. The posterior is proportional to the 

product of the prior probability and the likelihood ( )myp ,|ϑ , following Bayes’ rule:  

( ) ( ) ( )mpmypmyp |,|,| ϑϑϑ ∝      (2.3) 

The aim of the model inversion is to find the parameters ϑ  that maximise the 

posterior probability, using empirical priors for the hemodynamic parameters and 

conservative shrinkage priors for the neural coupling parameters. The parameter 

estimation scheme uses a Gauss-Newton gradient descent embedded in an 

Expectation-Maximisation (EM) algorithm, which is described in detail elsewhere 

(Friston et al., 2002b). In short, in the E-step the posterior mean and covariance are 

updated, and during the M-step the hyperparameters of the noise covariance matrix 

are updated. The posterior densities of the neural parameters can then be used to 

make inferences about the effective connectivity, for example to test how certain one 

can be that a particular parameter exceeds a particular threshold (usually zero). 

However, one typically needs to compare alternative models representing different 

hypotheses about the connectivity of the network, and select the optimal model 

before making inferences about the model parameters. The optimal model is the 

model that has the greatest probability of representing the underlying system that 

produced the measured dataset; this probability is known as the model evidence 

( )myp | , and accounts for both model fit and model complexity (Pitt and Myung, 

2002). The model evidence can be found by integrating out any dependencies on the 

estimated model parameters ϑ  from Equation 2.3.  

( ) ( ) ( )∫= ϑϑϑ dmpmypmyp |,||      (2.4) 

Unfortunately in most cases this integral cannot be solved analytically, and is 

difficult to compute numerically (for one exception see Section 2.2.1.1). Therefore, 

instead of evaluating the integral in Equation 2.4, approximations to the model 

evidence must be used (Friston et al., 2007;Penny et al., 2004a). Commonly used 

approximations are the Akaike Information Criterion (AIC, (Akaike, 1974)), the 

Bayesian Information Criterion (BIC, (Schwarz, 1978)) and the negative free energy 

(F). All of these methods approach the true model evidence by optimising a bound on 

the integral in Equation 2.4. The difference between these approximations is how 
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they treat the trade-off of model accuracy (model fit) and model complexity. It is 

important to penalise the model evidence for complexity, because model fit will 

increase monotonically with complexity, but at some point the mode will start fitting 

noise, thereby reducing the generalisability of the model. Therefore the optimal 

model provides the best balance between model fit and complexity. In all three 

approximations of the model evidence (AIC, BIC and F), the accuracy is the 

expected log likelihood of the data under an approximating posterior density on the 

parameters( )ϑq , which is optimised iteratively.  

For the AIC and BIC the approximation to the log model evidence for model m can 

be given by  

pmaccuracyAIC

n
p

maccuracyBIC

−=

−=

)(

log
2

)(
     (2.5) 

where p is the number of parameters and n the log of the number of observations 

(e.g. scans). When looking at the complexity terms, it becomes clear that the BIC 

pays a heavier penalty than the AIC (when 12log >n , i.e. when 8>n ). Therefore 

the BIC will favour simpler models whereas the AIC will be biased towards more 

complex models. Because this could lead to contradictory results, generally models 

are only considered to be different in fit when the results from the AIC and BIC 

concur. The AIC and BIC were used in Chapter 3 to select the optimal DCM out of 

a number of models.  

The AIC and BIC are useful and easy approximations of the model evidence. 

However, because the complexity term scales linearly with the number of 

parameters, they both fail to account for redundant parameterisation; when adding a 

parameter that has identical effects than another parameter on predicting 

measurements, the complexity terms of both AIC and BIC would increase even 

though the ‘true’ complexity would not change. Often models will have (partial) 

dependencies amongst parameters, and in this case the AIC/BIC approach will 

overestimate model complexity. In the negative free energy approach the complexity 

is the Kullbach-Leibler divergence between the approximating posterior and the prior 

density, reflecting the amount of information obtained about the model parameters 

from the data.  
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( ) ( )[ ]mpqKLmaccuracyF |,)( ϑϑ−=     (2.6) 

 

Under the Laplace approximation (i.e. assuming that the conditional density is a 

multivariate Gaussian), the complexity term splits into three terms 

( ) ( )[ ] ( ) ( )ϑϑϑϑϑϑϑ µµµµϑϑ −−+−= −
y

T
yy CCCmpqKL |

1
|| 2

1
2

1
2

1|,  

         (2.7) 

where ϑC  and yC |ϑ are the determinants of the prior and posterior covariance 

matrices, and ϑµ  and y|ϑµ the prior and posterior means. The first term increases the 

complexity with the effective degrees of freedom, taking into account dependencies 

amongst parameters, i.e. additional redundant parameters do not increase the 

complexity. The second term decreases the penalty with the degree of independence 

that the parameters have a posteriori, because in a good model the parameters are as 

precise and independent as possible The third term shows that the complexity penalty 

increases the larger the difference between the prior and posterior means, i.e. when 

suboptimal priors are used. Thus the free energy F is often a better approach to 

approximate the log evidence than the AIC/BIC, and was used in Chapters 4 and 5 

to decide between different competing DCM models.  

For any of these model evidence approximations, to determine how strong the 

evidence is in favour of one model, one can simply compute the model evidence ratio 

of the two models, also known as the Bayes Factor, or equivalently the difference 

between the log evidences. If the difference in the log evidences is greater than about 

three (i.e. the Bayes factor is larger than 20), this is considered as strong evidence in 

favour of a particular model (Raftery, 1995).  

2.2.1.1 A special case: Bayesian GLM for response speed data  

Linear Gaussian models constitute a rare case where there is an analytical solution to 

the model evidence, instead of having to resort to an approximation as described 

above. This analytical solution, under the assumption that the data and design matrix 

are Gaussian, can be viewed as the Bayesian version of a GLM. Like in a classical 

GLM, the model to be tested is described by a design matrix which includes 
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regressor for all explanatory variables of the model. Using flat priors, one can then 

calculate the model evidence for different models as a function of the model fit (sum 

of squared residuals) and the complexity (the number of regressors in the design 

matrix). This linear model has the following form: 

( ) ( ) ( ) ( )









 −−−=

⇒+=
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2

22/2
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mYp
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T
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This is the probability of the data Y  (e.g. response speeds), given the design matrix 

X , parameters β , and normally distributed errors ( )2,0~ σε N . In order to compute 

the model evidence, or probability of the data given the model, the parameters and 

hyperparameter σ need to be integrated out: 

( )
( )( ) ( )( ) 1/2/2

( , , , )

2 1 2
r drr d T

p Y m p Y m d d

X X d r

β σ β σ

λπ
+ −−−

=

= Γ − −

∫∫
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Here r is the number of parameters in the design matrix, d is the number of data-

points and  

( )( )YXXXXIY TTT 1−−=λ        (2.10) 

is the sum of squared residuals. Therefore the log model evidence is 

( )( ) ( ) ( )
( )( ) ( ) ( )2log11log
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Model evidences can then be compared either at the level of the individual subject, 

using the Bayes Factor, or at the group level using one of the group Bayesian model 

selection tools described below (see Section 2.2.2). 
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2.2.2 Group level Bayesian inference 

2.2.2.1 Fixed effects analysis: Group Bayes Factor 

The Bayes Factor approach described in Section 2.2.1 is suitable for comparing 

different models for one particular dataset, for example from a single subject. 

However, one will often want to make inferences about a group of subjects, and 

select the model that best explains multiple datasets. Assuming that the datasets of 

different subjects are independent, one can simply multiply the Bayes factors for 

each model across all subjects, known as the Group Bayes Factor (GBF, e.g. see 

(Stephan et al., 2007c)). This fixed effects analysis will be used in Chapter 3 to 

select the optimal DCM from three competing models.  

2.2.2.2 Bayesian random effects analysis 

Combining BMS results from a group of subjects relying on fixed-effects analyses 

such as described above assumes that all subjects’ data are generated by the same 

model. As a result they fail to account for group heterogeneity and are vulnerable to 

outliers. Stephan et al. developed a novel random effects Bayesian analysis 

framework to cope with these shortcomings (Stephan et al., 2009). This method 

allows one to quantify the probability that a particular model generated the data for 

any randomly selected subject, relative to other models. They showed that this 

approach of calculating a conditional density of model probabilities given the model 

evidence for individual subjects, is superior both to using the group Bayes factor (as 

described above), and to applying frequentist tests to the log evidences. This 

superiority was especially evident in the case of large intersubject heterogeneity and 

in the case of outliers (Stephan et al., 2009). 

Instead of assuming that the data were generated by the same model for all subjects, 

this approach computes a density from which models are sampled to generate 

subject-specific data. In other words, it searches for the conditional estimates of 

model probabilities [ ]Krrr ,...,1= , that generate indicator variables, 

[ ]nKnn mmm ,...,1= , where { }1,0∈nkm , and for any given { }Nn ,...,1∈ , 1
1

=∑
=

K

k
nkm . 

These indicator variables prescribe the model for the n-th subject, where( ) knk rmp = . 

Since the model probabilities r follow a Dirichlet distribution ( )α|rp , the 
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conditional expectations ( )Kqkr ααα ++= ...1  encode the expected probability 

that the k-th model will be selected for a randomly selected subject. For details about 

the hierarchical Bayesian model that is inverted to obtain the Dirichlet parameters α  

of the posterior ( )α;| yrp  see (Stephan et al., 2009).  

After optimisation of α , the posterior can be used for group level Bayesian model 

comparison, where the results can be reported in several different ways. Firstly one 

can simply report the estimate of [ ]Kααα ,...,1=  for each of the models, where 

1−kα  represents the number of subjects in which km  generated the observed data. 

One can also use the posterior ( )α;| yrp  to compute the expected multinomial 

parameters kr , and thus calculate the expected likelihood of obtaining a particular 

model for any randomly selected subject 

( )Kqkr ααα ++= ...1       (2.12) 

Either of these models can then be used to rank the models at the group level. A third 

option is to use ( )α;| yrp  to quantify an exceedance probability, defined as the 

belief that a particular model k is better than any other of the models tested given the 

group data. In this thesis we have adopted the approach to report both the Dirichlet 

parameters α  and the exceedance probabilities when discussing the results of our 

analyses. We have used this novel random effects Bayesian model selection tool to 

show that behavioural data were well described by a sophisticated Bayesian learning 

model in Chapter 4, and to select the optimal DCM in Chapters 4 and 5.  

2.2.2.3 Model space partitioning in Bayesian random effects analysis  

The Bayesian random effects analysis can be used not only to compare specific 

models, but also to test for differences between parts of ‘model space’, provided that 

each subspace contains the same number of models, i.e. the design is fully factorial 

(Stephan et al., 2009). For example, one may wish to compare the effect of adding or 

leaving out a particular connection, irrespective of any other differences between the 

tested models. This model space partitioning can be regarded as the Bayesian 

equivalent of a main effects analysis in a classical ANOVA.  
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This analysis exploits the agglomerative property of the Dirichlet distribution: Once 

the parameters kα  for all K models have been estimated, for each subset of models a 

new Dirichlet density can be calculated simply by adding the kα  for all models 

belonging to that particular subset. The resulting Dirichlet can be used to compare 

subsets of models in exactly the same way as for individual models, for example to 

calculate the exceedance probabilities.  

Model space partitioning will be used in Chapter 5 to compare the addition and 

removal of endogenous connections and second order modulations in a 2x3 factorial 

design.  
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Chapter 3 

3.  A Dual Role for Prediction Error in Associative Learning 

A Dual Role for Prediction Error in Associative Learning 

 

Abstract 

In this fMRI experiment subjects implicitly learned the association 

between the presence (or absence) of a task-irrelevant visual stimulus 

and the presence (or absence) of a task-irrelevant auditory stimulus. 

Using a Rescorla-Wagner (RW) model to describe the evolution of 

fMRI responses during learning, it was shown that BOLD activity in 

primary visual cortex (V1) and the ventral striatum covaried with 

prediction errors, or surprising events, regardless whether this surprise 

concerned the unexpected presence of a visual stimulus or its 

unexpected absence. Furthermore, DCM analyses suggest that this 

response in V1 is due to prediction error dependent changes in 

connections from the auditory cortex (A1). To our knowledge, this is 

the first empirical evidence that (i) V1 responds to prediction errors 

engendered by audio-visual probabilistic relations, and, more 

generally, that (ii) prediction errors during associative learning drive 

synaptic plasticity. This finding has important implications for our 

understanding of general mechanisms of perceptual learning and 

inference in the human brain.  
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3.1 Introduction  

Among the fundaments of adaptive behaviour is the ability to predict future events. 

This ability is crucial to functions ranging from sensory processing to decision 

making. In psychology and neuroscience, prediction has been studied most 

extensively in the context of Pavlovian and instrumental conditioning tasks, which 

measure how organisms anticipate (and act on) affectively significant events such as 

food delivery or electric shocks. A recent series of functional neuroimaging studies 

has investigated the neurophysiological basis of prediction and learning in humans. 

Using Pavlovian and instrumental conditioning tasks, these studies have identified 

several areas where BOLD signals correlate with trial-wise estimates from formal 

learning models like TD learning (Sutton and Barto, 1998) or the Rescorla-Wagner 

model (RW) (Rescorla and Wagner, 1972). In particular, BOLD activity in areas 

including the striatum and the dorsolateral prefrontal cortex (key dopaminergic 

targets) has been shown to covary with both predictions and prediction errors 

(Corlett et al., 2004;Fletcher et al., 2001;Gläscher and Büchel, 2005;Jensen et al., 

2007;McClure et al., 2003;O'Doherty et al., 2004;Pessiglione et al., 2006;Seymour et 

al., 2004;Turner et al., 2004). 

In all of these previous studies, the learned associations had direct relevance for 

behaviour, either because they were linked to rewarding or punishing outcomes (e.g. 

(McClure et al., 2003;O'Doherty et al., 2004;Seymour et al., 2004) or because 

subjects received feedback on their performance (Aron et al., 2004;Corlett et al., 

2004;Fletcher et al., 2001;Turner et al., 2004). In contrast, it is unclear whether 

incidental learning of stimulus-stimulus associations, i.e. learning of associations that 

are irrelevant for current behavioural goals, draws upon the same neuronal 

mechanisms. A paradigm that shows that these types of associations are learned is 

‘sensory preconditioning’. Here, in a first stage, the subject is exposed to 

behaviourally meaningless CS1-CS2 associations and, in a second stage, to CS1-US 

pairings. In a third and final stage, the presentation of a CS2 alone generates a 

conditioned response, indicating that the subject must have learned the initial CS1-

CS2 association (Brogden, 1939;Gewirtz and Davis, 2000). 

In this study we used a factorial design that extended the first stage of a classical 

sensory preconditioning paradigm. Healthy volunteers performed an audio-visual 
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target detection task, while being exposed to a stream of concurrent audio-visual 

"distractor" stimuli (Figure 3.1). These stimuli possessed statistical regularities, 

which enabled prediction of the visual distractor from the preceding auditory cue 

(Figure 3.2). Critically, however, these statistical associations were completely 

irrelevant to the target detection task. Any learning of these associations would 

therefore be of an incidental (task-unrelated) nature and, in the absence of 

behavioural responses to the learned associations, could only be inferred 

neurophysiologically. This paradigm capitalised on previous work by McIntosh et al. 

(McIntosh et al., 1998) who used positron emission tomography (PET) to show that 

learning of associations between sensory stimuli was reflected by activity in early 

visual cortex. However, the use of PET permitted only a simple conditioning scheme 

and precluded a full investigation of dynamic changes in the brain’s representation of 

the learned association. Here, we employed a more refined conditioning scheme and 

used fMRI to study learning-dependent changes in brain activity over time. 

Additionally, we assessed learning-dependent changes in effective connectivity 

between auditory and visual cortex using DCM. 

Using a 4-factorial design (cf. Table 3.1), this study characterised learning in terms 

of the temporal evolution (learning; factor 1) of both brain activity and interregional 

connectivity in response to a visual stimulus whose presence or absence (V+ vs. V-; 

factor 2) was predicted in 2 contexts, established by 2 types of auditory conditioning 

stimuli (CS+ vs. CS-; factor 3), each of which could be present or absent on each 

trial (A+ vs. A-; factor 4). In other words, in contrast to classical sensory 

preconditioning paradigms, we could not only investigate differential learning, 

depending on CS type but could also assess whether the consequences of an absent 

CS were learned. It should be noted that both the CS+ and CS- contexts (or blocks) 

were balanced in terms of stimuli; the a priori probabilities of the auditory CS and of 

the visual stimulus occurring on a given trial were always 50%. Critically, the task 

was not related to these auditory and visual stimuli; subjects performed a target-

detection task on unrelated stimuli that were presented sporadically. 

One of the features of our factorial paradigm is that on half the trials the auditory CS 

is absent. This necessitates an additional cue that marks the beginning of each trial, 

which was a visual trial onset (TO) cue. In other words, learning of stimulus 

associations in this paradigm has two components, one related to the auditory CS and 
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another related to the visual TO cue. As a consequence, any model of the learning 

process must be able to formulate how a net prediction is computed from the 

associative strengths of the two cue components. We chose the RW model since it is 

the simplest and most generic model of associative learning that accounts for cue 

interactions (see Discussion Section 3.4 for details). The RW-model has been 

validated extensively, using behavioural data from both humans and animals and can 

account for many aspects of associative learning (Pearce and Bouton, 2001;Schultz 

and Dickinson, 2000). In our study, the trial-wise associative strength predicted by 

the RW model was used to construct regressors for a voxel-wise general linear model 

of fMRI data and modulatory inputs for DCMs (Friston et al., 2003) of the effective 

connectivity between auditory and visual areas. Specifically, we addressed the 

following two questions: 

1. In the absence of any behavioural responses to the audio-visual stimulus 

associations, can we obtain neurophysiological evidence that the brain learns 

these associations? Specifically, can we find brain regions whose activity 

correlates with learning4 as predicted by a generic model of associative 

learning (i.e., the RW model)? Candidate areas included early visual cortex 

and the striatum. Furthermore, do these areas show a response profile across 

cue-outcome combinations that reflects a match between prediction and 

outcome or rather a prediction error response? 

2. Since the predictive auditory cue temporally precedes the visual outcome, 

learning should modify neuronal activity in early visual cortex in response to 

auditory cues. Can these putative learning-related changes in visual cortex 

activity be explained by changes in the effective connectivity from auditory to 

visual cortex (cf., (McIntosh et al., 1998;McLaren et al., 1989)? Specifically, 

do these changes conform to changes in associative strength under a RW 

model of learning? 

Before describing our experiment, two important issues should be highlighted. First, 

the goal of this fMRI study was not to pinpoint the exact mathematical form of 

incidental learning by comparing different models of associative learning. Instead, 

                                                
4 Throughout the chapter, we will use the colloquial term "learning curve" to denote the vector of 

predicted associative strength over time, i.e. j
tφ  in Equation 1. 
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we used the simplest model of associative learning that could accommodate our 

paradigm. In the Discussion (Section 3.4), we argue why the RW model can be 

considered an appropriate a priori learning model for our particular paradigm, 

relative to other models of associative learning. Second, it is important to note that 

within a given experimental condition the predicted outcomes and prediction errors 

are perfectly anti-correlated when mean-corrected (see Appendix A for details). This 

means they cannot be distinguished as alternative predictors of observed brain 

responses. However, with our factorial design one can analyse the pattern of 

parameter estimates across experimental conditions, contrasting expected and 

unexpected cue-outcome combinations. This enabled us to distinguish, voxel by 

voxel, brain responses that reflected a match between predicted and actual trial 

outcomes from responses that encode prediction error or surprise. 

3.2 Methods & Statistical analysis  

3.2.1 Subjects 

Sixteen healthy volunteers, 25.3 ±3.3 years of age, (mean age ± SD, 8 female) 

participated in the study. The subjects had no history of psychiatric or neurological 

disorders. Written informed consent was obtained from all volunteers prior to the 

study, which was approved by the National Hospital for Neurology and 

Neurosurgery Ethics Committee. 

3.2.2 Experimental Design – fMRI  

The central idea of this study was to present subjects with "distractor" stimuli that 

were linked by predictive associations: two auditory stimuli served as conditioning 

stimuli (CS) and differentially predicted whether or not a visual stimulus would 

follow. Critically, the volunteers performed an unrelated detection task on separate 

auditory and visual targets; for this task, the predictive relationships between the 

distractor stimuli were completely irrelevant. Stimuli were presented using 

Cogent2000 (www.vislab.ucl.ac.uk/Cogent/index.html). An initial sound matching 

task and the subsequent learning study (4 x 10 min) were all completed inside the 

scanner. Subjects were debriefed with a post-scan questionnaire to assess whether 

they had learned the experimental contingencies.  
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3.2.2.1 Sound matching 

Preceding the learning experiment, subjects had to match the two CS (450 Hz and 

1000 Hz) and the auditory target stimulus (white noise burst) for perceived loudness. 

Stimuli were presented sequentially and dichotically. Subjects adapted the volume of 

the 1000 Hz tone to the 450 Hz tone until they perceived them to be of equal 

loudness. This procedure was repeated eight times and the results averaged. 

Subsequently, subjects matched the perceived loudness of the white noise burst to the 

pure tones, each repeated four times. The adapted volumes, as a percentage of the 

volume of the low tone were 94.0 ± 6.2 % (mean ± SD) for the high tone, and 104 ± 

4.9 % for the white noise burst.  

3.2.2.2 Differential conditioning  

During the experiment, subjects were exposed to alternating blocks of trials in which 

one of two auditory conditioning stimuli (high and low tone) predicted the presence 

(CS+) or omission (CS-) of a subsequent visual stimulus with a fixed probability of 

80% (Figure 3.1 and Table 3.1). On each trial, a CS was presented (A+) with 50% 

probability. On 50% of all trials, a visual stimulus was present (V+). Every trial was 

preceded by a visual trial-onset (TO) cue.  

Our paradigm thus used a 4-factor design with the following factors for each trial: i) 

CS context (CS+ vs. CS-), ii) CS presence (A+ vs. A-), iii) visual outcome (V+ vs. 

V-) and iv) learning (or time). We used a mixed design in which CS type was 

blocked, whereas the presentation of the CS and visual outcome were randomized 

(event-related) within blocks. CS+ and CS- blocks were completely balanced so that 

in each block of 10 trials, five CS and five outcome stimuli were presented. Within 

each subject, the auditory CS+ and CS- and their probabilistic relation to subsequent 

visual stimuli were fixed throughout the experiment. The assignment of tones to the 

two CSs was counterbalanced across subjects, i.e. in half the subjects the high tone 

served as CS+ (and the low tone as CS-), and vice versa the other half of the subjects. 

Each of the foursessions consisted of 20 blocks of 10 trials, interspersed with periods 

of rest (12 s), in which subjects fixated on a fixation cross. Blocks and sessions were 

balanced across and within subjects. 
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3.2.2.3 Target detection task 

To ensure continuous attention to auditory and visual targets per se (but not their 

statistical associations), subjects performed a concurrent target detection task. The 

target stimuli were randomly interspersed between trials and consisted of either a 

white noise burst or a circle. Target stimuli occurred on average once per block (at 

most twice). In total, 40 auditory and 40 visual target stimuli were presented, 

randomised within conditions and sessions.  
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Figure 3.1. Experimental design. A) Stimuli presented during the 

experiment. The ‘distractor’ stimuli, whose associations were being learned 

incidentally, comprised two auditory conditioning stimuli (CS) corresponding to 

high- and low-frequency tones and one visual unconditioned stimulus (US) 

consisting of three concentric squares. The target stimuli, to which the subjects 

responded, comprised a white noise burst and a circle. B) Temporal sequence of a 

single trial. Both the CS and US could be either presented or omitted. The average 

trial duration was 2 seconds. The trial onset (TO) cue was a small central dot (100 

ms); the auditory CS was presented for 500 ms, starting 400 ms after trial onset. The 

visual stimulus was presented 750 ms after trial onset, also for 500 ms. The inter-trial 

interval (ITI) was jittered, ranging from 350 – 1350 ms, and target stimuli were 

inserted only in the longest ITIs, lasting for 300 ms. 
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Table 3.1. Probabilistic relationship between auditory and visual 

stimuli.  Contingency tables showing the proportion of a each trial type occurring 

during CS+ and CS- blocks respectively. Below the tables are the resulting 

conditional probabilities of the visual stimulus being present (or absent), given the 

presence (or absence) of the auditory conditioned stimulus (CS); these probabilities 

can be inferred by comparing the frequencies within each column of the table.  

3.2.3 fMRI Data Acquisition 

A 3 Tesla Siemens Allegra MRI scanner (Siemens, Erlangen, Germany) was used to 

acquire T1-weighted fast-field echo structural images and multi-slice T2*-weighted 

echo-planar volumes with blood oxygenation level dependent (BOLD) contrast (TR 

= 2.08 secs). For each subject, functional data were acquired in 4 scanning sessions 

of approximately 10 minutes each. 306 volumes were acquired per session (1224 

scans in total per subject). The first 6 volumes of each session were discarded to 

allow for T1 equilibrium effects. Each functional brain volume comprised 34 2 mm 

axial slices with a 2 mm inter-slice gap, and an in-plane resolution of 3x3 mm. The 

field of view covered the whole brain, except for the cerebellum and brainstem. The 

total duration of the experiment was approximately 60 mins per subject. 

3.2.4 Data Analysis 

3.2.4.1 Functional neuroimaging analysis 

fMRI data were analysed using the statistical software package SPM5 (Wellcome 

Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). The 

1200 images from each subject were realigned to correct for head movements, 

corrected for movement-by-distortion interactions (Andersson et al., 2001), spatially 

normalized to the Montreal Neurological Institute (MNI) template brain, smoothed 
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spatially with a 3-dimensional Gaussian kernel of 8mm full width half maximum and 

re-sampled to 3x3x3 mm voxels. The data were then modelled voxel-wise, using a 

GLM that included regressors for all experimental trials as well as regressors for the 

target detection task. Trial-specific effects were modelled by trains of delta functions 

convolved with three hemodynamic basis functions (a canonical hemodynamic 

response function, and its temporal and dispersion derivatives). Additionally, the 

time-dependent associative strengths from the Rescorla-Wagner model ( j
ti ,φ ; see 

Equation 3.1) and their partial derivatives with respect to learning rate (see next 

Section) were used as parametric modulators of each trial-specific regressor. The 

data were high-pass filtered (cut-off 128 seconds) to remove low-frequency signal 

drifts, and a first-order autoregressive model was used to model the remaining serial 

correlations (Friston et al., 2002a). Contrast images of parameter estimates encoding 

trial-specific effects were created for each subject and entered separately into voxel-

wise one-sample t-tests (df = 15), to implement a second-level random effects 

analysis. We report regions that survive cluster-level correction for multiple 

comparisons (family-wise error, FWE) across the whole brain at P<0.05. Since 

previous studies demonstrated the role of the striatum and the prefrontal cortex in 

associative learning (e.g. (Corlett et al., 2004;Fletcher et al., 2001;O'Doherty et al., 

2004), we performed an additional search restricted to these areas, using anatomical 

masks generated from the PickAtlas toolbox (Maldjian et al., 2003). Again, we only 

report activations that survived a small volume correction (SVC) at P<0.05. 

3.2.5 Rescorla-Wagner model 

We used a RW model of associative learning to generate predictors of learning-

dependent changes in brain activity (as indexed by the BOLD signal) and inter-

regional connectivity over time. The basic principle of this model is that the size of 

the trial-specific prediction error, i.e. the degree of surprise incurred by an event, 

determines the change in associative strength. From the train of observed events a 

learning curve was computed and fitted to the fMRI data. Trial-specific cueing was 

modelled by means of two separate components (see Figure 3.1): the visual TO cue 

TO, which was present on every trial and the auditory CS per se, which was present 

on half the trials. This allowed us to model learning effects on trials where no CS 
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was present. In the RW framework, the predicted outcome on trial t, j
tφ  , is the sum 

of the associative strengths of each cue component: 

ti
j

tti
j
ti

j
ti u ,,1, )( ×−+=+ φλεφφ               (3.1) 

where 

∑ ×=
i

ti
j
ti

j
t u ,,φφ             (3.2) 

On each trial t, Equation 3.1 is calculated separately for each cue component, 

indexed by i (i.e., the auditory CS, and TO), while ui,t indexes which of the cue 

components is actually present on trial t. tλ  indicates the actual outcome at trial t, 

being 1 for V+ and 0 for V-; iε  is the learning rate that determines how strongly the 

prediction error affects the update of the prediction. Separate components are 

summed in Equation 3.2, where j
tφ  is the summed prediction of whether a visual 

stimulus will be presented at trial t, and j indexes whether this is a CS+ or CS- trial.5  

3.2.5.1 Learning rate  

A challenge when applying the RW model to our experiment was to determine an 

appropriate learning rate. In principle this can be done by fitting the model to 

behavioural data and using the resulting learning rate to construct regressors for the 

fMRI analysis. However, our experimental design deliberately precluded behavioural 

responses; instead, learning could only be assessed neurophysiologically in terms of 

changes in cortical activity and inter-regional connectivity. Alternative strategies are 

to choose the learning rate based on principled considerations (e.g. (O'Doherty et al., 

2004)) or using model comparison (Gläscher and Büchel, 2005). Since we knew 

from a previous study that learning should occur in the visual cortex (McIntosh et al., 

1998), we adopted the approach by Gläscher and Büchel (Gläscher and Büchel, 

2005) of optimising the value of iε  to best explain putative learning-induced 

                                                
5 When considered for a single cue per trial, Equation 1 can also be seen as a simple model of Hebbian 

or associative plasticity. In this context, ,
j

i tφ  encodes the associative strength, which changes 

according to the second term in Equation 1. This associative term comprises a (pre-synaptic) input 

,i tu  encoding the outcome on any trial, and a (post-synaptic) prediction error. 
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responses within the main area of interest, the visual cortex. Because our volunteers 

did not notice the statistical associations (and thus learning was presumably slow) 

and since another study of perceptual association learning showed small learning 

rates CSε  below 0.1 (Gläscher and Büchel, 2005), we tested the following values of 

CSε  in separate models: 0.01, 0.025, 0.05, 0.075, 0.1. We found that εCS=0.075 gave 

the best fit to the data in primary visual cortex for the main contrast of interest (i.e., 

the 4-way interaction in a random effects second level analysis); this learning rate 

was then used for further analysis across the entire brain and for the connectivity 

analyses described below. Importantly, we used a first-order Taylor expansion 

around the learning rate εCS=0.075 to make the model less dependent on the 

particular choice of learning rate and to account for inter-subject variability in the 

shape of the learning curves. This was implemented by including the partial 

derivative of the learning curve j
tφ  with respect to the learning rate iε  as an 

additional parametric modulator in the GLM for the fMRI data.  

Given that there was no prior hypothesis about differences between the learning rates 

of CS+ and CS- trials, the analyses described were performed using identical 

learning rates for both CS types. However, the results from the GLM analysis of the 

fMRI data showed that learning effects were largely driven by CS+ trials, which 

suggested that for CS- trials a smaller learning rate should have been chosen than for 

CS+. This prompted additional analyses to test this possibility. We examined 

whether (i) a selective decrease of the learning rate for CS- trials improved the ability 

to detect learning effects during this trial type, and, more generally, whether (ii) the 

parameter estimates for the partial derivatives (of the learning curve j
tφ  with respect 

to the learning rate iε ) indicated that the learning rate for either CS+ or CS- trials 

was different from εCS=0.075.  

With respect to the first point, the data were re-analysed using lower learning rates 

for CS- trials (ε=0.05 and 0.025, i.e. 2/3 and 1/3 of the learning rate ε=0.075 used for 

CS+ trials). Specifically, the critical interaction (CS presence × visual outcome × 

RW learning restricted to CS- trials) was examined to check whether these lower 

learning rates would give evidence of learning effects during CS- trials. This contrast 
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was first tested across the whole brain, and subsequently restricted to those regions 

which showed significant learning effects for CS+ trials.  

To address the second issue, the parameter estimates for the partial derivatives (with 

respect to the learning rates) of the learning curves were examined. If the learning 

rate for either CS had been set too high or too low, the parameter estimates for the 

partial derivative would have deviated significantly, across subjects, from zero. All 

learning-related contrasts were tested for CS+ and CS- trials separately. Again, this 

analysis was first performed across the whole brain and subsequently restricted to 

those areas which showed significant learning effects.  

Finally, because of its short duration and small size, the TO cue is less salient than 

the CS. Since in the RW model the learning rate reflects stimulus properties 

including salience (Rescorla and Wagner, 1972), TOε  can be assumed to be 

considerably smaller than CSε . In this study TOε  was assumed to be four times 

smaller than CSε . It should be noted that violations of this assumption are unlikely to 

have a dramatic effect because the inclusion of the derivatives enables the model to 

cope with deviations from the assumed learning rates, as was described above.  

3.2.5.2 Statistical analysis of learning effects 

The association strengths of the different cue components with the visual outcome 

were determined from the series of observed cue-outcome combinations using 

Equation 3.1 and the learning rates established as described above. This resulted in 

the four "partial" learning curves shown in Figure 3.2A: two curves (TO and CS) for 

each CS type (CS+ and CS-). As described by Equation 3.2, the predicted outcome 

on a given trial is the sum of the predictions for each cue component that is present; 

Figure 3.2B shows this summed prediction for each CS type, either present or 

absent.  

Each of the 8 trial types resulting from the three-factorial design (CS+/CS-) × (A+/A-

) × (V+/V -) was represented by a separate regressor in the general linear model. 

Importantly, learning would be reflected by time-evolving, context-dependent brain 

responses to the visual stimuli. Learning is therefore a fourth experimental factor that 

changes, over time, how differential brain responses to visual stimuli depend on the 

presence of an auditory CS and whether it is presented in a CS+ or CS- context. 



 66 

Specifically, the emergence of these differential responses should follow the time-

course predicted by the RW model. In other words, learning is expressed as a 4-way 

interaction CS type × CS presence × visual outcome × RW learning6. The primary 

goal of our GLM analyses was therefore to test this interaction. To establish which 

CS was driving this interaction, we also tested the simple (3-way) interactions CS 

presence × visual outcome × RW learning within each CS type. Finally, to test for 

responses reflecting the prediction (j
tφ ) entailed by the auditory CS, independently 

of the prediction error ( j
tt φλ − ) elicited by the visual outcome, we tested the 3-way 

interaction CS type × CS presence × RW learning, which is independent of visual 

outcome. 

In order to test for these learning effects, the partial learning curves served as 

parametric modulators for their respective regressors. Given that each trial always 

had a trial onset cue, all 8 trial type regressors were modulated by the TO learning 

curve. Because the CS was present on only half the trials (A+ trials), these provided 

another 4 regressors, resulting in a total of 12 parametric modulators.  

The linear summation of these partial learning curves (as predicated by Equation 

3.2) was achieved by defining appropriate statistical contrasts for the general linear 

model. By assigning equal contrast weights to the regressors for both cue 

components (Table 3.2), it was possible to test for their summed influence, so that 

the interaction contrasts were effectively operating on the compound learning curves 

as shown in Figure 3B.  

 

                                                
6 Note that when the CS is absent on a specific trial, this trial can be assigned unambiguously to the 
CS+ or CS- factor because trials were blocked by CS type. 
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Figure 3.2. Cue-outcome association strengths. (A) Partial learning 

curves. Trial-specific cueing was modelled with two components: the visual trial 

onset cue (TO), which was present on every trial, and the auditory CS, which was 

present on half the trials. This allowed us to model learning effects on trials, when no 

CS was present. To yield the summed learning curves in (B) on each trial the 

associative strengths of the cues present on that trial are summed, as shown in 

Equation 3.2. For example, on a CS+A+ trial, both the auditory CS and the TO were 

present, therefore the total prediction would be the sum of the two blue curves. On a 

CS+A- trial, the auditory CS is not present, therefore the total prediction is identical 

to the light blue curve, as only the TO is present. These partial learning curves were 

used as regressors in the SPM analysis. Note that learning is slower in the absence of 

an auditory CS than in its presence and faster for CS+ than for CS- trials.  

 

Table 3.2. Contrast weights for parametrically modulated 

regressors. Contrast weights to test for the 4-way and 3-way interactions, across 

all 12 modulators. This contrast definition effectively linearly sums all parametric 

modulators per trial type as described by Equation 3.2. 

  CS+ block CS- Block 

  A+ A- A+ A- 

  V+ V- V+ V- V+ V- V+ V- 

TO -1 1 1 -1 1 -1 -1 1 
4-way interaction 

CS -1 1   1 -1   

TO 1 1 -1 -1 -1 -1 1 1 
3-way interaction 

CS 1 1   -1 -1   
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3.2.5.3 Prediction error versus prediction 

An important feature of our factorial design is that it enabled us to determine whether 

the responses of a particular brain region reflected the prediction of the visual target 

or the prediction error. This is important because one cannot include separate 

regressors based on predictions and prediction errors in the same design matrix. This 

is due to the form of the RW equation, in which predictions and prediction errors are 

perfectly correlated (within a given experimental condition), after mean-correction 

(see Appendix A for further details). However, in a factorial design like ours such a 

distinction can be made by analysing the pattern of parameter estimates across 

conditions, contrasting conditions that correspond to expected and unexpected cue-

outcome combinations. Specifically, the factorial design provided us, in a mirror-

symmetric fashion, with two expected outcomes and two unexpected outcomes for 

each CS type. For example, on CS+ trials, A+V+ and A-V - trials represented expected 

cue-outcome combinations (conditional probability = 80%) whereas A+V- and A-V+ 

trials consisted of unexpected cue-outcome combinations (conditional probability = 

20%); cf. Table 3.1). This means one can effectively compare expected and 

unexpected trials (with low and high prediction error, respectively), with a contrast 

that is orthogonal to the presence or absence of the visual outcome and its prediction. 

This enabled us to distinguish, voxel by voxel, brain responses that reflected 

expected visual outcomes from those that represented unexpected or surprising 

outcomes. During learning, brain regions encoding prediction errors should show 

increasing activation on trials where the outcome was unexpected according to the 

learned contingencies and decreasing (or non-changing) activation on trials where 

the outcome was expected. We will call such an activation pattern a "prediction error 

response"; this activation pattern would be expected if surprise was the driving force 

for learning. In this case, surprising events, or prediction errors, signal the need for 

learning in order to update predictions. This idea is not only a core component of 

associative learning models (Schultz and Dickinson, 2000;Shanks, 1995), but is also 

central to predictive coding theories of perception (Friston, 2005a;Rao and Ballard, 

1999): that the brain should concentrate resources on representing surprising sensory 

events. 

Note that our factorial analysis was not geared towards detecting prediction error 

responses only. It was equally capable of finding opposite activation patterns, i.e. 
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increasing activation on trials where the prediction based on the learned 

contingencies matched the outcome and decreasing (or non-changing) activation on 

trials where the prediction did not match the outcome (cf. Baier et al. 2006). Notably, 

for our particular design, both types of responses could be identified by the same 

statistical test, i.e. the 4-way interaction CS type × CS presence × visual outcome × 

learning (see above). Since it is only the direction of the interaction that differs 

between the two types of responses, our factorial design enabled an analysis that 

simultaneously tested for these two aspects of associative learning. 

3.2.6 DCM  

3.2.6.1 Choice of areas and time series extraction 

The goal of the present DCM analysis was to explain the (3-way) simple interaction 

CS presence × visual outcome × RW learning for CS+ trials in V1 (see SPM findings 

in the Results Section) by a simple model, in which the strength of the A1→V1 

connection was modulated as a function of the RW predictions, j
tφ  (i.e., learning 

curves; Figure 3.2). Representative A1 time-series were chosen by testing for the 

main effect of CS presence, and V1 time series were selected by testing for the 

simple interaction described above. We did not model the 4-way interaction with 

DCM because the SPM analysis showed that the learning effect was driven by the 

CS+ (see Section 3.3.1 for the full SPM results).  

As the exact locations of activation maxima varied over subjects, we ensured the 

comparability of our models across subjects by using combined anatomical-

functional constraints in selecting the subject-specific time series (cf. (Stephan et al., 

2007c)). Specifically, we thresholded the subject-specific SPMs at P<0.05 and chose 

the local maximum within 8 mm of the group activation maxima in primary auditory 

cortex (A1) and primary visual cortex (V1) as inferred by a probabilistic 

cytoarchitectonic atlas in MNI space (Eickhoff et al., 2005). As a summary time-

series, we computed the first eigenvector across all supra-threshold voxels within a 

radius of 4 mm around the chosen local maximum. Overall, we were able to extract 

time series in 14 out of 16 subjects. In 2 subjects, V1 could not be defined due to the 

lack of a significant interaction that met the anatomical and functional criteria 

described above. These 2 subjects were excluded from the DCM analysis. 
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3.2.6.2 DCM specification 

The question addressed by DCM was whether learning effects in V1 could be 

explained by changes in the connectivity of a simple auditory-visual network. Our 

DCMs modelled the entire time-series, i.e. data from all trials or conditions, trying to 

explain regional activations by condition-dependent changes in connectivity. We 

tested three simple models that could potentially account for the interaction we found 

in V1. These models were fitted separately to each subject's data and compared using 

BMS (Penny et al., 2004a). In these models, auditory and visual stimuli from all 

trials elicited activity directly in their respective primary sensory areas (see Figure 

3.3). These driving inputs were modelled as individual events. The first model only 

had a connection from A1 to V1, whereas the second and third model included the 

reciprocal connection (see Figure 3.4). The A1→V1 connection in model 1 and 2, 

and the V1→A1 connection in model 3 were modulated by the Hadamard product 

(point-wise multiplication) of the RW associative strength j
tφ  and a vector encoding 

visual outcome (1 for visual stimulus present, -1 for visual stimulus absent) during 

CS+ trials. In the first two models, this modulatory effect corresponds to the 

interaction of the auditory CS+ prediction with the visual outcome and models a 

learning-dependent contribution from CS+ responses in auditory cortex to visual 

cortex responses that depends on whether the visual stimulus was present or not (cf., 

a prediction error that rests on top-down signals from auditory areas). In the third 

model, which represented a control suggested by one of the reviewers, this 

modulatory effect acted on the reverse connection, i.e. V1→A1. 
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A1 V1

CS+ ×××× (V+ vs. V -) ×××× φφφφ

M1

A1 V1

CS+ ×××× (V+ vs. V -) ×××× φφφφ

M2

A1 V1

CS+ ×××× (V+ vs. V -) ×××× φφφφ

M3

A1 V1

CS+ ×××× (V+ vs. V -) ×××× φφφφ

M1

A1 V1

CS+ ×××× (V+ vs. V -) ×××× φφφφ

M2

A1 V1

CS+ ×××× (V+ vs. V -) ×××× φφφφ

M3

 

Figure 3.3. DCMs of learning effects on audio-visual connectivity. 

For all three models, the primary auditory (A1) and visual (V1) areas are both driven 

by their respective sensory inputs. The first model (M1) had a single connection from 

A1 to V1; in model 2 (M2), the V1→A1 connection was added. In both M1 and M2, 

the A1→V1 connection was allowed to change during CS+ trials as a function of the 

visual outcome (V+ vs. V-) and the Rescorla-Wagner learning curve (φ). This 

modulatory effect corresponds to the interaction of the auditory CS+ prediction with 

the visual outcome and models a learning-dependent contribution to V1 responses by 

CS+ related activity in A1; this contribution depends on whether the visual stimulus 

was present or not (in other words, a prediction error mediated by top-down signals 

from A1). In the third model, instead of the A1�V1 connection, the V1�A1 

connection is modulated by the learning signal.  

3.3 Results 

The post-scan debriefing questionnaire showed that none of the subjects had become 

aware of the contingencies between the auditory and visual stimuli. Prior to the fMRI 

data analysis subjects’ performance on the target detection task was verified. On 

average, subjects responded to 93 ± 3% of the target stimuli.  
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3.3.1 SPM results 

First, we examined the 4-way interaction CS type × CS presence × visual outcome × 

RW learning. We found learning-dependent responses in the primary visual cortex 

and bilateral putamen that survived whole-brain correction for multiple comparisons 

(see Figure 3.4 A, B). To characterise the nature of this interaction, we tested the 

simple interaction (CS presence × visual outcome × RW learning) within each CS 

type. This showed that the 4-way interaction was driven mainly by learning during 

the CS+ blocks (see Figure 3E for the parameter estimates of the visual cortex). As 

shown in Figure 3.4 A,B, testing the simple interaction for CS+ trials afforded 

almost identical results in the visual cortex and the putamen as the 4-way interaction 

(see also Table 3.3). In contrast, no evidence of learning, i.e. no significant 

interaction of CS presence and outcome with learning, was found for CS- trials. 

The nature of the simple 3-way interaction was such that V1 and the putamen 

showed an increased response when an expected visual stimulus was omitted, or 

when an unexpected visual stimulus was presented (i.e. A+V- and A-V+ trials). 

Critically, this response to surprising visual outcomes increased over time as the 

association was learned, following the form of the RW learning curve. Conversely, 

V1 responses to predicted stimuli diminished during learning. The putamen showed 

the same pattern of responses bilaterally; this activation extended into the insula 

bilaterally (see Table 3.3). 

Because previous studies have implicated the right DLPFC in prediction (error) 

processing (Corlett et al., 2004;Fletcher et al., 2001), we used an anatomically 

defined fronto-striatal mask to test the 3-way interaction CS type × CS presence × 

RW learning, which characterizes responses to the prediction entailed by the auditory 

CS, independent of the visual outcome. During learning, the right dorsolateral 

prefrontal cortex (DLPFC) became increasingly active when a visual stimulus was 

predicted compared with when it was not; activity was higher for CS+A+ and CS-A- 

trials compared with CS+A- and CS-A+ trials (compare the probabilities in Figure 

3.2). As above, we characterized the nature of the 3-way interaction by testing the 

associated simple interactions, confirming it was also driven by CS+ trials 

(Figure3.4 C). The same pattern of activation was found in the left putamen, but this 

activation did not survive correction for multiple comparisons.  
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Figure 3.4. fMRI results. (A) Significant activations in V1 as a function of 

RW learning, for the 4-way interaction (CS type × CS presence × visual outcome × 

RW learning; red), and the same interaction restricted to the CS+ trials (simple 3-way 

interaction, blue) displayed on the mean structural image across all subjects. The 

caudate activation is also shown. (B) The same interaction in the putamen bilaterally. 

(C). Significant 3-way interaction CS type × CS presence × RW learning in the 

DLPFC and left putamen (red). Again the interaction is driven by the CS+ trials, as 

shown by the simple interaction CS presence × RW learning for CS+ trials only 

(blue). (D) shows the parameter estimates for the 4-way interaction in peripheral V1: 

(CS type × CS presence × visual outcome × RW learning), where error bars denote 

standard error across subjects. For all trials on which an auditory CS was presented 

(A+), the modulatory effects of both the TO (light colours) and the auditory CS (dark 

colours) were estimated, whereas on A- trials only the TO was present. The estimates 

show that (mainly for CS+ trials, in blue), there is an increased (summed) response to 

trials with a surprising outcome, (for CS+ these are the A+V- and the A-V+ trials) 

and a decreased response to the unsurprising trials (A+V+ and A-V-). The activation 

in the putamen showed the same pattern of responses. (E) shows the parameter 

estimates for the 3-way interaction (CS type × CS presence × RW learning) in the 

dorsolateral prefrontal cortex (DLPFC). This represents increased responses when a 

visual stimulus was predicted to be presented, regardless of the visual outcome. 

Again, the estimates show that the interaction effect is mainly driven by CS+ trials 

(blue), showing an increased response to A+ trials.  
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3.3.1.1 Learning rate 

Following Gläscher and Büchel (Gläscher and Büchel, 2005) the optimal learning 

rate for the RW model was determined, evaluating the primary contrast of interest 

(that is the 4-way interaction in a random effects second level analysis) under 

different learning rates in the primary visual cortex (as defined by a probabilistic 

cytoarchitectonic atlas (Eickhoff et al., 2005). Model fits under five different 

learning rates, suggested that CSε = 0.075 was the optimal learning rate (for details on 

the selection of the learning rates, see Figure 3.2 and Section 3.2.5.1). Given that the 

learning effects were driven by the CS+ trials, we examined whether any learning 

effects could be detected for lower CS- learning rates. No learning effects were 

found at either a corrected level (P<0.05) or at an uncorrected level (P<0.001) for the 

CS- trials at either of the two lowered learning rates (1/3 and 2/3 of the original 

learning rate), either across the whole brain, or when restricted to those regions 

showing significant learning effects for CS+ trials (i.e., V1, the striatum and 

dorsolateral prefrontal cortex - DLPFC).  

Furthermore, none of the trial-type specific tests of the partial derivatives indicated a 

learning rate that was different from εCS=0.075 for the CS- or CS+ trials. If the 

learning rate had been set too high or too low, the parameter estimates for the partial 

derivative would have deviated significantly, across subjects, from zero. Again, this 

analysis was first performed across the whole brain and subsequently restricted to 

those areas in which significant learning effects had been found, and did not show 

any significant effects, neither at a corrected threshold (P<0.05) nor at uncorrected 

thresholds (P<0.001).  

Taken together, these additional analyses showed that a selective decrease of the 

learning rate for CS- trials did not improve our ability to detect learning effects 

during this trial type, and that there no evidence for either CS+ or CS- trials that a 

learning rate different from the chosen ε=0.075 is more appropriate for modelling 

learning effects in the data. This means that the lack of learning effects during CS- 

trials was not due to a suboptimal choice of learning rate for CS- trials. 
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Table 3.3. MNI coordinates and Z-values for significantly activated regions. 

 MNI coords.   

Foci of activation x y z Z score Cluster size 

Four-way interaction:  

CS type ×××× CS presence ×××× visual outcome ×××× RW learning 

L occipital lobe* -6 -75 -9 4.25 41 

L insula and putamen* -30 18 6 4.84 84 

 L putamen** -24 12 6 3.85 20 

R insula and putamen* 36 12 3 4.72 82 

 R putamen** 27 6 -3 4.48 35 

L caudate/thalamus* -9 -15 15 4.70 40 

L S2 cortex* -51 -27 24 4.39 93 

L middle temporal gyrus* -57 -39 -3 3.88 26 

Simple (3-way) interaction: 

 CS presence ×××× visual outcome ×××× RW learning (restricted to CS+) 

L occipital lobe* -9 -78 -3 4.31 36 

L insula and putamen* -33 12 3 4.55 57 

 L putamen** -27 12 6 3.63 10 

R insula and putamen* 36 12 3 3.98 57 

 R putamen** 27 9 0 3.94 32 

L caudate/thalamus* -21 -9 9 4.32 54 

 L caudate** -15 -9 21 4.19 14 

R caudate** 15 12 18 4.24 7 

L S2 cortex* -60 -33 15 4.15 87 

L middle temporal gyrus* -57 -36 -6 4.30 34 

R posterior insula* 39 12 -12 5.01 38 

3-way interaction:  

CS type ×××× CS presence ×××× RW learning 

R inferior frontal gyrus** 42 27 12 4.39 10 

*significant at P<0.05 (FWE whole-brain cluster-level corrected)  

** significant at P<0.05 (SVC) 

 

3.3.2 Learning dependent changes in connectivity 

Since the learning effect was mainly driven by CS+ blocks, we focused on changes 

in connectivity between auditory and visual cortices during incidental learning of the 

predictive attributes of CS+ trials (see Figure 3.5). Bayesian model comparison 

showed that a DCM with a single connection from A1 to V1 (model 1, cf. Figure 
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3.3) was superior to alternative models with reciprocal connections (GBF in favour 

of model 1: 2.1×1017 and 2.2×1018 when compared to model 2 and model 3, 

respectively). Across subjects, the A1→V1 connection in the optimum model had an 

average strength of 0.10 s-1 (P = 0.003, df = 13, t = 3.57). During CS+ trials, this 

connection was significantly modulated by learning, depending on whether the visual 

stimulus was present or not (i.e., CS+ × (V+ vs. V-) × φ in Figure 3.5). Note that the 

modulatory variable in the DCM corresponds to the interaction of the auditory 

prediction with the visual outcome during CS+ trials. It accounts for a learning-

dependent contribution from CS+ responses in auditory cortex to visual cortex 

responses that depends on whether the visual stimulus was present or not (cf., a 

prediction error mediated by top-down signals from auditory areas). Quantitatively, 

the strength of this modulation was -0.01 s-1 (P = 0.028, df = 13, t = 2.49). This 

corresponds to learning-induced changes in connectivity ranging from 2% (for 

CS+A- trials) to 8% (for CS+A+ trials)7 (Figure 3.5).  

Critically, the negative sign of the modulatory parameter reflects the nature of the 

visual responses to auditory afferents under CS+ trials: V1 responses to predicted 

visual stimuli diminished during learning and the DCM explained this through a 

decrease in the strength of the A1→V1 connection. This is exactly consistent with an 

increase in the ‘explaining away’ of predicted visual input under predictive coding; 

in other words, if top-down predictions jtφ  (see Equation 3.2) from auditory cues 

decrease the amplitude of V1 prediction error || j
tt φλ − , a better prediction 

corresponds to a decrease in effective connectivity. Conversely, V1 responses to 

unpredicted, (i.e., absent) visual stimuli increased during learning. This was 

modelled in the DCM through an increase in the A1→V1 connection strength; again 

this is consistent with an increase in V1 prediction error amplitude || j
tt φλ − , when 

predictions are violated. In summary, A1→V1 influences depended on whether the 

visual outcome was expected or surprising and were consistent with an ‘explaining 

away’ role. The emergence of this effect conformed to the learning curve provided 

by the RW model. 

                                                
7 As shown by Equation 3.2, the overall strength of a connection, given a single modulatory 
parameter, is the sum of the intrinsic connection strength (A) and the modulatory parameter (B) 
multiplied with its associated input (u). In the present case, the asymptotic magnitude of the input 
function is 0.8 for CS+A+ trials and 0.2 for CS+A- trials (see Figure 3.5). 
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Figure 3.5. Learning effects on audio-visual connectivity.  Bayesian 

model comparison showed that the DCM with a single connection from A1 to V1 

was superior to the other models. Across subjects, there was a significant 

"endogenous" or "fixed" strength of the A1→V1 connection (0.10s-1, P=0.003) and 

a significant learning-induced modulation (magenta arrows) of this connection 

(P=0.028). The insets show the parameter estimates for the main effects in both A1 

and peripheral V1. The magenta arrows indicate how the main effect in peripheral 

V1 is modulated by changes in connectivity from A1 to V1 during CS+ trials: over 

time the response to surprising visual outcomes is up-regulated, whereas the response 

to unsurprising visual outcomes is down-regulated. Note that in this plot the magenta 

arrows designate the direction in which V1 responses change due to modulation of 

connectivity; for quantitative information on this modulatory effect, see the main 

text. 

3.4 Discussion 

McIntosh and colleagues showed that after a predictive relationship between an 

auditory stimulus and a visual stimulus had been learned, the auditory stimulus alone 

was able to evoke responses in the visual cortex (McIntosh et al., 1998). The current 

study extended this work, pairing a visual stimulus with a predictive auditory 

stimulus in a 4-factorial design, with the factors CS type (CS+, CS-), CS presence 

(A+, A-), visual stimulus presence (V+, V-) and learning (over time). Both CS+ and 

CS- blocks were exactly balanced in terms of sensory stimulation, so that the a priori 
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probabilities of the auditory CS and of the visual stimulus occurring on a given trial 

were always 50%. Critically, the volunteers did not make any responses to the 

stimuli whose associations were being learned; instead, they performed a target-

detection task on unrelated stimuli. Our factorial design enabled us (i) to characterise 

changes in neurophysiological responses due to learned associations that were 

incidental to behaviour, and (ii) to investigate whether activity in specific brain areas, 

and the connection strengths amongst them, reflected a match between predictions 

and outcome or prediction errors respectively. 

The results demonstrate that during incidental learning of audio-visual associations 

changes in both regional activity and underlying connectivity reflect prediction 

errors. Furthermore, learning-dependent responses in visual cortex were elicited, 

even in the absence of visual stimuli. This finding can be explained by changes in 

top-down influences from auditory regions that are consistent with predictive coding 

models of perceptual inference. 

3.4.1 RW model: predictions & prediction error 

The goal of this study was not to pinpoint the exact mathematical form of learning by 

comparing different models of associative learning. Instead, we focused on changes 

in regional activity and interregional connectivity that could be explained by a 

specific learning model, namely the RW model. The RW model is a generic and 

well-established model of associative learning that has been successful in modelling 

a wide range of learning processes (Pearce and Bouton, 2001;Rescorla and Wagner, 

1972;Schultz and Dickinson, 2000). We chose this model because it is the simplest 

learning model appropriate for our particular paradigm. In the absence of interactions 

among multiple cues per trial, the RW model is mathematically equivalent to a 

Hebbian model of associative learning (Montague and Berns, 2002). A crucial aspect 

of our paradigm, however, is that on each trial the net prediction resulting from two 

interacting cue components (the auditory CS and the visual trial onset cue) must be 

considered (see Methods Sections for details). This excludes the use of any 

associative learning model that cannot accommodate cue interactions (e.g. Hebbian 

models). In contrast, the RW model accommodates this aspect gracefully.  

The RW model has one problematic limitation, however: as detailed in Appendix A, 

in its equation predictions and prediction errors are perfectly correlated under mean-
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correction. In situations where mean-correction is mandatory (e.g., when using them 

to form interaction terms) this makes it impossible to disambiguate/interpret their 

contributions to a dependent variable. However, the factorial design in our study 

allows us to circumvent this problem, as it comprises conditions that correspond to 

congruent and incongruent prediction/outcome combinations, respectively. 

Analysing the 4-way interaction between our experimental factors, we found that 

responses in the primary visual cortex and the putamen were sensitive to surprising 

events; over time, these areas became significantly more active when presented with 

a surprising cue-outcome combination. Learning was stronger for the CS+ blocks 

than for the CS- blocks, which is in line with previous behavioural evidence 

(Fletcher et al., 2001;Wasserman et al., 1993). Previous fMRI studies in humans 

have demonstrated that BOLD activity in the striatum is correlated with (signed) 

prediction errors during reinforcement learning (Jensen et al., 2007;McClure et al., 

2003;Menon et al., 2007;O'Doherty et al., 2004;O'Doherty et al., 2003;Seymour et 

al., 2004) and other associative learning tasks (Corlett et al., 2004). In these studies, 

the learned associations, and the sign of the resulting prediction errors, were of direct 

relevance for behaviour. The current study shows that the putamen is sensitive to 

unexpected outcomes even when the cue-stimulus association is learned incidentally 

and has no relevance to behaviour. However, in contrast to the previous studies, the 

pattern of putamen activity does not appear to be sensitive to the direction of the 

prediction error, only to its amplitude. This difference may reflect the fact that 

learning was perceptual as opposed to operant. In other words, the occurrence of an 

unpredicted or surprising event may play the role of negative reward, irrespective of 

whether the surprising event entailed the presence of absence of a stimulus. This 

issue will be discussed further in the Section on predictive coding below.  

3.4.2 Role of prediction errors beyond reinforcement learning 

Our finding that learning-induced responses in primary visual cortex and the 

putamen reflected prediction errors accords with a basic principle emerging from 

many previous studies: prediction errors, or surprise, constitute a driving force for 

learning because they signal the need for learning in order to update predictions 

(Schultz et al., 1997;Schultz and Dickinson, 2000;Shanks, 1995). Although the role 

of prediction errors has been mainly explored for reinforcement learning so far, there 
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is growing evidence that prediction errors may be equally important for learning 

statistical relationships that are affectively neutral and behaviourally irrelevant. In 

other words, the same mechanisms that optimise the learning of stimulus-response 

links may operate during the perceptual learning of stimulus-stimulus associations 

(Friston, 2005a;Rao and Ballard, 1999). Evidence that organisms learn predictive 

associations between initially neutral stimuli is seen in classical conditioning effects 

such as sensory preconditioning (Brogden, 1939). Some forms of sensory learning 

also exhibit such features, e.g. the mismatch negativity paradigm, in which responses 

to sensory stimuli decrease with predictability (Baldeweg, 2006;Friston, 2005a), 

regardless of whether stimuli are attended. A mechanism similar to predictive coding 

has been proposed in the motor domain for cancellation of self-generated events 

(Blakemore et al., 1998;Shergill et al., 2005;Wolpert et al., 1995). Moreover, the 

learning of predictive relationships that are affectively neutral and task-irrelevant 

may engage similar computational and neural mechanisms as those for predicting 

significant events (Wittmann et al., 2007;Zink et al., 2006).  

The results of the present study support the notion that the role of prediction errors in 

learning transcends the simple reinforcement of stimulus-response links and plays a 

more pervasive and general role in various forms of learning. Indeed a hallmark of 

adaptive systems is their ability to minimise surprising exchanges with their 

environment (Friston et al., 2006). This entails adjustments to their internal models 

of the environment so that potentially surprising event can be predicted. Almost 

universally, this adjustment involves changes in the system's connections; it is 

therefore perhaps a little surprising that most previous imaging studies on learning 

and conditioning have exclusively searched for brain areas whose activity correlated 

with specific variables of a particular learning model (e.g., prediction or prediction 

error), but have not investigated how these variables change interactions among areas 

(although some studies have investigated learning-dependent changes in connectivity 

without using a learning model; (Büchel et al., 1999;McIntosh et al., 1998)). Changes 

in connectivity are central to the physiological implementation of learning; it has 

long been suggested that plasticity in connection strengths between neurons underlies 

the learning of predictive associations (Hebb, 1949). Put simply, two neural units 

encoding associated entities increase their synaptic connections to encode the learned 

associative strength of the stimuli. More precisely, for RW and similar ‘caching’ 
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models (Daw et al., 2005) the connection strength at time t should carry the predicted 

association at time t (McLaren et al., 1989;Schultz and Dickinson, 2000). This 

hypothesis requires models of effective connectivity, in which connection strengths 

vary as a function of the associative strength predicted by the learning model. To our 

knowledge, the present study has implemented this approach for the first time, 

modelling how learning, as described by a RW model, modulates the effective 

connectivity, as assessed by a DCM, between primary auditory and visual areas. 

3.4.3 Changes in connectivity between auditory and visual areas 

In accordance with the considerations above, we investigated whether the learning-

related changes in visual cortex responses could be explained by a simple model of 

effective connectivity, in which the strength of A1→V1 connection changed as a 

function of the associative strength predicted by the RW model. We modelled 

observed responses in the primary visual cortex by means of a simple 2-area DCM in 

which activity in the visual cortex was modelled by two components, (i) a direct 

effect of visual stimulation and (ii) a modulation of the A1→V1 connection by the 

interaction of the time-evolving prediction with the visual input (in CS+ blocks; see 

Figure 6). Across subjects, this DCM showed a significant change in the strength of 

the A1→V1 connection congruent with the pattern of responses in V1: the A1→V1 

connection strength increased on trials where the visual outcome did not match the 

auditory prediction and decreased on trials where prediction and outcome matched. 

In other words, the learning-induced changes in A1→V1 connection strength 

reflected the same pattern of surprise or prediction errors as the regional activity in 

V1. This demonstrated that the response of V1 to visual stimuli was modulated by 

learning-dependent changes in top-down auditory influences that were consistent 

with the notion of predictive-coding, a general framework for perceptual inference 

and learning that is discussed in the next section (Friston, 2005a). 

Although connections in models of effective connectivity do not need to correspond 

to monosynaptic anatomical connections, it is of interest to note that the surprise-

related response in visual cortex appears to be in the peripheral visual field (Figure 

3.3 A), and anatomical connections from primary auditory cortex to peripheral visual 

cortex have been demonstrated in recent monkey studies (Falchier et al., 

2002;Rockland and Ojima, 2003). Additionally, numerous fMRI studies have 
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demonstrated that auditory stimulation or auditory attention affect activity in visual 

cortices during simultaneous processing of visual stimuli (e.g. (Baier et al., 

2006;McIntosh et al., 1998;Watkins et al., 2006)). 

3.4.4 Predictive coding in visual cortex 

In previous neurophysiological studies of reinforcement learning, a negative 

prediction error, i.e. the unexpected absence of a reinforcer (e.g. a reward), often led 

to a decrease in neuronal or BOLD activity (McClure et al., 2003;Schultz, 

1998;Tobler et al., 2007). Such directed excursions are thought to reflect the fact that 

the prediction error is a signed quantity: it signals not just that predictions need to be 

updated, but in which direction. In contrast, in our study we found an increase in 

striatum and visual cortex activity not only for unexpectedly presented stimuli, but 

also for the unexpected absence of a stimulus. Similarly, the strength of the A1→V1 

connection decreased whenever the visual outcome was expected, and it increased 

whenever the outcome was surprising.  

A useful perspective that explains our two main findings (the implicit encoding of 

surprise by V1 responses and its mediation by learning-dependent changes in input 

from the auditory cortex) is provided by the framework of predictive coding. 

Predictive coding posits a hierarchy of connected brain areas in which each level 

strives to attain a compromise between information about sensory inputs provided by 

the level below and predictions (or priors) provided by the level above (Friston, 

2003;Murray et al., 2002;Rao and Ballard, 1999;Summerfield et al., 2006). The 

central learning principle is to establish a good model of the world, which is achieved 

by changing connection strengths such that prediction errors are minimised at all 

levels of the hierarchy. The hierarchy of a predictive coding architecture is often 

defined anatomically (in terms of forward and backward connections) and within one 

sensory modality, but it is equally possible to examine cross-modal predictive coding 

relationships (cf. (von Kriegstein and Giraud, 2006)). In the present study, a temporal 

hierarchical relation between auditory and visual areas is induced by presenting the 

auditory cue prior to the visual stimulus. 

Predictive coding may be a general principle of brain function in which statistical 

relationships in the world are monitored, even when they are not attended and not 

relevant for ongoing behaviour. This would allow the brain to ignore predictable and 
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therefore uninteresting events in the environment, thereby enhancing the saliency of 

unexpected events. A good example of this notion is given by the so-called mismatch 

negativity (MMN), the difference between the event-related potential to an 

unexpected "deviant" and predictable "standard" stimuli (Naatanen et al., 2001). 

Importantly, the relationship between the MMN and learning was not established on 

the basis of behavioural data; in fact, it was initially not even recognised (Naatanen 

et al., 1978). This relationship was only subsequently inferred from striking 

relationships between the probability of deviants and neurophysiological time-series 

(e.g. (Csepe et al., 1987;Pincze et al., 2002). Current theories of MMN, which 

interpret it as a paradigmatic example of learning based on predictive coding 

(Baldeweg, 2006;Friston, 2005a), have recently received empirical support by DCM 

studies of electroencephalographic measurements (David et al., 2006;Garrido et al., 

2007). These studies demonstrated that MMN can be understood as a prediction error 

signal, which results from deviant-induced changes in inter-regional connection 

strengths. A similar conclusion is offered by the present study. Here, we found that, 

at least during CS+ trials, BOLD responses in area V1 increased when the prediction 

provided by the auditory cue did not match the subsequent visual stimulus 

(analogous to MMN elicited by deviants). This surprise signal progressively 

increased as the predictive properties of the auditory cue were learnt. Moreover, in 

direct analogy to DCM studies of the MMN (David et al., 2006;Garrido et al., 2007), 

we found a decrease in the A1→V1 connection strength on "standard" trials (where 

the prediction by the auditory cue was correct), and an increase on "deviant" trials 

where the visual outcome did not match the prediction by the auditory cue. In the 

context of predictive coding, learning involves a more efficient suppression of 

sensory events, which is manifest by an apparent reduction in evoked responses, 

mediated by top-down predictions (which explain away bottom-up sensory 

afferents). Within the framework of our bilinear DCM, this is modelled as a decrease 

in top-down effective connectivity for visual stimuli that match the current 

prediction. 

3.4.5 Limitations and future directions 

We conclude this chapter by discussing a number of limitations of the present study. 

First, because we wished to study brain responses to stimulus associations that were 
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irrelevant to behaviour, we did not obtain behavioural evidence for learning. Instead, 

as with the MMN paradigm described above, learning is characterised 

neurophysiologically as a change in activity over time. Chapter 4 will describe the 

results of a follow up experiment with stimuli that do require a behavioural response 

and thus provide a behavioural assessment of the learning process. It might be useful 

to emphasise that a neurophysiological characterisation of incidental associative 

learning processes only requires that the statistical associations between the CS/US 

stimuli are irrelevant for task performance. In contrast, it is not essential that the CS 

and US stimuli themselves are behaviourally irrelevant. In fact, the stimuli had some 

behavioural relevance insofar as they constitute distractors to which responses must 

be suppressed. 

Secondly, the  DCM presented here does not make any assumptions about where in 

the brain the predicted associative strength is calculated; i.e. which brain area exerts 

the modulatory influence onto the A1→V1 connection. Given the responses that 

were observed in the putamen, it is possible that the modulation of the A1→V1 

connection is mediated via this region. Testing this hypothesis, however, requires the 

inclusion of non-linear terms in the neuronal state equation of DCM which goes 

beyond its bilinear mathematical framework. Chapter 2 described a nonlinear 

extension of DCM (Stephan et al., 2008), which allows one to investigate the source 

of the modulatory influences. Chapter 4 describes how this approach has been 

applied to a different associative learning study. Nevertheless, notwithstanding these 

limitations, the current study has presented a novel combination of dynamic system 

models and formal learning theory, which were used to model human neuroimaging 

data. This is a further step towards the long-term goal of constructing invertible 

models that unite the neurophysiological and computational aspects of learning (cf. 

(Stephan, 2004)).  
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Chapter 4 

4.  Striatal Prediction Error Activity Drives Cortical Connectivity Changes During Associative Learning  

Striatal Prediction Error Activity Drives Cortical 
Connectivity Changes During Associative Learning 

Abstract 

Both perceptual inference and motor responses are shaped by our 

estimates of probabilistic relations among events in the world. Here, 

we investigated how (failures of) learned predictions about sensory 

stimuli influence subsequent motor responses. In an associative 

learning paradigm auditory cues differentially predicted subsequent 

visual stimuli. Critically, the predictive strengths of cues were 

unknown and varied over time, requiring subjects to continuously 

update estimates of stimulus probabilities. This dynamic inference, 

which we modeled using a hierarchical Bayesian observer, was 

reflected behaviourally: speed and accuracy of motor responses 

significantly increased with trial-by-trial predictability of visual 

stimuli. Dynamic causal modeling of fMRI data showed that activity in 

the putamen (i) increased the more surprising the current visual 

stimulus was and (ii) enhanced the strength of connections from visual 

areas to dorsal premotor cortex by non-linear gating. Thus, the degree 

of striatal trial-by-trial prediction error activity controlled the plasticity 

of visuo-motor connections.  

 

4.1 Introduction  

One of the major reasons for the remarkable flexibility and adaptive repertoire of 

human behaviour is that the human brain can construct, and rapidly update, estimates 

of conditional probabilities that describe causal relationships in the world. For 
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example, human subjects can infer changing conditional probabilities among sensory 

events (Behrens et al., 2007;Brodersen et al., 2008), even when these probabilities 

are currently not relevant for behaviour (den Ouden et al., 2009). Such learning of 

stimulus probabilities has been shown to be reflected by activity changes in visual 

(Summerfield et al., 2008;Summerfield and Koechlin, 2008), auditory (Pincze et al., 

2002) and somatosensory areas (Akatsuka et al., 2007). The general principle, across 

all modalities, is that sensory responses increase with the size of prediction error, i.e. 

the more surprising they are. This is in accordance with current theoretical accounts 

of brain function, e.g. predictive coding (Friston, 2005a;Rao and Ballard, 1999), 

which posit a fundamental role of prediction errors for adaptive behaviour and 

learning. 

Efficient learning of probabilities can be used to form predictions which guide motor 

behaviour. For example, once the predictive strength of a cue has been learned, the 

premotor cortex shows preparatory activity (Crammond and Kalaska, 2000;Tanji and 

Evarts, 1976;Wise and Mauritz, 1985) and reaction times decrease (e.g. (Bestmann et 

al., 2008;Requin and Granjon, 1969;Strange et al., 2005).  

A critical question is what neurobiological mechanisms underlie the adaptive 

changes in motor behaviour that are needed when predictions fail, e.g. in rapidly 

changing environments. According to predictive coding theories, any prediction error 

should induce learning and thus synaptic plasticity, reconfiguring connection 

strengths in somato-motor networks such that prediction error is eventually 

minimised both at sensory and motor levels (Friston and Stephan, 2007). In a similar 

vein, Bestmann et al. (Bestmann et al., 2008) suggested that "... the brain tries to 

minimise prediction error ... that is then continuously channelled into motor regions 

to control the excitability of expected motor outputs". In this study, we provide direct 

empirical evidence for this idea, exploiting recent advances in computational models 

of learning (Behrens et al., 2007) and nonlinear  DCMs of fMRI data (Stephan et al., 

2008). In particular, we link the physiological mechanisms proposed by predictive 

coding, i.e. prediction error dependent changes in connectivity, to a large body of 

literature which have described prediction error responses in the striatum (Corlett et 

al., 2004;Jensen et al., 2007;McClure et al., 2003;Menon et al., 2007;O'Doherty et 

al., 2004;O'Doherty et al., 2003;Seymour et al., 2004). Specifically, we show that the 

observed learning-dependent changes in BOLD activity are compatible with a 
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mechanistic model in which the strengths of visuo-motor connections are modulated 

by prediction error related activity in the striatum. 

4.2 Methods & Statistical analysis  

Twenty healthy right-handed volunteers, 24.4 ± 2.1 years of age, (mean age ± SD, 10 

female) took part in this study. The participants had no history of psychiatric or 

neurological disorders. Written informed consent was obtained from all volunteers 

prior to participation, which was approved by the National Hospital for Neurology 

and Neurosurgery Ethics Committee. 

The central idea of this paradigm was to present participants with auditory stimuli 

that differentially predicted upcoming visual stimuli. Participants had to report 

whether the visual stimulus was a face or a house. They were instructed that the 

relation between auditory and visual stimuli was probabilistic, that these probabilistic 

relations were changing unpredictably in time and that there was no underlying rule 

to be learned or discovered. They were neither informed about the magnitude or 

distribution of the probabilistic relations nor about the temporal intervals at which 

they changed.  

4.2.1 Conditioning 

On each trial, one of two auditory cue stimuli (CS1 and CS2) was followed by a 

visual target stimulus (Figure 4.1A). Participants were instructed to respond as 

quickly as possible by button press (right middle and index finger, counterbalanced 

across subjects) and report whether the target stimulus was a face (F) or a house (H). 

Auditory and visual stimuli were presented for 300 ms and 150 ms, respectively. In 

order to prevent automatic responses or guesses, both the inter-trial interval (2000 ± 

650 ms) and visual stimulus latency (150 ± 50 ms) were jittered randomly (Figure 

4.1A).  

The two tones differentially predicted the identity of the visual target stimulus, and 

these contingencies were changing in time (Figure 4.1B). Because each CS was 

followed by one of two stimuli (F or H), the probability of one visual stimulus, given 

a particular auditory CS, was one minus the probability of the other visual stimulus: 
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( | ) 1 ( | ),   {1,2}i ip F CS p H CS i= − ∈      (4.1) 

To prevent that participants' responses could be biased by learned expectations (e.g. 

about the relative frequencies of the visual stimuli), we constrained the sequence of 

changes in probabilities such that at any point in time the marginal probabilities of 

faces and houses were identical. First, the probability of one visual outcome given 

CS1 was the same as the probability of the other visual outcome given CS2 (compare 

Figure 4.1B): 

1 2( | ) ( | )p F CS p H CS=       (4.2) 

Secondly, each block contained equal numbers of randomly intermixed CS1 and CS2 

trials. With these two manipulations, we ensured that on any given trial, before the 

CS was presented, the a priori probability of a face (or house) occurring was always 

50%. Thus, any expectations about the visual stimulus could exclusively be evoked 

by and were time-locked to (the onset of) the auditory stimulus.  

Each subject completed five sessions of 200 trials each. In each session, the 

predictive strengths of the two CS types were changing pseudorandomly over time, 

taking one of 5 different discrete levels of predictive association; the probability of 

the visual outcome stimulus (poutcome) could be (i) strongly predictive (p = 0.9), (ii) 

predictive (p = 0.7), (iii) non-predictive (p = 0.5), (iv) anti-predictive (p = 0.3), and 

(v) strongly anti-predictive (p = 0.1). Each predictive level was presented as a block 

of stimuli once per scanning session. Predictive block lengths varied between 14-20 

trials per CS type, so that participants could not predict when exactly a change in 

contingencies would occur. Furthermore, blocks with predictive cues alternated with 

short blocks (6-10 trials) containing non-predictive cues (i.e. p = 0.5) in order to 

avoid complete reversals of the contingencies.  
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Figure 4.1. Experimental design. (A) Timeline for a single trial. At trial 

onset the auditory cue stimulus (CS) was presented for 300 ms. The visual stimulus 

lasted for 150 ms and was presented 150 ± 50 ms after the CS. The inter-trial interval 

lasted for 2000 ms on average (± 650 ms). (B) Temporal evolution of the probability 

of a face, p(F), occurring given either CS. Note that the probability of a house being 

presented is simply the mirror image of this sequence.  

 

4.2.2 Stimuli  

Eight pictures of neutral facial expressions drawn from the Ekman Series of Facial 

Affect (Ekman and Friesen, 1976) and eight pictures of houses were used as visual 

stimuli. Stimuli were matched for overall luminance and presented on a gray 

background. The auditory stimuli were matched for perceived loudness under 

scanning conditions as described previously (Chapter 3). The frequencies of the 

auditory stimuli used in this experiment were 1125 Hz and 500 Hz, and the adapted 

volume of the high tone was 98 ± 4.1 % (mean ± SD) with respect to the low tone. 

To maintain identical visual input conditions, all visual stimuli were presented 
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centrally and for a duration of 150 ms to prevent saccades, and subjects were 

required to fixate a central cross throughout the experiment. Stimuli were presented 

using the software package Cogent (www.vislab.ucl.ac.uk/Cogent). 

4.2.3 fMRI Data Acquisition 

A 3 Tesla head scanner (Allegra Magnetom, Siemens Medical, Erlangen, Germany) 

was used to acquire a T1-weighted fast-field echo structural image and multi-slice 

T2*-weighted echo-planar volumes with blood oxygenation level dependent (BOLD) 

contrast (TR = 2.73 sec, TE = 30 ms). Furthermore, prior to the functional scans, a 

B0 field map was acquired using a gradient echo field map sequence. Functional data 

were acquired in five scanning sessions of approximately eight minutes each. 189 

volumes were acquired per session (945 scans in total per subject). The first six 

volumes of each session were discarded to allow for T1 equilibrium effects. Each 

functional brain volume comprised 42 axial slices with 2 mm thickness and a 2 mm 

inter-slice gap and an in-plane resolution of 3x3 mm. The field of view was chosen 

to cover the whole brain, except for the brainstem. The total duration of the 

experiment was approximately 90 minutes per subject. 

4.2.4 Data Analysis 

4.2.4.1 Behavioural data analysis 

First, the data were screened for outliers in reaction times. Responses faster than 150 

ms were excluded. We then tested whether the distributions of reaction times (RT) 

and response speeds (RS; i.e. inverse reaction times) showed significant deviations 

from normality using a Kolmogorov-Smirnov test. Since RS, but not RT, were well 

described by a Gaussian distribution, the former were entered into a repeated-

measures analysis of variance (ANOVA) with outcome probability, CS type 

(CS1/CS2) and outcome type (F/H) as within-subject factors. The Greenhouse-

Geisser correction was employed where significant non-sphericity was detected. We 

tested for any main effects and interactions between these factors that were expressed 

in the RS. Furthermore we also assessed the main effect of outcome probability on 

error rates.  
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4.2.4.2 Bayesian learning model 

The above ANOVA indicated that there was a significant acceleration of reactions 

with increasing probability (for details, see Results Section 4.3 and Figure 4.3C). 

This simple linear model of the behavioural data is not very realistic, however, 

because it assumes instantaneous and precise knowledge of the probabilities that 

generated the stimulus sequence. In reality, the participants had to estimate these 

unknown probabilities from the observed stimulus sequence. One possibility is that 

subjects behave like Bayesian observers which continually update their estimates of 

the hidden contingencies by combining prior information from the past with current 

observations in the present. As described in Chapter 1, in standard Bayesian 

observer models, the learning rate, and thus the relative influence of past vs. current 

observations on the estimates, is unchanging. This, however, is not an ideal approach 

for our experimental paradigm where the underlying probabilistic associations are 

changing in an unknown and irregular fashion. In such an environment, an optimal 

learner would not only estimate the probabilities, but also their instability in time, i.e. 

volatility, and would increase the weight of current observation relative to past 

experience with increasing volatility of the environment.  

Behrens et al. (2007) developed a hierarchical Bayesian learning model that 

represents such an ideal observer (Behrens et al., 2007). Given a series of observed 

events, this model estimates, at any given point in time, the posterior probability 

density function (PDF) of both the probabilistic associations and the volatility of the 

environment (Figure 4.2). Here, we adopted this model (see Appendix B for 

implementation details) and used the posterior mean of the PDFs as estimates of the 

probability and volatility. In order to verify that the probability estimate of this 

Bayesian model were better linear predictors of the behavioural RS than the true 

probabilities that generated the stimulus sequence, we used Bayesian model selection 

as described in the next section. Given the clear superiority of probability estimates 

from the Bayesian model in explaining the behavioural data, they were subsequently 

used in the analyses of the fMRI data.  
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Figure 4.2. Trial-by-trial probability and volatili ty estimates. (A, 

top): evolution of the posterior probability density function (PDF) of p(F|CS1) across 

the entire experiment. (A, bottom) The posterior mean of p(F|CS1) (solid line) for 

session three clearly tracks the underlying blocked probabilities (dashed line). 

Because blocks of stable probabilities are short, however, the estimated probabilities 

never quite reach their true values during a given block. Note that the estimates 

change rapidly at block transitions. When an unexpected stimulus occurs, the 

estimates briefly move towards p = 0.5 (visible as "spikes" in the trajectory of the 

posterior mean). 

(B, top) The posterior PDF of the volatility shows the initially high uncertainty about 

the volatility of the environment, which converges in the course of the experiment. 

The estimated posterior mean of the volatility (B, bottom) decreases over the course 

of a block, particularly when the probability is very high or very low (p = 0.9 and p = 

0.1), and spikes between blocks. Additional spikes within blocks are present when an 

unexpected stimulus occurs. 

4.2.4.3 Bayesian model selection (BMS) 

When comparing different models for observed data, it is critical that the decision is 

not only based on the relative fit, but also on the relative complexity of the 

competing models (Pitt and Myung, 2002). For comparing competing models, both 

of behavioural and of fMRI data, BMS provides a principled foundation for such 

model comparisons (Penny et al., 2004a). In this study, we used a novel hierarchical 
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method for BMS that allows for group-level random effects inference about the 

relative goodness of multiple competing models (cf. Chapter 2 and (Stephan et al., 

2009)). In brief, for all models considered we computed the evidence ( | )p y m , i.e. 

the probability of the data y being generated by model m, for each subject. 

Integrating out the model parameters, the model evidence balances fit and 

complexity, enabling one to compare non-nested models with different levels of 

complexity. For the linear models that were applied to the behavioural data, there is 

an analytic expression for the model evidence (see Chapter 2 for details). For the 

nonlinear  DCMs of the fMRI data described below, we used the negative free 

energy approximation to the log model evidence (cf. (Friston et al., 2007;Stephan et 

al., 2007d). 

Subsequently the models were compared at the group level, using a new method for 

random effects BMS (Stephan et al., 2009). This method uses hierarchical variational 

Bayes to infer the posterior density of the models per se. This rests on treating the 

model as a random variable and estimating the parameters α of a Dirichlet 

distribution describing the models' probabilities r. One can then use the cumulative 

probability density of );|( αyrp  to quantify an exceedance probability kϕ , i.e. our 

belief that a particular model k is more likely than any other model (of the K models 

tested), given the group data. Exceedance probabilities are particularly intuitive when 

comparing two models (as in our analysis of the behavioural data; see Figure 4.3D). 

For example, when comparing two models, m1 and m2, the probability that m1 is a 

more likely model than m2 can be written as  

1 1( 0.5 | ; )p r yϕ α= >        (4.3) 

This hierarchical Bayesian approach has been shown to be considerably more robust 

than either the conventional fixed effects analysis using group Bayes factors (Penny 

et al., 2004a), or frequentist tests applied to model evidences, especially in the 

presence of outliers (Stephan et al., 2009). 

4.2.4.4 Functional neuroimaging analysis 

fMRI data were analysed using the SPM5 software package (Wellcome Trust Centre 

for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). The 915 EPI 

images from each subject were corrected for geometric distortions caused by 
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susceptibility-induced field inhomogeneities. A combined approach was used which 

corrects for both static distortions and changes in these distortions due to head 

motion (Andersson et al., 2001;Hutton et al., 2002). The static distortions were 

calculated for each subject by acquiring a B0 field map and processing it using the 

FieldMap toolbox implemented in SPM5 (Hutton et al., 2004). The images were then 

realigned and unwarped using SPM5 (Andersson et al., 2001) which allows the 

measured static distortions to be included in the estimation of distortion changes 

associated with head motion. The data were temporally interpolated, using the 

middle slice in time as a reference, to account for slice-timing effects. The structural 

image was then coregistered with the mean unwarped functional image and 

processed using the unified segmentation procedure implemented in SPM5, with the 

default tissue probability maps. This procedure combines segmentation, bias 

correction and spatial normalization through the inversion of a single unified model 

(Ashburner and Friston, 2005). The same normalisation parameters were then 

applied to normalise the unwarped and realigned EPI images. Finally the EPI images 

were smoothed spatially with a three-dimensional Gaussian kernel of 8 mm full 

width half maximum and re-sampled to 3x3x3 mm voxels.  

The data were then modelled voxel-wise, using the GLM for each of the 20 

participants. In the GLM, correct and error trials were modelled as separate events. 

For correct trials, face and house trials were modelled as the two main conditions of 

interest. These were collapsed across the two different CS types, because the 

predictive strengths of the two CSs were counterbalanced over time and thus no 

differential effects were to be expected (analysis of the behavioural data also 

indicated the absence of such effects). Condition-specific effects were modelled in an 

event-related fashion, convolving a sequence of delta functions with a canonical 

hemodynamic response function. The probability estimates from the Bayesian 

observer as well as the subject-specific response speeds were included as first-order 

parametric modulators of face and house trials such that the delta functions 

representing the presence of a face were modulated by the trial-specific probability 

estimate that a face should have occurred on this trial (equivalently for house trials). 

We also included the volatility estimates from the Bayesian observer as parametric 

modulators (orthogonalised to the probability estimates). Finally the 6 parameter 
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vectors from the realignment procedure were included as regressors of no interest to 

account for variance caused by head motion.  

After computing subject-specific contrast images of interest, random effects group 

analyses across all 20 subjects were performed (Friston et al., 2005), using one-sided 

one-sample t-tests and testing for both positive and negative activations. We report 

any activations that survived whole brain correction at the cluster-level (P<0.05). For 

anatomically constrained a priori hypotheses concerning stimulus-specific visual 

areas, putamen and ACC, we used masks and report activations that survived 

correction at the cluster-level within the region of interest (P<0.05). For the putamen 

and ACC, these masks were generated using the PickAtlas toolbox (Maldjian et al., 

2003); for stimulus-specific visual areas, we used in-built localiser contrasts that 

were orthogonal to all other contrasts of interest. 

Firstly we assessed the main effect of probability, that is, in which brain regions the 

activity reflected the probability of the stimulus occurring, independently of which 

stimulus it was. We tested both for activations that increased with the likelihood of 

the outcome and for activations that increased the less likely, i.e. more surprising, the 

outcome was. In other words, this contrast tested for stimulus-independent responses 

that reflected predicted or surprising outcomes, respectively. Given the results from 

our previous study (den Ouden et al., 2009), our a priori hypothesis was that activity 

in the putamen would increase the more surprising the outcome was.  

Secondly, we tested for stimulus-by-probability interactions, that is, probability-

dependent responses that differed between faces and houses. Our a priori hypothesis 

was that activity in stimulus-specific areas should scale inversely with the probability 

of the presented stimulus. In other words, responses of the fusiform face area (FFA) 

to face stimuli should decrease the more likely the presentation of a face had been on 

a given trial, and responses of the parahippocampal place area (PPA) to houses 

should decrease with the probability of a house being presented. This can be 

regarded equivalently as testing for surprise-dependent increases in the activity of 

stimulus-specific areas. To accommodate inter-subject variability in the exact 

location of FFA and PPA, we performed a region-of-interest analysis. Concerning 

the functional definition of FFA and PPA, we did not need a separate localiser scan 

since our factorial design provided an in-built localiser contrast (i.e. the main effect 
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of faces versus houses). Note that this contrast is orthogonal to the contrast testing 

for interactions and can thus be used to define regions of interest. In each subject the 

individual maximum within an 8 mm radius from the group maximum of face- and 

house-specific responses (see Table 4.1) was determined. Subsequently, given these 

voxels with individually maximal stimulus-specificity, we tested for (orthogonal) 

stimulus-by-probability interactions by entering the parameter estimates of regressors 

encoding trial-by-trial stimulus probability estimates into two-tailed one-sample t-

tests. In other words, this procedure tested whether face- and house-specific 

responses in FFA and PPA, respectively, were modulated by the trial-by-trial 

probability estimate of a face or a house occurring. 

4.2.4.5 Nonlinear DCMs 

Numerous studies have demonstrated previously that activity in the putamen reflects 

prediction errors or surprise (e.g. (den Ouden et al., 2009;Jensen et al., 

2007;McClure et al., 2003;O'Doherty et al., 2004;Pessiglione et al., 2006)). 

According to theoretical models of learning, the size of prediction errors should 

control the magnitude of synaptic plasticity, and thus changes in connection strength, 

that underlies the learning process (Friston, 2005a;McLaren et al., 1989;Schultz and 

Dickinson, 2000). In this study, we tested this notion directly by modelling how 

activity in the putamen gated the information flow from visual areas to the dorsal 

premotor cortex (PMd; Figure 4.5). We expected that increased activity in the 

putamen, induced by a surprising face, should gate the strength of the FFA→PMd 

connection, thus enhancing the influence of face information on PMd activity and 

facilitating an update of the motor plan. This type of analysis, which requires one to 

study non-linear (second order) modulatory effects on connectivity, has become 

possible with the recent introduction of nonlinear DCMs described in Chapter 2 

(Stephan et al., 2008). 

4.2.4.5.1 DCM specification 

Based on our SPM results, we constructed a nonlinear DCM including the right 

putamen, PPA and FFA, and the left PMd. As shown in Figure 4.4 and Table 4.1, 

several other areas showed a surprise dependent response and are likely to be 

involved in the visuomotor transformation; the present model with the above four 

regions should be regarded as the most parsimonious model that enabled us to test 
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whether surprise-related activity in the putamen gated visuomotor connections. 

While putamen, FFA and PPA showed peak activations in the right hemisphere, we 

included the left premotor cortex as participants were responding with their right 

hand.  

We constructed and compared several alternative models. A basic DCM shown by 

Figure 4.5A included connections from FFA and PPA to the PMd, and modulations 

of these connections by activity in the putamen, which was driven by the trial-by-

trial probability estimates provided by the Bayesian learning model. The endogenous 

connectivity structure of this DCM was subsequently optimised systematically by 

BMS (see Figure 4.5 for a graphical representation of all models tested).  

After the endogenous connections had been optimised, we conducted a final and 

critical model comparison. Since the putamen and the PMd showed similar surprise–

related activations (Figure 4.4), we wanted to establish the specificity of our model 

and demonstrate that putamen activity gated visuo-motor connections, instead of 

PMd gating visuo-putamen connections. We therefore tested a DCM, in which the 

roles of the PMd and the putamen were reversed, and in which PMd activity 

modulated the connection between the visual areas and the putamen (Figure 4.5C). 

4.2.4.5.2 Time series extraction 

Since the exact locations of activation maxima varied across participants, we ensured 

the comparability of our models across participants by combining anatomical and 

functional constraints in selecting the subject-specific time series (cf. (Stephan et al., 

2007c)). In brief, a regional time series was extracted if (i) it passed a threshold of 

P<0.05 (uncorrected) and (ii) was located within the same anatomical structure as 

and within a certain radius from the group maximum. For FFA and PPA (identified 

by the contrast testing for main effect of faces vs. houses, F>H and H>F, 

respectively) the individual maxima were required to be within an 8 mm radius 

around the group maxima. For the putamen and PMd (identified by the contrast 

testing for a [negative] main effect of probability) the individual maxima were 

required to be within a 16 mm radius around the group maximum (PMd) and within 

the putamen as defined by the participants’ individual structural scan. As a summary 

time series, we computed the first eigenvector across all supra-threshold voxels 

within a radius of 4 mm around the chosen local maximum. Overall, following this 
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procedure, we were able to extract time series for all four areas in 15 out of 20 

participants. We could not obtain a putamen time series in three participants and a 

PMd time series in two participants due to the lack of an activation that met the 

anatomical and functional criteria described above. Since we could not specify the 

complete model in these participants, they were excluded from the DCM analysis. 

4.3 Results 

4.3.1 Behavioural data  

On average, subjects responded correctly on 91 ± 3.4% (mean ± SD) of the trials, on 

5% of the trials they gave the wrong response or pressed multiple buttons, and on the 

remaining 4% they did not respond before the end of the trial.  

Averaging reaction times (RT) across the blocks of different association levels 

showed that subjects did learn the changing contingencies, such that subjects 

responded faster to more likely outcomes (Figure 4.3A). The difference in average 

RT between unexpected (p = 0.1) and expected outcomes (p = 0.9) across subjects 

was 32 ms (Figure 4.3A). However, the Kolmogorov-Smirnov test for normality 

showed that the RT distributions differed significantly from a normal distribution in 

13 out of 20 subjects; they were skewed towards the larger RT (P<0.05, Bonferroni 

corrected). However, in accordance with previous work (e.g. Carpenter & Williams 

1995), response speed (RS) distributions were not significantly different from normal 

in all but 4 subjects, and therefore these were used for further analysis.  

A repeated measures ANOVA significantly refuted the null hypothesis that RS did 

not differ across experimental conditions (F(2.4; 45.4)=43.9; P<0.001). A post hoc t-

test showed that RS increased linearly with the probability of the outcome target 

(P<0.001, Figure 4.3A). Furthermore, subjects responded slightly faster to faces than 

to houses, (P<0.05), and slightly faster to trials with a high-frequency CS compared 

to trials with a low-frequency CS (P<0.05). However, in neither case was there an 

interaction with probability (F=1.03; P=0.4 and F=0.69; P=0.6), nor a threeway 

interaction between all factors (F=1.17, P=0.33), showing that there was no 

differential learning for the different event types. A repeated measures ANOVA also 

rejected the null hypothesis that error rates did not differ across experimental 
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conditions (F(1.5; 334.0)=12.52; P<0.001). Again, there was a significant main effect 

of probability (P<0.001), such that subjects made more errors to more unexpected 

outcomes (Figure 4.3B).  

Finally, we used BMS to decide whether the trial-by-trial probability estimates of the 

Bayesian learning model or the true (but unknown) probabilities that had generated 

the stimulus sequence were better linear predictors of the RS. The distribution of the 

log evidences across subjects (Figure 4.3C) and the subsequent BMS at the group 

level indicated that the Bayesian learning model was vastly superior: the exceedance 

probability in favour of the Bayesian learning model was 100% (Figure 4.3D).  
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Figure 4.3. The effect of outcome probability on RTs and error 

rates. RTs (A) and percentage of errors (B) are shown as a function of outcome 

probability (mean ± standard error (SE)). Correct trials were averaged within each 

level of probability and collapsed across CS and visual outcome type (F/H). Subjects 

speed up and make fewer errors the higher the probability of the outcome. (C) 

Difference in log model evidence for using the trial-by-trial probability estimates 

from the Bayesian model versus the true probabilities as linear predictors for 

behavioural measured response speeds. In all but two subjects, there is greater 

evidence for the Bayesian model. (D) The Dirichlet density describing the probability 

of model m1 (based on the probability estimates from the Bayesian learning model) 

relative to the alternative model m2 (based on the true, blocked probabilities), given 

the measured response speeds across the group. The shaded area represents the 

exceedance probability of m1 being a more likely model than m2. This exceedance 

probability of Φ1 = 100.0% was strongly favouring m1 as a more likely model than 

m2. 
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4.3.2 Analyses of fMRI data 

The main results of our SPM analysis are summarised graphically in Figure 4. 4. 

Note that panels A, B and F show the results of a whole-brain analysis, whereas 

panels C, D, E and G result from region of interest analyses that were either defined 

by orthogonal localiser contrasts (panels C and D) or an anatomical mask (panel 

E,G); see the Section 4.2 for details. 

The key questions of interest for this study is characterization of stimulus-

independent and stimulus-specific surprise responses and connectivity analyses. For 

completion, the results of additional analyses are reported, including a detailed 

analysis of the main effects of the stimuli as well as an analysis of regional responses 

associated with the volatility of the probabilistic associations. Although the use of a 

volatile environment was not a phenomenon of primary interest for this study, but 

merely a means of enforcing continuous learning (and thus maximising induction of 

synaptic plasticity and hence connectivity changes), it is noteworthy that our analysis 

of volatility effects replicated previous results by Behrens et al. (2007).  

4.3.2.1 Stimulus main effects in FFA and PPA 

As expected, the mid fusiform gyrus was activated more strongly to face stimuli than 

to house stimuli (FFA, Figure 4.4A and Table 4.1), and the parahippocampal gyrus 

showed the opposite effect (PPA, Figure 4.4B and Table 4.1). In the random effects 

analysis main effect for houses in the PPA has a much greater spatial extent than the 

main effect for faces in the FFA. This is possibly due to the greater variability in the 

location of the FFA than the PPA: At the group level the FFA activation is 

significant at whole brain corrected level only in the right hemisphere, but at the left 

FFA is significant within an ROI for the fusiform gyrus (Table 4.1).  

4.3.2.2 Regional responses reflecting stimulus-independent surprise 

Activity in the bilateral putamen decreased significantly with increasing probability 

of the visual stimulus, regardless whether face or house stimuli were presented 

(Table 4.1 and Figure 4.4E). In other words, putamen activity increased the more 

surprising the presented stimulus was, given the trial-by-trial probability estimates of 

the Bayesian learning model. Several areas that are involved in preparation of motor 

responses showed equivalent stimulus-independent surprise-related responses. These 
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included the left dorsal premotor cortex (PMd), right intraparietal sulcus and right 

superior parietal gyrus (Table 4.1 and Figure 4.4F). The homotopic counterparts of 

these areas in the opposite hemisphere also showed increased responses to surprising 

stimuli, but these activations did not survive whole brain correction (Table 4.1).  

4.3.2.3 Surprise-related responses in stimulus-specific areas 

Using the main effect of stimuli, we functionally defined FFA and PPA in each 

participant (for details on group main effects, see supplementary material). In each 

subject, we then determined the peak voxels in right FFA and right PPA that showed 

maximally selective face and house responses, respectively, and tested for 

(orthogonal) stimulus × probability interactions, i.e. a difference in the modulation of 

stimulus-specific responses by the probability of that stimulus occurring. In the FFA, 

there was a pronounced negative modulation of its responses to faces by the trial-by-

trial probability estimates for faces (β = -2.05 ± 0.52). In other words, FFA responses 

to faces increased with the magnitude of prediction error, i.e. the more surprising the 

occurrence of a face was. In contrast, the modulation of FFA responses to houses by 

the trial-by-trial probability estimates for houses was marginal (β = -0.09 ± 0.78; see 

Figure 4.4C). This interaction was significant (p = 0.037). 

When examining activity in PPA, we found that its responses to houses showed a 

strongly negative modulation by the trial-by-trial probability estimates for houses (β 

= -2.29 ± 0.54; see Figure 4.4D). That is, in analogy to the FFA results, PPA 

responses to houses increased the more surprising the presentation of a house was. In 

contrast, PPA responses to faces were positively modulated by the trial-by-trial 

probability estimates for faces (β = 1.91 ± 0.67); this corresponds to a decrease in 

activity the more surprising the presentation of a face was. Again, as for FFA, this 

interaction was significant (p < 0.001).  

In summary, responses of PPA and FFA to their preferred stimuli were strongly 

modulated by surprise (or prediction error) about these stimuli (i.e. showed a 

negative modulation by trial-by-trial probability estimates for these stimuli as 

provided by the Bayesian observer model), and this modulation by surprise was 

significantly higher than for their non-preferred stimuli.  
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4.3.2.4 Volatility dependent brain activations 

For completion, we also tested in which areas activity increased or decreased with 

the trial-by-trial volatility estimates. Following the results by Behrens et al., (2007), 

who demonstrated that ACC activity correlated with volatility estimates during 

reward learning, we tested whether volatility encoding in the ACC would also be 

present in our learning paradigm which did not include any rewards. Indeed, activity 

in the dorsal and rostral ACC and the ventromedial prefrontal cortex correlated 

significantly with the volatility estimates (Table 4.1 and Figure 4.4G). 
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Figure 4.4. Main effects and modulation of outcome stimulus 

processing. All parameter estimates show mean ± SE across all subjects and all 

activations are displayed on the average anatomical scan. A) Main effect of F>H in 

the right FFA, also showing the left FFA activation (see supplementary material). B) 

Main effect of H>F in the bilateral PPA. C) Parameter estimates across subjects 

(located at the individual maxima in the F>H contrast in the FFA) of the modulatory 

effect of stimulus probabilities. There was a pronounced negative modulation of FFA 

responses to faces by the trial-by-trial probability estimates for faces (β = -2.05 ± 

0.52). In contrast, the modulation of FFA responses to houses by the trial-by-trial 

probability estimates for houses was marginal (β = -0.09 ± 0.78). This interaction 

was significant (p = 0.037). D) Parameter estimates across subjects (located at the 

individual maxima in the H>F contrast in the PPA) of the modulatory effect of 

stimulus probabilities. PPA responses to houses showed a strongly negative 

modulation by the trial-by-trial probability estimates for houses (β = -2.29 ± 0.54). In 

contrast, PPA responses to faces were positively modulated by the trial-by-trial 

probability estimates for faces (β = 1.91 ± 0.67). This interaction was significant (p < 

0.001). (E, top) Bilateral effect of surprise in the anterior putamen. (Bottom) 

Parameter estimates from the putamen showing the negative dependency on both 

p(F) and the p(H). (F, top) Bilateral effects of surprise in dorsal premotor cortex 

(PMd) and the parietal cortex. (Bottom) Parameter estimates for the left PMd, 

showing the same surprise dependent effect as the putamen. G) Parametric 

modulation of the VMPFC/ ACC by volatility.  
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Table 4.1. MNI coordinates and Z-values for significantly activated regions. 

 MNI coords.  

Foci of activation X y z Z score 

Surprise effects: negative correlation with p(F) and p(H) 

Motor areas     

L precentral gyrus (dorsal 
premotor cortex)* 

-18 -18 60 4.13 

R precentral gyrus (dorsal 
premotor cortex)** 

33 -15 57 3.40 

R intraparietal sulcus* 42 -33 39 4.02 

L intraparietal sulcus ** -42 -39 39 3.72 

R superior parietal gyrus* 15 -60 63 4.16 

L superior parietal gyrus** -15 -57 63 3.42 

Striatum     

R putamen**  27 3 6 3.42 

L putamen**  -24 15 3 3.39 

Probability effects: positive correlation with p(F) and p(H) 

No significant activations.     

Volatility effects: positive contrast 

Ventromedial prefrontal ctx* 3 48 -9 3.64 

ACC**  -12 45 9 4.11 

Ventral ACC / subgenual ctx **  -6 36 -3 3.57 

L caudate/thalamus* -21 -9 9 4.32 

Volatility effects: negative contrast 

No significant activations.     

Main effects of sensory stimulation 

House>Face     

R parahippocampal gyrus* 30 -51 12 7.01 

L parahippocampal gyrus* -24 -57 -18 6.70 

Face> House     

R mid fusiform gyrus* 45 -57 -24 5.42 

L amygdala* -21 -12 -9 4.31 

L mid fusiform gyrus**  -45 -54 -21 3.47 

* significant at P<0.05 FWE cluster-level corrected across the 
whole-brain 

** significant at P<0.05 cluster-level corrected for a priori region 
of interest 
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4.3.3 Nonlinear DCM 

Based on our SPM results, we constructed a nonlinear DCM including the right 

putamen, PPA and FFA, and the left PMd as parsimonious model for testing whether 

surprise activity in the putamen gates visuomotor connections. This initial DCM 

included connections from FFA and PPA to PMd and a modulatory influence from 

the putamen on these connections (Figure 4.5 - m1), and thus included the minimal 

number of connections necessary to test the hypothesis. All additional models were 

derived by expanding this basic architecture. Hierarchical BMS was then used to 

select the optimal model at the group level (Stephan et al., 2009).  

In a first step, all possible combinations of endogenous connections between the 

PPA, FFA and PMd were compared using Bayesian model comparison (Figure 4.5 - 

m1-4). Compared to all other models, there was greater evidence for the model with 

full connectivity between all these areas (Table 4.2). Model 4, including full 

reciprocal connectivity between the sensory and premotor areas was clearly the best 

model (exceedance probability φ 4 = 0.99).  

In a subsequent step, two more models were tested to look at endogenous 

connections to the putamen from the sensory and premotor cortex. Firstly a model 

was tested in which connections from the sensory areas to the putamen were 

included, to test whether there was any direct influence of these areas on the putamen 

(Figure 4.5 - m5). This model turned out to be worse than the model that did not 

include these connections (φ4 = 0.99). Secondly, because there are known to be direct 

projections from the premotor cortex to putamen (Leh et al., 2007;Takada et al., 

1998), m6 included a direct connection from the PMd to the putamen (Figure 4.5 - 

m6). Here, the evidence for m4 was still greater than for m6, although less decisively 

than for the other models (φ4 = 0.64). Note that this does not mean that this 

connection does not exist anatomically, but just that it is unlikely to play a major role 

in the process modelled here.  
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Figure 4.5. DCMs tested to establish the optimal endogenous 

connectivity. Set of 6 DCMs testing the hypothesis that the putame modulates 

connectivity between the sensory and motor cortices, designed to establish the 

optimal endogenous connectivity. The dotted lines are the connections that are 

included in addition to the most parsimonious model m1. m4 was the optimal model 

(see main text). 

Table 4.2. BMS with regard to endogenous connectivity between PPA, FFA and 

PMd 

  Dirichlet 
parameters α 

Exceedance 
probability φφφφ 

m 1 1.79   0.00 

m 2 5.79 0.15 

m 3 1.81 0.00 

m 4 9.62 0.84 

 

Thus, the optimal model was a model with reciprocal connections between PMd, 

FFA and PPA (see Figure 4.6A). In this model, the parameter estimates that 
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described gating effects of putamen activity on visuo-motor connections, were 

consistently positive across subjects (PPA→PMd: d = 0.01 ± 0.003 (mean ± SE), p = 

0.010; FFA→PMd: d = 0.011 ± 0.004, p = 0.017). Therefore, in accordance with our 

hypothesis, prediction error related activity in the putamen significantly modulated 

the strength of visuo-motor connections. 

However, because putamen and PMd showed similar surprise–related activations (cf. 

Figure 4.4), it was necessary to demonstrate the specificity of our model and exclude 

the possibility that, instead of putamen activity gating visuo-motor connections, the 

PMd might be gating visuo-putamen connections. Therefore a final crucial model 

comparison was made to verify the directionality of the putamen influence. In this 

model (m7) the role of the putamen and the PMd were swapped, such that PMd 

activity modulated the connection between FFA/PPA and the putamen (Figure 

4.6C). BMS showed that this reversed model was clearly inferior to the original 

model; the exceedance probability that the data were more likely to have been 

generated by the original model rather than by the reversed model, was 99% (Figure 

4.6D). Finally, Table 4.3 we report a final comparison of all models at once, 

showing once more that m4 is the optimal model.  

Table 4.3. BMS among all tested DCMs 

  Dirichlet 
parameters α 

Exceedance 
probability φφφφ 

m 1 1.55   0.02 

m 2 3.60   0.16 

m 3 1.57   0.02 

m 4 4.82   0.36 

m 5 2.83  0.08 

m 6 4.12   0.23 

m7 3.50 0.14 
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Figure 4.6. DCMs testing the respective roles of putamen and 

PMd. A) A basic DCM (cf m1, Figure 4.5) for investigating modulation of visuo-

motor connections by prediction error related activity in the putamen. B) The optimal 

DCM (cf m4, Figure 4.5), resulting from a systematic model search procedure, 

included full connectivity between the PMd, PPA and FFA. Activity in the putamen 

significantly enhanced the connections from the PPA/FFA to the premotor cortex: p 

= 0.010 and p = 0.017 for the modulation of the PPA→PMd and FFA→ PMd, 

respectively. C) Alternative DCM in which the roles of the putamen and the PMd 

were swapped (cf m7, Table 4.3). D) The Dirichlet density describing the probability 

of model m4 (panel B) relative to the alternative model m7 (Panel C), given the 

measured fMRI data across the group. The shaded area represents the exceedance 

probability of m4 being a more likely model than m7. This exceedance probability of 

Φ1 = 99.1% was strongly favouring m4 as a more likely model than m7. 
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4.4 Discussion 

In this study, we used an associative learning paradigm in which auditory cues 

differentially predicted subsequent visual stimuli (faces or houses) to which subjects 

made a speeded response. We ensured that on any given trial the a priori probability 

of a face (or house) occurring was always 50%. Thus, any expectations about the 

visual stimulus were entirely dependent on the auditory cue. Critically, the predictive 

strengths of cues were unknown and varied over time, requiring subjects to 

continuously update their estimates of cue-stimulus associations and thereby 

maximising demands on changes in network connectivity via synaptic plasticity. We 

modeled this dynamic inference process using a hierarchical Bayesian observer that 

inferred the associations from the observed cue-outcome combinations, taking into 

account the volatility of the environment (Behrens et al., 2007). These trial-by-trial 

probability estimates were subsequently used as predictor variables in the analysis of 

both behavioural and fMRI data. Behaviourally, speed and accuracy of motor 

responses significantly increased with trial-by-trial predictability of visual stimuli 

(Figure 4.3). Analysis of the fMRI data showed that FFA and PPA reflected 

prediction errors that were specific for their preferred stimulus (Figure 4.4A,B). In 

contrast, both the putamen and dorsal premotor cortex represented stimulus-

independent prediction errors in that their activity increased the more surprising the 

current visual stimulus was regardless of its type (Figure 4.4E,F). Comparing a 

series of nonlinear DCMs by Bayesian model selection, we found that the activity in 

dorsal premotor cortex was best explained by a model in which prediction error 

related activity in the putamen enhanced the strength of connections from FFA and 

PPA to premotor cortex by a non-linear gating mechanism (Figure 4.5).  

Two recent studies have shown that during learning of stimulus probabilities visual 

areas show increased responses to unexpected visual outcomes (den Ouden et al., 

2009;Summerfield and Koechlin, 2008). Both studies, however, only used a single, 

and relatively unspecific, stimulus type (squares and gabor patches, respectively). It 

thus remained unclear whether this represented a general, stimulus-independent or a 

stimulus-specific surprise response. Moreover, the probabilities used remained 

stationary throughout both studies. An additional limitation of the previous study 

(den Ouden et al., 2009;Summerfield and Koechlin, 2008) was that it investigated 

incidental learning of stimulus associations and could thus not provide direct 
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behavioural evidence for learning. All of the above limitations were avoided by the 

design of the current study. 

Our present results show a double dissociation among face- and house-specific areas 

that represents a stimulus-specific surprise response (Figure 4.4A-D). While FFA 

responses to faces increased with the magnitude of prediction error, i.e. the more 

surprising the occurrence of a face was, its responses to houses were unaffected by 

prediction error. In PPA, responses to houses increased with the magnitude of 

prediction error whereas responses to faces even decreased with prediction error. In 

both cases, this stimulus × probability interaction was significant. 

In contrast to the visual areas, the bilateral putamen, left dorsal premotor cortex, right 

intraparietal sulcus and superior parietal gyrus showed a stimulus-independent 

prediction error response (Figure 4.4F). That is, whenever an unexpected stimulus 

was presented, independently of whether this was a face or house, the activity in 

these areas increased. The parietal activations are co-extensive with the dorsal visual 

stream and play an important role in attentional reorientation (Corbetta and Shulman, 

2002). Their increased activity in response to surprising stimuli may therefore reflect 

increased attention to the unexpected visual stimuli. In contrast, the surprise-related 

activity in the premotor cortex is more likely to reflect the updating of the motor plan 

that becomes necessary when the prediction evoked by the auditory cue turns out to 

be wrong (Mars et al., 2007;Nakayama et al., 2008). Finally, prediction error 

responses in the putamen (Figure 4.4E) have been reported by numerous previous 

studies, and for very different types of learning. This suggests that the putamen is 

generally sensitive to violations of learned contingencies, whether these 

contingencies signal reward (Jensen et al., 2007;McClure et al., 2003;Menon et al., 

2007;O'Doherty et al., 2004;O'Doherty et al., 2003;Seymour et al., 2004), guide 

decision making (Corlett et al., 2004), or predict target stimuli (as in the current 

study), and even when these contingencies are not behaviourally relevant at all (den 

Ouden et al., 2009).  

The above considerations imply that the increase of premotor activity for surprising 

visual outcomes could at least partially be due to a re-weighting of stimulus-specific 

visual inputs that is controlled by the degree of prediction error encoded by activity 

in the putamen. In other words, the strength of connections from FFA and PPA to 
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premotor cortex, which provide information about the appropriateness of the planned 

action, might change from trial to trial, depending on the mismatch between 

predicted and observed visual outcome that is signalled by the putamen. To address 

this hypothesis, we used a recently developed nonlinear  DCM (Stephan et al., 2008), 

which allowed us to model how connections from FFA and PPA to premotor cortex 

were modulated or gated by ongoing activity in the putamen. Anatomically, there are 

indirect projections from the putamen to the premotor cortex via the thalamus 

(Alexander and Crutcher, 1990;Schultz, 2000) which could mediate this gating 

process. To demonstrate the directionality of this mechanism, we compared this type 

of model to a control model in which the role of the putamen and premotor cortex 

were reversed, i.e. the connections from visual areas to the putamen were now 

modulated by premotor activity (Figure 4.6C). Bayesian model selection showed 

that the original model was clearly superior to the alternative one (Figure 4.6D).  

Previous neurophysiological and neuroimaging investigations of associative learning 

have focused on identifying region-specific prediction error responses, e.g. in the 

ventral tegmental area (D'Ardenne et al., 2008;Yacubian et al., 2006) or the striatum 

(Corlett et al., 2004;Jensen et al., 2007;McClure et al., 2003;Menon et al., 

2007;O'Doherty et al., 2004;O'Doherty et al., 2003;Schultz and Dickinson, 

2000;Seymour et al., 2004;Tobler et al., 2006), but have not investigated effects of 

prediction errors on connectivity. An exception was the precursor to the present 

study (den Ouden et al., 2009). As in the present study, this previous work used an 

audio-visual associative learning paradigm and found a prediction error response in 

the putamen bilaterally and in visual cortex. However, the DCM in this previous 

study only described an anatomically uninformed influence of prediction errors per 

se on connectivity, but did not specify their source, because the required nonlinear 

models where not yet established at the time of analysis.  

To our knowledge, the present study is the first to demonstrate that trial-by-trial 

prediction error related activity in a specific region (here the putamen) controls the 

plasticity of connections among other regions. This is in accordance with several 

theoretical concepts which have proposed that learning should be implemented 

neurophysiologically by prediction error dependent synaptic plasticity (Friston, 

2005a;McLaren et al., 1989;Schultz and Dickinson, 2000). Deploying synaptic 

plasticity depending on the magnitude of prediction error is an intuitively sensible 
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mechanism: the larger the prediction error, the greater the need for changing one's 

predictions and hence to reorganise the neuronal system producing these predictions. 

The model in the present study represents prediction error dependent learning as a 

nonlinear (second order) interaction between outputs from FFA/PPA and putamen 

that target the dorsal premotor cortex. Several neurobiological mechanisms for this 

type of plasticity have been suggested by invasive recordings studies, including 

nonlinear dendritic integration of inputs due to voltage-dependent ion channels or 

activation of dendritic calcium conductances by back-propagating action potentials 

(for details and references, see (Stephan et al., 2008)). 

In summary, the present study has used a combination of fMRI, computational 

learning models and DCM to demonstrate that learning-induced synaptic plasticity in 

the human brain during a simple audio-visual association learning task can be 

characterized in terms of prediction error dependent changes in effective 

connectivity. Such approaches may become useful for model-based inference about 

neurophysiological processes that cannot usually be studied non-invasively but are of 

clinical importance, such as synaptic plasticity and its regulation by neuromodulatory 

transmitters (Stephan et al., 2006). An important future step will be to combine 

model-based approaches as the present one with pharmacological designs that 

manipulate prediction error dependent changes in plasticity. 
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Chapter 5 

5.  Amygdala Modulates Cortico-Striatal Connections During Fear Acquisition 

Amygdala Modulates Cortico-Striatal Connections During 
Fear Acquisition 

Abstract 

This DCM study is based on a dataset which has previously been 

analysed using conventional statistical parametric mapping by Petrovic 

et al. (Petrovic et al., 2008). In the original study the authors focussed 

on the role of the fusiform gyrus and the amygdala in processing of 

learned affective values for faces. In the current study the acquired 

fMRI data were reanalysed, focussing on the role of the amygdala in 

CS+ processing. In this reanalysis, using DCM and BMS, we 

compared different putative mechanisms of amygdala involvement in 

learning the CS+US association. Specifically, we investigated 

amygdala-dependent gating of corticostriatal connections during 

processing of CS+ stimuli.  

5.1 Introduction  

A wealth of research in both animals and humans have identified a critical role of the 

amygdala in Pavlovian fear learning, in which an affectively neutral conditioned 

stimulus (CS) is presented with an aversive unconditioned stimulus (US), such as an 

electric shock (e.g. see(LeDoux, 2003;Maren, 2001)). After a number of paired 

presentations, a CS alone elicits a fear response, such as freezing or increased 

sweating. Amygdala damage in both humans and animals results in severely 

impaired fear conditioning (Bechara et al., 1995;Blair et al., 2005;LaBar et al., 1995). 

For example, LaBar et al showed reduced conditioned skin conductance responses to 

a CS associated with a loud noise burst in unilateral temporal lobectomy patients 

with temporal lobe epilepsy patients (LaBar et al., 1995).  
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The exact details of the physiology of fear learning mechanisms in the amygdala are 

yet to be elucidated, but it is generally agreed that sensory information from the 

cortex and thalamus is received by the basolateral part of the amygdala (Delgado et 

al., 2006). The lateral part especially is considered as the ‘gatekeeper’ to the 

amygdala (LeDoux, 2007). The underlying mechanism of the CS+ induced activity 

might be as follows: CS-US convergence induces synaptic plasticity in lateral 

amygdala such that after conditioning CS information is conveyed more effectively 

by the lateral amygdala, via intra-amygdala connections, to elicit activation in the 

central amygdala. The central amygdala is normally only activated by behaviourally 

relevant USs, as it interfaces with the motor system and prefrontal areas, controlling 

the expression of conditioned behavioural and autonomic fear responses (LeDoux, 

2007). 

In humans, a number of studies have shown differential responses in the amygdala to 

stimuli that have been associated with an aversive outcome (CS+), compared to 

stimuli that do not predict an aversive stimulus (CS-). However, while all studies 

show overall increased activity in the amygdala to the CS+ compared to the CS- (e.g. 

(Buchel et al., 1998;LaBar et al., 1998;Marschner et al., 2008;Tabbert et al., 2005)), 

the precise timecourse of these differential responses is variable. Several studies have 

reported an initial increase in the response to CS+ stimuli in the amygdala, followed 

by a later decrease (Buchel et al., 1998;LaBar et al., 1998;Marschner et al., 2008) 

whereas some studies show a differentiation between CS+ and CS- during the late 

acquisition phase, such as a study by Tabbert et al. where differentiation between 

CS+ and CS− within the amygdala was observed during a late acquisition phase 

(Tabbert et al., 2005). One explanation for these inconsistent results could be that the 

speed of learning differs between these different paradigms.  

Learning speed will depend on several features of the conditioning paradigm, 

including the similarity of the CS+ and CS-, the aversiveness of the US, and the 

reinforcement schedule. Easily differentiated CSs with deterministic reinforcement 

schedules are likely to induce very fast learning, and might show differentiation 

within the first couple of trials (e.g. (Marschner et al., 2008)). A complementary 

explanation could be that two processes evolve simultaneously in different parts of 

the amygdala that cannot be resolved at the spatial resolution of human fMRI. 

Results in favour of this suggestion come from rodent studies, in which single cell 
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recordings in the dorsal subnucleus of the lateral amygdala in rats during fear 

conditioning showed differential responses in two distinct cell populations (Repa et 

al., 2001). Cells in the dorsal tip of lateral amygdala, exhibited short-latency 

responses (<20 ms) that were only transiently changed. Cells in the more ventral part 

of the lateral amygdala, had longer latency responses, but maintained enhanced 

responding throughout training. This sustained response could reflect the fear/anxiety 

induced by the CS+, whereas as Marschner et al. suggest, the transient signal is 

reminiscent of prediction error response (Marschner et al., 2008): The amygdala 

encodes sensory contingencies to rapidly learn CS–US associations, so that when the 

CS is first paired with the US, this surprising stimulus elicits a large response, but 

when the CS-US association is subsequently learned, little response is elicited and 

the response decreases. However, to fully test for such a prediction error response, 

one would have to test not only the learned response to a presented US, but also to its 

absence. In the study by Marschner et al. this was not possible because the CS+ was 

always followed by a US.  

The study presented here is a reanalysis of a previously published dataset (Petrovic et 

al., 2008). We used a refined model for the initial SPM analysis, obtaining results 

that go beyond those reported by Petrovic et al. and support the prediction error 

hypothesis proposed by Marschner et al. (Marschner et al., 2008). In a subsequent 

step, we used DCM to investigate the mechanisms of how fear learning in the 

amygdala can influence corticostriatal processing of conditioned stimuli. It has long 

been thought that the amygdala guides and initiates motor responses to affective 

stimuli, with the ventral striatum playing a pivotal role as the interface between the 

extended amygdala and motor systems coordinating responses to conditioned stimuli 

(e.g. (Haber et al., 1995;Mogenson et al., 1980)). More specifically, it has been 

suggested that output from the basal amygdala to the striatum controls actions in 

response to conditioned stimuli ((LeDoux, 2007). In the present study, we therefore 

compared a set of nonlinear DCMs embodying different mechanisms how the 

amygdala might mediate the processing of sensory information in the striatum and 

prefrontal cortex. 
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5.2 Methods & Statistical analysis  

5.2.1 Experimental Design – fMRI  

The dataset used in the current study was previously analysed by Petrovic et al. who 

used a conventional SPM analysis to investigate differential CS processing for social 

stimuli(Petrovic et al., 2008). While being scanned using fMRI, the participants were 

subjected to a fear conditioning paradigm where two visually presented faces were 

associated with aversive electric shocks in a 50% reinforcement schedule. Two 

further faces were presented but never associated with a shock (i.e. 0% contingency 

reinforcement schedule). For each of the CS types, one of the faces directly looked 

into the camera, whereas for the other stimulus the gaze was averted (see Figure 

5.1). Since Petrovic et al. did not find very strong behavioural or fMRI effects for 

gaze direction, this factor was neglected in the present reanalysis. The basic design 

thus had a 2x2 factorial structure, the factors being CS type (CS+: 50% 

reinforcement; CS-: 0% reinforcement) and trial outcome (US present vs. absent). 

However, due to the use of a 0% reinforcement schedule there are, by definition, no 

CS- US trials; therefore, the design included only 3 different trial types. Additionally, 

we focused on learning effects, distinguishing between trials in the first vs. the 

second half of the experiment. This resulted in 6 trial types overall. 

The subjects were instructed for each presented face to decide as quickly as possible 

whether the face was in the centre or offset (by 5 mm) to the left or right of the visual 

field. On any given trial, the face appeared for 990 ms, with a stimulus-onset 

asynchrony (SOA) that was jittered between 10.8 and 14.4 seconds for each trial (see 

Figure 5.1). For the CS+US trials, the electric shock was delivered at the end of the 

face presentation, for a duration of 1 ms at 80% of the most painful sensation 

imaginable as determined by a visual analogue scale (for details see (Petrovic et al., 

2008)). Each subject completed 30 trials of each of the four CSs, being exposed to a 

total of 30 shocks. The total scanning duration was 24 min.  

Although the majority of the subjects (n = 20/27) could not correctly identify which 

faces were associated with the shocks in a post-experimental interview, both skin 

conductance responses (SCR) and explicit ratings showed that the cue-shock 

association had been learned; in the second half of the experiment the skin 
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conductance response (SCR) to (unpaired) CS+ stimuli was larger than to CS- 

stimuli, and subjects rated CS- faces as more likeable, and CS+ faces as less likeable, 

after the experiment than before. Furthermore, using a reinforcement learning model 

to specify regressors, analysis of the fMRI data showed increasing activity in both 

amygdala and fusiform gyrus in response to the CS+ stimuli (Petrovic et al., 2008).  

 

 

Figure 5.1. Timeseries of a single trial. The CS stimuli were presented for 

990 ms, and in case of the CS+ stimuli, these were followed in 50% of the cases by a 

painful electric shock at the end of the CS presentation. Subjects performed an offset 

detection task on the CS stimuli.  

 

5.2.2 Subjects 

27 healthy male subjects (aged 18-36 years) with no history of neurological or 

psychiatric disorder were included in this study. Written informed consent was 

obtained from all volunteers prior to the study, which was approved by the National 

Hospital for Neurology and Neurosurgery Ethics Committee. 

5.2.3 fMRI Data Acquisition 

A 1.5 Tesla Siemens Sonata MRI scanner (Siemens, Erlangen, Germany) was used to 

acquire T1-weighted fast-field echo structural images and multi-slice T2*-weighted 

echo-planar volumes with blood oxygenation level dependent (BOLD) contrast (TR 

= 3.96 s, TE = 50 ms). For each subject, 360 scans were acquired in one continuous 

session. The first four volumes of each session were discarded to allow for T1 
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equilibrium effects. We used a 30° tilted orbitofrontal sequence (Deichmann et al., 

2002) with a flip angle of 90° covering the whole brain in 44 slices.  

5.2.4 fMRI Data Analysis 

fMRI data were analysed using the statistical software package SPM5 (Wellcome 

Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). The 

356 images from each subject were realigned to correct for head movements, 

corrected for movement-by-distortion interactions (Andersson et al., 2001), spatially 

normalized to the Montreal Neurological Institute (MNI) template brain and 

smoothed spatially with a 3-dimensional Gaussian kernel of 8 mm full width half 

maximum. The data were then modelled voxel-wise, using a GLM that included 

regressors for six experimental trial types (described below) consisting of trains of 

delta functions convolved with the canonical hemodynamic response function. The 

data were high-pass filtered (cut-off 128 seconds) to remove low-frequency signal 

drifts, and a first-order autoregressive model was used to remove serial correlations 

(Friston et al., 2002a). In distinction to the previous analysis (Petrovic et al., 2008), 

we used a more precise temporal model of the stimulus onsets, and a more 

appropriate microtime bin for defining regressors (minimising the overall timing 

error across slices). Contrast images of parameter estimates encoding effects of 

interest were created for each subject and entered separately into voxel-wise one-

sample t-tests (df = 26), to implement a second-level random effects analysis. We 

report regions that survive cluster-level correction for multiple comparisons (family-

wise error, FWE) across the whole brain at P<0.05, or for predefined regions of 

interest (small volume correction, SVC) at P<0.05. These regions of interest 

included the amygdala, striatum and the prefrontal cortex. 

5.2.5 SPM contrasts 

In order to assess these learning effects at a neurophysiological level, the three 

different trial types (see Table 5.1) were split between the first and second half of the 

experiment, following previous fear conditioning studies, (Buchel et al., 1998;LaBar 

et al., 1998), resulting in 6 regressors.  

The contrasts used in the current analysis are described in Table 5.2. In order to 

assess the main effect of ‘face’ stimulation, the regressors for CS+USC were not 
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used in order not to contaminate our results with shock events. Because ‘face’ stimuli 

are known to activate the fusiform gyrus (e.g. see Chapter 4), we will refer to the 

face responsive part of the fusiform gyrus as the fusiform face area (FFA) for 

simplicity. One should keep in mind, however, that the nonspecific nature of the 

contrast (‘face’ vs ‘fixation’) prevents any strong claims about the degree of 

specificity for face stimuli exhibited by the identified area. 

The main effect of pain contrast was restricted to CS+ trials, as CS- stimuli were 

never paired with a painful stimulus. The crucial contrast to test for learning effects 

was the change in response to the presence or absence of shocks over time. Since we 

were specifically interested in the roles of the striatum, amygdala and prefrontal 

cortex in fear learning, we performed an additional restricted search in these areas, 

using anatomical masks generated from the Anatomy Toolbox (amygdala, (Eickhoff 

et al., 2005)) and the PickAtlas toolbox (prefrontal cortex mask included the inferior, 

middle and superior frontal gyrus, and striatum, (Maldjian et al., 2003)). The 

Anatomy toolbox is a probabilistic cytoarchitectonic atlas based on histological 

investigation of a group of post mortem brains, whereas the PickAtlas is based on 

topographical landmarks alone. Thus, the Anatomy toolbox was used preferably.  

 

Table 5.1. Design and stimulus frequency. Note that the design is not 

entirely factorial, because by definition there are no CS- US trials, resulting in 3 

different trial types.  

 shock (US) no shock  

CS+ 30 30 

CS- 0 60 

 

Table 5.2. Contrast definnitions.  

 early late 

 CS+ CS+US CS- CS+ CS+US CS- 

main effect of ‘face’ 1 0 1 1 0 1 

main effect of ‘pain’ -1 1 0 -1 1 0 

pain x time (+) -1 1 0 1 -1 0 

pain x time (-) -1 1 0 1 -1 0 
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5.2.6 DCM  

5.2.6.1 DCM specification 

As described in the results section below and as shown in Figure 5.2, the SPM 

analysis demonstrated that amygdala, striatum and prefrontal cortex showed a time x 

shock interaction, such that the response to an unpaired CS+ over time increased, 

whereas the response to a CS+ paired with a shock decreased. Based on these SPM 

results, a set of alternative nonlinear DCMs were constructed that could all 

potentially account for the interactions observed in these areas. All DCMs 

additionally included the FFA as an input region that was driven by the face stimuli; 

the sensory effects of shocks entered the system via the amygdala (see Figure 5.3). 

These driving inputs were modelled as individual events. The direct input into the 

amygdala represents a lumped influence via three possible pathways since the 

basolateral amygdala receives noxious information from the insula, the thalamus and 

the parabrachial nucleus (Shi and Davis, 1999). 

In order to reduce computational complexity, the DCM analysis proceeded in two 

steps. The first step was to determine the most likely mechanism, in terms of shock-

induced modulation of connection strengths, for explaining the shock x time 

interaction in the amygdala. This was done using a reduced 3-area model that did not 

include the PFC. The second step was to investigate how shock x time interactions in 

striatum and PFC could be best explained in terms of nonlinear gating of connections 

to the striatum and prefrontal cortex by amygdala activity. This hierarchical approach 

was necessary for computational reasons: testing all relevant variants of the full 4-

area DCM would have taken a very long time. 

In the first step, three 3-area DCMs that all could explain the shock x time interaction 

in the amygdala, were constructed and fitted to the data (see Figure 5.3A). In the 

first model, the time modulation for both the paired and unpaired CS+ trials affected 

the self-connection of the amygdala; this model reflects learning that was occurring 

within the amygdala, such that over time the response to paired CS+ would be 

dampened and to unpaired CS+ stimuli it would be enhanced. In a second model, 

both trial types were allowed to modulate the connection from the FFA to the 

amygdala. This model reflects how transfer of the CS+ input to the amygdala 

changed over time, depending on whether it was paired with a shock or not. Finally, 
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in a third model the effects of the paired and unpaired CS+ were modelled 

separately: the unpaired CS+ modulated the FFA�amygdala connection, whereas 

the paired CS+ affected the intrinsic self connections of the amygdala. Note that the 

sensory effects of shocks entered the system via the amygdala; therefore the opposite 

arrangement (i.e. the paired CS+ modulating the FFA�amygdala connection) was 

not a sensible alternative.  

In the second step, the 3-area model that was identified as optimal in the first step 

was extended to include the PFC as fourth region and was systematically varied 

along two dimensions. The main question of interest was to test systematically for 

modulatory (gating) influences on the FFA � Striatum and Striatum� PFC 

connections that depended on amygdala activity (see Figure 5.3B). Either of these 

gating connections alone could potentially explain the observed shock x time 

interaction in the striatum and prefrontal cortex, via the reciprocal connections 

between these areas. Secondly, although the observed SPM results could in principle 

be explained without any connections from the prefrontal cortex and the striatum to 

the amygdala, there is evidence for such anatomical connections (e.g. (Haber and 

Fudge, 1997)) , and therefore we also tested whether inclusion of these connections 

improved the model. In summary, the 4-area models varied across two dimensions: 

(i) gating influences by the amygdala and (ii) prefrontal and striatal connections to 

the amygdala (see Figure 5.3B).  

5.2.6.2 Choice of areas and time series extraction 

As the exact locations of activation maxima varied over subjects, we ensured the 

comparability of our models across subjects by using combined anatomical-

functional constraints in selecting the subject-specific time series (cf. (Stephan et al., 

2007c)). As a summary time-series, we computed the first eigenvector across all 

supra-threshold voxels within a radius of 4 mm around the chosen local maximum 

for the left FFA, left amygdala, right striatum and left dorsolateral prefrontal cortex 

(DLPFC). For the amygdala, we thresholded the subject-specific SPMs at P<0.05 

(uncorrected) for the shock x time interaction and determined the local maximum 

within a mask combining the main effect of pain (at the same threshold) with an 

anatomical mask of the amygdala generated from the probabilistic cytoarchitectonic 

atlas in MNI space (Eickhoff et al., 2005). For the striatum and PFC, the subject 
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specific SPMs for the shock x time contrast were also thresholded at P<0.05. For the 

striatum the individual maximum within an anatomical mask (putamen, (Maldjian et 

al., 2003)) was determined, and for the PFC the maximum within 8 mm from the 

group maximum.  

The left rather than the right prefrontal activation was included in the DCM based on 

the pattern of parameter estimates of the interaction; whereas the left PFC showed 

the same interaction pattern as the amygdala and striatum, the interaction in the right 

PFC was driven by the changing response to paired CS+ trials, and could be due to 

habituation to the pain response alone (see parameter estimates in Figure 5.2). 

Finally, for the FFA, the maximum within 8 mm of the group maximum from our 

previous study ([-45 -54 -21], see Chapter 4) was chosen. The reason to use the 

maximum from this previous study was the nonspecific nature of the ‘face’ contrast 

in this study; in the previous study a more specific (face>house) contrast was used. 

Figure 5.2 shows the parameter estimates across subjects from the extracted areas. 

Time series could be extracted for all four areas in 16 out of 27 subjects. In the 

remaining subjects, one or more of the areas could not be defined due to the lack of a 

significant interaction that met the anatomical and functional criteria described above 

(amygdala: 6; FFA: 0; PFC: 3; striatum: 7). These subjects were excluded from the 

DCM analysis. 

5.2.6.3 Model comparison 

The optimal models for each of the two sets of DCMs (3- and 4-area model, see 

Figure 5.3) were determined using BMS. In brief, the negative free energy (F) 

approximation to the model evidence for each subject and each model were used to 

estimate the exceedance probability and Dirichlet parameters α . Given the factorial 

nature of the tested model space for the 4-area models, we were able to use model 

space partitioning in order to test for the effects of (i) varying the modulatory effects 

of the amygdala and (ii) including or excluding the prefrontal/striatal connections to 

the amygdala respectively.  

5.2.6.4 Group level inference on parameters 

Because in one subject the parameter estimates deviated by more than 3 standard 

deviations from the rest of the group, normality assumptions were violated, rendering 
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standard parametric statistical tests inappropriate. Therefore, to test whether the 

coupling parameters were consistently different from zero across subjects, we 

applied a nonparametric test (Wilcoxon’s signed-rank test) and report Bonferroni 

corrected p-values. 

5.3 Results 

5.3.1 SPM results 

As expected, whenever a face was presented, compared to baseline fixation, activity 

in the primary visual cortex and the fusiform face area increased (see Table 5.3). 

Furthermore, the main effect of pain showed widespread increases in activity in a 

collection of brain areas known as the ‘pain matrix’, including the insula and 

amygdala bilaterally, anterior cingulate cortex (ACC), brainstem, primary and 

secondary somatosensory cortex (S1 and S2) on the right (stimulation was on the 

left). The critical shock x time interaction contrast was significant in the amygdala, 

prefrontal cortex and the ventral striatum (putamen) such that over time responses to 

the unpaired CS+ increased but to the paired CS+ decreased (Table 5.3 and Figure 

5.2). Although the resolution of our fMRI procedure precludes any definite 

conclusions, the activation in the amygdala was located medially and might have 

been situated in the central nucleus. 
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Figure 5.2. Main and time effects for face and shock stimuli.  Panels 

A-C show the SPM for the pain x time interaction at the group level, with sections 

showing the amygdala, striatum and prefrontal cortex; for illustrative purposes, the 

SPM is thresholded at p <0.001 (uncorrected, df = 26), and displayed on a section of 

the averaged anatomical scan. Panel D shows the main effect of face presentation 

within the fusiform gyrus anatomical mask, at the same threshold. Panels E-H show 

the associated parameter estimates from the individual local maxima (as determined 

following the functional and anatomical constraints described in the main text) across 

the 16 individuals who were included in the DCM analysis. Note that these parameter 

plots are only displayed for illustrative purposes and are not used for further 

inference tests. The amygdala, striatum and left DLPFC (E-G) all show the same 

pattern of interaction: over time the response to a paired CS+ decreases, whereas the 

response to the CS+ alone increases. (J) shows the interaction contrast in the right 
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medial PFC; here the interaction is driven by the decreasing response to the painful 

stimulus, while the response to the unpaired CS+ stays the same.  

Table 5.3. MNI coordinates and Z-values for significantly activated regions. 

 MNI coords.   

Foci of activation X y z Z score Cluster size 

Main effect of ‘face’ 

L occipital cortex*† -16 -104 6 7.82  

R occipital cortex*† -16 -104 6 7.66  

L fusiform gyrus*† -26 -84 -18 Inf  

 L FFA – DCM** -45 -54 -24 5.60  

R fusiform gyrus*† 34 -66 -12 7.67  

 R FFA – DCM** 45 -57 -24 5.43  

Main effect of ‘pain’  

L insula*† 40 -14 16 6.74  

R insula*† -38 -16 14 5.91  

L amygdala*† -34 2 -22 6.27  

R amygdala*† 30 2 -22 4.58  

L thalamus*† -8 -4 6 5.42  

R thalamus*† 8 -2 10 4.54  

R S1*† 34 -30 66 5.25  

ACC*† 2 26 24 4.87  

Interaction ‘pain x time (+)’  

L amygdala** -12 2 -16 3.83 32 

L dorsolateral PFC ** -18 46 38 4.02 62 

R dorsomedial PFC** 10 38 36 4.03 103 

R Putamen / Ventral striatum** 20 8 -6 4.16 48 

Interaction ‘pain x time (-)’  

No activations above threshold 

*significant at P<0.05 (FWE whole-brain cluster-level corrected)  

** significant at p <0.05 (SVC) 
† Given the rather unspecific nature of these contrasts, the activations are all part 
of one large cluster. These activations are all significant at cluster level as well 
as for height level whole brain correction, and cluster sizes are therefore not 
reported.  
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5.3.2 DCM results 

Due to the computational demands of nonlinear DCMs, especially with increasing 

numbers of areas, an initial set of 3-area DCMs was fitted to determine which 

connection should be modulated to optimally model the pain x time interaction 

observed in the amygdala (see Figure 5.3A). BMS showed that the optimal model 

was m2 where the time effect for both shock and non-shock trials affected the 

connection from the FFA to the amygdala (see Table 5.4). In this model, the 

parameter estimates describing the modulatory influence of time on the connection 

from the FFA to amygdala was consistently negative for the shock trials (median8 b 

= -0.19, Pcorr = 0.0008 ), and consistently positive (mean b = 0.16, Pcorr = 0.0008 ) 

for the no-shock trials, consistent with the increasing response to no-shock trials and 

the decreasing response to shock trials.  

In a second step, this optimal 3-area model was extended to include the left PFC and 

systematically varied to test for the modulatory influence of the amygdala on forward 

connections from the sensory to striatal and prefrontal areas. This variation was 

along two dimensions: (i) connections which were gated nonlinearly by amygdala 

activity (3 options) and (ii) existence vs. absence of backward connections from PFC 

and striatum to amygdala (2 options). Given this 2x3 factorial model space for the 4-

area DCM (see Figure 5.3B), model space partitioning could be applied to test 

separately whether there was convincing evidence for (i) modulation by the 

amygdala of the FFA� STR and STR � PFC connections and (ii) endogenous 

connectivity from the prefrontal cortex and striatum to the amygdala.  

With respect to the former, there was clear evidence for modulation of both 

connections by amygdala activity: the exceedance probability that models including 

both modulatory influences (m3 and m6) had a higher probability of having generated 

the group data set than models including just a modulatory influence on the FFA� 

STR connection (m1 and m4) or on the STR � PFC connections (m2 and m5), was 

80% (see Table 5.5).  

However, concerning backward connections to the amygdala, the evidence was less 

clear. Models without these connections (m1-3) fared marginally better than models 

that did include them (m4-6), but the difference was small; the exceedance probability 
                                                
8 Because we used a nonparametric inference method, we report the median rather than the mean.  
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that the data were more likely to have been generated by a model without the 

amygdala connections was 0.53, versus 0.47 for models that did include these 

connections (see Table 5.5). Given this lack of differentiability between the two 

model classes, one would prefer the more parsimonious model class, i.e. without 

backward connections (cf. Occam's razor).  

From this analysis based on model space partitioning it is apparent that model m3 

(both modulatory influences, no backward connections) should be used for inference 

about the model parameters. This was corroborated by BMS amongst all models 

treated individually: here, model m3 had the highest exceedance probability of all six 

models (xp = 0.42, see Table 5.5)9.  

In model m3 the parameter estimates describing gating effects of amygdala activity 

on ascending connections were consistently positive across subjects (FFA→striatum: 

mean d = 0.23, Pcorr = 0.0018; striatum→PFC: mean d = 0.013, Pcorr = 0.019). 

Furthermore, the time dependent modulatory effects of the paired and unpaired CS+ 

trials were consistently different from zero, reproducing the results of the reduced 3-

area model (unpaired CS+: mean b = -0.14, Pcorr = 0.0018, paired CS+: mean b = 

0.10, Pcorr = 0.0018).  

 

                                                
9 It is possible that this lack of evidence to distinguish between these two sets of models is due to the 
fact that one of the two connections does increase model fit, but the other one doesn’t. Thus to fully 
test for evidence for the presence of either of these two fixed connections, one needs to extend the 
model space and add an additional 6 models, which include either the STR�AMY connection or the 
PFC�AMY connection. We did indeed run these models, and the results stay the same; there is no 
good evidence in favour of including either of these connections. However, for reasons of brevity 
these results are not included here. 
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Figure 5.3. 3- and 4-area nonlinear DCMs to model the shock x 

time interaction. (A) Shows the reduced (3-area) model to determine the site of 

the modulatory learning effect. In m1 the time x pain interaction modulated the self-

connection of the amygdala. In the m2, shock and non-shock trial x time interaction 

modulated the FFA�amygdala connection. In m3, the effect of the shock and non-

shock trials was separated, such that the self-connection was affected specifically by 

the interaction of shock x time.  

(B) Shows the full (4-area) DCM testing, in a factorial fashion, firstly for the 

presence of a gating influence of the amygdala on FFA�striatum connection (m1 and 

m4), the striatum�PFC connection (m2 and m5), or both of these (m3 and m6), and 
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secondly for the presence of backward connections from the prefrontal cortex and 

striatum (absent in (m1-3 and present in m4-6).  

Table 5.4. BMS results for the 3 area model.  

  Dirichlet 
parameters α 

Exceedance 
probability xp 

m1 2.66  0.00 

m2 15.60 1.00 

m3 1.74 0.00 

 

 

Table 5.5. BMS results for 4-area model. Models varied with regard to the 

presence or absence of backwards connections to the amygdala, and the modulatory 

influence of the amygdala on forward connections.  

Amygdala activity modulating:  

 
FFA����STR STR ���� PFC 

FFA���� STR 

STR���� PFC 
total 

absent  

m1 

α = 3.19 

xp = 0.086  

m2 

α = 2.53 

xp = 0.043 

m3 

α = 5.46 

xp = 0.415 

m1-3 

α = 11.2 

xp = 0.53 
Backwards 
connections 
to the 
amygdala 

present 

m4 

α = 3.27 

xp = 0.092 

m5 

α = 2.58 

xp = 0.046 

m6 

α = 4.97 

xp = 0.317 

m4-6 

α = 10.8 

xp =0.47 

 Total 

m1,4 

α = 6.5 

xp = 0.14 

m2,5 

α = 5.1 

xp = 0.06 

m3,6 

α = 10.4 

xp = 0.80 
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5.4 Discussion 

This study was a reanalysis of a previously published fear conditioning fMRI study, 

in which four different face stimuli were presented to subjects (Petrovic et al., 2008). 

On each trial, subjects had to decide whether the presented face was off centre or not. 

Two of these faces (CS+) were followed by a shock with a 50% contingency, while 

the other two faces (CS-) were never paired with a shock. Skin conductance 

responses (SCR) showed that subjects slowly learned the predictive relationships 

between the faces and the shocks; the SCR for (unpaired) CS+ trials significantly 

increased from the first to the second half of the experiment compared to the CS- 

trials. This result suggests that learning happened rather slowly; if learning occurred 

within a few trials, one would not expect to find noticeable differences between the 

first and second half of the experiment. The fact that only 25% of the subjects could 

identify, on post-experimental debriefing, which faces were associated with shocks 

further corroborates this notion (Petrovic et al., 2008). This slow timescale of 

learning seems to be at odds with previous fear conditioning studies in humans, 

where responses to unpaired CS+ rapidly adapt (Buchel et al., 1998;LaBar et al., 

1998;Marschner et al., 2008), and is likely to be due to the fact that in the current 

study, there were two CS+ and two CS- stimuli, that were all very similar (compare 

Figure 5.1). Furthermore, the task was unrelated to the CS stimulus in that subjects 

had to detect displacement of the stimulus, which would probably direct attention 

away from the the stimulus identity. This differs from most previous studies, where 

subjects did attend the stimulus identity, performing a gender discrimination task 

(Kalisch et al., 2006). This prolonged time course of learning allowed us to look at 

the differences in BOLD responses during the first and second half of the experiment 

to assess changing responses to paired and unpaired CS+ trials.  

5.4.1 Prediction errors in the amygdala? 

The amygdala is the prime anatomical substrate for fear conditioning, especially the 

lateral nucleus where CS and US inputs converge, inducing synaptic plasticity which 

changes amygdala responses to CS+ stimuli. Results from the current study support 

this central role of the amygdala, which was the only brain structure to show both a 

main effect of painful stimulation and an interaction of pain and time. The nature of 
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this interaction was such that while the response to unpaired CS+ increased, the 

response to paired CS+ trials decreased. This pattern of responses is reminiscent of 

the prediction error responses described in Chapter 3; both the surprising presence 

and absence of a shock elicits an increased response.  

Previous studies indeed suggested that the amygdala is sensitive not only to noxious 

stimuli, but also to how predictable these stimuli are. In general amygdala responses 

to a noxious stimulus are rapidly attenuated / habituated, due to feedforward 

inhibition mechanisms in the amygdala itself (LeDoux, 2007). When comparing 

predictable versus unpredictable stimulation, most studies find that the amygdala 

responds more to unpredictable stimulation (but see (Carlsson et al., 2006)). In a 

cross-species study of mice and humans, Herry and colleagues reported that the 

amygdala responds more strongly to unpredictable noxious stimuli than to 

predictable ones, and even responds to temporal unpredictability per se, which might 

be aversive in itself (Herry et al., 2007). Furthermore, using fMRI, Knight and 

colleagues have shown that amygdala activity increased when experimental 

contingencies were changed during Pavlovian fear conditioning. This implies that the 

amygdala might be particularly important for forming new associations among 

stimuli with behavioural relevance (Knight et al., 2004). In the present study, we 

built on this previous line of research and investigated where, in a simple network 

model of associative learning of aversive stimuli, synaptic plasticity was most likely 

expressed to account for the shock x time interaction responses identified by an 

initial SPM analysis. We were particularly interested whether there was evidence for 

modulatory (gating) influences by the amygdala on cortico-striatal connections.  

Model comparison of a set of three DCMs showed that the shock x time interaction 

was best explained by a model in which both paired and unpaired CS+ trials were 

allowed to modulate the FFA� amygdala connection. In this model processing of 

the CS+ input to the amygdala changed over time, depending on whether it was 

paired with a shock or not. These modelling results from healthy volunteers are 

nicely consistent with anatomical studies in animals and lesion studies in patients. 

Amaral et al. showed that in macaques the amygdala is extensively connected to the 

fusiform gyrus and the primary visual cortex (Amaral et al., 2003). In addition, 

Vuilleumier et al. reported that patients with amygdala lesions do not show the 

increased response to fearful faces the occipital cortex and fusiform gyrus that 
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healthy controls exhibit, and furthermore that the level of amygdala damage 

predicted the level of visual modulation (Vuilleumier et al., 2004).  

5.4.2 Amygdala influences CS+ processing in the cortico-striatal circuit 

The SPM results indicated a central role of the amygdala in fear conditioning; 

although two other areas, the striatum and the PFC, also showed the time x shock 

interaction, only the amygdala showed an additional main effect of pain. Comparing 

a set of 4-area nonlinear DCMs we showed that the observed shock x time 

interaction in the striatum and PFC could be modelled by a gating influence of the 

amygdala on the connectiona from the FFA to the putamen and from the putamen to 

the PFC, respectively. 

As described in the introduction, the amygdala is well known to mediate the effects 

of conditioned reinforcers on behaviour. It has been suggested that the underlying 

mechanism is a modulation of cortico-striatal circuits by amygdala activity (LeDoux, 

2007;Mogenson et al., 1980). The striatum, especially its ventral part, is a site of 

convergence for amygdala and prefrontal projections (Haber and Fudge, 1997). Such 

connections would allow the amygdala to initiate the motor response to affective 

stimuli and affect subcortical habit memories putatively stored in striatal circuits. 

The ventral striatum has long been considered to be an interface between cortical 

areas involved in processing the emotional valence of stimuli and cortical areas 

mediating motor responses to those stimuli (e.g. (Haber et al., 1995;Mogenson et al., 

1980)).  

Finally, given the extensive anatomical connections from the prefrontal cortex and 

striatum to the amygdala (Haber et al., 1995;Haber and Fudge, 1997), we tested 

whether there was any evidence that these connections played a functional role in the 

fear conditioning paradigm used in the current study. Our model comparison 

approach did not provide such evidence. This might be explained by previous 

observations that the (ventral) PFC seems to play a role mostly in fear extinction 

rather than fear acquisition (Sotres-Bayon et al., 2009). 
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5.4.3 Limitations and future directions 

The amygdala, striatum and PFC showed a pattern of responses that was similar to 

the pattern of prediction error responses to non-affective CS+ stimuli observed in a 

previous study (Chapter 3): unexpected shocks elicited a larger response as than 

unexpected shocks, as did the unexpected absence of a shock. However, there are 

possible other interpretations of these findings. For example, it is possible that two 

separate processes together explain the observed response pattern. The increased 

response to the unpaired stimulus could reflect the increased (negative) affective 

value that the CS+ has acquired as it becomes associated with the shock (e.g. (Friston 

et al., 1994;LeDoux, 2007;Morris and Dolan, 2004)), whereas the decreasing 

response to the paired CS+ could be due to habituation to the shock itself. These two 

processes would probably take place in different subnuclei of the amygdala 

(LeDoux, 2007). However, because of the fast stimulus presentation (Figure 5.1) and 

the long duration of the BOLD response, it is difficult to temporally separate the 

response to the CS+ and to the (presence or absence of) the shocks, nor can we, 

because of the limited spatial resolution of standard fMRI methods, distinguish 

between processes in the different subnuclei of the amygdala.  

There are a number of different approaches that could shed light on these questions. 

One could use electrophysiological recordings which have a much higher temporal 

resolution. However, scalp-based recording methods such as MEG or EEG do not 

allow one to measure activity in subcortical structures, including the amygdala, with 

sufficient signal-to-noise ratio. A better option might be to use an adapted paradigm, 

in which the CS+ US association probability is changing over time. This would allow 

one to separate habituations responses, which are likely in the form a of a linear 

decay function, from a prediction error like response, which would be proportional to 

the current association strength. Furthermore, one could use very high resolution 

fMRI optimised for the amygdala to image the processes taking part in the different 

subnuclei, for example responses to the CS+ and the US.  

In conclusion, despite the fact that we remain somewhat agnostic to the exact 

interpretation of the time dependent responses in the amygdala, striatum and PFC in 

this fear conditioning paradigm, the results from this study support a role for the 

amygdala in influencing CS+ processing in cortico-striatal pathways. The functional 
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role of such a mechanism may reside in providing striatal and cortical regions with 

information about the emotional valence of the CS+US association. In other words, 

the modulatory influence exerted by the amygdala on cortico-striatal connections 

could represent the mechanism by which the amygdala mediates motor responses to 

affective stimuli, including habit formation through striatal circuits, and emotional 

colouring of the fear experience in the prefrontal cortex.  
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Chapter 6 

6.  General Conclusions 

General Conclusions 

6.1 Contributions 

The aim of this thesis was to establish experimental models which characterise 

synaptic plasticity in terms of connectivity changes between neural populations in a 

range of associative learning tasks. Specifically, we wanted to investigate the role of 

prediction errors in mediating this plasticity. In Chapter 1 we discussed animal work 

suggesting that changes in connectivity underlie learning (Genoux and Montgomery, 

2007;Gu, 2002;Ji et al., 2005;Morris, 1989;Tye et al., 2008). Furthermore, prediction 

errors, or surprising events, are thought to signal the need for updating beliefs; they 

thus play a central role for associative learning in animals and humans (cf. Section 

1.1.1). Indeed, surprise appears to be at the heart of not only to reward-based 

learning, but any form of (associative) learning (Section 1.1.2). Taken together, this 

suggests that surprising outcomes could drive the modulation of connection 

strengths, i.e. synaptic plasticity, during associative learning. Although a large 

number of animal electrophysiology and human fMRI studies have shown surprising 

outcomes to elicit responses in the striatum and in sensory areas, to our knowledge, 

the notion that surprise dependent changes of connectivity mediate learning has not 

been investigated empirically means before.  

In this thesis, I employed standard and Bayesian associative learning models (see 

Section 1.2) to estimate the surprise engendered by observed events, and combined 

these with plausible physiological models of connectivity (Chapter 2) to investigate 

surprise dependent modulation of connections during associative learning.  

In Chapter 3, I used a carefully balanced design with auditory cues predicting visual 

outcomes to investigate whether previously described responses in the visual cortex 

were driven by predictions or prediction errors. Critically, learning was shown to 

occur at a neurophysiological level, even though the audiovisual associations were 
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irrelevant to the behavioural task and outside the subjects’ awareness. We observed 

prediction error dependent responses in the (peripheral) primary visual cortex and the 

ventral striatum, as predicted by an RW model of associative learning. This response 

could be explained in terms of changes in connectivity from auditory to visual 

cortex, where the connections were modulated by the prediction errors.  

In Chapter 4 we extended the paradigm from the previous study such that the 

learned associations were now task-relevant. In this study we employed a 

hierarchical Bayesian ideal observer model that could capture changing audiovisual 

associations. Again both sensory areas and the striatum showed prediction error 

dependent responses; in the sensory areas, this response was specific to the presented 

visual stimulus, whereas the striatal responses reflected prediction errors per se. In 

parallel to these striatal responses we observed prediction error responses in the 

motor planning areas. Using a nonlinear DCM, we showed, for the first time, that 

these prediction error responses in motor planning areas could be explained by a 

modulation of sensory-motor connections by the prediction error dependent output of 

the striatum.  

In Chapter 5 we reanalysed a pre-existing fMRI dataset to investigate prediction 

error like responses in the amygdala during fear conditioning. Here we showed that 

prediction errors modulate amygdala processing of sensory input, and furthermore 

that amygdala activity modulates cortico-striatal connections as neutral cues become 

associated with noxious outcomes.  

Model selection to decide between different DCMs relied on Bayesian model 

comparison methods as described in Chapters 3-5. In Chapter 3 the selection of the 

best model was based on the group Bayes factor, which was calculated by 

multiplying the individual Bayes factors for each subject. However, this fixed effects 

approach does not take into account random variations in optimal model structure 

across subjects. Therefore, in Chapters 4-5 we used a newly developed second level 

Bayesian random effects analysis which accounts for such random effects. 

6.2 Limitations 

In addition to the limitations of the specific designs and paradigms discussed in the 

results chapters (Chapter 3-5), what follows are some general considerations on the 
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use and usefulness of dynamic causal models. DCM for fMRI is a state-space model 

that explains observed BOLD responses in specific regions of the brain in terms of 

changes in effective connectivity between these areas. Crucially, this connectivity 

can be modulated by external inputs, or, in case of the nonlinear DCM extension, by 

outputs from other areas.  

6.2.1 Effective connections are not anatomical connections 

One common misconception about DCMs is that the presence of an effective 

connection between two areas equates to a single synapse at the anatomical level. 

Instead, an effective connection may also be a summary of multisynaptic 

connectivity between two areas. In other words, we remain agnostic with respect to 

the precise anatomical nature of the connection. What effective connectivity does 

reflect is a causal influence of one area on another. For example, the visual to 

premotor connections described in Chapter 4 are unlikely to be monosynaptic 

connections; yet we showed a directed causal influence from the sensory to the 

premotor areas.  

6.2.2 Interpreting causality 

The course temporal resolution of the fMRI as well as the smoothness of the BOLD 

response itself do not allow for interpretations about temporal causality in cortical 

network models of fMRI data. This often leads to the question how one can then 

make a claim about causal influences between areas in DCM for fMRI. This is 

explained by the fact that the shape of the modelled BOLD responses differ when 

areas receive direct external inputs versus input from another area. Direct inputs with 

elicit a sharp peak and then rapid decline, whereas in downstream areas the response 

rises and falls more slowly. Thus, causality in DCM for fMRI is determined by the 

shape of the modelled BOLD response.  

6.2.3 Exploring and defining model space 

DCM is a method for hypothesis testing and has very limited use as an explorative 

tool. Completing a full search of all possible models, or hypotheses, within a given 

set of nodes and inputs is simply too computationally demanding as soon as one 

deals with models with more than two areas. Consider for example a nonlinear DCM 
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with 4 areas, as employed in Chapter 4-5. Currently, each model of that sort takes 

roughly 30 minutes to run on a standard PC. Let us simplify the model space and 

assume that we know where the driving and modulatory inputs enter, so that all we 

have to do is explore the endogenous connection part of model space. There are 12 

potential endogenous connections, so systematically testing for all possible 

combinations of endogenous connections would result in 212 = 4096 models, i.e. over 

2000 hours or 85 days of processing time per subject, still disregarding the 

modulatory inputs and connections. Thus, one has to make principled decisions as to 

which models constitute a sensible set of models to test, constraining model space 

using biological and theoretical constraints.  

Even if one could exhaustively search model space, and use a partitioning approach 

(Chapter 2) to investigate the contribution of different connections and modulatory 

inputs, questions might always arise as to whether the right areas have been included 

in the model. Because one cannot compare models that relate to different datasets, it 

is not possible, in the context of DCM for fMRI, to compare models that include 

different nodes. However, it is important to keep in mind here again that DCM is a 

hypothesis-driven method, set up to test very specific mechanistic hypotheses about 

interactions between different areas in the brain. Thus, rather than trying to build a 

model of the entire brain, only areas that are thought to be involved in the process 

regarding the underlying hypothesis, should be included.  

Finally, it is important to keep in mind (cf. Chapter 1, Section 1.3) that there is no 

single ‘right’ model of the world that can describe the world in all its facets; there are 

only better or worse approximations to particular aspects of reality.  

6.3 Future Research 

6.3.1 MEG to resolve temporal resolution 

Due to the course temporal resolution of fMRI as well as the smoothness of the 

BOLD response in combination with the rapid stimulus designs used in the work 

described in this thesis, it was not possible to investigate the within trial temporal 

evolution of prediction responses evoked by the cues, and prediction error responses 

evoked by the outcomes. Magnetoencephalography (MEG) would provide an 



 140 

excellent tool to evaluate within-trial predictions and learning. These data could then 

be combined with TD learning models or extensions of Bayesian models that model 

within trial timing effects, in combination with DCM for M/EEG (Kiebel et al., 

2008).  

6.3.2 Pharmacology 

As was described in the introduction, brain connectivity speaks to three key issues: 

synaptic strength, changes in synaptic strength (plasticity), and modulation of this 

plasticity. Synaptic plasticity is likely to underlie the changes in effective 

connectivity during associative learning as demonstrated in the work presented in 

this thesis. Having established experimental models of connectivity in two very 

simple, non-reward based associative learning paradigms in Chapters 3-4, these 

could now be repeated using pharmacological manipulations, to investigate the role 

of different neurotransmitters. The most obvious candidate to start with would be 

ACh receptor agonists and antagonists. ACh is one of the most important modulators 

of synaptic plasticity in the context of associative learning in the perceptual domain; 

in humans in has been shown to affect perceptual learning effects such as the MMN 

(Baldeweg et al., 2006) and repetition priming (Thiel et al., 2002c), as well as 

associative fear learning using auditory cues (Thiel et al., 2002b;Thiel et al., 2002a). 

DCM would be an ideal tool to investigate the modulatory effects of these 

neurotransmitters on effective connectivity in humans.  

6.3.3 Associative learning, connectivity & schizophrenia 

Connectivity is the basis of physiological neural information processing and may be 

central to the pathophysiology of various neurological and psychiatric diseases, most 

notably schizophrenia (for detailed reviews see (Friston, 2005b;Stephan et al., 

2006)). The mechanistic models of connectivity underlying the associative learning 

paradigms discussed in Chapter 3-4 were deliberately designed to be suitable for 

assessing changes in connectivity in patients with schizophrenia. The behavioural 

tasks are extremely simple, such that patients could easily perform them, and yet they 

evoke consistent changes in connection strengths. In the future, using simple 

physiological models of this sort in combination with formal theoretical learning 
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models may help to obtain a mechanistic understanding of abnormalities of synaptic 

plasticity in schizophrenia. 
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Publications and Other Work During the PhD 

Chapter 3 has been published in Cerebral Cortex (den Ouden et al., 2009). A paper 

based on Chapter 4 has been submitted to Neuron, and Chapter 5 is in preparation for 

submission to Journal of Neuroscience. Furthermore, I contributed to the 

development of the nonlinear DCM, discussed in Chapter 2, which has been 

published in Neuroimage (Stephan et al., 2008). In relation to the Bayesian learning 

model presented in Chapter 4, I collaborated on theoretical work considering the 

brain as a Bayesian observer of the environment with Jean Daunizeau, which is 

currently submitted to PlosOne. During my PhD I also contributed to patient and 

fMRI studies investigating aberrant salience in schizophrenia patients in 

collaboration with Jonathan Roiser. One of these studies has been published in 

Psychological Medicine (Roiser et al., 2009), and a second one is currently submitted 

to Neuroimage. Finally, during my PhD I published two papers based on work prior 

to my PhD (den Ouden et al., 2005a; den Ouden et al., 2005b), and co-authored one 

further paper (Blakemore et al., 2007).  
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Appendix A 

Prediction vs. Prediction Error in the Rescorla-Wagner 
(RW) Model 

Here we show that predictions and prediction errors computed by the RW model are 

linearly related under mean-correction. In fact, one is identical to the negative of the 

other. This linear dependence between predictions and prediction errors is 

problematic for GLM analyses since it precludes separate testing for the 

contributions of prediction errors and predictions to the dependent variable. Note that 

whenever there is any experimental factor other than the learning process itself, it is 

necessary to model the interaction among these factors and learning, and this requires 

mean-correction of the vectors involved before computing their Hadamard product 

(cf. (Friston et al., 1997). In SPM, these interaction terms are known as "parametric 

modulation". 

At trial t, the prediction error PEt is the difference between the predicted outcome φt 

and the actual outcome λt: 

tttPE φλ −=         (A.1) 

The prediction (error) at trial t is the sum of the mean-corrected prediction (error) 

and the mean:  

PEPEPE tcorrt += ,        (A.2) 

φφφ += tcorrt ,         (A.3) 

For typical reinforcement schemes, the outcome tλ  takes on the values 1 

(unconditioned stimulus is present) or 0 (unconditioned stimulus is absent). For both 

trial types, the mean-corrected prediction error is exactly the negative of the mean-

corrected prediction, as we will show below: 
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For λt = 1 

ttPE φ−= 1         (A.4) 

φ−= 1PE         (A.5) 

1=+ ttPE φ         (A.6) 

Substituting Equations A.2,3,5 into Equation A.6 gives: 

tcorrtcorrPE ,, φ−=        (A.7) 

Similarly, for λt = 0,  

φ−=PE         (A.8) 

ttPE φ−=         (A.9) 

Substituting Equations A.2,3,8 into Equation A.9 gives: 

tcorrtcorrPE ,, φ−=        (A.10) 

This shows that independent of the outcome λt, the meancorrected prediction error is 

always the negative of the meancorrected prediction.  
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Appendix B 

Bayesian Volatility-Based Associative Learning Model 

We start with the premise that subjects represent or infer the causes of their sensory 

inputs and optimise their behaviour on the basis of this inference. From a Bayesian 

perspective, the brain is an observer of its own sensory signals. This means subjects 

invert some forward or generative model of sensory inputs to represent the 

unobserved (hidden) causes of that input.  

Any learning then relies strongly on the subject’s model of the world (the perceptual 

model), which can have dramatic effects on both predicted behaviour (Kording et al., 

2007;Trepel et al., 2005) and modelled neurophysiological signals (Pessiglione et al., 

2007;Tom et al., 2007). 

In what follows, we describe the volatility-based perceptual model used in this study 

to estimate the volatility and probabilities of the observed events. This model 

subsumes the set of probabilistic assumptions the brain encoded in order to represent 

the causes of paired audio-visual stimuli. 

The perceptual model generates sensory input u  (e.g., experimental stimuli) from 

hidden causes, x  (e.g., experimental factors or environmental states) and can be 

expressed in terms of a likelihood model ( )|p u x  and prior beliefs ( )p x . The states 

of the world x  are unknown to the subject but might be under experimental control. 

In our example, u  is a series of cue-outcome pairs, presented to the observer and x  

encodes an experimentally controlled cue-outcome association that is hidden from 

the subject. The prior belief itself is decomposed into a hierarchy of conditional 

probability density functions, as will be described bellow.  

Let tu  be the outcome at trial t be a multinomial random variate such that: 
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consequently, its own generative model. This means that everything we state below 

is conditional on the given cue. As a consequence, the Bayesian inversion of such a 

set of generative models is also conditional on each cue, and has to be replicated for 

all different cues. 

This vector of cue-outcome association probabilities follows a priori the following 

Dirichlet distribution: 

( ) ( )
( )

( )
( )

1

0
1

1

1

,

i
t

t t t t t

n at i
tn

i i
t

i
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r

a

−

−

=

=

=

Γ
=

Γ
∏

∏
     (B.2) 

This transition density is actually a martingale, i.e. it is a first order Markov process 

whose current first order moment is equal to its previous realization: 

1t tr r −= .        (B.3) 

Furthermore, the precision of the transition from rt −1 to rt  is parameterized by a 

scalar quantity tv , which measures the volatility of the environment: 

( )
1

exp 1
n

i
t t

i

a v
=

= − +∑
       (B.4) 

The volatility itself is assumed to vary over time as a martingale, and the above 

parameterization makes a simple AR(1) model possible: 
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1 1
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1 1
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v v
KKπ

− −

−

=

 = − − 
 

,   (B.5) 

where K  is the prior variance of the volatility, i.e. the volatility’s volatility. 

The prior on K  itself is supposed to be non-informative, i.e.: 

( ) 1p K ∝ . 

To summarize, the generative model assumes the following cascade of events 

(illustrated in the graph in Figure B.1): 

1- A value for the volatility variance K  is randomly drawn from its prior pdf 

( )p K . 

2- This value determines the transition pdf of the volatility. Then, a first value 

1v  is randomly drawn from ( )1,t tp v v K− . 

3- Knowing the volatility 1v  then allow us to derive the transition density for 1r . 

Then, a first value for the cue-outcome association probability is drawn from 

( )1,t t tp r r v− . 

4- This finally defines the likelihood of the outcome itself: the first outcome 1u  

is then drawn randomly from ( ),c
t t tp u u r . 

5- The steps 3, 4 and 5 are repeated in time, giving rise to three time series for 

the volatility tv , the cue-outcome association probability tr  and the observed 

outcomes tu . 
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Figure B.1. Graph illustration of the volatility model. ut=  observed 

outcome at trial t; r t = cue-outcome association probability; vt=  volatility; K = 

variance of the volatility. 

Then, the model assumes that the observer actually updates its posterior belief ‘on 

the fly’, in the light of incoming data, in a Kalman filter-like manner. The joint 

posterior pdf over the full set of unknown variables, namely { }, ,x K v r= , then 

follows the following prediction and update steps: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1: 1 1 1 1 1 1 1: 1 1 1

1: 1

1:

1: 1

prediction: , , , , , ,

, ,
update: , ,

, ,

t t t t t t t t t t t t t

t t t t t

t t t

t t t t t t t

p r v K u p r r v p v v K p r v K u dr dv

p r v K u p u r
p r v K u

p r v K u p u r drdv dK

− − − − − − − − −

−

−

=

=

∫∫

∫∫∫
 

These two steps are iterated as long as new data are measured and, after each cue-

outcome observation, yield estimates of both the current cue-outcome association 

probability tr  and the environmental volatility tv , as well as an estimator of the static 

volatility’s variance K , given all previously observed data. The trajectory of these 

estimates as a function of time (trialt ) then served as predictors for behavioural data 

(response speeds) and neuroimaging data (BOLD responses in SPM and DCM 

analyses). 
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Abbreviations  

Brain Areas and Neural Properties 

5HT  Serotonin 

A1  Primary auditory cortex 

ACC  Anterior cingulate cortex 

ACh  Acethylcholine 

AMPA  a-amino-3-hydroxyl-5-methyl-4- isoxazole-propionate  

AMY  Amygdala 

DA  Dopamine 

DLPFC Dorsolateral prefrontal cortex 

FFA  Fusiform face area 

LTP/D  Long term potentiation/depression 

NE  Norepinephrine 

NMDA N-methyl-D-aspartate  

PFC  Prefrontal cortex 

PPA  Parahippocampal place area 

S1  Primary somatosensory area 

S2  Secondary somatosensory area 

STR  Striatum  

V1  Primary visual cortex 

VTA  Ventral tegmental area 
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Methodological Terminology 

AIC  Akaike information criterion 

AR(1)  First order autoregressive moving-average model 

BF  Bayes factor 

BIC  Bayesian information criterion 

BMS  Bayesian model selection 

BOLD  Blood oxygen level dependent 

DCM  Dynamic causal modelling 

df  Degrees of freedom 

EEG  Electroencephalography 

EM  Expectation-Maximization 

EPI  Echo-planar imaging 

F  Free energy 

fMRI  Functional magnetic resonance imaging 

FWE  Family wise error 

GLM  General linear model 

ME  Main effect 

MEG  Magnetoencephalography 

MNI  Montreal neurological institute 

MRI  Magnetic resonance imaging 

PDF  Probability density function 

PET  Positron emission tomography 

ROI  Region of interest 

RT  Reaction time 
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RS  Response speed 

SD  Standard Deviation 

SEM  Structural equation modelling 

SPM  Statistical parametric mapping 

SVC  Small volume correction 

SCR  Skin conductance response 

 

Theoretical Terminology 

CR  Conditioned response 

CS  Conditioned stimulus 

MMN  Mismatch negativity 

nlDCM NonLinear dynamic causal model 

RW  Rescorla Wagner 

UR  Unconditioned response 

US  Unconditioned stimulus 

TD learning Temporal difference learning 

TO cue  Trial onset cue 

PE  Prediction error 
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