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Abstract

The diffusion tensor (DT) and other diffusion models assuhat each voxel corresponds to
the same anatomical location in all the measurements. Memtvand distortions violate this
assumption and typically the images are realigned befordehfiiting. We propose a set of
model-based methods to improve motion correction and atrederrors that the traditional
method introduces. The new methods are based on a thregrstegpdure to register DWI
datasets, and use different reference images for DWIs witlreht gradient directions for
registration, so the registrations take into account th@rest differences of measurements.
Performance of the model-based registration techniquesnis critically on outlier rejection.
We develop new methods for fitting the diffusion tensor téudiibon MRl measurements in the
presence of outliers by drawing on the RANSAC algorithm frmemputer vision. We compare
one popularly used outlier rejection method RESTORE in fiffesion MRI literature with
our new method. Then, we combine outlier rejection methoitls model-based registration
schemes, and compare the performance of motion correcttbrothier methods. After aligning
the dataset, we also update diffusion gradients for thestegid datasets from both traditional
and our methods, according to the transformations usedjistrations. We develop and discuss
a variety of registration evaluation methods using bothttestic and human-brain diffusion
MRI datasets. Experiments demonstrate both quantitatidegaalitative improvements using

our new model-based methods.
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Chapter 1

Introduction

Diffusion MRI (magnetic resonance imaging) is an innovatio MRI, [25]. It measures the
local water diffusion properties in the material being iradgln fibrous material, the diffusion
in directions perpendicular to the fibre is hindered by celllsy so water diffuses more easily
along axon bundles. Thus, diffusion MRI provides fibre dimats by revealing directions in
which water diffuses furthest. One of the popular diffusdiRl models is diffusion tensor
(DT) [20], which assumes that the molecular displacemebey @ Gaussian probability den-
sity function. Brain white matter fibres connect differeegions of grey matter. By following
fibre directions from point to point through the image, we catover the trajectory of white
matter fibres. Diffusion MR imaging reveals the connectilietween the different regions of

the brain, and provides information about the microstngctf white matter.

1.1 Problem statement

In DT-MRI, a number of diffusion-weighted (DW) images witiiffdrent diffusion-weighting
gradient directions are taken during scanning. During suldmg time, small head movements
are not easy to avoid. Diffusion-weighted MRI typically asspin-echo sequence with echo-
planar imaging (EPI) readout, which also induces displasgrmand distortion [70]. However,
the tensor calculation assumes that each voxel corresgoride same anatomical location in
all the measurements. That means to fit the diffusion teafidhe measurements need to align
properly. A small bulk motion can cause an unmatched measmevalue to be used during

the tensor fitting.

The traditional correction scheme for motion within theadsét selects a reference image
from inside the series, and registers all the other imagesiirto this fixed reference. Since the

non-diffusion-weighted image does not suffer from theattsdns induced by eddy current and
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has the highest SNR, it is usually chosen as the referenageifoaregistration [59]. Normally,
each DWI is registered to the reference by a 3D rigid or affraedformation computed by

maximizing a similarity measure such as cross-correlgi@@) or mutual information (Ml).

The problem with the traditional method is that measuremevith different gradient
directions have different contrasts. Although MI cost fiilme has been commonly accepted in
DWiI registration, the contrast differences between the ®#id reference image have not been
solved. Thus, the problem | address in this thesis is conggehotion distortion in diffusion
MRI by using a model-based registration technique. It misdseparate reference images for
each diffusion gradient and thus avoids the mismatchingexily the intensity differences

between component images.

1.2 Contribution

In this thesis, we have several novel contributions:

e propose a set of new model-based registration method fiuisth MRIs;

apply a computer vision technique, RANSAC, to fit diffusiensor with outlier rejection;

combine outlier rejection schemes with our model-base$tragion scheme;

propose a new orientation correction technique to improffasibn MRI datasets after

alignment;

discuss or provide several evaluation methods for diffusitRl registration.

1.3 Thesis overview

Chapter 2 is a brief introduction to diffusion MRI, and expkthe problem of motion during
acquisition. In Chapter 3, we review the literature on imagggstration. Chapter 4 reviews reg-
istration algorithms used in diffusion MRI, and mainly fe@s on intra-subject aspect. Chapter
5 proposes our basic model-based registration methodsdtomcorrection in diffusion MR,
including primary model and some slightly advanced ones/ebrby the conclusion of Chap-
ter 5, in Chapter 6 we discuss outlier rejection schemes, TREEE and RANSAC. Then in
Chapter 7, we combine outlier rejection schemes with mbdsekd registration methods. And

then run experiments on a set of synthetic and several afigiiRl datasets, and use various
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evaluation methods to describe the results. Results pravaew methods improve alignment
of images from other protocols. We draw conclusions andstishe possible further work in

Chapter 8 in the end.



Chapter 2

Diffusion MRI

This chapter introduces diffusion-weighted MR imagingd émcuses mainly on diffusion ten-
sor (DT) MRI. At the end of the chapter, we summarize sometanting problems with the

technique.

2.1 Some basic concepts in MRI

The basic physical principal underlying of Magnetic resm®imaging (MRI), or Nuclear
magnetic resonance imaging (NMRI), is the magnetic fieldaated with charged particles
in motion [118]. The hydrogen nuclei in water molecules diesscanned subject aligns with
the main magnetic fieldH,), and creates a net magnetic momevit, parallel toB,. Then a
radio-frequency (RF) pulse is applied perpendiculaBgpand causeg/ to tilt away from By.
When the RF pulse is turned off, the hydrogen nuclei realgris field By, which is referred
as relaxation. During relaxation, the nuclei loses energy emits its own RF signal. This
signal is referred as the free-induction decay (FID) respaignal. The FID signal is measured

and reconstructed to MR images.

The period of the RF pulse sequence is the repetition time,The spin echo signal can
be measured at any time within the TR. The time between the e ps applied and the
spin echo signal is measured is the echo delay time, TE. Tiheesho process is illustrated in
Figure 2.1. After @0° RF pulse, all the spins with different Larmor frequencies aligned
(Figure 2.1(a)); then over the first TEtime, the spins dephase (Figure 2.1(b)). Becaudgof
field inhomogeneities, some spins dephase faster thanspttethe time of TE2, a 180° RF
pulse is applied, which negates the phase of the spins @Ryafc)). All the spins continue to
precess at the same frequency; at the time of TE, the spihasemnd form an echo, and the

spin echo signal is measured (Figure 2.1(d)).
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Figure 2.1: Creation of spin echo. Spin phases are initeiyned (a) and gradually dephase
due to field inhomogeneity during the first half of the seqeefir). The 180-degree pulse
negates the phase of each spin (c), which then continuespttade at the same rate so they

reach alignment again at echo time (d).

2.1.1 Localisation with magnetic field gradients

To reconstruct a 3D image, the spin echo signal needs to lmeleddor each dimension. One
way to achieve this is to incorporate a gradient into the retigtield B, along a certain direc-
tion. Because the Larmor frequency

wo = PVBO? (21)

where~ is the gyromagnetic ratio anBy is the magnetic field strengtlhe gradient causes
the Larmor frequency to change linearly in the gradient diten. Thus, for example, a slice
perpendicular taBy, which is a transverse slice, can be selected by applying@iant in the

same direction a®, and choosing the frequency that corresponds to that slice.

For a transverse slice the slice gradie@t,) is applied along the z-axis, for a coronal

slice the slice gradient{,) is applied along the y-axis, for a sagittal slice the slicadient
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(G,) is applied along the x-axis [118]. A slice gradient can bpligg along any direction by

combining three gradients, G, andG., to achieve any slice direction.

Frequency and phase encoding are used to reconstruct tHe@Difsa transverse slice is
taken, a gradienty, is applied to vary the frequencies in thelirection. G, is then removed
and another gradierdt,, is applied perpendicular tG,, so the frequencies of the nuclei vary in
the z-direction and phases vary in thedirection due to the previous gradief,. In this case,
y-direction samples are encoded by phase adlifection samples are by frequency. The 2D
encoded image is transformed from frequency domain toapddimain, by using 2D Fourier

Transform.

2.1.2 Image intensity,l'l and 72

The image intensity of a tissue depends on its proton dengitgtronger spin echo signal
corresponds to a higher proton density in the tissue. Whilage intensity also depends on
the relaxation tim@'1 and7'2. When people mention non-diffusion-weighted image, ndlsma
it meansT'1-weighted or7'2-weighted MR Image. The image contrastof-weighted MRI
is mainly influenced byi'1, although it is also sensitive {B52; likewise forT2-weighted MRI
[118]. T'1-weighted image is created typically by using short TE and @é&tausd’1 controls
how long it takes for spins to relax between excitatiori§l images show better anatomi-
cal detail and better differentiation between solid anddffilled structures. Comparing with
T1-weighted image]'2-weighted image is generated using longer TE and TR timeguse
T2 controls how quickly the signal decays after excitatioif®-weighted images often show
local pathology more clearly and have high signal intensilyn water, haematoma, tumours,

inflammation, oedema and proteinaceous fluid.

2.1.3 Echo Planar Imaging

Echo planar imaging (EPI) is a fast scan imaging techniqeedan gradient echo [90]. In
diffusion MRI (which will be introduced in the next sectiQritPl technique is widely used,
since a large number of images are required. EPI's speedscfiore the fact that a single slice
only uses a single RF pulse, whereas the standard sequariEs @m RF pulse for each line of
k-space. In EPI, a single excitation is followed by a seriegradient echoes, which is formed
by the rapid switching of a strong gradient, as shown in FduR. Each of the echoes gives a

different degree of phase encoding, and together they cagcbastructed to form a slice.
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Figure 2.2: Echo planar imaging pulse sequence diagram. pfihee and readout gradients
control the position in k-space that the measurement quoress to and are designed to traverse

a grid of positions.

Water resonates at a different frequency than fat. EPI hasidal shift artifacts, because
the bandwidth per pixel in the phase encoding directionlaively small, leading to a chem-
ical shift between water and fat. The MRI scanner mistakesptiase difference as a spatial
position difference [118] causing the position of tissu¢hwiigh fat content, for example, to
appear at the wrong position relative to other bits of tisduthe differences between water and
air also cause distortions due to changes in magnetic dilstigpthat affect the local magnetic

field.

The rapid changes of the gradient pulses can generate edentsuin the surrounding
conducting surfaces around the gradient coils. The eddgistsr generate additional magnetic
fields causing inhomogeneity in the net magnetic field andesponding distortions of the

image. More about eddy current artifacts are discussé€d.th

2.2 Diffusion-weighted MRI

DW-MRI measures water diffusion in vivo, over approximgat@l01 second. During this time,
the average distance water modules move is several micresneThe voxel size of typical
in-vivo human-brain scans is approximatedgnm?®, for examplel.7mm x 1.7mm pixels in

plane with slices separated Bydmm.

In diffusion MRI, symmetric diffusion-weighting gradiepulses are introduced to the
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Figure 2.3: Pulsed-gradient spin-echo (PGSE) sequence [3]

standard spin-echo sequence, both sides of8hé refocusing pulse [127]. Figure 2.3 shows
the pulsed-gradient spin-echo (PGSE) sequence [127]edheandl’y are the gradient-pulses
with the same duration, A is the pulse separation time, and TE is the echo timeoffsets
the phase of molecules’ spins, ahfigwill provide equal but opposite rephasing. If the spins do
not move, the second pulse rephases them perfectly, sanlhginetizations are all in phase at
the time of the echo when the measurement is made. Howetke #pins move between the
pulses, they are not perfectly rephased and have a distriboft phases at echo time depending
on the displacement. That means only spins that move in tieetdtin of the gradients are
not fully rephased. The net signal is reduced due to the spitién a voxel having different
phases. In this way, the measurements acquired in DW-MRdarsitive to the motion of water

molecules and the more motion, the greater the attenuatitreisignal, ie the lower the signal.

DW-MRI measures the probability density functiprof particle displacements over a

fixed timet. p is the scatter pattern of molecules during the diffusioretirand its features

provide information about the microstructure. If we caruass thai is negligible, ied << A,

then the summed magnetization from all the spins is the MRa$id*(q),
(2.2)

A*(q) = A*(0) / p(x) exp(iq - x)dx,
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where,A*(0) is the MR signal without diffusion-weighted gradienis= ~dg is the wavenum-
ber, v is the position where the gradient pulse offsets the phaspinfandg is the diffusion

weighting gradient vector. The normalised signal is
A(q) = (47(0)) 7' A*(q). (2.3)
If the average displacement is zero,
Alq) = / p(x) cos(q - x)dx. (2.4)

2.3 Diffusion tensor MRI

Diffusion tensor (DT) MRI [20] computes the apparent difarstensor. It assumes that the

molecular displacements obey a zero-mean trivariate Gaupsobabilityp, so that
p(x) = G(x; D, 1), (2.5)

where
1 T'p-1
G(x; D,t) = exp(—
(47t)3 det(D) 4t

D is the diffusion tensor andis diffusion time. Substituting equation (2.6) into (2.4} get

); (2.6)

A(q) = exp(—tq" Dq) = exp(—bg" D§), (2.7)

whereb = t|q|? is the diffusion weighting factor andlis a unit vector in the direction af. For
Gaussiarp, we can use the effective diffusion time= A — §/3 to account perfectly for finite

4. The diffusion tensor
D$$ D$y Da:z

D=| D,, D, D,. (2.8)
Dy, Dy D
is a symmetric three-by-three matrix, whevg,., D,,, andD., are diffusion coefficients along
z, y andz axes and thé,,,, D,. andD,, are correlation coefficients between the axes. The
eigenvalues\;, A, and A3 of D determine the shape pf The eigenvectors ab, eq, e and

es, give the orientation.

When water moves in all directions equally, the functida isotropic (Figure 2.4(a)). Typ-
ically, grey-matter contains microstructure with no doamihorientation so water movement is
hindered equally in all directions and on average the ddfuss isotropic, sQ\; =~ Ay ~ 3.

In regions like brain white-matter, there are bundles o&fparaxon fibres connecting different

regions of the brain. In the white-matter, water diffusienhindered more across the fibres
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than along them, so the functignis anisotropic with prolate shape(Figure 2.4(b)), [109thw
A1 >> Ay & A3. Oblate diffusion tensors (Figure 2.4(c)) with =~ Ay >> A3 can occur in

fibre crossing regions or regions of sharp bending or fanning

(a) (b) (c)

Figure 2.4: Isotropic tensor(a), anisotropic tensor(lg) @vo crossing anisotropic tensors(c)

To fit the six free parameters iR, a minimum of six measurement$(q) are required
with independenty. Most often, the linear least-squares algorithm is used thdi tensorD
to the log of the measurement via equation (2.7) [21]. Howeves common in DTI to obtain
more than the basic 6 measurements to give better oriemiatiariance. Spherical acquisitions
protocols [72] are now standard, which acquire some number= 6 measurements with
a fixed b value greater than zero and gradient directionsadpegenly over the hemisphere,
together with some smaller numb&f measurements with b=0. Alexander and Barker [4]
suggest thatV should be between 6 and 9 times larger tlldn From equation (2.7), each
log A(q;),7 = 1,..., N gives a linear constraint on the six elementdfso we can write all
the constraints as a matrix equation

A=B.D, (2.9)

whereA = (In(A(q1)), ..., (In(A(qn)))?, D contains the elements of the diffusion tensor:
D = (Dyy, Dyy, Dyzy Dy, Dy, D)™, andB hasi — th row

(—ta?, —2tqiQiz, —2tqi1 i3, —tq%, —2tqi2qi3, —tq2). To estimateD, we solve equation
(2.9) using the pseudo inverse Bf (B?B)"!B”A = D. Also the singular value decompo-
sition (SVD) can be used to compute the pseudo-inverse aixrit If matrix B with SVD
isB = UXVT, whereU is an m-by-m unitary matrix, the matri is m-by-n diagonal matrix
with nonnegative real numbers on the diagonal, &ddenotes the conjugate transpose of
V. The pseudo-inverse @ with SVD is Bf = VX1U”, whereX! is the inverse matrix of

diagonal matrixz, VT andU7 is the transpose df andU.
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Some useful scalar values can be derived flomTwo of the most commonly used are

trace

TF(D) = )\1 + )\2 + )\3 (210)
and the fractional anisotropy (FA) [67]

(o)) ()

=1

1
2

(2.11)

and Figure 2.5 shows images of the scalars over an axial hnaém slice, which are from
the dataset “Fcontrol” (More information about the datag#ltbe introduced in§5.3.1). The
trace of the DT is the sum of eigenvalues. It is proportiongdhe mean squared displacement,
and this indicates the mobility of the water molecules, Whieflects tissue density. FA is the
normalised standard deviation of the eigenvalues, so ra@iies of FA appear in areas in which
the local fibres have consistent orientation[67]. It is oftesed as a marker for white matter

integrity.

Figure 2.5: Trace (a) and fractional anisotropy (b) imagesfan axial slice through a healthy

human-brain

The principal direction (PDg; of the tensor provides an estimate of the directions of
fibres. Figure 2.6 shows a slice of PD image scaled by FA, itkvRiDs are projected onto the
image plane. We can use red, green and blue colours to repitbsex, y and z values to the
direction vector of tensor image, [120]. Then a colour coideglge can be derived as in Figure
2.7.
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Figure 2.6: Principal directions of diffusion tensors inagal slice through a healthy human-

brain

Tractography algorithms reconstruct the three dimensisinactures of bundles of axon
fibres by following fibre directions through the image. Getigrspeaking, the approaches can
be divided into two types: line propagation techniques amefgy minimization techniques,
[100]. Line propagation techniques use local tensor infaiom for fibre reconstruction, in
which the information from neighboring pixels is consid&{88, 97, 145, 34, 22]. The energy
minimization techniques are using global information talfthe best path between two pre-
determined pixels [108, 136]. An example of tractographgdes (provided by P. Cook [35])

using streamline algorithm is shown in Figure 2.8.

2.4 Diffusion reconstruction beyond tensor

The DT model quantifies diffusion anisotropy and providegstimation of a single fibre prin-
cipal direction, but it cannot reconstruct fibre crossing$ws various multiple-fibre models
and reconstruction algorithms have been developed to eecoare information from diffusion

MRI measurements. Seunarine and Alexander [122] give aeqnal overview.

The multi-tensor model replaces the Gaussian model in D1 wimixture of Gaussian
densities. It cannot be expressed as a linear function ofmtb@surements so the model fit-
ting requires non-linear optimization. The “ball and stickodel [23, 64] assumes that water
molecules belong to either a restricted or a free popula@hrens et al. [23] use an isotropic

Gaussian model (“ball”) for the free population, and a Geussnodel which has only one
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Figure 2.7: Colour coded DT image in an axial slice througlealthy human-brain

Figure 2.8: Human brain pathways recovered from DT-MRI data

non-zero eigenvalue (“stick”) for the restricted popuwati Later, Assaf et al's Composite hin-
dered and restricted model of diffusion (CHARMED) [12] usedylinder [103] to model the
restricted population. Both the “ball and stick” and CHARBIEhodels extend to multiple fibre
directions by including multiple anisotropic componen#s.two-tensor model could provide
poorer estimates for a single fibre-orientation, so ideaiywould fit a one-tensor model to
single fibre and a two-tensor model to cross fibre regionsxaklder et al. [6] propose a method

to classify isotropic, one-fibre and two-fibre regions.

The model-based methods recover a finite number of dominanet-dirientations and do
not naturally distinguish fanning or bending configuratfoom parallel fibre populations. To
solve this problem, some other methods try to reconstrugtfithre orientation distribution
function (fFODF), which is a probability distribution on tisphere. Diffusion spectrum imaging

(DSI) [138, 134] and QBall [135] imaging reconstruct thefulfon orientation distribution
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function (dODF). The dODF discribes the probability of watglecules’ movements in each
direction, which is different from fibre orientation prohiily in fODF. DSI attempts to measure
p directly from a3D grid of measurements ig-space, which means the acquisition requires
an order of magnitude more measurements than typical DTalIG®proximates the dODF
using Funk Radon Transform (FRT), which is a transformatitat maps one function of the
sphere to another, so requires only the spherical sampétigrp of DTI. Spherical deconvo-
lution (SD) algorithm [133] recovers a more direct estimait¢he fODF, by deconvolving the
measurements with a response functi®n Thus it assumes that is the same for all fibre
populations, but different cell sizes, densities, pernialand packing configurations make
the assumption limited. Another limitation is that SD is meensitive to noise, thus filtering
step is often used after model fitting. PASMRI [68] recovdfedent functions containing
similar structure to the dODF. The PAS (persistent angutaictire) is a property gb rather
than the true fODF.

2.5 Clinical application of Diffusion MRI

Diffusion MRI provides complementary information for assieg brain information to con-
ventional MRI. In particular, DT-MRI is able to charactexianisotropy and estimate fibre
directions [72]. FA is often used to investigate changes Imtevmatter microstructure with
disease [18]. The tractography technique can be used tordetethe effect of brain tumours
on white matter pathways for radiotherapy treatment anadnitey prior to surgery [99], and to

assess differences in connectivity between different [adjom groups [33].

Current clinical application mainly includes brain matioa and aging, cerebral ischemia,

multiple sclerosis, epilepsy, metabolic disorders anéhidxanor [42].

T1- and T2-weighted MRIs may reflect a decrease in brain watetent and an increase
in white matter myelination during brain maturation in dnén, but DTI investigates move-
ment of water molecules and microstructures of the cereéissale. Thus it provides a sensitive
imaging modality to assess brain maturation in childremybwns, or premature infants [66].

DTI has also been used in detecting age-related degenefage].

Cerebral ischemia occurs when blood vessels are occludddnoaged. In conventional

MRI and CT, it could only be demonstrated at a later stage nvaigruption of the blood-brain
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barrier has already led to water and macromolecule exud&toon the vascular circulation,
leading to accumulation of fluid in the damaged tissue. Biin MRI can detect ischemic

when conventional MR imaging is still normal [101, 137, 117]

MRI helps to diagnose and monitor disease progression iarqatwith multiple sclerosis,
but inflammation, edema, demyelination, gliosis and axdosd have identical high signal
on conventional T2-weighted images [94], but ADC and FA offemplementary gantitative
information to conventional MR techniques in evaluating 8tructural damage in multiple

sclerosis lesions [131, 31].

Despite the information provided by conventional MR, thegfication and grading of
brain tumors is still limited. Diffusion MRI is increasinglused to investigate various tumor

components and assess tumoral invasion from normal tigseeona [74].

2.6 Motion correction motivation

For fitting the diffusion tensor or other diffusion modelsxels in different diffusion-weighted
images must correspond to the same anatomical locations, Hiithe measurement images
need to be well aligned, but the misalignment can be causegohbgnts’ motion and eddy

current artifact.

2.6.1 Patient motion

As we have mentioned in the previous section, to fit the s frarameters i, a minimum of
six measurements are required, which must be acquired frerpdtient in one scan. In fact, in
order to obtain less noisy DT-MR images, around 50 measurenaee typically acquired. The
whole scan usually lasts around 20 minutes. During suchgatlore, some effects such as mus-
cle relaxation or squashing of cushions on the scanner taloleause small head movements,
and translations and rotations of the head are not easy 0. &aby patients make larger and
more frequent movement than adults. For people whose baagndamaged seriously, such as

Parkinson’s patients, the movements are also more likeiyappen.

2.6.2 Eddy current artifact

The varying orientations of the diffusion gradients caudgyecurrent-induced 2-D geometric

distortions, which often remain in diffusion-weighted iges. The effect of residual eddy
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currents is to cause image shearing, scaling and shiftifgeai$hg and scaling are induced
by read-direction and phase encode-direction eddy cugedient. Shifting is induced by a
By eddy current[70]. In order to get the different diffusiorighted gradient directions, the
strength and location of the residual fields change for eazdsorement. So each measurement
image is distorted individually [59]. Distortions of thedinidual diffusion-weighted images
produce misregistration, which reduces accuracy in coethltT images and derived scaler

images [70].

William S. Price [112] summarises approaches for miningzim coping with the effects
of eddy currents, which mainly include hardware solutigndse sequence and postprocess-
ing. The postprocessing does not reduce the eddy curreorttias of the gradient pulses
themselves, but reduce distortion in the acquired imagesmage domain, DWIs are often
registered to a non-diffusion MR image obtained in the saowaiigition [59], and we will

discuss more about intra-subject registratiog4rR.



Chapter 3

Registration

Image registration plays an important role in medical imagst-processing. Most of the
current post-processing methods can be summarised aw$ollb) A set of medical images
is acquired and reconstructed using standard methodshvirgtude denoising and intensity
correction. 2) Images are registered to ensure that a fixagénsoordinate corresponds to the

same structure or anatomical coordinate.

This chapter begins with an general introduction to imageésteation, and then discusses

its essential components in details.

3.1 Introduction

Image registration determines a transformation that warpsurce image so that its features
are in the same position as corresponding features in a @rgeference image. Registration
seeks the transformation that minimises the differencevdsen the two images, or maximises

the correspondence.

Brown [27] gives a theoretical definition of image registrat If we define two 2D images,

I (z,y) andIy(z,y), the mapping between them can be expressed as

Iy(z,y) = g(I1(f(2,y))), (3.1)

wheref is a spatial-coordinate transformation, which maps spedierdinatest andy to new
onesxz’ andy/,

(,y) = fz,y), (3.2)

and g is an intensity transformation. The intensity transfoliovatis not always necessary.
An example when it is needed is for highly specula objectser@hihe viewpoint or surface

orientation relative to the light source. Or in MRI when diffnt field inhomogeneities cause
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different low frequency variations in intensity across itmage. Often however, we can regard

the expression of registration as

in medical imaging. However, warping diffusion tensor MRaiges requires a step analogous
to grey level correction, which corrects the tensor dimttafter warping [2], which we can
represent similarly to the intensity transformatign Details of diffusion registration will be

introduced later in Chapter 4.

We can break image registration into four key parts follayay Brown [27]:
1. Feature space

2. The similarity metric

It defines the optimal transformation for the selected feaset.

3. Search space

It is the space of all possible transformations.

4. Search strategy

Crum et al. [37] do a similar division:

1. The similarity measures.

It measures how well two images match.

2. Transformation model.
It defines how one image can be deformed to match anotheratacterises the type of

defomations.

3. Optimization process.

It varies the parameters of the transformation model to meoe the matching criterion.

3.2 Feature space (Image features)

When complex distortions are present, selecting a feapaeesinstead of matching on the raw
intensities can be more suitable, because it generallycesdthe search space and removes
irrelevant information. Image features canib®age intensity, or selected anatomicédnd-

marks/control points, segmentethoundaries or surfacesandcurvatures [80].
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Control points can either batrinsic or extrinsic [27]. Intrinsic control points are mark-
ers not derived from the data themselves. They are placedsityadentified positions. For
example, identifiable structures are placed in known posstiin the patients as reference
points. When intrinsic points are not available, extrirgintrol points can be used, which are
determined either manually or automatically. People witbvidedge in the domain can make
control points according to anatomical structures. Gatiytd53] summarizes the features
used to locate control points automatically, which includeners, line intersections, points
of locally maximum curvature on contour lines, centers afidaws having locally maximum

curvature, and centers of gravity of closed boundary region

Boundaries or surfaces in medical images tend to be morimatishan control points,
and various segmentation algorithms can locate such hugtrast surfaces and match them
between images to guide alignment [41]. When the imagesitieesthtiable up to third-order,
an alternative way of surface matching is use curvaturestianes [95]. That means image can

be registered through aligning the crest lines.

3.3 Transformation models

To transform source imagh to match the reference imade, a geometric transformatioff
needs to be determined. Several transformation types ailalale: rigid, affine and other non-
rigid transformations. Rigid transfomation can be desatiby6 parameters; translations and
3 rotations; affine transfomation can be described byparametersg of rigid plus 3 scalings

and3 shears.

For some registration applicatioff, is the most useful outcome. In some study of brain

development]” provides the rate of growth of different brain structuresirchildren [130].

3.3.1 Rigid transformation

A rigid transformation preserves relative distances. Fangle, if P and( are transformed
to P’ and @’ then the distance fron® to Q is the same as that frof?’ to Q’. A 3D rigid
transformation has six parameters to specify translatiche three orthogonal directions (the
rows or columns are perpendicular to each other) and aeotatiout any axis. We can write

the transformation

T(x) =t + Rx, (3.4)
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whereR is the rotation matrixx is the coordinate vector ands the translation vector. In rigid

transformation, objects in the images retain their shaplesae.

3.3.2 Affine transformation

An affine transformation is an extension of the rigid transfation, and allows more compli-
cated distortions. As well as all rigid transformationse #ffine transformation also includes

shears and scaling. An affine transformation is given by

T(x)=t+R-M:Sx, (3.5)
where in 3D scaling matrix
my, O 0
M=| 0 m, 0 [, (3.6)
0 0 m,
and shear matrix
1 s3 s9o
S=10 1 s |- (3.7)
0 0 1

It is often written in the form which combingsandR. - W - S together into a single matrix,

T(x) = Ax, (3.8)

where
a1 a2 a1z tg
az1 22 a3 1y
A= , (3.9)
az1 agz asz t,

and to match the dimention &,

<

X = . (3.10)

IS

—_

3.3.3 More flexible transformations

By adding more degrees of freedom (DOF), rigid and affinesfiammations can be extended to

more general polynomial transformation. For example, do®sd-order polynomial is defined
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as:

/

T apo ... apg aqp9

/

Yy aip - Q@18 a9 ) ) ) T
N Ty z x° Ty T2 Y yz 2z 1),
z asy) ... A28 Qa9

1 0O ... 0 1

(3.11)
which has30 degrees of freedom. However, polynomial transformatianaray model global

shape changes, not local shape changes [58].

An alternative way to define transformations that can captuore local shape changes is

through basis functions. A basis function transformatian be written as

x apo .-~ Qon 91(%%2)
! ap ... Gin
I ! . (3.12)
Z/ azp ... Q2n Hn(xv Y, Z)
1 o .. 1 1

The choices of basis funtion commonly used to representaf@mation field are trigonomet-

ric [11] and wavelet bases [7].

Splines registration technigue is based on the assumpizdset of corresponding points
or landmarks can be identified in the source and target imajes ways of control point de-
termination have been mentioned§B.2. At these control points, spline-based transformation
either interpolate or approximate the displacements to tmayocation of the control points in

the target image into its corresponding point location emgburce image.

Thin-plate spline is part of the splines family based onahkdasis functions. The trans-

formation is

¥ = ay+ asx + azy +asz+ Y bi6(|o; — (x,y,2)]), (3.13)
j=1

with similar expressions fog’ and 2/, where# is radial basis function, and;, j = 1...n, are
fixed locations in the image. So thin-plate spline gives tispldcements between landmarks
by finding coefficients of radial basis functions. In the 2[ntplate spline (TPS), selected
points(z,y) are independently displaced within the plane, and the aligphents have botit
andy-directional components, thus two TPS models are requaedarp one 2D image [80].

There are a number of alternative choices for radial basistions including multiquadrics and
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Gaussians [40, 9].

3.4 Similarity measures

Image registration warps one image voluianto alignment with another ong. More pre-
cisely, the registration problem is to find the geometriangfarmation of image”, that maxi-
mizes the similarity betweeX andY'. To do this, we construct a cost function that quantifies
the dissimilarity between two images and search for thesfeaimationT* which gives the
minimum cost [69]:

T* = argmin C(Y,T'(X)), (3.14)

whereC(11, I2) is the cost function, an@ (X)) is the imageX transformed byl".

Many intensity-based cost functions are used widely, windtude least squares (LS),

normalized correlation (NC), correlation ratio (CR) andtaal information (Ml).

3.4.1 Leastsquares

Least squares is defined as
N

Ch =3 (¥ - X)) (3.15)
1=1

whereY; and X; are the intensities in-th voxels of images” and X respectively and the
sum is over theV foreground voxels of the images. Least squares is used tia-imodality
registration using voxel similarity measures [41]. It istfeo compute and its derivative is easy
to obtain. As it can not assume the tissues to be matched lif@eeat intensities, it is not

suitable for matching images from different modalities.

3.4.2 Normalized correlation

Normalized correlation (NC) measure assumes there is arlmedationship between the inten-

sities in the two image [41], and is defined as

VI X2 /YN v

It overcomes some limitations of the least squares costaiticplar, it is not sensitive to in-

tensity scale differences which are common in MRI. Howetlgis cost function is still not

appropriate for the registration of different modalitiedhere the mapping between correspond-
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ing intensities is often highly nonlinear.

3.4.3 Correlation coefficient

Similarly to NC, correlation coefficient (CC) similarity &so a linear relationship between the

intensity values in two images, and is defined as

cCC _ >y (Xi = X)(Yi - Y) 7 (3.17)
VEN (X - XYY (Y - V)2

where X andY are mean intensity values of imag&sandY. CC is not suited for multi-

modality registration either.

3.4.4 Mutual information

Mutual information (M) is particularly suitable for regiation of images from different modal-

ities [147], and it is defined as
CMI = H(X,)Y) - H(X)-H(Y), (3.18)

where H is the standard entropy [116]. An image with many differeniemnsities has high
entropy, since it contains much information; an image wiglingle intensity has a low entropy
value. MI measures the statistical dependence of one imagmsother. The lower of joint
entropy H (X, Y)), the more similar between the two images are. Figure 3ualiges the re-
lationship between entropies, where the size of the cirglpsesents the value of the particular

entropy, and the overlapping areas represent the mutwathiation [128].

I(M;N)
F () ;@5
HM) H(N) | HOMIN) H{"-IM}
Mg / \ / X/
Marginal Entropies Joint Entropy Mutual Information

Figure 3.1. A set theory representation of the entropieslived when combining two im-

ages [128]



3.5. Fourier methods 37

3.5 Fourier methods

Fourier registration methods compute the optimised obgdunction from a frequency do-
main. For white noise, registration in time-domain is rdbdier frequency-dependent noise
due to illumination or changes in sensors, similarity nestbased on the invariant properties of
the Fourier transform are good candidates [27]. The basici€oregistration method, which
is called phase correlation, is given by Kugin and Hines [B6} it can only correct for trans-
lation. In later work, De Castro and Morandi [30] gave an egten method, which uses a full

rigid transformation.

Phase correlation relies on the translation property oFiarier transform. For two im-
ages/; and I, they have the same Fourier magnitude, and their shift atigphent directly

relate to a phase difference, which can be denoted as
Flf(x — dy,y — dy)] = e/ @adatwsdi) P £ (2 )], (3.19)

wheref is transformation in space domaif), andd,, are the displacement on each axis. When
the image noise is limited to a narrow bandwidth, the phafferdhce contributes equally on
the frequency information. Thus the phase correlation i sugted to images with this type
of noise. Because this method is insensitive to changesdaotigp energy, it is also useful
for images taken from different sensors. Meanwhile, theiSgant image white noise, which

spreads across the whole frequency domain, can make thednatccurate.

3.6 Optimisation

When a cost function is chosen, an optimization approachsésl uo search the parameter
space of the transformation. The rigid transformationseh@parameters (3 rotations and 3
translations), and the affine transformations have 12 petensy as shown in Eq. (3.9). The
optimization algorithm finds the combination of those pagten settings that maximize the
similarity measure. Transformations with more degreesedfdom require more sophisticated

optimization algorithms.

Search strategy in optimisation could include hierardhiwaltiresolution techniques [16,
24, 39, 106], decision sequencings [19], relaxations [6HL, 1114, 124], linear program-
mings [15], tree and graph matchings [52, 121], dynamic iagnings [54, 86, 93, 104], and
heuristic searches. More general optimization algoritimisigh dimensional image registra-

tion may have multiple phases and either include an initgatiror affine translation, or use
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rigid or affine registration to provide a starting estimated more complex transformation [41].

One common problem in optimisation is that local minima canse the algorithm to
fail to find the global minimum. That means the returned ti@msation from optimisation
corresponds to a local minimum of the cost function, rathantthe desired global minimum.
This is a major cause of registration failure. Jenkinsorl.¢68] approach the local-minimum
problem in two ways:

(1) A smoothing method is formulated to eliminate discombins changes in images;

(2) A multiresolution framework, which is called hybrid ¢pal-local optimization, is used for
optimization.

This means the local optimization works progressively flom resolution images to higher

resolution images, which reduces the effects of local méniraps.

Rajwade et al. [113] propose a probability density estiomato smooth the noisy signal,
and Shams et al. [123] adapted it to histogram for coverieddbal minimum, which is using

“uniform volume histogram” for the optimisation when iwilising the rotation parameters.

Gradient descent [13, 126] is an commonly used optimisadigorithm. It takes steps
proportional to the negative of the gradient at the currexntpto find a local minimum of a
function. Gauss-Newton algorithm [47, 26] and Levenbergrdiardt algorithm [115] are used
to solve nonlinear optimisation problems. Powell methatD]lis used in many optimization
procedures, because it does not need second derivativema@me easily adapted to the imple-

mentation.

3.7 Interpolation

The intensity is defined on a grid in digital discrete datd,dfter geometric mapping, a point
in the source image volume and the corresponding point itatiget image volume will not fall
on a voxel. For example, a geometric transform functidomaps the pixe(z,y, z) to a new
position(z’, 3/, 2’), but the position of the transformed point does not in gdrierat a precise
3D voxel location in the output image. The results of the ¢farmation F' are a collection
of non-integer co-ordinates. To determine the intensitinrmediate geometric locations,

interpolation is required.
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Interpolates could use alternative neighbourhood methadsrest neighbour, trilinear,
spline and windowed sinc. The nearest neighbour interpolassigns to a voxel in the target
image the value from the closest voxel in the source imadieiar, spline and windowed
sinc are all based on a convolution with kernels, for insartdlinear interpolation uses the
distance-weighted value between eight neighbouring goxdbrmally, the more accurate in-

terpolation costs the longer computational time [105].

Interpolation causes some loss of high frequency infonaith the images, but can also
reduce the noise. Thus, in general, the SNR can increasglglajter interpolation, although
simple interpolation algorithms, such as nearest-neighbterpolation, do not affect the SNR
at all. Although the nearest neighbour interpolation ugetbtluce the image resolution does
not change the noise level of the original data, the modéhdithnd resampling reduces the
noise level significantly compared to the original regisbtrmproblem, because the tensor model
fits the data exactly before any corrupting transformatiargsapplied. The noise level in the
simulation therefore does not reflect the level of noise iea clinical application. The role
of the simulation is as a proof of concept and comparison @ttndidate approaches in ideal
conditions. Further experiments with more realistic ndisthe images would be required to

evaluate expected performance on clinical data.

3.8 Practical issues in registration implementation

There are quite a few good registration softwares, suchAikmmated Image Registration
(AIR) [143], SPM [49], FMRIB’s Linear Image Registration AoFLIRT) [69, 125], vtkCmic,

ect. Here we discuss some of the featured approaches usely maAIR and FLIRT.

3.8.1 Field of view

The changing amount of overlap of the reference and targegjéntauses discontinuities. To
overcome this, there are two ways to treat voxels outsidéelteof view (FOV):

1. Treat all values as zero (AIR),

2. Do all calculations strictly in the overlapping regiorL(RT).

Treating all values as zero creates artificial intensityrnatawies when the object is not wholly
contained within the FOV. When all the calculations are donthe overlapping region, the

number of points counted in the overlap region varies, sb e numerator and the denomi-

nator of the cost functions (except least squares) will geatiscontinuously [69].
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The loss of information outside FOV is usually seen in the siitks. AIR and SPM
assume that all the affected voxels are either zero or cardbeded from further calculations;
but FLIRT pads the end-slices, such as increasing the erfegfich volume by two slices,

which means interpolation from outside the FOV will take ensble values.

Thresholding can exclude voxels from outside the body. AdRlias a threshold to source

and target images to exclude voxels, for example outsidaehd.

3.8.2 Local minima problem

FLIRT deals with the local minima problem in terms of “apainn of the cost function” and
“hybrid optimization technique”. Apodization is to remogesmooth a sharp discontinuity in
a mathematical function. In order to apodize the cost fonctly removing the discontinuities,
the weights are added to make the pixel or voxel values neaedbge to continuously drop to
zero at the edge. Thus, the contributions near the overigpgilge are de-weighted. In hy-
brid optimization, FLIRT uses a local optimization methoilhaa multiresolution framework.
To avoid unnecessary evaluation at low resolutions, diffelparameters are set according
to the scaling changes. AIR also uses multiresolution tectenduring optimisation, although

the benefit they focus is “to improve speed”, but local minpnablem is reduced in fact as well.

3.9 Registration assessment

Estimation of accuracy of the registration algorithms islastantial part of registration process.
Zitova and Flusser [147] review basic error classes and adstfor measuring the registration
accuracy, which includéscalization error, matching error andalignment error. Localiza-
tion error means the displacement of the control point doatds; matching error is measured
by the number of false matches between control points; e error is the difference be-
tween the mapping model and the distortion image. Alignneerdgr is most commonly used,
and the other two are only mentioned by few people. Alignnanbdr can be evaluated in
several ways, including mean square error at the contreitpgCPE), test point error (TPE)

and consistency check using multiple cues. CPE is commcsdgl.u

Validation of a registration embodies more than the acguxarification, but includes:

precision, accuracy, robustness, reliability, resousspiirements, algorithm complexity, as-
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sumption verification and clinical use [85].

3.10 Application

The motivation behind rigid and affine registrations areesicombining complementary infor-
mation about the same patient from different imaging mdigal(intermodality registration), or
aligning the same imaged with the same modality at diffefiergs (intramodality registration).
Maguire et al. [73], Peters et al. [132], Schad et al. [82)viheet al. [81], Faber et al. [45],
Evans et al. [44] and Hill et al. [63] all give examples of im@dality registration, and Hajnal
et al. [57], Freeborough et al. [1], Woods et al. [142] andddol et al. [83] talk about the

different aspects at intramodality registration.

Intermodality registration is used because patients ameuanly to be imaged with more
than one modality, such like MRI, CT and PET. Registratiorivit and CT images is often
applied to head images to help surgery and radiotherapyipignand a rigid transformation
is usually determined [139]. When there are scaling or skear® in the dataset, an affine
transformation can be used occasionally to generate motgate registration. Because of the
low resolution of PET images, registration of MR or CT imageth PET images is desirable

to make use of anatomical detail from MR or CT images [140].

The same subject can be imaged by the same modality, buasegan time. For example,
to monitor disease progression or response to treatmeittiplalMR images are acquired at
different times. These images can be viewed side-by-sigtesrball changes between scans are

difficult to identify. Intramodality registrations help tdentiy changes easier.

Compared with intermodality registration, intramodaliggistration might be easier at
first sight, as the images are very similar to one another. d¥ew when high registration

accuracy is demanded, great effort must be taken.
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Registration in DW and DT MR

Registration in diffusion MRI can be used to compare thestdasafrom different patients (inter-
subject), or to align the different images in the same datiagm one patient (intra-subject).
For inter-subject registration, the transformations gfeate orientation of tensors after moving
to a new location, thus the tensor orientation needs to béléa@mproperly. In intra-subject reg-
istration, the source images are taken at different timas,véth different diffusion weighted
gradients. Because intra-subject registration is to thedef this thesis, we only give a general
survey on inter-subject registration §4.1, and concentrate more on intra-subject registration

in §4.2.

4.1 Inter-subject registration

We discuss two issues in this section: how to warp a DTI and wihailarity measure to drive

registration.

Diffusion-tensor images contain orientational inforroati which reflects the orientation
of fibres in the tissue. If we simply transform the voxel valdeom the original image to the
transformed image, then fit the tensor, each DT will retagndame shape and orientation as
before the transformation, which means the principal tivas remain the same as they were in
the original image. This is illustrated in Figure 4.1. Thigstemain consistent with anatomical
structures after warpinggach tensor must be reoriented The Finite Strain (FS) [87] and
Preservation of Principal Direction (PPD) [2] are commoumbed reorientation strategies. The
FS uses only the rotation component of deformation field,thedotation matrix is extracted
from the local affine approximation to the warp at each polosing FS strategy, the defor-
mation component of the transformation, which includesaghg and nonuniform scaling or

stretching, is discarded. Alexander et al. [2] propose AP ethod to account for the effect
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of the deformation component which also affects the retait@n. Xu. et al. [144] consider not
only the principal axis of individual tensor, but also thégmourhood information contributes

to the calculation.

Figure 4.1: Original colour coded tensor image (a) and (), tated image without reorien-

tation (b) and (d)

Many registration approaches for DWI are also provided.xameler and Gee [5] use the
elastic matching algorithm to register DT-MRIs, but thes@nreorientation is not included
in the transformation. Curran and Alexander [38] optiminea#fine transformation to match
diffusion images with no reorientation, FS reorientationl PD, and they state that synthetic
transformations are recovered more accurately using F®BMithan using no reorientation.

Cao et al. [29] develop a deformation registration algaomitfor vector fields, which registers
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DT images by matching their principal eigenvectors. Parkakt[107] use a multiple-channel
demons algorithm [55] for estimating deformation field ie #patial normalization to drive the
registration, which includes a channel of T2-weighted Mir¢hannel of FA, a channel of the
difference of the first and second eigenvalues, two charmfét and Trace, three channels of
the eigenvalues of the tensor, and six channels of DT commendegistration using all the
components of DTs gives the best results. Zhang et al. [14&jge a local affine registration
algorithm to register DT images using FS reorientation. ®pgmal affine transformation is
estimated by dividing the image into uniform regions. Gea Alexander review the literature

more completely in [50].

4.2 Intra-subject registration

As we have discussed &2.6, intra-subject image misalignment can be caused berjati
motion and eddy current artifact. We review approachesigmahe DWIs in the dataset in
this section. The discussion is in terms of cost functioe-gmocessing and post-processing,

reference image, model-based registration, and evafuatio

4.2.1 Costfunction

Correlation coefficient (CC) gives a global linear relatibip between two images, so it is not
suited for multi-modality registration. Bastin et al. [9ftlicate CC does not perform well with
diffusion-weighted images acquired withvalues higher thaB00s/mm~2. But Netsch and
Muiswinkel [102] think if the neighborhood size is small eigh, such a8 x 3 x 3 voxels,
the assumption of a linear transfer function is valid. Theg @D affine registration with local

correlation (LC) similarity. LC similarity is based on theCC

Differences in image contrast caused by the diffusion gratdidemand the cost function
suitable for multi-modality registration, so Ml is commgnised in diffusion image registra-

tion [141, 84].

Bammer and Auer [17] show that non-rigid registration, gdihl as similarity function,
corrects well for eddy-current induced distortion in diion-weighted single-shot EPI. Based
on [17], Mangin et al. [88] append another step to reducaesuttlated artefacts. They replace
objective function in least squares methet] (vheree is the residual on the estimated fit) with

a similar but more robust functior®/ (¢ + C?), whereC is a constant).
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4.2.2 Pre-processing and post-processing

Masking out voxel values with low intensity values is comiyonsed as a pre-processing
method in DW imaging. Andersson and Skare [8] apply a Gandgiar to smooth the images

before rendering the objective function.

Shams et al. [123] induced methods to initialise rotatioth anslation plus scale parame-
ters, separately. Translation and scale parameters wiamrrdieed by registering resized image.
They use gradient intensity as measurement to determirettiteonal parameters. L&, K,
andK, be 3D differentiating kernels im, y andz directions. The gradient images of 3D image

I are calculated using
G$:K$®17Gy:Ky®I>Gz:Kz®I> (4-1)

where® denotes 3D convolution. The vector field is then expressesplrerical coordinate,
where each gradient vector is represented with magnit@hitizand azimuth angles. Shams et
al. then transferred the information of magnitude into hinand reduced spherical coordinate
to a function of only two dependent variables, zenith andhath angles. Thus, the rotational

misalignment problem was reduced in dimensions.

Rohde et al. [119] indicate that the distortion correctioduces intensity errors. So after

the registration, they apply a brightness correction fiamctor intensity correction.

4.2.3 Reference image

Normally, registration task for motion correction withimet data set selects a reference image
from inside the series, and registers all the other imagésrimto this fixed reference. Since
the non-diffusion-weighted image does not suffer from tistottions induced by eddy current
and has the highest SNR, it is usually chosen as the refensragge for registration [59]. We
refer this as the “Traditional method” in the later expenimseof this thesis. For example, the
populareddy _correct program [43] in the FSL package [125f1rib.oz.ac.uk/ fsl/) uses

this approach.

In the same dataset, each diffusion-weighted image preyidg of the unique information
according to diffusion pulse direction, thus differenfaiion measurement images do not have

the same contrast to locate the same position. So the ide@nohising the sum of squared
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differences between two images with different diffusioadients weighted has problems.

Based on an adaptive intensity correction algorithm pregdsy Guimond et al. [56],
Ardekani and Sinha [10] use a local intensity-matching algm to make al»-weighted im-
age that matches the intensity of a diffusion-weighted ien&jnce the technique incorporates
intensity outlier detection and performs iteratively onubset of the data, its computation is

expensive.

Landman et. al. [77] create a template set as reference grhgeng registration. They
declare that their template provide the unique referencagérfor each diffusion-weighted
measurement. As the template is made from the registerkaidifi-weighted data from non-
diffusion image, there is no true improvement from the sémdctorrection scheme. Because
all the experiments are based on the comparison with theated template, the conclusion

based on the experiment result is not convincing.

4.2.4 Model based registration in medical imaging

Hayton et al. [61] fit a pharmacokinetic model to correct footimn effects during the ac-
quisition period, and demonstrate qualitatively that tbatast of MR images are enhanced
significantly. Later, Buonaccorsi et al. [28] present a liyeaontrolled 3D translational regis-
tration process driven by tracer kinetic model to blood wwdu Their technique involves fitting
a parametric kinetic model to a time series of measuremprm@adh voxel. They use a five-step
iterative scheme in the registration process:

1. Fit the model to the original measurements;

2. Synthesize reference signal maps from the fitted model,

3. Register translation only to match each original timenpeblume to its corresponding
reference volume;

4. Re-fit the model;

5. Repeat steps 2 to 4 until a minimum is found in the model farsr

Tracer kinetic model-driven registration method coped wéh features that appear and dis-
appear between images. Results show a significant improwémmodel parameter estimates

in the presence of motion corruption of the image sequence.

Melbourne et al. [92] perform registration repeatedly toaatificial time series of target

images generated using the principal components of thermiLbest-registered time-series data.



4.2. Intra-subject registration 47

Because early principal components describe the majoddrénthe data, image profiles are
expected to be relatively noise free. But the method relieseparating the effects of motion
and contrast enhancement, which might fail if the regigtnais not successful. The authors
show improved alignment across time series of contrastraegd MRI and later apply the
same idea to aligning diffusion-weighted images. The agginds less suitable for the latter
problem, because the orientational dependence in difiusiBl may cause the algorithm to
require larger numbers of principal components to captueevariation. However, in practice,

early results appear promising.

4.2.5 Model based registration in diffusion imaging

Andersson and Skare [8] use a quadratic cost function te thi optimisation. In other words,
the algorithm minimizes the sum of the squared errors betwee data and the linear model,
by simultaneously registering all images and fitting the B'Bach voxel. The residual error is
directly minimized in two steps:

1. removing all the variance accounted by the diffusiondens

2. using the remaining variance to drive the registration.

This scheme can correct both eddy-current-induced distodnd subject motion, but only
works when more than 6 measurements are available. Thegstpat 12 to 20 gives the best
results. Over all, the work provides a compelling theosgtapproach to improve correction for
distortions in DW-MRI. Theoretically, the method estingteddy current-induced distortion
and subject motion without need of any additional measunésneHowever, the method is
complex and computationally demanding and anecdotal wisiiiom several groups suggests
that the algorithm is not very robust in practice. Most likdie key limitation is that initially
poorly aligned measurements contribute strongly to thedaivje function that quantifies align-
ment. The methods we propose in later chapters avoid thisgmoby using outlier rejection

to remove those contributions.

Previously in§2.1.3 Echo Planar Imaging ars@.6.2 Eddy current artifact, it has been
mentioned that EPI causes distortion. Haselgrove and Mfx®@Epoint out each diffusion
measurement image is distorted individually. That is beeaun order to get the different
diffusion-weighted gradient directions, the strength &whtion of the residual fields change
for each measurement. Jezzard et al. [70] state that theyartdeformation model suited to
diffusion-weighted EPIs is a slice-wise subset of an affra@dform consisting of one shear,

one scale and on translation parameter. Andersson and [Bfawggest models for how dis-
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tortions vary with slice position and gradient directionpa8al constraints model describes a
linear or nonlinear relationship between slice number astbdion (such as shear) parameter.
Another model is gradient constraints, which focuses ometagionship between diffusion gra-
dient direction and distortion parameter. By implementing two models, the dimensionality

of the parameter space could be reduced.

4.2.6 Evaluation methods

The assessment of improvement of diffusion tensor imagstration is mainly based on visual

side-by-side comparison of images and parametric mapsebefal after registration [60, 119].

The most general quantitative evaluation method is the mugd#n square error (RMSE)
between the images component. Image component can be the, Difflision model coeffi-
cients, and some model-derived scalar values such like Fgsnf&A is a quantitative measure
which marks tissure microstructure, thus is widely useddpldy appropriate statistical result.

Kreher et. al. [75] calculate FA histograms before and afistortion correction.

Consistency testing is used to quantitatively evaluatestregion results and compare dif-
ferent registration schemes [102]. The consistency ergasures the largest displacement for

all voxelsz;, and is defined as

011 = ma, || (T Tia) i — il 2, (42)

whereTj; is the transformation to register imagé, to imageX;; andTy; vice versa. But
consistency testing can only be used when there is misaéghmf two images; otherwise

there are no transformations Bft and7}! contributing to equation (4.2).

To overcome the limitation of consistency, Netsch and Minkel [102] introduce cross
consistency, which takes transformations from two alpari (such as Ml and LC) into ac-
count. IfT"and.S are the registration results from two algorithms, the comsssistency error is

defined as

b = maxe, {||(T1k:Ski)zi — il |2, || (S Tht)zi — xil|2}- (4.3)

But the authors point out that there is no truth about whetbesistency or cross consistency

can provide better results, and choice is made dependingedndividual performances.
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4.3 Summary

To study DTIs between datasets, inter-subject registragibempts to find proper similarity
measures to drive registration and warp tensors to reta@rséime shape and orientation as
before the transformation. Intra-subject registratiomsato improve dataset quality after ac-
quisition from scanners. Current literatures try to solve problem by selecting proper cost
functions, choosing good reference images, even devglagmme model driven approaches.
MI cost function has been commonly accepted in DWI registnat However, the reference
image is still mainly based on using non-DWI in the tradiibmethod, and the contrast differ-

ences caused by the diffusion gradients have not been solved
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Basic Model-based Registration

In this chapter, we propose a new class of model-based nagst methods for motion cor-
rection in diffusion MRI. To improve the registration andreve the errors that the traditional
correction method introduces, all the new model-basedstragion methods use different
reference images to register diffusion-weighted imagehb different gradient directions, as

illustrated in Figure 5.1. In this way, the registrationket@nto account the individual features

T2-weighted (b=0) image

Model-based Reference Images

Misaligned Images

Aligned Images

Figure 5.1: Comparison between Traditional Method (top) lslodel Fit Correction (down)

of each measurement. Our method could correct eddy cungfiaicapotentially, although we

mainly focus on motion problem when designing. The basia ide

1. fit the diffusion model to the measurements;

2. synthesize reference data for each measurement fronitéterfiodel;
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3. register each measurement volume to the correspondimbetic reference;

4. repeat previous steps to converge.

Make
Fit Diffusion |—'\.| Synthetic | _
vodel | | Reteiencs | ) Register
Data
Step 1 Step 2 Step 3

Figure 5.2: Model-Based Registration Methods Flow Chart

We use the simple DT model in step 1, although potentiallyodiffusion models could
also be used. The only difference between the methods ligeeifirst step of fitting the dif-
fusion tensor model to the measurements. In particularrtethods select different subsets
of the measurements for fitting the model. In practice, wandbthe difference between the
first outputs and the outputs from later cycles changes aay slightly. Even though minor
fluctuations in the objective function occur during subsatuterations, we consistently see
no further improvement in alignment. Thus, we did not purigeuse of Step 4 in the end for
all of our model-based registration methods in favour oksegalternative algorithms that we
describe in later chapters. Thus the various algorithmbigahapter all follow the three-step

flow chart illustrated in Figure 5.2.

5.1 Primary model fitting method - FMAM

The most direct model-based registration is a direct atiaptaf Buonaccorsi’s method [28]to

DT-MRI. We call this the FMAM Fit the M odel toAll the Measurements) method.

Step 1: Fit the tensor to all scanner output measurement images
This is a diffusion tensor reconstruction step, which takesscanner output images and

fits the DT in each voxel as described in p.23 3.

Step 2: Making synthetic images
From the fitted tensoP from step 1, we generate target image volumes for each mea-

surement by synthesizing the measurement from equati@hy&ing the fitted in each voxel.



5.2. Models fitted from part of data set - FM 52

Step 3: Registration of the scanner output image data set

We register every measurement volume to the syntheticttangege with the samq.

The first two steps are the inverse transformations of edwdr,dbut the output measure-
ments fromstep 2contain contributions from all the measurements. The ntizedhcorrelation
(NC) or mutual information (MI) cost function is used for selging the transformation. We

use FLIRT [69] to compute an affine registration here.

Compared with the standard correction scheme (choosin@3veeighted image as the
reference image for registration), there are some advestag FMAM. It chooses different ref-
erence images for diffusion-weighted images with différgradient directions for registration
as shown in Figure 5.1, so this registration considers th&rast differences of measurements.
Since the method does not attempt to reject outliers, theehfiating procedure is influenced

by measurements from misaligned images.

5.2 Models fitted from part of data set - FM

Step 1of FMAM fits the diffusion tensorD to the whole set of diffusion weighted measure-
ments. This means that all the measurements, includinghatyate poorly aligned, contribute
to the fittedD. The corrupted measurements therefore affect the refeiierage made fronb

in step 2

In order to avoid corrupt data disturbing the reference iesagvery sub-method of FM
(Fit the Model) described in this section fits the tensor only to a dubsescanner output
measurement images. All the sub-methods of FM still retagrthree steps presented in Figure
5.2, but they use various strategies to select measurefiogite tensor fitting irstep 1 They

are “FM.cons” “FM.a” “FM.b” and “FM.th".

All FMs are trying to identify and reject the corrupted 3D DWlwmes. In order to fit
the DT model, a minimum of six DWIs is required. FM.cons fite tensor to a fixed set of
measurements, which are the first ones acquired during #me B&1.a, FM.b and FM.th all use
different automatic algorithms for selecting well alignsabsets of measurements for tensor

fitting in step 1
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5.2.1 FM.cons

o
-
e

e
i

i
| |
i :
: Input Selected | Qutput] |
. Corrupt Measurement | DI i
: Data i
i |
i |
| OO !
Step 1 in
FM.cons

Figure 5.3: Flow Chart oftep 1lin FM.cons

FM.cons only uses non-DWI(s) and the first few DWIs to do theste fitting, shown in
Figure 5.3. For example, the first six DWIs taken from patieare used. The idea is that the
patient is least likely to move at the start before they getti Some effects such as muscle
relaxation or squashing of cushions on the scanner tablebmayore likely to affect the early

measurements.

However, not all the patients can keep still, even duringetfidy period of the scan. For
example, baby patients make larger and more frequent mauethmen adults and these move-
ments can occur at any time during the scanning. For peoptesevhrains are damaged seri-
ously, such as Parkinson’s patients, the movements artasifihus, FM.cons may not always

work, and we need more robust methods.

5.2.2 FM.a

In Step 1, FM.a identifies corrupted measurement, and gexsesgnthetic reference image
using part of dataset. The method is illustrated in Figude %M.a fits DT model using the

whole dataset, and generate reference images from the nigdeffirst set of reference images
is NOT used for registration, but only to identify corruptedasurements. It makes the iden-
tification by looking at the differences between the origingages and the reference images
which correspond to the same diffusion gradients. The mmeasents that have the smallest

difference are selected, and used to generate referenoegistration in Step 2.
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Figure 5.4: Flow Chart o$tep 1lin FM.a and FM.b

To compute the difference between the measurement volliqg,) and corresponding

synthetic imaged, . ¢ (q,,) with the same gradieny,,,, we use:

v
Sm = Z \/(A(qm)z - Aref(qm)i)2> (5.1)
=1

wheres indexes each voxel in the whole volumelafvoxels.

523 FM.b

In a similar way to FM.a, FM.b selects measurements by coimpube difference between
the corrupt data set and the synthetic data, but every symthmeasurement image is built
from a separate diffusion tensor, which is fit to all the measwents apart from the one being
synthesized. For example, for making the reference imagehéofirst measurement, we use
the whole set of measurementsthout the first one to fit the tensor, then make the synthetic

reference image from the fittedd matrix, as illustrated in Figure 5.4.

In FM.b, we measure the differences between the input cbaata and the reference

image data set in the same way as FM.a using equation (5.1).

FM.a is vulnerable to the effects of corrupted measuremeluinves in the same way as
FMAM. The motivation for FM.b is to exclude corrupted measuents from the dataset used

to fit the tensor and thus emphasize their difference to theroheasurement volumes.
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5.2.4 FM.th
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Figure 5.5: Flow Chart o6tep 1in FM.th

FM.th method uses thresholded DWIs to identify corruptecsueements, and uses se-
lected subset to fit diffusion model in step 1 in a similar wayFM.a and FM.b, as shown
in Figure 5.5. The key idea is to identify corrupted measwets as those images whose
foreground (brain) regions overlap the foreground regioinde other images least well. We
identify foreground regions by a simple threshold on thegenatensity. The histograms in
Figure 5.6 shows the distribution of grey-scale intensitieone DWI. As there is a huge gray
value gap between brain (higher intensity group) and th& tackground (lower intensity

group), threshold level' H can be chosen manually.

An alternative way is to make sure the same number of voxeisireafter the threshold,
which means threshold the first measurement by choosingeahid levell’ H manually; to
the second measurement, increasing the threshold from aetibthe number of foreground
pixels is the same as the one in the first thresholded measuatgand keep doing the same
work for the rest of the measurement images. This threstmpldiethod is not used in the

experiments of this thesis.

Once the threshold scheme is decided, we can implement Rdhdme following the
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Figure 5.6: Image Histograms: (a) grey-scale value histogr(b) log of grey-scale value

histogram

steps as illustrated in Figure 5.5. FM.th selects the measemts to fit the tensor by computing
the difference between the thresholded measurement irhadq,,) and the mean thresholded

zero-weighted imagé/ean(A(0), ), which can be denoted as

14
Sm = _(Am(am)i — Mean(A(0)):), (5.2)

i=1

wheres is the voxel index in volumé’.

Thresholding images with differeit ignores the detailed microstructure information, so
it makes the identification of corrupted measurements edd@vever, FM.th relies on having
sufficient signal in the DWIs to distinguish brain from baadgnd, so will be less effective for

higher b-value acquisitions.

5.3 Data sets for testing

In this section, we first list all the datasets used in the ewpnts of this thesis, and then

discuss the procedure of making synthetic datasets witigton.

5.3.1 Data sets summary

One typical full DW dataset we are using has 66 measuremeértts=( 0 and 60 DWIs), and
128 x 128 x 60 voxels for each measurement with the voxel siz&.@2 x 1.72 x 2.3mm3. Itis

acquired using a GE Signa 1.5-Tesla scanner with a standadtature head coil. DWIs were



5.3. Data sets for testing 57

obtained using a single-shot echo-planar acquisition eatidiac gating (TR=5 — 6 RR 6 S).
The DWI images are at a fixdd| giving b = 1050smm~2, with A = 0.04s and TE= 95ms.
We call this dataset “Fcontrol” for further notice. Thank @audia Wheeler-Kingshott in

Institute of Neurology (IoN) at UCL for providing the data.

Another dataset with small motion corruption, which we ¢&iB2”, is used a lot in the
experiments of this thesis. It is acquired on a Philips 3Tiéh scanner, using aielement
SENSE head coil. A PGSE EPI sequence was implemented with 3#ms, TR= 6000ms. It
has 64 measurements. There HI® x 128 x 32 voxels for each measurement, with a voxel size
of 1.8 x 1.8 x 2.1mm?. The dataset hag0 diffusion weighted images with = 1200s/mn¥,
andA = 0.028s. Thank to Geoff Parker and Karl Embleton, University of Magster, for

providing the brain data.

“FIi” dataset has 68 measurements, with x 96 x 60 voxels for each measurement,
including 61 DWIs with b = 1000s/mn¥ and 7 with low b value. The voxel has isotropic
dimensions of2.3mm. It is acquired on a Siemens Trio 3T Scanner, using twitecused
diffusion encoding, withA = 0.035s, TE= 90ms and TR i2s. Thank to Zoltan Nagy in
Wellcome Trust Centre for Neurolmaging at UCL for providiig data.

“Olgacontrol” dataset is not motion corrupted during thersting acquisition with cardiac
gating. It hass8 measurements, includingb = 0 images and?2 diffusion weighted images
with b = 1600s/mn?, with A = 0.04s, TR= 2 — 3s. Each measurement hE2R x 128 x 60
voxels with a size ofl.7 x 1.7 x 2.3mm?. It is acquired on a GE.5T Signa Scanner. Thank

to Olga Ciccarelli in Institute of Neurology (IoN) at UCL f@roviding the data.

In order to reduce the time required to test and comparerdiffaegistration methods in
the first stage, we construct a smaller dataset from the Rdbhtrol” dataset. We carefully
selected this dataset, because the alignment among athtges appears good so it provides a
good basis for constructing datasets with synthetic ctiong for testing. We introduce some
artificial corruptions to the reduced-size dataset ander&ynthetic Dataset I” and “Synthetic
Dataset 1I”. The size for each 3D measuremenidis< 64 x 30 voxels. The noise standard
deviationo is in the range30 to 40. We simulate the situation that after a long time scan, a

person moves unconsciously, so the last few DWIs are triamsleorrupted.
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Synthetic Dataset | contairzssnon-DWIs andl2 DWIs, and the las8 DWIs are translated

by along different directions imy-plane with the displacement vectors of

ti=[-5 -5 0/, (5.3)

to=[5 -5 0], (5.4)
and

ts=[ -5 5 0] (5.5)

One slice of each measurement of the corrupted data setisishd-igure 5.7. As the size of

k=1 k=2 k=3 k=

k=5 k=6

k=13 k=10

k=13 k=14

Figure 5.7: Synthetic Dataset I: last 3 of 14 measuremeetganslated by.5mm

each pixel isl.7mm x 1.7mm x 2.3mm, a5-pixel displacement in:y-plane equals.5mm in
the dataset. Synthetic Dataset Il is almost the same as tithedig Dataset I, but with only last
one of twelve DWIs corrupted by translatingroxel. Synthetic Dataset | is mainly used in the
experiments of comparing different model-based registnanethods, and Synthetic Dataset |l

is for outlier rejection methods.

The process for creating this synthetic dataset is illtestran Figure 5.8. We discuss the

procedure of resizing and corrupting§s.3.2 and;5.3.3.
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Figure 5.8: Data Simulation Flow Chart

5.3.2 Dataresizing

We reduce the size of full DW dataset in two ways:

¢ reducing the number of voxels,

e reducing the number of measurements.

First, we use the linear least-squares algorithm to fit texpsghich is described 2.3,
and then the 3D images of the tensor elements are rescaledsé\the scaling factor @f5 on
each dimension, and the reduced size for each 3D image}d$4 x 30 voxels. As exactly half
number of pixels on each dimension are taken, nearest raighiterpolation is used during
rescale processing, so SNR is preserved. Even though theoSWKR individual DW images is
preserved, the reduction in the total number of images saaskecrease in the SNR in derived

scalar images, such as the FA.

To reduce the number of measurements, we choose a smallef qetalues and use
equation (2.7) to synthesize measurements from the reekizedensor field. The reduced-size
data set has two zero-weighted and twelve measurementavitzero q. The twelvg values
have directions distributed evenly on the 3D unit sphere|ghdqual to the original dataset of
“olgacontrol”. Comparing to the original, the SNRs of DW reaeements and processed (eg

FA) images in synthetic dataset are increased.
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5.3.3 Data corruption

We introduce various translation and rotation artefactsitmlate corruptions in real datasets.
Linear interpolation is used when transforming 3D imageganglation corruption is imple-
mented simply by translating geometrical coordinate ofs@W!Is. Rotation is more complex.
Because of the existence of diffusion gradient directibwe, dctual head rotation changes the

DWI's contrast as well as spatial position of the image fesgu

To simulate a corrupted image with patient head rotatiofbwe follow several steps:
Stepl: Rotate diffusion gradieng; with R—1.
Step2: Synthesize imagé (q}) for q) = R~'q;, as illustrated in Figure 5.9(b).
Step3: Rotate imaged(q;) by R.
Image R(A(q})) (as shown in Figure 5.9(c)) corresponds to the same gradiesttion of

original uncorrupted imagd(q; ), but with the different image contrasts.

(a)

Figure 5.9: Rotation corruption simulation steps (a) he@taut rotation, (b) equivalent head

contrast to the head with rotation (c) final corrupted imaaesed by head rotation

5.4 Experiments

In this section, we run experiments on “Synthetic Datasétsntd compare the Traditional
Method, FMAM, FM.cons, FM.a, FM.b and FM.th.

5.4.1 Experiment

The result for matrices registering the image is denotedbyattual length unit, “mm”. Thus,

ideally the transformation matrices used to register thiese corrupted measurements should
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(5.6)

(5.7)

(5.8)

TheTraditional Method , which uses the zero-weighted image as the reference invage f

registration, should give an acceptable reskmMAM could make a set of reference images,

but as the corrupted measurements contribute to fittedntdnsihe synthetic reference images

could be badly affected.FM.cons fits the tensorD by using the first eight measurements,

which contains two zero-weighted and six diffusion-wegghimages. As all the corrupted data

is outside the fixed set of measurements used to create ttieeigimeference images, the result

should be goodFM.a, FM.b andFM.th use different schemes to reject the corrupted mea-

surements, so in experiment the last three measuremenikl df@identified as the corrupted

data. We usaormalised correlation (NC) cost function, which is very commonly used in

image registration. In Chapter 7, we will compare perforoganof different cost functions.

5.4.1.1 Traditional Method

The traditional method produces the following three trarmsftion matrices to register the

corrupted three measurements:

[ 1.00

0.03
0.01
0

—0.03
1.01
—0.00
0

—0.02
—0.01

1.03
0

9.67
7.27
—0.21

(5.9)
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1.00 —0.03 —0.02 —7.10 ]
0.027 1.02 —0.01 6.44

Tl?): 5 (510)
0.013 —0.00 1.03 —0.33

0 0 0 1

and

[ 100 —0.04 —0.01 1059 |

003 1.01 —0.02 —9.79
Ty = , (5.11)
001 —0.00 1.03 0.25

0 0 0 1

which are in the unit of mm. In the matric&$....774, elementd1, 4] and |2, 4] correspond to
correction to the induced translation corruptions, so seyuld be around the absolute value
of 8.5 in theory, but the transforms contain slightly higher valu&he image result is shown
in Figure 5.10. Comparing with dataset before registragiown in Figure 5.7), we can see
that the last three corrupted measurements are betteedlignthe others than in the original

corrupted dtaset, but it is clear from the matrices aboveradignment is not perfect.

k=1 k=2

Figure 5.10: Ouput of Traditional Method in Experiment
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Figure 5.11: FMAM Reference Images (a) and FM.cons Referémages (b)

5.4.1.2 FMAM

In the experiment with FMAM, as the corrupted measuremeanisribute to the tensor fitting,

the reference images (Figure 5.11(a)) made ftbnshow clear corruption. Transformation

matrices obtained are:

Tio =

T3 =

and

Ty =

0.79 —-0.04 0.10 13.35
0.04 084 011 4.34
—-0.09 —-0.03 0.93 8.49
0 0 0 1
0.76  0.10 —0.03 3.55
—-0.05 088 0.05 9.72
0.00 —-0.00 0.88 4.35
0 0 0 1
0.84 0.15 0.043 2.42

—-0.09 0.82 0.02 4.23
—-0.07 0.02 091 5.84
0 0 0 1

, (5.12)

, (5.13)

(5.14)

The reference images produced on FMAM are so different floencbrrupted source images

that matrices in FMAM method (equation (5.12)—(5.14)) aot very close to the standard
matricesT”’(equation (5.6)—(5.8)).
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For FM.cons, the last three corrupted measurements do feat die tensor fitting in Step

1. Thus each reference image (Figure 5.11(b)) matches tireesomage perfectly giving the

registration algorithm the best opportunity to find the eotrtransformation. Transformation

matrices are:

1.00 000 000 850
0.00 1.00 —0.00 8.50
Tiy = (5.15)
—0.00 0.00 1.00 —0.00
0 0 o 1
[ 100 —0.00 —0.00 -850 |
0.00 1.00 —0.00 849
Tys = , (5.16)
0.00 000 1.00 —0.025
00 0 1
and ~ -
1.00 —0.00 0.00 851
0.00 1.00 —0.00 —850
Tiy = (5.17)
0.00 000 1.00 —0.02
00 0 1

Compared to matrices in traditional method (equation (§®)1)), matrices in FM.cons
method (equation (5.15)—(5.17)) are much closer to thedatanmatricesI” (equation (5.6)—
(5.8)). This because the reference images made in FM.cotisochare more similar to the

corrupted images, than the non-diffusion-weighted imarpes! in traditional method.

FM.cons used the first six DWIs, so the last three corrupteddid not affect the tensor
fitting. But if some of the first six DWIs were corrupted, FMasowould fail in a similar way
to FMAM. A further drawback of FM.cons that the simple expaent above does not reveal is
that it never exploits potentially good information proettby the DWiIs after the first six even

if they are well aligned from the outset.

5414 FM.a

FM.a selects corrupted measurements by comparing the veletlef corrupt measurement
images with the synthetic reference (as shown in Figure(&)},2vhich is fitted from the whole
dataset. Figure 5.12(b) plots image differenSgs(using equation (5.1)) to measurement num-

ber, from which we cannot identify the last three corruptezhsurements. FM.a fails because
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the corrupted measurements contribute to the referencgeimmeaking, which is the same as
FMAM.

k=3 FTSM.a
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Figure 5.12: (a) Reference images used to identify the ptetbmeasurements in FM.a method;

(b) Differences,,, between corrupted measurements and reference images anéthod

54.15 FM.b

FM.b method makes the reference images to identify the ptdumeasurements in a slightly
different way to FM.a, but as shown in Figure 5.13, FM.b stdhnot identify the last three
corrupted measurements. In FM.b, a 3D measurement worttilcote to the reference of its
own, but its reference’s synthesis cannot exclude thetdfi@m other corrupted measurements.

In other words, one corrupted measurement affects refereinall the others.

54.1.6 FM.th

FM.th identifies the corrupted measurements frt§min equation (5.2), which is the differ-
ence between the thresholded measurements (Figure 5.4a¢thjhe mean thresholded zero-
weighted image (top right corner of Figure 5.14(b)). As shdw the plot in Figure 5.14(b),
FM.th method clearly identifies that the last three measargsas the most corrupted. Thus,
after deciding a proper threshold, FM.th can reject thetlaste corrupted measurements and
fits tensor using all the other eleven least corrupted measemts. FM.th uses more DWIs
than FM.cons for making the reference images, so the ingiidynthetic reference match its

source image even more. Thus, the transformation matrsms to register the corrupted three
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Figure 5.13: (a) Reference images used to identify the ptrdu measurements in FM.b

method; (b) Differences,,, between corrupted measurements and reference images m FM.

method
measurements ~ _
1.00 0.00 000 850
0.00 1.00 —0.00 850
Ty = , (5.18)
2000 0.00 1.00 —0.02
0 0 0 1
[ 100 —0.00 —0.00 —8.50 ]
0.00 1.00 —0.00 849
Tys = , (5.19)
0.00 000 100 —0.03
00 0 1
and

[ 100 —0.00 000 851

0.00 1.00 —0.00 —8.50
Ty = (5.20)
0.00 0.00 1.00 —0.02

0 0 0 1

are even closer to standard matri@égequation (5.6)—(5.8)) than matrices in FM.cons method.

5.4.2 Summary

In this Chapter, we discuss and develop a set of model-baggstration methods to correct

motion between acquisitions in diffusion MR images. FMAMhs primary method; FM.cons
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Figure 5.14: (a) Thresholded corrupted images; (b) Measstiolded zero-weighted image,
and the plot of differences,, between thresholded corrupted images and mean thresholded

zero-weighted image in FM.th method

FM.a FM.b and FM.th try to reject corrupted 3D volume measwmeats, and create synthetic
reference by using part of the dataset. Experiments shawhiaeither fail to work (e.g. FM.a
and FM.b) or are not very robust (FM.cons). FM.th works bdstllp but we still have not

found a really efficient way to decide the threshold.

The key conclusion from this chapter is that the model-baggmoach works well if we
can avoid the effects of corrupted on the references. Refolin FM.cons and FM.th in this
chapter show that in that case it outperforms the traditigor@ach. However, both FM.cons
and FM.th have limitations and the following chapters erplovays to avoid corrupted mea-

surements more robustly.



Chapter 6

Outlier Rejection Schemes

In Chapter 5, we discuss and develop several methods td ogjgapted 3D volume measure-
ments, but experiments show they either fail to work (e.g..&&hd FM.b) or are not very
robust (FM.cons). The key problem with those methods isttieyt fail to identify misaligned

images, which therefore contribute to the model fitting amastthe reference images. This
observation motivates us to find better ways to exclude igisadl images from the model

fitting. One way to proceed is to use robust estimation.

This chapter looks at two methods to identify outliers in $le¢ of measurements in each
voxel and thus fit the tensor more robustly. The first methd®ESTORE, which comes from
the diffusion MR literature. The second is RANSAC, whicheigomputer vision technique.

The application of RANSAC to DTl is a novel contribution ofghhesis.

We first give an introduction to the two outlier rejection sotes; then, we propose some
experimental hypotheses. In the experiment section, aftevducing an evaluation method
based on the principal direction of diffusion tensor, wedss the affect of different parameters
of RANSAC, and compare RANSAC with RESTORE based on diffetelerance settings.
Also, we compare the outlier rejection schemes with lineasor fitting. At the end of this

chapter, we draw a brief conclusion.

6.1 Two outlier rejection schemes

In this section, we introduce the two outlier rejection solbes, RESTORE and RANSAC, and

also give a general introduction to outlier and the estiomatif standard deviatios.
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6.1.1 Outlier

An outlier is an observation that lies outside the overattgra of a distribution [96]. In the
large sets of samples in a diffusion MRI acquisition, somasuee points are further away from
the position or the grey value it should be due to effects bdygimple measurement noise.
This can be due to an incidental systematic error from tharssa or motion of the subject
or patient. Diffusion model fitting methods, such as thetlsgsiares regression model [21],
assume that the signal variability is only affected by thernoise. Thus, outliers can cause

major corruptions to features based on the fitted tensor.

6.1.2 RESTORE

Chang et al. [32] propose an approach to identify and exghadential outliers in DWI, called
RESTORE (Robust EStimation of Tensors by Outlier Rejedtiolt uses an iteratively re-
weighted least-square (LS) regression to identify pagémtiitiiers, which are then excluded.

The final fit is performed with the remaining measurements.

Three diffusion tensor fitting approaches are related to RESE. They are linear least-
squares fitting to the logarithmically transformed sigtiab@r LS) [21], nonlinear least-squares
fitting to the untransformed signal (nonlinear LS) [71] armhimear LS fitting with robust
Geman-McClure M-estimator (GMM) [51, 88]. All three metlsoahinimise the value of

= Zwi x (yi — y(x1))?, (6.1)

wherey; is the experimental value of thih data point, the independent variahlgis the
b-matrix for that data pointy;(z;) is the corresponding fitted value, and is a weighting
factor. The three tensor fitting approaches %@’)—2 U% andm#cz respectively fow;, where
S(p) Is the signal intensity correspondingtignatrix b, r; is th; residual betweeyp andy(z;),

andC' is the scale factor. The way of estimati6gis explained in [32] in detail.
The RESTORE algorithm includes several steps:
1. Initialise parameters using linear LS fitting;

2. Compute the DT using nonlinear LS method with constangiteiv; = 0—12;

3. If the residuals of all data points lie within a given ini&r7’, which means no outliers,

the goodness-of-fit criterion is satisfied and the diffugemsor from 2 is accepted;
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Otherwise, an iterative re-weighting process using the GiMdighting functionﬁ
is initiated. The reweighting process continues until iisf@s a convergence crite-
rion. When the iteration is finished, points lying outsifleare regarded as outliers and

excluded. The final DT is recomputed using the nonlinear L8ote

The confidence interval], is set to three times of the estimated noise level

From the steps above, we can see that no matter whether tieevathers rejected or not,

the final DT from RESTORE is always computed using the noaline method.

6.1.3 Estimation of sigma

The RESTORE algorithm requires an estimat¢he noise standard deviation. We assume the
image measurement is the magnitude of a real signélplus complex Gaussian noigd62],

so thatM = |S + n|. In backgroundS = 0, so E(M?) = 202, whereE denotes expectation
over an ROI. Thus, an estimate for the valuecofs \/E(M?2)/2 from an ROI entirely in
background. Alternatively, Henkelman [62] just used= 1.5267x (standard deviation of the

background noise) to estimate the signal variante

In fact, the RESTORE algorithm contains a hidden parametee she confidence interval
T for outlier rejection is30. For experiment, using different values ®fin the algorithm is
equivalent to varying the width df. Briefly speaking, biggerf allows the program to involve

more measurements in the DT fitting; sni&lleads to more rejections.

6.1.4 RANSAC

The RANSAC (Random Sample Consensus) algorithm [46] is gorighm for robust fitting
of models in the presence of many data outliers. It has besgessfully used for a variety of
model fitting problems in computer vision [48]. In this seatj we adapt it for fitting diffusion
models to diffusion MRI data; specifically fitting the diffoa tensor. A basic assumption is
that the data consists of “inliers”, which is a subset of d@tase distribution can be explained

by the model, and “outliers” which are data that do not fit thede.

Assume that we hav®d’ DW measurements and want to fitgarameter diffusion model.

For examplen = 6 for the DT model. The RANSAC algorithm uses random sampling t
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search for a subset of the measurements that provides arfitiddl that provides a close esti-

mation to a high percentage of the other measurements. gbethm proceeds as follows:
1. Pickn DW measurements frody at random;
2. Fitthe model;
3. For all remaining N — n) measurements, compute error from model;

4. Divide the DW measurements into inliers and outliers ediog to a confidence interval

T on the residual error;
5. Count fraction of inliers;

6. If fraction is greater than or equal to a fixed threshpldhen accept fit;

Otherwise, go to step 1 and repeat the whole procedure.

There are a few adjustable parameters in the RANSAC algoritthich affect its model
fitting performance. They include the size of the sample subsn step 1, the confidence
interval T' for determining whether a data point fits the model, and ibacf indicating the
number of inliers required to accept the model. The finalditteodel from RANSAC is from
a DW set containing both the sample set that provided theessfid model and all other in-
lying measurements. For coding, we also need to decide thgmam iterationsk allowed in
the algorithm. Afterk attempts, if a good model has still not been found, RANSAQ swih-

ply use all the measurements to fit the model without anye&utiijection and output a warning.

Different diffusion models can be used in RANSAC, which candither linear or non-
linear. As the purpose is to identify outlier in a relativesttime, we use linear LS for DT fit
here. Using the DT model in RANSAC algorithm, for instand® size of guessed model

cannot be less thah

6.2 Experiments

In this section, first we introduce an evaluation method far model fitting routines based
on the principal direction (PD) of DT. Second we discuss tifectiof different parameters of
RANSAC. Third, we compare RANSAC with RESTORE based on diffie tolerance settings.

Finally, we compare the outlier rejection schemes withdimensor fitting.
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6.2.1 Orientation evaluation with ground truth

To evaluate tensor direction after registration, we userthgic

PD = Z(\/flfg cos 1 |vy - va), (6.2)

wherev; is principal direction of the DT in imagg f; is the ratio of the two largest eigenvalues
of each DT and the sum is over all brain voxels. One of the twagies contains ground truth
directions and the other is the image to be evaluated. Thawbsvalue ofv; - vo makes the
inverse cosine give an angle between zerozafitlandy/f; f> weight down the contribution of

more isotropic DTs, since their eigenvectors are less vedihdd.

For evaluating experiments on synthetic datasets contpwvarious corruptions, we have
the ground truth DWIs, which is the dataset before syntleticuption. To compare the dataset
after registration with its ground truth, root mean squarerd RMSE) of DWIs, or RMSE of
FAs from fitted DTs, is not be enough to assess all the tensdoamation. In particular, such
measures are insensitive to errors in principal directi@wgiation (6.2) captures the differences
between the principal directions and provides a numeriadsure to evaluate a DWI dataset

after registration by comparison with its ground truth. Banhy, Alexander et al.[2] use

PD - S (VFifacos™ vy - val)
Y Vfifo

to assess their reorientation strategies, with an extranalising term)_ \/f1 fo. Comparing

(6.3)

with Equation (6.2), the value d? D in Equation (6.3) makes the comparison between datasets
possible. In this thesis, all discussions®h are to compare performance of different methods
to one dataset (or datasets corrupted by the same origie3y) sm we use Equation (6.2) for

experiments.

6.2.2 Experiments with RANSAC parameters

In this section, we discuss the effect of parameterg andn in the RANSAC algorithm. We
fix 20 for the confidence interval in this section, which should includ#&?% of signals for
most measurements that have high enough intensity for ttiarRdistribution to approximate

the Gaussian. Further discussiorofs in §6.2.3.

To test the affects of different parameter values, we ruexgents on a Synthetic Dataset

Il. The size for each 3D measuremengisx 64 x 30 voxels, and the skull-stripped brain region
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covers abou4000(20%) voxels. The noise standard deviatiens in the range30 to 40.

To determine the quality of the tensor fitting using RANSAGeauantity of interest is
the number of voxels indentified as outliers. For the samsotefit, a good DW measurement
should have few outliers, but a corrupted measurement gdh@myde many more. We also use
RMSE of FAs and PD method mentioned$.2.1, to compare the fitted DT with its ground

truth tensor, which is fitted from dataset before synthegicuption.

6.2.2.1 Maximum number of iterations)(
Unlike f andn, k is not a standard parameter of the RANSAC algorithm, sincefidr pure
coding purpose. However a good setting fois important, so we run experiments to study

how it affects performance before the discussiorf ahdn.

For this dataset, the ideal fractighis 13/14 = 93%. To represent more general cases of
f, we should fix a value here that is not too far away from thelidetiing 93% but still with
some error space. We uge= 85% and change the iteration timke If RANSAC algorithm
runs well, the number of voxels indentified as outlier andatgd in thel2¢A DWI should be

many more than in the othéid DWIs.

As shown in Table 6.1, th&2th DWI has the most voxels rejected after RANSAC fitting.
Also, when the maximum iteration's changes fron® to 50 the outlier histogram does not
change much. That means RANSAC model can find the good fit meein 5 attempts
in general. Theoretically, when more corrupted measurénare involved into the dataset,
RANSAC is more likely to take more iterations to stabilize fperformance. Out of consid-
eration of both time and quality consistency, we decide tepke = 10 for the remaining

experiments.

6.2.2.2 Fraction required to accept modgl (

After we fix the value oft, we would like to test how changes ffaffect the result. Fractioff
decides the minimum number of measurements required teptita model. Low value of
increases the likelihood of accepting a poor match baseditiers, but speeds up computation
and makes the algorithm robust to larger numbers of outliérg is too high, the algorithm

will often reach the maximum number of iterations and nateeany outliers.
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T 0.85
k 3 5 10 20 50
n 6

DWiIs Number of Outliers
1 214 199 211 194 209
2 178 | 183 | 188 | 202 | 196
3 134 114 135 119 142
4 141 160 149 138 147
5 290 | 303 | 307 | 320 | 301
6 139 141 154 145 159
7 431 | 417 | 454 | 434 | 425
8 323 | 332 | 315 | 323 | 327
9 129 128 126 130 122
10 210 237 220 235 250
11 192 200 223 224 230
12 | 20420| 22849| 23669 | 23697 | 23679

Table 6.1: For various setting &f outlier histograms produced by RANSAC. Measurement 12

is the corrupted image.

In the experiment shown in Table 6.2,changes fronV0% to 95%, which corresponds
to the actual minimum number of DWs to accept a good modelimgnigom 10 to 14. When
f is too low, 70% for example, the assignment of outliers is less accuratthofgh thel 2th
DWI still has the largest outlier set, many good DWiIs are rdgd as corrupted data as well.
When f is so high that all the DWIs have to be includéd% in the experiment, RANSAC
has to use the whole set to fit model, without any outlier t&yac The best results come
from f = 0.9 which requires that all but one measurement fit the modelinvitilerance. In
Table 6.2, RMSE of FAs and PD are minimum also foe 0.9 giving a consistent estimate
of the best setting. When the proper valuefak used, RANSAC can identify the significant
outlier in the corrupted measurement, and give a bettedfittedel (seen from the smaller

values of RMSE and PD in Table 6.2).
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Accepted DWIs for Good Mode| > 10 >11 >12 | >13 >14
f 0.7 0.78 0.85 0.9 0.95
k 10
n 6
DWIs Number of Outliers
1 3108 | 2525 212 49 0
2 2984 | 2508 191 29 0
3 1041 550 135 11 0
4 1333 | 335 149 45 0
5 2302 903 331 87 0
6 1352 | 333 156 31 0
7 4140 | 3311 447 147 0
8 2271 896 347 110 0
9 1101 597 148 29 0
10 1427 498 210 54 0
11 1337 494 2207 46 0
12 19063 | 20600 | 23698 | 24206 0
RMSE of FAs 0.0204| 0.0152| 0.0013| 0.001 | 0.0389
PD(1.0e+003 *) 2.8901| 2.0871| 0.2681| 0.218 | 7.8775

Table 6.2: For various setting ¢f outlier histograms produced by RANSAC, root mean square
error (RMSE) of FAs and principal directions (PD) differescbetween fitted tensors using
RANSAC and ground truth. Measurement 12 is the corruptedj@na

6.2.2.3 Size of sample subset (n)

Using DT model in RANSAC algorithm, the size of sample subsshould not be less thah
In the previous experiments, we fixad= 6 and changed the other parameters. Now, we would

like to see hown affects the RANSAC algorithm.

In the experiment shown in Table 6.3, we change the size aedulfrom the minimum
6 to the maximuml2. Whenn = 12, all the twelve DW measurements are used to fit the
model, and there is no measurement left to be rejected.n Agreases fron6, the affect
of including the corrupted measurement in the sample sétdedrease because other good

DWiIs are more likely to cover up its bad influence. That me&esautlier is less likely to be
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f 0.9
k 10
n 6 7 8 9 10 11 12(max)
DWiIs Number of Outliers
1 49 98 180 406 898 1107 0
2 29 77 150 354 831 1069 0
3 11 16 6 6 18 129 0
4 45 85 143 279 690 1030 0
5 87 283 606 885 1405 | 1460 0
6 31 84 175 342 691 1016 0
7 147 533 867 1322 | 1448 | 1629 0
8 110 316 636 972 1572 | 1462 0
9 29 9 7 3 19 136 0
10 54 88 141 401 1027 | 1033 0
11 46 79 115 341 974 1019 0
12 24206 | 21891 | 18692 | 14021 | 6891 | 2081 0
RMSE(FA) 0.001 | 0.0024| 0.005 | 0.0115| 0.0258| 0.0398| 0.0389
PD(1.0e+003 *)| 0.218 | 0.5129| 1.0324| 2.3954| 5.2365| 7.5736| 7.8775

76

Table 6.3: Outlier histograms, RMSE and PD for various isgttf n in RANSAC. Measure-

ment 12 is the corrupted image.

identified. The outlier histograms shown in Table 6.3 continie hypothesis and we conclude

that n should remain as small as possible6at We also notice that the 3rd and 9th DWIs

have many less voxels rejected. Plots of gradients showrigaré 6.1 suggest the reason

is that the DW gradient directions of those two DWIs are farthway from most the oth-

ers, so the 3rd and 9th DWIs are more dominant in model fit, eid voxels are less likely to

be identified as outliers. Overall, the outlier histogranv$E and PD all suggest = 6 is best.
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Figure 6.1: Plots of normalised diffusion-weighted grateon xyz-space (a) and projected
onto the xy-plane (b). What the red and blue arrows pointedtas gradients for the 3rd and
9th DWIs.
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6.2.3 Confidence interval in RESTORE and RANSAC
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Figure 6.2: Plots of RMSE (FA) and PD against sigmafor RESTORE (a)(b) and RANSAC
(c)(d) methods

In §6.1.3 we described how to estimate noise standard deviatiom this section we
investigate the effect of changing the confidence intéfyalhich we fixed t®2c for RANSAC
and3c for RESTORE by default. For experiment, using differentresl ofo in the algorithm is
equivalent to varying the width of the confidence intervdlafmeans, in theory high allows

the program to involve more measurements in the DT fitting;ddeads to more rejections.

In RESTORE, bigges makes larger residual errors within the confidence intes@less
DW measurements are regarded as outliers, and vice vers&Ntlimber of Outliers” shown in
Table 6.4 and Figure 6.3(a) confirm this theoretical speéicula Figure 6.2(a) and (b) give the
plots of RMSE(FA) and PD based on more detailed valuesiof[10~7, 102], and we can find
that both have little change [0.0001, 5]. That means in practice a goectan be chosen within
a quite big range, centred around= 0.05. As the estimated from the noisy background in
this dataset is around 30 to 40, the experiment results hsessthat using smaller value of

could give better results than using the actual estimatkava
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Number of rejected voxels in Number of rejected voxels in
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Figure 6.3: Plots of number of rejected voxels in 12th DWIliagiasigma §) for RESTORE
(a) and RANSAC (b) methods

We test our RANSAC method with changing valuecofn [107¢,102], and show com-
parative results in Figure 6.2(c) and (d), Figure 6.3(b) @able 6.5. On one hand RANSAC
is similar to RESTORE, and smallerleads more DW measurements to classified as outliers.
In Figure 6.3(b), number of rejected voxels increases wheecrease from00 to 1. On the
other hand, aftek attempts, if a good model has still not been found, all thesueaments will
be used to fit the model without any outlier rejection. As shawFigure 6.3(b), the number
of rejected voxels stays high (arouB@000) for o in [0.005, 1], but drops whemw is less than

0.005.

As shown in Figure 6.2(c) and (d,in [0.0005, 5] gives the consistent best result. Adding
check the number of outliers in Table 6.5, we would explai ason is that the number of
outliers between corrupted DWI (12th) and all the other D¥fks significant different, fos in
[0.0005, 5]. Similar with RESTORE, in RANSAC a good can be chosen within a quite big

range, and using a smaller value @faround0.05, gives better results than using the actual

estimated value.
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RESTORE
o 0.000001| 0.00001| 0.01 0.1 1 10 50 99
DWIs Number of Outliers

1 18363 1475 1021 1006 982 924 42 3

2 18315 1531 995 980 951 869 39 2

3 16675 799 566 538 471 341 5 0

4 19311 1316 632 630 628 590 21 0

5 22932 3934 648 645 576 231 17 0

6 19383 1519 670 670 670 642 15 0

7 23114 4077 1026 1007 966 464 25 3

8 22837 3497 614 607 513 154 9 0

9 16860 1047 582 543 447 288 4 0

10 20370 2024 554 531 427 112 0 0

11 20318 2265 585 568 474 202 5 0
12 30499 30439 | 30334 | 30225 | 29030 | 20396 | 3757 881
RMSE(FA) 0.0355 | 0.0025 | 0.0044 | 0.0045| 0.0047| 0.0083| 0.0258| 0.0327
PD(1.0e+003 *)| 7.1144 | 0.29126| 0.37529| 0.3803| 0.3916| 0.8821| 4.8903| 6.5748

Table 6.4: Outlier histograms, RMSE and PD for various isgttif o in RESTORE. Measure-

ment 12 is the corrupted image.




6.2. Experiments 81

RANSAC
f 0.9
k 10
n 6
o 0.000001| 0.00001 0.01 0.1 1 10 50 99
DWiIs Number of Outliers
1 0 0 0 1 6 49 97 75
2 0 0 0 0 5 29 99 90
3 0 0 0 0 0 11 74 82
4 0 0 0 0 4 45 102 98
5 0 0 0 2 9 87 226 128
6 0 0 0 0 8 31 100 117
7 0 0 0 3 13 147 410 244
8 0 0 0 3 9 110 249 186
9 0 0 0 0 6 29 86 93
10 0 0 0 0 5 54 167 113
11 0 0 0 1 2 46 124 107
12 954 16195 30803 30713 | 30133 | 24206| 8215 | 2638
RMSE(FA) 0.0386 | 0.0386 | 0.0001185| 0.0001777| 0.0002| 0.001 | 0.0142| 0.0261
PD(1.0e+003 *)| 7.8454 | 0.20052| 0.0357503| 0.0261 | 0.0324| 0.218 | 3.1214| 5.6465

Table 6.5: Outlier histograms, RMSE and PD for various isgttf o in RANSAC. Measure-

ment 12 is the corrupted image.
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6.2.4 Outlier rejection schemes and linear tensor fitting

In this section, we run experiments on “Synthetic Datasearitl compare RESTORE and

RANSAC to Linear DT fit.

First of all, we compare the number of outliers from RESTORENWVRANSAC with
f = 90% and f = 75%. As illustrated in Figure 6.4, in all three methods the lésté
corrupted measurements are clearly distinguished fronottiers, and have the most rejected
voxels. As we have discussed§B.2.2.2, a good fractioff, which decides the minimum num-
ber of measurements required to accept the model, shoulddsewr according to the expected
number of corrupted measurements in the dataset. Thisata@stains3 DWIs of the totall4
corrupted, so the suitable value pfshould be smaller thahl /14(78%) in order to allow3

corrupted DW measurements to be rejected.

f = 90% makes RANSAC never find a good accepted model. From Figui®)6we
can see that there are only ab6000(4%) voxels in each of the corrupted DWIs rejected, but
the skull-stripped brain region covers ab@d00(20%) voxels. Figure 6.4(c) illustrates the
outlier histogram of RANSAC withf = 75% to fit DT. Like RESTORE, the last DWIs are
clearly distinguished from the others, and their outliemivers are even closer to the voxel

number of the skull-stripped brain regid000, than RESTORE.

The FA maps in Figure 6.5 show that both RESTORE and RANSAUigedetter tensor
fitting than least-square. Comparing with FA from fitted DTngsleast-square linear method
(Figure 6.5(b)), RESTORE improves DT fitting (Figure 6.3(c}FA maps from RANSAC
with f = 90% (Figure 6.5(d)) is just a little better than tensor direditted from least-square
method, but very different to the ground truth (Figure 6)péad RESTORE. Comparing with
RANSAC with f = 90%, RANSAC with f = 75% fits DT much better and its FA is shown in
Figure 6.5(e).

Table 6.6 provides numerical comparison, using RMSE of FfsRD. RMSEs give the
same expression as the FA maps: RANSACH 90%) does slightly better than Linear DT;
RANSAC (f = 75%) improves a lot fromf = 90%; RESTORE does slightly better and
RANSAC (f = 75%). But results in PD rows show that RANSAQ & 75%) preserves the
DT principal directions better than RESTORE. All the ca#tidn excludes background region.
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Figure 6.4: Plot of number of outliers against DWI measumeteising RESTORE (a),
RANSAC with f = 90% (b) andf = 75% (c)

Linear DT Fit| RESTORE| RANSAC (f = 90%) | RANSAC (f = 75%)

RMSE of FAs 0.3546 0.0760 0.3363 0.1097

PD(1.0e+004 *) 4.9675 2.6516 4.6853 1.4523

Table 6.6: Root mean square error (RMSE) of FAs and prinapalktions (PD) differences
between fitted tensors directly using least-square lindafitiing, RESTORE, RANSAC with
f=90% and f = 75% and ground truth.
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Figure 6.5: FA maps of ground truth tensor (a), tensor fittieelctly using least-square linear

tensor fitting (b), RESTORE (c), RANSAC with= 90% (d) andf = 75% (e)
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6.3 Conclusion

In this chapter, we first introduce two outlier rejection egtes, RESTORE and RANSAC,
with a general introduction to outlier and the estimatiostaindard deviation. In experiment
section, we first introduced an evaluation method based iogipal direction of DT. Then in
experiments of RANSAC, we started testihgmaximum number of iteration), and then tested
f (fraction required to accept model) andsize of sample subset), which are more important

in RANSAC algorithm.

A clear limitation of the search for the best combination Igbathm parameters that we
perform here is that we only vary each parameter indivigudlhus, we cannot guarantee that
we find the best overall combination. Preliminary experitadocated the starting values which
give reasonable performance. We do not expect to find othebit@tions with dramatically
better performance. The main aim of the evaluation is to destnate the effects of each pa-

rameter rather than to locate the absolute optimal comibimat

We consider only the simplest kind of transformation forstexperiments, which is
image translation. We could repeat the experiment usingeroomplex transformations, such
as rotations or shears, however, the purpose of experingetudest outlier rejection for each
method with different parameters’ setting, which we do nqteet the exact transformation to

affect significantly.

We analysed the result from outlier histograms, RMSE of FAg principal direction
differences between fitted tensors using RANSAC and grourii.t All aspects of evaluation
shows that the values d&f andn can be fixed easily, buf needs to be decided according
to the dataset individually. After that, we discussed carfwk interval for both RESTORE
and RANSAC. The confidence interval for both can be chosehinva big range. Although
the experiment result also shows that smaller values cordf@@terval could give better per-
formance, we still keep the conclusion conservative, sihdg only based on one dataset.
Finally, we compare the outlier rejection schemes withdmiensor fitting. Both RESTORE
and RANSAC provide better tensor fitting than linear leagtese. Whery is chosen according

to the expected number of corrupted DWIs in the dataset, RXINfs tensor very efficiently.



Chapter 7

Model-based Registration with Outlier

Rejection

In Chapter 5, we provide a set of model-based registratiothads. Experiments in Chapter 5
show the most important step in those procedures is fittingad dDT) model, so that the
synthetic reference images can be predicted well. Chapteo@des two outlier rejection
schemes, RESTORE and RANSAC, for DT model’s fitting. In thigmter, we will introduce
and discuss the combination of the two outlier rejectioregobs with the model-based regis-
tration method. The idea is that the robust fitting techrsgugect measurements corrupted by
motion or distortion while fitting the DT so reference imagesnputed from the DT are un-
corrupted. We call the combined method FMR (Fit the ModehgSfRESTORE or RANSAC),

which includes FMRestore and FMRansac.

In §7.1, we give a general introduction of FMRestore and FMRgnad@th experiments
similar to those with FMAM and FM in Chapter 5. §7.2, we compare FMRs with methods
introduced in Chapter 5. Then we propose two novel coniohstin §7.3, which have been
published in [14]: The first one is a new orientation cor@ttiechnique introduced i§v.3.1,
which is used after diffusion MRI registration to updatefulfon gradients. 187.3.2, we pro-
vide an evaluation method for Diffusion MRI registrationdause it to compare the algorithms

using human brain data.

7.1 FMRs

In this section, after introducing FMR methods briefly, wa experiments for FMRestore and
FMRansac and analyse performance in termgaisformation matricesised to register the

corrupted DWIs, in a similar way to Chapter 5.
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7.1.1 FMR methods

FMR methods contain FMRestore and FMRansac. The DT modektte synthesized ref-
erence images in FMR is fitted by using RESTORE or RANSAC eutiejection method.
Those rejections occur at tivexel leve| ie a separate set of outliers is identified in each im-

age voxel. The detail of RESTORE and RANSAC algorithms haentexplained in Chapter 6.

7.1.2 Experiments

In this section, we run experiments on “Synthetic Dataséb IiEompare FMRestore and FM-
Ransac. As ir§5.4, normalised correlation (NC) cost function is also uadregistration
in the experiments. We will compare performances of NC antuaiunformation (Ml) cost

functions ing§7.2.

7.1.2.1 FMRestore

FMRestore identifies the corrupted measurements by REST@HEr-rejection method [32],

and RESTORE should identify and reject outliers, and ptepiod reference images for FMR.
FA maps from synthetic reference images used in FMResterstawn in Figure 6.5(c). RE-
STORE improves DT fitting which improves the quality of théerence images in FMRestore

for registration.

In Chapter 5, we compare three transformation matricesctwaie used to register the
corrupted three measurements, to the correct matfifesjuation (5.6)—(5.8)) used to simulate
the corruption. Here, we perform a similar comparison. Thed transformation matrices that

FMRestore computes are

1.05 002 —002 4.74 |

0.02 1.03 —=0.03 5.70
Tio = , (7.1)
—-0.01 -0.00 1.00 0.94

0 0 0 1

1.0l —0.01 001l -9.08 |
—0.01 1.00 —0.00 851
T = , (7.2)
0.0l —000 1.00 —0.16

0 0 0 1
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and
1.02 —-0.06 —-0.01 9.49

0.00 103 00l —9.57
Ty = : (7.3)
—0.01 002 1.00 —0.09

0 0 0 1

Compared to the transformations in FM.cons and FM.th metligd—T14 in FMRestore stay a
little further away from the ideal matricd8 (equation (5.6)—(5.8)) which have absolute value of
8.5 for the two non-zero translation elements. This is becalB8TRORE rejects the corrupted
measurements separately for voxel; while, FM.cons and hrk&ject the whole volume of
identified corrupted measurements. Although FM.cons andh-Mcover the transformation
matrix better in this particular example, in general we expeMiRestore to be more robust,
because FM.cons and FM.th are unlikely to reject voxels fimamges with only minor corrup-
tion. However a potential advantage of FM.cons and FM.thas they ignore all of corrupted

images rather than only selected voxels.

7.1.2.2 FMRansac

FMRansac identifies the corrupted measurements by usingdA&Noutlier-rejection method
in DWI, which has been introduced in Chapter 6. Previouslg,usef = 90% as default.
Transformation matrices used to register the corruptegetimneasurements to the bad fitted

references are

081 —0.07 008 14.52 ]

0.06 0.85 0.09 3.40
Tyo = , (7.4)
—0.06 —0.01 094 591

0 0 0 1

0.78  0.08 —0.03 2.87 ]
—0.03 088 005 8.03

Tio = , (7.5)
0.00 —0.00 089 4.05

0 0 0 1

085 011 —0.01 5.89 |
—0.04 084 005 0.08
Ty = . (7.6)
—0.01 001 091 3.73

0 0 0 1
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The absolute values of translation elemeifits4] and[2,4]) in Equations (7.4)—(7.6) are not
close t08.5, since the reference images are generated from badly fifled/Bose FA is shown
in Figure 6.5(d). The problem is that with= 90%, only one of thel4 measurements in each

voxel can be rejected as an outlier, which leaves two of theetborrupted measurements.

Then we use RANSAC witlf = 75% to fit DT. Figure 6.4(c) illustrates the outlier his-
togram. Comparing with RANSAC witlf = 90%, RANSAC with f = 75% fits DT much
better because it can reject all three outliers. Better Dleges better reference images, and

also leads better registration. Transformation matrices a

1.00 000 —0.00 8.38 |
0.00 1.00 —0.00 8.08
Tio = ) (7.7)
~0.00 0.00 099 0.42

0 0 0 1

099 -0.00 —-0.00 -8.12

—-0.00 099 0.00 8.12
Ti9 = ) (7.8)
—-0.00 0.00 099 043

099 -0.00 —-0.00 8.65

0.00 099 000 -—8.48
Tho = . (7.9)
~0.00 0.0 099 0.31

0 0 0 1

Absolute values aroungl5 dominate the translation elements in all three transfaonat

7.1.3 Conclusion

We incorporate RESTORE and RANSAC outlier rejection meghiatb our model-based regis-
tration method, and develop FMRestore and FMRansac. Fremuimber of outliers, reference
images, as shown §6.2.4, and recovered transformation matrices in Equafioi$—(7.9) used

to register the corrupted DWIs, both FMR methods work reablyn since misaligned images
are often excluded for making synthetic references. Theiceatrecovered using FMRestore
differ significantly from the true transformations but doprave alignment. FMRansac re-

covers the transformation matrices well and realigns tha daccessfully, but relies on an
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appropriate choice of for good performance.

7.2 Comparison of FMR with other methods

From Chapter 5 tg7.1, we use normalised correlation (NC) cost function tawuls types

of model-based registration methods and provide only taisie performance evaluation by
inspection of the transformation matrices. This sectiavisles a more comprehensive eval-
uation and comparison of the different methods. In pariculve will compare FMR with
other methods, using NC and MI cost functions. Evaluatiohased on transformation ma-
trix (§7.2.1), experiments on synthetic datasets with variousskaded levels§7.2.2) and full
datasets§7.2.3). Furthermore i§7.2.4, we evaluate different methods using landmark coor-
dinate. Meanwhile, we will also continue the discussion affience interval and fractiofi
required to accept model, from RESTORE and RANSAC prior taRelgtore and FMRansac,

based on large datasets.

7.2.1 Evaluation of transformation matrices

To measure the quality of transformation matriégs—114 used to register the corrupted mea-
surements from different methods, we use their root meaarsgerror (RMSE) to the ideal
matricesT” (equation (5.6)—(5.8)). 116.2.3 we discussed the effect of confidence intervals
on RESTORE and RANSAC, but the discussion is based on thetli8ia Dataset 11" which
contains one measurement corrupted by a one-voxel-ttanmsland the conclusion was that
a good confidence intervdl (or sayingo for experiment) can be chosen within a big range,
and using smaller values aroufd5, could give better results than using the actual estimated
value. In this section, we compare the effect of a small cenfie interval € = 0.05) to the
default ¢ = 35), for FMRestore and FMRansac methods, based on the “Symibataset I”

used in Chapter 5 arf{¥.1, which has three measurements corrupted by a five-vametiation.

In experiments using NC cost function, Table 7.1 shows theSEMusing formula
LS N /(T —T))%, between transformations used to register corrupted memasmts )
and standard matrice§™), whereN is the number of transformation matrix elements. When
the RMSE is greater thah, the reference image idsually badly corrupted. The synthetic
reference dataset used in FMAM is generated without rejgatiutliers (the FA is shown in
Figure 6.5(b)), thus the badly corrupted reference leadstbregistration. Both FM.cons and

FM.th methods improve the accuracy from traditional methetd work best of all, as none
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Registration Methods
T v.s. T’ | Tradition | FMAM | FM.cons| FM.th | FMRestore| FMRestore| FMRansac| FMRansac

(c=0.05) | (c=35) |(c=0.05)| (c=235)
Ti2 0.1723 | 1.1475| 0.0018 | 0.0017| 0.2846 0.4806 0.0923 0.0619
T3 0.2464 | 1.1454| 0.0023 | 0.0029| 0.2753 0.0504 0.1583 0.0768
T4 0.2362 | 1.5922| 0.0021 | 0.0021| 0.3491 0.1440 0.1046 0.0321
Mean 0.2183 | 1.2950 | 0.0021 | 0.0022| 0.3030 0.2250 0.1184 0.0569

Table 7.1: RMSE between transformations used to registeugied measurementd’ and

standard matrice</{) using NC cost function

Registration Methods

T v.s. T’ | Tradition | FMAM | FM.cons| FM.th | FMRestore| FMRestore| FMRansac| FMRansac
(c=0.05) | (6=35) | (c=0.05)]| (c=35)
T2 0.0147 | 8.6607 | 0.0031 | 0.0007| 0.3028 0.0952 0.0530 0.0545
Tis 0.0168 | 10.4680| 0.0064 | 0.0047| 10.6000 0.0237 0.0536 0.0848
T4 0.0280 | 10.3860| 0.0041 | 0.0031| 0.2004 0.0190 0.0808 0.0865
Mean 0.0198 | 9.8385 | 0.0045 | 0.0028| 3.7009 0.0460 0.0625 0.0753

Table 7.2: RMSE between transformations used to registeugied measurementg’ and

standard matriceg{) using Ml cost function

of the corrupted 3D DWIs contributes to generating refeeedataset. For FMRestore and

FMRansac, small value of does not provide better result, unlike the experimef§6i2.3. The

result suggests that smaller valuesahight increase accuracy to datasets with little corruption

but make RESTORE and RANSAC less robust to the occurreneegei numbers of corrupted

measurements.

We also repeat all the experiments using MI cost functiod,tae result table is shown in

Table 7.2. Comparing with NC (Table 7.1), Ml improves penf@nce in general. But there are

some special cases, the FMAM column afds” in FMRestore & = 0.05). That meandNC

works better than MI for some corrupted reference imagesh as the 13th reference used in

FMRestore § = 0.05) shown in Figure 7.1.
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Figure 7.1: Synthetic reference image used in FMRestoreavit 0.05 from dataset witt3 of
12 DWIs translated by pixels

7.2.2 Experiments with translated synthetic datasets

From the previous experiments based on “Synthetic Datasetd “Synthetic Dataset II”, we
get some conclusions, and they become assertions that we tieis section’s experiments:

1. In RANSAC and FMRansac, a good fractipnwhich decides the minimum number of
measurements required to accept the model, is best chooserdiag to the expected number
of corrupted measurements in the dataset. If we cannoteéuidprecise, lower f gives safer
performance than highgf. (Assertion 1);

2. Smaller confidence interval increases accuracy for eitasith little corruption, but
makes RESTORE and RANSAC less robust (Assertion 2);

3. Both FMRansac and FMRestore work better than FMAM, aldtebéhan traditional
method for datasets with small corruptions (Assertion 3);

4. Ml improves performance in general from NC; but NC workgdrethan MI for some

corrupted reference images (Assertion 4).

In this section, we run experiments on datasets with diffetevels of corruption, like
“Synthetic Dataset I” and “Synthetic Dataset II". We makeeaies of corrupted datasets with
translations froml.7mm to8.5mm affecting between and5 of the 14 measurement images.
The result tables includiaree groups 1) Tables of RMSE between registered and ground truth
datasets using different methods (Table 7.3—7.9); 2) Saifl®@ MSE of FAs between registered
and ground truth datasets using different methods (Talile-7.16); 3) Tables of PD differ-
ences between registered and ground truth datasets uffergili methods (Table 7.17-7.23).
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7.2.2.1 Assertion1
Assertion 1 is related to what we have dong#2.2.2, 6.2.4 and 7.1.2.2, but using datasets
with different levels of corruption. Tables related to Aggm 1 are: Table 7.3 and 7.4 from

Group 1, Table 7.10 and 7.11 from Group 2, and Table 7.17 &a&ifiom Group 3.

First, we can mainly focus on two tables from Group 1, TabRahd 7.4. To test As-
sertion 1, we use the default confidence inteffja= 20 with o = 35 and compare fractions
f =90% and f = 75%. In Table 7.3, datasets withof 12 DWIs corrupted (first row) have
the minimum RMSE from ground truth. ( We will discuss the elifnces between NC and Mi
cost functions in Assertion 4.) For RANSAG)% is the best setting for datasets only with
1/12 DWIs corrupted, so it fits datasets in the first row better tenrest. For the three rows
corresponding to datasets wizji12, 3/12 and5/12 corrupted DWIs, RANSAC wittf = 90%
can never find1/12 good DWIs to fit model, so it reached the maximum number oéftens

and did not reject any outliers.

In Table 7.4, RANSAC works wittf = 75%. 75% is the best setting for datasets with
of 12 DWIs corrupted, but it can also fireiDWIs to fit a good model for datasets with12
and2/12 corrupted DWIs. So it works well in the first three rows. But fbe datasets with

5/12 corrupted DWIs, it failed just likg' = 90% setting.

From Table 7.10 and 7.11 in Group 2 and Table 7.17 and 7.18 auis8 we can have
similar conclusion. FMRansac¢f (= 75%) works better on corrupted datasets in general,
FMRansac ( = 90%) gives the most accurate registration to datasets WiBWI corrupted,
works badly for most of the others. That means, in practfosgicannot decide the precige

lower f can give safer performance than higlfer

7.2.2.2 Assertion 2

What we are doing in Assertion 2 is related to what we have do36.2.3 and 7.2.1. To test
Assertion 2, we compare FMR methods with default confidenterval T, to smaller value
T = %TO. T’ can be regarded & with o = 0.05. Tables related to Assertion 2 are: Ta-
ble 7.4 —7.7 from Group 1, Table 7.11 —7.14 from Group 2, arndeTa. 18 — 7.21 from Group 3.

To analyse FMRansac, we compare Table 7.4 which has beeninugessertion 1 and

Table 7.5 from Group 1. Comparing the first two rows from twaéa, which correspond to the
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datasets with /12 and2/12 DWIs corrupted, small confidence intenil (o = 0.05) provides
lower RMSEs from ground truth. But for tf8#d and4th row corresponding t8/12 and5/12
corruption, the defaulfy gives better results. In the tables of FMRestore (Table d77a6),

we can have the same findings.

Together with the tables from Group 2 and 3, we can say thabih BMRansac and
FMRestore, small confidence intervAl (¢ = 0.05) works better for datasets with small cor-
ruptions; but default confidence intervBl (¢ = 35) may be more robust for higher levels of

corruption.

7.2.2.3 Assertion 3

Comparing with results from FMAM (Table 7.8) from Group 1 thhé-MRansac and FMRe-
store work better than FMAM. Tables of Traditional methodl{le 7.9) shows that FMRs are
better than traditional method for datasets with small wations, but traditional method is
more robust for dataset with extreme corruption. Theseuptions, however, are not likely
to happen in practice and if they do, we could perform a pielany step to correct them

approximately. The same conclusion can be driven from Goapd3 tables as well.

7.2.2.4 Assertion 4

In this Assertion, we are trying to compare NC and MI cost fioms. From Table 7.3 to 7.23,
Bold means Ml is worse than NC. MI improves performance in gengash NC; but NC
works better than Ml in highly corrupted datasets. It is sameclusion from what we have in

§7.2.1. One badly corrupted reference is shown in Figure 7.1.

For FMRansac { = 90%), Table 7.3, 7.10 and 7.17, Ml is worse than NC for datasets
with one measurement corrupted. We find that NC perform&ibegually when both NC and
Ml in those three tables have very small values. A possibgagration is that the values from
NC have become too small to be improved by MI, or NC is moreite@$o small corruptions

than Ml.
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NC MI
Corrupt Shift Scale
N || L.7(mm)| 3.4(mm)| 5.1(mm)| 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 1.2378 1.265 1.3085 | 1.2416 1.5519 | 1.5937 | 1.5574 | 1.5785
2 11.547 | 17.123 | 23.168 | 32.626 10.723 | 13.541 | 16.472 | 29.944
3 13.321 | 23.392 | 31.361 | 43.637 12.285 | 20.555 | 24.602 | 38.604
5 | 16.766 | 28.681 | 36.338 | 50.86 16.552 | 27.633 | 38.877 | 55.148

Table 7.3: RMSE between registered and ground truth datedsetn FMRansac with f 80%,

o = 35, using normalized correlation (NC) and mutual informat{dhl) cost functions. The

first columnN is the number of corrupted measuremelsld means Ml is bigger than NC.

NC MI
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 | 2.4561 | 3.0868 | 3.1872 | 3.3534 || 2.0544 | 2.4276 | 2.432 | 2.5535
2 3.272 | 3.9462 | 4.3676 | 4.5449 || 2.9357 | 2.9756 | 2.8142 | 2.9588
3 || 5.2986 | 8.0756 | 9.6819 | 11.324 | 4.4939 | 6.2147 | 7.0604 | 8.3988
5| 13.622 | 24.772 | 32.651 | 46.008 || 12.779 | 22.106 | 27.623 | 44.962

Table 7.4: RMSE between registered and ground truth datdsetn FMRansac with f 5%,

o = 35.
NC Ml
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1| 22905 | 2.7442 | 3.0925 | 3.1934 || 1.8673 | 2.0564 | 2.1088 | 2.2114
2 | 2.0376 | 2.8782 | 3.1714 | 3.5451 1.802 | 2.2133 | 2.1946 | 2.4218
3 || 6.4224 | 9.8724 | 12.078 | 14.33 5.4903 | 7.4632 | 8.7207 | 27.27
5| 17.087 | 28.882 | 36.393 | 50.932 || 17.057 | 27.817 | 32.927 | 50.116

Table 7.5: RMSE between registered and ground truth datdsetn FMRansac with f 5%,

o = 0.05.
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NC MI
Corrupt Shift Scale
N || L.7(mm) | 3.4(mm)| 5.1(mm)| 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 2.0127 | 2.7322 | 2.9443 | 3.0396 1.5588 | 1.7067 | 1.5079 | 1.6709
2 43212 | 55946 | 6.2631 | 5.9937 || 2.6485 | 3.2065 | 2.7444 | 2.4579
3 8.9849 | 15.158 19.31 22.645 || 8.2683 | 13.682 17.19 27.187
5 16.874 | 28.566 | 35.867 | 49.672 16.788 | 28.424 | 34.662 63.32

Table 7.6: RMSE between registered and ground truth datdeam FMRestore witlr = 0.05.

NC Ml
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1| 3.3183 | 4.769 | 5.0455 | 5.2211 || 2.6342 | 2.5994 | 2.5729 | 2.0761
2 | 5.6495 | 7.3323 | 7.9281 | 7.7599 || 4.4915 | 3.8021 | 3.2364 | 2.7185
3 || 6.8621 | 10.641 | 12.006 | 12.342 5161 | 7.5776 | 8.593 | 8.8649
5| 11.394 | 36.639 | 21.537 | 26.873 || 9.4318 | 35.573 | 17.811 | 39.081

Table 7.7: RMSE between registered and ground truth datdsein FMRestore witlr = 35.

NC MI
Corrupt Shift Scale
N || L.7(mm) | 3.4(mm)| 5.1(mm)| 8.5(mm) || 1.7(mm)| 3.4(mm) | 5.1(mm) | 8.5(mm)
1 8.8856 | 14.884 | 20.002 | 27.765 7.867 11.158 | 11.183 | 9.7057
2 11.989 | 21.461 27.92 38.453 11.563 | 19.193 | 21.545 | 28.475
3 14,948 | 24.856 32.73 45.459 14.338 | 22.894 | 26.601 | 45.283
5 17.144 | 28.964 | 36.455 | 51.158 17.289 | 28.497 | 39.445 | 52.016

Table 7.8: RMSE between registered and ground truth datefsein FMAM.
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NC MI
Corrupt Shift Scale
N || L.7(mm) | 3.4(mm)| 5.1(mm)| 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 28.295 | 28.284 | 28.293 | 28.312 11.992 | 11.558 | 11.577 | 11.486
2 28.308 | 28.302 | 28.291 | 28.301 11.899 | 11.499 | 11.495 | 11.745
3 28.317 | 28.299 | 28.302 28.31 11994 | 11.835 | 11.871 | 11.162
5 28.327 28.3 28.299 | 28.338 11.216 | 11.231 | 11.073 | 10.764

Table 7.9: RMSE between registered and ground truth datdfsein traditional method.

NC

Mi

Corrupt Shift Scale

1.7(mm)

3.4(mm)

5.1(mm)

8.5(mm)

1.7(mm)

3.4(mm)

5.1(mm)

8.5(mm)

0.0039529

0.0043158

0.0044115

0.0041761

0.0054571

0.0053866

0.0055919

0.005289

0.064399

0.091452

0.12941

0.24017

0.061031

0.076726

0.098917

0.66843

0.070364

0.12887

0.19142

0.33357

0.065792

0.12238

0.16391

0.69194

N
1
2
3
5

0.088558

0.15875

0.22518

0.36335

0.087635

0.15397

0.62516

0.69429

Table 7.10: RMSE of FAs otherwise, as Table 7.3, from FMRamgth f = 90%, o = 35.

NC

Mi

Corrupt Shift Scale

1.7(mm)

3.4(mm)

5.1(mm)

8.5(mm)

1.7(mm)

3.4(mm)

5.1(mm)

8.5(mm)

0.013646

0.017899

0.018261

0.018918

0.0087866

0.011593

0.011786

0.012455

0.019473

0.021832

0.024158

0.024963

0.015487

0.014406

0.013515

0.014009

0.028265

0.042187

0.049195

0.055898

0.023233

0.032503

0.03744

0.044047

g|lw [Nk |2

0.069162

0.12874

0.18179

0.31239

0.066079

0.12197

0.16659

0.67793

Table 7.11: RMSE of FAs from FMRansac with /5%, o = 35.
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NC MI
Corrupt Shift Scale
N || 1.7(mm) | 3.4(mm) | 5.2(mm) | 8.5(mm) | 1.7(mm) | 3.4(mm) | 5.1(mm) | 8.5(mm)
1 || 0.012292| 0.014922| 0.017334| 0.017494|| 0.0077081| 0.0097238| 0.0096178| 0.010734
2 || 0.010187| 0.014143| 0.016277| 0.018223| 0.0067543| 0.0093724| 0.0099096| 0.011039
3 || 0.034365| 0.051821| 0.061668| 0.07075 0.0277 0.039464 | 0.044426 | 0.047965
5 || 0.090606| 0.16032 | 0.22665 | 0.3645 | 0.090344| 0.15644 | 0.21304 | 0.67854
Table 7.12: RMSE of FAs from FMRansac with /5%, o = 0.05.
NC Mi
Corrupt Shift Scale
N | 1.7(mm) | 3.4(mm) | 5.1(mm) | 8.5(mm) | 1.7(mm) | 3.4(mm) | 5.1(mm) | 8.5(mm)
1 || 0.010056| 0.014091| 0.015406| 0.016052|| 0.0053588| 0.006511| 0.005166| 0.0063807
2 || 0.024904| 0.030628| 0.033869| 0.032814| 0.014195 | 0.015596| 0.013315| 0.010758
3 || 0.047968| 0.081084| 0.1042 | 0.12162 | 0.044628 | 0.073201| 0.093889| 0.62406
5 || 0.088882| 0.15985| 0.2241 | 0.36986 | 0.089272| 0.16254 | 0.21768 | 0.59127
Table 7.13: RMSE of FAs from FMRestore with= 0.05.
NC MI
Corrupt Shift Scale
N | L.7(mm) | 3.4(mm) | 5.1(mm) [ 8.5(mm) || 1.7(mm) | 3.4(mm) | 5.1(mm) | 8.5(mm)
1 || 0.018422| 0.026326| 0.027559| 0.028267| 0.01305 | 0.012568| 0.01293 | 0.0088022
2 || 0.033625| 0.039081| 0.041944| 0.041067| 0.02618 | 0.020381| 0.016995| 0.012721
3 || 0.037508| 0.056902| 0.063021| 0.064658| 0.028194| 0.042984| 0.048804| 0.054293
5 || 0.056696| 0.41423 | 0.10696 | 0.14899 | 0.048818| 0.67893 | 0.10236 | 0.6791

Table 7.14: RMSE of FAs from FMRestore with= 35.
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NC MI
Corrupt Shift Scale
N || 1.7(mm) | 3.4(mm) | 5.1(mm)| 8.5(mm)| 1.7(mm) | 3.4(mm) | 5.1(mm) | 8.5(mm)
1 | 0.047876| 0.080042| 0.11723| 0.19328 || 0.043133| 0.067083| 0.082788| 0.13631
2 || 0.066718| 0.11443 | 0.16819| 0.27834 | 0.064772| 0.10896 | 0.14284 | 0.62887
3 || 0.078533| 0.13882 | 0.20685| 0.34622| 0.077901| 0.13524 | 0.18633 | 0.69377
5 || 0.090798| 0.16132 | 0.22671| 0.36568 | 0.090964| 0.16157 | 0.62489 | 0.68176
Table 7.15: RMSE of FAs from FMAM.
NC MI
Corrupt Shift Scale
N || L.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm) | 3.4(mm) | 5.1(mm) | 8.5(mm)
1| 0.11413| 0.1141 | 0.11413| 0.11416/| 0.059584| 0.057915| 0.058092| 0.057606
2 || 0.11415| 0.11412| 0.11412| 0.11413| 0.060103| 0.058547| 0.058608| 0.059701
3 || 0.11417| 0.11414| 0.11416| 0.11414| 0.060855| 0.060502| 0.060383| 0.057291
5 || 0.11422| 0.11412| 0.11419| 0.11432 || 0.058344| 0.05833 | 0.056551| 0.056689

Table 7.16: RMSE of FAs from traditional method.
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NC MI
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 388.49 | 450.09 | 490.17 | 438.65 || 528.65 | 499.07 | 523.57 | 490.44
2 11785 16299 21888 37908 11065 13731 17202 75456
3 12779 21839 29716 48769 11787 20716 25537 | 128720
5 15581 24867 31836 46815 15389 24457 | 109130 | 111840
Table 7.17: PDs otherwise, as Table 7.3, from FMRansac watho%, o = 35.
NC MI
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 2058.7 | 2807.7 | 2857.2 | 2990.5 1203 1748.2 | 1808.4 | 1851.3
2 2886.4 | 3201.4 | 3576.7 | 3645.2 | 2324.9 | 1998.8 | 1815.5 1785
3 4586.8 | 7340.1 8625 9982.6 3651 5495.2 6431 7595
5 12363 21511 27667 40969 11816 20193 25321 | 122600

Table 7.18: PDs from FMRansac with f&%, o = 35.
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NC MI
Corrupt Shift Scale
N || L.7(mm) | 3.4(mm)| 5.1(mm)| 8.5(mm) || 1.7(mm)| 3.4(mm) | 5.1(mm) | 8.5(mm)
1 1934.3 | 2448.3 | 3020.2 | 3009.4 | 853.68 1227 1266.6 | 1464.1
2 1286.7 | 1802.4 | 2100.8 | 2367.8 || 658.12 | 1080.4 | 1154.6 | 1345.1
3 5519.7 | 9029.5 | 11043 12904 4215 6469.4 | 74155 | 81614
5 | 15892 | 25026 | 32125 | 48023 15888 | 24843 | 30793 | 125020
Table 7.19: PDs from FMRansac with 5%, o = 0.05.
NC MI
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 1546.6 | 2330.3 | 2608.3 | 2641.2 || 495.94 | 721.53 | 498.26 | 652.03
2 || 4397.7 | 5339.3 | 6031.8 | 5646.5 | 2059.5 | 2162.9 | 1645.5 | 1307
3 8482.9 | 14896 18732 21466 7750 13638 17272 | 104780
5 15658 25368 31904 47182 15753 25261 31170 43076
Table 7.20: PDs from FMRestore with= 0.05.
NC MI
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 3119.6 | 4896.8 | 5151.5 | 5270.8 1978.1 | 1863.7 | 1743.3 | 1003.3
2 6180 7892.9 | 8413.8 | 8249.2 || 4636.4 | 3245.6 | 2495.2 | 1603.1
3 6835.3 | 11106 12178 12294 4930.9 | 8559.1 | 9743.3 | 10841
5 10786 69784 19121 23078 9298.9 | 126700 | 17756 | 131110

Table 7.21: PDs from FMRestore with= 35.
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NC MI
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm) | 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm)| 8.5(mm)
1 82275 | 13701 19420 30855 7535.9 | 11647 13168 20047
2 12322 20027 27058 42458 11757 19009 22785 | 104890
3 14334 23392 31464 50740 14114 22581 28025 | 140730
5 15963 25058 32043 47176 15987 25336 | 109820 | 124990
Table 7.22: PDs from FMAM.
NC MI
Corrupt Shift Scale
N || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm) || 1.7(mm)| 3.4(mm)| 5.1(mm) | 8.5(mm)
1 19425 19420 19422 19432 6884.5 | 6689.8 | 67194 | 6762.4
2 19433 19427 19420 19434 6881.9 | 6709.4 6750 6967.2
3 19435 19423 19424 19430 6794.1 | 7091.3 | 6962.2 | 6646.6
5 19431 19429 19415 19459 6424.4 6651 6649.3 | 6170.7

Table 7.23: PDs from traditional method.
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7.2.3 Experiments on full datasets

In this section, we run experiments on full datasets, “S3Etontrol” and “FIli", and com-
pare the results based on visual judgement of FA maps befosedmmg more quantitative
assessment in later sections. “S32” and “Fli” have smalliomotorruption, and “Fcontrol” is
well aligned before registration. We first run all the meth@dhe traditional method, and our
FMAM and FMR ) using both NC and Ml cost functions on the “S32taket, and then run and
compare some methods using the “Fcontrol” and “Fli” datgsehich provide some additional

information.

The FA maps of aligned datasets using different methods levers in Figure 7.2 and
Figure 7.3. Figure 7.2 provides axial view of middle slicdsodginal dataset and aligned
ones using different methods. The image from traditionathoe using NC (Row A) is very
different from all the others, which can be explained by méfig to the sagittal view in Figure
7.3. Figure 7.3 shows FA maps overlaid with a hand segmentéid® of the corpus callosum
from the non-diffusion-weighted image before registmatiarhe traditional method using T2
image (Top left in Figure 7.3) as target for registration &melNC cost function leads to mis-

alignment and the difference we observe in Figure 7.2.
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Original
Dataset

Figure 7.2: FAs from registered datasets using traditiomethod (Row A), FMAM (Row B),
FMRestore (Row C) and FMRansac (Row D)
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Figure 7.3: FA maps overlaid with a hand segmented outlintkh@icorpus callosum from the

non-diffusion-weighted image
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We run Traditional Method, FMAM and FMRestore methods udimg NC cost func-
tion on “Fcontrol” dataset, and the results are shown in feigu4. Figure 7.4(a) illustrates
the misalignment of a hand-defined corpus callosum outliite the FA map after the tradi-
tional method which used the NC cost function to align eaffuslon-weighted image to the
non-diffusion-weighted image. This is an artifact of thaditional approach that we observe
frequently and arises from poor alignment of the DW imagéh e non-diffusion-weighted
image. Figure 7.4(b) and (c) show that the problem disagpafter correction with FMAM
and FMRestore.

We compare traditional method and FMRestore methods uselylt cost function on the
“Fli” dataset. We also overlay FA maps with a hand segmentelihe of the corpus callosum
from the non-diffusion-weighted image. The experimenulteis shown in Figure 7.5. Still,
FMRestore performs better than Traditional Method. As showFigure 7.5(b), not only the
misalignment of corpus callosum disappears, but also thia Istructure gets clearer (such as

the part above corpus callosum).

Figure 7.4: FA maps overlaid with a hand segmented outlind@torpus callosum from the
non-diffusion-weighted image, after (a) standard motiorrection and (b) FMAM. correction

(c) FMRestore correction using NC cost function

The experiments illustrate a common problem with the tiawolil method. Figure 7.2,
Figure 7.3, Figure 7.4 and Figure 7.5 show FA maps computed @rrection using traditional
method and our new methods. Overlaid on each map is a handeaégion of the corpus
callosum from the non-diffusion-weighted image. In Figdr8(Row A, NC Column), Figure
7.4(a) and Figure 7.5(a) the boundary of the hand segmentdties not align crisply with the
edge of the apparent corpus callosum region in the FA imade. tiaditional method aligns
boundaries of anisotropic regions poorly causing bleedirtggh FA outside the true anatomic

region. FMRs avoids this problem.
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Figure 7.5: FA maps overlaid with a hand segmented outlintke@icorpus callosum from the
non-diffusion-weighted image, after (a) the traditiona¢thod and (b) FMRestore correction

using MI cost function

7.2.4 Landmark evaluation method and experiment

In this section, we discuss a method using the covariancéeolandmarks coordinates to

evaluate the alignment of all the measurements of one data se

The landmarks are carefully chosen anatomical featurgswhacan locate reliably in
3D (as illustrated in Figure 7.6), such as the saddle poirtheattop of corpus callosum or
right, posterior, inferior corner of the right ventricleoiFexample, imagine we have a dataset
having2 b = 0 and9 diffusion weighted images. We labglcorresponding landmarks on each
image. After registrations using different methods, we paota transformed locations of &b
landmarks. For each group bf transformed points we compute the trace of the covariance of
the set of points. Finally we compute the mean covariance flICT) over the five landmark

locations.

7.2.4.1 Experiment

In this experiment section, we compare the traditional wetiFrMAM, FMRestore and FM-
Ransac on the “Olgacontrol” dataset. It lfaks = 0 images and2 DWIs. Mutual information
cost function is used for all the methods. We pick= 0 and9 DWIs, and labeb correspond-
ing landmarks on each image. If FMR methods provide the erfbpnance, they should have

the lowest MCT values of all.

The MCT result using different methods is shown in Table Fegi24. The original data
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(a) Landmark orb = 0 image (b) Corresponding landmark on diffusion-weighted image

Figure 7.6: Landmarks of the same anatomical location fiedint measurement images

Method MCT (mm?)
Original Data 1.4109
Traditional method  2.9837
FMAM 2.0417
FMRestore 2.0191
FMRansac 2.0686

Table 7.24: Mean of covariance matrix Trace (MCT)

set is high quality and contains very little motion corroptiparticularly at the centre of the
brain where the landmarks are. The value of MCT of the origilsiaset is thus very small.
All the registrations lead to slightly higher values, alijb our model-based methods, FMAM,

FMRestore and FMRansac give a better result than the waditmethod.

The result may indicate that, for this high quality dataseslignment is actively detri-
mental, but lower MCT with no alignment may also reflect biag&ahdmark positioning from
the user tending toward similar image locations. Manualhaarking is very time consuming,
and the accuracy is difficult to maintain and guarantee. TWeuabandon the approach and seek
a more efficient evaluation method, since labelling land®@n a large number of datasets is
impractical and we cannot draw firm conclusion from the noedriyway. We propose a more

automatic evaluation metric in the next section.



7.3. Orientation correction 109

7.3 Orientation correction

This section contains two novel contributions of this teegihich have been published in [14].
First in §7.3.1, we propose an new orientation correction techniginch is used after diffu-
sion MRI registration to update diffusion gradients. A danidea has also now been explored
by Rohde et. al. [119], Maniega et. al. [89] and Leemans am&s)§78, 79]. All authors
find minor improvements in datasets and results of post psieg, such as tractography, from
updating gradient directions. Here we test the influence wrr@alignment procedure. The
second contribution i§7.3.2, we provide an evaluation method for Diffusion MRIis#gtion,

which does not require manual labelling or ground truth.

7.3.1 Orientation correction

The registration methods outlined in the previous chapiectuding the traditional method, do
not account for the effect of rotation on the DWIs. Rotatidmead motion causes additional
contrast changes because of the change in diffusion gtadirection with respect to the head.
Figure 7.7 illustrates the effect. The arrows indicate gnatddirections. (a) Head without

rotation. Suppose the mouth is a fibre. The signal is highusecthe gradient is perpendicular
to the fibre so little diffusion occurs in the gradient difent (b) Head with rotation. In the

rotated head, the signal is lower in the mouth fibre, which @eraligned with the gradient

so more diffusion occurs in the gradient direction. (c) Theotated head (after registration)
retains the signal from its rotated position. The effectivadient direction for the corrected

image is rotated.

Having computed a correcting affine transformation for eaotuisition, we update the
effective diffusion-weighting gradient direction to acen for the head rotation at imaging time.
From the affine transformatiofi; obtained from the registration, we use the standard polar

decomposition [87] to extract the rotatidt) for each image:
R; = (T;T])"'°T;, (7.10)

and use it to correct each gradient directign— R;(q;).

7.3.2 Orientation evaluation without ground truth
In this section, we provide a “subgroup” evaluation method Diffusion MRI registration.
When the original dataset contains only small motion cdiomp it is hard to tell the differ-

ences and improvement by visualising FA maps, as showi.tx3. When there is no ground
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Figure 7.7: lllustration of how rotation affects the efigetgradient direction. The arrows in-
dicate gradient directions. (a) Head without rotation. Hlead with rotation. (¢) The unrotated

head (after registration) retains the signal from its eslgtosition.

truth for our registration dataset, to provide numericalleation to assess the performance of

different methods, we use the method introduced in thissect

We evaluate the variance of statistics derived from theusiiéin tensor fitted to subsets of
all the measurements, for example, in each voxel. The baliggred all the DWIs, the more
consistent statistics like FA, Tr(D) and principle diffasidirection should be among different
subsets. We use Cook et al.'s method in [36] to choose subsdlsat each contains measure-
ments with well separated and evenly distributed gradiémtctions, which should produce
fitted DTs with similar statistics. If we divide the whole DWatasets intd groups, to evaluate
the variance of the principal directiomrs, ..., e4 in each voxel, we use the largest eigenvalue
A1 of the dyadic tensot /4 Zle e;el. When all foure; are aligned)\; = 1. As they become

less aligned); decreases to a minimum of zero when they are maximally sthra

7.3.2.1 Experiment

We run experiment on “S32” dataset. To do subgroup evaluatidhe aligned datasets using
different methods, we divide th&) DW measurements intd groups of15, illustrated in Fig-
ure 7.8 ( Diffusion gradient vectors from the whole dataset #our subsets, mapped on unit

spheres ) and Figure 7.9 ( FA maps of DTs fitted from the wholasg4 and four subsets ).

Figure 7.10 illustrate tha; image from original dataset. High value »fs locate in the

area with high FAs, as the local fibres have consistent @iem. We can see the numerical
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The whole set

Figure 7.8: Diffusion gradient vectors from the whole datasd four subsets, mapped on unit

spheres.

results in Table 7.25, which shows the average mean andssthddviation (STD) of\; over

four regions of the image after alignment of the DWIs usingows algorithms. One of the
regions is the whole of the skull-stripped brain, which wdlinad by thresholding the back-
ground. The other regions are shown in Figure 7.11. Two ofe¢lgeons (cc01, cc02) contain
only coherent white matter with a single orientation in tbeptis callosum. The third contains
white matter with different orientations (cingulum and mas callosum) and partial volume

voxels between those structures.

The first five rows of Table 7.25 compare four methods, trad#l, FMAM, FMRestore
and FMRansac, with no alignment; the remaining four rows gam® meari; after gradient-
direction correction. Similarly, Table 7.27, Table 7.2&ple 7.29 and Table 7.30 shows mean
and STD (values inside bracket), through the voxels in thected volumes/regions, of STD or

mean of four groups in FA and Trace.
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Figure 7.10:)\; image from original dataset.
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Figure 7.11: Three specified regions (coloured in red) fongaring measurement’s alignment.

(c) Region mix

Brain

ccO01

cc02

mix

Original data

0.8180 (0.1694

0.9961 (0.0037

0.9835 (10.0489

0.9065 (0.1256

Traditional

0.9206 (0.1136

0.9989 (0.0010

0.9959 (0.0282

0.9676 (0.0615

FMAM

0.9358 (10.1008

0.9989 ( 0.0008

0.9989 ( 0.0008

0.9811 ( 0.0449

FMRestore

0.9335 (0.1031

0.9989 (0.0008

0.9988 (0.0008

0.9804 (10.0456

FMRansac

0.9355 (0.1002

0.9989 ( 0.0008

0.9989 ( 0.0008

0.9810 (0.0454

Corr

ection with Gradient Updated

Traditional

0.9280 (0.1064

0.9988 ( 0.0009

0.9961 (0.0293

0.9623 (0.0752

FMAM

0.9364 (0.0999

0.9988 (0.0008

0.9987 (10.0008

0.9819 (0.0450

FMRestore

0.9350 (0.1012

0.9987 (10.0009

0.9987 (10.0008

0.9814 (1 0.0447

FMRansac

0.9361 (0.1002

0.9988 ( 0.0008

0.9987 (10.0008

0.9818 (0.0454

Table 7.25: Meal: (STD) of A;’'s of dyadic tensors from four groups in four regions (thgéar

the better and is perfect)
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Brain

ccO01

cc02

mix

Original data

2.5390 (1.6326

5.8575 (0.7867

5.1666 ( 1.1789

3.5996 (1 1.8506

Traditional

3.8585 (11.8957

7.0685 (0.7320

6.8649 (1.1097

5.0970 (1.9795

FMAM

4.0488 (1.8006

7.0849 ( 0.8223

7.0076 (0.7220

5.4897 (1.6617

FMRestore

4.0145 (1.8104

7.0517 (10.8090

6.9630 (0.7203

5.4556 ( 1.6573

FMRansac

4.0536 (1.8019

6.9685 (0.7744

6.8570 (0.7068

5.5041 ( 1.6096

Corr

ection with Gradient Updated

Traditional

3.9401 (1.8578

6.9647 (0.7304

6.7664 ( 1.0230

5.0157 (1.9832

FMAM

4.0587 ( 1.8004

6.9695 (0.7758

6.8548 (0.7046

5.5103 ( 1.6095

FMRestore

4.0368 (1.8065

6.9347 (0.7654

6.8152 (0.6999

5.4728 (1.6071

FMRansac

4.0536 (1.8019

6.9685 (0.7744

6.8570 (0.7068

5.5041 ( 1.6096

Table 7.26: Meard; (STD) of y =

regions (the larger the better)

—log(1 — \1)’s of dyadic tensors from four groups in four

Brain

ccO01

cc02

mix

Original data

0.0506 (0.0309

0.0364 (0.0192

0.0444 (0.0287

0.0633 (0.0396

Traditional

0.0216 (0.0118

0.0204 ( 0.0100

0.0209 (0.0096

0.0263 (0.0158

FMAM

0.0210 (0.0117

0.0207 (10.0093

0.0204 (0.0093

0.0262 (0.0168

FMRestore

0.0213 (0.0118

0.0210 ( 0.0094

0.0206 (0.0095

0.0273 (0.0192

FMRansac

0.0211 (0.0117

0.0208 (0.0093

0.0203 (0.0093

0.0261 ( 0.0165

Corr

ection with Gradient Updated

Traditional

0.0214 (0.0117

0.0198 ( 0.0094

0.0218 (10.0096

0.0251 ( 0.0153

FMAM

0.0209 (0.0116

0.0200 (0.0090

0.0228 (0.0097

0.0256 (0.0166

FMRestore

0.0212 (0.0119

0.0204 (0.0092

0.0231 (0.0098

0.0262 (0.0165

FMRansac

0.0210 (0.0117

0.0201 ( 0.0090

0.0228 (0.0097

0.0255 (0.0163

Table 7.27: Mear& (STD) of STD of FAs from four groups through the voxels in tiedested

volumes/regions
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Brain cc01 cc02 mix

Original data| 0.2825 (0.1473) 0.7067 (0.1026 ) 0.6955 (0.0827 ) 0.5248 ( 0.2311

Traditional | 0.2164 (0.1530 ) 0.6812 (0.1182) 0.6201 (0.1367 ) 0.4134 ( 0.2553

FMAM 0.2264 (0.1526 ) 0.6939 (0.1035) 0.6568 (0.0936) 0.4715 ( 0.2465

FMRestore | 0.2250 (0.1524) 0.6912 (0.1029) 0.6552 (0.0960 ) 0.4740 ( 0.2456

FMRansac | 0.2263 (0.1526 ) 0.6941 (0.1035) 0.6570 (0.0935) 0.4716 ( 0.2466

Correction with Gradient Updated

Traditional | 0.2172 (0.1520 ) 0.6803 (0.1188) 0.6238 (0.1316 ) 0.4089 ( 0.2579

FMAM 0.2266 (0.1527 ) 0.6947 (0.1031) 0.6574 (0.0930) 0.4713 (0.2467

FMRestore | 0.2258 (0.1529) 0.6951 (0.1024) 0.6597 (0.0912) 0.4714 (0.2471

FMRansac | 0.2265 (0.1527 ) 0.6947 (0.1031) 0.6575 (0.0929 ) 0.4713 ( 0.2468

Table 7.28: Meard; (STD) of FAs from four groups

(m?/s)*10~ 11 Brain ccol cc02 mix
Original data | 12.07 (13.24 )| 8.67 (4.03)| 12.33 (6.06)| 16.08 (11.77)
Traditional | 4.17 (3.85) | 4.58 (2.28)| 5.41(2.49)| 5.36(3.81)
FMAM 4.41(4.79) | 4.41(2.09)| 4.70(2.06)| 5.42(3.69)
FMRestore | 4.42 (4.74) | 451(2.12)| 4.80(2.08)| 5.57(3.94)
FMRansac | 4.45(4.83) | 4.42(2.10)| 4.70 (2.07)| 5.46(3.67)

Correction with Gradient Updated
Traditional 4.46 (4.05) | 5.17(2.35)| 6.33(2.80)| 6.05(3.97)
FMAM 452 (4.80) | 4.87(2.34)| 5.17(2.28)| 5.72(3.69)
FMRestore | 4.54(4.78) | 4.96 (2.37)| 5.32(2.30)| 5.90(3.93)
FMRansac | 4.55(4.85) | 4.88(2.33)| 5.17(2.28)| 5.76 (3.67)

Table 7.29: Meard; (STD) of STD of Traces
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(m?/s)*107°

Brain

ccO01

cc02

mix

Original data

3.35(1.69)

2.61(0.38)

2.72(0.35)

3.23(1.38)

Traditional

3.21(1.42)

2.70 (0.59)

3.13(0.93)

3.20 (1.17)

FMAM

3.29 (1.56)

2.63(0.42)

2.83(0.50)

3.21(1.26)

FMRestore

3.29 (1.56)

2.63(0.41)

2.82(0.49)

3.22(1.26)

FMRansac

3.29 (1.56)

2.63(0.42)

2.83(0.50)

3.21(1.26)

Correction with Gradient Updated

Traditional

3.26 (1.44)

2.73(0.60)

3.18 (0.95)

3.24 (1.18)

FMAM

3.28 (1.55)

2.62(0.41)

2.81(0.50)

3.20 (1.25)

FMRestore

3.29 (1.56)

2.62(0.41)

2.81(0.49)

3.21(1.26)

FMRansac

3.28 (1.55)

2.62(0.41)

2.81(0.50)

3.20 (1.25)

Table 7.30:

Meard: (STD) of Traces
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The better aligned all the DWIs, the more consistent FA, T&Dd principal diffusion
direction should be among different subsets. In Table 7A\28jn the first row are the smallest.
That means all four methods, with and without gradient updatimprove the alignment of
the four sub-tensors on average, which indicates that greaktontains less noise or corrup-
tion, since the principal directions within voxels are mooasistent. However, the differences
between the meah; are quite small compared to the STD bf across voxels. Although
the relatively large STDs suggest the differences in meamat significant, we consistently

observe those trends, which is evidence for improved algrirfrom FMRAM and FMR.

One problem withA; as a comparative measure of directional coherence is that it
bounded by the range zero to one. Differences in the nunieadae of \; become small for
collections of very similar directions, where the numdricaue of ), is close to 1. This may
mask significant differences in populations)gfgiven in Table 7.25. To address this potential
problem, we rescale by computing= —log(1 — A ), which provides an alternative directional
coherence measure for which the numerical value approacfieity as the directions become
perfectly aligned. Standard deviations ofare more meaningful, as its distribution is less
skewed for collections of well aligned directions with close to 1. Table 7.26 shows In

fact, here we do not see any more significant differencegusthan using\; directly.

According to the average;, the FMAM and FMRs methods give better performance
than the traditional method, and FMRansac does slightlebttan FMRestore. We can draw
similar conclusions from tables of mean of FA and Trace ifet@28 and 7.30. We observe an
increase in mean FA and reduction in mean Trace using the igmneent procedures, which
also suggests improved alignment reducing small patiaime effects that artificially reduce
FA and increase Trace. However, once again the STD of meam#&Aace are high compared
to the differences, so firm conclusions are difficult to dréve also expected to observe reduc-
tions in the average STD of both FA and Trace, in table 7.277a2@, which would reflect more
consistency of these values within voxels. However, we dosee consistent reduction with
FMAM and FMR compared to the traditional method, althoudmedthods show improvement

compared to the original data.

The extra step of correcting the diffusion gradients gdheimproves alignments slightly
further on average. The rotation component from equatiohOj7includes contribution from

the shear caused by eddy-current distortion, which doeaffeatt the gradient orientation. We
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may see further improvement if we can separate the rotdtcmmeuption from motion and the
eddy-current distortion and use only the former to correatignt orientations. Other work, for
example by Leemans and Jones [78, 79] suggest that althbegh improvements are minor,

they may have significant effects on postprocessing opastuch as tractography.

We note that in this example, FMRs offer no advantage over MMBowever, it intro-
duces no significant disadvantage and, in cases with largi@riibns or motion problems, it is

often more robust so we advocate its use.

7.4 Conclusion

For good performance in RANSAC and FMRansac, a good fragtjamhich decides the min-
imum number of measurements required to accept the modmi/dsbe chosen according to
the expected number corrupted measurements of datasetalfesoonfidence interval might
increase accuracy to datasets with little corruption, bay make RESTORE and RANSAC
less robust. Ml improves performance in general from NC;NGtworks better than Ml for
some corrupted reference images. So the best choice rematear, but both perform fairly

well.

Compared to the traditional method, FMAM and FMRs use dffierreference images
for diffusion-weighted images with different gradient efitions for registration, in order to
improve alignment. FMRs detect outliers and use bettenatigsubset to predict reference
images, so give more robust performance. Our experimeatsder evidence for this improve-
ment, although they do not achieve statistical significas@enore work is required to verify

the assertion.

The extra step of correcting the diffusion gradients gdheiaproves performance met-
rics further. Although improvements are slight, the prageds simple to perform and experi-

ments with tractography [78] suggest the differences casidreficant.



Chapter 8

Conclusion

In this chapter, we first give a summary of this thesis, and fiwnt out several potential areas

for further work.

8.1 Discussion

For fitting the diffusion tensor, voxels in different difios-weighted images must correspond
to the same anatomical location. Thus, all the measuremeagas need to be well aligned.
The long scan time introduces patient movement. Moreovet,iiduces displacement and

distortion in diffusion-weighted MR imaging.

The traditional correction methods use the same referanage to register all the other
diffusion-weighted images with different gradient diieos. Although they correct both
eddy-current-induced distortion and subject motion, iretrast differences still cause misreg-
istration. Our methods predict separate reference imagesatch diffusion gradient and thus

avoid the mismatching caused by the intensity differenet#&déen component images.

All our new methods are based on a three-step procedure iktene®WI datasets. They
use different reference images for diffusion-weightedgesawith different gradient directions
for registration. So the registrations take into accouattbntrast differences of measurements.
The main difference between methods lies in the first stefmdithe diffusion tensor to the

measurements.

The model-based approach works well if we can avoid the #sffefccorrupted images on
the references. The RESTORE and RANSAC identify outlierthénset of measurements in
each voxel and thus fit the tensor more robustly. The appicatf RANSAC to DTl is a novel
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contribution of this thesis.

FMAM fits the diffusion tensorD to the whole set of diffusion weighted measurements,
and most the other FM methods (FM.cons, FM.a, FM.b, FM.th) BMRs (FMRestore and
FMRansac) fit the tensor only to a selected subset of measutémages. FM.a, FM.b, FM.th,
FMRestore and FMRansac all use different automatic algostfor selecting this subset. Re-
sults show that for FMAM, FM.a and FM.b, the corrupted measwants affect tensor fitting too
strongly to obtain accurate reference images; FM.th camtiigehe most corrupted measure-
ments but requires careful tuning for specific datasets; E8tidte and FMRansac generalize
better, because RESTORE and RANSAC reject outliers usinge mabust and established

statistical techniques.

We run experiments for different correction methods on tsyththetic reduced-size and
full-size diffusion MRI datasets. To evaluate performanoé different methods, we not only
judge the result from qualitative image inspection, sukb DWIs and FAs, but also develop
guantitative methods, which includes using outlier hisaog, transformations used in registra-
tion, RMSE of DWIs, RMSE of FAs, principal direction diffarees to ground truth images,

covariance of landmark coordinates, and subgroup evahjagic.

Qualitative results consistently suggest that the FMAM BMRs improve on the tradi-
tional alignment procedure. MI cost function accounts fon-linear contrast differences, and
improves traditional method using NC cost function; it aleproves model-based registration
methods in general, but NC works better for some corruptigterce images. The best choice
is thus still open to debate, but both choices are effectitevae find Ml works better more
often. Quantitative results provide further evidence fettdr performance of the model-based

techniques, but statistically significant differencesvphard to establish.

Body rotation leads the mismatching of diffusion pulse aiffision weighted image in

registration. Orientation correction step can improvgratients from all methods further.

FMR methods were built into Camino, which is a free, operrs®uobject-oriented soft-
ware package for analysis and reconstruction of DiffusidrlMata. Computation time for a
typical dataset such as those used in Chapter 7 on a moddwtoglésaboutl 20mins, which is

about the same as eddycorrect in FSL. Man page and tutoGahuent are also provided and
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published on line (www.camino.org.uk), which are includledppendix A and B.

8.2 Further Outlook

In this section, we list some possible aspects of furthekwahich include update reference
image model, reject 3D measurement using outlier histogmathsome alternative choices for

what we have done.

8.2.1 Update reference image model

The gradient update correction can be based on two leveks:ofibntation correction can be

implemented after registration, which is what we have darigi3.1; the other possible scheme
is using the gradient updated image as the reference, aistiaregpurce images for the second
time. This may improve results, particularly for large taias that cause significant changes

in contrast as well as alignment.

8.2.2 Reject 3D measurement using outlier histogram

FM.cons, FM.a, FM.b, FM.th use some less robust scheme ¢atréje whole set of DW
measurement; FMRs use robust schemes to reject outlieoxéi kevel. We can combine two
approaches and use the outlier histogram to decide whicBureraentsJD volume) can be

rejected totally during the tensor fitting in synthetic refece image making.

8.2.3 Some alternative choices

In this thesis, we only use DT model to generate referendepthier diffusion model is pos-
sible as well. As the purpose of fitting diffusion model inpsteis to generate a reference
DW images, comparing with linear tensor model, more corapdid non-linear diffusion model
seem not necessary. However, for diffusion MRI acquisipiostocols that include much higher
b-values, the limitations of the DT model become more appaard model-based registration
based on the DT is likely to break down. Alignment of such slets is a significant problem
and the traditional approach of aligning &o= 0 images does not work at all because the
contrast is so different. More sophisticated model-baggiiaaches potentially offer a good

solution.

In registration we have done, only rigid and affine transfations were used. The method
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extends to non-linear registration, which may be beneffolatorrecting susceptibility distor-
tion. Non-linear registration can introduce artifactst e expect the model-based approach
to be more robust than matchingtic= 0 where local contrast changes may cause significant

errors with non-linear registration.

So far, we have used only 3D transformations to mainly cote subject motion. Re-
sults may improve by using more flexible transformationshsas 3D rigid body combined
with slice by slice 2D affine transformations [70] to corrémtboth patient subject motion and
eddy-current-induced distortions. Andersson and Skdrsu@gest models for how distortions
vary with slice number and diffusion gradient direction.is'ehows us a way to develop our

method on the slice-by-slice registration.
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Tutorial: Motion Correction for Diffusion

Weighted Images

This tutorial gives a general introduction of using funotimbalign in Camino package to align
the diffusion-weighted images within a single acquisition
SYNOPSIS

mbalign [options]

A.1 Preparation before running mbalign

A.1.1 General data files and information

Before running mbalign, we need to have input and schemeréfedy, and use
-inputfile <Input voxel-order file-
-schemefile<Scheme file name
to specify in command options. If the input file is in scanaseder, we can use
-scanner -inputfile<Input scanner-order fite.
And also we need to make some other information of input intege clear and specify a few
other options
-datadims X Y Z<Number of voxels in each dimensisn
-voxeldims x y z<Voxel size in mm>

-sigma< Standard deviation of noise

A.1l.2 Sigma

The sigma is approximate noise standard deviation. A stedeslue is sqrt(E(S2)/2), where
S is the signal in background and E denotes expectation oved.
A camino program, datastats, can work it out for you as well.

datastats -schemefile S.scheme -bgmask320.Bshort -inputfile S32.Bfloat
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where S32M100.Bshort is a mask file for ROI (we will discuss more aboerigrating mask in

Section 3), then the screen output would be:

Foreground voxel count: 142584

Component E(S) E(S72) Var(S) Std(S)

1 2.882503E02 9.834995E04 1.526169E04 1.235382E02
2 3.010773E02 1.070645E05 1.641700E04 1.281288E02
3 2.876059E02 9.854322E04 1.582610E04 1.258018E02
4 2.564062E02 7.868863E04 1.294450E04 1.137739E02
57.893223E01 7.438512E03 1.208215E03 3.475939E01
6 7.813621E01 7.298962E03 1.193695E03 3.454989E01
7 8.115909E01 7.870362E03 1.283565E03 3.582688E01
8 7.870379E01 7.465566E03 1.271279E03 3.565500E01
9 8.104558E01 7.776110E03 1.207724E03 3.475232E01
10 8.053585E01 7.688916E03 1.202894E03 3.468276E01
11 8.019136E01 7.728569E03 1.297915E03 3.602659E01
12 7.751786E01 7.154714E03 1.145696E03 3.384814E01
13 8.196583E01 8.091765E03 1.373367E03 3.705897E01
14 7.725234E01 7.106027E03 1.138104E03 3.373580E01
15 8.016002E01 7.625693E03 1.200064E03 3.464194E01

So we can choose 7.5 as the value of E(S°2). Then sigma, €§R)£), would be 1.9.

A.1.3 Make slice to check input volume

If the image file is in voxel-order, we need to transfer it tarswer-order first:
voxel2scanner -voxels $((128*128*32)) -inputdatatypeafleoutputdatatype float -
components 64 -inputfile S32.BfloatS32.scan.Bfloat
Then we can use camino function shredder to extract onefstioeeach of the 32 3D compo-
nents, and build a 3D image shown in Fig1l:
To make the command easy to read, we can use variables nejingsgata information:
COMPONENT=64
DATADIM _X=128
DATADIM _Y=128
DATADIM _Z=32
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Figure A.1: An image volume containirg® slices from64 diffusion components.

Since our dataset used in the example is float, so
TYPESIZE=4
If we would like to extract the middle slice along z directiave can set
OFFSET=$(($DATADIMX*$DATADIM _Y*$((DATADIM _Z/2))*$TYPESIZE))
Then, calling shredder
shredder $OFFSET $(($DATADINK*$DATADIM _Y*$TYPESIZE)) $(($DATADIM_X
*$DATADIM _Y*$(($DATADIM _Z-1))*$TYPESIZE))< S32.scan.Bfloat S32.SLICECHECK.img
Make a header file (*.hdr) to make *.img file readable by marspalisation softwares:
VOXELDIM _X=1.88
VOXELDIM _Y=1.88
VOXELDIM _Z=2.0
analyzeheader -voxeldims $VOXELDIM $VOXELDIM _Y $VOXELDIM _Z -datadims
$DATADIM _X $DATADIM _Y $COMPONENT -datatype float S32.SLICECHECK.hdr
Using some visualisation tools, such like MRIcro(Fig.2pammino, we can check the slice

motion of input data set.

A.2 Run mbalign
A.2.1 Run mbalign simply
An example of using mbalign in the simplest way is:
mbalign -datatype float -schemefile S.scheme -datadims 228Q -voxeldims 1.88 1.88

2.0 -sigma 1.9 -inputfile S32.Bfloat

then the screen output would be:
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—
% MRlcro - $32._slicecheck
File Edit Import “Header Wiew ROL Owverlay Ebc

-Header |nformation ImgSz 4.00 Mb
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Figure A.2: Using MRIcro to see slice volume

:-) I have everything | need!

WARNING: No -bgmask and -bgthresh input, using zero backgdothreshold. Performance
may improve with better threshold.

WARNING: No -components input. Using 64 components fromescéfile. If wrong, restart
with -components option.

64 components inside inpultfile.

No temp directory specified. Trying to use /tmp/SB2.03.08180229.

Successfully created /tmp/S32.03.08180229.

Linux system detected.

No output file name specified. Output file will be: /tmp/S32.Biloat

Disk space temporarily used during calculation is abou#d®2@160. Make sure space is avail-

able!

The program will create a temporary directory used for dateen process. It can be

either specified by -tmpdir or automatically create aceuydo the file name and current time.

We do not have to use -outputfile to specify the output file naamel the program can
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generate it according to the input file name, which is likeak@mple shown above.

To run mbalign, computer need to have registration softilatéfmrib.ox.ac.uk/fsl/flirty
installed, which is part of FSL librarftp://www.fmrib.ox.ac.uk/fs). We also need to specify
the flirt direction by using -fsldir, but more easily, once Wave camino and FSL installed,

default value of variable DIEFSL can be set which can be easily found inside mbalign.

During the running of mbalign, there could be a lot of warningssages showing inside
terminal window. Normally, just do not worry about it too nfudOnce the registration has got

done, we may see the message shown below.

Registering ori.ScannerOrder.Bfloat.ck by using ref.&ea@rder.Bfloat.ck
Registering ori.ScannerOrder.Bfloat.cl by using ref. 8ea@rder.Bfloat.cl
Transferring output to Big-endian format...

Making img and hdr files for slice checking...

Transfer output file to voxel-order...

Removing junk files...

Scheme file not updated.

Aligned data set output tbmp/S32.out.Bfloat

Program finished at

Mon Mar 24 23:36:24 GMT 2008

After program finishes, the temporary directory would bestiadd (Removing junk files...),
but we can still use -keepjunk to make it kept, which could beful to help us to analyse the
final output. Certainly, if the program is interrupted, tkesnporary fold will remain as junk

files in computer.

If we did not specify -outputfile, the program can generat&citording to the input file

name (Aligned data set output to /tmp/S32.out.Bfloat).

We will discuss scheme file updating in Section 4.Update Brad
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A.2.2 Run mbalign in an advanced way

Some other options mignt need to use:
-flirtsearchcosk Search cost function used in flirt
Default cost function is mutualinfo (Mutual Information). Other options are corra-
tio,normcorr,normmi,leastsq.
-flirttransform < Transformation used in flixt
Default transformation is affine. The other option is rigid.
-searchrangecangle>
Default is 90, which means search range is between -90 and&Dx, y and z directions.
-eddy
Specifies registration for eddy-current induced distortio
-datatype<Data type for input and output files
Default is float.
-scanout<output scanner-order file
Adds an extra output file in scanner-order. This won'’t stofaudlé voxel-order output.
-omat<File name-
Output transform matrix in ascii format.
-slicecheck<File name-

Output a pair ok File name-.img and<File name>.hrd files. Default is no calculation.

When all the options are decided, we can run mbalign in anremchway, such like

mbalign -datatype float -schemefile S.scheme -datadims 28860 -voxeldims 1.88
1.88 2.0 -sigma 1.9 -fsldir /cs/research/medim/commae@iycommon/fsl/fsIRH9/ -inputfile
S32.Bfloat -slicecheck S32.fmr.slice.check -outputfile2.88r.Bfloat -omat S32.fmr.mat.txt

-scanout S32.fmr.scanout.Bfloat -keepjunk -tmpdir tmp.fm

A.2.3 Improve performance

There are a few options can be used to improve the perfornambalign.

-sigma
High sigmaallows the program to involve more measurement in the Dhtand lowsigma
leads rejections during the DT fitting. Based on this theas,can change the value sigma
to improve the reference making.

-bgmask <Mask file>

Use a mask file can improve the quality of the reference imaged in mbalign registration.
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And the data type of mask file should be "short”.

Camino function mask can help to create a background mask &@oxel-ordered DW

data file by thresholding the averalgeO0 measurement.

mask -inputfile S32.Bfloat -inputdatatype float -schemefilsecleme -bgthresh 100
outputdatatype short S32M100.Bshort

Figure A.4: View projection of mask file generated by camino

We can also use matlab to make a mask file.
-bgthresh <Background threshold>

Decide the value of threshold, and improve fitting the difiagensors.
-searchrange<angle>

Sometimes, the pitch of histogram will cause the failureegfistration. Simply narrow down

the angle search range can cover this problem for most oirtfee t
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Figure A.5: lllustration of how rotation affects the effiret gradient direction. The arrows in-
dicate gradient directions. (a) Head without rotation. Hlead with rotation. (¢) The unrotated

head (after registration) retains the signal from its eslgtosition.

A.2.4 Update Gradient

Updating diffusion gradients after registration is not asential procedure, but can improve

the registration result.

Fig.5 explains the reason why diffusion gradients need toduated after registration.

We can use our matlab function UpdateGradient.m to updé#tesidin gradient for regis-
tered data set, and the usage method is explained insideattanfile. Since the transforma-
tions used in the registration contribute to the gradientatipng, we MUST save the transform

matrix when running mbalign, using -omat.

A.2.5 More hints

Quite a few default options can be change in the source codebafign. Make the default
values to the ones most frequently used can make the evengdagf mbalign much simpler.
Inside mbalign source code, we can find and change the defatidhs from the following part.
HHH AR AR R

####### Change default variables to match system ###H#H#

HHH AR R

# Hint: To make your input arguments simple, set

# default input which you most often to use.

# FSL directory
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DIR_FSL=/cs/research/medim/common0/green/common/iRIHSI
# LIM_ROTATE is default for -searchrange

LIM _ROTATE=90

# Available cost functions are:

# mutualinfo corratio,normcorr,normmi,leastsq.
SEARCHCOST=mutualinfo

#Degree of freedom

# 12 for affine; 6 for rigid.

DOF=12

A.3 Acknowledgement

We would like to thank Geoff Parker and Karl Embleton, Unsisr of Manchester, for provid-

ing the brain data.
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Man Page of mbalign

mbalign(1)

B.1 NAME

mbalign - Aligns the diffusion-weighted images within aglmacquisition.

B.2 SYNOPSIS

mbalign -inputfile <input voxel-order file- -schemefile<filename> -datadims<X 'Y Z> -

voxeldims<x y z> -sigma<noise standard deviation

B.3 DESCRIPTION

Reads DWI in voxel-order data from the standard input, fiesB model using RESTORE,
synthetizes reference images from the model, and alignsmaasurement of input to its syn-
thetic reference. Finally, it gives the output as voxelesriig-endian data file.

This program requires an installation of FSL, as it uses ALfiét alignment. By default
the program uses a 3D affine registration to align each imalffeough you can specify 3D
rotations. Occasionally FLIRT fails when trying to comp@®P affine registrations. When
it does, the program attempts to align the diffusion weidhteage volume to the reference
volume using a 3D rigid transformation instead. If thatdado, the output file contains a copy

of the input image vol ume for that measurement.

B.4 OPTIONS

(1) Required options:
-inputfile < input voxel-order file> The input file must have BIG-ENDIAN ordering.
-schemefile< Scheme file name

-datadims < XY Z> Specifies the number of voxels in each dimension.
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-voxeldims < xy z> Specifies the voxel sizes in each dimension, in millimetres.

-sigma < noise standard deviation The approximate noise standard deviation, sigma. A
suggested value is sgrt(E(M"2)/2), where M is the signalaokiground and E denotes
expectation over an ROI. A camino program called datastarksit out for you. See

datastats(1), modelfit(1).
(2) Optional options:

-outputfile < output voxel-order file- Default outfile is derived from input file name, but user

can specify the file name including the directory.

-datatype < data type for input and output files Specifies the same data type for the input
and output file. The data type can be any of the following gsirfchar”, “short”, “int”,

“long”, “float” or “double”. By default, the input type is “flat”.
-bgmask < mask file>= The data type of mask file should be “short”. See modelfit(1).
-bgthresh < background threshold- See modelfit(1).

-tmpdir < temp directory for calculation- The program creates quite a lot of temporary
files, which are stored in this directory. Deault name is\aetifrom input file name,
current date time, and is a subdirectory of “/tmp”. But iffifp” is small, specifying an
alternative location is necessary. User needs a separatgaty for each data set when
running “mbalgin” multiple processes concurrently. Byalgt, the program removes the
directory containing all the temporary files, but user cdhitt¢o keep it all by adding

-keepjunk.

-fsldir < FSL directory> Specifies the location of FSL installation, which is used dotlie

registration. Such as “.../commonl/fsl/fsiSolaris”. FSushbe installed to run mbalign.

-flirtsearchcost < search cost function used in flitt Default cost function is “mutualinfo”

(Mutual Information). Other options are “corratio”, “noaarr”, “normmi” and “leastsq”.

-flirttransform < Transformation used in flirt>- Default transformation is “affine”. The

other option is “rigid”.
-omat < file name> Output transform matrix in ascii format.

-keepjunk Tells the program to keep temporary files in the directorycijgal by “-tmpdir”.

Default behaviour is to remove all temporary files beforegpam finish.
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-slicecheck< file name> Specifies the root hame of an analyze file that you can check the
alignment in. After registration, the file contains the esponding slice of each DWI for
comparison and to check that nothing weird happened andhé&atignment is good. If

you omit -slicecheck, it won't output this pair of files.
-eddy Specifies registration for eddy-current induced distortio

-scanner Regards input file is in scanner-order. Command line examglEanner -inputfile

<file name>

-scanout< output scanner-order file- Adds an extra output file in scanner-order. This won’t

stop default voxel-order output.

-searchrange< angle> Default is 90, which means search range is between -90 anddD i

X, y and z directions.

B.5 EXAMPLES

Do the registration on data set A.Bfloat, and store the outpétAlignAffine.Bfloat:

mbalign -inputfile A.Bfloat -schemefile A.scheme -datadir@8 128 60 -voxeldims 2 2
2.7 -bgthresh 200 -sigma 50 -fsldir /cs/research/medimfoon0/green/common/fsl/fsIRH9/
-slicecheck /tmp/Ser02SliceCheckRigid -outputfiledignAffine.Bfloat

For the example above, if we do not specify -outputfile, thipoiwill be /tmp/A.out.Bfloat.

B.6 AUTHORS

BAI Yu <camino@cs.ucl.ac.uk

B.7 SEE ALSO

modelfit(1), dat asynth(1), analyzeheader(1), datadfats(
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