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Abstract

This thesis addresses the problem of collaboration among experimental biologists and
modelers in the study of systems biology using ontology and Semantic Web
Services techniquesModeling in systems biology is concerned with using
experimental information and mathematical methods to build quantitative models
across different biological scales. This requires interoperation amangus
knowledge sources and services. Ontology and Semantic Web Services potentially

provide an infrastructure to meet this requirement.

In our study, we propose an ontoleggntered framework within the Semantic Web
infrastructure that aims at standardg variousareas ofknowledge involved in the
biological modeling processes. In this framework, first we specify an ontblaggd
metamodel for building biological models. This meataodel supports using shared
biological ontologies to annotate biolodigntities in the models, allows semantic
queries and automatic discoveries, enables easy model reuse and composition, and
serves as a basis to embed external knowledge. We also develop means of
transforming biological data sources and data analysis neethoal Web Services.

These Web Services can then be composed together to perform parameterization in
biological modeling. The knowledge of decisioraking and workflow of
parameterization processes are then recorded by the semantic descriptions of these

Web Services, and embedded in model instances built on our proposenhouksi

We use three cases of biological modeling to evaluate our framework. By examining
our ontologycentered framework in practice, we conclude that by using ontology to
represent hilogical models and using Semantic Web Services to standardize
knowledge components in modeling processes, greater capabilities of knowledge
sharing, reuse and collaboration can be achieved. We also conclude that entology
based biological models with forinsemantics are essential to standardize knowledge

in compliance with the Semantic Web vision.
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Chapter 1 : Introduction

1.1Background

Modeling in systems biology is concerned with using experimental information and
mathematical methods to build quantitative moaeiosdifferent biological scales.

This requiresnteroperation amongarious knowledge sources and services, such as
biological databases, mathematical equations, data analysis tools, and so on.
Ontology along withiSemanticWeb Service provide an infrastructurdat allowsa
consistent representationtbiese knowledge sources as vised information units,

and enables discovery, composition, and execution of these units by associating
machineprocessable semantics description to th€herefore, there is an enging

need to adapt the modeling tasks in biological modetinige Semantic Web vision.

1.2 Methods, Contributions, and Originality

Our methodis concerned withusing ontologyalongsideSemanticWeb Service
infrastructureto provide a knowledge standardization framework for supporting
modeling in systems biology. We demonstrate how ontologies are udadildo
biological models and@¢onnectthe transformation of biological databases and data
analyzing methods intaVeb Service, and hw ontologybasedWeb Service

descriptions are used to enable the composition between these services.

We proposean ontologybased metanodel for building biological models in OWL
(McGuinness and Harmelen, 200®ymat. This metanodel provides capabilities
beyond norsemantic models such as those in Cellf@Quellar et al., 2003and
SBML (Finney and Hucka, 2003prmats.We alsodevelopmeans of transforming
biological data sources and data analysis methotb Web Service. TheseWeb
Services can then be composed together to perform parameterization in biological
modeling. The knowledge of decisiomaking and workflow of parameterization
processes are then recorded by the semantic descriptions ofWkbs8ervica in
OWL-S (W3C, 2004)format, an OWkEbased ontology language, and embedded in
model instances built on our proposed nratadel.
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The main contribution of our work is the design tfis ontologycentered
computationaframeworkthat can facilitate modeling tasks in systems biolagyis
framework applies the latest advascd informationtechnology in order to enable

the standardization and collaboration of knowledge components in biological
modeling. Ths frameworkis organized in a unique fashion specificédllyachieve

our goal

Currently there is no existing effort that uses formal ontology to represent biological
models. The original contributions of this work includes the process of transforming
knowledge components such as experimental databases and data analysis methods to
SemanticWeb Servics, as well as the embedment of decisieking knowledge

and workflow of parameterization in knowledge exchange forntatir work has

been accepted and prased in a 2007 international conferenceWeb Information
Systems EngineeringThe result has been welcome in the biological modeling

community(Sun et al., 2007)

1.3 Thesis Outline

The content of the thesis is arranged as follow&hapter 1 and &e will introduce
what systems biologyis, what modeling in systems biology involves, and what
challengeswe face motivating our study of using ontology and Semantéeb
Services to support modeling in systems biologfen,in Chapter 3ve will review
the work and technotpes related to our study within the Semantic Web for further

discussion ofhetechnologies\eededo achieve our goal.

Following the introductory chapterin Chapter 4ve will give several case studies in
biological modeling, in order to provide realagnples tosupport our analysis @ahe
challenges in modeling in systems biology. These cases will also be used atevalid

the solution we propose.

Chapter 5will investigate the knowledge involved in biological modeling and
identify the Semantic Web tewblogies suitable to standardize all thwdeling
knowledge. We then propose our approach of an ontategtered framework that
formally represents biological modedéd connectghe transformation of biological
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databases, data analysis methods Web Services, andsemantic markup fathese

Web Service.

Chapter 6then gives the stepy-step description of the construction of such
framework in full detail And in Chapter %he framework is evaluated by the case

studies we introduced.

Finally, in Chaptei8 and 9we will discuss the effectiveness of our approgcbvide

a roadmap for future work, and state our conclusions
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Chapter 2 : Motivation

2.1 What isSystemsBiology?

Over the pastlecadesthe development of molecular techniques has prominently
reshaped our understanding of life sciences. From the intricacies and mechanistic
details of genetic information transfer to the network of biochemical interactions
within cells tissues and organs, molecular biology has revealed to us the astonishing
complexity of biological systems. In the process of achieving this revolution of
understanding, molecular biology has accumulaeast amount of information.

With the blossoming fo molecular technologies, information acquisitiorow
proceeds too fast to analyze and interpret with available tools. It is urgent for us t
start making sense of many rich areas of biological information. Besides the genome,
which constitutes our knowdige about genes, we also need to work on the proteome,
metabolome, and physiome, which embody the knowledge about proteins, noetaboli
processes, and physiolodfyinkelstein et al., 2004)To understand how the various
pieces interact to produce complicated biological activities, we must return to the
study of whole biological stems: the heart, brain, and liver, which address an
emerging discipline Systems Biology.

As one of the most exciting scientific challenges of todstems Biologyaims at

the study ofextracting knowledge from the increasing detailed data that massc
scales, and integrating this into a comprehensive analytical description of biological
system with predictive powerModeling lies at the heart @ystems Biology.We

can use experimental information to build models at different biological scales,
integrating them to create a hierarchical model composition ranging from DNA and
gene expression to intracellular networks, to-ttietell and transmembrane signals,

and through to the organ level. Eventually, we should be able to construct such
models at he organism | evel. AThe resulting
used as a scaffold for our understanding of the data, identify gaps in our biological

knowledge, and predict new behaviors that wea n expl ore exper.i

(Finkelstein et al., 2004)
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2.2 Whatis Involved in Modeling in SystemsBiology?

In the study of sstems biology, one of the essential tasks is to couple experimental

bi ol ogi stsd observations wi t h scientifi
collaboratve processes involving experimenters and modelers: using experimental
observations as the groundrfconstructing models of biological entities and the
relations among them; qualitatively and quantitatively analyzing the resulting models

and then comparing the analyses against experimental data for model validation;
providing instructive feedback in @er to refine both the models and experimental
protocols. The progress of systems biology relies on the success of these

experimenteimodeler collaboration processes.

Experimenteimodeler collaboration processes present a number of challenges.
Firstly, bot the content and the format of knowledge that need to be shared among
participants are diverse. For instance, this knowledge can be experimental data with
descriptions of laboratory settings, or mathematical models that quantitatively
represent relatioresmong biological entities. The languages used to represent models
may not be directly compatible. The computing environments used to store

experimental data are usually heterogeneous.

Secondly, knowledge creation in systems biology relies on combiniagl&dge

from many various and distributed sources, in order to achieve a sigsteim
understanding. For instance, when studying complex biological systems such as
human liver, researchers may have to integrate knowledge from gene regulation level
up to irtercellular communication level for investigating certain physiological
phenomena. Models on different levels may be developed independently by several

groups using various modeling paradigms and computational environments.

Thirdly, models and informatiorfrom experiments are reused in many different
settings When specifying parameters for an equation in a biological model, modelers
need to interact with various biological data sources such as literature, biological
databases, or data embedded in exigtioeglels. Then they need to give justification

on the selection of data sources according to the context of the model, make
judgment on which analysis methods and parameterization approaches need to be

applied. All the above information can be crucial favd®el reuse. Newcomers may
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build a model based othe same rationale @&n existing model, but want tase
alternative data sources and parameterization methods. In this case, the reasoning

involved in the model construction could rely on the previous d&seset al., 2007)

2.3Semantic Web forM odeling in SystemsBiology

In order to tackle these challenges, a common means of formally representing
various knowledge in computbased format is required. Also, in the context of
combining computebased resources, it is read for the individual pieces of
knowledge representation to have a descriptive interface for conrfaged
communication, so that knowledge can be easily integrated. Moredver,
collaboration processes between distributed knowledge representatfmartané the

knowledge of modeling and stild be formally represented for future model reuse.

We use ontology an&emanticWeb Service as the centraimeansto meet these
requirements. Ontology is the theory of conceptualization. In computing, ontology
provides a means of formally representing the structure of objects and relations in an
information system and associating meaning with them. Therefore, ontology can
provide formal knowledge representation for distributed and heterogeneous
computerbased biolgical information. Moreover, since ontologies explicitly define

the content in information sources by formal semantics, they also enable the basis of
interoperability between these sources. Further, as ontologies are able to separate
domain knowledge fromapplicatiorbased knowledge, they can be used to define the
collaboration processes among informatmoviding applications. Ontologies

provide the benefits of reuse, sharing and portability of knowledge across platform.

SemanticWeb Servics is the conjinction of Semantic Web and serwoeented
computing. The Semantic Web iframeworkfor creaing a universal medium for
information exchange bgssociting semantics wittdocuments on the World Wide
Web. Serviceoriented computing is a software architecture that allows information
resources to be presented as platfordependent, selfiescribing, modular software
units. The combination of both provides a wesed infrastructure for general
knowledge shang and reuseSemanticWeb Service allows unifying knowledge
sources a¥Web Service and describing interacting and workflows among them by
means of asemantic markup language, and therefore is able to fulfill the need of
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modeling knowledge collaborahoamong systems biology practitioners. In this
thesis we will show how to help model constructionby using ontology and
ontology-based mapping of model components to Semaiéb Servicearchitecture
(Sun et al., 2007)

2.4 Chapter Summary

In this chapter we have introdet what systems biology is, what modeling in
systems biology involves, arttlat thechallenges that motivateur study of using

ontology and SemantiM/eb Service to support modeling in systems biology. In the
following chapter we will reviewthe work andtechnologies related to our study

within the Semantic Web infrastructure.
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Chapter 3: Review of Techniques andRelatedWork

In the previous chapter, we have identified the geyblems that researchers are
facing when carrying out modeling tasks in systems biology, i.e. how to formally
represent various knowledge in compthiased format, how to access distributed
knowledge representation including biological data, models artlng methods,

how to integrate the distributed knowledge together in a reusable way, and how to
represent knowledge interoperation processes and their associated rationale for

further investigation.

Success in tackling these problems depends on outyabiliepresent, share, query,
integrate, and reuse knowledge sources. With the emergence of the Semantic Web
vision as an extension to the Internet, useful tools have become available to achieve
our goal. The Semantic Web infrastructure consists of mampaonent technologies
including ontology, web ontology languages, ontological databases, agent systems,
Web Servics, and associated web standaf@aker and Cheung, 20Q7)he
combination of these technologies has the potential to present and provide access to
complex and diverse knowledge anstandardized way while enadg collaboration

among knowledge sowrs and middleware applications. Therefore, we use Semantic
Web infrastructure as the foundation to facilitate the various tasks involved in

modeling in systems biology.

Ontology

Agent Systems
& Web Services

Figure 3.1 Problems of BiologicalModeling and the Semantic Web
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Figure 3.1generally categorizghe problems involved in modelling in systems biology into
four areas. As these areas are not necessarily independent froottescthis classification

is a simplified guide. Its purpose tis help identifying the common ground of underlying
technologies in the context of Semantic Web that can help us tackling the problems in

biological modeling.

With the fast growing appreciation of the value that the Semantic Web offers, a
considerable amau of effort ha been madeto develop or apply component
technologies of Semantic Web for life sciences. Among these component
technologies, ontology is at the heart of all the solutions that aim at using Semantic
Web to facilitate knowledge sharing andise in the life science community. At the
same time, agetiiased systems arM/eb Servics, which use ontology as their
foundation technology for knowledge encoding, help improving the interoperation of
distributed biological knowledge among researchesee (Figure 3.1).In the
following chapter, we introduce both ontology and agent sysdieWeb Service
technology, and review the devphoent status of existing efferthat appy these
technologies in the study of life sciences in general.

3.1 Ontology

Ont ol ogy serves as the central componer
representation infrastructure and the foundation of many other component
technologies. Ontology is now a research discipline in its own right and interest in
applications of ontologypased technologies is strong. In the following discussion,

first we introduce the basic theory of ontology, ontological languages and formats.

Then we discuss the current development and application of ontology in life science

in more details.

3.1.1 Whatis Ontology?

Ontology is the theory of conceptualization. Intuitively, ontologies can be seen as
defining the basic terms and relations of a domain of interest, as well as the rules for
combining these terms and relations. In both computer science amchatiftm
science, an ontology is a data model that represents a domain and is used to reason

about the objects in that domain and the relations between them.
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Common components of ontologies include:

A Individuals: instances or objects (the basic or "groenell' objects);

A Classes: sets, collections, concepts or types of objects;

A Attributes: properties, features, characteristics, or parameters that objects (and
classes) can have;

T

Relations: ways that classes and objects can be related to one another;

A Restrictons: formally stated descriptions of what must be true in order for
some assertion to be accepted as input;

A Rules: statements in the form of arthien (antecedeftionsequent) sentence
that describe the logical inferences that can be drawn from an assara
particular form;

A Axia: assertions (including rules) in a logical form that together comprise the
overall theory that the ontology describes, for its domain of application;

A Events: the changing of attributes or relatifngkipedia_ontology, 2008)

Among the above components, classes are the focus of most ontologies. Classes
describe concepts in the domain. For example, in an ontology that models a news
corporation, a class of employees regrgs all employees in the corporation.
Specific employees are instances of this class. A class can have subclasses that
represent concepts that are more specific than the superclass. For example, we can
divide the class of all employees into repst cdumnists and editors. Attributes

describe the properties of classes and instances, such as the class of editors can have
the attribute Ophone numberé whose value

ford whose value ised nstances of the cl| a:
In practice, developing an ontology includes:

A defining classes in the ontology,
A arranging the classes in a taxonomic (subtkgserclass) hierarchy,
A defining attributes slots and describing allowed values for these slots,

A filling in the values fomttribute slots for instances.

We can then create a knowledge base by defining individual instances of these
classes filling in specific slot value information and additional slot restrictions with a
certain form of logidNoy and McGuinness, 2001)
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There are many reasons to develop ontologiesstNmportantly, ontologies can
provide a formal means of representing heterogeneous information. Moreover,
ontologies can be used to make the content in information sources explicit and serves
as an index to a repository of information databases. Thiwikey to access and
integrate distributed databases. Also, since ontologies explicitly define the content in
information sources by formal semantics, they enable the basis of interoperability
between knowledgbased sources. Further, as ontologies destalseparate domain
knowledge from applicatichased knowledge, they can be used to define the
collaboration processes among informatwoviding applications. Finally,
ontologies support automatic discovery and constraint reasoning by combining
ontologes with formal logics. Ontologies provide the benefits of reuse, sharing and
portability of knowledge across platfornOntology technology thereforeis
competent to engage in the weased distributed development of biological
knowledge bases while prownd the facilities of reasoning.

3.1.2 Ontology Representation Levels

Ontologies are generally constructed in framased knowledge representations and
are commonly combined with either description logic or “finster logic. Also, an
ontology together wih a set of individual instances of classes constitutes a
knowledge base, i.@ntologies provide the basic structure around which knowledge
bases can be built.

In knowledge representation, a frame is a data structure similar to the aigedcéd
paradgm, which represents classes (called frames) with certain properties called
attributes or slots. Slots may contain values, refer to other frames (relations) or
contain methods. Frames are thus a maebgable formalization of concepts or
schemata and amdnceptual containers for mdtaowledge defining a given entity

in the domain of discourg®Vikipedia frame, 2007)

Class level and class properties level of ontologies (as the first two tiers shown in
Figure 3.2) are the foundation of building higher levels of knowledge representation
and can be developed relatively independently from other levels. Ontologies that
only contain these two levels are called upper ontologies. An upper ontology (or
foundationontology) is a model of the common objects that are generally applicable

across a wide range of domain ontologies. It contains a core glossary in whose terms
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objects in a set of domains can be described. Such ontologies include Dublin Core
(DCMI, 19952008) WordNet(Princeton, 2006)GO (OBO, 19992008) etc. This

type of ontologies is constructed mainly as taxonomies and controlled vocabularies
that are shared among users to build higher lelvehowledge representations &
certain domain. Great effoltas beenmadeespeciallyto develop biological upgr
ontologies in order to shaoensensus definitions of biological entities in life science

community. Detailed discussion will be given later in section 3.1.5.
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Figure 3.2 Ontology representation levels in framebased knowledge represdation

In order to model complex systems, knowledge bases are necessary when one builds
a model to solve problems in the real world. This needs to define logical assertions as
well as instantiations of classes in order to model the complete knowledge of a
domain. For example, an ontology can be used to capture the important entities and
relationships in a biological relational database, and then specify logical constraints
on the entities and relationships. By doing so, one can make use of this specific
ontology to detect inconsistent queries made on the biological database. More
complicated knowledge bases can be constructed as ontologies in order to represent

biological systems and mathematical models underlying these systems.
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Ontologies with different kowledge representation (KR) levels have different
requirements on the expressivity of the KR language. Also, ontology builders always
need to make a decision on the trafiebetween the expressivity of KR and the cost

of computation. Therefore, many ordgly languages have been developed for
various needs. In the following section, we will discuss the developoh@mtology
languages in detail

3.1.3 Ontology Languages

Ontology languages are formal languages used to construct ontologies. They are
desigred to encode knowledge about specific domains and often include reasoning
rules that support the processing of that knowledge. Ontology languages are mostly
generalizations of frame languages, and are commonly based on formal logics, i.e.

either firstorde logic or on description logic.

In the early stage of ontology language developments, many standards have been
proposed. Traditional ontology languages include Knowledge Interchange Format
(KIF) as part of DARPA Knowledge Sharing Eff¢8tandford, 1994)Frame Logic
(F-Logic) supporting predicate calculgkifer et al., 1995) CycL by Doug Lenat's

Cyc artificial intelligence projedtLenat, 1996which is a frame language based on
first-order logic, and so on. These early ontology languages are all succeeded in
certain aspects in ontology engineering, however a canonical standard of ontology

format is lacking.

In order to fit the Semantic Web wisi, current ontology languages have been
proposed to encode ontologies based on the eXtensible Markup Language (XML).
XML (W3C, 19962003) associates descriptive and hierarchicatipictured tags

with data values, in order to givensantic information to parse data in a meaningful
way. With XML-based ontologies, information can be better understood by computer
applications as well as human. Despite its machine processability, the nature of XML
is syntactic and documenentric. This imits its ability to achieve the level of
semantic interoperability required by the dynamic and integrated bioinformatics

applications.

In order to improve the abilities of XMbased ontological language, the Resource
Description Framework (RDF) has beezvdloped. RDEW3C, 19972001)offers a
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more useful semantic model based on the directed acyclic graph structure. RDF
essentially is a modeling language for defining statements about resources and
relationships among them. Suchaeses and relationships are identified using the
systems of Uniform Resource Identifiers (URWBC, 2001a) Each RDF statement

is a triplet with a subject, property, and property value. Some blicaleontologies

such as the Gene Ontold@BO, 19992008) UniProt(The UniProt, 2008)and the

NCI thesaurugGolbeck et al., 2003have already been made available in RDF
format. While RDF is a commonlysed Semantic Web standard, it is not expressive
enough to support formal knowledge representation that is irddodprocessing by
computers. Such a representation should consist of explicit objects and of assertions

or claims about them, which enables computers to draw conclusions directly.

For this reason, more sophisticated ontological languages such as tlf@nsdgy
Language (OWL(McGuinness and Harmelen, 200#gve been developed. OWL is

a vocabulary extension of the Resource Desorpiramework (RDF) and is derived
from the DAML(DARPA, 2000¥}OIL(Fensel et al., 2000Veb Ontology. OWL has
three species, i.e. OWL Full, OWL DL, and OWL Lite. OWL Full is Fistler

Logic (FOL)-based and emphasis on high expressivity of knowledge representation.
On the other hand, OWL Lite and OWL DL are developed focused on minimizing
the cost of computation. OWL DL is based on description logics (DL), which are a
family of classbased (concegbased) knowledge representation formalisms. OWL
was developed mainly because it has more facilities for expressing meaning and
semantics than XML, RDF, and RE®; and thus OWL goes beyond these languages
in its ability to represent machine interpretatxatent on the weln the life science
domain, there are also some efforts applying OWL as ontological representation for
encoding biological information. Such efforts include the biological pathway
exchange standard called BioP@logue et al., 2002)pathway databases like
HumanCy¢Romero et al., 2004nd Reacton(®astrik et al., 2007)

In 2000, Tim Bernerdee proposed the information architecture of Semantic Web
(as shown in Figure 3.3) It indicates that ontology plays a role as the core of semantic
information and the foundation of enabling reasoning servioethis vision, RDF

and OWLbased ontology languages are in the core of the architecture.
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Besides the applications in knowledge representation, ontologies are also used in the
discipline of software engineering. For example, Unified Modeling Language (UML)
(OMG, 1997-2008) class diagrams can be seen as ontologies since they capture
important classes, relationships and attributes in the application domain. Automated
code generators can be used to create interfaces and implementation classes in
objectoriented prgramming language, based on this kind of ontologies. The direct
mapping between ontology and object models in programming is proven to be very
useful for automated generation of biological simulations from ontology biological

knowledge bases.

In the folloving section, we will review the existing efforts on using ontolbgged
technologies for the purpose of facilitating various tasks in life sciences, including

knowledge representation and biological applications development.

3.1.4 Current Development ofOntology in Life Sciences

Ontology provides a shared framework of the common understanding of specific
domains that can be communicated between people and application systems. Systems
biology is a knowledgéased discipline, and its advarns dependet on access to
distributed and heterogeneous knowledge. Therefore, ontological techniques have

been extended to the development of systems biology.

Being a weldefined way of formal knowledge representation, ontology can provide

a shared language for comnmeating biological information. It can help integrating
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biological knowledge and enhancing experimemedeler collaboration. As the
rigorous semantic descriptions of the entities and relationships between biological
entities, ontologies can be used tonalate hypotheses about and navigate through
the volumes of experimental data. Ontologies can also be used for rich annotation of
data and the means to share and integrate data. In addition to the annotation of
experimental data for seareimdretrieval n a collaborative computational
environment, semantic modeling could also be applied to enhance biological problem
solving and phenomenon discovery. In other words, when joined with well defined
problemsolving methods, ontologies could provide conveniérimalisms for
modeling and for implementing solutions to application tasks in the research of

systems biology.

In the following, we review the existing efforts that aim at developing ontologies for
knowledge representation in life sciences as well advddding knowledgebased
biological applications. On the knowledge representation aspect, we divide our
review into two parts, ontology as shared biological vocabularies and ontology as
biological knowledge base models.

Ontology as Shared Biological Voadhries

In practice, biological ontologies have often started out as biological taxonomies and
controlled vocabularies for biological knowledge. This allows the ontology builders
to focus on the gathering of knowledge and the agreements upon definitions of

biological terms and relationships.

Many projects have been launched in the past decade to develop shared ontologies
across different biological domains, including the Gene Ontology (GO), SNGMED
Clinical Terms(NHS, 2007) the Unified Medical Language System (UMLS)LM,
19992008) the Foundational Model of Anatomy (FMAPBIG, 20022008) the
National Cancetnstitute (NCI) ThesaurugGolbeck et al., 2003)and so on. These
projects are all part of a grand effdd creae a unified biomedical informatics
framewak for integrating disparate biological information, which uses ontologies as

its foundational layer. These shared ontologies are designed to meet the growing
need for comprehensive and shared terminology, in order to provide a model of how
biological infamation relates to each other. Among these efforts, the Gene Ontology

(GO) provides the vocabulary for the description of many biological concepts such
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as the annotation of the molecular function, biological process, and cellular
component of gene product¥herefore, GO ontologies are used as a de facto
standard for semantically annotating biological information including experimental

data sources and biological models.

These developed biological ontologies for shared vocabularies are used for data
source annotation, ontologypased search, data integration among biological
databases, and community reference of general biological knowledge. Many
biological data sources use ontologies for annotation of their data entries (e.g.
BLAST2GO, GOFigure, Gotcha, eicSome sgtemshave been constructed tise

GO annotations to compute semantic similarities between entries in biological data
sources (e.g. FUSSIMeG). There are also many GO annotation tools that interpret
gene expression analysis on multiple genes FagGO, OnteCompareandGOstaj.
Ontologies are also used in ontoldggsed search, where users can browse
biological ontologies and the terms in such ontologies as query terms. For instance,
GOFish, TAIR Keyword Browser, an MGl GO Browser use GO ogtplim access

and query various biological databases. Further, GO ontology is used to index
PubMed, a literature archive for biomedical journals, in tools such as GOPubMed
and MeSH for accessing literatur@®aker and Cheung, 2007)Using ontology as
shared vocabularies in biological community is one of the most active areas in

ontology engineering for the lifgciences.

Ontologies as knowledge base models to represent biological and modeling
knowledge

By using the latest ontological languages such as OWL, ontologies can be populated
with logical assertions and instantiated classes in specific knowledge doiifan.

instantiated ontologies then become knowledge base models.

Currently, only a few ontological languages are developed for creating biological
knowledge base models. Representatives of such efforts are the Systems Biology
Markup Language (SBML)(Finney and Hucka, 2003and the Cell Markup
Language (CellML)YCuellar et al., 2003 Both SBML and CellML are XMtbased
exchange formats that provide formal representation of main modeling components
including biological entities, parameter definitions and the equations of the

underlying biological processes such as reaction mechanistc. SBML and
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CellML models can be annotated by using shared ontologies such as GO, which then
makes the content of these models explicit and can be indexed to model repositories.
Both SBML and CellML have gained support from systems biology commandy

hundreds of software systems have been developed applying these standards.

Despitethe fact thaboth CellML and SBML can be seen as ontolkbgged models

for representing biological modeling knowledge, neither specifications contain
information aboutnodel parameterization or associated rationale, nor do they define

a way to connect modeling information with experimental data sources. Further,
although both specifications are developed in XML and share characteristics with
ont ol ogy mo d edsess the fabiliyyf reppreserdirig fopmal logic between

bi ol ogical entities and therefore donot
our work we propose using OWL as the format to represent biological models to
replace CellML and SBML as theepresentation standard for creating knowledge

bases of biological modeling.

Ontology for automated transformation from biological knowledased models to

simulations

Unlike data models, the fundamental asset of ontologies is their independence from
anyparticular applications, i.e. an ontology consists of generic knowledge that can be
reused among different users and computer software. For this réaseviedge

based ontology models can be constructed independently from knovadedigeed
applications.For example, simulation software that is built on a certain biological
model can be modularized into a general computational engine and a biological
knowledgebased model. In this way, theowledgebased model can be modified
without rewriting the compational engine andhey can be used tgenerate the
updated simulation software directly. This independence fppiicationprovided

by ontology gives great advantage to the development of biological applications. The
interface between applications and ontology is often achieved by wrapping or
transformingknowledgebased ontology models into formats that are compatible
with the targeted simulation software. The wrapping or transformation can be
achieved bysng XML Stylesheet Transformation (XSLTYW3C, 1999)

Due to the lack ofa fully-fledged ontology language constredtfor biological
knowledge bases, the effadlated to this area is minah Only a few projects are

1
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involved in software engineering for automated code generation from orHodcgyl
biological models to computational simulations. One good example of such effort is
Cell Electrophysiology Simulatiofenvironment (CESE)YMissan and McDonald,
2005). In CESE project, attempt has been made on the direct transformation from
CellML-based biological models to JavaBeans programs that can be used by CESE
computing platform.

3.2 Agentbased Systems antVeb Servicelnfrastructure

Systems biology research community is a highly distributed environment, in which
information exists as individual pieces of personal knowledge with various versions
and configurations. Different versions of knowledge may contain various errors,
inaccuracies, ambiguities, inconsistencies, and redundancies; hence personal
knowledge need to be brought together for debate and ultimately raise consensual
knowledge acceptedy the whole communityThere are many kinds of ontologies

that represent different levels and aspects of biological knowledge. Many existing
efforts have been focused on creating consensus ontologies of biological terminology.
This kind ofontologiescanbe seen aéccepted by the whole commurdin a way

that these ontologies can be used as common building blocks to create or index
knowledge presentation with more complexity. The shared ground level ontologies,
such as Gene Ontology, support thessiblity of entity evolving through time.
Outdated entities are marked asbsoleté and remain in the repositories as

references.

While originally computers and wdimsed systems were mostly used to store and
retrieve information from biological databases, systems biology information
systems are desired to be able to compose and carry out complex workflows across
multiple distributed biological resources through Internet. This means the knowledge
sharing infrastructure is required to perform a certainl lefeognitive processes

and has reasoning capabilities based on dosmegcific knowledge. This in turn
requires intelligent and distributed software to facilitate such processes. The
candidates that meet such requirements in the context of the Semabtidsién are
agentbased systems aMideb Servicanfrastructure. In this section we introduce key
concepts of agent and/eb Servicetechnologies, specifically thodbat can play
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roles in facilitating modeling in systems biologie then review the ésting effort
that use agentbased technologies aldeb Servics infrastructure in life sciences.

3.2.1 Agentbased Systems

As described in Agerndriented Programming, which is a programming paradigm
promoting a social view of computing, an agent is any\emtitose state is viewed

as consisting of mental components (e.g. beliefs, capabilities, choices, and
commitments). Agenhood is in the mind of the programmer and anything can be
viewed as having mental states, anything can be viewed as an agent. iméxé @o
computing, an agent can be defined as a relatively independent application or
computational function set that can deal with certain problems (for example
automated inferencing, data visualization, respgmgd 0 user s0 i nquiry,
a cerain knowledge domai(Shoham, 1994)

Agent technology emphasises the use of autonomous software entities with the
ability to interoperate with other such software entities, in a uniform and standardised
way. Because semantic hetgeneity is a fundamental part of interoperability, agent
systems used ontologies from the beginnkay. agents to be able to work together,
they must communicate with each other. In a distributed environment, agents use
ontologies to establish communiicem at the knowledge level using specific
languages and protocol§he knowledge stored in agents can be encoded with
ontology language such &MWL or KIF (Standford, 1994)and then enveloped with
communicéion parameters (such as info of senders) as agent communication
language (ACL)FIPA, 2000) Ontologies are explicit representations of the agents'
commitmers to a model of the relevant world; hence they enable knowledge sharing
and reuse. In the context of mudtgent systems, ontology is a compueadable
description of knowledge about the resources in an enterprise's network. The
software agents becomatelligent because they can make use of the knowledge

contained in ontology to use in the process of negotiation and denisiking.

Knowledge is attributed to agents by observing their actions; an agent "knows"
something if it acts as if it had the information and is acting rationally to achieve its
goals. The "actions" of agents, including knowledge base servers and knoewledge
based syt e ms , can be seen through a o6tell 0

client interacts with an agent by making logical assertions (tell), and posing queries
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(ask). The ability to exchange information with other agents enables them to work
together, bare their knowledge, and achieve goals that no single agent could solve.
Systems with cooperating agents are called pagiint systems (MASA MAS is
naturally distributed. Multagent systems offer location transparency by providing
facilities for serice discovery and brokering. In addition, a highel
communication language enables flexible and advanced communication between

distributed agents.

Life science research community is a highly distributed environment, which is
composed of diversified menaks in terms of their distinct knowledge domains and
applied approaches. By regarding the experts (both human experts and computer
based experts systems) as agents, the multidisciplinary study for life sciences can be
viewed as multagent collaborationticould be beneficial to take an agemntented

view, if we intent to model the behaviors of the practitioners in a unified manner
(Baker and Cheung, 20Q7)

Agentbased Systems in the Life Sciences

Agents have been designed with the intention of information exchange between data
sources. Sharing information is a major part of system integration, and thus agents
naturally cover the fundamental aspects of integratiothe life sciences, a number

of agentbased systems have been targeting the data integration problem.

One of the early efforts in using agdyased system in biomedical research took
place as parof the BioMAS project(Decker et al., 2002)BioMAS is a genomic
annotation and information gathering system, which uses the RETSINAagati
organization (Sycara and Pannu, 1998hd includes information extraction agents,
task agents, and interfacgemts. Example information extraction agents include
wrappers for BLAST services at Genba(Wadden et al., 1996)access to the
humanannotated part of Swise®® at the EBI (Baroch, 2000) The agenbased
system of BioMAS proved useful with respect to dealing with dynamic information
over time. While systems such as BioMAS are more oriented towards the integration
of biological databases, other agent systems have been pddty simulation of
biological processes. For example, Infectious Disease Epidemic Simulation System
(IDESS) has been developed to study the outbreak of an infectious disease in any

geographic regiofiYergens et al., 2006)
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There are other agent systems that integrate bioinformatics resources, such as
GeneWeavelBryson et al., 2000)and myGrid projec{Gibson et al., 2007has

many agentike features. OntoFusiofiPerezRey et al., 2006is also an examplef

using multi-agent systenfior biological database integration, wherabase agents

that act as wrappers are used to hide the actual database access procedures from the
rest of the system. Such wrapper agents were created for publibd¥edl DBs, as

well as fa private DBs that are accessible through ODBC or JDB. mediator

module is able to divide and propagate user queries through the agent society. It
collects and merges the results of these queries and sends them back to the user

interface.

Agent technadgy has been successfully applied in the past to system integration.
However, in bioinformatics systems it has mainly been used for enhanced
automation and thuso far only a couple of bioinformatics integration systems are
based on agent technology recent development, attention has been shifted from
agent systems to serviceiented approaches, which will be discussed in the

following section.

3.2.2Web Servicelnfrastructure in the Life Sciences

In the Semantic Webserviceoriented computing is a ftware architecture that
allows information resources to be presented as platiodependent, self
describing, modular software unitd/eb Service technology thereforprovides a
web-based infrastructure for general knowledge sharing and réBesker and
Cheung, 2007)

Web Service are selcontained, seltlescribing, modular applications that can be

published, located, and invoked across the Wi Service can therefore

A Transform personal knowledge into ligheight, flexible, and easy
accessible units;

A Composite new functiotity through the use of loosely coupled reusable
software components;

A Decompose and distribute largeale tasks into component tasks executed
simultaneously across many platforms

Web Servicedefinition encompasses many different systems, but in comma@e usa

the term refers to clients and servers that communicate using XML messages that
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follow the SOAP standardW3C, 2000) Common in both the field and the
terminology is the assumption that there is also a machine readable desofiptie
operations supported by the server written inviteb Service Description Language
(WSDL) (W3C, 2001b) The latter is not a requirement of a SOAP endpoint, but it is
a prerequisite for automated cliesile code generan in many Java and .NET
SOAP frameworks. Some industry organizations, such as thé¢, Wi8ndate both
SOAP and WSDL in their definition of\&Web Service

As defined by W3C, &Veb Servicdas an abstract notion that must be implemented

by a concrete agenthe agent is the concrete piece of software or hardware that
sends and receives messages, while the service is the resource characterized by the
abstract set of functionality that is provided. To illustrate this distinctinamight
implement a particulaWeb Serviceusing oneagentand a different agent with the

same functionality. Although the agent may have changedlVéie Serviceemains

the sameAgentsencompassotions of communicationegotiation argumentation
auctions commitment, coalitionspmmunities evolvingbehavior and adaptation
autonomous behavioOn the other handieb Servicdgechnology is focused on the

functionality aspects rather thachieving softwaréehavioralutonomy.

Using ontologiesto annotate services has also been addressed by many initiatives,
including WSDL:-S (W3C, 2005) SAWSDL (W3C, 2006)and Semantic Markup for
Web Service (OWL-S) (W3C, 2004)under the W3C recommendation. This is
intended to provide reuse, discovery, and composition abilitidgeto Servics.

Web Servicinfrastructurein the Life Sciences

Web Service provide a standard way of publishing applications and dateces
over the internet, enabling mass dissemination of knowledge. In the life sciences, the
web-service approach is seen as being a road to standardizing the multitude of tools

available from different providers.

There are existing attempts at creatingidgical Web Service to enable &cience

in systems biology. An increasing number of tools and databases in molecular
biology and bioinformatics are now availableVdsb Service. For example)ucleic

Acids Researchescribes 858 databases and 166 welese available in molecular

biology. Almost all the existing efforts are however focused on publishing genomic
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data, such as DNA sequence, protein sequence, nucleotide sequence, and so on, and
Web Service are mainly for sequence alignment or looking gdinitions of
biological terms. As far as we are aware, there iSMeb Serviceavailable for

physiological level simulatio(Baker and Cheung, 20Q7)

In the life sciences domain, the increasing number of bioinforméfiels Service
requires a common framework that allows researcher to seardNdbrService
accordingto the required functionality, input and output, pre and postlitionsand

to combine thes®/eb Serviceinto integrated processeshdre are also efforts that
aim at building such computing frameworks to bring biologi¢étb Service
together. Forexanple, the MOBY-S systemby BioMoby project defines an
ontologybased messaging standard through which a client will be able to
automatically discover and interact with tembpropriate biological data and
analytical service providerdioMOBY describes biaiformatics services ag/eb
Services and provides a language to describe biological services in terms of their
Il nputs and outputs, as wel |l as a central

servce registration and discovefiagarajan eal., 2006)

myGrid is another good example of such effort, whicbvides similar functionality
and is based on the Open Grid Services Architecture (O@&@Yle, 2005)myGrid

IS an open source prajedeveloping a suite of software components that application
developers and scientists can use for building and runnirgilico experiments.
Over 3000 distributed services including remdgeb Servics, local scientist
specific Java applications, andngle scripts from over the internet are accessible
throughmyGridés software suite. myGrid uses Taverna workbemepGrid, 2005)
workflow engine to allow users to find and run workflows among biolodi¢ab
Services. In addition, it offers the users the ability to use aveate their own
workflows. A workflow is a sequence of services executed in the correct order that
combined can provide highd&vel services. Workflows can be thought of as-pre
generated static plans, as opposed to the (query) plans generated dyydmgicall
mediatorgGoble, 2005)

In latest developmentVeb Service have been combined with formal semantics that

allow describing interaction and workflows among them by means of a semantic



Chapter 3: Review of Technigues and Related Work 34

markup languageand therefore are able to meet the need of modeling knowledge
collaboration among systems biology practitioners.

3.3 Summary

Modeling in systems biology is concerned with using experimental information and
mathematical methods to build quantitative models at different biological scales.
This requiresnteroperation amongarious knowledge sources and services, such as
biological databases, mathematical equations, data analysis tools, and so on.
Semantic Web Service provide an infrastructure that allowa consistent
representation othese knowledge sources as wesed information units, and
enables discovery, composition, and execution of these units by associating machine

processable semantics description to them.

The Semantic Web vision promises transparent search, manipuéattmtegration

of information to researchers in systems biology by an interconnected set of
technologies. Among these technologies, ontology plays a key role to adapt the
Semantic Web infrastructure to facilitate biomedical research and has been proved

very useful to facilitate most of the processes in modeling in systems biology.

As discussed above, the current application of the Semantic Web in biological
modeling is still preliminary We have found out that the main application for
ontologies in theife sciences is currently focused on sharing bioltegyinologes.

The Web Service used in the biological studies are limited and unorganized. We
believe that there are much more benefits to be had by using ontology along with

SemantidNeb Service to sipporting modeling tasks in systems biology.

In the following chapterswe will introduce several case studies of biological
modeling and identify the knowledge components involved in the modeling

processes that cdre standardized to the Semantic Webastiructure.
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Chapter 4 : Casesof Biological Modeling

In this chapter, we descriltbreecase of modeling inbiological researchrl he first

one isthe model fordescribinghow action potentials in neurons are initiated and
propagatedn the giant nerve fibre of a squidleveloped by Hodgkin and Huxley.

The second one is the model for electrical resonance phenomenon in hair cells in
vertebratehearing systems developed by Lewis and HudspEib. third one is a

compositemodel for describing ¢aium oscillation induced by hormones.

We chose tbsecases becauséheyencompass all the major processes involved in the
study of systems biology including data acquisition from experiments, abstract
modeling, raw data analysis for parameterization, eme@tion of simulationsTo
construct this kind of modekquiresreusing modeling knowledge (the second case
reuses the scheme of the first case), imtegratingfairly complex submodels of
different typese.g.in boththe second andhe third case This will be sufficientto
demonstrate the complexity of the modeling tasks in systems biolbgge three
cases will also be used to valtd the usefulness of our proposed semantic web
modeling framework in the succeeding chapter.

We choosdHodgkin andHuxley as the first caséHodgkin and Huxley, 1952)t has
been used ashe basis ofionic current modelswhich includes the Lewis and
Hudspeth modeling casaVe will desribe its biological background and the

modeling processes.

In the second case study, well go into more detaibf the whole workflow of
biological modeling We will introduce Lewis &Hudspethcase (Hudspeth and
Lewis, 1988) which describs the biological background of the electrical resonance
phenomenon in hair cells wertebratehearing systems. Then we will describe the
approaches used for acquiring experimental data for quantiiatrestigation We
describethe model constructionwhich was developed byHudspeth and Lewifor
understanding electrical resonance in 4df hair cells.And then we give an

example of computational simulation for such model.

In the third case study, we will introduttee model for describing calcium oslkition
induced by hormonedhis model iscomposed from several staatbne modeling
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cases including hormoriaduced Gprotein activation(Riccobene et al., 1999%5-
protein initiatedInsP; release(Sneyd et al., 2004kinetics of InsR receptor on
Endoplasmic Reticulun{Sneyd and Dufour, 2002)and aminimum model for
cytosolic calcium oscillatioiHofer, 1999) This case is important to investigate the

process of modehtegration

4.1 Hodgkin & Huxley Case

In this section, we introduce the effort of biological modelingAhy Hodgkin and

AF Huxley. In 1952, Hodgki and Huxleypublisheda quantitativemodel for
describinghow action potentials in neurons are initiated and propagétesl model

was developed withhe results of a series of experiments in which Hodgkin and
Huxley investigated the flow of electric current through the surface membrane of the
giant nerve fibre of a squidHodgkin and Huxley, 1952)In this model, a
mathematical description for then conducancesand excitation of th@euronfibre

was given. TheHodgkin and Huxleymodel is regarded as one of the great
achievements of 20tbentury biophysicsThey theredre were awarded the Nobel
Prize in 1963n Physiology or Medicine for this work'he developed quantitative
model hasthenbeen used as the basis for almost all other ionic current models of
excitable tissuebllowed.

4.1.1Biological background

Neurons(also known asierve cells) are electrically excitable cells in the nervous
systemprocessg and transmting informationto sensory organsuch as brain and
spinal cord Neuronsare typically composed of a cell body, dendritic $raad an
axon. The majority of vertebrate neurons receives input on the cell body and
dendritic tree, and transmibutput via the axorNeurons communicate by chemical
and electrical synapses, in a procealed synaptic transmission. The fundamental
process that triggers synaptic transmissionaledthe action potential,raelectrical
signal that is generated by tbecitaion of the neurorcell body and thepropagats

along the axon

Neurons, like all cells, maintain different concentrations ofageribns across their

cell membranesThe neuronal membrane contains specialized proteins dalhed



Chapter 4: Cases of Biological Modeling 37

channels which form pores in the membrane that are selectively permeable to
particular ions.Sodium channelsllow sodium ions through the membramehile
potassium channelallow potassium ions throughUnder resting conditions, the
potassium channel is more permeable to potassium ions than the sodium channel is to
sodium ionsHence here is a high concentration of sodium ions present outside the
neuron,and alow concentration of potassium ions insidghe membrane has a
charge on the inside face that is negative relative to the outside, as more positively
charged ions flow out of the neuron than flow Trhe resting voltageacross the

membrane is typichly  millivdlts (mV).
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Figure 4.1 Structure of vertebrate neurons

In Figure 41 neurons are sheathed in myelin, which is formed by either of two types of glial
cells: Schwann cells ensheathing peripheeairons and oligodendrocytes insulating those of
the central nervous system. Along myelinated nerve fibers, gaps in the sheath known as
nodes of Ranvier occur at everdpaced intervals, enabling an especially rapid mode of

electrical impulse propagatiomlted saltation(Imagesourcehttp://kvhs.nbed.nb.cp/

In neurophysiology an action potential(also known as aerve impulsg is a
collection of membrane potential changes which occur during nerve impulse
propagatiorthat travels along severakurons The propagation of a nerve impulse
along an axon begins when theuronsynapses receives neurotransmitters from
nerve endings nearby. The neuron then increases its internal potential, setting off a
chain of events as the nerve impulsasdown the axonThe action potential moves
rapidly down the axon, with aconduction velocity as high as about

100meters/second. Because they are able to transmit information so fast, the flow of
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action potentials is a very efficiemay of informationtransmission, considering that
each neuron the signal passes through can be up to a meter inAetigtin potential

also appears in other types of excitat#éls such asnusclecells andplantcells.
Action potential can be divided into the followippases:

Depolarization: Initially the membrane potentia$ resting at aroune/0 mV. When

the neuronsynapses receives neurotransmitters from nerve endiregsell becomes
excited.Voltagegatedsodium Na’) channels open when the membrane potential
rises about 20 mV above the rest poterttied50 mV. This potential is called the
"threshold". The membrane permeability tdla’ is suddenly increase Na' then
rushes into the cellabout 1 millisecond)This will cause the membrane to "fire",
initiating apositive feedbackhat causes the voltage inside the axon to suddenly and
rapidly become more positivd@he membrane potential continues to rise above the
fithreshold and keeps the channels open until timside of membrandecomes
positively chargedill about +40mV. Because of the positive feedback, an action

potential isall-or-none there are no partial action potentials

Repolarization: During this rapiddepolarizationa large influx of Na" causes the
immediate opening of oltageactivated Potssium K*) Channes and leads to a
rapid efflux of K™ from the neuronAt the same timelNa' channels responsible for
the initial inward current are inactivatethe Na" channels close when the voltage
peaks.The membrane voltage tlsenrestored to its resting value biye combination
of these twoeffectsuntil undeshoots(hyperpolarizationklightly and persists until

the membran&” permeability returns to its usual value

Refractory Period: TheNa'/ K* Channelsactively pumpNa’" out of the neuron and

K" into the neuron. This restablishes the initial ion distribution of the resting
neuron.During this time(~ 1 nilli seond), the neuron firing At
higher than normalmaking the Na” and K* Channe$ more difficult to open, and

thus inhibiting another action potential at the same.dgater this conditionan

axon is said to beefractory

The cycle of depolarization and repolarization is extremely rapid, taking only about 2
milliseconds and thus lalvs neurons to fire action potentials in rapid bursts, a

common feature in neuronal communicati®he action potential "travels" along the
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axon without fading out because the signal is regenerated at each pateth of
membrane. This happens because diom potential at one patch raises the voltage

at nearby patches, depolarizing them and provoking a new action potential there. In
unmyelinatecheurons, the patches are adjacent, but in myelinated neurons, the action
potential "jumps" between distant pates, making the process faster amdre
efficient (Hodgkin and Huxley, 1952)

4.1.2Mathematical modeling

Mathematical and computational models are essential for undergfahe action
potential andallowing simulations or evepredictionsto test against experimental
data. Therefore Hodgkin and Huxleydevelopedaccuratemodel to describe the

voltages anaurrents of the action potential in all of its phases

In Hodgkin and Huxley model, they developeah electriccircuit networkto match

how the squid axon cargean action potentiahcross a patch of membraf®@ee
Figure4.2). The current flow across the cell membrane depends on the capacitance
of the membrane and thesistanckonductance(conductance is the inverse of
resistanceof the ion channels. The total ionic current is represented by the sum of
the sodium current, potassium current and a small leakage current. The leakage
current represents the collective admition of ions such as chloride and bicarbonate
etc The lipid bilayermembranas represented as a capacitancg)( Voltagegated

ion channels are represented by nonlinear electrical conductgnceséren is the
specific ion channel),e. the conductance isoth voltage and timaependent. This
wasthen mediated by voltaggated cation channel proteins, each of which has an
open probability that is voltagdependent. Leak channels are represented by linear
conductancesg(). The electrochmical gradients driving the flow of ions are
represented by batterieS,(andE eay), the values of which are determined from the
Nernst potential of the ionic species of interest. Finally, ion pumps are represented by

current sourcedy).
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Figure 4.2 Equivalent electrical circuit for the Hodgkini Huxley model

Figure 42 illustrates an guivalent electrical circuit for the Hodgkirluxley model of the

action potential.l,, represertt the current through a small patch of membrane ¥pd
representshe voltage across. The C,, represents the capacitance of the membrane patch,
whereas the four g's represent the conductances of four types of ions. The two conductances
on the left, for ptassium K*) and sodiumNa'"), are shown with arrows to indicate that they

can vary with the applied voltage, corresponding to the vokagsitive ion channels. The

two conductances on the right help determine the resting membrane pot€htaide

conductance is normally included in the leak conductance in Hodgkin and Huxley model.

Within the circuit network, arrent flowing through the membrane can be carried via
the charging and discharging of a capacitor or via ions flowing through variable
resstances in parallel with the capacitor. Each of the resistances corresponds to
charge being carried by different components. In the nerve cell these components are
Na" and0* and a small leakage current that is associated with the moverhent
other ions. Each currentp\f, Ik, andl ea) can be determined by a driving force
which is represented by a voltage difference and a permeability coefficient, which is
represented by a conductance in the circuit diagram. These equations can easily be
derived usiVWtR Ohmés | aw

I'va = OnalE- Ena) Q)

I« =0k (E- Ey) )
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I Leak = gLeak(E - ELeak) (3)

Ona @ndgk are both functions of time and membrane pote&i&y,, Ex, Eieak Cm

andg.eakare all constants that are determined via experimentation

To build their mathematical model that describes how the membrane current works
during the voltage clamp experimeHipdgkin and Huxleyised the basic circuit
equation

| =C dV, /dt+]1, @)
wherel is the total membrane current density (inward current positivie)the ionic
current density (inward current positivey, is the displacement of membrane
potential (depolarization is negativelCn, is the membrane capacitantas time.
During the experimentlodgkin and Huxleyfound that the ionic current when the
derivative was set to zero and the capacity current when the ionic current is set to
zero were similarTherefore, they writéhe capacity current and ionic currenta

linear relationship:

I:|Na+IK+ILeak (5)
wherely, is the sodium currenty is the potassium current amdak is the leakage
current. We can further expand on this model by adding the following relationships:

Ina = 9na (V - Via) = Ona(Ena - Eg) (6)
I« =09¢ (V- Vi) =0u (B - Eg) (7)
| eak = Greak(V = Via) = Giear(Eiear~ Er) (8)
V=E- E, (9)

whereEris theabsolute value afesting potentialwhose value is decided
experimentallyV, Vna, Vk, VieakCan then be measured directly as displacements

from the resting potential.
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When examining the graph of the potassium current versus the potassium potential
difference,Hodgkin and Huxley found that gk is used as a variable the ewidthe

record can be fitted by a firstrder equationbut a third or fourth-orderequation is
needed to describe the beginnifignerefore, asimplification ismadeby supposing

that gk is proportional to the fourth power of a variabiich obeys a firsorder
equation.The formal assumptions used to describe the potassium conductance are

g« =g¢n’ (10)
Sl =a,(1-n)- b,n
dt (11)
where§K IS a constant, analis a dimensionless variable that varies fromo 1. It is
the proportion of ion channels that are opEhis the rate of closing of the channels

and b, is the rate of opening. Together, they give the total rate of change in the

channels during an action potential.

In order to find functions connecting, and b, with membrane potential, all the
measurementsra plotted againsl. Empirical expressions fdih and b, are then

used to fit the experiment data and get:

a, =0.01(V+10)/(eV*0- 1)
(12)

b, =0.125e"*°
(13)

The sodium conductance is described to be determined by two variables, each of
which obeys a firsbrder equation.

Ona = °hg Na (24)
whereg,, is a constant ansh is the proportion of activat carrier molecules (ion

channels) andh is the proportion of inactivatl carrier molecules (ion channels.

andh can be further described by
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d—m:am(l- m)- b, m
dt (15)

dh
o =an(- b= by

(16)

where U, and by, U, and b, are again rate constants that are similar to the rate
constants for thpotassium conductanc8imilarly empirical expressions are fitted to

the experimental data:

a. =0.1(V+25)/(e"V*>'° . 1

(17)
b =4eV/18
) (18)
a, =0.07¢"°
(19)
bh :1/(e(\/+30)/10- 1)
(20)

Finally, the Hodgkin and Huxley model for the action potential in squid giant axon

can be summarized as equation {@113) (15)(20) and
I = C:mdvm /dt+ éK n4(\/ - VK) + mshé Na(\/ - VNa) +§Leak(\/ - VLeak) (21)
4.2 Lewis & Hudspeth Case

4.2.1 Biological Background

Ears have evolved in parallel in vertebradesxe a common divergence 300 million
years ago.Hearing organs in different species differ in the range of sound
frequencies to which they can respond. The sensory cell on which all designs rely is
the hair cell: a polarized neuroepithelial cell with sepstransduction channels at

the apical end and the primarynsery synapse at the basal eimdbirds, reptiles and
amphibia, the hearing organ is strictly referred to as a papilla.nidre familiar
cochlea is the hearing organ of mammals and consisiscofled cavity within the
temporal bone on either side of the head. It contains the structures that separate the

components of a complex sound by frequency and intensity. The cochlea acts as the
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sensory organ for the auditory system, signalling the im¢ion along the auditory

nerve to the central nervous system. The length of the cochlea is divided into three
regions by a pair of membranes. The central region, termed the scala media, is
separated from the scala tympani by the basilar membrane andtherscala
vestibul.i by Reissnerds membrane. The sc
the cochlea, terminating just short of the tip. There is then a small opening
connecting the scala vestibule and scala timpani. Fig8rie 4.cross section thrgh

the cochlea showing the two membranes along with the organ of Corti which

contains the sensory hair cgllsshmore and Gale, 20Q0)

OHC
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Figure 4.3 Organ of Corti

The movementof the basilar membraneBM) and tectorial membrane (TMip and

down result in stimulation of the hair cells in the Organ of Cditie tectorial
membrane is located above the hair cells and their assocttesilia. The
stereailia areactinbasedhair-like fibers that project from the hair cell. Movement

of the stereailia causes the hair cell to be stimulateair cells then tnasduce the
movement of their hair bundles into electrical signals. Such process involves the
opening of mechantransduction channels, hair cell depolarization, and basolateral

synaptic release, resulting in a modulatidrthe membrane potential.

In geneal, the bending of stereocilia allows™ to flow into thehair cells whichare

thus depolarized. This opens voltaggtedCa* channels.Calcium is involved in
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neurotransmitter (glutamate) release and also in* active exit mechanismA

simple represntation of how this happens is schematirefigure 44.

A biologically important sound can contain many different frequency components
and hearing organs are designed to extract information selectively about frequencies.
Although the basic design of hair cell mechanoelectrical transduction is conserved
across pecies, it is clear that different mechanisms of frequency selectivity have
evolved. The hair cells of the vertebrate inner ear transduce stimuli derived from

sound or acceleration into receptor potentials.

Glutamate

Figure 4.4 Mechanoelectricaltransduction of hair cells

In some cases, the responses of hair cells are made selective for stimuli or particular
frequencies through a tuning mechanisms based upon electrical resonance in their
membranes.In nonmammalian species, frequency selectivity depends upon an
intrinsic resonance mechanism in each hair #ctrical resonances in hair cells
were observed first in the basilar papilla of the tu@eawford and Fettiplace, 1981)

Then they were found in hair cells of amphibian papillae (auditory s®naad
sacculi (seismic sensors) inimdrogs (Hudspeth, 1983, Hudspeth, 1985, Pitchford
and Ashmore, 1987)n each case, the reson frequencies were within or very close

to the known range of acoustical sensitivities of the sensor in question. In the turtle
basilar papilla and the sacculus of the bullfrog (Rana catesbeiana), the resonances
have been shown to result from an inteyplzetween voltagsensitive calcium

channels and calciwgensitive potassium channels in the hair cell membrane
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(Hudspeth, 1983, Art and Fettiplace, 198¥he bullfrog sacculus is extraordinarily
responsive to substrate vibration (seismic stimuli). In the absence of such stimuli, its
afferent axons typically exhibit random spontaneous spike activity at mean rates
between 10 and 40 spikes/sa@ford and Fettiplace found that afferent axons from
the turtle basilar papilla exhibited spikdgerval histograms with conspicuous
periodicities.

These functions of transduction, tuning, and synaptic transmission are mediated to a
large extent throughhe activity of ion channels. The transduction channel, a
mechanically gated, neselective cation channel associated with the hair bundle, has
been extensively characterized. Studies have been carried out by Lewis and
Hudspeth for the voltagend iordepadent channels responsible for the membrane
conductances: a voltagependen€&* conductance, a transient, voltadgpendent,
A-typeK* conductance, and@&* -sensitiveK* conductancgHudspeth and Lewis,
1988)

4.2.2 Experimental Data Acquisition

In the case of Lewis & Hudspetall three types oion channels were first studién

hair cells using tightealpatchclamprecording techniques on cells dissociated from

the bullfrog sacculuHudspeth and Lewis, 1988Yluch of what we know about the
properties of ion channels in cell membranes has come from experiments using
voltage and current clamp. In general, thethod allows ion flow across a cell
membrane to be measured as electric current, whilst the membrane voltage is held
under experimental control with a feedback amplifidre voltage clamp technique
allows an experimenter to "clamp"” the cell potentiad ahosen value. This makes it
possible to measure how much ionic current crosses a cell's membrane at any given
voltage. This is important because many of the ion channels in the membrane of a
neuron are voltage gated ion channels, which open only weemembrane voltage

is within a certain range. Voltage clamp measurements of current are made possible
by the neassimultaneous digital subtraction of transient capacitive currents that pass
as the recording electrode and cell membrane are charged tinaltsil's potential.

The method was first developed by Cole (1949) and Hodegkl. (1952) for use

with the squid giant axon. Since then, many variants of the technique have evolved

and voltage clamp analysis has been extended to a wide rangssuss.For
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example, ptch clamp recording one of the variations. takes place with a glass
micropipette that has an open tip diameter of about one micrometre. This type of
electrode is distinct from the sharp microelectraded to impale cells imaditional

intracellular recordings.

In Lewis and Hudspeth case, whalell recordingtechniqueis used. Wholeell
recording is a kind of patch clamp recording whée=hicroelectrode is placed next

to a cell, and gentle suction is applied through thereeiectrode to draw a piece of

the cell membrane into the microelectrode Tipe glass tip forms a high resistance
'seal’ with the cell membran&hen moresuction is applied to rupture the portion of

the cell's membrane that is inside the electrodes tproviding access to the
intracellular space of the cellhe larger opening at the tip of the patch clamp
electrode provides lower resistance and thus better electrical access to the inside of

the cell.

By using wholecell recording techniques, experint@ndata are saved in a
spreadsheet which contains both the specifications of the experiment and the
recorded electrophysiological data. The specifications of the experiment may include
the profile of the electric stimulus performed on the cells, the idefis of signals,
the meaning of theatumns in the tables of datace The results of experiment are
stored in a table whose columns are specified with names of entities and rows are
sequences of recorded data. In the Levisludspeth case, the columase defined
as the following:

SignalsExported=lems Vin

Si gn adem® P BYD Qehd 0 GO/0 Rehi® O GOC . . .

660Ti e q&Nr aoéd##had poAdTdace(#WYA) dToace #2 (m\P;

0Toace #3 (pAp 6 Toace #3 (MVP;é .
In which6 Taace# is used to generalize the table structure so that any signals can be
stored by the table. Eadilgace#® is then specified according to the signal, such as

membrane currend(meml®) and membrane potential \6:0).

4.2.3 Mathematical Modeling

By analyzing the acquired datagtfollowing mathematical description of kinetics of

voltage and currentlependent conductances in hair cas been builtThe ionic
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conductance model is entirely based on the Hodgkin and Huxleyadgkin and
Huxley, 1952)

The involvement ofa®* andCa?*-activatedk” conductances in electrical resonance
was tested by the hadipotential €hahgéssin respepse ct e d
extrinsic current pulses. The total membrane current is at all times equal to the sum

of capacitive and ionic currents,

I =1t

m cap Ca

+ I K(Ca) + I Leak (1)

in which I, is the total membrane curreidspis capacitive current, arleh, Ikca and
I eak are respectively th€a?* and Ca’*-activatedk”, and leakage currents. Each of
these terms is a function of tim&he modelthereforeconsists of sumodelsthat
describeC&* current, Ca®*-activatedK” current and leakage currentgspectively.
The leakage current is relatively simple. Here we give @' current andCa®*-

activatedk™ currentsubmodelsasthe following:

ca& current (Ica)sub-model

Voltagedependentl., activation is described by a thiodder kinetic sheme
(Hodgkin & Huxley,1952),

lca = écams(vm - Eca) (2)

in which g_ is the limiting value ofCa* current conductance when alCa™

channels are open, m is the thaependent value of the activation parametgris
membrane potential, an., is the Ca’* equilibrium potential. The activation

parameter, m, varies between zero and unity with time,

dm

—=b_(1- m-a m 3

= nl-m)- a, 3)
in which Uy, and by, are respectively theng at eds c¢cl osing and open
For perturbation by atep change in membrane potential, equat®mrtédn be solved

for m, yielding

m() = m, +(m, - m)[L- expt ) @

m
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in which my is the initial value ofm before a potential change akHis the time
constant of mo s @ xnp ot equilibriu@ Ivaluex gt ghe mewc h  t

potential.

If my=0 at holding potentials belows0 mV, (}, andmp can be expressed in terms of
U andbny;

t,=1la,+b,) (5

m, =b /(a,+b,) (6)
U, andby, can, in turn, be described espirical functions of potential:

an =a,expl- (V, +Vo IV )1 + K, (7)

b, =b,exp[V, +V,) V] +K, 8

in which Uy, by, Ka, Kg are rate constants @érVo, Va, Vs are potentials to be

determined experimentally.

Regulation of intracellula€a?*: A relatively simple scheme has been adopted here
which was used to describe the inactivatior @fcaused byCa?* accumulation in
insect skeletal muscle fibres. Th@a’*-regulation scheme involvesome basic
assumptions. Firs€a?* entering the cell binds fractiob, of totalCa?* remains free
at any given time. Secondly, the binding of ti@d** accumulates next to the
membrane in a small fractiogof t he cel | 6s t @at kdvesvhis| u me .
submembrane compartmentaatate proportional to its free concentration there; the
rate constant for this processkis, This scheme predicts that, at any given time, the
submembran€a®* concentration,$a’**]; changes at a rate

d[Ca* ]

S = Ul (ZFG) - K [Cav], ©

Ca’*-activatedK” current (kca) sub-model

First the gting of theCa?*-activatedk® channels in the hair cell is described by a
linear, fivestate kinetic scheme adapted from earlier models by Magleby & Pallotta,
1983; Moczydlowski & Latorre, 1983Each transition, othethan the opeitlosed

transition, is characterized by €a**-dissociation constant, K;. The voltage
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dependence of these transitions derives from the assumptidBaffidtinds to a site
within the transmembrane electric field, making the effective dissociation constant a

function of membrane potential,
K, (Vi) = K, (0) exp[a] 2PV, (RT)] (10

K;(0) is the dissociation constant of tjtk binding site, and, F, RandT have their
usual meanings. These dissociation constants are related to the forward and reverse

rate constantl andk; by
K, =k /K (11)

The closing rate constabl is also expressed as a function of membrane potential
a, =a,(0)expV,/V,) (12)

LL(0) is the closing rate constant @&tmV membrane potential,, is membrane

potential, and/a is a potential used to express the voltage dependapt of

If we assume that the maastion principle applies, the changeoecupancy of each

state with time is described by a family of differential equations:

% =k.,C, - k[Ca].C, (13)
dd_Ct1 =k,[Ca*],C, +k ,C, - (k, +k,[Ca®],)C, (14)
% =k,[Ca®"],C, +a,0, - (k, + B,)C, (15)
dd% = bC, +k 0, - (a, +k,[Ca®])O0, (16)
% =k;[Ca*],0, - k ;0, (17)

in which C; and O; are the timedependent probabilities that a channel witha®*

ions bound is respectively in the closed or the open state. The summed occupancy of



Chapter 4: Cases of Biological Modeling 51

the two open states at any given time the probability that the channel is open;
therefore

Okca = §K(Ca) (G, +0;) (18)

The current through ope@a’ -activatedK* channels is assumed to be ohmic,
yielding

lK(Ca) = Ok(ca) Vi - Ex) (19)
in which Ex is the equilibrium potential for th@a?*-activatedK™ current.

Composite Model

The two submodels are then composed togetlmiring currerdclamp experiments,
the membrane current is forced to follow a command curtgpt, The capacitive
current can be expressed as the product of the membrane capa€itarmed the
rate of chang of the membrane potentidl,/dt; each ionic current is the product of
conductance and driviA@rce terms. Substituting these expressions umggn (1)

yields
I com — Cmdvm /dt+ gCa(\/m - ECa) + gK(Ca) (\/m - EK) + gLeak(\/m - ELeak) (20)

in which gca, Gkcay andg. are respectively th€a®* and Ca**-activatedK”, and
leakage conductances, aig, Exca, and E. are the corresponding equilibrium
potentials. Unlikegca andgkcay, 9L is time- and voltageindependent. Equation (20)

canbe rearranged to give

av,

dtm =- [gCa(Vm - ECa) + gK(Ca) (Vm - EK) + gLeak(\/m - ELeak) - Icom] /Cm (21)

4.2.4 Computational Simulation

After building the mathematical descriptions of the biological system, computational
simulation can be created accordingly. The creation of such simulations requires
specific programming skills and understandinfy ammputational rathematical

methods. In general, the means of building simulation is to translate simultaneous
mathematical equations into certain implementation in advanced programming

language and combine the implementation with parameter inputs and pass the



Chapter 4: Cases of Biological Modeling 52

parameteded equations tanalyzingmethods. The analyzing methods can be pre
developed scientific application packages. An example of such package can be the
ODE toolbox in MATLAB (The MathWorks, 1992008) The following is a simple
simulation built for Lewis & Hudspeth modeinder currentlamping conditionn
MATLAB, where functionudspetb contains the equation set and all parameter
information. The main program evokes the function and passes it as an input to a
built-in ODE solver@del56 and then render the simulation result as computer

images by plotting tools.

Function dy =hudspetft,y,v)

%constants

g_ca=4.14*10/9;Eca=100*103;
alpha0=22800;beta0=0.97;

V0=70*10"3;% holding potential
VA=8.01*10"3;VB=6.17*10"3;

KA=510;KB=94Q
U=0.02;xi=3.4*1015;z=2;F=96485;C_vol=1.25*1012;Ks=2800;R=8.3145;T=310;
% parameters di2ntracellularcalcium concentration
K10=6*10"6;K20=45*10"6;K30=20*10"6;
D1=0.2;D2=0;D3=0.2;
k1r=300;k2r=5000;k3r=1500;
alpha_c0=450;beta_c=1000;Va=33*18"
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Figure 4.5 MATLAB simulation result of current -clamping in hair cell
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% constant calculation
alpha_m=alphaO*exp(v+V0)/VA)+KA,;
beta_m=betaO*exp((v+V0)/VB)+KB,;
coefl=1*g_ca*(wEca)*U/(z*F*C_vol*xi);
k1c=k1r/(K10*exp(D1*z*F*v/(R*T)));
k2c=k2r/(K20*exp(D2*z*F*v/(R*T)));
k3c=k3r/(K30*exp(D3*z*F*v/(R*T)));
alpha_c=alpha_cO*exp({/Va);

% ODEs

dy = zeros(7,1); % a column vector

dy(1) = beta_m*(ly(1))-alpha_m*y(1); %m

dy(2) = coefl*y(1)"3Ks*y(2); %[Ca++]

dy(3) = k1lr*y(4)yklc*y(2)*y(3); %CO

dy(4) = klc*y(2)*y(3)+k2r*y(5)}(k1r+k2c*y(2))*y(4); %C1
dy(5) = k2c*y(2)*y(4)+alpha_c*y(6)k2r+beta_c)*y(5); %C2
dy(6) = beta_c*y(5)+k3r*y(H alpha_c+k3c*y(2))*y(6); %02
dy(7) = k3c*y(2)*y(6)}k3r*y(7); %03

main.m %the main program
g_ca=4.14*10/9;Eca=100*103;
g_kca=16.8*10%9;Ekca=80*10"3;

V0=-70*10"3;

v=1e3*(-50:10:10);

tspanl = 0:0.0005:0.02; tspan2 = 0.02:0.0005:0.025;
y0 = [0; 10~7; 1; 0; 0; O; OJ;

result = [tspanl'itspan2';

colorm=hsv(length(v));
figure
hold

for i=1:length(v)

[T,Y] = odel5s(@hudspeth,tspanl,[0 404 0 0 0 0],[],v(i));
[T1,Y1]=0del5s(@hudspeth,tspan2,Y(length(Y),:),[],V0);

vm = [v(i)*ones(length(T),1); VO*ones(length(T1),1)]; T2 = [T;T1];
Y2=[g_ca*(v(irEca)*Y(:,1).3;g_ca*(VOEca)*Y1(:,1)."3];

Y3= [g_kca*(v(iyEkca)*(Y(:,6)+Y(:,7));9_kca*(VOEkca)*(Y1(:,6)+Y1(:,7))];
plot(1E3*T2,1E9*(Y2+Y3),-','Color',colorm(i,:));
xlabel('Time(ms)");ylabel(‘Current(nA)");

title('l_{Ca} plus |_{KCa} evoked by voltagelamp50mv~10mv)");
reault = [resultvm Y2+Y3];

end

The abovecomputational simlation appeas to besimple sincethe most computing
algorithms have been hidden by the builODE solver in MATLAB. If we were to

build it in other advanced programming languages such as C++ or PASCAL, the
implementation can sometimes be very complicated. This kind of-¢rafted
computational simulation is common to researchers with quantitative background,
but it will be difficult to many biologists. Even to mathematicians, the kind of

simulation creation i®rrorprone The simulationmodels created have rathiemw
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reusability i.e.anychange of experimental data, or parameters, or details of equation,
will need rework of the prograning codes

4.3 Caseof Hormone-induced Calcium Oscillation Composite Model

In this section, we will introducéhe model for describing calcium oscillation
induced by hormonedhis model iscomposed from several staatbne modeling
cases including hormorieduced Gprotein activationRiccobene et al., 1999%5-
protein initiatedInsP; release(Sneyd et al., 2004kinetics of InsR receptor on
Endplasmic Reticulum(Sneyd and Dufour, 2002)and aminimum model for
cytosolic calcium oscillatiofHofer, 1999) This case is important to investigate the
process bmodelintegration

4.3.1Background

Intracellular and intercellular calcium signalling is one of the crucial methods of
cellular coordination and control. Calcium ior@at’) are part of an informatien
processing system in animal and plant cells and play an essential role in regulating a
variety of cellular processes such as secretion, reproduction, cell movement, cell
growth and so on. The regulation mechanism is achievechayges in the

concentration of th&ee cytosolic calcium ions in response to external signals.

Under normakonditions, the concentration of free calciimcellsis maintained at

very low levels in the cytosol (aboli®* mMol) because of the presenakcalcium

pumps in the plasma membrane and the endoplasmic transports calcium out of the
cell, whereas the calcium pump in the ER sequesters calcium ions in the lumen of the
ER (Becker et al., 2000)n contrast, th€a?* concentration in the extracellular fluid

and the blood is aboutZ2 mMol, while in ER thesequestered calciunoncentration

is around 0.5 mMol, aboui0’ times as high as that of the cytosaheTcytosol, with

its very low concentration of fre€a*, is located betweemwo very calciurarich
environments. This results in the cytosol being a major site of transient elevation of
calcium concentration which is induced by hormones and neurotransnattel
descri bed as (Dupoatletcal., 2000)Isstead ofswitcliing between

stationary and pulsatile regimes, very often this transient elevation exhibits a high
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spatiotemporal organization characterized as an oscillatory bel{®aoker et al.,
2000)

It has beershown that the calcium signals in response to agonist stimulation consist
of a series of spikes iBa’* concentration with a period of a few seconds to a few
minutes (Woods et al., 1987)it also appears that each spike is organized spatially
The C&®* concentration first increases locally, then the increase propagates in the
whole cell as a wave, waling at a speed of 1P0em-s*(Dupont et al., 2000)
Moreover, 1 has been observed in a variety of systems that calcium signals can also
propagate from one cell to another and thereby serve as a means by which a group of
cells can communicate with each other, and coordinate aceillullar response to a

local event(Hofer, 1999) One of such examples glycogenolysis- the process of

liver releasing glucose from glycogem the liver hepatocyteagonists such as
glucagon bindhg to their receptorswill cause he increaseof intracellular free
calcium The freecalciumions then serve asecond messenger molecuteseleag

glucose into the blood stream.

The phenomenon of calcium oscillation and wave propagasoobservedin
different kinds of cells and has been studied extensi&jcium spikeshad been
known for a long time in periodically contracting muscle cells (e.g. heart cells) and
neurons, before they were discovered in the-1®80s in nonexcitable cells, notably

in oocytes upon fertilization and in hepatocytes subject to hormtmelation
(Schuster et al., 2002n excitable cells such as neurons, an increase in intracellular
Ca’* is brought about by th€a?* channels in the plasma membrane when these
channels open during depolarization, permitting extracellD&f to enter the cell.

By contrast, in norexcitable cella’" is supplied mainly by internal stores and thus
involves much more complicated procesi&Chay et al., 1995)

4.3.2Understand Intracellular Calcium Oscillation by Model Integration

In this section, we give detailed description of several models that consist of the
composite modedf intracdlular calcium oscillation. The compositeodel consists

of the following modelsAgoniststimulated Gprotein activation(Riccobene et al.,
1999) G-protein initiated InsP; release(Sneyd et al., 2004kinetics of InsPs
receptor on Edoplasmic Reticulum(Sneyd and Dufour, 2002and aminimum

model for cytosolic calcium oscillatigitHofer, 1999)
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Figure 4.6Phospholipid-inositol-calcium signalling pathway(Alberts et al., 1994)

Figure 46 illustrates he calcium elevation in hormorstimulated norexcitable cells
mediated bythe phospholipidnositolcalcium signalling pathway. In this pathway hormonal
stimuli lead to the activation of-@roteins as an effecter system. Thisiateés Phospholipase

C (PLC) activation and the subsequent formatiomiaicylglycerol(DAG) and inositoll,4,5
triphosphate 10sPs) which finally leads to the release of calcium stored in the ER through

the stimulation ofnsPs-sensitive calcium ion channels.

Agoniststimulated G protein Activation

Signalling through G proteitinked receptors is one of the most prevalent and
important methods of transmitting informatimm the outsidéo the inside of cells
(Riccobene et al., 1999The G proteidinked receptor family is so named because
ligand binding causes a change in receptor conformation that activates a particular G
protein (an abbreviation for guaninecleotide binding protein). BhG protein
linked receptorsgo across plasma membrane seven times with theriNinus
exposed to the extracellular environment and tHer@inus resides in the cytosol.
The inactive form of the @rotein consists dfl b, anda subunits with a moleculef o

GDP bound to thé&-subunit. After the binding of an agonist to the extracellular side
of a G proteidinked receptor, it catalyses the exchange of GDP for GTP and
activates the cprotein. The Gorotein is then released from the receptor and it
dissociate into separatd-o and UGTP (active) subunits. Depending on the G
protein and the cell type, either the free G&§subunit or the g £omplex can then
initiate signal transduction events in the cell. The activation of the G protein persists



Chapter 4: Cases of Biological Modeling 57

only as longas the @is bound to GTP and the subunits remain separated. Active G
proteins are returned to their inactive state upon the hydrolysis of GTP to GDP by the
intrinsic GTPase activity of th&-subunit and thé}GTP and b-o subunits can
recombingBecker et al., 2000)

G-protein Initiated InSP; Release

After the activation of Gprotein, different isoforms of phosphoinositigpecific
phospholipaseC (1-phosphatidylinosite#t,5-bisphosphate phosphodiesteraBe(C)

are then activated. After that, PLC cleaves phosphatidylingsidbisphosphate
(PIPy), a relatively uncommon membrane phospholipid, into two molecules:
diacylglycerol PAG) andinositol1,4,5triphosphate I0sPs). Both InsP; and DAG

have beershown to be second messengers in a variety of regulated cell functions.
InsPs is a small water soluble molecule and can quickly diffuse through the cytosol,
binding to a liganebated calciunthannel known as thasPs receptor channel in the

ER membraneOn the other hand, tH2AG generated by LC activity remains in the
membrane, where it activates the enzyme protein kiGageKC) (Becker et al.,
2000)

Calciumrinduced Calcium ReleaseMediated by theKinetics of Insi Receptor on

Endoplasmic Reticulum

One of the most important mechanisms underlying the complex dynamic behaviour
of calciumoscillations and waves is the dynamics of inoditiphosphate receptor
(IPR), which also functions as @a’* channel. The binding ofnsP3to InsP3
sensitive receptsrin the ERmembrandeads to the opening of calcium channels,
which results in a mas®vflux of calcium ions from intracellular stores into the
cytoplasm.The concentration of free cytosolic calcium then increase tenfold (around
102 mMol) from its resting levelig* mMol). After the initial rise inconcentration

of calcium ions in the cytoplasm, calcium itself also stimulates the release of
additional calcium ions. This latter mechanism is called calengduced calcium
release CICR) (Berridge, 1993).

The equilibrium open probability of thilPR presents a belshaped dependence on
cytosolic calcium concentration. It was also shown that at high calcium

concentrations thdP3; receptors can be inhibite(Kummer et al., 2000)The
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reversible calciurinduced inhibition of calcium releasdserved at high calcium
levels develops more slowly than the activation. The decrease of free cytosolic
calcium concentration is due to the activity of the ATPases (SERCA pumps), which
actively transport calcium backo the ER lumen(Dupont et al., 2000) The
cooperation of positive anaegative feedback of calcium releasdR& dynamics is
believed to be essential for the occurrence of intracellular calcium oscillations. Many
mathematical models have been proposed to argueCHfétregulated IPRs and
Ca* ATPases together arsufficient to generate intracellular calcium oscillatory

behaviors.

Model Integration for Intracellular Ckium Signalling

Finally, with the above detailed descriptions of the specific pathways ird/mivtbe
calcium signalling system, we can summarize whole process in the following
general scheme. A number of theoretical models have been proposed to explain the
signalling cascade and the scheme is rather well established now: After the binding
of ligands to the extracellular side of G protéitked receptors, thétsubunit of
receptorcoupled G protein is activated. The subunit in turn stimulates a
phospholipase C, which catalyzes the hydrolysis of the membrane phospRdfpid

to form InsP; and DAG as second messengers. WittsP; binding to the InBs-
sensitive receptor in the ER membracacium release fronthe ERlumen store is
ensured by thdPR activation. By the coordination of calciumduced calcium
release and the further inhibition B?R, the calcium concentration ithe cytosol

then displays oscillatory behavior with the form of repetitive, sharp spikes,
pacemaketike elevation.

4.3.3. Mathematical Modelling

In this section, we introduce the mathematical models of hommolueed calcium

oscillation.
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FundamentaBcheme afalcium osillation

mitochondria

Figure 4.7 The fluxes involved in intracellular calcium oscillation

Fig 47 lllustratesthe fluxes involved in intracellular calcium oscillatiorhe meaning of the

symbols for reaction ratese as follows

3., influx of Ca?* across plasma membrane channels;

3oup transport ofCa" out of the cell by plasmmembraneca2+ ATPase;

3, Ca* uptake into mitochondria,,, release o€a2+ from mitochondria;

3.1, C&" release from the ER throudisPs-sensitivechannels;

3serca transport ofCa’" into the ER bysarce/endoplasmic reticulur@a?* ATPase (SERCA)
3pc, formation ofinsP; andDAG catalyzedby phospholipase GPLC);

34, degradation olnsP; (performed maily by hydrolysis to inositell,4-bisphosphate or
phosphorylation to inositel,3,4,5tetrakisphosphate)

3y, Netrate of binding ofca? to thej-th class ofca®* buffer (e.g. protein);
The concentrations ahositol1,4,5triphosphate(InsPs), cytosolic calcium Cacyy),

ER calcium Cas), mitochondrial calcium@ay), and occupied calcium binding sites

of the buffer specigjsin the cytosol B)) are:

d
aIP3 =My - Ny (1)
d Catyt =N, -n +nrel -n +nmo -n 4 (2)

a out serca mi ~ a. nb,j
j=1
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d
acaer =l (nserca_ nrel) (3)

de, - _ 4
acam_rmit(nmi nmo) ( )

gt B, =n,, (Foreachj=1,2...n) (5)

Where }J¢ and } it are the cytosol/ER and cytosol/mitochondria volume ratios
(Schuster et al., 2002)

Minimal model

A mathematicalmodel of calcium dynamicby using minimal set of variablas
developed thasatisfactorily accounts for the properties of ageeisikedcalcium
oscillations i n @nhe WakvwoktHoferg BHoferh1®3PrTheo c y t e
G-protein coupled receptor ac#tion, the phospholipase pathway and thePs-
sensitivechanneldynamics are simplified into an algebraic chain relation with which
the concentration onsP; is taken agproportionalto the dose of agonist. In the
minimal mathematical model, spatial homogénes assumed. The model computes
the change in free cytosolic calcium concentration by summing the relative flux of
Cca* from the ER, plasma membrane and throug&* pumps. A constant
backgroundCa®* influx across plasma membrane is assumed too¢roled by a

first order MichaeligMenten equation and the efflux by a second order Michaelis
Menten equation dependent on @& concentration. The model is based on the
scheme described in sectidrB.1 but an alternative variable is utilized to measure

the total free calcium content of the whole cell:

Co o (6)

Ca,=C
a, %"'C

whereC,; andC; stand for theeffective volume of ER and cytosol.

The balance equations read:

d IP Ca,. Ca,- (1+b)Ca, Ca,. .(7)
—Ca,, = + . 1+ Ca,,.IP. - 7
dt aty( r[nO nc Ko + |P3 /74 K42 +Cacyt2 a(kr( aty[ 3) b /73 K32 +Cacyt2)]

C 2
ECE’w =r@ngtn, L n— % 7) (8)
dt KgtP, K, +Ca,,
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With thelPR release sufunction

d, + 1P, "
d, dl " |P3 IP, Ta,,
K (Cay, IP;) =k, S

(d, +1P,)*(d, +Ca,,)*(d, G 1R IP, &Ta,,)*
P d, +IP,

e ©)

Based on the above mathematical model, a simulation is implemented in MATLAB.
The initial values of the concentrations and the parameters are chosen as in the
AppendixesTable 1. The estimation of the structural parameters is based on calcium
diffusion in Xenopusoocytes, which is also discussed in Héemwork. The
computation redti shows in Figure 4.8.We can see that the characteristics of

intracellular free calcium amuccessfullyeflected by our model and simulation.
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total calcium concentration of the whole cell
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Figure 4.9 Scheme of G protein coupled receptasignaling

Fig 4.9 illustratesG praein coupled receptor signalling including G protein activation and
receptor desensitizatioReproduced fronfRiccobene et al., 1999R is the inactive form of
the receptorR* is the active form of the receptdRRis the inactive ligand/receptor complex,

LR* is the active ligand/receptor compldxgys is the desensitized ligand/receptor complex,
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G is inactive Gprotein,G* is activated Grotein,L is free ligandandRysis the desensitized

receptor. Parameter valsi and denitions are given iM\ppendixesTable 2.

A mathematical model for @roteincoupled receptor signaling introduced based
on the work of Riccobene, et al. in 1999. In their mo@efrotein activation and
receptor desensitizaticare includedand predidbn can be made omow activation
and desensitization would change if either the conformateiattivity (theeffect
of ligand binding on the distribution of active and inactive recegtates) or the
desensitization rate constant was ligapedfic (Riccobene et al., 1999)The

balance equations are tfalowing:

d K

CR=(k LR+—"R)- (k,LR+kR) (10)
dt K

act

\ X e K
%R = (kLR +kgR)- (ak, LR +KfR R) (11)

act

%LR= (K, LC’R+%LR*) - (k LR+KLR) (12)
%LR* = (ak, LOR +koLR)- (kLR + I*:th LR +k LR) (13)
G LR, = (LR +k LR~ kLR, (14)
%st =k ,LR,- k,LCR, (15)
%G =kG - kGALR +R) (16)
%G* =kGULR +R)- kG (17)

The activation and desensitization parameters, ligand binding rate constants and total

speciegoncentrations used in Riccobénenodel are the following:

Kinetics of Insikreceptor on Endoplasmic Reticulum

A model that describethe Ca?* binding to the receptor using saturating, not mass
action kineticshas been developg®&neyd and Dufour, 2002Yhe model assumes
that the binding ofP; andCa®* is sequential, not independent, @&’* can bind to

the activating site only aftéP3; has bound.
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Figure 4.10 Scheme of IP3 Kinetics on Endoplasmic Reticulum

The basic scheme ike following an InsPsreceptorR, can bindCa®* and inactivate
to statels, or it canbind IP3 and open to stat®. StateO can then shut (stat® or
bind C&®* and activate to state StateA can then bincCa?* and inactivate to state.

The balance equations are the following:

%?:F.zo' szR+(k-1+|-2)|l' FlR (18)
%:FZpR_ (|:_2+|:4+|:3)O+F_4A+k_38 (19)
%?:F4o- F_4A' F5A+(k-l+|-2)|2 (20)
%:FlR- (k. +1,)1 (21)
dt
A2 Ak, +1), (22)
dt
Where
= bl 23)
1 L, +c@+L,/Ly)
f oo kbltle (24)
2 L, +cl+L,/L)
_k,+l,C
F..@= 1+c/L,

(25)
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PO (26)
P o=l Tt 27)
=l (28)
-t @9)

Based on the experimental data, the fiegiarameter values are:

k,=064s*OM* , k,=004s" , k,=374s*OM* , k,=14s", k,=011S"OM ™" , k ,=298s" ,
k,=4s'OM*, k,=054s", L, =0.12M , L, =0.025M , Ly =547/ ,1,=17s",1,=17s'OM*,

ls =4707"1.,=08s"1,=255"OM | =117s".

It is assumd that the InsP; receptor consists of four independent and identical
subunits and allow€a?* current when all four subunits are in sté@teor all four are

in stateA, or some intermediate combination (for instance, when three are iOstate
and one is in statd). Furthe assunption is also madéhat the more subunits there
are in stateA, the greater the open probability of the receptor. With these
assumptions, thepen probability of the receptor is most conveniently written as
(0.10 +0.9A)* (The numbers 0.1 and 0.9 are not crydi@heyd et al., 2004nd can
then be applied to specify the fltarmy, in fundamental balance equation (2):

Ny =[k,(0.10+0.9A)* +g](Ca, - Ca,,) (30)

Whereg: models a constant background leak from the ER atlBrooncentration
(Sneyd and Dufour, 2002)

4.4 Chapter Summary

In this chapter we have introduced three case studies of biologicklling These
three cases are of biological significance and exemplary ipritdemdomain of
biological modelling They cover areasonablerange of models and are
comprehensiveenoughto represent the major challenges faced in thetoaay

modelling effort. In the following chapter, we will examintbe main knowledge
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components involved in thmodellingprocessesThen,we will propose our solution
within Semantic Web infrastructure to hddwlogical modelling by using ontology

and Semanti®Veb Servics.
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Chapter 5: Using Semantic Web Technologie® Support
Biological Modeling

After the introduction of biological and mathematical modeling background for these
case studies, we will then identify different types of knowledge and information flow
among participants dimg the modeling processds order todo so, we willfirst
summarize all the modeling tasks of LewidHudspethcase into an agent dialogue
which describea sequence of events by defining actors, information flows, and
actions We will then give the fyology of knowledge in biological modeling based
on this summaryAfter that by examining the knowledge typology of biological
modelingwe will discuss how semantic web technologies are able to help in these
modeling processedVe will propose a systematsolution of using ontology and

SemantidNeb Servicdo support modeling in systems biology

5.1 Workflow of Modeling Processes

Biological modeling are usually motivated by new discoveries of biological
phenomena or biological entities and then focused on gaining further understanding
on their underlying mechanisms. The efforts generally regléfiming the scope of

the problem domainidentifying al the significant factors which account for the
phenomenon understandingthe relationships between these facgtoand then
guantitatively descriimg the factors and the relationships between them

In this context, the initial actions are usually takendxperimenters who make
discoveries by conducting experiments and diedithe scope of interests. The rest

of the efforts rely on the collaboration amoergperimentspecialists, modeling
specialists, and computing specialist®s practice, modelers and mputing
specialists are the same actors since nowadays mathematicians who do quantitative
analysis for modeling systems very often have certain amount of computational skills
and perform these computing tasks on their own. We distinguish these two actors f
the purpose of highlighting the different knowledge sets required for these two

different roles to conduct actions.
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Figure 5.1 Processegnvolved in the study of systems biology

closely observing a few biological modeling projects, such as the team of Beacon

project in UCL CoMPLEX working on modeling for liver tissue, and the

postgraduate students in UCL Ear Institute worlongelectrophysiology of cochlear

hair cells. | have then carried out a modeling exercise on the Lewis and Hudspeth

case of electrical resonance in hair cells, and derived the workflow by considering

the distinctive skill set required to perform variousemxpental and modeling tasks.

In order to demonstrate this collaboration more convenienttydescribahe roles
of these specialists and the communication activities between ltlgeam agent
dialogueschemeln the description, we will use E to stand &xperimenter, M for

modeler, and C for computing speciallte also define the direction of information

flow as follows:

A
A

Specialist

Exper i ment eExpérivhentepasses knowledge Modeler
Mo del er Y E x pvadelerpassed keowledge Experimenter

Modelerr Computer SpecialistModeler passes knowledge too@puting

Computer Specialist Modeler Computing Specialist passes knowledge to
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Modeler
A Computer Specialiét ExperimenterCompuing Specialistpasses knowledge
to Experimenter
A Experimentef Computer SpecialistExpeimenter passes knowledge to
ComputingSpecialist
The actual activities are explained by a sequence of events as the following:

Stage l:ldenify the factors of the phenomenon and relationships among them

Experimenter Conducts cuentclamp experiment on single saccular hair cell of the

bull-frog;

Experimenter Records correlated data of membrane potential against total

membrane current;
Experi menter YCo:ffpelsthedata®Ceci al i st

Computer Specialistnterprets thelata into graph with current asakis and voltage
as Y-axis which shows that the voltage oscillates against current pulse;

Computer Speci alCielsth¥ gfappte E;i ment er

Experimenter Uses the graph as evidence and asserts the existerstectfcal
resonance phenomenon in saccular hair cells offtmg!

Exper i ment eErtelsMhe dssdrtienrand its associated annotation to M;

Modeler Searches for all the existing models that describe intracellular oscillatory

behaviors;

Modeler Recalls an electrical analog circuit model (LRC model) describing the

subthreshold oscillatory behavior of the
Mo del er Y E x plells themeoael description to E;

ExperimenterAsserts the LRC model is related to current case;

Experme nt e r Y M®asks hualitative information on the LRC model;

Model er Y E x pvetells Entee mriswer,;
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Experimenter By | ooking at the answer, E assel

and ionic conductances are the factors of the model;
Experimenter Searches for the existing knowledge on cellular ionic conductances;

Experimenter Recalls the presence of voltagand iondependent channels
responsible for membrane conductances including vellagendent Ca®*
conductance, transient voltagependentA-type K* conductance, andca-

sensitiveK® conductance:

Exper i ment eEraskMibareldtieship between time, membrane potential,

currents, capacitance, and conductances;

Modeler Recalls the following mathematical descriptions anel dnnotations for

each term:

|Cap:c:mo"%

anyl ion — 9 Q\/m - E)

Im: Total membrane currentlc,s Capacitive current;lion: lonic currenf Cp:
Membrane capacitancg: ConductanceV,. Membrane potentialE: Equilibrium

potential
Modeler Translates the mathematical descriptions into assertion set Al:

A The total membrane current is at all times equal to the sum of capacitive and
ionic currents;

A The capacitive current is the product of the membrane capacitati¢tbearate of
change of membrane potential;

A The ionic current is at all times the product of conductance and the value of
membrane potential subtracting equilibrium potential.

Mo del er Y E x pvetells tneassértom set Al to E;

Experimenter Assertsthat during currentlamp experiments the total membrane

current is at all times equal to the command current; and link it to assertion set Al,;
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Experimenter Asserts that the ionic currents consist 6f&*-current and Ca’*-

sensitive K" -current; and link it to assertion set Al;
Exper i ment eErtelsMipddtediassertion set Al to M;

Modeler Translates assertion set Al to mathematical description:

ICap = C:m dem
dt
Im = Icom

a Iion = ICa+IK(Ca)

ICa =0ca Q\/m - ECa)
I k(ca) — k(ca) C"Q\/m - EK(Ca))
Modeler Manipulate the mathematical descriptions to:

dv,

dtm = [gCa(\/m - ECa) + gK(Ca) (\/m - EK(Ca)) - Icom] /Cm

Modeler Translates the mathematical descriptions into assertion al;
Model er Y E x pvetells assertion &lrto E;

Experimenter Asserts that the factors required for quantitatively describing the
electrical resonance mechanism are the membrane capacitar¢e*‘taenductance,
the Ca?*-sensitivek* conductance; the equilibrium potential@é**-current, and the

equilibrium potential of-a?*-sensitive K*-current.

Experimenter Asserts that by applying pharmaceutical agent tetriatingonium

(TEA) the Ca’*-sensitiveK* -current can be inactivated;

Experimenter Infers that theCa®* conductance and the equilibrium potential of
Ca*-current can be investigated separately from@h&-sensitiveK* conductance

andCa’’-sensitiveK*-current.
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Exper i ment eErtelsNibthk énference;

Modeler Manipulate the mathematical descriptions into-satmponents:
lca = Oca @V, - Eca)
I k(ca — k(ca) C"Q\/m - EK(Ca))

av,

dtm ='[|Ca+IK(Ca) - Icom]/Cm

Stage |l: produce valid mathematical descriptions for individualsumponent

Modeler Recalls existing models foE&’*-current;

Modeler Asserts that the activation time course @a’*-current isadequately

described by a thirgrder kinetic scheme without inactivation;

Modeler Recalls the scheme which can be described as:

Ica = acams(\/m - Eca) ;
m(t) = m, +(m, - m,)[1- exp(- [i)] *)

g..: the limiting value ofCa®* conductance when alCa®* channels are open;

m : the timedependent value of the activation parameter, varies between zero and

unity with time;

m, : the initial value oim before a potential change;

m, , the equilibrium value ofn, at the new potential

the time constant of mdés exponenti al

Mo del er YE x ple paiametenize the scheme, M asks E for measurements;

Experimenter Conducts a series of voltagiamp experiments on single saccular
hair cell of the bulfrog under the condition of TEA;
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ExperimenterFor each voltagelamping, recordsCa&" current against time;

Experi ment eE téldddadl Ithedata on the series of voltaglmp

experiments;

Modeler Estimates taiturrent amplitudes from singkxponential extrapolations

back to the end of the pulse;

Modelet Fits a Boltzmann relatiod = I, /[1+& & %2"% 35 the estimated

tail-current data bya leastsquareerror criterion (in whichl ., is the peak tail
current with all Ca®* channels operV,,, is the potential at whicim, =0.5, andk is a
slope factor describing the voltage dependence of activation); gains the following
parameter valuesl ., =-0.5nA, V,,, =-36.5mV; andk =9.4mV, g, =4.14nS, and

generates the dasats onm, againsV, ands  againsV,,;

Modeler Manipulates equation (*):

. : L m
Sincem varies between zero and unity with time, M assu%qfs b,(1- m-am

a,.themgateds closing rate constant;
b, themgat ebébs opening rate constants.
Also assumingn, = Oat holding potentials belov60 mV, M express, andm, as:
t,=1l(a,+b,);
m, =b./(a,+b,).

Modeler Calculate the data setsafagainsV,,andb,againsV, from the data set

onm, againsVy,_ and  againsV_;
Modeler. Recalls empirical functions af, andb,, againsV,,:

a, =4, eXp[- (\/m +VO /VA)] + KA (a)
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b, = byexp[V,, +V,) V] + Ky (b)
a,,b,,K,,Kgare rate constants to be determined\grd, andv; are potentials to
be determined;

Modeler. Fits function(a) and (b) to the data setsagfagainsV, andb,,againsV,,,
gains parameter,, b,,K,,Kz,V,,V,andvy;
Modeler. Asserts that subomponent 1 is fully parameterized.

Model er YCo mp ut MrtellsSap ¢he imathematital descriptions and

parameter values to C;

Computer SpecialisiTranslates thenathematical descriptions and parameter values

into computational programs;

Computer SpecialistGenerates the computational results;

Computer Specialistnterprets data to graphs;

Computer Speci alCielisth¥ grappte E;i ment er

Experimenter By comparing to experimental data, asserts thehematical

description is valid.

Staqge lll: Integrate mathematical description of individual-somponents

Modeler. Links the two mathematical descriptions together;

Model er Y Co mp u:tMaells theiptegatedamathesntatical descriptions and
according parameter values to C;

Computer SpecialisfTranslates the mathematical descriptions and parameter values

into computational programs;
Computer SpecialistGenerates the computational results;
Computer Secialist Interprets data to graphs;

Computer Speci alCielsth¥ giappte E;i ment er
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Experimenter Compare the graphs from C with the graphs from experimental results,

asserts that they are inconsistent;

Experi ment eE eldoM that enremathematical descriptions for the

electrical resonance are invalid;

Modeler Add term leak current as an ionic current and assign empirical parameters,

gains updated description:

ICa =0ca Q\/m - ECa)
I ca = Yk (ca va - EK(Ca))
I, =9, Q\/m - E)

av,

m

dt

:'[ICa+IK(Ca) +|L - Icom]/cm
Model er YCo mp u:thMetells tBepupdatedamathesnatical descriptions and
according parameter values to C

Computer SpecialisfTranslates the mathematical descriptions and parameter values

into computational programs;

ComputerSpecialist Generates the computational results;

Computer Specialistnterprets data to graphs;

Computer Speci alCpasssth&EgapretsH5; ment er

Experimenter By comparing to experimental data, asserts the mathematical

description is valid.
Endof workflow.

The above workflow mainly describes the collaboration processes among
experimenters and modelers for building a quantitative model based on experimental
data. It demonstrates the complexity of such effort, the spectrum of knowledge

involved to establish a solid modeling scheme, and reuse part ofexising
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modeling knowledge to compose with other compound models to form a systematic
description of a biological system.

In the following sectiog we will classify the knowledge involved in timeodeling
processes, identify the relationships among these processes, and discuss how the
Semantic Web technology can possibly fit in to facilitate the modeling processes and
enhance the reusability of models and collaboration among participants of such
modeling tasks.

5.2 Typology of Modeling Knowledge

By examining the dialogubke summary of Lewis & Hudspeth case in previous
section we can identify the main knowledge components involved in biological

modeling tasks. Theare the following:

Entity and relationship: Identifying the subjects of interastalwaysa prerequisite

when doing any kind of study. During biological modeliitgs requiredto define

the scope of the biological system to be investigated and the elements to be described
in such sgtem. The definitions of biological entitieqre the starting point of
biological modeling. The relationships that connect these entities are also crucial
knowledge.In fact, thetask of modeling igo understand the intrinsic relationships
among biologichentities in a qualitative or quantitative wayhe definitions of
biological entities and the relationships among them ardatmedationof higher
levelsof knowledgeto bediscussed

The biological entities andrelationshig are thebuilding blocks of conceptual
modeling for biological systemsThey consist of the basic semantics in formal
knowledgerepresentatiof the biological models. Thegrealsoused to definghe
elements in theschema ofbiological relational databaseboreover biological
entities are used to annotate the terms of mathematical equatiotde these
equations describe the relationships among these entities.

The definitions of biological entities and relationships are normally given in
literature separately from the modelheTcorrespondence between these definitions
and the model components are loose. In recent modeling efforts such as CellML and
SBML, biological entitiesand relationships are defined. Howev@&elIML and
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SBML do not allow models to be shared across autlyrsusing consensus
ontologies as their building blockalthough CellML and SBML-enabled software,
such as COPASI and the Systems Biology Workbench, allow model sharing by file
exchange both CellML and SBML do not have the element that can include
ontolagical informationfor checking terminology consistencies among models.

Experimental data: Data are acquired froexperiments by using various biological
technologies. These data are obtained for many purposes. First, data are used by
mathematiciando formulate quantitative relationships among biological entities.
Second, data are uséa parameterizéhese formulategquations Third, data are
usedto initiate computationakimulations.Foutth, data are used to compare with

simulation outputs to verifyhe validity of quantitative models.

The data acquired from experimemtsweverare not always accessible to others.
They may be saved as -digitized figured, put in literature andnsuitable for
computerbased processing hey may als@xistas different types of datasheets and
databases. In order to make experimental data in various formats accessible to
researchergynified and formally representediata storage isequired To adapt the
Semantic web vision, this storage needs a universaface for communication that

is able to provide computgrocessable description of the storage content. The
storage also needs facilities for data retrieval and data updating by external users, and
provides enough security to the internal data to gmewnwantedaccess and

manipulation.

Mathematics: many kinds of mathematical knowledge are required for constructing
quantitative models for biological studies. These inclong¢hodsfor analyzing raw
data to identifyguantitative relationships among biogical entities formulating
mathematicakquationdo represent these relationshiparious fitting techniques for

equationparameterizatiorgndsimulation method&r scientific computing.

Mathematical knowledge is one of the most important partsadddical modeling.
Only with wellformed mathematics can produce meaningful quantitative models.
Building mathematical models often requinesing different sets ofexperimental
data to formulate. It is therefore also essential for model representati@aveoa
standard communication interface, in order to connect with different data storage.

This interface again will need semantic descriptions to allow computers to
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understand the content of the model as well as its input and output value types and
conditions. More importantly, mathematical models should be represented in a

format that can be easily decomposed into granular model parts for further reuse.

Decisionmaking and workflow: Knowledge of decisiomnaking in biological
modelingincludestherationale of parameterizatiptine selectionof data sourceghe
selection of computenal methods and their precisicend so onWorkflow among
different modeling components defines the communication activities and interfacing
protocols. These two typeof knowledgeare crucial for model reuse and model
composition. They are however almost always lacking in current knowledge

representation of biological models.

In the above summary, we classified the main knowledge components of biological
models and idntified thedifficulties of formally representing these componeints
compliance withthe Semantic Web vision. In the following section, we will revisit
the Semantic Web technologies and establish connections between these

technologies and the problem daim of biological modeling.

5.3 From Modeling Knowledge toSemantic WebComponents

Having examinedhe various knowledge involved irthe real cases dbiological
modelingabove now we recalkhat our goal is to meet the challenges of formally
represenng all thesekinds of knowledge in computdnasedexchangeormats, so
that researchers are able to share and reuse them with the full pothertobket
provided by Semantic Web Infrastructume discussed in Chapter RHaving also
investigated the rea and scope of the Semantic Web in its current stateresfect

to life sciencesn Chapter 3we arenow ready to formulate our approachublize
ontology and SemantM/eb Servics into our scenarios.

Currently, only a few ontological languages areveloped for representing
knowledgeof biological modeling namely CellML(Cuellar et al., 2003and SBML
(Finney and Hucka, 2003)Both SBML and CellML are able to provide
representation oknowledge components including biological entities, parameter
specificationsand themathematichequations of the underlying biologicalhese

formats however dond possesdormal mechanism of using shared terminology
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across model instances, nare they able to embedepresentation ofmodel
parameterization or associated rationalthe model tde built.

As discussed previouslyn ibiological modeling, one of the major difficultiés
knowledge reuse is to allow the discovery of distributed knowledge. This requires
knowledge to be represented in formal exchange format and share the same
termindogy. This sharederminology has to be general enough to be used across all
knowledge representatiobut specific enough to make meaningful definitions

possible.

Moreover, it is also crucial to represent biological models with formal logics so that
semantic queries can be made across the model repository. For example, if one
researcher built a biological model which contains an entity annotated with the term
fisodium ¢ h a n,while another research wants to query a range of models that
contains the entityicationc h a n, mltkhdugh human researchers are able to deduce
that sodiumchannelis a type of catiorthanneland therefore satisfies the queries,
without a laye of formal logic that describe such relationship, computerstwmn

able to return the proper result.

For theabove reasons, we propose an upgrade of knowledge representation format
from CellML and SBML specificationgo OWL ontologybased modelsThe
proposed ontology format wilhot only containall the knowledge components
represented in these formats, but ajgmvide a mechanism for using shared
biological ontologies and allows embedding references of external experimental data

sources and profiled parameterization processes.
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Figure 5.2 A schemeto illustrate the content of the metamodel and its relationship with

external knowledge sources

Figure5.2 demonstratewhat knowledge components the proposed ontology format contains,
and how it links to shared biological ontologies and allows embedding references of external
experimental data sources, mathematical methods used for parameterization processes and

possibilty of transformation from the model to simulation

With the upgraded knowledge representation for biological mottedsyemaining
issues areto standardizethe access to thebiological databasg mathematical
methods used to analyze the data and the Yeovkimong thee data and methods.
The standardization of these forms of information still needs to be carried out within
the Semantic Welnfrastructure And very importantly, it needs to be done in the

way thattheknowledge standardization can be easysed and integrated.

The conventional means to standardize biological data is to convert different data
format into relational databases. The content of these databases are thehbgefine
the database schemas. The retrieval and update of the dathiaxed by inputting
databaseueries commandsuch asSQL. There are a few possibilities to transform
conventional databases into units in compliance with Semantic Web. One is by using
agentbased frameworkAgent framework provides communicative protacdhat

allow distributedautonomous softwarentities to interoperate with other software






































































































































































































































































































