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Abstract 

 

Since their introduction in the 1970s and 1980s superresolution systems for point source 

parameter estimation have received theoretical attention regarding their potential 

performance. Two aspects of performance in particular are of interest, the accuracy of 

the parameter estimation and the resolution achievable. Limitations on performance 

may be considered to be due to noise affecting the data, or to errors in the system. 

Superresolution methods divide roughly into two groups – ‘spectral’ methods and 

maximum likelihood (ML) methods. MUSIC is perhaps the most effective example of a 

spectral method and has been studied in considerable detail, in both performance 

measures, but mainly only for the case of a single parameter. In this study the accuracy 

of MUSIC in the application of two-dimensional direction finding (DF) has been 

analysed, with and without system errors, using a general array. Theoretical results are 

confirmed by simulations. An aim has been to produce simpler results for use in 

estimating the potential performance of practical systems. 

Little work has been reported on the resolution of ML methods and this is the second 

main topic of this work, particularly for the two-dimensional DF case using a general 

array, with a ML method (IMP) similar to the better known Alternating Projection. 

Some results are obtained for resolution with and without errors for the case of non-

coherent signals. For coherent signals (including the standard radar case) the 

performance is found to depend on the relative phase of the signals, varying from the 

quadrature case, where the performance is as for the non-coherent case, to the in-phase 

(or antiphase) case where only one signal peak is seen. 
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Principal Results and Original Contributions 

1. MUSIC accuracy with errors 

(a) The study of DF accuracy using MUSIC has been extended to the case of two angle 

parameters (azimuth and elevation) using general arrays (2- or 3-dimensional, not 

necessarily regular). The main study is of the common case of arrays of similar 

elements, similarly oriented. (This is termed the EPP case in the thesis.) 

(The study is limited to the case where the limitations on accuracy are due to errors 

alone - the effects of noise and finite sampling are taken to be negligible compared with 

the effects of errors. This corresponds to the large signal, high sample number case.) 

(b) The study has been further extended to the case of general arrays of non-EPP 

elements. 

(c) The method used is independent of eigenanalysis, using the equivalence of the 

vector space basis given by the principal eigenvectors (of the system covariance matrix) 

and the basis given by the true point source response vectors (PSVs) of the signals. 

(This is a valid approach for the condition of the study given in (a) above.) This leads to 

considerably simpler and more convenient expressions for the statistics of the 

measurement errors. 

(d) It is shown that in the case where only a single target is present (for which both the 

superresolution methods MUSIC and IMP are equivalent to simple beamforming) the 

errors in angle estimation depend only on the system phase errors and are independent 

of amplitude errors (at least to first order, which is valid up to quite substantial errors, 

covering likely error levels in most well engineered systems). For two or more targets 

amplitude errors also affect the measurement accuracy. These theoretical results are 

confirmed in simulation. If only phase errors are present the two signal acccuray is lose 

to that of the targets present singly. 

(e) An array sensitivity function is defined (following Friedlander [15]) relating the 

errors in angle measurement to the system errors. Contour plots of this function can be 

drawn over all angle space for any given array. 

(f) A very simple expression for a rule of thumb for the sensitivity of a circular array 

with elements at half-wavelength spacing is obtained, and another for a more general 

planar array. 

(g) The structure of the angle error covariance matrix due to system (PSV) errors is 
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shown to be similar to the CRB matrix, determined by noise. This enables an 

equivalence to be drawn between the levels of system errors and receiver noise. 

2. Array moment matrix 

An array second moment matrix is introduced and shown to be significant and useful in 

expressions of (i) array error sensitivity, (ii) CRB, (iii) approximate array beamwidth 

and (iv) resolution. 

3. Cramér-Rao Bound 

(a) The CRB is given in a form based on the array moment matrix 

(b) A relatively simple form for the CRB for the case of two signals and two parameters 

is derived from the more general (multiple signal, multiple parameter) expression. 

4. IMP resolution 

(a) Developing the approach of Speirs and colleagues [41], an expression for the 

resolution of two non-coherent signals using a ML method (such as IMP) was obtained, 

showing the dependence on the power of the weaker signal, assuming the other signal is 

strongly dominant. This expression uses the array moment matrix. The method was 

extended to the case of two signals in general, showing the dependence on both signal 

powers. 

(b) An approximate resolution improvement factor is defined as the ratio of the 

beamwidth to the signal separation at the limit of resolution, which is remarkably 

simple, and independent of the array moment matrix.  

(c) A modified expression for the resolution improvement factor when significant errors 

are present was obtained. 

(d) The resolution of two coherent signals (also covering the case of processing a single 

data frame, or snapshot, as in the radar case) was investigated. It was found that when 

the coherent signals are in phase quadrature the resolution is the same as for non-

coherent signals. When they are in phase or in antiphase only one signal is seen. 

5. Other topics 

(a) Clear and accessible descriptions of the IMP and MUSIC superresolution methods 

are given. 

(b) The CRB for multiple signals and multiple parameters is derived from basic 

definitions and special cases derived. 
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Chapter 1: Introduction and Aims of the Study 

1.1 SUPERRESOLUTION 

Superresolution in general is a term applied to parameter estimation methods which aim 

to achieve better resolution than standard methods. To take a concrete example, a 

parameter of importance in the radar case is the direction of each target. Point targets 

are found by scanning a beam in azimuth (taking just the single dimensional case) and if 

two targets are present, sufficiently large and more than a beamwidth apart, then two 

beam patterns will be seen as the radar antenna beam scans past the targets. The target 

directions are taken to be the azimuth pointing positions of the beam at the peaks of the 

two responses. If the targets are moved closer together the two responses will eventually 

merge, forming a single peak, and the targets will be considered not to be resolved.  The 

resolution achievable is generally taken to be given by the Rayleigh criterion, that is, 

that the targets are at the limit of resolution when the peak of the response from one 

target is at the position of the first null of the response from the other. (This is for the 

case of equal strength targets. For different target strengths there seems to be no simple 

definition, but the resolution will be poorer – the minimum separation for resolution 

will be greater.) For a rectangular, uniformly weighted aperture the beam power 

response will be a sinc
2
 function and the separation will correspond closely to the 4dB 

beamwidth. Of course if the targets are separated by a smaller amount than this, 

although there is only a single peak, the response will be broader than the basic 

beamshape, perhaps with a shoulder on it, and in principle the presence of two targets 

could be deduced and their angular positions estimated. However to detect and analyse 

this broadening (which becomes more difficult at low signal to noise levels) will require 

extra processing, and if this is applied it could be considered a form of superresolution. 

We can see that if this method were tried we would expect the performance to improve 

with signal to noise ratio (SNR), as the response shape would be better defined, either in 

the minimum resolvable separation for given strength signals, or in the increased SNR 

difference at which signals could be resolved for a given separation.  

We consider here superresolution methods (though not actually using the approach 

above, of analyzing the response shape explicitly) with the ability of improving 

resolution above that of simple beamforming, which are based on using a sampled, or 

discrete, aperture followed by digital processing. The advantage of using a sampled 

aperture, with digitization, is that the data can be recorded and then more complex 

processing can be applied. Also, for a range of directions of interest, beamforming can 
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be performed electronically, without having to rotate the antenna physically. We note 

that, although this discussion so far has been in terms of direction finding, and this is 

indeed an important application of superresolution, the principle is applicable in other 

areas, for example in finding the frequencies of sinewaves in noise (an early application 

of MUSIC, to be described below). In this case the parameter to be found is frequency 

and the aperture, more generally termed a window, extends in the time domain. Another 

application, relevant to high performance radar, is for high range resolution (HRR). In 

this case the wide spectrum required for HRR is discretized in the form of a set of 

pulses distributed in frequency over the band. Here frequency is the aperture domain 

and range (effectively delay) is the parameter required. Another radar target parameter 

which could be found using superresolution is velocity. 

An early application of superresolution in direction finding was to sonar, often with 

long towed arrays, basically linear in form, and looking in only one angle. Application 

to radio, particularly at HF and VHF, and radar followed, where generally a planar array 

is used to find signals in a two dimensional angle domain (azimuth and elevation). (The 

array need not necessarily be planar; it could be a volume (3D) array, including the case 

of an uneven, approximately planar, array.) In this study we assume that we are 

interested in the 2D angle case, whether for radio, sonar or radar application.  

There was considerable interest in the subject of superresolution in the 1970s and 

1980s, when a number of methods were devised and published, dividing into two broad 

groups, the ‘spatial spectrum’ methods and maximum likelihood methods. The methods 

in the first group generally required less computation and were simpler to implement 

and received most attention. In this group one method tended to become dominant, 

MUSIC (‘Multiple Signal Classification’, introduced in 1979, followed by a number of 

variations on it), being effective, reasonably robust and not too computationally 

demanding. Although some related methods (Root-MUSIC, ESPRIT, etc.) may be 

improvements in some respects, MUSIC remains quite a practical and popular system 

and we take this method for the study here.  

The methods of the other group, based on maximum likelihood (ML) parameter 

estimation, are potentially very demanding computationally and techniques or 

algorithms for simplifying the search for the set of parameters maximizing the 

likelihood functions were presented. In fact the only statistics for the additive noise 

corrupting the data, and so limiting the parameter estimation accuracy, were taken to be 

normal (Gaussian) in which case the problem becomes a form of least squares 
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minimization, simplifying the problem to the point where it becomes rather more 

practical. Even in this case, more work is required than for the spatial spectrum 

methods. However, the ML method has an important capability that MUSIC does not 

have. In general MUSIC is not able to separate two coherent signals, while in principle 

this can be achieved with ML. This is important if superresolution is to be applied to 

radar target echoes, which are effectively coherent, being copies of the same signal – the 

radar transmitted pulse. Furthermore MUSIC requires at least as many sets of data 

samples (snapshots) as there are (non-coherent) signals present, while ML can operate 

in principle on a single snapshot. (In this case even non-coherent signals are equivalent 

to coherent.) This means that, in the radar case, superresolution can be applied to the 

output of a range gate (applied across the set of receiver channels) following a single 

pulse transmission. Where these potential advantages of ML are not required MUSIC is 

likely to be preferred for its simpler and perhaps more robust implementation. The ML 

(or ‘Approximate Maximum Likelihood’) method taken for study here is known as 

IMP. Both MUSIC and IMP are described in Chapter 2 below. 

Papers on the accuracy and resolution of superresolution followed, mainly in the 1980s 

and 1990s. These were very largely based on MUSIC and related methods and almost 

entirely considered only the single angle parameter case, using a linear array. There 

seemed to be little on the subject of the two-dimensional angle case (source azimuth and 

elevation) and it seemed this should be investigated for the benefit of users of systems 

designed to give this information. There was also rather little on the resolution of ML 

methods, perhaps because these were not seen as being applied in practical systems to 

any significant degree, and this also seemed to be a possible gap to be covered.  

1.2 BRIEF REVIEW OF PUBLISHED WORK ON THE PERFORMANCE OF 

SUPERRESOLUTION METHODS. 

1.2.1 MUSIC 

Table 1.1 lists some of the papers published in connection with theoretical studies of the 

performance of MUSIC. (The papers are labelled here by the initials of the authors’ 

surnames and the last two digits of the year of appearance, to emphasize the 

chronological sequence. The square bracket numbers are the numbers of the papers in 

the overall reference list at the end of the thesis.) There are basically two aspects of 

performance of interest – the accuracy of the parameter estimates, given as a variance, 

or standard deviation (the methods generally give zero bias), and the ability of the 
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method to resolve two close targets. The focus of the paper on one or the other, or both, 

of these is given in the second column. In the third column is shown whether the study 

is of more than one parameter per target. In this table we see that every paper but one 

listed considers the case of only a single parameter (azimuth angle). 

It is important to consider the potential performance available from a system, limited 

only by the presence of additive noise, with a finite number of data samples per channel 

(or ‘snapshots’), and many papers explored this. However in practice there will be some 

degree of error in the system due to, for example, unknown phase and amplitude 

variations in the receiver channels, uncertainties in the exact positions of the sensors, 

variations in the sensor responses, and so on. In some cases, particularly with weak 

signals (low signal to noise ratio (SNR)) and low integration (a small number of 

samples) noise will dominate errors in determining performance, and the effect of errors 

may be neglected. Thus it is also important to determine the performance as limited by 

errors, and whether the performance in the presence of errors (or errors plus noise) is the 

subject of a paper is indicated in column 4. In other cases, particularly with high 

integration, the effect of noise can be made negligible, and the performance can be 

considered limited only by the errors. 

   Table 1.1 Papers on MUSIC 

Early work by Seidman [40] looked at the CRB (and also the Ziv-Zakai bound, not 

considered in any later papers referenced here) for the case of simple beamforming, 

Paper Acc/

Res 

2 

par 

Errors Notes 

JF85 [17] (R) × × Mean MUSIC function expression 

KB86 [21] R × × Expression for resolution threshold 

FJM 88 [13] R × × Mean MUSIC function expression, 2
nd

 order approx. (Low integ’n case.) 

ZHJ89 [55] R × × Alternative to KB86; similar result for resolution threshold 

SN89 [42] A (R) × × Compares MUSIC (and ML) with CRB. Very influential paper. 

F90 [15] A (R) × � Accuracy and resolution. Very good paper. 

LW90 [24] R × × Based on KB86. Shows beamspace operation gives better resolution. 

LW91 [25] R × × Very good results for probability of resolution, but expressions complex. 

SK92 [48] A × � More types of error, including multipath.  

WF94 [52] R × � Excellent paper; with simple expressions for resolution of ULA and UCA. 

KSS94 [20] A × � Variance in terms of eigencomponents. Compares MUSIC and ESPRIT. 

SNLZ96-1 [45] R × � Expressions complex. Only ULA considered. 

HF95 [19] A  � × Polynomial rooting algorithm (PRIME) using regular 2D arrays 

Z95 [54] R × × Good, but expressions complex (no errors) 

SNLZ96-2 [46] A (R) × � Errors due to filter mismatch taken. 

SGNLZ00 [47] A (R) × � Very complex expressions (giving good results). 

ND04 [33] R × × Planar arrays but elements close. Wavefield modelling – rather specialized. 
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though only for one parameter and one signal, using a linear array. His CRB expression 

(eq. (12)) shows this bound as (inversely) dependent explicitly on the array second 

moment of position, a result not clearly shown by subsequent authors, in general, but 

confirmed and made more general in Chapter 3, below. (Note: although simple 

beamforming is not a superresolution method, in the case of a single signal both MUSIC 

and IMP reduce to this case, and it may be of some interest to know how accurate these 

methods are when only a single signal happens to be present.) 

Jefferies and Farrier in 1985 (JF85, [17]) began to tackle the question of the resolution 

of MUSIC by obtaining expressions for the mean value of the MUSIC function. This 

function is scanned over the angular region of interest (in the DF case; this may be the 

whole azimuth range of 360º) and searched for minima (ideally zeros) at the positions of 

signal directions, or for maxima (peaks), in the case where the reciprocal of the function 

in plotted. Searching for zeros is more satisfactory in the computation algorithm, but 

terminology is often in terms of peaks, as this is a more attractive form for display. 

Using the peak terminology, we note that when signals are well separated (i.e. some 

beamwidths apart) we obtain distinct peaks but as two signals are brought close together 

the space between the peaks tends to fill in and eventually the two peaks merge into 

one, and clearly the signals are not resolved. Obtaining a mean form for the MUSIC 

function showed at what separation the sources were on the edge of resolution, though 

no analytic form was found for this separation, in terms of system and model parameters 

(such as the array structure or signal to noise ratios).  

Kaveh and Barabell in 1986 (KB86, [21]), however, did produce an expression for this 

threshold, in a very good paper. However, as for all the papers of this time it was for the 

case of a single parameter – azimuth direction – and for a uniform (equispaced) linear 

array (ULA). This model was widespread, perhaps because of early work related to 

sonar, using long towed arrays. Some papers (e.g. SK92, [48]) refer to ‘a towed array’ 

and one (KSS94, [20]) even took for its error model in simulation a basically linear 

array with sinusoidal transverse position errors. Other papers (e.g. BM86, [8]) refer to 

using ML not for DF but for extracting ‘sinusoids in noise’ from long time series data - 

presumably another sonar application.   

Farrier, Jefferies and Mardani (FJM88, [13]) followed up the 1985 paper with a more 

accurate (second order) approximation to refine their mean MUSIC function expression, 

and in principle this could be used to find the separation of two targets at the limit of 

resolution for a specific case, but no theoretical expression for this limit was given. The 
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second order approach gave an improved result for the mean MUSIC function in the 

case of small sample numbers. 

Zhou, Haber and Jaggard (ZHJ89, [55]) also obtained an expression for the resolution 

threshold based on equating the function values at the target positions with the value 

midway between these positions.  

In 1989 Stoica and Nehorai published a very influential paper (SN89, [42]) on the 

parameter measurement accuracy as given in theoretical and algorithm-independent 

form by the CRB, as well as obtaining expressions for the accuracy of MUSIC and 

Maximum Likelihood methods. They obtained an expression for the Cramér-Rao Bound 

from the rather theoretical definition, stating that although some CRB expressions had 

been obtained for specific cases ‘there does not appear to be available in the literature’ 

an expression for the CRB in general. Although this takes the generalization a 

considerable way, it is still only for a single parameter per target, although it is for 

multiple targets. They also obtained expressions for the accuracy of (single) parameter 

estimation of MUSIC and ML methods, and showed that asymptotically (for large 

sample numbers and for arrays with large numbers of elements) the performances of 

these methods approach the CRB, and gave other significant results. More precisely, 

they conclude that the CRB gives the approximate limit on the accuracy of MUSIC for 

uncorrelated signals (very often taken to be the case). In the ML case, they show that the 

estimator is ‘inefficient’ (i.e. does not meet the CRB) for a finite number of elements, 

but this is for the ‘deterministic’ (or ‘conditional’) ML case, where all the signal 

complex amplitude samples are included as parameters. In the ‘stochastic’ or 

‘unconditional’ ML case, where only the signal statistics (in particular the covariances 

of the signals) are considered as parameters, they ‘conjecture’ that the MLE (maximum 

likelihood estimator) is statistically efficient for large sample numbers. 

This (Stoica and Nehorai’s) seems to be the first substantial paper on the accuracy of 

MUSIC in the absence of errors. The first substantial paper on the performance of 

MUSIC with errors was that of Friedlander in 1990 (F90, [15]), again for a single 

parameter. However, planar arrays were also included as well as the usual linear arrays, 

but in this case the signal sources are taken to be in the plane of the array, and there is 

no consideration of a second angle parameter. In order to investigate the effect of errors, 

rather than noise, on the performance, he takes the case of infinite integration, so 

forming the actual system covariance matrix, rather than the estimated covariance 
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matrix (required by MUSIC for its eigencomponents) resulting from finite integration, 

and taken as the starting point for previous analyses. (In practice sufficient integration 

could always be taken, in principle, to ensure that errors, rather than noise, dominated 

the performance.) This condition is also taken in Chapter 3 below. A (multiple source) 

error sensitivity, relating the parameter estimation error variances to the input system 

errors variances is defined, an idea also used in Chapter 3 (and not apparently in other 

papers of those listed here). A weakness, from the point of view of easy application of 

the results, is that the expressions are complicated in form, and not simply related to the 

array specification. 

Lee and Wengrovitz (LW90 and LW91, [24, 25]) returned to the study of resolution of 

MUSIC without errors, and in the 1990 paper showed that resolution is improved using 

beamspace MUSIC – i.e. forming a set of beams from the outputs of the array elements, 

and then applying MUSIC. This is not a surprising result as we now have, in effect, a 

set of high gain (or high directivity) elements but there may be problems of spatial 

coverage, so this is not necessarily a preferred approach. For simulation a planar array 

was used (crossed linear arrays with logarithmic spacing, rather than the usual uniform 

spacing) but again the source was in the plane of the array. (The reference point for the 

element positions was explicitly the centroid, as is the case for the general arrays taken 

in Chapter 3). The 1991 paper presented results on resolution giving very good 

agreement with simulation, and including different signal power levels, but again the 

expressions are very demanding to evaluate and there is no clear relationship to the 

array form. Swindlehurst and Kailath (SK92, [48]) included, in principle, more sources 

of error including mutual coupling. Good results are obtained but only for the single 

parameter case. (The authors remark that the results are ‘easily extended’ to the multiple 

parameter case.) 

Weiss and Friedlander (WF94, [52]) took a different approach from Friedlander in 

1990, and produced remarkably simple expressions for the resolution of uniform arrays, 

both linear and circular (again with the signal sources in the plane of the array). Again 

this was for single parameter systems but the authors stated there was the capability for 

multiple parameter estimation. The results were limited to the case of uncorrelated and 

equal power signals, but these are commonly taken conditions. Preprocessing (i.e. beam 

space processing) was also considered, and shown, as in LW90, to improve the 

resolution threshold. 

The main aim of Kangas, Stoica and Söderström (KSS94, [20]) was to compare the 
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accuracy of MUSIC with a related method, ESPRIT, with errors present. They showed 

that generally MUSIC was better than ESPRIT. The expressions for accuracy (as in 

several other papers) were in terms of the eigencomponents (eigenvectors and 

eigenvalues) of the covariance matrix, which may not be a convenient form for making 

a reasonable estimate of performance. 

Zhang (Z95, [54]) returned to the study of resolution in the error free case, obtaining 

excellent results (comparing with simulation) but again at the cost of very complex 

expressions. 

Hatke and Forsythe (HF95, [19]) are the only authors here to take the case of two angle 

parameters. However they require a regular planar array (i.e. elements on a regular grid) 

and use a rooting method – an extension of the RootMUSIC method for linear arrays 

(and one angle) so is not standard MUSIC. An expression for the 2D spectral MUSIC 

accuracy is given but this is rather complex and requires the system eigenvalues. Errors 

are not considered.  

Su et al (SNLZ96-1, [45]) analysed resolution further in the presence of errors, 

producing very complex expressions, limited to the case of the uniform linear array 

(and, as in all these cases, a single angle parameter). The same authors (SNLZ96-2, 

[46]) looked at the case of errors (or channel mismatches) over the receiver bandwith, 

taking an approach based on the frequency spectrum. This may have some relevance in 

the case of signals with a relatively high bandwidth, but is a rather special case, as in 

most applications such mismatches will be very small compared with other sources of 

error. A third paper of Su et al (SGLNZ00, [47]) again looked at accuracy (and 

resolution), and again good results (comparing with simulations) were achieved at the 

cost of complex expressions.  

In 2004 Nemirovsky and Doron (ND04, [33]) looked at MUSIC and a related method, 

Root-MUSIC, in a very special case, using arbitrary planar arrays and analysing by a 

technique termed wavefield modelling. However their example array placed elements 

very close together (many separated by as little as 0.15 wavelengths) which would be 

quite unrealistic (in generating strong mutual coupling) in most arrays, and it seems that 

a larger aperture array (their 16-element array was contained within a circle of one 

wavelength radius) would rapidly require more computation.  

In conclusion we see that the questions of both the resolution and accuracy obtainable 

using MUSIC, with and without realistic system errors, have been answered fairly 
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comprehensively but only for the case of a single angle parameter (apart from HF95 

which is not for standard MUSIC). In most cases the arrays taken for simulations 

confirming the theoretical results were the simple uniform linear array, and even when 

planar arrays were used the signals were taken in the plane of the array. After some 

relatively early papers (particularly KB86,[21], F90,[15] and WF94,[52]) many others 

gave more refined, but also generally rather complex expressions, which only 

marginally advanced the knowledge of the problems. Later papers covered various 

special cases, which is not the aim in this thesis, which is to concentrate on essentially 

common, practical systems. From this point of view it appears that the case of direction 

finding with two angle parameters, using a general array (two-dimensional (planar) or 

three dimensional) is not yet covered. Thus the accuracy of MUSIC in the two 

dimensional angle case is the subject of Chapter 3, below. One assumption that seems 

widespread is that the array consists of elements which all have the same response 

(apart from phase shift due to position) to each signal. This is reasonable, in the sense 

that practical arrays may be designed in general to consist of similar, essentially 

identical, elements. We keep this assumption, in general, in the analysis of Chapter 3, 

except for one circular array consisting of outward looking directional elements. The 

analysis there shows how to handle the case of arrays with elements which do not all 

have the same gain to each signal. 

1.2.2 Maximum Likelihood 

Fewer papers have been published on Maximum Likelihood methods for DF than on 

MUSIC and variations on it. A list is given in Table 1.2, using the same column format 

as for MUSIC. Bresler and Macovski’s early paper (BM86, [8]) applies ML to the 

problem of sinusoids in noise (a sonar type of problem) which has much in common 

with single parameter DF using a ULA. The paper is concerned with presenting a 

method, rather than theory on accuracy or resolution. The relatively early paper by 

Jaffner (J88, [16]) was important in showing that the ML function can be arranged in a 

form separating the signal waveform parameters and the angle parameters; so for DF 

only the part involving the angle parameters is required, thus reducing considerably the 

difficulty of finding the maximum of the likelihood function. Subsequent ML studies 

(for DF) in general begin with this first step (or with the resulting ‘reduced’ likelihood 

function obtained). Jaffner only goes as far as using this for a ML-based DF method, 

and no theory of accuracy or resolution is given. However, simulations (using a uniform 

linear array and two uncorrelated signals) were presented, showing ML beating MUSIC 
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in estimation accuracy (in the single angle parameter) at lower SNR levels and matching 

the CRB well except at quite low SNRs. (It is pointed out that MUSIC tended to fail at 

lower SNRs because two peaks were not observed – i.e. it had failed in resolution, so 

the better resolution of ML allowed the better accuracy in the low SNR case.) 

Stoica and Nehorai (SN90, [43]) followed their earlier paper on the accuracy of MUSIC 

and ML and the limit given by the CRB with a comparison of the accuracy attainable by 

unconditional and conditional ML (as well as a method called MODE). The conclusion 

is that CML (which includes methods such as Alternating Projection and the closely 

related IMP) is shown to be statistically less efficient than UML. However, the 

performances are very similar for weakly correlated sources, but are more significant 

for closely spaced sources at high correlation, except for high SNR and a large number 

of elements. (These particular conclusions are drawn with the help of figures based on 

the theoretical expressions evaluated for a ULA and considering only a single angle 

parameter.) Although the UML method seems better in this analysis, it requires high 

sample numbers (to give a good value for the signal covariances) and this may not be 

feasible, particularly in the radar case. The conclusions are the same in the longer and 

fuller book chapter written by the same authors, plus Ottersten and Viberg (OVSN93, 

[35]) for the case of large sample numbers. 

Paper Acc/Res 2 par Errors Notes 

BM86[8] - × × Good description of ML. Proposed method uses ULA. 

J88 [16] - × × ML method using ULA. 

SN90[43] A × × No simulations to check theory. 

OVSN93[35] A × × ML theory, some derivation of accuracy 

VON95 [51] A × × Coherent signals study. 

SK96 [38] R × × For single param. and ULA. Simplified CRB derived 

CM97 [10] A × × Known signals with multipath.  

MRL97[28] (A R) (�) (�) ML methods (incl. IMP) with coherent signals compared.  

SMCR99[41] R (�) × Limit of res’n considered in terms of target detectability.  

Table 1.2 Papers on Maximum Likelihood methods 

The comparison of the methods in the case of a small number of samples (but a large 

number of elements) leads to a different conclusion in the paper by three of these, 

Viberg, Ottersten and Nehorai (VON95, [51]). This states that for a large number of 

elements, but not necessarily a large number of samples, the accuracy is the same for 

both ML methods, deterministic (or conditional) and stochastic (or unconditional), and 

the asymptotic (large element number) error variances coincide with the deterministic 

CRB. A simulation example using a ULA of varying number of elements and two 

coherent signals showed accuracies close to the CRB for arrays as small as ten 
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elements.  

Satish and Kashyap (SK96, [38]) introduce an original method for DF by maximum 

likelihood, though this is for the stochastic, or unconditional, case (i.e. where the signal 

parameters are source waveform statistical parameters only (in particular variance), 

rather than the waveform samples. This is not the IMP or Alternating Projection case). 

They produce some simple expressions for the measurement accuracy (expressed as 

usual as CRB covariance matrices) in the case of two signals (which may be partly 

correlated) using a ULA, and in one angle dimension. They also introduce an original 

criterion for the resolution, but this may only apply for the stochastic ML model (so not 

for a very small sample number) and for a moderately large number of sensors. 

Cederval and Moses (CM97, [10]) consider the case of DF in the case of multipath, and 

also assume the signals are known to some degree, using large sample numbers. The 

known signal case can include, for example, mobile telephone signals with known 

preamble sequences. However we need, as taken here, relatively large sample numbers 

in order to match the signals.  

Manikas, Ratnarajah and Lee (MRL95, [28]) published the only paper in this group 

considering the case of two-dimensional target directions. The paper is concerned with 

comparing in simulation a number of methods implementing the ML principle. These 

methods are outlined and compared in performance, in simulation, using a non-uniform 

circular array of 6 elements. This is a rather more general case than considered in the 

other papers studied here. However, although the algorithm descriptions implied the 

two-dimensional capability of the planar array, looking for targets in both azimuth and 

elevation, above the plane of the array, the simulations were all for targets at zero 

elevation – i.e. in the plane of the array, as in some of the earlier papers with planar 

arrays. All the simulations were for two equal power coherent sources, and generally 

showed that a method named ASPECT (and a variation on it A-AML) performed best in 

terms of accuracy, with Wax’s ML (Alternating Projection) next and IMP considerably 

inferior. However, it is possible that the implementation of IMP may not have been 

optimum, in particular their equation (28) for the IMP function is incorrect. (The actual 

IMP function is much closer to their equation (15) for another method, DOSE, which 

performed better.) If this was used then this could account for the performance 

discrepancy. The simulations also included the case of element position errors, and all 

the methods performed similarly at a substantial source separation. Although the 

detection/resolution and accuracy lower bounds are quoted (based on earlier Manikas et 
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al papers, using differential geometry of the array, and so algorithm independent) there 

is no discussion of how the simulation results compare with these theoretical values. 

This paper does not consider the theory of the accuracy or resolution of ML. 

A different and original approach to the question of resolution of superresolution 

methods, particularly of the ML type, was taken by Speirs, Mather, Clarke and Rees in 

1999 (SMCR99, [41]). They consider that if a signal is detected close to another signal 

then the two signals are resolved, so the question of resolution is closely connected to 

the question of detection (as implied also by the approach of Manikas et al). (However, 

as Manikas et al [27] point out it is also possible to detect that there are two, or more, 

signals present without being able to resolve them – MUSIC providing a clear 

example). ML methods of the IMP (or Alternating Projection) type place array gain 

nulls on one signal in order to remove this signal and allow observation (and detection) 

of the other signal. The null on the first signal causes loss of gain to the second signal, 

and so the detectability of the signals, and hence their resolution, depends on their 

(absolute) signal to noise ratios. This seems a sound and attractive basis for defining the 

resolution threshold, and is the only paper here dealing with the resolution of ML 

systems, except for that of Satish and Kashyap, which is for the large sample, stochastic 

(unconditional) ML case, which does not include IMP, and also excepting the 

differential geometry approach of Manikas et al. 

We conclude that the question of the accuracy of ML methods, in the absence of errors, 

has been covered fairly extensively, though only for the single parameter case (except 

for Manikas et al) and usually with linear arrays. The performance with errors has not 

been analysed in any of these papers (though simulated in one). However the question 

of resolution of ML systems has not been covered to the same degree, and the resolution 

of IMP is the subject of Chapter 4 below.  

1.2.3 Cramér-Rao Bound and algorithm independent studies 

Papers on the Cramér-Rao Bound are listed in Table 1.3. This fundamental bound is 

important in this work as it is shown in various studies that superresolution system 

accuracies (in the absence of errors, of course) approach this bound, at least 

asymptotically (i.e. for large samples or large numbers of array elements) in some cases. 

Thus we can use this bound as a good indication of potential performance even though 

actual systems may not quite reach it, even without significant errors. In their influential 

1989 paper Stoica and Nehorai (SN89, [42]) went a considerable way in presenting a 

general form for this bound, stating that this did not seem to be available in the literature 
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at the time. However this was for the case of a single parameter (per source, for multiple 

sources) and Yau and Bresler (YB92, [53]) gave a form for the multiple parameter case, 

extending the work of Stoica and Nehorai. Lee and Jachner (LJ94, [23]) extended the 

bound further, to include the case where the array responses to the signals (one 

applicable term being the point source vectors, PSVs) differ in form from one element 

to another. This is in distinction to the generally taken case where the responses are 

identical functions of the angle parameters. This more usual case corresponds to that 

defined here as EPP – equal, parallel patterns – all the element responses have the same 

shape and orientation (the ‘parallel pattern’ case) and equal gains. Lee and Jachner’s 

formulation drops this assumption, so that the element patterns may differ. Their 

motivation, in particular, was to take the case of polarization diverse arrays; a subject of 

some interest, but not the form for many practical arrays which would have similar 

elements with the same polarization. 

 

Karimi and Manikas (1996, [26]) took a very original approach to array performance, 

analysing array configurations using differential geometry applied to a planar array (not 

generally regular, but taken as EPP) used for signal angle determination in two 

dimensions (azimuth and elevation). Starting with the basic CRB expression they use 

differential geometry to obtain more convenient and quite simple expressions for the 

variance of the errors in azimuth and elevation, for both the single signal and two signal 

cases (though these expressions might be derivable without this approach). Curves of 

these theoretical variances are given. The later paper, by Manikas, Alexiou and Karimi 

[27], takes the differential geometry approach rather further, defining conditions for the 

limit of detection and the limit of resolution, leading to expressions for corresponding 

thresholds, as well as a bound on the angle estimate variances at the limit of resolution. 

They also extend their results to a more general planar array, dropping the EPP 

condition and allowing the element gains to differ in any given direction. They then 

evaluate these expressions for a number of planar arrays to compare their performances 

(in theory). The ideas here are very interesting but there are no illustrating simulation 

Paper Acc/

Res 

2 

par 

Notes 

SN89 [42] A (R) × Derives CRB (1 parameter). Compares MUSIC and ML accuracy with CRB 

YB92 [53] A �

 
Multiple parameter CRB; similar derivation to mine. 

LJ94 [23] A �

 
CRB with multiple parameters 

KM96 [26] A R �

 
CRB derived using differential geometry of planar array. Two angle parameters 

MAK97 [27] A R � Accuracy, resolution and detection using differential geometry. 8 arrays compared  

 

                                   Table 1.3  Papers on the Cramér-Rao Bound 
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results (which would be of particular interest in detection and resolution, in particular) 

or comparisons with other resolution (if not detection) expressions. 

1.3 AIM OF THESIS 

In general it is important for theory to determine the limits of performance as well as to 

show how the performance depends on various factors and parameters of the data 

gathering and processing system. Without any such information, it may not be clear 

whether the performance of a practical system was anywhere near to the limit possible, 

or if much improvement might be gained by better design and implementation. 

However, to obtain expressions of considerable complexity, with the aim of defining 

very precisely the performance limits, is not necessarily helpful to the general user. A 

general aim was to try to find relatively simple expressions, by making modest 

approximations if necessary, which would retain the parameter dependence factors, but 

would be rather easier to use to estimate the performance that might be expected from a 

given system. By ‘system’ in the direction finding case, we mean, to a major extent, the 

structure and layout of the sensor array used, and it would be helpful to express the 

performance measures relatively simply in terms of the array description. A possible 

outcome would be a ‘rule of thumb’, which would give a reasonable indication of the 

performance to be expected, in some respect, with very little calculation, rather than 

precise figures for specific cases, obtained with considerable computation. This result 

would not be expected to be highly accurate but to be close enough for practical use, 

bearing in mind that often the available data regarding the situation in which the 

equipment is to be used may be to some extent vague, and hence it would not be 

appropriate to use a precise and complex formula. 

More specifically, it seemed that the area of two dimensional direction finding (e.g. in 

azimuth and elevation) had not been widely covered. This requires arrays of two 

dimensions (planar) at least, and three could be used, so it would be worth covering this 

general case (with little extra complexity in the expressions, as it happens). Thus the 

accuracy of MUSIC in the two parameter case, with system errors, was taken for the 

major topic of this work. (The case without errors is essentially covered by the CRB, for 

which 2-parameter expressions had been obtained.) The resolution of Maximum 

Likelihood methods (without errors) had been tackled very little, and it seemed that an 

estimate of the resolution performance should be available in terms of the array 

description. 
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1.4 OUTLINE OF THESIS 

After reviewing in this chapter the published work and identifying areas where further 

work could be of value, in the second chapter we present the background to the work in 

Chapters 3 and 4. We discuss the principles of superresolution in general terms, not 

limiting the application to direction finding at this stage, so making clear that the 

principle is applicable more widely. This leads to an outline of a range of proposed 

superresolution methods, which are considered briefly, for which some results in 

connection with adaptive array theory are required, provided in an appendix (Appendix 

2B). There are a considerable number of appendices throughout the thesis, which 

contain work leading to results used in the main text, but whose working would 

interrupt the argument. These appendices are a significant part of the thesis, with results 

not always readily accessible elsewhere. 

Following the outline of methods, with particular interest in two of them, MUSIC and 

IMP, these are then chosen and described in detail. For the Maximum Likelihood based 

method, IMP, the likelihood function is derived from a basic level, and this is simplified 

to give a condensed likelihood function, by maximizing over the noise power level and 

the signal waveform samples, which are not the prime parameters of interest. The IMP 

function is then derived from the condensed ML function.  

Although there is no specific discussion of the Cramér-Rao bound, as this function is of 

considerable significance in this work it is derived in an appendix for the case of 

multiple parameters per source (not as well known as the simpler single parameter case) 

to give a rather general expression. For application at other points in the report a number 

of simpler and more easily applied forms are obtained for special cases. 

In Chapter 3 the topic of the accuracy of MUSIC, in particular for the 2-dimensional 

direction finding application, as affected by system gain and amplitude errors is taken. 

The subject builds up from the single signal, single parameter case using a linear array 

to the multiple signal, two parameter case using a general array, general except that the 

array elements are all taken to have the same gain in any given direction. We term this 

the EPP case – equal, parallel pattern elements, i.e. the element gain patterns may be 

shaped, but they must be similar, oriented in the same direction and equally scaled. This 

is widely assumed to be the case in most (possibly all) the papers reviewed, though is 

not generally specified, and, as well as being more feasible for analysis, it is a very 

common case in practice. (At least, in many cases, the array is generally intended to be 

of EPP form). However, in one case in Chapter 3 this assumption is dropped and a 
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(slightly more complex) result is obtained. Although the initial case of a linear array 

(and necessarily a single angle parameter) has been widely analysed previously, the 

approach used here is the same as, or is consistent with, the later, more complex cases, 

and forms a good introduction, and establishes the notation required and used. The 

approach taken here differs from many in the prior literature, in particular in not 

requiring any eigenanalysis, with complex expressions using eigenvectors and 

eigenvalues.  

Perhaps unusually for a study of a superresolution system, we include the analysis for 

the case of a single signal. In this case the superresolution system (whether MUSIC or 

IMP) is equivalent to a simple beamforming system. This gives a theoretical result 

(confirmed in simulation) not apparently reported previously, that the accuracy is 

unaffected by amplitude errors (up to moderately high levels, unlikely in practice, in a 

well engineered system) and is only sensitive to phase errors. When two signals are 

present the accuracy is affected by both forms of error. The analyses show that an 

important quantity in the expressions (for both accuracy and resolution, shown in 

Chapter 4) is the array moment matrix. This is the matrix of second moments of the 

array elements about the mean position (the array centroid with uniform weighting) – or 

it can be considered as a covariance matrix of the array positions. (For the non-EPP case 

we still need this moment matrix, but we also need the matrix of second moments about 

the mean with element weighting given by the amplitude power gains of the elements.) 

This moment matrix is easily formed (as the 3×3 matrix RRT
/n), given the 3×n matrix R 

of the n element positions in three dimensions. (If the origin for the element positions 

given in R is not the centroid, then we form the centroid position vector kk
n=∑r r , 

where rk is column k of R, and subtract this from all the columns of R before forming 

the moment matrix.) Although some authors effectively obtained the second moment in 

the linear array case (a single scalar value for this 1D case, e.g. Seidman’s CRB 

expression [40], eq. (12) or (13)), it was not generally recognized as such. For 2D and 

3D arrays this moment matrix is more clearly important. 

The CRB expressions (in which case the accuracy is limited by noise, rather than errors) 

are compared with the error based expressions derived for MUSIC and the latter are 

seen to be given by the CRB expressions with the error variances, correctly scaled, 

replacing the noise variance in the CRB. This is an interesting and useful result, perhaps 

not altogether surprising, but it is important to have this shown analytically. A side 

effect of this is that the CRB is expressed in terms of the moment matrix, again not 
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apparently a form seen previously.  

The accuracy of IMP is the same as MUSIC (and simple beamforming) in the single 

signal case, but for two signals the more complicated function makes the analysis too 

complex. However, simulations showed that the performance of IMP was apparently 

also given by the theoretical expressions derived for MUSIC in the two signal case, 

which corresponds with both being close to the CRB expressions. 

The resolution of IMP (or ML systems in general) is seen to have been given very little 

attention in the published work, and is the subject of Chapter 4. Only one of the papers 

(SMCR99, or [41]) reviewed tackled this subject, though the approach was promising, 

and formed a starting point for the resolution study, in the case of non-coherent signals. 

The paper did not relate the resolution performance to the array structure or parameters, 

which is done in this chapter. Also the method is refined to give a more accurate 

resolution estimate, in terms of the dependence on the strengths of the two signals (in 

the high signal, error-free case). The case of coherent signals was also tackled, 

following the IMP procedure more closely than for the coherent case. This case is of 

interest as it corresponds to the single sample case (or multiple samples of coherent 

signals in an effectively stationary system) and so to the case of IMP applied to radar. 

Only partial success was achieved here – it is shown that the lowest (second) order 

approximations used, successfully in the case of the accuracy analysis and the non-

coherent resolution case, is not adequate for the case where the complex echoes are in 

phase or antiphase, and that perhaps a higher order (probably fourth) is needed. 

However, the approach seems to give a more promising result for the quadrature case. 

The appendices in Chapters 2 and 4 are placed at the end of the chapters and are 

labelled 2A, 2B etc. but in Chapter 3 there are a considerable number of them and they 

are often specific to the different major sections and so are placed at the end of each 

section and labelled 3.2A, 3.2B, etc.. The equation numbering includes the chapter 

number and the major section number. In Chapter 2, for example, the third equation in 

section 2.2 is labelled 2.2.3, and the third equation in Appendix 2A is (2.A.3). In 

Appendix 3.2A, in Chapter 3, for example, the fourth equation is (3.2A.4). The figures 

and tables are numbered in order throughout each chapter. 
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Chapter 2: Multiple Parameter Estimation by Superresolution - 

Principles and Examples 

2.1 DEFINITIONS AND BASIC PRINCIPLES  

2.1.1 Example of parameter estimation; parameter and observation domains 

To illustrate some general principles of parameter estimation we consider a specific 

example (Example 1). We suppose that we require to find the azimuth angle of some 

distant signal source, and we use a cylindrical parabolic dish antenna to collect and 

receive this signal. The antenna is scanned over an angular region, possibly the whole 

azimuth range of 360°, and the output power is monitored. If there is a single strong 

signal present the response will peak when the antenna points exactly in the signal 

direction and so the parameter of interest, the azimuth angle of the signal, is obtained. 

We note that to estimate the parameter (signal direction, in this example) we use a probe 

that is sensitive to this parameter, the beam of the antenna. By scanning this probe over 

a range of the parameter and finding the peak response, the value is estimated. Clearly 

the more sensitive the probe the more accurately the peak can be found, and in this case 

this means the narrower the antenna beamwidth should be, in the azimuth plane. In turn, 

this means the larger the aperture of the parabolic dish required in the horizontal plane. 

We can define the full range of possible parameter values as the parameter or 

measurement domain and the dimension over which the data is collected as the 

observation or data domain. Thus the parameter domain for this example is the 

azimuth direction, in this case finite, extending over 360° or 2π radians, and the 

observation domain is the one-dimensional horizontal axis, an infinite domain, of which 

a finite interval, horizontally across the face of the antenna dish, is used to collect the 

signal. This interval is known as the (horizontal) aperture of the antenna, and in 

general the larger the aperture in the observation domain the more sensitive the response 

in the measurement domain. 

We can estimate the directions of several such signals, in principle, if they are 

sufficiently separated in angle. As we scan across each one the output power rises to a 

peak, giving the azimuth position of that signal. Furthermore we can find a second 

parameter, elevation angle, for each signal, by scanning vertically, as well as 

horizontally, using a circular paraboloidal antenna. In this case the parameter domain is 

two dimensional, covering the two angles of azimuth and elevation, and there is, 

correspondingly, a two dimensional observation domain which can be defined as the 
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XY-plane, over the face of the antenna, with the direction of maximum response, the 

peak of the antenna beam, as the Z axis. 

2.1.2 Accuracy and resolution 

We now consider what may be some of the limitations on the performance of this 

system. In practice there will always be some noise perturbing the received data, so that 

the response will be distorted. This means that the peak will not be at exactly the right 

position, leading to an error in the measurement. Thus the strength of the signal, relative 

to the noise level, is important – the larger the signal, compared with noise, (i.e. the 

larger the signal to noise power ratio, the SNR) the smaller the noise distortion and the 

more accurate the measurement. Secondly, if the beam response, as a function of look 

direction, is made narrower the errors will be smaller at a given SNR value. This is 

illustrated diagrammatically in Figure 2.1, where the noise contribution, added to the 

target response causes the response to rise by δp with an offset of δα. The value of δα 

will be smaller for a narrower beam than for a wider one, as shown. The width of the 

main lobe of the response function is inversely proportional to the antenna aperture, the 

interval over which the signal is received, so as the aperture is increased and the 

beamwidth becomes narrower the accuracy improves. (In addition, as the aperture is 

increased the signal energy received increases, so that the accuracy is further improved 

by this SNR gain).  

We also note that if two signals are present and these are brought closer together, at 

some point the two responses will merge and only one peak will be seen. This means 

that the signals are no longer seen as distinct – i.e. they are not resolved. Again this 

situation is improved if the beam is made narrower – the signals can be brought closer 

before the limit of resolution is reached. We need a convenient definition for 

Figure 2.1  Effect of beam width on accuracy
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resolution, and one is the Rayleigh criterion, which is that two equal power signals are 

considered to be at the limit of resolution when one is at the position of the first zero of 

the response centred on the other signal. This is very close to the condition that the two 

peaks merge into a single peak (at least for the case of a uniformly weighted aperture 

producing a sinc function beam response) so is a realistic, as well as a precise, 

definition. However this definition is not so useful when signals of different strengths 

are present. In this case the response of the weaker signal will disappear into the side of 

the main beam of the stronger at greater separations than that given by the Rayleigh 

criterion, or into the sidelobes of the stronger response at much greater separations. If 

the aperture is weighted, to reduce sidelobe levels, then the main lobe of the response 

becomes wider, reducing the resolution, but allowing more weak signals to be seen 

fairly close to a strong one (though outside the main beam response). We see that a 

definition of resolution is rather more complicated when signals of different power 

levels are to be considered.  

We note that if a weak signal is brought within the main beam of a strong one there will 

be a distortion of the response, such as a shoulder on the main lobe of the response, 

which will indicate that there is, or may be, a second signal present. In principle more 

complicated processing than simple peak detection could be used to attempt to 

determine the strengths of the signals and their positions. This would be a use of signal 

processing to improve the resolution above the standard (peak detection) method and in 

that sense could be considered a form of superresolution. (Here ‘super’ is better 

interpreted as meaning ‘above’ rather than ‘superb’ – the resolution achieved by 

superresolution methods is above, or better than, that achieved by the standard 

approach.) In practice superresolution methods generally take various approaches to 

improving resolution, but a method such as IMP (or a closely related form, Alternating 

Projection) operate somewhat in this way by identifying the strong response and 

removing it in order to observe the weak one. IMP is discussed in detail in §2.2.3 

below. 

There is one other aspect of performance that may be required of the system and that is 

the capability of detection of a number of sources. In the standard case this is 

essentially the same as the capability of resolution – the number of signals resolved is 

the number detected. However, in the case of two close signals, whose responses merge, 

the signals have not been resolved but the extra width of the response detectable can 

indicate two, or possibly more, signals in this small region. If we consider that there 
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may be a wide dynamic range of signals present, then there may be uncertainty whether 

small responses are sidelobe responses to the large signals or due to small signals. 

Perhaps this is more a problem of detection than resolution though the distinction is not 

very easy to make. In a superresolution method such as MUSIC, discussed below, it is 

possible to be clear how many significant signals are present (within the receiver 

bandwidth used) but not to be able to resolve them all. However, in IMP the resolution 

method actually detects signals successively so in this method the number of signals 

resolved is also the number detected. 

2.1.3 Further examples; Fourier transform relationship 

It is well known that the range resolution of a radar system is proportional to the 

bandwidth used. In particular, for a simple pulse radar, if the range resolution (the 

minimum range separation of two point targets) is considered to be equal to the pulse 

width times c/2 (where c is the velocity of light, and also, of course, of the radar pulse), 

then the narrower the pulse the better the resolution, and the wider the bandwidth 

required. To improve the resolution, instead of using a narrower pulse (which would 

have to be correspondingly larger in amplitude in order to contain enough energy for 

detection) the alternative is to transmit a long pulse, with a relatively low bandwidth 

envelope, but with some modulation to increase the bandwidth. (The advantage of this 

method is that it saves having to generate inconveniently high peak power levels for 

transmission.) The pulse is demodulated on reception to produce the required narrow 

response and this is the principle of pulse compression (or spread spectrum). One form 

of modulation is a linear frequency sweep (chirp modulation) and another, to be 

considered later, is to transmit a sequence of pulses at different frequencies, a discrete 

form of spectrum spreading. This is Example 2, and in this case the parameter domain is 

range and the measurement domain is frequency. The bandwidth used is the aperture, in 

this context. 

Another example, Example 3, is the case of finding the frequencies of sinewaves in 

noise; this was the original application of MUSIC. In the standard form of processing 

the Fourier transform of the data, giving the spectrum of the data, provides the 

frequencies, and in this case the parameter domain is frequency, the observation domain 

is time and the aperture is the time interval over which the waveform is observed for the 

purpose of the transform. This last example makes explicit the Fourier transform 

relationship between the data and the parameter estimation function. In fact this 

relationship is also present in the other examples. In Example 1 the far field beam 
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pattern of an antenna aperture (using the direction cosine coordinate, see [7, Chapter 7]) 

is the Fourier transform of the aperture function. In this case, with the antenna looking 

in one direction the antenna forms the value of the transform of the aperture 

illumination at a single point in the azimuth domain; scanning over the whole field 

gives the full transform. In Example 2 the response in the time domain is the Fourier 

transform of the frequency response of the target. In general, we conclude that, at least 

for these, and similar, parameter estimation problems the processing is essentially by 

Fourier transform, or is closely related to it, and the targets are detected as peaks in the 

transform, the parameter values being given by the positions of the peaks in the 

transform, or parameter, domain.   

 2.1.4 Discrete or sampled apertures 

In the case of a parabolic dish the Fourier transform is performed passively, the shape of 

the dish automatically combining the data across the aperture in the correct manner. If 

this were to be done actively it would be necessary to apply a multiplicative complex 

exponential phase factor across the whole aperture, and this would be difficult to 

achieve in practice. However, we know that the continuous aperture can be replaced, 

without losing information, by a discrete aperture, if sampled at a small enough interval, 

and this is generally taken to be one half of the wavelength of the centre frequency of 

operation, if we want to form the equivalent to a continuous interval. In fact it is not 

necessary to take a single interval in the observation domain as the aperture, and in the 

discrete case arrays may well be used with the elements having irregular spacing, being 

distributed over an area, or volume, and with separations greater than a half wavelength. 

(Here we take the narrowband case, where the fractional bandwidth is small enough to 

allow effects of the finite bandwidth on the beam pattern to be neglected with negligible 

error. This narrowband approximation is valid for a wide range of problems, including 

most microwave radar cases). This sampling is achieved by using an array form of 

antenna; in this case the signal in each antenna element of the array is brought down to 

complex baseband and digitized so that the data is captured as a set of (synchronized) 

time series and all processing is subsequently carried out using digital signal processing. 

For example, for standard Fourier transform processing, we can now apply the complex 

exponential factors to the outputs of a linear array, instead of using a parabolic dish. 

More significantly, with the data in this digital form, from a sampled aperture, we can 

now apply more complex signal processing to improve the resolution over that given by 

the basic Fourier transform, and any such methods can be termed superresolution 
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methods. We assume that the superresolution methods considered here will use a 

sampled aperture (though not necessarily regularly, or fully, sampled) followed by 

digital signal processing. 

2.1.5 Point source response vector and system manifold 

The data on which the parameter measurement is based forms some function over the 

aperture used in the measurement domain. This function is the sum, or integral, of 

contributions from all the sources present. If we consider a single unit strength point 

source then the observed function over the aperture can be termed the point source 

function. In the case of a discrete aperture this has a finite set of values, for a given 

point in the parameter domain, and this set can be termed the point source response 

vector (PSV) (or source position vector, SPV, in the Manikas et al papers [26-29]) for 

that parameter value. The aim of superresolution methods in general is not to find the 

parameter directly and explicitly (in the form, for example, of the equation “αk = . . .” 

where αk is the azimuth angle of source k) but to find the PSV for this signal, and so, in 

this example, identify αk as the generator of this PSV. In fact one superresolution 

method used the name PTMF, or parametric target model fitting, and this could describe 

superresolution more generally, as the aim is to find the set of PSVs which, suitably 

weighted, form, or fit, the observed data (the PSV being the model for a single point 

source). The full set of PSVs, for all points in the parameter domain, is termed the 

manifold of the data collection system. (In the case of an antenna array it is called the 

array manifold.) If the aperture is sampled at n points (e.g. in the array case, if there are 

n antenna elements) then the PSVs have n components, which are complex, in general, 

and if there are m parameters to be found (for example m = 2 in the case of a system 

determining direction in both azimuth and elevation) then the manifold is a hypersurface 

of m dimensions in an n-dimensional Hilbert space. In principle this forms a continuum 

but in practice a sampled form is used. 

2.1.6 Superresolution methods 

2.1.6.1 Spectral Methods 

The term superresolution does not refer to a particular method or a group of methods for 

parameter estimation, but rather to the general principle of achieving improved 

resolution, compared with what might be termed the basic method (beamforming, or 

Fourier transform, for example), using a discrete aperture followed by digitization and 

digital signal processing. Within this broad definition a wide variety of methods have 
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been devised. However, we can divide these superresolution methods into two general 

groups, spectral methods and maximum likelihood methods. The spectral methods 

are so called because a scalar function of the data is formed over a range of parameter 

values, equivalent, for example, to the power spectrum over the frequency domain in 

Example 3 above. Peaks (or in some cases zeros) in the scalar function indicate the 

positions of sources or targets on the parameter axis. To be more specific we consider a 

superresolution method based on Ex. 1. 

In Ex. 1 we considered a simple power scan, looking for the peak values, and we noted 

that this function is a form of Fourier transform of the incident field across the aperture. 

As the domain over which this function is evaluated is azimuth, rather than frequency, it 

is sometimes called the spatial spectrum. In the case of an array antenna, forming a 

discrete aperture, rather than the continuous aperture of a parabolic dish, the outputs of 

the array elements, after digitization, are weighted and summed in a process called 

beamforming. The weights are in fact Fourier transform factors (complex exponentials) 

and by varying these factors appropriately the main beam of the array is scanned over 

the azimuth range, without requiring any movement of the array, in contrast to the 

physical scanning of the parabolic dish required in the case of the continuous aperture. 

This particular digital signal processing method for azimuth direction finding may be 

termed scanned fixed beam (SFB) and gives the basic resolution capability of the 

array, on which superresolution methods aim to improve. 

The cause of the limitation on resolution is the fact that a point source observed over a 

necessarily finite aperture produces a spread response in the transform – the point 

spread response. The overlapping of these responses as two sources are brought nearer 

together causes the responses to merge so that only one peak is seen and the sources are 

not resolved. If we can narrow the point spread response we should be able to improve 

the resolution performance. One way of achieving this is to make the system into an 

adaptive array, which minimizes the received power, subject to maintaining a given 

gain in the look direction. When the array is steered accurately onto a source, power is 

received with the specified maximum array gain, but all other sources are cancelled and 

so their contributions are largely removed from the response. As the steer direction 

moves away from the source, the power from this source falls rapidly as cancellation 

becomes effective for this source as well. This has the effect of narrowing the point 

spread response. This method, known as scanned adaptive beam (SAB) [5] is a 

superresolution method, with a better resolution performance than SFB. This method 
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was first proposed by Capon [9], and is also known as Capon’s method. It was 

originally called Capon’s MLM (Maximum Likelihood Method), but this is now 

considered to be an erroneous description and the method has little in common with 

methods now based on the maximum likelihood principle. 

Other spectral methods include MEM (Maximum Entropy Method) [3], Kumaresan and 

Tufts method [22], Pisarenko’s method [36], but generally all of these have been 

eclipsed by a very effective spectral method called MUSIC (Multiple Signal 

Classification) [39a,b,c] and variations upon it.   

2.1.6.2 MUSIC 

A more mathematical description of MUSIC is presented later in §2.2.2, but here we 

give an outline of the method. We first form the estimated system covariance matrix, 

used also in SFB and SAB, consisting of all the mean co- and cross-products of the 

element outputs over the set of data frames (or snapshots) available. We can show that if 

we perform an eigenanalysis of this matrix (strictly the actual covariance matrix, 

requiring infinite data) the eigenvalues give the array output power level when the 

corresponding eigenvectors are used as the array weights. We also find that if there is a 

number m of point sources present and we use an array of n elements, where n > m, then 

there will be n − m eigenvalues which correspond to the level of receiver noise – i.e. 

there is no signal power present using the corresponding eigenvectors, which are thus 

sometimes called noise eigenvectors. It follows that the array gain, using any one of 

these vectors, is zero at the positions of all m signals. Thus if we plot the gain pattern 

we simply identify zeros in this pattern with signal positions, or, allowing for small 

errors in practice (such as the fact that only an approximate, estimated covariance 

matrix is available) we look for the m lowest local minima of the power pattern.  

We see that, in principle, using only one noise eigenvector should be adequate, and 

indeed this is the basis of Pisarenko’s method, but a more reliable result should be 

achievable by using all n − m noise eigenvectors in some optimum combination. This in 

fact is what is done in MUSIC. We note that the gain in a particular direction using 

some weight vector can be interpreted as the projection of the PSV for that direction 

onto the weight vector. The MUSIC function at a given point is a generalization of this 

idea, in that it is (the square magnitude of) the projection of the PSV for this target point 

into the space spanned by all the n − m noise eigenvectors, termed the noise space, (or, 

more precisely, the noise subspace). If the projection of the PSV for a signal onto any 

one of the noise eigenvectors is zero then the projection into the full noise space will 
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also be zero. Thus we scan the manifold PSVs and find the m lowest points, at which 

the function is most near to zero, and the PSVs at these points are taken to correspond to 

the m signals. (We could equivalently take the projection orthogonal to the noise space, 

using normalized PSVs, and look for peaks, ideally of value unity, as vectors orthogonal 

to all the noise eigenvectors must be signal vectors. This is the form described in §2.2.2 

below.) Alternatively the m signal eigenvectors (the principal eigenvectors, with 

eigenvalues above the noise level) can be used for either projection, instead of the n − m 

noise eigenvectors, and this is computationally more economical if m < n/2. In this case 

we either project into the signal space (spanned by the signal eigenvectors) and look for 

maxima, or orthogonally to it and look for minima. 

The n − m dimensional Hilbert space spanned by the set of noise eigenvectors is a 

subspace of the n-dimensional space containing the manifold vectors (which are point 

source vectors, PSVs) and also the array weight (or steering) vectors. Because of this 

use of a partition of the vector space MUSIC and related methods are often known as 

subspace methods or signal subspace methods. 

2.1.6.3 Maximum Likelihood Methods 

In the absence of noise or errors, the data that will be observed in a given system with a 

given set of source parameters can be calculated exactly (for a finite set of point 

sources, and without various forms of ambiguity in the manifold), and conversely, in 

principle, given the data the parameters can be found exactly. In practice, even if system 

errors are negligible, all data will be perturbed by additive noise, and if the noise 

statistics are known the probability of observing any set of data, d, given the 

parameters, p, can be obtained. This probability density expression p(d;p) is a function 

of both the data and the parameters. If we look at this same function from a different 

point of view we see that it is also the probability (or likelihood L(p;d)) that, given the 

data d that has been actually received and observed, the parameters giving rise to it are 

given by p, and we define the likelihood function by L(p;d) = p(d;p). We now deduce 

that the most likely set of parameters that give rise to the observed data are those that 

maximize the likelihood function, explaining the term maximum likelihood as the 

name for this method. 

A full maximum likelihood approach would involve evaluating, at suitably fine 

resolution, the likelihood function, given the observed data d, for all values of the 

parameters p. The total number of parameters to be explored will depend on the number 

of targets and the number of parameters per target – for example in the direction finding 
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case there may be two parameters, azimuth and elevation. Other parameters could be 

target range, velocity or signal polarization (requiring two parameters for its 

specification). We see immediately that there is a preliminary decision to be made; the 

number of targets present, or model order. This may be known from other sources, or 

may be estimated from the data in some cases. In the absence of this information, one 

solution is to take the case of one target only, and find whether this model gives an 

adequate fit to the data, and if not increase the number, until a good fit is found. One 

problem here is that eventually one may be introducing ‘targets’ to provide a fit to the 

noise present in the data, so a decision needs to be made as to how far to go in matching 

the model to the data; this would be based on some knowledge of the level of the 

perturbing noise. 

A further complication is that the data modelling includes not just the point response 

functions of the sources, generally depending upon, and containing, the parameters of 

interest (direction, range, etc.), but also the signal waveforms. There are two approaches 

to modelling the waveforms; in the first (termed conditional or deterministic) the signal 

samples are considered to be fixed for all possible realizations of the perturbing noise 

values, and are treated as parameters of the system. In the second (termed unconditional 

or stochastic) the signals are considered to be random variables, with different values in 

each realization, and in this case the signal waveform parameters in the model are just 

their variances and covariances (we take the case of zero mean waveforms, in general). 

Although involving more parameters, the conditional model (CML) is easier to handle 

and is used for many ML methods, including IMP, the example taken here. In fact the 

maximum of the ML function with respect to the non-waveform signal parameters is 

found without having to explore all waveform possibilities – the direction and other 

parameters can be ‘decoupled’ from the waveform parameters. The unconditional model 

(UML) requires relatively large sample numbers, in order to obtain good 

approximations for the signal variances and covariances (the elements of the signal 

covariance matrix) but CML allows smaller numbers, particularly in the radar case. 

As a comprehensive search for the maximum of the ML function would require a 

formidable computational effort, more economical methods of finding the peak are 

required. Several methods have been proposed, for example Alternating Projection 

(AP)[56], Expectation-Maximization (EM) [12,14,32], PTMF (Parametric Target Model 

Fitting) [1,2,34], ASPECT [29], WSF (Weighted Subspace Fitting) [49,50], MODE [44] 

and IMP (Incremental Multi-Parameter) [11,31]. Some of these (ASPECT, WSF and 
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MODE) use the Newton-Raphson (or Gauss-Newton) approach to maximizing a non-

linear function of multiple variables, but this requires first and second derivatives of the 

PSVs, which may not be readily available. Others (AP, EM, IMP) use a sequence of 

scans over the parameter domain (which may be multidimensional), similar to the single 

scan of the spectral methods, though with a different function, to give a practical 

algorithm. IMP and AP are closely related, both consisting of scans estimating the target 

parameter sets, one at a time, and then adjusting the estimates to approach the ML peak. 

The details of the methods differ, and there is a case for preferring the IMP method, 

which is described below. 

2.1.6.4 IMP 

Although IMP has been described as a maximum likelihood method, it can be described 

in a way much more intuitively appealing to readers with a background in radar and 

radio, and particularly in array antennas. The relationship with the maximum likelihood 

principle is made in the mathematical description below. 

We consider the application of IMP to Ex. 1, the case of determining target azimuth 

positions, using an antenna array in this case. Given a set of data from an array of n 

elements we first carry out a simple power scan (more accurately a signal to noise ratio 

scan), evaluating the power received in each azimuth direction. (The scans are carried 

out purely by computation, using the manifold vectors for each direction to steer the 

beam; there is no mechanical scanning). The peak of this response is taken as the first 

estimate of the position of the largest signal, though in fact this estimate is in error due 

to sidelobe power from other signals present. Having the approximate PSV for this 

signal, a second (SNR) scan is carried out (using the same data) with a gain null 

maintained at this azimuth position. Even though this position is not quite correct, most 

of the power from this target will now be excluded and the peak of the second scan is 

taken to give closely the position of the second strongest signal. A process of fine 

adjustment of these estimates, termed tweaking, is now carried out. A null is placed at 

the position of the second signal’s estimated position and the position of the first signal 

is refined, now that most of the second signal’s sidelobe contribution has been removed. 

We then put a null at the updated estimate of the first signal and improve the second 

signal’s estimate, and so on, alternately, until the corrections are of negligible 

magnitude. Having these two estimates, we carry out a third scan, with nulls maintained 

in both these directions and look for a third signal. If a significant signal is found, 

another round of tweaking is performed, with two nulls inserted while correcting each 
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signal position, and cycling this process round the three signals. As nulls are inserted, to 

reject energy from signals found so far, the level of the power scan will fall, and when 

all significant signals have been found the scan will be at noise level. To decide whether 

a signal is present there must be a peak above some detection threshold.  Thus we see 

that IMP is a detection method as well as a parameter estimation method. 

Alternating Projection differs in that the number of targets m (the model order) is 

estimated first (for example by eigenanalysis of the system covariance matrix, or by 

more complex methods – such as MDL, or using Akaike’s criterion). Then m scans are 

carried out, as for IMP, with nulls at the estimated signal positions, but without 

tweaking at this stage. When initial estimates have been obtained for all m targets 

tweaking is carried out as in IMP. Thus there are two differences between this algorithm 

and IMP. Firstly the model order must be known or determined first, and secondly no 

tweaking is carried out in the course of finding the initial estimates of target positions. 

This might not make any significant difference in many cases – as there is no tweaking 

initially these initial estimates will be in more error than at the IMP stage when the mth 

target is detected, so there may be more tweaking at this stage. However, in 

unfavourable cases the fact that no tweaking is carried out initially will mean that the 

nulls are not so accurately placed and the resultant poorer cancellation could lead to 

significant errors, and possibly erroneous peak positions, choosing a sidelobe response 

from a poorly cancelled large signal instead of a peak due to a small signal. A snag 

about using model order estimators is that they tend to overestimate, leading to 

imaginary targets attempting to fit the noise in the data to some extent. 

2.2 TWO SUPERRESOLUTION METHODS 

In this section two superresolution methods are considered in more detail. We take 

MUSIC as an example of the spectral methods and IMP as an approximate maximum 

likelihood method, but before describing these methods we also look at the point source 

vectors and the system manifold in more detail as these concepts are important in the 

descriptions of the superresolution methods. 

2.2.1 Point Source Vectors and Manifold 

2.2.1.1 The system manifold 

Superresolution methods in general take the model of the signal environment to consist 

of a (small) finite number m of point sources in the parameter domain. (This domain is 

q-dimensional if the targets have q parameters each to be estimated.) Rather than find 
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the parameters directly the general approach is to find the point source vectors of the 

targets, where these vectors depend directly (but not generally linearly) on the 

parameters. Thus the approach is to search the full set of PSVs over the parameter 

domain to find the m vectors that best model the data. The vectors are of size n×1  (the 

number of array elements and the size of a single data frame) so these vectors are 

elements in a Hilbert space (a complex vector space with a norm or distance measure 

defined on it) of dimension n. If q = 1 then the set of vectors for all values of this single 

parameter will define a line (generally curved) in this space – a one-dimensional 

subspace. If there are two parameters then we have a surface in this space, and so on. In 

general the full set of (normalized) PSVs will define a q-dimensional ‘hypersurface’ in 

this space and this is known as the system manifold. We assume that q ≤ n; it is not 

possible to estimate more parameters than n. As the parameter space is generally a 

continuum (though it might be finite, at least in some dimensions, as for example, 

azimuth angle, extending over 2π radians only, or elevation from -π/2 to +π/2 at most) 

there will be an infinity of PSVs in the manifold. Thus in general a finite stored 

manifold is used, of PSVs at some suitably finely sampled intervals over the parameter 

domain. This is generally referred to simply as the manifold, rather than the stored 

sampled manifold.  

This manifold (the set of PSVs over the sampled domain) can be calculated, in some 

cases, given the parameter values and the system configuration, but in other cases the 

system responses, described by the PSVs, are not simply related to the parameters and 

not enough information is available to calculate the responses. An example of this could 

be the direction finding case, using an antenna array. The response of the array to a 

point source can be calculated for the direct paths from the point to the array elements, 

but there could well be various multipath contributions which may not be known, and 

also mutual coupling effects between elements, which may not be negligible if the 

elements are close enough. In this case it will be necessary to calibrate the array at 

suitable resolution, or possibly to use a combination of calibration and calculation (to 

perform interpolation) to characterize the array. It is often desirable to keep the number 

of manifold sample points down (for reasons of data storage, the cost of calibration, the 

number of DF function points to be evaluated, and so on), particularly for a 

multidimensional parameter domain. A suitably low parameter domain sampling rate 

would be a few samples (perhaps as low as three) per natural response beamwidth, with 

the aperture used. However, this would be far too coarse for positioning the nulls in 
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IMP and a capacity to determine PSVs between the stored sampled values, either by 

calculation, knowing the form of the measurement system, or by interpolation, is 

generally essential for good operation of IMP.   

2.2.1.2 Examples of PSVs 

A point source vector is a set of responses over the sampled aperture from a point 

source in the parameter domain. We are not concerned, in general, with the absolute 

values of the responses but with the relative responses across the aperture, and it is 

generally convenient to take the PSVs to be normalized (i.e. such that vHv = ||v||
2 

 = 1, 

for a vector v). (NB The raised suffix H indicates the Hermitian, or complex conjugate 

transpose of a vector or matrix, and T indicates simple transpose. In general vectors are 

in bold lower case type, and matrices 

in bold uppercase. Scalars and 

function names are in italics.)  The 

responses are complex, in general, and 

often the magnitudes across the 

aperture are equal, leaving only phase 

variations between the responses at 

different aperture points. For the 

phases some point in the observation 

domain is chosen as a reference. This 

need not be within the aperture, in principle, but it is often convenient to take it as some 

mid-point or centroid position, or it could be taken at one edge. Only phase differences 

are physically significant, an overall phase shift makes no difference, so any reference 

position is acceptable.  

(a) PSV for an antenna array used for DF 

We take the case of a distant source so that the phase front is essentially flat, and from a 

direction given by two angle coordinates, θθθθ = [α ε]
T
. When the phase at the reference 

point is φ(t) it is φ(t+τ) at element k where τ is the time taken for the wavefront to move 

from the element to the reference point (Figure 2.2). The delay is given by 

 τk(θθθθ) = rk
Te(θθθθ)/c. (2.2.1)  

where rk
Te (the inner product of rk and e) gives the magnitude of rk, the element 

position vector, resolved along the vector e, which is the unit vector in the source 

direction, and c is the velocity of propagation. If f0 is the frequency of the signal (and 
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Figure 2.2  Signal phase at element k
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we take the narrowband case, where the bandwidth occupied by the signal is small 

compared with the carrier frequency) then the phase difference is 2πf0τk = 2πf0rk
Te(θθθθ)/c 

= 2πrk
Te(θθθθ)/λ0, where λ0 is the wavelength of the signal. If all the amplitude responses 

are equal then the (normalized) PSV in this case is given by 

 
T T T

1 0 2 0 02 ( ) 2 ( ) 2 ( )T
( ) . . . ni i i

e e e n
π λ π λ π λ =  

r e θ r e θ r e θv θ . (2.2.2) 

If the elements have individual patterns, given by ak(θθθθ) then the PSV is given by 

                   

T T T
1 0 2 0 02 ( ) 2 ( ) 2 ( )T

1 2( ) ( ) ( ) . . . ( ) ( )ni i i

n rmsa e a e a e na
π λ π λ π λ =  

r e θ r e θ r e θv θ θ θ θ θ   (2.2.3) 

where 
22

rms

1

1
( ) ( )

n

k

k

a a
n =

= ∑θ θ and hence v is normalized. If the elements all have 

patterns with the same shape and orientation, so that 1 2( ) ( )  . . . ( )na a a= = =θ θ θ  for all 

values of θθθθ, then the PSVs are all of the form of (2.2.2), even though the patterns vary 

with source direction. This array can be described as having equal parallel pattern 

elements. The patterns are not only parallel but equally scaled, so we can describe the 

array as EPP – having equal, parallel pattern elements. 

The form given here is for a general array from which the vectors for special cases, such 

as planar or linear arrays, and regular arrays can easily be derived. rk is a 3-element 

Cartesian position vector in general but may be given as ( , , )k k kx y z or 

( cos , sin , )k k k k kr r zψ ψ  using cylindrical polar coordinates, for example, or may be 

expressed in spherical polar coordinates. The source direction vector is also a 3-element 

Cartesian vector, but is a unit vector and may be written as 

(cos cos ,sin cos ,sin )j j j j jα ε α ε ε  using azimuth and elevation coordinates (α,ε) or as 

( , , )j j ju v w  in direction cosine coordinates (‘u-v’ form). This is still only a two-

dimensional angle of course as w is not independent of u and v, being given by 

2 21 ( )w u v= − + . In Chapters 3 and 4 we suppose the position vectors are given in 

wavelength units, so λ0 disappears in PSVs of the form of (2.2.2) or (2.2.3). 

(b) PSV for range measurement 

In this case the radar pulse echo delay for a target at range r is 2r/c so the phase shift on 

a carrier of frequency f0 between transmission and reception is 4πf0r/c. For a group of 

targets within one range gate there is a large common phase shift to the centre of this 
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range position which is of no interest and can be neglected. Thus we can consider r to 

represent the difference in range between the target and the centre of the range gate. For 

a set of pulses at frequencies f1 to fn the PSV is given by 

 1 24 4T 4

1 2( ) [ ( ) ( ) . . . ( ) ]
if r c if r c ifnr c

n rmsr a f e a f e a f e na
π π π=v .(2.2.4)  

Here we have taken into account the fact that the channel response might be 

significantly frequency sensitive. If this is not the case then we put a(fk) = 1 (for k = 1 to 

n) and arms = 1, similarly to (2.2.2). 

This is for the case of stationary targets. If the targets are all moving with the same 

radial velocity (for example, being echo points on an aircraft or ship) then a correction 

needs to be made for this movement – the same rate of change of phase being used as 

that that gives rise to the Doppler shift (if multiple samples in time are used). If targets 

are present moving at different radial velocities then we can use a 2-dimensional 

superresolution process, observing the phase measurements on a set of pulses 

distributed in both frequency and time. This is a different 2D superresolution example 

from the two angle DF problem. Here the parameter domain is two-dimensional (range 

and radial velocity), and the two dimensions of the observation domain are frequency 

and time. 

(c) PSV for frequency estimation 

A complex sinusoid, or cisoid, of frequency f sampled at times tk has phase values given 

(apart from an additive constant, which is not significant) by 2πftk so its PSV is given by 

 1 2 22 2T( ) [ . . . ]nift cift c ift c
f e e e n

ππ π=v , (2.2.5) 

a very simple form. The observation or data domain is time, sampled at times tk  (for k = 

1 to n) and the vector is for a point, f, in the parameter domain of frequency. 

2.2.2 The MUSIC method 

A single frame of data y consists of n samples across the aperture in the observation 

domain. This is related to the m signal samples x (as received in a reference element at 

the array origin) by 

 ( )= +y A Θ x n  (2.2.6) 

where   

 [ ]1 2( ) ( ) ( ) . . . ( ) n m

m

×= ∈A Θ a θ a θ a θ �  (2.2.7) 
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contains the m signal PSVs and n is the set of n noise samples present with the signal 

data. Θ  is the full set of qm parameters and θθθθj (column j of ΘΘΘΘ) contains the q 

parameters of interest for signal j. If we take a set of p frames we have  

 ( )= +Y A Θ X N  (2.2.8) 

where  

    
1 2

. . .
p

 =  X x x x , 
1 2

. . .
p

 =  Y y y y , 
1 2

. . .
p

 =  N n n n . (2.2.9) 

( m p×∈X � , , n p×∈N Y � ). In (2.2.8) the only quantities that are known are the observed 

values, the elements of Y. The quantities that are required, ultimately, are the 

parameters, in Θ , but we do not find them directly, but only the target PSVs, which are 

the m columns of A. We are not interested in the waveforms as such, so the first step in 

MUSIC and many algorithms of this kind, is to form the estimated covariance matrix, 

which reduces the waveforms to power-like covariance values (or second order 

statistics). This matrix is given (though the scaling factor p is often omitted) by 

 
( )( )

( )

H H H H

H H H H H H

( ) ( )

     ( ) ( ) ( ) ( ) .

p p

p

= = + +

= + + +

YR YY A Θ X N X A Θ N

A Θ XX A Θ A Θ XN NX A Θ NN
 (2.2.10) 

If we take the expectation values of the terms in this equation we obtain the actual 

covariance values. Using 〈⋅〉  to indicated the expectation of the argument, we put 

 H H H H,  ,  ,  p p p〈 〉 = 〈 〉 = 〈 〉 = 〈 〉 = ψY XYY R XX R XN 0 NN I  (2.2.11) 

where XR  and YR  are the covariance matrices of the waveforms of which X and Y are 

samples of length p (i.e. of sizes m×p and n×p respectively), the expectation products of 

the noise and signal waveforms, being uncorrelated, are zero, the noise waveforms are 

also independent, so the off-diagonal terms of their covariance matrix are also zero and 

their variances (or powers) are ψ, appearing on the main diagonal. Using (2.2.11) in 

(2.2.10) gives 

 H( ) ( )= + ψY XR A Θ R A Θ I . (2.2.12) 

Now let v be an eigenvector of YR with corresponding eigenvalue λ (so that = λYR v v ) 

then we have 

 ( )H ( )= − ψ = λ − ψX YAR A v R I v v  (2.2.13) 
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and we see that the eigenvectors of YR  are also eigenvectors of 
H

XAR A , which has 

eigenvalues ψ smaller. (We omit the indication of dependence on Θ  temporarily). If V 

is the full set of eigenvectors and Λ  a diagonal n×n matrix containing the eigenvalues 

of YR  then we have 

 H ' ( )= = − ψXAR A V VΛ V Λ I  (2.2.14) 

where 'Λ  contains the eigenvalues of H

XAR A , given by λk′ = λk - ψ (k = 1 to n). 

A matrix of the form of YR  is Hermitian ( H=Y YR R ) and positive definite 

( H H H 0= >x YY x z z  for all x ≠ 0, where H=z Y x , if Y has full rank, which is the case 

here because of the independent noise waveforms) so has real, positive eigenvalues and 

orthogonal eigenvectors. The matrix H

XAR A  is also Hermitian but A, which is an n×m 

matrix is only of rank m so H

XAR A  is positive semidefinite, with n − m eigenvalues of 

zero. (If x is in the null space of A, we have H =A x 0  so that we can only write 

H H 0≥Xx AR A x  for all x). Thus n − m eigenvalues of YR  have value ψ and the other m 

have values greater than ψ. As the eigenvectors of YR  (and also of H

XAR A ) are 

orthogonal and are taken to be normalized, we have H

n=VV I , so (2.2.14) can be put in 

the form 

 H H'=XAR A VΛ V  (2.2.15) 

(on multiplying both sides on the right by VH
). 

Now we partition V into the vectors with non-zero eigenvalues and those with zero 

eigenvalues, and 'Λ  similarly, so that  

 [ ]s n=V V V  and 
'

'
s 

=  
 

Λ 0
Λ

0 0
 (2.2.16) 

and substituting these in (2.2.15) gives 

 H H's s=X sAR A V Λ V . (2.2.17) 

Now the n columns of the matrix on the left of (2.2.17) are all linear combinations of 

the m columns of A, and the columns of the matrix on the right are linear combinations 

of the m columns of Vs – but these matrices are equal, so we deduce that A and Vs span 

the same m-dimensional space. This does not mean that A = Vs, so we have not yet 
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found the signal PSVs, the columns of A, but are now in a position to do so. We know 

that all the target PSVs lie in the space spanned by the columns of Vs (which is termed 

the signal space, or subspace, as distinct from the noise space, the column space of Vn) 

so to find which of the manifold vectors these are we now project all the stored 

manifold vectors into the signal subspace and deduce that the m manifold vectors which 

lie most closely in this space are those corresponding to the signals present. In order to 

measure this ‘closeness’ we simply compute the square magnitude of the projected 

vector. This vector has maximum magnitude unity, corresponding to a unit magnitude 

manifold vector lying exactly in the signal subspace. The magnitude will not be exactly 

unity, in practice, because of various sources of error, such as (a) the discrete sampling 

of the manifold, (b) errors in the manifold description due to imperfect modelling (with 

unknown multipath or mutual coupling effects) or small errors in the experimental 

calibration and (c) the approximation of the estimated covariance matrix to the true one. 

We have also assumed that the manifold vectors are unique for each point in the 

parameter domain. In many cases this is true, but in some cases two or more points may 

give rise to the same PSV. An example of this is the case of a horizontal linear array 

used for azimuth DF. In this case the vector for angle α (measured from broadside) is 

the same as the vector for 180° − α. Another source of ambiguity is when using a 

regular array with element separations of more than a half wavelength. Planar arrays of 

the form of a regular hexagon can also have high ambiguity. However in most cases 

ambiguity can be avoided by suitable array design or can be accepted and resolved 

using collateral information. 

If 
sVP is the matrix which projects into the space spanned by the columns of Vs then the 

MUSIC function is given by   

 
s s s s

2
H H H

M
( ) ( ) ( ) ( ) ( ) ( )f = = =V V V Vθ P a θ a θ P P a θ a θ P a θ  (2.2.18) 

where 
s

2

( )VP a θ  is the square magnitude of the projection of the manifold vector for 

parameter set θθθθ and we use projection matrix properties (PH
 = P, P2

 = P) to simplify the 

expression. The projection matrix is given by 

 
s

H 1 H H

s s s s s s( )−= =VP V V V V V V  (2.2.19) 

in this case, as the columns of Vs are orthonormal, so that Vs
HVs = Im. Putting this into 

(2.2.18) gives, finally, 
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2

H H H

M s s s( ) ( ) ( ) ( )f = =θ a θ V V a θ V a θ  (2.2.20) 

and this is the usual form of the MUSIC function. (We note that 
s

H( ) ( )s s=VP a θ V V a θ  

so that this projected vector is a linear combination of the columns of Vs – so lies in the 

signal subspace, and the coefficients of these vectors are given by Vsa(θθθθ). As the 

columns of Vs are orthogonal and of unit length, the square of the length of the 

projected vector is the sum of the squares of these coefficients, as given in (2.2.20)). 

Thus, given a block of data Y, and a stored sampled manifold of PSVs of form a(θθθθ) 

where θθθθ is a set of q parameters, the MUSIC algorithm can be given as 

 1) form the data covariance matrix H=YR YY  

 2) perform an eigenanalysis on  RY  

 3) find the m eigenvalues above noise level, ψ, and select the 

corresponding eigenvectors, Vs  

 4) For all θθθθ in the domain evaluate the MUSIC function (2.2.20)  

 5) find the m highest peaks in this function; the PSVs at the peak 

positions are those corresponding to the estimated target parameter sets.  

(Or, equivalently, we could use the n – m eigenvectors Vn corresponding to the 

eigenvalues at noise level, and put Vn in (2.2.20) instead of Vs, to project into the noise 

space, and then we look for the m lowest points – nulls, apart from the effect of errors). 

Figure 2.3 illustrates in 

diagrammatic form the 

principle of the MUSIC 

search. We assume here 

there are just two 

targets present with 

PSVs a1 and a2. The 

eigenanalysis finds two 

eigenvalues above the 

threshold ψ and the two 

corresponding eigenvectors are v1 and v2, which are orthogonal. These define the ‘signal 

subspace’ – the vector space containing the target, or signal, PSVs. We then take each 

of the manifold vectors a(θθθθ) and project this into the signal space to form a vector 

Figure 2.3  Signal space and MUSIC function
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v
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s
( )VP a θ  and find its square magnitude. Only vectors lying in the space, as a1 and a2 do, 

will be unchanged, with magnitude unity, while all the others will only have some 

component, a part of the vector, in this space and will have magnitude less than unity.  

As stated above, we could alternatively project all the manifold vectors into the noise 

subspace (represented in Figure 2.3 by the Z axis, orthogonal to the signal subspace of 

the XY plane). In this case the projected vector is 
s

( )VQ a θ  where 
s s

= −V VQ I P  (and we 

can also show that 
s

H

n n n= =V VQ P V V ). For the manifold vectors, such as a1 and a2, 

which lie in the signal space this projection is of zero length, so in this case we look for 

the m lowest minima, and the parameters characterizing the PSVs giving these minima 

are the parameter estimates for the m point targets. This is the form corresponding to the 

description in §2.1.6.2. The MUSIC function in this case is 

s s

2 2 2 2

s( ) 1 ( ) 1 ( ) ( )n= − = − =V VQ a θ P a θ V a θ V a θ , but often the reciprocal of this is 

plotted, so that we again search for peaks (maxima) rather than minima. In this case a 

perfect match of a manifold vector to the signal point response corresponds to an 

infinite spike, and often the spikes at the signal parameter positions can in practice be 

quite high, and quite narrow. This looks quite striking, as if spectacular performance is 

possible, but in fact the positions of these spikes are no more precise than those given 

by the much smaller and rounder peaks of (2.2.20).  Nor does the narrowness of the 

spikes mean that the resolution is correspondingly good – as targets are moved closer 

together and the corresponding MUSIC spikes approach each other the dip between the 

peaks rises rapidly and disappears at much greater separation than the spike widths.  

These points are illustrated in Figure 2.4. Figure 2.4(a) shows the MUSIC function as 

defined in (2.2.20), plotting a linear, power-like function, with maximum value unity. 

(The signal sources are at 10° and 25°, here). The reciprocal form, as defined in the 
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preceding paragraph, is plotted in logarithmic (dB) form in (b), and we see the very 

sharp peaks at the signal positions. In (c) the targets are moved much closer (2.8° apart) 

and the nulls between the peaks are almost filled in. (The case taken for illustration was 

a 9 element, uniform linear array at 0.6 wavelength spacing. There was no perturbing 

noise, but small manifold errors were added to reduce the peaks to realistic levels.) 

2.2.3  The IMP superresolution method 

2.2.3.1 Structure of IMP  

We avoid using the term ‘algorithm’ here because there is no single definitive form for 

the IMP process; the general principle outlined below can be implemented with 

considerable variations in detail. It seems more appropriate to consider IMP as a 

principle for achieving parameter estimation from which suitable algorithms can be 

formulated. 

The IMP process basically consists of a sequence of power scans over the parameter 

domain, which might be multidimensional. The function evaluated is effectively a 

signal to noise ratio over the parameter range, with nulls inserted at the positions of all 

the signals found previously. Thus on the first scan no null is present and a signal 

position is estimated (assuming there is a peak above some detection threshold). This 

position is in the parameter domain, so 

might be in azimuth (Ex.1), azimuth and 

elevation, range (Ex.2), frequency (Ex.3), 

for example. On the second scan, with a 

null at this position, a second signal is 

estimated. After two signal positions have 

been estimated an iterative process of 

refinement of these positions is carried 

out, called tweaking. In this process a null 

is placed on one signal, removing its 

sidelobe power to a large extent, and the 

position of the other signal is found, and 

then a null is placed on this, improved, 

signal position and the position of the first 

signal is then found more accurately. This 

process continues until there is good Figure 2.5  Basic IMP
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loop while

f
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> T
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convergence and the changes in both signal positions are small. For the next scan nulls 

are placed at both signal positions. When more signals are found, on further scans, nulls 

are placed on all signals except the one being tweaked, and the process cycles round all 

the signals found at this stage. When all significant signal contributions have been 

found, the scan, with nulls on all these signals, will be essentially at noise level, and 

there will be no peak above the detection threshold. 

We outline the structure of the IMP program with the help of design structure diagrams. 

Figure 2.5 shows the overall form of the IMP program, given a stored sampled manifold 

M, consisting of the point source vectors (PSVs) of a set of points over the parameter 

space. Initially the number of signals found, r, is set to zero, the array of the set of 

estimated parameters ΘΘΘΘ is set empty, and so is the matrix of the set of signal PSVs, A. 

The projection matrix Q, which inserts nulls and is calculated from A, is initially set to 

the identity (of order n, the number of samples in a frame of data). 

With the scan peak value fp initially set above the detection threshold T, we enter the 

main loop. The IMP function is calculated using the manifold, and fp is set to the peak 

value. If this exceeds the threshold the peak position is noted, and refined using a 

quadratic interpolation estimate. (This uses points round the peak and is based on the 

fact that the function is flat at the peak so the variation round the peak is, to lowest 

order, quadratic. For a single parameter this requires only 3 points, for two parameters 

at least 6, and preferably 9, points are used and for three parameters 19 are used.) The 

number of signals found is 

updated, and so is the set of 

signal parameter estimates ΘΘΘΘ, 

and the PSV for this signal is 

calculated and added, as a new 

column, to A. On subsequent 

scans, when more than one 

signal has been found, the 

tweaking routine is carried out. 

Finally the projection matrix Q, 

which inserts the nulls in the 

signal positions, is updated, 

ready for the next scan.  

Figure 2.6   IMP scan
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Figure 2.6 shows the scan routine in more detail. We start by multiplying all the 

manifold vectors by Q, which effectively means that we form the IMP response for each 

parameter point specified by the manifold vector, with nulls at the positions of signals 

found so far. If one of these nulls is at a manifold vector position then the IMP function 

denominator will be very close to zero, even though the function should give a valid 

value at this point. This value will be obtained securely if the derivative of this manifold 

vector (with respect to at least one parameter) is used (a form of L’Hôpital’s rule). The 

full IMP function (given in (2.2.26) below) can now be evaluated and the peak found. 

This peak position estimate is refined using quadratic interpolation (QI) as described 

above and then ΘΘΘΘ and A are updated. 

The tweak routine is shown in Figure 2.7. D is the measure of the degree of 

convergence. It is the sum of the squares of the latest tweak corrections to the r points 

found so far. The latest tweak shift for target k is recorded (if significant, above some 

threshold th) as d(k), a component in an r-vector d, and D is the value of the sum of the 

components of d. When D, which is evaluated after every tweak operation, falls below 

some minimum threshold Th the tweak routine is exited.  

Starting with the latest signal to be found, for each signal k we form Ak which is the set 

of signal PSVs A excluding that for signal k. We then form Qk, which will provide nulls 

N

d(k) = 0

Figure 2.7  IMP tweak
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to all the signals except this signal. We form a mini-manifold Vk, about θθθθk, the position 

of signal k and then evaluate the IMP function over this region (much smaller than the 

full scan region, so more economical in computation), in a similar manner to the full 

IMP scan, already described. Again the peak position is corrected by quadratic 

interpolation, and the tweak shift, d(k) is found as the (square) distance between the new 

peak position θθθθk′ and the old, θθθθk. If d(k) is below a threshold th the shift is considered 

negligible, but otherwise θθθθ is updated and so is the PSV for signal k and then A. Finally 

D is evaluated and the loop is left if D is small enough. 

The iteration may take a long time to converge in some cases, so a maximum iteration 

number might be used. An accelerated convergence method could also be introduced 

which detects the trend of the convergence and jumps to the estimated convergence 

point, which, even if not completely accurate, will reduce the number of steps needed. 

2.2.3.2 The IMP function  

 We first derive the IMP function from the physical description of a signal to noise ratio, 

with nulls, and then identify this function with the condensed likelihood function 

(maximized over the waveform values X and the receiver noise value ψ) found in 

Appendix 2A. Let a block of data n p×∈Y � (i.e. p frames of n values over the 

observation aperture) be received and let this be ‘beamformed’ using a weight vector w. 

(If the n samples are from n channels fed from outputs of the elements of an antenna 

array then this will indeed be a spatial beamforming process. More generally the output 

is an element of a transform, in some cases a simple Fourier transform.) The beam 

output waveform is given by 

 T=z Y w   (2.2.21) 

( 1p×∈z � ) and the energy in this output is given by 

 
2 T T H* *= =z z z w YY w . (2.2.22) 

(The asterix indicates complex conjugate.) Now let a(θθθθ) be the (normalized) point 

source vector for parameter vector θθθθ. (We assume in general we are looking for q 

parameters for each target. In many cases q = 1, for example the single parameter may 

be azimuth direction. In the case of more general direction finding q = 2, where the 

parameters may be azimuth and elevation, or alternatively u and v, where these are 

direction cosine coordinates.) The weight vector which maximizes the signal to noise 

ratio for a target with the parameters θθθθ (with ‘white’ noise across the channels) can be 
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shown to be a(θθθθ)* (see Appendix 2B). If j targets have been found so far, with 

parameter vectors θθθθ1 to θθθθj and PSVs a1 = a(θθθθ1) to aj = a(θθθθj) then to put nulls on these 

point sources while steering at a point with PSV a(θθθθ) we define a matrix 

1 2 = [ . . . ] n j

j j

×∈A a a a �  and use the weight vector 

 
*

( ) *
j

= Aw Q a θ  (2.2.23) 

which ensures that w is orthogonal to a1* to aj* (i.e.
T H0 *k k= =w a w a , k = 1 to j.) (It 

is also shown in Appendix 2B that the weight vector in (2.2.23) maximizes signal 

reception while meeting the condition of maintaining the nulls.) Substituting this weight 

vector in (2.2.22) we have 

 total output energy H H( ) ( )
j j

= A Aa θ Q YY Q a θ  (2.2.24) 

(using (QA*)* = QA and QA
H
 = QA). The noise energy is (proportional to)

2
w , for the 

‘white’ case, with equal noise power levels in each channel, and from (2.2.23) this is  

 
2 T H H H* ( ) ( ) ( ) ( )

j j j
= = =A A Aw w w a θ Q Q a θ a θ Q a θ  (2.2.25) 

using projection matrix properties (see (2.A.20)). Thus the IMP function, expressed as a 

signal-plus-noise to noise ratio when steered for a point source with parameters θθθθ, with 

nulls to sources with parameters θθθθ1 to θθθθj is given, from (2.2.24) and (2.2.25), by 

 

H H

H

( ) ( )
( )

( ) ( )

j j

j

f =
A A

A

a θ Q YY Q a θ
θ

a θ Q a θ
. (2.2.26) 

This is the function that is evaluated, over the q-dimensional domain of θθθθ, in the IMP 

routine described in §2.3.1 above. If we write YYH
 = RY and ( ) ( )

j
= Ab θ Q a θ then 

(2.2.26) can be written 

 
H

2
( )   ( ( ))

j
f = =Y

A

b R b
θ b Q a θ

b
 (2.2.27) 

and this is a relatively economical way of evaluating the function, when the number of 

frames, p, is relatively large. If p is small it is economical to evaluate c = bHY and then f 

= ||c||
2
/||b||

2
and if p = 1 so that Y = y, then we have simply c  = bHy and f = |c|

2
/||b||

2
. 

A condensed likelihood function is given in Appendix 1 (eq. (2.A.28)) as 

( )( ) tr( )F = A Θ YΘ P R� , where tr(.) is the trace of the matrix argument. This function is to 
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be maximized over Θ to find the most likely parameter values, i.e. the ML solution for 

the parameters is given by 

 { }( )

maxˆ arg tr( )= A Θ YΘ P R
Θ

 (2.2.28) 

and the problem is to search over the domain of Θ  (which is of dimension mq) in some 

economical way to find the maximizing set of values. In IMP this is achieved by a series 

of m searches over a q-dimensional domain, finding the set of parameters for each 

signal in turn.  

The full (condensed) likelihood function when m targets are present is  

 ( ) tr( )m mF = YΘ P R�   (2.2.29) 

where we have introduced the notation  

 [ ]1 2 . . .
k k

=Θ θ θ θ   (2.2.30) 

and  
kk = AP P   (2.2.31) 

where  [ ] [ ]1 2 1 2. . . ( ) ( ) . . . ( )k k k= =A a a a a θ a θ a θ  (2.2.32) 

for k = 1 to m. Now we put 

 [ ]1m m m−=A A a  (2.2.33) 

and we now require the projection matrix for a partitioned matrix. This is given by 

 [ ] = +BB C C
P P P  (2.2.34) 

where = BC Q C ,  (2.2.35) 

i.e. the projection into the space spanned by the columns of B and C (where the 

columns of the full matrix are linearly independent) is found, first by modifying C to 

C which defines (or is a basis for) a space orthogonal to that of the columns of B, and 

then summing the projections into the two spaces, which are now non-overlapping. In 

this case we have, from (2.2.31), (2.2.33) and (2.2.34) 

 1 mm m−= + bP P P  (2.2.36) 

where, from (2.2.35) and (2.2.33), 

 1m m m−=b Q a . (2.2.37) 
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Now  
2H 1 H H( )

m m m m m m m m

−= =bP b b b b b b b  (2.2.38) 

so now we can write, from (2.2.29), (2.2.36) and (2.2.38), 

( ) ( ) ( )2 2H H

1 1( ) tr( ) tr ( ) tr trm m m m m m m m m mF − −= = + = +Y Y Y YΘ P R P b b b R P R b b R b� . 

Now (see (2.A.22)) ( ) ( )H H Htr tr
m m m m m m

= =Y Y Yb b R b R b b R b  (as this is scalar) so that,  

 ( ) 2H

1( ) tr +m m m m mF −= Y YΘ P R b R b b� . (2.2.39) 

We can perform the same expansion on ( )1tr m− YP R , and then on ( )2tr m− YP R , and so 

on, to obtain 

 ( ) 2H

1

2

( ) tr +
m

m k k k

k

F
=

= ∑Y YΘ P R b R b b�  

but as 
1

2H

1 1 1 1/= =aP P a a a  we have ( ) 2H

1 1 1 1tr =Y YP R a R a a , and also, as Q0 = I, the 

identity (of order n), we have, formally, b1 = Q0a1 = a1 and so, finally, 

 
2H

1

( )
m

m k k k

k

F
=

=∑ YΘ b R b b�  (2.2.40) 

or 
2H

1 1 1

1

( )
m

m k k k k k k

k

F − − −
=

=∑ YΘ a Q R Q a Q a� . (2.2.41) 

Thus we see that the condensed ML function for m targets, expressed as the trace of an 

n×n matrix, m YP R  can be split into a sum of m scalar components, which are precisely 

the terms used for the IMP function, as given in (2.2.26) or (2.2.27). (We note that 

2 H H H

1 1 1 1k k k k k k k k k− − − −= =Q a a Q Q a a Q a  using projection matrix properties.) 

The discussion above is based on the conditional likelihood function with non-coherent 

(or perhaps partially coherent targets). In the case of totally coherent targets (see 

Appendix 2C) we replace the n×n matrix RY (or YYH
) by the n×n rank one 

matrix Hyy (where kk
p=∑y y ) which allows the numerators in (2.2.40) and (2.2.41) 

to be expressed more simply (as 
2

H

k
y b  in (2.2.40)) but otherwise does not change the 

argument or the result. 
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APPENDIX 2A.  LIKELIHOOD FUNCTION 

2A.1  Multivariate normal probability function for complex noise 

Let x be a real vector of n components, all of which are samples from normal 

distributions, with mean vector m and covariance matrix S, then x has an n-variate 

normal distribution, with probability density function (p.d.f.) given by 

 ( ) ( )1 2 T 11
2

2 exp ( - ) ( - ) .f
− −= π −x S x m S x m  (2.A.1) 

(See [30, eq. (2.5.1)], for example. Note |.| indicates the determinant of the enclosed 

matrix and the superscript T indicates matrix or vector transpose). In the case of noise in 

n channels having zero mean (m = 0), independent between channels and with equal 

variance ψ in each channel (so that S = ψI) we have  

 ( ) ( ) ( )1 2 T 2 T1 1
2 2

2 exp (2 ) exp ,nf
− −

ψ ψ= πψ − = πψ −x I x x x x  (2.A.2)  

as the determinant of a matrix kI is k
n
, if I is of order n. Now let z = x + iy be a vector of 

complex noise with real and imaginary parts x and y respectively, and if we take the 

components of y to have the same statistics (i.e. xk, yk ~ N(0,ψ) for k = 1 to n) then y has 

the same form of p.d.f. as x in (2.A.2) and the p.d.f. of z is given by 

 ( )T T1
2

( ) ( ) ( ) (2 ) exp ( )nf f f −
ψ= = πψ − +z x y x x y y  

          ( )H1
2

(2 ) exp .n−
ψ= πψ − z z  (2.A.3) 

(The superscript H indicates the Hermitian, or complex conjugate, transpose.) If we 

define the total noise variance in each channel to be ψ then the variance in each of the 

real and imaginary parts is ψ/2, rather than ψ, so replacing ψ above by ψ/2 we have, 

finally 

 ( )H1( ) ( ) exp ( ) ,n
f

−
ψ= πψ −z z z  (2.A.4) 

and this is the basis for the likelihood function that is normally used. 

2A.2  Conditional and unconditional maximum likelihood; likelihood function 

Equation (2.A.4) is not a likelihood function, but the probability density function for 

independent, identically (and normally) distributed (i.i.d.) complex noise in n channels, 

the noise having zero mean and total variance ψ (or ψ/2 for each of the real and 

imaginary components) in each channel. We now consider an n-channel measurement 

system containing i.i.d. noise n with the statistics above and a system response y related 
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to the system parameters ΘΘΘΘ, and waveform data x by 

 y = A(ΘΘΘΘ)x + n. (2.A.5) 

(NB x and y here are not as defined in §2A.1 above, of course, and are, like n, taken to 

be complex). We consider A and x to be fixed (in the conditional ML case, considered 

here, and defined below) and n to be a vector random variable. Clearly y has the same 

variance as n, but has a non-zero mean vector Ax. We see that the probability of 

receiving a set of values y is the same as having a set of noise values n such that (2.A.5) 

is satisfied. The probability density of n is given by (2.A.4) so replacing z by n = y – 

Ax, we find that the probability of observing y when A and x are the system values is 

given by  

 ( )H1( ) ( ) exp ( - ( ) ) ( - ( ) ) .n
f

−
ψ= πψ − Θ Θy y A x y A x  (2.A.6) 

This is the probability of receiving the single vector y. If a series of vectors, y1 to yp is 

received and the noise samples are independent between all these vectors, then the 

probability of receiving this set of vectors (which we can group into a matrix Y = [y1 . . 

.  yp]) is given by  

 ( )H1

1 1

( ) ( ) ( ) exp ( - ( ) ) ( - ( ) )
p p

n

k k k k k

k k

f f −
ψ

= =

= = πψ − Θ Θ∏ ∏Y y y A x y A x  

          ( )H1

1

( ) exp ( - ( ) ) ( - ( ) )
p

np

k k k k

k

−
ψ

=

 
= πψ − Θ Θ 

 
∑ y A x y A x . (2.A.7) 

Here we have taken the general case where the vectors xk may differ from one 

measurement vector, or data frame, to the next. This corresponds to the direction of 

arrival (DoA) problem with time varying, e.g. stochastic, signals. Each signal waveform 

is considered as having a set of values which are, in principle, determinable and remain 

constant over realizations of the random variable n (for example when finding 

expectation values). This is known as the deterministic, or conditional, maximum 

likelihood case. The main alternative approach is to take the signals to be Gaussian 

random variables (if appropriate) with different values in each ensemble realization. In 

this case the signal parameters to be found are just their variances (taking zero mean 

signals). This is known as the unconditional, or stochastic, maximum likelihood case. 

There is perhaps some benefit from reducing the number of parameters to be found, 

from p waveform samples for each signal, when p frames of data are taken, to just the 

single one of variance – in [43] theoretical results for the conditional and unconditional 
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cases are quoted, for a two signal problem, with UML somewhat better for highly 

correlated sources and low SNR and low array size n. The Gaussian model may not be 

appropriate for many waveforms in the case of direction finding of communication 

signals and certainly is not so in the radar case. Often in the radar application we may 

only want to take a single data frame (p = 1) and in other parameter estimation cases 

data with low values of p only may be available. Thus here we consider only 

conditional or deterministic maximum likelihood but we take two cases within this 

condition – those with coherent or non-coherent signals.  

By coherent signals we mean signals that differ, over the whole length of the data 

sample, only by a constant phase difference and a (real) amplitude factor – or, 

combining these, by a complex amplitude factor, in fact. Radar echoes from a set of 

targets are all coherent as they are all versions of the same waveform – the transmitted 

radar pulse. (This also applies, approximately, to short-delay multipath signals.) 

However, we should be a little cautious here, as radar targets with relative radial motion 

will have different Doppler shifts, and, over a long enough observation time, will not 

remain significantly coherent and should be treated as the incoherent signal case. In the 

case of using a single frame of data there is no meaning to the coherence of the singly 

sampled signals and the two models give the same ML function. 

(a) Non-coherent case 

Equation (2.A.7) represents the probability that a set of measurement vectors Y will be 

received if the system parameters are ΘΘΘΘ and X (where X = [x1 x2 . . . xp]), and f is 

considered to be a function of Y with ΘΘΘΘ and X as constants. If, in fact, ΘΘΘΘ and X are not 

known, but Y is known, being the observed values of p received vectors, then we can 

now regard the function as having arguments ΘΘΘΘ and X, with Y as constants. In this case 

we consider f to be the likelihood L that ΘΘΘΘ and X (and ψ) are the system parameters, 

given that Y has been received. Thus we write 

                 
H1

1

( , , ; ) ( ) exp ( ( ) ) ( ( ) )
p

np

k k k k

k

L
−

ψ
=

 
ψ = πψ − − − 

 
∑Θ X Y y A Θ x y A Θ x  (2.A.8) 

where L(ψ,ΘΘΘΘ,X; Y) reads as ‘L is the likelihood that the system parameters are ψ, ΘΘΘΘ and 

X, given the data Y’, where the receiver noise level ψ is also considered unknown. 

(b) Coherent case 

If we take the radar case, with fixed targets, then the waveform values are indeed 
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constant (from one data frame to the next) and proportional to the reflection coefficients 

of the targets. Let these, referred to the receiver channel inputs, be given by s, then we 

replace all the xk vectors by s to give 

                  
H1

1

( , , ; ) ( ) exp ( ( ) ) ( ( ) )
p

np

k k

k

L
−

ψ
=

 
ψ = πψ − − − 

 
∑Θ s Y y A Θ s y A Θ s . (2.A.9) 

In this case we consider f to be the likelihood L that ΘΘΘΘ and s (and ψ) are the system 

parameters, given that Y has been received.  

We can simplify the summation term in (2.A.9). Let 

 ( ) ( )H

1

- ( ) - ( )
p

k k

k

S
=

=∑ y A Θ s y A Θ s  (2.A.10) 

then ( )2 H H H H H

1

( ) ( ) ( ) ( )
p

k k k

k

S
=

= − − +∑ y y A Θ s s A Θ y s A Θ A Θ s  

    ( )2 H H H H H|| || ( ) ( ) ( ) ( )p= − − +y y A Θ s s A Θ y s A Θ A Θ s  (2.A.11) 

where 2 2

1 1

|| || || ||    and   
p p

k k

k k

p p
= =

= =∑ ∑y y y y , (2.A.12) 

and the overbar indicates mean values. 

Rearranging (2.A.11), 

( )2 2 2 H H H H H|| || || || || || ( ) ( ) ( ) ( )S p= − + − − +y y y y A Θ s s A Θ y s A Θ A Θ s  

    ( )2 2 H|| || || || ( ( ) ) ( ( ) )p= − + − −y y y A Θ s y A Θ s  (2.A.13) 

    ( ) ( )( )H
( ) - ( ) - ( )p nv= +Y y A Θ s y A Θ s  (2.A.14) 

where v is the mean sample variance over the n channels and is given by 

 ( )2 2( ) || || || || /v n= −Y y y . (2.A.15) 

[In one channel the sample variance is vj = 2 2

1

| | | |
p

jk j

k

y p y
=

−∑  where jy  is the sample 

mean in channel j. Summing over all n channels 
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2 2 2 2 2 2

1 1 1 1 1

( ) || || || || || ||
p pn n n

j jk j k

j k j j k

nv v y p y p
= = = = =

= = − = − = −∑ ∑∑ ∑ ∑Y y y y y .] 

Finally, for the radar, coherent target case, from (2.A.9), (2.A.10) and (2.A.14) 

             ( ) ( )( )( )H
( , , ; ) ( ) exp ( ) - ( ) - ( )

pnp
L nv

−
ψψ = πψ − +Θ s Y Y y A Θ s y A Θ s . (2.A.16) 

2A.3  Concentrated Maximum Likelihood Functions 

(a) Non-coherent signals 

As the logarithm function is monotonic, with positive slope, it follows that the 

maximum values of the likelihood function and of the log of the likelihood function 

over any given range of values of the arguments occur at the same values. It is often 

convenient to work with the log likelihood function, given by l = log(L), so that the 

quadratic term involving the parameters ΘΘΘΘ and the sampled waveforms is brought out of 

the exponential. From (2.A.8) we have, taking the logarithm, 

              
H1

1

( , , ; ) log( ) ( ( ) ) ( ( ) )
p

k k k k

k

l np ψ
=

ψ = − πψ − − −∑Θ X Y y A Θ x y A Θ x  (2.A.17) 

and the most likely estimates of the parameters, given the data Y, are found as the 

parameter values which maximize l. We begin by maximizing with respect to X, or 

rather with respect to one of its component vectors xk. (We consider all the components 

of X to be independent complex variables.) Maximizing the real valued function l with 

respect to the complex vector xk requires setting the gradient of l with respect to either 

xk or xk* to zero (see [4] for example) i.e., omitting the indication of dependence on Θ  

for the moment, 

 ( )H ˆ
*

k k

k

l∂
ψ = − − =

∂
A y Ax 0

x
 

or ( ) 1
H Hˆ

k k

−
=x A A A y , (2.A.18) 

where the caret over a variable indicates the value that maximizes the likelihood with 

respect to that variable and [ ]T

1 2 . . . nx x x∂ ∂ = ∂ ∂ ∂ ∂ ∂ ∂x . (For complex 

variables, as the xk are here, the partial derivative, which treats xk* as an independent 

variable, is defined in [4]). 

Substituting the maximizing values ˆ
kx  for kx , we see that the factor k k−y Ax  becomes 
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H Hˆ ( ) ( )k k k k k k− = − = − =A Ay Ax y A A A A y I P y Q y , (2.A.19) 

where PA projects into the column space of A and QA projects orthogonally to this, into 

the null space of A. Substituting (2.A.18) and (2.A.19) into (2.A.17), and also using the 

relations  

 H = =2Q Q Q Q , (2.A.20) 

which hold for all projection matrices, we have, for the log likelihood function 

maximized with respect to the components of X, 

 
H1

( )

1

ˆ( , , ; ) log( )
p

k k

k

l np ψ
=

ψ = − πψ − ∑ A Θ
Θ X Y y Q y . (2.A.21) 

Now for any two matrices M and N whose product is square (i.e. such that the size of 

one is the same as the transpose of the other; or ,p q q p× ×∈ ∈M N� � ) we have the 

relation 

 tr(MN) = tr(NM) (2.A.22) 

where tr(.) indicates the trace of the matrix argument. With H

ky for M and kAQ y  for N 

(with dimensions 1×n and n×1 respectively) the summation in (2.A.21) becomes 

 

H H H

( ) ( ) ( )

1 1 1

H

( ) ( )

1

tr( ) tr( )

tr( ) tr( )

p p p

k k k k k k

k k k

p

k k

k

= = =

=

= =

= =

∑ ∑ ∑

∑

A Θ A Θ A Θ

A Θ A Θ Y

y Q y y Q y Q y y

Q y y Q R

 (2.A.23) 

where RY is the estimated covariance matrix of Y and is given by 

 

H
H H

1 2 1 2

1

. . . . . .
p

k k p p

k=

   = = =   ∑YR y y y y y y y y YY . (2.A.24) 

[More strictly we should define RY as YYH
/p, but omitting this scaling factor of p 

makes no difference to the problem of finding the peak of the likelihood function. In 

(2.A.23) we have used the linearity of the trace function: tr(A + B) = tr(A) + tr(B) so 

that tr(QA) + tr(QB) = tr(Q(A + B)) and also the fact that, for a scalar z, such as yHQy, 

tr(z) = z.] The log likelihood function, maximized with respect to all the elements of X 

is now given, from (2.A.21) and (2.A.23) by 

 1
( )

ˆ( , , ; ) (log log ) tr( )l np ψψ = − π + ψ − A Θ YΘ X Y Q R  (2.A.25) 
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We now maximize the log likelihood function with respect to the noise variance, ψ. 

Differentiating, 

 
2

l np S∂
= − +

∂ψ ψ ψ
  

where S is the trace quantity. The most likely value, ψ̂ , is that for which this slope is 

zero, giving a stationary point, and so we have ˆ S npψ = . Thus the likelihood function, 

maximized with respect to X and ψ is now  

 
( )tr( )

ˆˆ( , , ; ) log logl np np np
np

 
ψ = − π − − 

 

A Θ YQ R
Θ X Y . (2.A.26) 

The only part of the expression on the right hand side that depends on the parameters Θ  

is the trace factor. This is easily seen to be positive: 

            
2H H H H Htr( ) tr( ) tr( ) tr( ) tr( ) 0

kk
= = = = = >∑YQR QYY Y QY Y Q QY Z Z z  

if Z is not 0, where =Z QY (and zk is column k of Z) so l is real, as it should be for a 

probability. Because of the negative sign we see that l is maximized when  

 ( )( ) tr( )F = A Θ YΘ Q R  (2.A.27) 

 is minimized. Also, as = −Q I P , we have 

 ( ) ( )( ) tr(( ) ) tr( ) tr( )F = − = −A Θ Y Y A Θ YΘ I P R R P R   

so this is when  

 ( )( ) tr( )F = A Θ YΘ P R�   (2.A.28) 

is maximized. (As the contribution tr(RY) is independent of Θ  it can be ignored.) Thus 

the likelihood function to be maximized over all Θ  can be reduced to the simple form 

( )tr( )− A Θ YQ R or ( )tr( )A Θ YP R . 

(b) Coherent signals. 

From (2.A.16) we have, in this case, 

              ( ) ( )( )H
( , , ; ) log ( ) ( ) - ( ) - ( )

p
l np nvψψ = − πψ − +Θ s Y Y y A Θ s y A Θ s  (2.A.29) 

and, similarly to the non-coherent case, we maximize over the signal values, given by s 

in this case. Again we have  
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 ( )H ˆ
*

l∂
= − − =

∂
A y As 0

s
 

or ( ) 1
H Hˆ

−
=s A A A y . (2.A.30) 

Substituting in (2.A.29) and using (2.A.20) gives 

 ( )( )ˆ( , , ; ) log ( ) ( )
p H

l np nvψ Θψ = − πψ − + AΘ s Y Y y Q y ,  (2.A.31) 

then maximizing over ψ similarly gives 

 
( )( )

ˆ

H
nv

n

Θ+
ψ =

AY y Q y
 

and substituting in (2.A.31) gives 

 ( )( )ˆ ˆ( , , ; ) log ( ) log ( )
H

l np np v n npΘψ = − π − + −AΘ s Y Y y Q y . (2.A.32) 

This is maximized over Θ  when the term ( )( )log ( )
H

np v nΘ+ AY y Q y , which is 

subtracted, is minimized, and, as v(Y) is constant, this is when  

 ( )( ) H
F Θ= AΘ y Q y  (2.A.33) 

is minimized or when  

 ( )( ) H
F Θ= AΘ y P y�  (2.A.34) 

is maximized. The function F is essentially the basis of that used in the IMP 

(Incremental Multi-Parameter), AP (Alternating Projection) and DOSE (Direction Of 

Signal Estimation) algorithms, modified here for the radar, fixed target case. 

We note that in the case of a single data frame (p = 1) we put Y = y1 in the non-coherent 

case, (eq. (2.A.27)) to give  

          

H H H H

( ) ( ) ( ) 1 1 1 ( ) 1 1 ( ) 1( ) tr( ) tr( ) tr( ) tr( )F = = = = =A Θ Y A Θ A Θ A Θ A Θ
Θ Q R Q YY Q y y y Q y y Q y  

(as this last term is scalar, a 1×1 matrix). In the coherent case 1=y y , as there is only 

one frame to average, and we see from (2.A.33) that we have the same result. 
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APPENDIX 2B: OPTIMUM WEIGHT VECTORS 

2B.1 Maximum signal to noise ratio  

We take the case where there is only one signal present in n channels, with point source 

vector a0, and with independent noise in each channel but with equal strength in all 

channels. Let the sampled signal waveform, of length p, be x then the signal data matrix 

is X = a0x
T
 where n p×∈X � . The noise data matrix is n p×∈N � . Let the weights applied 

across the channels be w then the ‘beamformed’ signal waveform is given by TX w and 

the noise is TN w . The signal to noise ratio as a function of w is given by  

 

2 2
T H T HH

2 2 H H
T H

* * **
( )

* **
r = = = =

TT
0 0

T T

X w X w w a x x a ww XX w
w

w NN w w NN wN w N w
.(2.B.1) 

This is the signal to noise ratio with this particular set of signal and noise data, but we 

now approximate the estimated noise covariance matrix NNH
 by the actual covariance 

matrix, taken to be ψI as the noise is independent between channels and of the same 

variance ψ in all channels. Also 
2T * =x x x  and we can put 

2

0rψ =x , a basic signal 

to noise ratio. Thus we now have 

 
H

0

*
( )

*
r r=

T
0 0
T

w a a w
w

w w
. (2.B.2) 

To find the maximum signal to noise ratio (SNR) we set the gradient of r with respect to 

w to zero, using partial complex differentiation [4]. The gradient is zero when  

 
∂δ ∂ν

ν = δ
∂ ∂w w

 

where ν and δ are the numerator and denominator in (2.B.2) respectively. This gives 

  H H( *) * ( *) *=T T
0 0 0 0w a a w w w w a a w . 

Cancelling the scalar factor H *0a w  we have 

 
*

* k= =
T

0 0T
0

w w
w a a

w a
 (2.B.3) 

where k is a scalar factor. This can be ignored as rescaling w makes no difference to the 

SNR, as this will scale both noise and signal powers equally. Thus we see that setting w 

to a0* maximizes the SNR, for the case of uniform noise. (If we put, more generally, 
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NNH
 = Rn, the noise covariance matrix then we find w* = Rn

-1a0.) 

An alternative approach is to minimize the output noise subject to maintaining a fixed 

response to the signal, using the method of Lagrange undetermined multipliers. In this 

case the noise power is H *Tw NN w  or *ψ Tw w , replacing HNN by ψI, and the 

condition on the signal is that wTa0 should be constant, K. Thus the cost function to be 

minimized is given by 

 T T H

0 0( , *) * ( ) * ( * *)H K K= ψ +λ − + λ −w w w w w a w a  (2.B.4) 

where the last term is included to keep the cost function real. Differentiating with 

respect to w gives 

 
0

( , *)
*

H∂
= ψ −λ

∂

w w
w a

w
, (2.B.5) 

which is zero when w* is proportional to a0; the same result. 

2B.2 Maximum signal to noise ratio with nulls 

The second method of §A2.1 above can be extended to include a number of null points 

in the response by adding the conditions wTak = 0 (k = 1 to m) where the null PSVs are 

a1, a2, . . , am. Then the cost function becomes an extended form of that in (2.B.4) 

above:                          

T T H T H

0 0 0 0 1 1 1 1

T H T H

2 2 2 2

T T T H H

0 0 0 0

( , *) * ( ) *( * *) ( * *)

                       ( * *)  . . . ( * *)

                  * ( ) *( * *) * *,

m m m m

H K K

K K

= ψ +λ − + λ − − λ + λ

− λ + λ − − λ + λ

= ψ +λ − − + λ − −

w w w w w a w a w a w a

w a w a w a w a

w w w a w Aλ w a w A λ

 (2.B.6)  

where λλλλ = [λ1 λ2 . . . λm]
T
 and A = [a1 a 2 . . . a m]. Differentiating with respect to w, 

 
0 0

( , *)
*

H∂
= ψ − λ −

∂
w w

w a Aλ
w

 

so that the optimizing weight w0 is given by 

 [ ] 0

0 0 0 0* .
λ 

ψ = λ + =  
 

w a Aλ a A
λ

 (2.B.7) 

To find the multipliers λ0 and λλλλ we use the conditions T

0 K=w a  and T =w A 0 , which 

must also be satisfied by w0, or  

 [ ]T T

0 0 K =  w a A 0  (2.B.8) 
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and combining (2.B.7) and (2.B.8) in the form (taking the conjugate transpose of each 

side) 

 
H

0

0H

*
*

K   
=   
  

a
w

0A
 

we have 

 [ ]
H

00

0H

*
.

Kλ ψ     
=     

    

a
a A

λ 0A
 

Multiplying the two matrices containing PSVs we have, for the Lagrange multipliers 

 

1
H H

0 0 0 0

H H

0

*
.

K
−

 λ ψ   
=     

    

a a a A

λ 0A a A A
 (2.B.9)  

We now need the inverse of a partitioned square matrix, which is of the form 

 

1 1

1 1 1 1

− −

− − − −

 − 
=    − +   

A B Z ZBD

C D D CZ D D CZBD
 (2.B.10) 

where A and D are square and non-singular and Z is given by 1 1( )− −−A BD C . In this 

case we have 

1 H H H 1 H H H 1 H H H

0 0 0 0 0 0 0 0 0 0( ) ( ( ) ) ( )− − −= − = − = − =A AZ a a a A A A A a a I A A A A a a I P a a Q a
 (2.B.11) 

and this is a scalar factor. Substituting for C and D from (2.B.9), Z from (2.B.11), we 

have, from (2.B.7), (2.B.9) and (2.B.10),  

  [ ] H

0 0 0H 1 H

0

1 ** *
*

( ) **

K
−

   
=    −   

0 Aw a A a Q a
A A A a 0

        

 
H 1 H H

0 0 0 0 0*( ( ) ) ( )K k k
−= − = − =0 A A Aa A A A A a a Q a I P a Q a  (2.B.12)  

(where ** indicates values not needed and 
H

0 0*k K= Aa Q a , a scalar). Thus we have 

w0 proportional to * 0 *AQ a  as the weight vector which maximizes the SNR for a signal 

with PSV a0 while maintaining nulls to signals with PSVs given by the columns of A. 

APPENDIX 2C:  MULTIDIMENSIONAL CRAMÉR-RAO BOUND 

The CRB matrix, which is the covariance matrix of the parameter estimates, is given by  

 −= 1B F   (2.C.1) 



 69

where F is the Fisher information matrix (FIM), given by 

 
H=F vv .  (2.C.2) 

where the angular brackets indicate the expectation value of the expression contained, 

and v is the score vector, given by the derivative of the log likelihood function, l, with 

respect to all the parameters of interest. For the general case (not assuming the 

waveforms are coherent, as in the radar case with fixed targets) these are the noise 

variance, ψ, the mp elements of the signal waveform data, X ( m p×∈X � ) and the mq 

parameters contained in ΘΘΘΘ ( m q×∈Θ � ), where there are q parameters for each of the m 

sources. Thus the score vector is 

 

T

1

. . . . . . 
* *

p p q

l l l l l l l ∂ ∂ ∂ ∂ ∂ ∂ ∂
=  

∂ψ ∂ ∂ ∂ ∂ ∂ ∂  1 1

v
x x x x θ θθ θθ θθ θ

. (2.C.3) 

Here xj is column j of X, and contains the samples of the m signal waveforms at time 

sample j, and similarly θθθθk is column k of ΘΘΘΘ, and is the set of m target parameters in 

dimension k e.g. azimuth, elevation or range.  (v is a column vector of 1 + 2mp + mq 

components, and, strictly, all the derivatives with respect to vectors are column vectors 

and should have an indication of transpose; this is omitted to avoid making the 

expression too cluttered.)  

[As the elements of X are complex and each contains two degrees of freedom, we have 

two parameters for each signal sample and we take these to be the sample value and its 

conjugate, rather than the real and imaginary parts. This choice is equivalent, as the 

variables of each complex conjugate pair are independent, in the sense of partial 

differentiation, as made clear in [4], and we can use complex differentiation, rather than 

separate real differentiation with respect to the real and imaginary parts. If we 

particularly wanted the real and imaginary parts as parameters then, putting x1 = u1 + 

iv1, where u1 and v1 are real vectors, we could replace 
l∂

∂ 1x
 and 

*

l∂
∂ 1x

 by 
l∂

∂ 1u
 and 

l∂
∂ 1v

etc. (This is the approach taken in [42]). We can obtain the derivatives with respect 

to x1 . . . xp and x1* . . . xp* then use
*

l l l∂ ∂ ∂
= +

∂ ∂ ∂u x x
 and ( )

*

l l l
i

∂ ∂ ∂
= −

∂ ∂ ∂v x x
. These 

expressions follow from 
1

2

f f f
i

z x y

 ∂ ∂ ∂
= − ∂ ∂ ∂ 

 and
1

* 2

f f f
i

z x y

 ∂ ∂ ∂
= + ∂ ∂ ∂ 

, where z = x + iy, 
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see [4]. However, here we are really concerned with the lower bound on the variances 

of the parameters other than the waveform amplitudes, so it is simplest just to leave the 

score vector in the form of (2.C.3) above.] 

From Appendix 2A, equation (2.A.17) we have, for the log likelihood function, 

 
H1

1

( , , ; ) log( ) ( ( ) ) ( ( ) )
p

j j j j

j

l np ψ
=

ψ = − πψ − − −∑Θ X Y y A Θ x y A Θ x (2.C.4) 

where, from (2.A.5), we replace ( )j j−y A Θ x by nj when convenient, i.e. when we are 

not performing partial differentiation with respect to any of the variables in ΘΘΘΘ or X. 

Thus we have 

 
H H

1 1

( ( ) ) ( ( ) )
p p

j j j j j j

j j

N
= =

= − − =∑ ∑y A Θ x y A Θ x n n  (2.C.5) 

The components of the score vector are then given (omitting the indication of the 

dependence of A on ΘΘΘΘ  for the moment) by 

 

H

1

2 2

p

j j

jl np N np =∂
= − + = − +

∂ψ ψ ψψ ψ

∑n n

 (2.C.6) 

 
H1 1

* *
j

j j

l N∂ ∂
= − =

∂ ψ ∂ ψ
A n

x x
 and 

T1
*

j

j

l∂
=

∂ ψ
A n

x
 (2.C.7) 

 ( )H T

1

1
* *

p

j k j j k j

jk

l

=

∂
= +

∂ ψ∑ X D n X D n
θ

 (2.C.8) 

where Xj = diag(xj), i.e. Xj is an m×m matrix with its non-zero elements on the principal 

diagonal, formed from the elements of xj, and Dk is an n×m matrix given by 

 2

1 2

. . . m

k

k k mk

 ∂∂ ∂
=  ∂θ ∂θ ∂θ 

1 aa a
D .           (k = 1 to q) (2.C.9) 

[To form (2.C.8) we note that 

H H

H

1

( ) ( )1 1 p
j j

j j

jk k k k

l N

=µ µ µ µ

 ∂ ∂∂ ∂
= − = +  ∂θ ψ ∂θ ψ ∂θ ∂θ 

∑
x A Ax

n n  

and 

 

H H H

H H H H

1 1 2 2

( )
( * *  . . . + * ) * * ( )

j

j j mj m j j k

k k k

x x x x x
µ

µ µ µ
µ µ µ

∂ ∂∂
= + + = =

∂θ ∂θ ∂θ

x A a
a a a d  
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where kµd  is column µ of Dk, whose columns are the derivatives of the m columns of A 

with respect to parameter k for the signal represented by each column. Then we have 

 

H

1 1

H

2 2

H H

H

H

*( )

* ( )

( ) .
*

.

.

* ( )

j k

j k

j

j k

k

mj mk

x

x

x

 
 
 
 ∂

= = 
∂  

 
 
  

d

d

x A
X D

θ

d

. 

We also note that nj
HAxj is a scalar and so can be written as its transpose, which is 

xj
TATnj*, and xj

TAT
 is the conjugate of xj

HAH
. Combining these results leads to (2.C.8).] 

From (2.C.2) we see that to form the Fisher information matrix, F, we need the 

expectation values of all the products of the elements of the score vector, v.  Using 

result R1 from Appendix E of [42], (〈nj
Hnjnh

Hnh〉 = n(n+δhj)ψ
2
) on the expectation 

values of Gaussian noise products (we have already assumed the noise is distributed as 

a complex Gaussian variable in forming the likelihood function) we obtain 

 

H H H
2 2

1 1 1

2 4
2

p p p

j j j j h h

j j hl np np = = =   ∂
= − +   ∂ψ ψ ψ ψ ψ   

∑ ∑∑n n n n n n

 

    

2 2 2 2

2 4 2

( 1) ( 1)
2

np np pn p p n pn n np  ψ − ψ + + ψ
= − + = ψ ψ ψ ψ ψ 

. (2.C.10) 

Using R2 from Appendix E of [42], (〈nh
Hnhnj

T〉 = 0), we have 

 

H
T T

1

12

*

*

p

h h
jh

m

j

l l np =
×

 
  ∂ ∂  = − + =  ∂ψ ∂ ψ ψψ  
 
 

∑n n n A
0

x
 (2.C.11a) 

(as 〈nj
T

 〉= 0 for zero mean noise waveforms). Also, as l∂ ∂ψ is real, we have 

 

H T

1
*

m

j j

l l l l
×

   ∂ ∂ ∂ ∂
= =      ∂ψ ∂ ∂ψ ∂   

0
x x

. (2.C.11b) 

Similarly, with 
H*j kX D and

T

j kX D replacing AH
 and AT

, we find 
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 1m

k

l l
×

 ∂ ∂
= ∂ψ ∂ 

0
θ

. (2.C.12) 

Also 

 

H

T T T

2

1 1
* * *h j hj

h j

l l∂ ∂
= = δ

∂ ∂ ψψ
A n n A A A

x x
 (2.C.13a) 

and 

 

H

H H

2

1 1

* *
h j hj

h j

l l∂ ∂
= = δ

∂ ∂ ψψ
A n n A A A

x x
 (2.C.13b) 

using 〈nµj*nνj〉 = ψδµν, so that 〈nj*nj
T〉 = 〈njnj

H〉 = ψI, and 〈nhnj
T〉 = 〈nh*nj

H〉 = 0 (h ≠ j) 

as the noise in different channels is taken to be uncorrelated. Also with the reasonable 

assumption that 〈nhnj
T〉 = 0 we have 

 

H H

H T

2

1
*

* *
h j m m

h j h j

l l l l
×

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ψ
A n n A 0

x x x x
. (2.C.14) 

From (2.C.7) and (2.C.8) (and with the results above on the expectation of noise 

products) 

                      

( )
H

T H T T H T H

2
1

1 1
* * *

p

h j k j j k j k j

jj k

l l

=

∂ ∂
= + =

∂ ∂ ψψ ∑A n n D X n D X A D X
x θ

 (2.C.15a) 

and, taking the conjugate (noting that kl∂ ∂θ is real) 

 ( )
H

H H T T H H T

2
1

1 1
*

*

p

h j k j j k j k j

jj k

l l

=

∂ ∂
= + =

∂ ∂ ψψ ∑A n n D X n D X A D X
x θ

. (2.C.15b) 

Finally, 

( ) ( )
H

H T H T T H

2
1 1

1
* * *

p p

i h i i h i j k j j k j

i jh k

l l

= =

∂ ∂
= + +

∂ ∂ ψ ∑ ∑X D n X D n n D X n D X
θ θ

 

              ( )H T T H

1

1
* *

p

j h k j j h k j

j=

= +
ψ∑ X D D X X D D X . (2.C.16) 

As Xj is diagonal we have XT
 = X and XH

 = X* and we include these results in applying 

(2.C.15) and (2.C.16) below. From (2.C.2) and the results (2.C.10) to (2.C.16) we 
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obtain 

 
1

1

T H

1

* *

np
mp mp mq

mp mp mp

mp mp mp

mq

ψ × × ×

× ×

× ×

×

 
 
 =
 ψ
 

+  

1 1 1

H

0 0 0

0 G 0 H1
F

0 0 G H

0 H H K K

 (2.C.17) 

where G, H and K are all of the form of blocks of m×m submatrices. G is p×p block 

diagonal, with its m×m blocks given by AHA. (We could put p= HG A A I� , where the 

symbol indicates the Kronecker product, where each element in the second matrix in the 

product is multiplied by the first matrix.) H is a p×q block matrix, with the jk block 

being given by 
H

jk k j=H A D X  and K is a q×q block matrix, with the hk block being 

given by H

1

*
p

hk j h k j

j=

=∑K X D D X . We now need the inverse of F to obtain the Cramér-

Rao bound covariance matrix B (see (2.C.1)). First we put F in the form  

 
1

1

np
mp mq

mp

mq

ψ × ×

×

×

 
 

=  ψ   

1 2 1

2
H

0 0
1

F 0 U V

0 V W

 (2.C.18) 

where 
* *

,  and *
mp mp

mp mp

×

×

   
= = = +   

  

G 0 H
U V W K K

0 G H
. Then the CRB matrix is 

given by 

 

np
ψ

−

 
 = = ψ  
  

1

H

0 0

B F 0 X Y

0 Y Z

 (2.C.19) 

with 

1−
   

=   
   

H H

X Y U V

Y Z V W
. 

Now we are not particularly interested in the values of X, the covariances of the 

complex signal amplitude samples, and even less in Y, the covariances of the signal 

amplitudes with the target parameters. We are interested in the covariances of the signal 

parameters, contained in Z, and generally only in the variances of the parameters (rather 

than the covariances of pairs of parameters) which are on the diagonal of Z. The inverse 

of the U-V-W matrix can be found by performing operations on it which reduce it to the 

identity, while applying the same operations to an identity matrix, to produce the 
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inverse. We find that  

 Error! Objects cannot be created from editing field codes.. (2.C.20) 

Substituting for U and V we find   

 
1

1 H H H
**

( ) *
−

− − −

−

   
 = = +    

  

H T 1 1

1

HG 0
V U V H H H G H H G H

H0 G
 (2.C.21) 

and then also substituting for W in (2.C.20) we obtain 

 1 H H H( ) ( )* 2Re( )− − − −= − + − = −1 1 1Z K H G H K H G H K H G H . (2.C.22) 

From the definition above of the blocks of H we have  

 

2

2 2 2 2 2

2

.  .  . 

.  .  .

. . . .

. . .  .  . . .

. . . .

.  .  .

q

q

p p q p p

   
   
   
   

= =   
   
   
   
      

H H H H
1 1 1 1 1

H H H H
1

H H H H
1

A D X A D X A D X A ∆

A D X A D X A D X A ∆

H

A D X A D X A D X A ∆

 (2.C.23) 

where 

 1 2
. . .

j j j q j
 =  ∆ D X D X D X . (2.C.24) 

We note that H is mp×mq or p×q in blocks of size m×m, and ∆∆∆∆j is n×mq or 1×q in blocks 

(of size n×m).  Recalling that G is block diagonal, and is of size p×p in blocks and G-1
 is 

similarly block diagonal with diagonal blocks (AHA)
-1

, we find 

H1
1

H1
2

H H H H

1 2

H1

( ) . . .

( ) . . .

.. . .
. . .

.. . . . . .

.. . .

. . . ( )

p

p

−

−

−

−

  
  
  
  

 =    
  
  
  
     

H

H

1

H

A ∆A A 0 0

A ∆0 A A 0

H G H ∆ A ∆ A ∆ A

A ∆0 0 A A

 

 H 1 H H

1 1

( )
p p

j j j j

j j

−

= =

= =∑ ∑H
A∆ A A A A ∆ ∆ P ∆  (2.C.25) 

where PA = A(AHA)
-1AH

 projects into the column space of A. Now, from the definitions 
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of K and ∆∆∆∆, we see that H

1

p

j j

j=

=∑K ∆ ∆ , so we have 

 
H H H H

1 1 1

( )
p p p

j j j j j j

j j j

−

= = =

− = − = −∑ ∑ ∑1
A A AK H G H ∆ ∆ ∆ P ∆ ∆ I P ∆  

  
H

1

p

j j

j=

=∑ A∆ Q ∆ , (2.C.26) 

where QA = I – PA projects into the null space of A. From (2.C.19), (2.C.22) and 

(2.C.26) we see that the CRB matrix for the q parameters of each of the m sources (mq 

parameters in total) is given by 

 

1

H

1

( ) Re( )
2

p

j j

j

−

=

 ψ
= ψ =  

 
∑ AB Θ Z ∆ Q ∆ . (2.C.27) 

A problem with this expression is that the mp signal samples appear in it (samples of 

each of the m waveforms, appearing in the p ∆∆∆∆j matrices). From the definition of ∆∆∆∆j in 

(2.C.24) we see that 
H

j jA∆ Q ∆  is of size q×q in blocks (of size m×m) and so also is 

H

1

p

j j

j=
∑ A∆ Q ∆ . Now block hk of this matrix is given by 

 H H

1 1 1

* *
p p p

j j j h k j j j

j j jhk= = =

 
= = 

 
∑ ∑ ∑A A∆ Q ∆ X D Q D X X EX  (2.C.28) 

where we have defined 
H

h kAD Q D as E temporarily for clarity. Now we consider the ab 

element of this m×m matrix, recalling that Xj is diagonal, given by diag(xj) where xj is 

column j of the m×p signal waveform matrix X. This element is given by 

 
1 1 1

* * ( ) ( ) * ( ) ( *)
p p p

j j aj ab bj ab aj bj ab ab

j j jab

x x x x p
= = =

 
= = = 

 
∑ ∑ ∑X EX E E E S�  (2.C.29) 

where S�  is the estimated covariance matrix of the signal waveforms and is given by 

 H H

1

p

j j

j

p p
=

= =∑S XX x x� . (2.C.30) 

In the limit of large p, the number of frames taken, S�  becomes the actual covariance 

matrix, S and in the case of uncorrelated signals S becomes diagonal, with the signal 

powers on the diagonal. We note in (2.C.29) that we have the element by element (or 

Hadamard) product of two matrices, which we denote by � so that we now have 
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1

* *
p

j j

j

p
=

=∑X EX E S��  and so  

 H H

1

*
p

j j h k

j hk

p
=

 
= 

 
∑ A A∆ Q ∆ D Q D S�� . (2.C.31) 

As every block in H

1

p

j j

j=
∑ A∆ Q ∆  forms a Hadamard product with *S�  we can put, 

formally, 

 ( ) 1
H( ) Re[ ( * )]

2
q q

p

−ψ
= T

AB Θ D Q D S 1 1�� � , (2.C.32) 

where 1q1q
T
 is a q×q matrix of ones (1q is a vector of q ones) and *

q q

TS 1 1� � is a mq×mq 

matrix with *S�  replacing each unit element. We have also put 

1 2
. . .

q
 =  D D D D , which is of size n×mq. (NB: We note that, as S�  is 

Hermitian, we can put TS� instead of *S�  if preferred.) 

APPENDIX 2D: SPECIAL CASES OF THE CRB 

The expressions (2.C.27) and (2.C.32) given in Appendix C for the Cramér-Rao bound 

for the source parameter estimates (not including the signal waveform sample values or 

the receiver noise variance value) in the general case of m sources with q parameters 

each, are difficult to take further in a general theoretical form. For example, we cannot 

obtain simple expressions for the diagonal values, which, being the variances of the 

parameter estimates, are the main values of interest, because these are only found after 

performing an inverse of a matrix of substantial size - mq×mq. If the various system 

parameters in this matrix (ψ, p, A, D1 to Dq and S� , or S) are known or estimated then 

these values could be substituted and the CRB matrix evaluated numerically quite 

easily, for a given case, but this is not a general solution. However, we can obtain some 

useful forms for the particular cases below. 

2D.1 One source, one parameter 

In this case we have m = 1 and q = 1, so that the matrix of point source vectors can be 

written, as m = 1, A = a 1n×∈�  and, as q = 1, there is only one derivative of A, so 

1n×= = ∈D D d � . Also S�  is of size 1×1 so can be written s� , where s�  is the mean 

square value of the source waveform and, in the limit of large p, approaches the power 
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level of this source. With these definitions we note that 
H H=A aD Q D d Q d is a real 

scalar, and so is * *
q q

s s= =TS 1 1� � ��  and we have, in this case, 

  
H

( )
2

b
ps

ψ
θ =

ad Q d�
. (2.D.1)  

(b is a scalar value, the lower bound on the variance on the estimate of the single 

parameter, θ). We note that s� ψ  is an estimate of the single channel signal to noise 

ratio and that ps� ψ  is the integrated estimated signal to noise ratio, being improved by 

taking p frames of data. 

2D.2 One source, two parameters 

With two parameters but only one source we have [ ] [ ]1 2= =1 2D D D d d , where 

r

r

∂
=

∂θ
a

d , and (2.C.32) can be written, using 

H H

H 1 1 1 2

H H

2 1 2 2

 
=  
 

a a
A

a a

d Q d d Q d
D Q D

d Q d d Q d
,     

 

1
H H

1 1 1 2

H H

2 1 2 2

( ) Re
2

s s

p s s

−
  ψ

=      

a a

a a

d Q d d Q d
B θ

d Q d d Q d

� �

� �
.  

  

1
H H

1 1 1 2

H H

2 1 2 2

Re( )

2 Re( )ps

−
  ψ

=      

a a

a a

d Q d d Q d

d Q d d Q d�
 (2.D.2) 

If we put k12 = Re(d1
H
 Qad2) = Re(d2

HQad1) (as d2
HQad1 = (d1

HQad2)
H
 = (d1

HQad2)*) 

and krr =  dr
HQadr (r = 1,2) and invert the 2×2 matrix, we obtain 

 

1

11 12 22 12

12 22 12 11

( ) det
2 2

k k k k

k k k kps ps

−
  −   ψ ψ

= =    −    
B θ

� �
 

where det is the determinant of the matrix and s�  is the mean square value of the signal 

samples (or power estimate) as given in §2D.1. If we now put 

               ( )2 2
11 22 12 11 22 12 11 22 11 22det (1 ) (1 )k k k k k k k k k k= − = − = − λ  

then we have 

 

1 1

11 12

1 1

12 22

( ) (1 )
2

k k

ps k k

− −

− −

−λψ
= − λ

−λ

 
 
 

B θ
�

  



 78

 
( ) ( )
( ) ( )

1 1
H

1 1
H H

H

1 1 1 2

1 2 2 2

Re(
(1 )

2 Re(

)

)ps

− −

− −

−λψ
= − λ

−λ

 
 
  

a a

a a

d Q d d Q d

d Q d d Q d�
 (2.D.3) 

where 2 H 2 H H

12 11 22 1 2 1 1 2 2(Re( ))k k kλ = = a a ad Q d d Q d d Q d . (2.D.4) 

We see, from the diagonal terms, that the lower bounds on the variances of the estimates 

of the two parameters, θ1 and θ2, are the same as for the single parameters separately, 

given in (2.D.1), except for the factor (1 – λ)
-1

, which increases the values (0 ≤ λ < 1, 

from the Schwarz inequality). In fact if, as can be the case, d1 and d2 are orthogonal to a 

then applying Qa will leave them unchanged, and if d1 and d2 are also orthogonal to 

each other then k12 and λ are zero, in which case the bounds are the same as in the single 

parameter case. (We certainly have Re(aHdµ) = 0, though not necessarily aHdµ = 0, i.e. 

the imaginary part of aHdµ is not zero, in general.) This expression shows that, 

depending on the precise geometry of the data gathering system, there can be some 

interaction when estimating two (or more) parameters, but this interaction, if the 

parameters are sufficiently independent, can be small. 

[NB d1 and d2 here differ from d1 and d2 in §2D.3 below: here they represent d11 and 

d12, the derivatives of the (only) target vector a1 (where the first suffix 1 is dropped) 

while in the section below they represent d11 and d21, the derivatives of the two source 

vectors with respect to the (only) parameter (and in this case the second suffix 1 is 

dropped)]. 

2D.3 Two sources, one parameter 

This is the case of particular interest in relation to resolving two sources in one 

parameter. In this case m = 2 and q = 1, so that [ ] 2n×= ∈1 2A a a �  and 

[ ] 2n×= = ∈1 2D D d d � , where 
µ

µ

∂
=

∂θ

a
d . (Note the comment on d1 and d2 at the end 

of the previous section.) The covariance matrix is again 2×2 (mq×mq) and so is the 

covariance matrix of the source waveforms, S� , so, also replacing Qa by QA, we have, 

instead of (2.D.2), 

  

1
H H

1 1 11 1 2 12

H H

2 1 21 2 2 22

( ) Re
2

s s

p s s

−
  ψ

=      

A A

A A

d Q d d Q d
B θ

d Q d d Q d

� �

� �
. (2.D.5) 

Now 21 12
*s s=� �  so 

H H

2 1 21 1 2 12( ) *s s=A Ad Q d d Q d� � , and performing the matrix inverse in a 

similar way to that above we obtain 
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1 1

11 12

1 1

12 22

(1 )
2

( )
k k

p k k

− −

− −

−λψ
− λ

−λ
=

 
 
 

B θ   

 
( ) ( )

( ) ( )

1 1
H H

1 1 11 1 2 12

1 1
H H

1 2 12 2 2 22

Re(
(1 )

2 Re(

)

)

s s

p s s

− −

− −

−λψ
= − λ

−λ

 
 
  

A A

A A

d Q d d Q d

d Q d d Q d

� �

� �

 (2.D.6) 

where here 
HRe( )jk j k jkk s= Ad Q d �  and λ is k12

2
/k11k22 as before (see (2.D.4)), with the 

modified k definitions. (Note that as rrs�  is real, H

r r rrsAd Q d �  is also real.)  

2D.4 Multiple non-coherent sources, two parameters, high integration 

As there are just two parameters we have A = [a1 a2 . . . am] and [ ]= 1 2D D D , where 

[ ]1 2 . .k k k mk=D d d d  for parameter k (k = 1,2) and r
rk

rk

∂
=

∂θ
a

d , for source r and 

parameter k. From (2.C.32) we have, in this case 

 [ ]
1

H

1

1 2H

2

1 1
( ) Re ( )

1 12 p

−
     ψ  

=            
A

D
B Θ Q D D S

D
� � . (2.D.7) 

or 

 

1
H H

1 1 1 2

H H

2 1 2 2

( ) Re
2 p

−
  ψ

=      

A A

A A

D Q D S D Q D S
B Θ

D Q D S D Q D S

� �

� �
 (2.D.8) 

(We note S is real and of size m×m, Dk is of size n×m and QA is n×n.) We see that the 

matrix inside the brackets is of 2×2 block form with blocks of the form 
H

j kAD Q D S�  

where the symbol indicates element by element multiplication.  

In the case of high integration we approximate S� , given in (2.C.30) as an average over a 

finite number of samples, p, by the actual signal covariance matrix. This gives the signal 

powers on the diagonal and, if we assume the signals are independent, the off-diagonal 

covariance values are zero. Thus we have, for the case of m 

sources,

2

0 . . 0

0 . . .

. . . . .

. . . . .

0 . . . m

s

s

s

 
 
 
 =
 
 
  

1

S , where sr is the power of signal r (at the point where the 

noise level is ψ). As S is diagonal (and real), it follows that the block is diagonal also, 
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with diagonal element r given by 
H

rj rk rsAd Q d .  Thus we have 

  

1

( )
2 p

−
  ψ

=   
  

W X
B Θ

Y Z
 (2.D.8) 

where W = diag(w), etc., and 

 
( )

H H H

1 1 1 2 2 2

H H

2 1 1 2

,   , 

Re( ) Re ( )*

r r r r r r r r r r r r

r r r r r r r r

w s x s z s

y s s x

= = =

= = =

A A A

A A

d Q d d Q d d Q d

d Q d d Q d
. (2.D.9) 

The 2×2 matrix of m×m blocks in (2.D.8) can be inverted to give 

 
( )

( )

1
1

1
1

*
( )

2 *p

−−

−−

 −ψ  =
 −  

W XZ Y
B Θ

Z YW X
 (2.D.10) 

where we ignore the off-diagonal blocks as we are only really interested in the variances 

of the parameters (rather than the covariances of parameters, both of parameters, such as 

azimuth and elevation, of the same source (e.g. of α1 and ε1) and of different sources 

(e.g. of α1 and α2 or α1 and ε2)), which are to be found on the diagonals of the diagonal 

blocks. As we noted above, all the blocks are themselves diagonal which makes their 

inverses simply to find – we just replace the diagonal elements by their reciprocals – 

and their products are simply the element-by-element products of the diagonal elements. 

Thus the rth diagonal element of the first diagonal block in (2.D.10) is given by 

11

1

r

r r r r r r r r

w

w x y z x y w z
=

− −
 and the result for the second block is 

11

1

r

r r r r r r r r

z

z x y w x y w z
=

− −
. Thus we can put 

 
( ) *

( )
* ( )2

diag

diagp

 ψ
=  

 

u
B Θ

v
 (2.D.11)  

where u is an m-vector containing the CRB bounds on the variances of the estimates of 

the first parameter for the m sources and v contains those for the second parameter. For 

source r we have  

 ( ) 1
H

1 1
(1 )

r r r r r
u s

−
= − µAd Q d   and  ( ) 1

H

2 2
(1 )

r r r r r
v s

−
= − µAd Q d , (2.D.12) 

using (2.D.9) , where 
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( )2

H

1 2

H H

1 1 2 2

Re( )r r

r

r r r r

µ =
A

A A

d Q d

d Q d d Q d
, (2.D.13) 

and µr can be seen to be less than unity by the Schwarz inequality. 

This is a result which seems intuitively satisfactory. Without the factor 1-µr, ur and vr 

are the values expected from signals without any interaction; the results correspond to 

those of the single target case. The factor (1-µr)
-1

 increases the bounds on the variances, 

as might be expected due to the mutual interference of the signals. 

If we reorder the parameters, instead of α1, α2, . . . αm, ε1, ε2, . . . εm, into the form α1, 

ε1, α2, ε2, . . . αm, εm, then we can put (2.D.7) in the form 

 

1

11 12 1

21 22 2

1 2

.  .  .

.  .  .

. . .  .  . . 1 1
( ) Re{ ( )}

. . .  .  . . 1 12

. . .  .  . .

.  .  .

m

m

m m mm

p

−
  
  
  
    ψ

=     
    
  
      

M M M

M M M

B Θ S

M M M

� �  

           

1

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

.  .  .

.  .  .

. . .  .  . .
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. . .  .  . .2

. . .  .  . .

.  .  .

m m
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s s s

s s s

p

s s s

−
  
  
  
  ψ

=   
  
  
      

M M M
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� � �

� � �
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 (2.D.14) 

where the 2×2 blocks Mrs are given by 

 

H H

1 1 1 2

H H

2 1 2 2

r s r s

rs

r s r s

 
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 

A A

A A

d Q d d Q d
M

d Q d d Q d
 (2.D.15) 

and  
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     
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�
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In the case of high integration, with noncoherent signals S is diagonal and we replace 

rrs� by the power level sr, which is real. In this case  

 

1

11 1

22 2

.  .  .

.  .  .

. . .  .  . .
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. . .  .  . .2
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 
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 (2.D.16) 

with a slight change in notation so that we have, now, 

 

H H

1 1 1 2

H H

2 1 2 2

Re( )

Re( )

r r r r

rr

r r r r

 
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 

A A

A A

d Q d d Q d
M

d Q d d Q d
. (2.D.17) 

Performing the inverse of Mrr (using 

1
1

(1 )
1

a b a c

c d b d

−
−µ   

= − µ   −µ   
, with 

bc adµ = ) we see that the diagonal components of the 2-parameter CRB covariance 

matrix for target r are the same as given in (2.D.12) and (2.D.13). 

2D.5 Two non-coherent sources, two angle parameters, high integration 

In this case we have parameters α and ε (q = 2) for two targets (m = 2), or 4 parameters 

in total. We put 1αa for 11d  and 1εa for 12d , and similarly for 2kd  (recalling that 

r
rk

rk

∂
=

∂θ
a

d , putting θ1 = α, θ2 = ε, and using the notation of Chapter 3: 

,  r r
r r

r r

α ε

∂ ∂
= =

∂α ∂ε
a a

a a ). With this notation in (2.D.15), (2.D.12) and (2.D.13) we find 

that the CRB for the parameters of target r is given by 
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H H

H H
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( , )

2 Re( )

r r r r

r r

r r r r r
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−

α α α ε

ε α ε ε

 ψ
α ε =  

 

A A

A A

a Q a a Q a
B

a Q a a Q a
 (2.D.18) 

or, more conveniently, for target r, the variances of the estimated parameters are 
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( ) 1

H

var( )
2 (1 )

r r

r

r rps

−

α αψ
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− µ
Aa Q a

 and 
( ) 1

H

var( )
2 (1 )

r r

r
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−

ε εψ
ε =

− µ
Aa Q a

 (2.D.19) 

where 

 
( )2

H

H H

Re( )
r r

r

r r r r

α ε

α α ε ε

µ =
A

A A

a Q a

a Q a a Q a
.      ( {1,2})r ∈  (2.D.20) 
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Chapter 3:  Study of DF accuracy with element gain errors  

3.1  INTRODUCTION 

We consider here the effect of receiver channel errors on the performance of an array 

used for direction finding on one or more targets. Although superresolution systems use 

more complex processing when multiple signals are present, these methods are 

essentially extensions of the beamforming method, and in the single signal case, 

considered in Sections 3.2 and 3.3 of this chapter, reduce to simple beamforming. For 

example, in this case MUSIC gives a single principal eigenvector, which is (apart from 

corruption by noise) the point source response vector (PSV) for the target. In this case 

the MUSIC scan is as for simple beamforming. The vector is, of course, the actual 

target PSV, which will generally differ slightly from the stored value from the sampled 

manifold, whether this manifold vector is obtained by calculation from the array 

geometry, by calibration of the array, or by a combination of these methods (such as 

interpolated calibration). In the case of IMP the first scan also is a simple beamforming 

scan, and this will find the signal when there is only one present. For linear arrays, 

considered in Section 3.2, the scan is only over one dimension, but the argument here is 

general and applies for more complex systems, for example planar arrays with two-

dimensional scans, in azimuth and elevation, as in Sections 3.3 and 3.4. In Section 3.4 

we obtain a rather general expression for the DF errors on multiple targets which is then 

developed into a more practical form for the specific case of two targets. 

The difference between the stored set of values for the target PSV and the actual values 

is the error vector, and here it is assumed that some estimated (or statistical) value of 

this error is available, for the vector components. We ignore the effect of receiver noise 

on the performance (effectively taking a very high integrated S/N value) and consider 

that the only limitation on the performance is that due to the complex gain errors. We 

take a statistical approach, modelling the errors in phase and amplitude in each element 

gain as samples from independent zero mean distributions of given variances. We first 

obtain an explicit expression for the error in the angle estimate due to a specific set of 

errors in the channel gains (i.e. in the stored value of the PSV), then find the standard 

deviation of the angle error estimates in terms of the standard deviation of the gain 

errors. Generally we take the ideal array to be of identical elements with equal parallel 

patterns (i.e. all with the same gain in any given direction, though the patterns need not 

be omnidirectional). However, in §3.3.4 we show how the theory can be made to 

include the case of more general element patterns, with different gains to the targets. 
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The simulation results given in §3.3.5 confirm these expressions. 

It is important to distinguish between the meaning, or significance, of the statistical 

results obtained for the case of channel errors in contrast to the case where the 

measurement errors are caused by a limited signal to noise ratio. In the latter case the 

angle estimation errors will be different every time estimates are made of target angular 

positions (even in stationary conditions) – as the noise perturbing the measurements will 

be different each time. In the case where channel errors are the only significant 

limitation on the accuracy, as a given array will have a certain fixed set of errors the 

estimation errors will be the same each time. However, this does not help the user, as he 

does not know what the estimation errors actually are or what the channel errors are. (If 

they were known then the PSVs would be corrected and the errors would be 

eliminated.) We take as the model here that the user knows, or has a good estimate of, 

the variance (or equivalently its square root, the standard deviation) of the channel 

errors. Then we relate the statistics (the variance, or s.d.) of the angle estimation errors 

to the statistics of the channel errors. These statistics in effect relate to a large ensemble 

of identical arrays except for their randomly chosen channel errors. Then we can say 

that a given array is one sample of this ensemble and the error from this array, although 

in principle deterministic, given the actual channel errors, can only be described in 

statistical form, as the channel errors are unknown up to a given variance. (With this 

statistical error model we are not including the case of failure of an element or of a 

signal channel. Clearly this would be a valid subject for study but would require a rather 

different approach. In practice the case might be tackled by detecting the failure and 

proceeding to use the remaining array of n – 1 elements, with PSVs of length n – 1, 

excluding the responses of the failed element.)  

If a(θ) is the normalized PSV for angle θ and a(φ) is the normalized vector for the 

target, in direction φ, then the beamforming function in the single target case is given 

(within a constant scaling factor) by  

  
2

H( ) ( ) ( )f θ = θ φa a . (3.1.1) 

(NB: θ and φ may be considered 2-dimensional, in general, specified in azimuth α and 

elevation ε.) 

By the Schwarz inequality for inner products we have 
2 2 2H( ) ( ) ( ) ( )θ φ ≤ θ φa a a a , 

with equality only when a(θ) = a(φ), which, unless there are exact ambiguities (i.e. a(θ1) 
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=  a(θ2) for some pairs  (θ1,θ2) where θ1 ≠ θ2), implies θ = φ. Thus f is a maximum when 

θ = φ, as required, and the maximum value is 1, using normalized vectors. This is for 

the case of no errors, where the set of manifold vectors is exact for all signal directions 

(or at least for all the directions for which the manifold vectors are specified). In 

practice this will not be the case and there will be a difference between the target PSV 

for the target direction φ and the stored manifold vector for this direction. It is 

convenient to consider the target PSV to be in ‘error’ with respect to the manifold 

vector, though the converse is more accurate, but the effect is equivalent. Here we 

determine an expression for the error in the angle estimate which results from a small 

vector error ∆a between the stored manifold vector and the target PSV. We suppose that 

the components of ∆a are taken from distributions of given variance and zero mean. 

The error model for the components of the element gains is given in more detail in 

Appendix 3.1A. 

In the simulations, quoted in §3.2.4, §3.3.3, §3.3.5 and §3.4.6 below, which were used 

to confirm the theoretical expressions, the channel errors were added to the single target 

vector (or vectors, in §3.4), rather than to the array manifold vectors (or point response 

vectors, PSVs) used to evaluate the beamforming function. This is equivalent to not 

having an error on the target vector but having the same additive error vector (or rather, 

its negative, which would have the same assumed statistics of zero mean and given 

standard deviation for each component) on all the manifold PSVs used. In turn, this is 

equivalent to assuming the errors are independent of the source direction that the PSVs 

correspond to. This will be the case if the errors arise in the channels between the 

elements and the analogue to digital convertors, at the start of the signal processing, 

which is indeed a primary source of error. Even if there are any significant look 

direction dependent errors (i.e. errors in the specification of the element antenna gain as 

a function of direction) these are likely to be slowly varying across the small angular 

range used to find the function peak, so again the approximation of equal errors over 

this range should be reasonable. If the manifold used was obtained entirely by 

calibration at each position (in practice an unlikely method because of its difficulty and 

cost) then there might be significant errors which were random from one PSV to the 

next, and the model taken for the simulations would not be valid in this case. However, 

if this form of calibration were used, it might be considered that such fluctuations would 

not occur in the true values and some smoothing would be appropriate over some range 

of angle. The main case of errors dependent on look direction is when there is 
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significant multipath between sources and the array. In this case reflections from 

relatively distant points effectively increase the aperture and produce a fast varying gain 

variation. This source of error is not modelled in the analysis here. 

The theory here is developed beginning with the simple case of a regular linear array of 

equal, parallel pattern elements, which only gives angle estimation in one dimension. In 

principle the most complex case (of a general array with non-equal elements, estimating 

directions of several signals in two dimensions) could be taken, and results for the 

simpler cases derived from the more general case. However, the development of the 

theory from the simplest case gives the simpler results appropriate to these cases 

without having to simplify a more complex expression, and clarifies the principles 

applied and the methods used. Thus in Section 3.2 we analyse the case of linear arrays 

(including non-uniform arrays in §3.2.3) used for one-dimensional angle estimation, 

then in Section 3.3 we tackle the case of non-linear arrays (in practice generally planar 

arrays though in fact the analysis covers the less common case of volume arrays) used 

to find targets in two angle dimensions. In Subsection 3.3.4 we take the case of arrays 

whose elements do not have equal gain in any given target direction, as previously 

assumed, to obtain the most general result so far. This is still for the case of a single 

target, but in Section 3.4 we extend the study to the case of multiple targets (though 

returning to equal parallel patterns). In §3.4.3 we obtain a rather general expression for 

the estimation errors resulting from a specific set of channel errors. In §3.4.4 we expand 

this expression for the case of only two targets, and in §3.4.5 we obtain statistical results 

for the two target case. This follows the approach of Sections 3.2 and 3.3 where we first 

find an expression for the particular estimation errors resulting from a given set of 

channel errors, and then use this result to obtain the statistical results. 

The simulations show that the theory, for the error model taken (see Appendix 3.1A), 

does in fact give the statistical error performance correctly, with excellent agreement, in 

general. This means that, having confidence in the theory, for the cases satisfying the 

conditions assumed, we can plot the statistical error performance (the azimuth and 

elevation error variances) for the given array for all directions of interest. This is much 

more general and also much more efficient than attempting to find the performance of 

an array by large numbers of simulations. 
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Appendix 3.1A Channel gain error model 

We model the channel errors as 

fluctuations in amplitude 

relative gain and in phase, so 

the magnitudes of the errors 

are proportional to the actual 

channel gain. We take the gain 

and phase errors as samples 

from independent distributions 

of zero means and given 

variances. For element k, we 

can consider the error to be the 

sum of two orthogonal 

components, ∆akp, parallel with ak, and ∆akq orthogonal to ak.  The magnitudes of these 

two components are considered to be proportional to the magnitude of the channel gain, 

gk. We assume that the components are taken from zero mean distributions and we 

assume these error components are independent. In general both forms of error are 

present, but in fact it is shown below for the single target case (in §3.2 and §3.3) that the 

amplitude fluctuations do not contribute to the angle estimation errors (at least for small 

errors, for which the approach taken here is applicable), and this has been confirmed in 

simulation. Thus for this case we need only a value for the variance of the orthogonal 

component ∆akq, which is related to the variance of the phase angle φ, and this is a value 

which is likely to be known, or which can be estimated reasonably well, in practice. In 

the two signal case it is found (§3.4.5) that amplitude errors do contribute to the angle 

estimation errors and this is confirmed in the simulation results of §3.4.6. 

3.2  LINEAR ARRAYS 

3.2.1 Angle error estimate 

In this case, with a linear array (of equal parallel pattern elements), we can only carry 

out DF in one angle dimension, with the target direction on a cone of directions whose 

axis is that of the array. In this section, therefore, we let α represent the target angle 

(usually measured from the plane normal to the array – the complement of the cone 

half-angle) and let ∆α be the error in the DF estimation of this angle α. 

The target point response vector is given by the manifold vector for the signal direction 

Figure 3.1  Model for element errors
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a(α) plus the error vector ∆a. The vector used for the scan function in (3.1.1) is 

normalized so let this signal vector be 

  ã(α) = h(a(α) + ∆a),  (3.2.1) 

where h is a normalizing factor. To simplify the appearance of the equations below we 

may put a, d and s for a(α), d(α) and s(α). We take the case where ||∆a||
2 

<< ||a||
2
 = 1, in 

general. h is given by 

 ||ã(α)||
2
 =  1 = h

2
||a(α) + ∆a||2 = h

2
(1 + 2Re(a(α)

H
∆a) + ||∆a||

2
) 

or h
2
 = 1/(1 + 2Re(aH

∆a) + ||∆a||
2
). (3.2.2) 

We now find an expression for the beamformed function f in the region of α, at α + ∆α, 

in order to find the value of ∆α giving the peak of f. This value is then the angle error in 

estimating the target position. As ∆a, the perturbation in a, is small we assume ∆α, the 

perturbation in α, is also small, and we find an approximation for f to second order only, 

giving a quadratic function in ∆α near the true target direction, α. 

Let   21
2

( ) ( ( ) ( ) ( )  . . . )kα + ∆α = α + ∆α α + ∆α α +a a d s  (3.2.3) 

taking the second order Taylor expansion, where   

  
( )

( )
d

d

α
α =

α
a

d , 
2

2

( ) ( )
( )

d d

d d

α α
α = =

α α

d a
s  (3.2.4) 

and k is a normalizing factor. Similarly to the expression for h, we have for k, up to 

second order in ∆α, 

 
2

2 21
2

( ) ( ) ( )  . . . k
− = α + ∆α α + ∆α α +a d s  

       
2H 2 2 H1 2 Re( ) Re( )  . . . = + ∆α + ∆α + ∆α +a d d a s  (3.2.5) 

However, from the definition of the array gain vector used here (see (3.2.11) or (3.2.20) 

below), it follows that a(α) is normalized for all values of α, and we can deduce that the 

expansion of a(α + ∆α) is also normalized and so we have k = 1 (exactly, without 

approximations. In fact we can see that k = 1 at least to second order using the results 

(3.2A.2) and (3.2A.6) from Appendix 3.2A in (3.2.5).) 

The beamforming function for direction α + ∆α is given, to second order, by 

2 2
H 2 2 2 H1

2
( ) ( ) ( ) ( ( ) ( ) ( )) ( ( ) )f h kα + ∆α = α + ∆α α = α + ∆α α + ∆α α α + ∆a a a d s a a�  
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2

2 H H H 2 H1
2

1h= + ∆ + ∆α + ∆α ∆ + ∆αa a d a d a s a , (3.2.6) 

taking the magnitude of ∆a to be small so that we neglect ∆α2
∆a terms as well as ∆α3

 

terms (and higher). (We have used aHa = 1, k = 1 and we note that h is independent of 

∆α.) Expanding (3.2.6) to second order gives 

     

2
2 H H H H

2
H H 2 H 2 H

( ) (1 2 Re( ) 2 Re( ) 2 Re( )

                               2 Re(( )( ) Re( )).

f hα + ∆α = + ∆ + ∆ + ∆α + ∆α ∆

+ ∆α ∆ + ∆α + ∆α

a a a a d a d a

a a a d d a a s
 (3.2.7) 

(Note that the terms H H2 Re(( )( ))∆α ∆ ∆a a a d , 2 H H2 Re(( )( ))∆α ∆a d d a , 

2 H HRe(( )( ))∆α ∆a a a s  and 3 H HRe(( )( ))∆α a d s a are all of third order if ∆α and ||∆a|| are 

small, so these terms have been neglected, as have the fourth order terms. We have also 

used (uHv)* = uTv* =  vHu where u and v may be a, ∆a, d or s.) 

To a second order approximation f is a quadratic function of ∆α near α. If we put 

 2( ) 2f A B Cα + ∆α = + ∆α + ∆α  + . . . ,  

then (on differentiating with respect to ∆α) the maximum of f occurs when 2B + 2C∆α 

= 0, or 

 
H H H H

2
H H

Re( ) Re( ) Re(( )( ))

Re( )

B

C

+ ∆ + ∆
∆α = − = −

+

a d d a a a a d

a d a s
. (3.2.8) 

Now a(α)
Ha(α) = 1 for all α (see (3.2.11) or (3.2.20) for the components of a) so, on 

differentiating with respect to α we have dHa + aHd = 0, i.e. 2Re(aHd) = 0 (as also seen 

in (3.2A.2)) so finally we have 

           
H H H H H H

2 22H H H

Re( ) Re(( )( )) Re( ) Re(( )( ))

Re( )

∆ + ∆ ∆ + ∆
∆α = − =

+ −

d a a a a d d a a a a d

a d a s d a d
, (3.2.9) 

using (3.2A.6).  

Now it is clear that this result, (the error in the peak position of the beamforming 

function due to the error ∆a in the array vectors), cannot depend on the reference point, 

or origin, used to specify the array element positions, so we could conveniently use the 

array centroid, the mean of the element vector positions, as this reference. In this case, 

with the mean position r  set to zero, it follows that aHd = 0 (see the discussion in 

Appendix 3.2A, following equation (3.2A.2)) and so (3.2.9) takes the simpler form 
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H

2

Re( )∆
∆α =

d a

d
. (3.2.10) 

The results (3.2.9) and (3.2.10) are general (for an array of equal, parallel pattern 

elements) for the case of a single parameter α, and are not limited to a linear array at 

this point. 

3.2.2 Statistical result for the uniform linear array 

Let the array consist of n elements at a regular spacing of d wavelengths, and take the 

centroid of the array, which is the midpoint of the array in this case, as the reference 

point. (The centroid is considered further in Appendix 3.2B, in particular when the 

element gains differ.) The array positions are then given by -(n-1)d/2, -(n-3)d/2, . . ., 

(n-3)d/2, (n-1)d/2. On the assumption of equal parallel patterns (i.e. all the elements 

have the same gain in any given direction, apart from the phase factor due to position), 

the normalized manifold vector for direction α (measured from the array normal) is 

      
T( ) [exp(-( -1) 2) exp(-( - 3) 2) .  .  . exp(( -1) 2)]n i n i n i nα = φ φ φa  (3.2.11) 

where φ(α) = 2πdsinα. 

The derivative of a is given by 

     1 2( ) 2 cos [-( -1) ( ) 2 -( - 3) ( ) 2 .  .  . ( -1) ( ) 2]nid n a n a n aα = π α α α αd   (3.2.12) 

where the kth element of a is given by ak = exp(i(k –(n+1)/2)φ)/√n. (We have omitted 

the indication of dependence on α to make the expressions clearer. This will generally 

be the case subsequently; it should be understood that a, d and many other variables are 

assumed to have their values at the signal angle α.) We note that, using |ak|
2
 = 1/n, 

 aHd = 2πidcosα(-(n-1)/2-(n-3)/2 . . . +(n-3)/2+(n-1)/2])/n = 0.  (3.2.13) 

Also   

 dHd = (2πdcosα)
2(((n-1)/2)

2
+((n-3)/2)

2
+ . . . +((n-3)/2)

2
+((n-1)/2)

2
))/n 

        = (2πcosα)
2
M (3.2.14) 

where 

 
2 2( 1) / 2

2 2

( 1) / 2

1 ( 1)

12

n

m n

n d
M m d

n

−

=− −

−
= =∑ . (3.2.15)  

as shown in Appendix 3.2C. M is the second moment of the array about its centroid.  
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We now consider the variance of the scalar Re(dH
∆a). Let c be the real vector 

 c = d[-(n-1)/2 -(n-3)/2 . . . (n-1)/2]
T
 (3.2.16)  

so that, from (3.2.12) we have dk =2πicosαckak. Then we can put 

 H

1

Re( ) Re( 2 cos * )
n

k k k

k

u i c a a
=

= ∆ = − π α ∆∑d a  

 
T

1

2 cos Im( * ) 2 cos
n

k k k

k

c a a
=

= π α ∆ = π α∑ c y  

where Im( * )k k ky a a= ∆ . We take the errors ∆ak to be from a zero mean distribution so 

it follows that the expectation value of yk is zero and so also is that of u. The variance of 

u is thus the expectation value of u
2
, i.e. 

 ( ) ( )2 22 T T T Tvar( ) 2 cos 2 cosu u= = π α = π αc yy c c yy c  

(using T T=c y y c ). From Appendix 3.2D (equation (3.2D.4)) we see that 

T 2 2
nφ= σyy I so that 

  ( ) ( )2 22 2 T 2var( ) 2 cos ( ) 2 cosu n M nφ φ= π α σ = π α σc c  

where we have used, from (3.2.15) and (3.2.16) above,  

 
T 2

1

n

k

k

c nM
=

= =∑c c  

and σφ
2
 is the variance of the phase errors.  

Finally, taking the square root to obtain the standard deviation, and dividing by ||d||
2
, 

given above, the standard deviation of the error β is 

 
( )2

2 cos
s.d.( ) = 

2 cos2 cos

M n

nMM

φ φπ ασ σ
∆α =

π απ α
 (3.2.17)  

or, in the case of a regular linear array with n elements at separation d wavelengths, 

  
2 2

s.d.( ) = 
2 cos ( 1) 12 cos ( 1) 3d n n d n n

φ φσ σ
∆α =

π α − π α −
. (3.2.18) 

3.2.3 Result for more general linear array 

In this section we express (3.2.10) using the form of a second order moment matrix 
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describing the array geometry. This is for the case where the centroid is taken for the 

reference point for the array element positions – i.e. for the case where 0=r . If we take 

the more general case we obtain the same result, as shown in Appendix 3.2E.  

We take the case of an array of n equal, parallel pattern antenna elements – i.e. an array 

where all the elements have the same antenna gain in any given direction, though the 

element patterns need not be omnidirectional, and the gain may vary with direction. Let 

the normalized manifold vector for direction α be given by 

  [ ]T

1 2( ) ( ) ( ) . . . ( )na a aα = α α αa  (3.2.19)  

where the components of a are given by 

  ( )T( ) exp 2 ( ) /
k k

a i nα = π αr e . (3.2.20) 

The factor 1/√n ensures a is normalized, (i.e. such that 
2 2

1kk
a= =∑a ) and e(α) is 

the unit vector in direction α. 
T[ ]k k k kx y z=r  is the position of element k, in 

wavelength units, from some reference point taken here as the geometric centroid of the 

array. (We use Σk here to mean the sum from k = 1 to k = n.) 

The elements of d, the first derivative of a with respect to α, are given by 

    
T( )

( ) 2 ( ) ( )k

k k k

da
d i a

d

α
α = = π α α

α
r e�  (3.2.21) 

where e�  is the first derivative of e with respect to α. 

From (3.2.21) we have 

           ( )22 2 2T 2 T T2 4
k k k k kk k k

d a n= = π = π∑ ∑ ∑d r e e r r e� � � .  

 ( )2 T T
4 k kk

n= π ∑e r r e� �  (3.2.22)  

using |ak|
2
 =  1/n and T T

k k=r e e r� � .  

Now we note that rkrk
T
 is a 3×3 real matrix given by 

  

2

T 2

2

k k k k k

k k k k k k k

k k k k k

x x y x z

x y y y z

x z y z z

 
 

=  
  

r r  

and so  
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2

T 2

2

k k kk

x xy xz

n xy y yz

xz yz z

 
 
 = =
 
 
 

∑ r r M  (3.2.23) 

We can put 

  

xx xy xz

xy yy yz

xz yz zz

M M M

M M M

M M M

 
 

=  
  

M  

where  

  
2

uu kM u n=∑  and uv k kM u v n=∑  (3.2.24)  

and u, v are any pair of x, y and z. As the element coordinates are with respect to the 

mean positions, in this case, we see that M is a real 3×3 matrix of second moments 

about the mean; in effect it is a covariance matrix of the array element positions. 

[In the frequently encountered case of a planar array, with x and y axes in the plane, all 

the z components are zero and we have 

  

0

0

0 0 0

xx xy

xy yy

M M

M M

 
 =  
  

M .  

In the case of a linear array, with the elements along the x axis, the only non-zero 

element of M is Mxx and we simply have T 2

1( ) ( ) ( ) .xxM eα α = αe Me� � � ] 

Using (3.2.23) the denominator of (3.2.10), as given in (3.2.22), becomes 

  
2 2 T4= πd e Me� � . (3.2.25) 

For the variance of the error ∆α we first express the numerator of (3.2.10) in terms of 

the moment matrix. We have, for the components of the numerator, from (3.2.21), 

  T* 2 *k k k k kd i a∆α = − π ∆αr e�  

and hence 

  
T TRe( * ) 2 Im( * ) 2k k k k k k kd a y∆α = π ∆α = πr e r e� � , (3.2.26) 

where Im( * )k k ky a= ∆α  as before.  
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As in §3.2.2 the variance of H TRe( ) Re( * ) 2 2k k k kk k
u d c y= ∆ = ∆α = π = π∑ ∑d a c y  is 

given by 

  
2 2 T T 2 T Tvar( ) 4 4u u= = π = πc yy c c yy c   

where 
T

k kc = r e�  in this case, and so T=c R e� . As before, from Appendix 3.2D, 

T 2 2
nφ= σyy I so that  

  
2 2 2 Tvar( ) 4 ( )u nφ= π σ c c  (3.2.27) 

Now we have, using the definition of M in (3.2.23), 

  T 2 T T T

k k kk k
c n= = =∑ ∑c c e r r e e Me� � � �  (3.2.28) 

so using (3.2.28) in (3.2.27) we obtain  

  
H 2 2 Tvar(Re( )) 4 nφ∆ = π σd a e Me� � . (3.2.29) 

Finally, from (3.2.10), we have for the standard deviation of the error, using (3.2.25) 

and (3.2.29), 

  

H

2 T

var(Re( ))
. . 

2
s d

n

φσ∆
∆α = =

π

d a

d e Me� �
. (3.2.30) 

[We can express M in an alternative, and convenient form. We have, from the definition 

in (3.2.23), 

      [ ]

T

1

T

T T T T T2

1 1 2 2 1 2

T

 . . .  k k n n nk

n

n

 
 
 = = + + = =
 
 
  

∑

r

r
M r r r r r r r r r r r RR

r

�
�

 (3.2.31) 

where 

  [ ]1 2  n=R r r r� , (3.2.32) 

and we see that R is the 3×n matrix of the element positions. It follows from T=c R e� , 

given above, that we could also derive (3.2.28) in the alternative form 

 
22T T T T T

n= = = =c c c R e e RR e e Me� � � � � .] (3.2.33) 
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3.2.4 Simulation results 

In this section we present some simulation results, confirming the theoretical expression 

above for small values of the phase error variance σφ, and in fact for higher values than 

might have been expected, and showing at what point the theoretical expression fails 

and why. We take a uniform linear array of n elements at element separation 0.5 

wavelengths, and a target at 20º from the array normal. For the simulation results the 

standard deviation of the errors was determined over a large number of trials (generally 

1000) and for each trial a new set of element gain errors was taken from a zero mean 

normal distribution with variance σφ
2
 (for both amplitude and phase components, as 

discussed in Appendix 3.1A, though in fact only phase errors affect the performance in 

the single signal case, both theoretically and as confirmed by simulation). For each trial 

the signal, centred at 20º for these cases, was jittered about this figure (over a range of 

3º) to avoid any bias due to a particular choice. To find the peak of the beamformed 

function the function was plotted relatively coarsely (at 0.45º - 400 points over a 180º 

interval) and quadratic interpolation was used to give an accurate estimate of the peak 

position. For all the plots the blue curves show the simulation results and the red curves 

the theoretical results using the 

expression in (3.2.18) above. (In 

these figures the red traces often 

disappear, being over-written by the 

blue traces when the simulation 

results are very close to the 

theoretical.) 

Figure 3.2 shows the statistical 

dependence of the DF errors on the 

phase errors, with the number of 

array elements as the parameter for a 

set of results. As expected the errors 

are linearly related for small errors, and even for what may be considered moderately 

large errors (above 10º rms), but when large enough the errors suddenly increase in an 

erratic way. However, we note that higher errors can be tolerated before this happens if 

there are more elements in the array. This is also shown in Figure 3.3, where the 

plotting variable is the number of elements, with the standard deviation of the phase 

error as parameter. In this case the dependence is not linear (but close to n
-3/2

). This 
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shows more clearly the effect of increasing n on reducing the break away from the 

theoretical curves. We note that at 20º rms error the simulation results match closely the 

theoretical ones for a value of n as low as 5, but at 30º the erratic results occur at n as 

high as 10.               

The cause of the increased DF error 

values is illustrated in Figure 3.4. In 

this case we have an array of eight 

elements and rms element phase 

errors of 30 degrees. The array 

beamwidth in this case is about 15.2º 

(from Appendix 3.2F) and errors in 

the position of the main beam should 

normally be well within this value 

(Figure 3.4(a)). However when the 

element errors are large enough the 

pattern can be distorted to the extent that a sidelobe exceeds the main lobe. In this case 

the error is not due to a perturbation in the position of the main lobe (Figure 3.4(a)) but 

to the choice of the wrong lobe (Figure 3.4(b)). This is termed here a gross error; the 

error in the position of the main lobe being a fine error. Gross errors, of course, are 

many times the magnitude of fine errors and greatly modify the rms DF error result. 

However, at the levels of element error taken here, they are relatively infrequent; for 

example for 10 elements with 30º rms errors, the incidence is only about 0.1%, for 8 

elements it is 0.4%, and even for 5 elements it is only 2.1%.  

Figure 3.3  DF error as a function of

number of elements
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We note, with the scaling used in the simulation, the peak height in the absence of 

errors is n, or 8, in this case. We see that considerable distortion results from errors at 

the high levels taken here –  30degrees rms in phase. In Figure 3.4(a) we see how the 

errors have augmented the main lobe, which is now of magnitude 12, while in Figure 

3.4(b) the errors have reduced the main lobe (near 20º) to only 4.3, and below the 

augmented sidelobe near -20º, resulting in a gross error of nearly 40º. This error 

mechanism, causing gross errors, also explains why increasing n reduces the likelihood 

of gross errors. At higher values of n the ratio of the peak to sidelobe levels increases, 

so requiring more distortion to cause a sidelobe to exceed the main lobe. 

The above results show that equation (3.2.18), which gives the s.d. for a linear array, is 

confirmed by simulations. For a more general array we need to use equation (3.2.30), 

where M is the second moment of the array element positions about the mean and e�  is 

the derivative of the target 

direction vector with 

respect to the angle α from 

the array axis. The result, 

using an array of seven 

elements in the form of a 

regular heptagon, and 

scanning in the plane of the 

array, is shown in Figure 

3.5. In this case the size of 

the array is the parameter 

for the set of plots. The 

elements of the basic array 

were on a circle of one wavelength radius. The array was also scaled, as indicated in the 

figure, by factors of two and three.  Again the agreement between theory and simulation 

is very good. As the radius of the array increases the accuracy improves (the error s.d. 

falling as the reciprocal of the radius) as might be expected. However, we note that the 

linear relationship breaks down first with the largest array. This is because, as the array 

element separations increase the probability of near ambiguities – the appearance of 

other PSVs closely matching the actual target PSV – increases, and with errors present 

the probability of one of these matching the target PSV more closely than the PSV for 

the target direction (also corrupted by errors) increases as well. 
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3.2.5 Comparison with Cramér-Rao bound 

The Cramer-Rao bound for a single parameter, α, of a single target, is given (from 

Chapter 2, equation (2.D.1)) by 

 
2 H

( )

var( )
2 ( ) ( )

n

pa α

ψ
α =

α αad Q d
 (3.2.34) 

where ψn is the variance of the complex noise perturbing the measurement of α, a
2
 is 

the mean square signal strength in an element of unit gain, p is the number of samples 

used (the degree of integration), a(α) is the target PSV, d(α) is its derivative and Q is 

the matrix projecting orthogonally into the space orthogonal to a. Now we have 

      ( ) 22 2H H H H

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )αα α = α − α α α = α − α α = αad Q d d I a a d d a d d . 

if we take aHd = 0, as above (§3.2.1). Now the derivative vectors d as used in the 

analysis of the effect of errors are based on vectors a which are normalized so that each 

component has amplitude 1/√n (in the equal, parallel pattern case) and this factor also 

applies to d. In the CRB expression we take the elements to have unit gain (or else we 

have to redefine a, the signal amplitude) and in this case the factor 1/√n is not present in 

a, or in its derivative d, and so ||d||
2
 in this case is a factor n higher and we replace 

2
( )αd  by 

2
( )n αd , where this d is as used in the error study. Thus we put (using 

(3.2.25)) 

 
2 2 2 T2

var( )
82 ( )

n n

n
npanpa

ψ ψ
α = =

πα e Med � �
. (3.2.35) 

where var(α)n means the variance in the DF estimate of α when limited only by receiver 

noise. The variance in α due to element errors alone (var(α)e) is given, from (3.2.30), as 

 

2

2 T
var( )

4
e

n

φσ
α =

π e Me� �
. (3.2.36) 

(In the linear array case (not necessarily regular) the results are given, from (3.2.14), by 

replacing Te Me� �  by cosα2
M.)  

There is a close correspondence between these two results which can be explained in the 

sense that the noise perturbation on the signal in an element can be seen to be equivalent 

to the error perturbation on the gain of the element. We note that ψn is the variance of 

the complex noise in a channel, but integration over p signal samples effectively reduces 
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the noise variance, relative to the signal level, by a factor of p. Thus we see that errors 

with variance ψφ, in the case of high S/N, limit the DF performance to the same level as 

an integrated signal to noise ratio of a
2
/(ψn/2p) in the case of negligible errors. The 

factor 2 may be accounted for by considering that ψ includes both in-phase and 

quadrature noise. If we assume that only the quadrature component is significant, as 

shown in the error study, then the effective noise level is ψ/2. The effects of these two 

forms of error is illustrated in Figure 3.6. 

We see that the variances of the two forms of error giving the same DF accuracy are 

related by 

 (integrated S/N) = pa
2
/ψn = 1/2σφ

2
. (3.2.37) 

As an example, if we take the case of a signal at a level of 20dB in an element, with 

integration over 10 samples, then the integrated signal to noise ratio is 1000, which is 

equivalent to a gain error 

variance of ψφ = 1/2000 rad
2
, 

or a standard deviation phase 

error of 1/√2000 radians or 

about 1.3 degrees. 

Alternatively, as another 

example, for a s.d. phase 

error of 5º the equivalent 

integrated signal to noise 

ratio is 1/2(5π/180)
2
 = 65, or 

about 18dB, for single 
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sample processing, or 0dB using 65 samples. Expressing this differently, we could say 

that, however strong the signal might be, channel phase errors with 5º s.d. will limit the 

accuracy to that of an error free system with an integrated SNR of 18dB. The relation 

between integrated signal to noise ratio and phase error variance is given in Figure 3.7.  

Although it has not been proved, it seems reasonable to estimate that the parameter error 

variance will be the sum of the variances of the errors due to noise and array errors on 

their own, noting that these sources of error are independent. 

Appendix 3.2A: Auxiliary results for linear array 

The elements of the manifold vector a and its first derivative d are given in (3.2.20) and 

(3.2.21) and so we have (as |ak|
2
 = 1/n), 

  H T* 2k k kk k
a d i n= = π∑ ∑a d r e�  (3.2A.1) 

and we see that (as rk and ė are real) 

  HRe( ) 0=a d . (3.2A.2) 

(In fact we note that we can put (3.2A.1) in the form 

  ( )H T T
2 2kk

i n i= π = π∑a d r e r e� �   

where r is the mean element position vector, or the unweighted centroid. If this point is 

used as the reference for the element position specification then =r 0 and so H 0=a d .) 

The elements of s, the second derivative, are given from (3.2.21) by 

 

2

T T

2

( ) ( )
( ) 2 ( ) ( ) 2 ( ) ( )k k

k k k k k

dd d a
s i d i a

d d

α α
α = = = π α α + π α α

α α
r e r e� ��  

 ( )2
T T2 ( ) ( ) 2 ( ) ( )

k k k k
a i a= − π α α + π α αr e r e� �� , (3.2A.3) 

where  and e e� ��  are the first and second derivatives of e with respect to α. From (3.2.20) 

and (3.2A.3) 

 ( )( )2
H T T

* 2 2k k k kk k
a s i n= = − π + π∑ ∑a s r e r e� �� . (3.2A.4) 

and, with (3.2.22) in the form 

  ( )22 2 T2
k kk

d n= = π∑ ∑d r e�  (3.2A.5) 

we see that  
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2HRe( ) = −a s d . (3.2A.6) 

Appendix 3.2B: Array centroid for linear array 

Let a linear array have elements at positions x1 . . . xn measured from some reference 

point on the axis of the array. Then the mean position of the elements is given by 

  
1

1 n

k

k

x x
n =

= ∑ . 

This is the array centroid, in the coordinate system with origin the reference point. If we 

take the centroid as the new reference point, so that the elements are now at 

k kx x x′ = − , then the mean of the positions in this system is at zero, the new origin. 

This is the point about which the second moment is required, given in Appendix 3.2C. 

For a regular linear array the centroid is clearly the midpoint of the array. 

In the case of unequal element gains what is required is what may be defined as the gain 

centroid,  or ‘centre of gain’. This is the centroid of the array where each element 

position is weighted by the element power gain. (This is equivalent to the centre of mass 

of the array, when the points of the array have a mass numerically equal to the power 

gain.) For an array of equal parallel pattern elements (all with the same gain in any 

given direction, but not necessarily with omnidirectional patterns) the gain centroid is 

the same as the simple geometrical centroid given above. 

We note that if we take the gain centroid for the array reference position then we have 

the result aHd = 0, even when the element gains differ. In this case let 

 
T

1 2( ) [ . . . ]na a aα =a  with ( ) exp(2 sin )k k ka g ixα = π α  

then 

 T

1 2( ) [ . . . ]nd d dα =d   

with ( ) 2 cos exp(2 sin )k k k kd ix g ixα = π α π α . 

(Here we consider gk to be independent of α, or only slowly varying. We define gk to be 

the element gain, (complex, in general) without the phase factor due to the displacement 

of the element from the array centroid position.) Forming aHd we have 

 
2H * 2 cosk k k k

k k

a d i g x= = π α∑ ∑a d . 
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By definition, 
2

0
k k

k

g x =∑ , when the x-values are measured from the gain centroid, 

and so aHd = 0, as required. 

Appendix 3.2C: Second moment for uniform linear array 

The positions of the elements of a regular linear array, with n elements at separation d 

are given by 

 T[ ( 1) 2  ( 3) 2 . . . ( 3) 2  ( 1) 2]n d n d n d n d= − − − − − −x  

where the positions are measured from the centroid. The second moment about the 

centroid is given by M where 

           

( ) ( ) ( ) ( )2 2 2 2T 2

1

( 1) 2 ( 3) 2  . . . + ( 3) 2 ( 1) 2
n

k

k

nM x n d n d n d n d
=

= = = − + − + − + −∑x x . 

If n is odd we can put n = 2m + 1 so that  

 2 2 2 2 2( 1)  . . .+ 1 + 0 + 1 + . . . ( 1)nM d m m m m= + − + + − + . 

      
2

2

1

2 ( 1)(2 1) ( 1)(( 1) / 2) ( 1)
2

6 6 12

m

k

m m m n n n n n
k

=

+ + − + −
= = = =∑ . 

If n is even we put n = 2m to give 

 2 2 2 24 2 (1 3  . . . (2 1) )nM d m= + + + −  

or   ( )2 2 2 2 2 2 2 2 22 1 2 3  . . . (2 1) (2 ) 2 4 . . . (2 )nM d m m m= + + + + − + − + + +   

 
2 (2 1)(4 1) ( 1)(2 1) 2 (2 1)(4 1 2( 1))

4
6 6 6

m m m m m m m m m m+ + + + + + − +
= − =  

 
22 (2 1)(2 1) ( 1)

6 6

m m m n n+ − −
= = . 

In both cases we have 
2 2( 1)

12

n d
M

−
=  and this is the result used in (3.2.15) for the gain 

second moment. 

Appendix 3.2D: Variance of y variables 

Let the amplitude of the kth component of the target PSV with error be given by ak(1 + 

uk) where uk is the fractional amplitude error and is a sample from a zero mean 
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distribution with variance σa
2
. Then we can put kp k ka a u∆ = , where kpa∆  is as in Figure 

3.1. Also let vk be the phase error, from a zero mean distribution with variance σφ
2
, then 

we have for the error kqa∆  in Figure 3.1, kq k ka ia v∆ = (very closely, for small phase 

errors). The factor i is required to make kqa∆  orthogonal to ak. Thus the total error is 

given by  

  ( )k k k ka u iv a∆ = + . 

Then defining zk by *k k kz a a= ∆ , we see that  

  
2 2

( ) ( )k k k k k k kz u iv a u iv g= + = +  (3.2D.1) 

where |ak| = |gk|, using the definition given in Appendix 3.2B in the case of differing 

element gains. Thus we see that 

  
2

Im( * )k k k k ky a a v g= ∆ =  

so it has variance given by 

  
4 42 2 2

k k k ky v g gφ= = σ . 

For the value of 
Tyy  used in §3.2.2 we note that this is an n×n matrix with elements 

 T Im( * ) Im( * ) j k j j k kjk
y y a a a a= = ∆ ∆yy   

               ( )( )Re( ) Im( ) Im( ) Re( ) Re( ) Im( ) Im( ) Re( )j j j j k k k ka a a a a a a a= ∆ − ∆ ∆ − ∆  

 Re( ) Re( ) Im( ) Im( )  . . .  . . .  . . . + . . . 
j k j k

a a a a= ∆ ∆ + − −  

Assuming the errors between channels are statistically independent, all terms of the 

form Im( ) Im( )
j k

a a∆ ∆ , Re( ) Re( )
j k

a a∆ ∆  (for j ≠ k) and Im( ) Re( )
j k

a a∆ ∆  (for 

all j and k) are zero and so all the off-diagonal terms 
T

jk
yy  will be zero. Thus 

Tyy  

is a diagonal matrix with values on the principal diagonal given by 

4T 2 2
var( )k k kkk

y y g φ= = = σyy  as given above, so we have 

  
4 4 4T 2

1 2(   .  .  .  )ndiag g g gφ= σyy . (3.2D.2) 

If we put G = diag(|g1|
2
  |g2|

2
  . . . |gn|

2
) (as used in §3.3.4) then we have 
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  T 2 2

φ= σyy G . (3.2D.3) 

In the case of elements with equal, parallel patterns (equal gains in any given direction) 

we have |gk| = 1/√n for all elements so that, in this case we have |gk|
4
 = 1/n

2
, and so 

  ( )T 2 2
nφ= σyy I . (3.2D.4) 

where I here is the n×n identity matrix. 

In Appendix 4D below (eq. (3.4D.4)) we also require xk = Re(ak*∆ak) = Re(zk) and we 

see from (3.2D.1) that this is given by uk|gk|
2
 and so its variance is 

     

or σa
2
/n

2
 in the case of equal, parallel pattern elements. 

Appendix 3.2E: Derivation with general origin for array position 

Here we derive the results for the numerator and denominator of (2.9) for the case of an 

array defined with respect to an origin not assumed to be the array centroid. 

We note that kk
n =∑ r r , the mean position of the array elements, or the centroid of 

the array, and so (3.2A.1) can be written as 

  H T2 i= πa d r e�  (3.2E.1) 

and we can put 

  
2

H 2 T 2 2 T T4 ( ) 4= π = πa d r e e rr e� � � . (3.2E.2) 

Thus, using (3.2A.5) and (3.2E.2) the denominator of (3.2.9) can be put in the form 

 ( ){ }22 H 2 T T T 2 T
4 4k kk

n− = π − = π∑d a d e r r rr e e Me� � � �  (3.2E.3) 

where 

  ( )T T

k kk
n= −∑M r r rr . (3.2E.4) 

As in §3.2 above, M is a real 3×3 array second moment matrix given by 
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xx xy xz

xy yy yz

xz yz zz

M M M

M M M

M M M

 
 

=  
  

M  (3.2E.5) 

but in this case, where we have not taken r  to be zero, we have 

  ( )22 2 2 2( )
uu k k

M u u u u u n u n= − = − = −∑ ∑  

 

 ( )( )( )( )
uv k k k k

M u u v v uv uv u v n u n v n= − − = − = −∑ ∑ ∑  

where u and v represent  x, y or z. As before, the elements of M are second moments 

about the mean x, y and z positions of the elements, and M can also be regarded as the 

covariance matrix of the element positions. We note that (3.2E.4), with M defined for 

the general case, is the same as in (3.2.23) for the particular case where 0=r . 

We now consider the variance of the numerator of (3.2.9): 

H H HRe( ) Re(( )( ))∆ + ∆d a a a a d . From (3.2.26) we have  

 ( )H T
Re( ) Re * 2k k k kk k

d a y∆ = ∆ = π∑ ∑d a r e�  (3.2E.6) 

Also we have H *k kk
a a∆ = ∆∑a a  so, using (3.2E.1),  

 ( ) ( ) ( )H H T T
Re ( )( ) Re 2 * 2 Im *k k k kk k

i a a a a∆ = π ∆ = − π ∆∑ ∑a a a d r e r e� � ,  

 T2 kk
y= − π ∑r e�  (3.2E.7)  

where Im( * )k k ky a a= ∆  as in §2.2. Combining (3.2E.6) and (3.2E.7) we have, for the 

numerator, 

 ( )H H H TRe( ) Re ( )( ) 2 ( )
k kk

y∆ + ∆ = π −∑d a a a a d r r e� . (3.2E.8) 

The variance of the numerator of (3.2.9), in (3.2E.8) above, is as in (3.2.27) and (3.2.28) 

with T( )( )k kk
− −∑ r r r r replacing T

k kk∑ r r . However this new term is simply another 

form of M as given in (3.2E.4) above, so we have  

 ( )H H H 2 2 Tvar Re( ) Re(( )( )) 4 nφ∆ + ∆ = π σd a a a a d e Me� �  

as in (3.2.29) for the 0=r  case. 
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Appendix 3.2F:  Beamwidth of regular linear array 

The gain of a regular linear array in direction α when steered in direction α0 is 

 ( )
( 1) 2

0

( 1) 2

( ) exp ( ( ) )
n

k n

g ik
−

=− −

α = φ α − φ∑  

where φ(α) = 2πdsinα and φ0 = 2πdsinα0. The inter-element spacing is d wavelengths. 

Now if   

 

( ) ( ) ( ) ( )
( 1) 2

( 1) 2

exp 2 exp ( 1) exp ( 3)  . . . exp ( 1)
n

k n

y ix i n x i n x i n x
−

=− −

= = − − + − − + −∑ ,  

then ( ) ( ) ( ) ( )exp exp ( 2) exp ( 4)  . . . expix y i n x i n x inx= − − + − − +  

and ( ) ( ) ( ) ( )exp exp exp ( 2)  . . . exp ( 2)ix y inx i n x i n x− = − + − − + −  

Subtracting these equations gives 

 ( ) ( ) ( ) ( )(exp exp ) exp expix ix y inx inx− − = − −  

so 2 sin( ) 2 sin( )i x y i nx=  

and 
sin( )

sin( )

nx
y

x
= . 

In this case  0 0( ( ) ) 2 (sin sin )x d= φ α − φ = π α − α  and so 

 
( )
( )

0

0

sin (sin sin )
( )

sin (sin sin )

n d
g

d

π α − α
α =

π α − α
. 

This has its maximum value (of n) when d(sinα - sinα0) is an integer in general, but the 

lobe of interest is when this integer is zero, i.e. when α = α0 (or when α = 180º - α0, 

which is the lobe symmetric about the axis of the array). In this case the first zeros 

about the main lobe are when 

 nd(sinα - sinα0) = ±1 

i.e. sinα = sinα0 ± 1/nd. 

If we put  sinα = sin(α0 + δα) = sinα0cosδα + cosα0sinδα ≈ sinα0 + cosα0δα, 

taking small angle approximations, then 

 cosα0δα ≈ ± 1/nd. 
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If we define the beamwidth as half the interval between the first zeros then the 

beamwidth is close to 1/ndcosα0. 
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3.3. PLANAR AND VOLUME ARRAYS 

3.3.1 2D Angle error estimate 

Although planar or volume arrays could be used to estimate signal direction in only one 

angle dimension, this would be rather under-using the array as the potential is available 

for finding the full 2-dimensional angle of the signal direction. Thus here we not only 

assume the array is more than 1-dimensional (i.e. not a linear array) but that we perform 

2-dimensional signal direction estimation. We follow the derivation of the error 

variance in §3.2 above, for the measurement of the single angle α, but now expanded to 

the case of two angles, α and ε. In the next subsection, instead of a single error variance 

(or its square root, the standard deviation, as in §3.2.2) we obtain a covariance matrix, 

as for the expression for the Cramér-Rao bound in more than one parameter. Initially we 

take the case of equal, parallel pattern elements, as in §3.2. 

Let the normalized manifold vector for direction (α,ε) be a(α,ε), and the actual signal 

point response vector for this direction be ( , ) ( ( , ) )hα ε = α ε + ∆a a a�  where ∆a is the 

error added to a and h is a normalizing factor. Let the estimated signal direction, 

obtained by maximizing the scan function f over the manifold, be a(α + ∆α,ε + ∆ε) so 

that ∆α and ∆ε are the errors in azimuth and elevation, respectively. Expanding a(α + 

∆α,ε + ∆ε) about a(α,ε), assuming ∆α and ∆ε are small, we have, to second order, 

(( , ) ( , ) ( , ) ( , )k α εα + ∆α ε + ∆ε = α ε + α ε ∆α + α ε ∆ε +a a a a   

 )2 21 1
2 2

( , ) ( , ) ( , )  . . .αα αε εε+ α ε ∆α + α ε ∆α∆ε + α ε ∆ε +a a a .  (3.3.1) 

As before we note that |a(α,ε)| is unity for all α and ε, so the expansion will also be so, 

and hence the normalizing factor k will be unity. We use the notation αa  and ααa  to 

indicate first and second derivatives with respect to α, and similarly for ε. The scan 

function is given by 

2
H( , ) ( , ) ( , )f α + ∆α ε + ∆ε = α + ∆α ε + ∆ε α εa a�  

 
2

2 2 2 H1 1
2 2

( . . .) ( )h α ε αα αε εε= + ∆α + ∆ε + ∆α + ∆α∆ε + ∆ε + + ∆a a a a a a a a  (3.3.2) 

where, for clarity, we drop the indication that the vector a and its derivatives are for the 

direction (α,ε) and this is assumed to be the case subsequently. Expanding (3.3.2) to 

second order, and considering the magnitude of ∆a to be small, as well as ∆α and ∆ε 
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(so we neglect any terms including both ∆a and ∆α2
, ∆α∆ε or ∆ε2

, as being of third 

order) we have, to this accuracy, (putting aHa = 1), 

2 H H H 2 H H 21 1
2 2

( , ) 1f h α ε αα αε εεα + ∆α ε + ∆ε = + ∆α + ∆ε + ∆α + ∆α∆ε + ∆ε +a a a a a a a a a a    

  
2

H H H

α ε∆ + ∆ ∆α + ∆ ∆εa a a a a a . (3.3.3) 

We take the array centroid as the reference for the array element positions, as the 

accuracy of measurement must be independent of the reference point, as shown before, 

and in this case we have 
H 0α =a a  (see (3.3A.4)) and 

H 0ε =a a . Then (3.3.3) becomes, 

taking terms up to second order only, 

2 H 2 H H 21 1
2 2

( , ) |1f h αα αε εεα + ∆α ε + ∆ε = + ∆α + ∆α∆ε + ∆ε +a a a a a a  

 H H H 2|α ε+ ∆ + ∆ ∆α + ∆ ∆εa a a a a a   

 (2 H 2 H H 21 Re( ) 2 Re( ) Re( )h αα αε εε= + ∆α + ∆α∆ε + ∆ε +a a a a a a  

 )2
H H H H2 Re( ) 2 Re( ) 2 Re( )α ε+ ∆ + ∆ + ∆ ∆α + ∆ ∆εa a a a a a a a . (3.3.4) 

Putting this in the form  

 2 2( , ) 2 2 2  . . .f A B C D E Fα + ∆α ε + ∆ε = + ∆α + ∆ε + ∆α + ∆α∆ε + ∆ε +  (3.3.5) 

then finding the peak with respect to both variables we have, from 0f∂ ∂∆α = ,  

  2 2 2 0B D E+ ∆α + ∆ε =   

and from 0f∂ ∂∆ε = , 

  2 2 2 0C E F+ ∆α + ∆ε = . 

Combining these two linear equations in a vector-matrix equation we have 

  
D E B

E F C

∆α     
= −     ∆ε     

 (3.3.6) 

or 

  
1−∆α 

= ∆ε 
U u  (3.3.7) 

where 
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H H

H H

Re( ) Re( )

Re( ) Re( )

D E

E F

αα αε

αε εε

  
− = =   

   

a a a a
U

a a a a
 (3.3.8) 

and  

  

H

H

Re( )

Re( )

B

C

α

ε

 ∆ 
= =    ∆   

a a
u

a a
 (3.3.9) 

on substituting for B, C, D, E and F from (3.3.4) and (3.3.5). Using the results in 

Appendix 3.3A (equations (3.3A.7) etc.) we have 

 [ ]
T T T

2 2 2 T

T T T
4 4 4α α α ε α

α ε
ε α ε ε ε

   
= π = π = π   

   

e Me e Me e
U M e e E ME

e Me e Me e
 (3.3.10) 

if we put [ ]α ε=E e e , the matrix of the two partial derivatives of e with respect to the 

angle variables. Also, from (3.3A.8), 

 

T T

T

T T
2 2 2α α

ε ε

   
= π = π = π   

   

e Ry e
u Ry E Ry

e Ry e
. (3.3.11) 

3.3.2 2D Angle error covariance matrix  

The covariance matrix for the azimuth and elevation estimates of the signal position is 

given by 

 [ ] 1 T -T 1 T 1− − −∆α 
Ψ = ∆α ∆ε = = ∆ε 

U uu U U uu U   (3.3.12) 

where v  means the expectation of a variable v, and we have used (3.3.7),  and 

1 T T -T( )− =U u u U , U = UT
 (from (3.3.8)) and the fact that U is not considered to be a 

statistical variable here. Using (3.3.11) we have 

 
T 2 T T T 2 T T T4 4= π = πuu E Ryy R E E R yy R E . (3.3.13) 

From Appendix 3.2D we have 

 ( )T 2 2
nφ= σyy I  (3.3.14)  
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where 
2

φσ  is the phase variance of the errors, which are assumed to be equal for each 

element and independent between elements. I is the unit matrix of size n. Putting 

(3.3.14) into (3.3.13) we obtain 

 

2 2

T T T

2

4

n

φπ σ
=uu E RR E . (3.3.15) 

Using (3.2.31) and (3.3.10) we have  

 

2 2 2

T T
4

n n

φ φπ σ σ
= =uu E ME U . (3.3.16) 

From (3.3.12) and (3.3.16) we have, finally 

 ( )
2 2

1
1 T

2
.

4n n

−φ φ−
σ σ

Ψ = =
π

U E ME  (3.3.17) 

3.3.3 Simulation results (equal parallel antenna patterns) 

In this case we have a 2×2 theoretical error covariance matrix for comparison with the 

simulation results. In general the variance of the azimuth and elevation errors are of 
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Figure 3.8  Error covariance results for array R1, target direction (30deg,40deg)

azimuth error variance elevation error variance

azimuth-elevation error covariance

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

x position

y
 p

o
s
it
io

n



 113

primary interest (given by the diagonal elements Ψ(1,1) and Ψ(2,2) in (3.3.17)) but the 

covariance of the azimuth and elevation errors (Ψ(1,2) or Ψ(2,1)) is available and we 

also found this in the simulation. Thus we have plotted the elements of Ψ, the variances 

and covariance of the errors, rather than the standard deviations (the square roots of the 

variances) as in §3.2.4 above. (The covariance may be positive or negative so the square 

root of this is not necessarily real.) The result, for the irregular 6 element planar array 

R1, is given in Figure 3.8 (where the element positions of R1 are also shown). For this 

case the target was at 30° in azimuth and 40º in elevation and 4000 trials were taken at 

each point. The variances and covariances are all in units of degrees squared, and we 

see that the input error variance range goes up to 100deg
2
 or a standard deviation of 

10deg. Again we use an array scaling factor as a parameter for a set of curves, 

confirming the relation that the error variance is proportional to the inverse square of the 

array size. We see good agreement between the theoretical relationship (given by 

(3.3.17)) and the simulation results, including for the covariance figure which gives a 

measure of the degree to which the two errors are linked. 

Figure 3.9 is for the same array but a different signal direction. Whereas in Figure 3.8 

the azimuth and elevation errors are of comparable magnitude, in Figure 3.9 there is a 

factor of 10 between them. This may be partly due to the different azimuth direction, 

(the array being slightly narrower, from front to back, seen from this direction) and 

partly due to the lower target elevation, which reduces the aperture further, from the 

Figure 3.9  Error covariance results for array R1, target

direction (120deg,20deg)
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point of view of the elevation measurement. In fact Figure 3.10 shows why the accuracy 

in elevation is so much lower in this case. This figure shows plots of the DF function 

(maximum value unity) in the region of the target position in the two cases, and for the 

three scaling factors used. We see that for the target at (40º,30º) the function has a fairly 

circular peak, and the error sensitivity, shown in Figure 3.8, is similar for the two angle 

dimensions. However at (120º,20º) the peak is more of a ridge, with much greater 

extension in the elevation direction than in the azimuth direction. The sensitivity to 

errors would be expected to be much greater in elevation and this is shown in Figure 

3.9. We also note that the pattern shrinks as the array is expanded, using the scaling 

factors, as expected. This brings more sidelobes into the pattern, as seen particularly 

with scale factor 3, and the increased probability of a gross error at high element error 

levels (if the search region is limited to that used for the plots).  

Finally Figure 3.11 shows results for a 7-element array in the form of a regular 

heptagon on a circumcircle of one wavelength radius, but with variations in height (over 

about two wavelengths). The results for the azimuth error variance are seen to be quite 

close to those of the irregular 6-element array R1, with target at (40º,30º), shown in 

Figure 3.8. We note that the apertures of the two arrays in the horizontal plane are quite 

similar, both about 2 wavelengths, and this is a strong determinant of the error 

performance. The performance of the 3D heptagonal array in the measurement of 

elevation is much better than the planar array for the target at 120° (Figure 3.9), having 

a much greater vertical aperture.  

Scale factor 1 Scale factor 2 Scale factor 3

Figure 3.10 DF function plots for Array R1
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The plot of the function shown in Figure 3.11 shows a fairly circular peak, of about the 

same size as in Figure 3.10 for array R1 with target at (40º,30º) (and scale factor 3), so 

might be expected to give similar accuracy. 

3.3.4 Non-parallel pattern case 

Here we consider the case where the element gains are more general than for the case 

previously taken. In that case the shapes of the element gain patterns are supposed to be 

identical for all elements (‘parallel’) and also equally scaled (‘equal’). These conditions 

mean that, although the element patterns may vary with direction, for any given 

direction the gains of all the elements are equal. We now take the more general case 

where the element gains in any given direction may be different. This may be because 

the equal condition is removed (with the element patterns having the same shapes, so 

are still parallel) or because the parallel condition is removed. (The first of these seems 

to be physically unlikely, but an example might be where different levels of receiver 

gain are applied to the outputs of similar, equally aligned elements, so that different 

signal levels are received at the processor in different receiver channels.) In the second 

case the element patterns may be equally scaled but are directional and are not aligned; 

an example is a circular array of similar elements with directional patterns (perhaps 
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Figure 3.11  Error covariance results for heptagonal array, target at (120deg,20deg)
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reflector-backed dipole elements) all directed outwards from the centre of the array. 

More generally still, all the element patterns may be different from each other; an 

example in this case might be elements mounted on poor sites (poor from the point of 

view of pattern integrity, such as elements mounted around a ship for HF DF operation). 

In all these cases we still have two remaining assumptions, if we are to be able to apply 

the results of the theory to estimate array DF accuracy. Firstly we suppose that the 

patterns are known, at least in a reasonably well-sampled form, and are given as 

complex gain factors (not as power gains). Secondly we suppose that the patterns are 

relatively slowly changing (in both amplitude and phase) so that they may be considered 

essentially constant over the range of the estimated accuracy. (‘Relative’ here means 

that we suppose that the change of gain with angle due to the element patterns is small 

compared with the effect of the phase shift due to the separation of the element phase 

centres.) This condition is generally satisfied if small, simple elements are used. 

(However, an exception is the case where pattern, rather than element displacement 

from the array centre, is the factor distinguishing the elements. An example of an array 

of this kind would be a three element array consisting of two orthogonally mounted 

loops (with figure-of-eight patterns) and a dipole (with an omnidirectional pattern) all 

cosited, with essentially coincident phase centres.) If strongly directional elements 

(requiring large apertures) are used, then these are at correspondingly larger separations 

and again the very rapid change of phase with angle due to the element separations will 

dominate the amplitude pattern. However an interesting case is that of an array which is 

partitioned so that a number of beams can be formed, using elements from all over the 

array for each beam, which may, from the choice of sets of elements, have phase centres 

near the array centre, so that we have effectively a small array of directional elements. 

In practice in this case the beams may be parallel or nearly so (a beam cluster) and the 

DF is applied in the area of the common, or central, look direction. 

In this case the point response vector is given, as before, by 

 [ ]1 2( , ) ( , ) ( , ) . . . ( , )na a aα ε = α ε α ε α εa  (3.3.18)  

but now the components of a are given by 

 ( )T( , ) exp 2 ( , )
k k k

a g iα ε = π α εr e  (3.3.19) 

where gk is the complex gain of the element, and the set of gains is normalized so that  

 
2 2

1
kk

g= =∑a . (3.3.20) 
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(As stated above, gk varies with angle but it is assumed only slowly compared with the 

phase factor, so this dependence is not indicated in (3.3.19)). From (3.3.19) and 

(3.3A.2) we have 

 
2H T* 2

k k k kk k
a a i gα α α= = π∑ ∑a a r e . (3.3.21) 

In the previous analysis we took the array reference point to be the mean position of the 

elements, so that kk
=∑ r 0  and hence 

H 0α =a a , and similarly 
H 0ε =a a . In this case, 

if we take the weighted mean of the element positions as the reference point, where the 

weighting of element k is by the factor |gk|
2
, the relative power gain of the element in the 

signal direction, then we have 
2

k kk
g =∑ r 0  (Appendix 3.3B) and so H 0α =a a  and 

H 0ε =a a . 

Similarly, in deriving U in  §3.3.1, we have for D in (3.3.8), for example,  

 ( )2 2H TRe( ) * 2
k k k kk k

D a a gαα αα α= = = − π∑ ∑a a r e . (3.3.22) 

In this case we put 

 

( ) ( )2 2 2 2T T T T T T

1k k k k k k k kk k k
g g gα α α α α α α= = =∑ ∑ ∑r e e r r e e r r e e M e  

where M1 is now defined with the weights |gk|
2
 instead of 1/n. Similar results follow for 

E and F so that U is given by (3.3.10) with M1, the weighted form of M, used in place 

of M as defined in (3.2.23) or (3.2.31). With [ ]α ε=E e e  as before, U for the unequal 

gain case becomes 

 [ ]
T

2 2 T

1 1 1T
4 4α

α ε
ε

 
= π = π 

 

e
U M e e E M E

e
 (3.3.23) 

We can put, for the weighted second moment matrix, 

 [ ]

T

1

T

2

2T T

1 1 2

T

.
. . . 

.

.

k k k nk

n

g

 
 
 
 

= = = 
 
 
 
  

∑

r

r

M r r r r r G RGR

r

 (3.3.24) 

where G = diag(|g1|
2
  |g2|

2
  . . . |gn|

2
), where the power gains have been normalized so 
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that 
2

1
kk

g =∑  (see (3.3.20)). 

In deriving Tuu  we require Tyy  which, if the errors are independent between 

channels, is given by 
2 2

φσ G , from (3.2D.3). Thus (3.3.13) becomes, for the unequal 

gain case, 

 
T 2 2 T T4 φ= π σ 2uu E RG R E . 

We now put T= 2
2M RG R  where M2 is now another weighted second moment matrix, 

now with weights given by the squares of the element power gains. With similar results 

for the other matrix elements, we have 

 

T T

T 2 2 2 2 T 22 2

2T T

2 2

4 4α α α ε
φ φ φ

ε α ε ε

 
= π σ = π σ = σ 

 
2

e M e e M e
uu E M E U

e M e e M e
 (3.3.25) 

where [ ]α ε=E e e  as before, the matrix of the derivatives of the target direction 

vector.  

From (3.3.12), (3.3.23) and (3.3.25) we have, for the error covariance matrix in the case 

of unequal element gains, 

 
1 T 1 2 1 1

2

− − − −
φΨ = = σ 1 1U uu U U U U . (3.3.26) 

We have put 
2 T T4= π1U E RGR E  and 

2 T 2 T

2 4= πU E RG R E  where G is given above 

(following (3.3.24)). If we put, for the equal gain case, G = I/n then, from (3.2.31) we 

see that M1 = M in this case, so U1 = U and similarly U2 = U/n, and putting these into 

(3.3.26) gives the result (3.3.17) for the equal gain case.  

3.3.5 Simulation results (unequal antenna gains) 

For a simulation for the case of unequal element gains any set of unequal gains might be 

chosen, but here we have modelled a possible practical array. This consists of a set of 

directional elements placed uniformly round a circle and directed outwards. In this case 

we take the case of ideal reflector-backed dipoles, which, because of the reflector, have 

zero gain in the back half circle. The gain (relative to the dipole gain) is 2sin((π/2)cosθ) 

in direction θ between –90º and +90º from the normal to the reflector, which is placed a 

quarter wavelength behind the dipole. (See [7], page 178, with the response shown in 

Figure 7.7). Assuming the dipoles are vertical, this gives directional patterns in azimuth 

but identical parallel patterns in elevation. (In this study where we assume strong 
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signals, with performance limited only by errors, the elevation patterns, which will be 

sinusoidal, are not actually significant.) For this simulation we used 14 elements, as 

shown in Figure 3.12, where the element gains in direction 10º¸ as an example, are 

indicated. Because half the elements are inactive, with gain zero, to any particular 

target, at most only seven elements are useful and one or two of these, for which the 

target is at the edge of the pattern, may have low gain, as shown in this figure, reducing 

the effective number of elements further. The basic array is of one wavelength radius, so 

the distance between elements is only 0.45 wavelengths. 

 

The results show a good agreement between simulation and theory, particularly for the 

azimuth and elevation error variances, though the azimuth-elevation covariance results 

are rather variable, but they are at quite a low level, much lower than the other 

variances, and could be made steadier by taking more trials (4000 were used here). The 

variance of the elevation errors is about ten times that of the azimuth errors, which is 

likely to be related to the considerably wider array aperture in azimuth than in elevation. 

Figure 3.12  Error covariance results for array of directional elements (target at (30,40))
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3.3.6 Error sensitivity 

The theoretical expressions for the variances in the estimates of the angular positions of 

a target show that these are linearly related to the variances of the channel errors, for the 

model taken. (This model includes the supposition that we take the high signal to noise 

ratio case, so that only the effect of channel errors is significant.) If we take the square 

root of these variances then the standard deviations (s.d) of the DF errors are linearly 

related to the s.d. of the channel errors, specified in phase angle. If we set the input error 

values to unity then the expressions for the output errors can be taken to be the error 

sensitivity of the array; the expressions give the s.d. errors in the output estimates 

(azimuth and elevation), in degrees, for unit error (one degree s.d. in phase) at the input. 

If an estimate of the actual input error s.d. is known (e.g. 3º) then the DF s.d. values are 

given by multiplying the sensitivity by the input s.d. (by 3 in this example). 

In Section 3.2.4 (Figs. 3.2, 3.3 and 3.5), Section 3.3.3 (Figs. 3.8, 3.9 and 3.11) and 

Section 3.3.5 (Figure 3.12) we see that the simulations confirm accurately the 

theoretical expressions, giving confidence in the theoretical expressions. However, these 

results are for specific target positions and it is desirable to obtain the performance for 

all target directions. Now, given an array, we can plot the potential performance of the 

array, using the theoretical sensitivity expressions, over any angular region of interest, 

instead of, perhaps, simulating the performance over a relatively limited set of points. 

Contour plots are given in Figure 3.13 for the azimuth and elevation error sensitivities 

for the horizontal planar array R1, shown in Figure 3.8. The plots show that the azimuth 

sensitivity rises rapidly for targets at high elevations where the differences in the ranges 

to the various elements with change of azimuth are very small making the effective 

aperture small. On the other hand at low elevations the array has maximum aperture in 

the azimuth plane, and the azimuth error sensitivity is lowest. (Note the change of scale 

of contour levels for these different regions.) While, in the previous linear theoretical 

plots it is possible to plot corresponding simulation results, this would not be so feasible 

for contour plots, so simulations were carried out at only four points, shown as small 

circles on the plot. The simulation results at these points (the s.d. determined over 2500 

trials in each case) are given as the blue values in the small tables below the plots and 

these are seen to match very well the values read from the contour plots at these four 

points. The elevation plot shows the opposite form of sensitivity – the sensitivity is very 

high at low elevations where the effective elevation aperture is small, and low at high 

elevations where the variation of target-element ranges with elevation is equivalent to a 
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relatively large aperture. Again the simulation results show good agreement with the 

values read from the contour plot. 

We note from (3.3.17) that the DF error variances (given in Ψ) are proportional to U-1
 

and from (3.3.10) that U is proportional to M, which, in turn, is given by 

T

k kk
n=∑M r r , which can also be written (see (3.2.31)) as T

n=M RR  (where the 

element position vectors are taken relative to the mean array position). It follows that if 

we double the array size (replacing R by 2R) M becomes 4 times as large and so also 

does U, and then the error variances, in Ψ, are 1/4 the size. The standard deviations of 

the errors will then be half the values, with array 2R, of those they would be with array 

R. In general we see that the error standard deviations are inversely proportional to the 

array size. (Running the sensitivity plot program with array 2×R1, i.e. with all 

coordinates twice those of R1, and contour intervals at 0.05 instead of 0.1, produces 

plots identical, except for the halved contour values, with those of Figure 3.13, and 

running the simulation program produces values close to half those given in Figure 

3.13. The same result is seen for array 2×R2.) 

From Figure 3.13 we see that for a planar array (of similar, parallel pattern elements) of 

aperture 2½ wavelengths (in both the X and Y coordinates, see R1, given below, and 

Figure 3.5) the error sensitivity is, over most of the angular space, less than 0.2, so it 

Figure 3.13  Error sensitivity for array R1
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would appear that if the aperture were one wavelength it should be in the region 0 to 0.5 

(degrees in DF/degrees in phase error). This will not actually be the case, in general, 

because the elements will become too close in the sense that mutual coupling will be 

significant. However if the array aperture is made k wavelengths (k large enough to 

avoid significant mutual coupling, with elements at least ½ wavelength apart) then we 

expect sensitivities in the region 0 to 0.5/k (deg/deg). This seems to be a reasonable rule 

of thumb for the array accuracy, over most of the angular region, (not close to the array 

plane, for elevation accuracy, or close to the array zenith, for azimuth accuracy) for the 

case of strong signals (so that the performance is not limited by noise) with array 

manifold phase errors.  

One more point of interest in Figure 3.13, the sensitivity plot for the planar array R1, is 

that there is 180º symmetry in azimuth, in the pattern – i.e. the pattern from 180º to 360º 

is identical to that from 0º to 180º, and we only need to plot one half of the azimuth 

range (e.g. 0º to 180º or –90º to +90º). This is because if we move 180º round the array, 

at a given elevation, the array looks exactly the same, except for a reflection normal to 

the azimuth look direction. This means that the array position variance, seen from this 

direction is exactly the same and so therefore is the sensitivity. This symmetry will not 

hold for non-planar arrays, in general (except for some particular, symmetric cases) as, 

with varying element position heights, the array will not look identical (other than a 

reflection) on moving 180º round it. 

For a non-planar example we form array R2 by taking the elements of array R1 and 

varying them over a range of ±1 wavelengths in height above or below the plane of R1. 

The two arrays are given by 

   

0 0 0 0.5 1.5 1

R1 0 0.5 1.5 1 0.5 0.5

0 0 0 0 0 0

− 
 = − − 
  

  and  

0 0 0 0.5 1.5 1.0

R2 0 0.5 1.5 1.0 0.5 0.5

0 0.5 1.0 0.5 1.0 0

− 
 = − − 
 − − 

  

where the columns are the XYZ coordinates of the six elements and the units are 

wavelengths. The azimuth sensitivity plot for this array (Figure 3.14) again shows high 

sensitivity at high elevations, with a modified pattern at lower elevations. The elevation 

sensitivity plot now does not have the high sensitivity at low target elevations as the 

aperture in elevation is now comparable with the azimuth aperture. Again the simulation 

results, shown below the plots, agree well with the values read from the theoretical 

contour plots at the four target positions. We also note that the sensitivity patterns do 
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not have the 180º symmetry in azimuth shown in the planar array case. 

3.3.7 Rule of thumb for regular circular arrays 

The error sensitivity may also depend on the size of the array measured in the number of 

elements, but for a general, irregular array the relation may be quite weak. If we reduce 

the array R1 by removing the first two elements, leaving only the outer elements (3 to 

6), which define the aperture (see Figure 3.8), we find there is only a little increase in 

the sensitivity, as shown in Table 3.1 below. This shows the azimuth and elevation 

sensitivities (using the simulation program) at the four points marked on the plots in 

Figures 3.13 and 3.14, for the basic array R1 and for the reduced, four element array. 

The ratios of the sensitivities of the reduced array to those of the full array are also 

shown. We see that the sensitivity ratios are little greater than unity (and even, in one 

case, just below, which may be an artefact due to the limited number of trials used in 

simulation) and vary with the target direction. The fact that the ratios are close to unity 

shows that the inner two elements of R1 contribute little to the array accuracy. 

 elements 1 – 6 elements 3 – 6 ratios 

Az. 0.185 0.155 0.090 0.083 0.186 0.160 0.095 0.084 1.005 1.032 1.056 1.012 

El. 0.092 0.103 0.476 0.538 0.093 0.107 0.475 0.553 1.011 1.034 0.998 1.028 

   Table 3.1   Error sensitivities at four target positions of array R1 and a reduced form of R1  

Figure 3.14  Error sensitivity for array R2
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We have not included any dependence on the number of elements, n, in the rule of 

thumb given above for general arrays, as we have seen above that the performance 

depends essentially on the elements defining the aperture (which we take to be a small 

number, perhaps three to five) with inner elements not greatly affecting the 

performance. An exception to the case where there are inner elements, not contributing 

very much to the array accuracy, is the case of circular arrays, where all the elements 

are equally significant, all being at one ‘edge’ of the aperture. In this case we can 

determine the dependence of the sensitivity on n. We see from (3.3.17) the error 

variances are proportional to n
-1

 (and hence the s.d. errors are proportional to 1/√n) 

before taking into account the effect of U. As before, we note that U is proportional to 

M, or RRT
/n, which seems to depend on n, but in fact as n increases so does the product 

RRT
, proportionally (as R is of size 3×n), and so M and hence U do not depend on n, 

for the circular array where all the elements are equally significant. To confirm the 1/√n 

dependence of the sensitivity Figure 3.15 shows azimuth and elevation sensitivity plots 

for regular circular arrays of the same radius (one wavelength) for arrays of 4 and 16 
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Figure 3.15  Error sensitivities for 4 and 16 element regular circular arrays
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elements. We see that the plots are identical except that the contour levels for the 16 

element array are half those of the four element array, confirming the 1/√n relationship. 

We also note the uniformity of the patterns in the azimuth dimension – this is because 

the azimuth aperture is constant at any given elevation for these regular circular arrays 

of omnidirectional elements. 

We note that both the azimuth and elevation sensitivities at the elevation of 45º are 

about 0.16 for the 4 element array and 0.08 for the 16 element array, or, more generally, 

using the 1/√n relationship, 0.32/√n for an n-element array. This is for an array of one 

wavelength radius, so, as the sensitivity is inversely proportional to radius we can say 

that the sensitivities at 45º elevation are given by 0.32/r√n for an n-element array of 

radius r. Now, in fact, we cannot pack as many elements as we like into a given array 

because mutual coupling will significantly change the element responses at separations 

under a half wavelength. Thus we could consider the case of regular circular arrays 

where the elements are at separation one half wavelength. In this case the radius of an n 

element array is given by 2rsin(π/n) = ½ or r = 1/4sin(π/n) ≈ n/4π for large enough n. 

Putting this value of r into the expression above we have, for the sensitivities (in both 

azimuth and elevation) of a regular circular array of n elements at λ/2 separation, the 

values 1.28π/n√n or about 4/n√n and this could be a convenient rule of thumb for these 

arrays. 

We note that the sensitivities vary considerably with elevation, being less than that at 

45° for azimuth sensitivity at lower target elevations and for elevation sensitivity at 

higher elevations. The sensitivity is doubled at about 70° elevation for the azimuth 

sensitivity and at about 20° elevation for elevation sensitivity so within a factor of 2 the 

rule of thumb will give a useful estimate of the performance possible over most of the 

angle space. 

Appendix 3.3A: Auxiliary results for 2D angle case   

The elements of the manifold vector a are given for the linear array case in (3.2.20) but 

we now consider a as a function of both azimuth α and elevation ε. Thus we have (in 

the case of equal element gains) 

 ( )T( , ) exp 2 ( , ) /
k k

a i nα ε = π α εr e . (3.3A.1) 

with the unit signal direction vector e dependent on both angles. Thus we have for the 

elements of aα, replacing d in §2, 
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 T( , )
( , ) 2 ( , ) ( , )k

k k k

a
a i aα α

∂ α ε
α ε = = π α ε α ε

∂α
r e  (3.3A.2a) 

and the elements of aε are given by 

 
T( , )

( , ) 2 ( , ) ( , )k

k k k

a
a i aε ε

∂ α ε
α ε = = π α ε α ε

∂ε
r e  (3.3A.2b) 

Here we use eα and eε for the partial derivatives of e with respect to α and ε. Similarly 

the elements of aαα, aαε and aεε are given (omitting the indication of dependence on 

angle, for clarity) by 

 ( )
2

2
T T

2
2 2k

k k k k k

a
a a i aαα α αα

∂
= = − π + π

∂α
r e r e  (3.3A.3a) 

 
2

2 T T T(2 ) 2k

k k k k k k

a
a a i aαε α ε αε

∂
= = − π + π

∂α∂ε
r e r e r e  (3.3A.3b) 

 ( )
2

2
T T

2
2 2k

k k e k k k

a
a a i aαα εε

∂
= = − π + π

∂ε
r e r e . (3.3A.3c) 

(eαα, eαε and eεε are the second partial derivatives of e.)  With these results and using 

|ak|
2
 = 1/n and T T

k k=r e e r� �  (for e�  either eα or eε) we have, first, 

 H T T* 2 2 0k k kk k
a a i n iα α α α= = π = π =∑ ∑a a r e r e  (3.3A.4) 

where 0kk
n= =∑r r , as the array reference is the mean position of the elements, and 

similarly H 0ε =a a . Also  

    ( ) ( )2 2 2H TRe( ) Re * 2
k k k kk k k

a a n aαα αα α α α= = − π = − = −∑ ∑ ∑a a r e a . (3.3A.5)  

As before, using (3.2.31), 

         ( ) ( )2
T T T T T T

k k k k kk k k
n n nα α α α α α α= = =∑ ∑ ∑r e e r r e e r r e e Me  (3.3A.6) 

so we have, from (3.3A.5) and (3.3A.6) 

 
2H 2 TRe( ) 4D αα α α α= = − = − πa a a e Me  (3.3A.7) 

where M is the array second moment matrix (or array position covariance matrix, also 

given in (3.2.31)). Similarly we obtain   

 
H 2 TRe( ) 4E αε α ε= = − πa a e Me  and 

H 2 TRe( ) 4F εε ε ε= = − πa a e Me .  
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We also see, from (3.3A.2), that 

 ( )T TRe( * ) Re (2 ) * 2 Re( * )
k k k k k k k k

a a i a a ia aα α α∆ = π ∆ = π − ∆r e r e  

 
T2 Im( * )k k ka aα= π ∆r e  

so that 

 H TRe( ) Re( * ) 2 Im( * )k k k k kk k
B a a a aα α α= ∆ = ∆ = π ∆∑ ∑a a r e  

 ( )T T2 2kk k
yα α= π = π∑ R e e Ry  (3.3A.8a) 

where yk = Im(ak*∆ak) as before, and we have used T

k kk
v y =∑ v y  in general. 

Similarly  

 H TRe( ) 2C ε ε= ∆ = πa a e Ry . (3.3A.8b) 

Appendix 3.3B: Weighted mean position 

Let the element positions measured from some general reference point be r1′, r2′, . . ., 

rn′, and a weighted mean position be given by 

  'k kk
w=∑r r  (3.3B.1) 

where w1, . . . wn are a set of weights such that 1kk
w =∑ . Now let the element 

positions measured relative to this mean position be given by r1, r2, . . ., rn where 

'k k= −r r r , then the weighted mean of the positions is now given by 

  'k k k k kk k k
w w w= − = − =∑ ∑ ∑r r r r r 0 . (3.3B.2) 

In the case of equal parallel patterns the weights are all equal and of strength 1/n, but in 

the general case the weights are given by |gk|
2
  (k = 1 to n). 
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3.4. MULTIPLE TARGETS 

3.4.1 MUSIC function in multiple target case  

For the multiple target case we use the fact that the MUSIC ‘spectral’ function is a 

power-like measure (i.e. real and positive) of the degree to which the PSVs (point 

source vectors) over the parameter range of interest lie in the signal (sub)space – the 

vector space spanned by the PSVs of the signals received. This measure may be the 

squared lengths of the components of the PSVs orthogonal to this space, as in the 

original form of MUSIC, in which case we look for minima, or equivalently, and the 

measure taken here, the squared lengths of the components lying in this space, and look 

for maxima. In either case the PSVs should be standardized in length, most 

conveniently taken to be normalized. (This definition is consistent with that taken above 

(see (3.1.1)) for the single target case.) 

One way of finding a basis for this space is by performing an eigenanalysis on the data 

covariance matrix, formed from the received waveforms, and taking the eigenvectors 

corresponding to non-trivial (principal) eigenvalues, those not corresponding to the 

receiver noise level. This begs questions such as how to decide which eigenvalues are 

essentially at the noise level, how much integration is required or how uniform or 

‘white’ the noise is between channels or in the external environment. In this study, 

where we are considering the performance as limited by errors affecting the knowledge 

of the PSVs (channel errors or element position errors), we take the case of strong 

signals, so that noise effects are negligible, and are indeed neglected. In this case, 

assuming accurate arithmetic, the principal eigenvectors obtained will form an accurate 

basis for the received signal space – i.e. the m-dimensional vector space (with m 

significant signals present) defined by the m signal PSVs (albeit modified by the 

receiving system, with errors). Putting this alternatively, both the set of m significant 

eigenvectors and the set of m signal PSVs span the same space and each eigenvector is a 

linear combination of the signal PSVs and vice versa. (However, the eigenvector basis, 

unlike the signal PSV basis, is an orthogonal set. This is a desirable attribute but not a 

necessary one for forming the MUSIC spectrum.) It was noted in 1987 [6] that, if an 

estimate of the noise covariance matrix is available, (which is often assumed, generally 

implicitly, when using eigenanalysis for the processing) then a signal space basis can be 

found more easily than by eigenanalysis – for example by Gram-Schmidt processing 

(producing an orthogonal basis) or even more simply by Gaussian elimination (giving a 

non-orthogonal basis). Having obtained a signal space basis then the principle of 
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MUSIC is, given a stored set of PSVs covering the parameter region of interest with 

suitably fine sampling (the stored ‘manifold’), to find the parameter ‘(power) spectrum’ 

over this region in the form of the squared distance of the PSVs in (or orthogonal to) the 

signal space. The PSVs which lie precisely in this space are taken to be those with the 

parameter values corresponding to the actual targets. Because of inaccuracies (finite 

precision arithmetic, for example, or, the subject of this study, the mismatch between 

the actual signal PSVs seen by the system and the stored values) we look for the m 

stored PSVs which lie most nearly in the signal space. To do this we project the 

manifold PSVs into this space and look for the m maximum values. If B is an n×m 

matrix of m signal space basis vectors (for an n-element sensor system) then the 

projection of an n-vector v is given by PBv where the projection matrix is PB = 

B(BHB)
-1BH

. Any other basis for the same space, B′, can be written as B′ = BK where K 

is a non-singular m×m matrix, and this represents the fact that the vectors of one basis 

are all linear combinations of the vectors of the other basis. Inserting BK into the 

expression for PB′ we find that the factors of K and K-1
 all cancel out and that PB′ = PB. 

This is not surprising, as it simply states that the projection into a vector space is 

independent of the basis used for that space. From this we conclude that instead of using 

the basis of eigenvectors for the projection we can equally well use the basis of the 

signal PSVs. Of course in practice these are not known and the eigenvector basis (or 

other basis, such as Gram-Schmidt) derived from the observed data covariance matrix, 

must be used, but for the theoretical analysis the actual PSV basis is equivalent to these 

other, experimentally determined, bases and this is what is used below. 

Thus the MUSIC function for a parameter set θθθθ is given by 

        ( )2 H H H H( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f = = = =A A A A A Aθ P a θ P a θ P a θ a θ P P a θ a θ P a θ  (3.4.1) 

where we have used the Hermitian and idempotent properties of projection matrices 

(PA
H
 = PA, and PA

2
 = PA) and A is the n×m matrix of the m signal PSVs. This form is 

consistent with that used for the single target case (as in (3.1.1), (3.2.6) and (3.3.2)). In 

(3.1.1) for example we could put this in the form 

            ( )H2
H H H H H( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f θ = θ φ = θ φ θ φ = θ φ φ θa a a a a a a a a a  

 
H

( )( ) ( )φ= θ θaa P a  (3.4.2) 

where we have put 
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H

H

( ) 2

( ) ( )
( ) ( )

( )
φ

φ φ
= φ φ =

φ
a

a a
P a a

a
 (3.4.3) 

as in this case a is taken to be normalized, i.e. ||a(φ)|| = 1. The last form in (3.4.3) is the 

general form for projecting into a space of a single dimension, whose basis (not 

necessarily normalized) is given by a(φ). (It is easily checked that ( ) ( ) ( )φ φ = φaP a a , i.e. 

( )φaP  projects ( )φa  onto itself.)  When the basis vector was not normalized, as in (3.2.1) 

where the vector is a + ∆a, we effectively divided by its modulus, as in (3.4.3); in fact 

we multiplied by h where 
22 1h = + ∆a a , see (3.2.2). The form given in (3.4.1) will be 

used in the multiple target case, i.e. 
H( ) ( )Aa θ P a θ , where [ ]2 3 m= 1A a a a a�  

for the case of m targets, and θθθθ is in general a 2-component angle parameter (azimuth 

and elevation). 

3.4.2 Measurement error due to PSV error; multiple targets, single parameter case 

Following the approach of §3.2.1, extended to the case of multiple targets, we have, for 

a target with the true parameter value α, the true set of target PSVs A, the errors in A 

given by ∆A, and the resultant error in α given by ∆α, 

 
H( ) ( ) ( )f α + ∆α = α + ∆α α + ∆α

A
a P a�  (3.4.4) 

where = + ∆A A A� . We assume ∆α and ∆A are small and that the actual measurement 

error is given by the value of ∆α that maximizes f round the parameter value α. We 

expand the function in terms of ∆α to second order, in order to find the maximum, and 

take terms to only second order of smallness in terms of products involving ∆α and ∆A 

(i.e. excluding terms in ∆α2
 and ∆A, and in ∆α and ∆A2

 and higher order products, of 

course). 

We now expand a(α+∆α) up to second order in ∆α, as before (as in (3.2.3)); 

 21
2

( ) ( ) ( ) ( )α + ∆α = α + α ∆α + α ∆αa a d s  (3.4.5) 

where d and s are the first and second derivatives of a with respect to α. (NB: We do 

not include a normalizing factor k, as given in (3.2.5) as, because of the definition of a, 

it was seen in §3.2.1 that the expanded form is also normalized. Although the finite 

expansion in (3.4.5) is not exact, the norm of a(α+∆α) is unity to the second order 

accuracy taken here.) Then (3.4.4) becomes 
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( ) ( )H
2 21 1

2 2
( ) ( ) ( ) ( ) ( ) ( ) ( )f α + ∆α = α + α ∆α + α ∆α α + α ∆α + α ∆α

A
a d s P a d s�  (3.4.6) 

 22A B C= + ∆α + ∆α +�  (3.4.7) 

taking terms up to second order only. The error is given by the value of ∆α which 

maximizes (3.4.7). We have 0df d∆α =  when 2 2 0B C+ ∆α = , i.e. 

 B C∆α = − . (3.4.8) 

Taking the terms in ∆α and ∆α2
 in the expansion of (3.4.6) we have 

 
H H H2 2 Re( )B = + =

A A A
a P d d P a a P d� � �  (3.4.9) 

and 

 H H H H H1 1
2 2

Re( )C = + + = +
A A A A A

a P s s P a d P d a P s d P d� � � � � . (3.4.10) 

(We have used yHPx = (xHPy)
H 

= (xHPy)*, as xHPy is a scalar so its value is the same as 

its transpose, and we have also used P = PH
.) Now if we drop all terms of third order 

(and higher) in smallness (where ∆α and ∆A are both of first order) we see that for B 

we only need terms up to first order in ∆A in the expansion of 
A

P� and for C which 

multiplies ∆α2
 we take terms of zeroth order only. From Appendix 3.4A we have, to 

first order in ∆A, 

 
H H+ += + ∆ + ∆A A AA

P P Q AA A A Q�  (3.4.11) 

where H 1 H( )+ −=A A A A is a pseudoinverse of A (such that 
H 1 H( ) m

+ −= =A A A A A A I ) 

and QA = I – PA. For target r we have from (3.4B.4) r r

+∆ = ∆AA a a , where r∆a  is 

column r of ∆A. Also using PAar = ar and QAar = 0, we have, putting these results into 

(3.4.11), 

 r r r= + ∆AA
P a a Q a�  (3.4.12) 

Then, from (3.4.9) we have 

 ( )H H HRe( ) Re( ) Re ( )
r r r r r r r r

B = = = + ∆AA A
a P d d P a d a Q a� �  

 HRe( )r r= ∆Ad Q a  (3.4.13) 

as HRe( )r r =a d 0  from (3.2A.2).  
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From (3.4.11) the zeroth order approximation to 
A

P� is AP , of course, so putting this into 

(3.4.10) and using r r=AP a a  (and 
H H

r r=Aa P a ) we have 

 
H HRe( )r r r r rC = + Aa s d P d .  

Using (3.2A.6) (or (3.3A.5)) we have, using the definition of QA, 

 
2 H H H H( )r r r r r r r r r rC = − + = − + − = −A A Ad d P d d d d I Q d d Q d . (3.4.14) 

The error on the estimate of the parameter αr for the rth target due to the error ∆A in A 

is, from (3.4.8),  

 r r rB C∆α = −  (3.4.15) 

where Br and Cr are given in (3.4.13) and (3.4.14), so we have, finally 

 
( )H

H

Re
r r

r

r r

∆
∆α =

A

A

d Q a

d Q d
. (3.4.16) 

[This is consistent with the result (3.2.9) for a single target. In this case (m =1, A = a) 

we have 
2H= = −A aQ Q I aa a  so H H H H= −Ad Q d d aa  (as a is normalized) and the 

numerator of (3.4.16) becomes ( ) ( ) ( )H H H HRe Re Re∆ = ∆ − ∆Ad Q a d a d aa a . However 

we have ( )HRe 0=d a , so Hd a  is imaginary, and H H= −d a a d . Then the numerator 

becomes  

 ( ) ( )H H HRe ReB = ∆ + ∆d a a da a  

in agreement with (3.2.9). The denominator of (3.4.16) is seen immediately to be the 

same as that of (3.2.9) on substituting for Qa.] 

3.4.3 Measurement error due to PSV error; multiple targets, two parameter case 

The analysis for m targets follows closely that for the single target given in §3.3.1 with 

the exception that the projection matrix 
A

P�  is now included, where A�  is of size n×m. In 

the two parameter case the expression for the MUSIC function in (3.4.4) is replaced by 

 
H( , ) ( , ) ( , )f α + ∆α ε + ∆ε = α + ∆α ε + ∆ε α + ∆α ε + ∆ε

A
a P a� . (3.4.17) 

Using the expansion of a as before (3.3.1) (but setting k = 1) we can put f in the form of 

(3.3.5) but now we have, instead of (3.4.9) and (3.4.10), 
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 ( )HReB α=
A

a P a� , ( )HReC ε=
A

a P a�   (3.4.18) 

and 

 
( ) ( ) ( )
( )

H H H H

H H

Re ,  Re +Re , 

Re .

D E

F

αα α α αε α ε

εε ε ε

= + =

= +

A A A A

A A

a P a a P a a P a a P a

a P a a P a

� � � �

� �

 (3.4.19) 

Replacing d in (3.4.9) by aα or aε we can use the result obtained in §4.2 for Br (see 

(3.4.13)) for Br and Cr in (3.4.18), considering target r, to obtain  

 ( ) ( )H HRe  and Re
r r r r r r

B Cα ε= ∆ = ∆A Aa Q a a Q a . (3.4.20) 

(The notation arα, for example, means the partial derivative of the vector ar with respect 

to α.) 

As in deriving Cr from C in §3.4.2, we note that we replace 
A

P�  by PA in D, E and F, so 

that D, for example, becomes, considering target r, 

( ) ( ) ( )H H H H H HRe Re Re
r r r r r r r r r r r

D αα α α αα α α αα α α= + = + = +A A AA A
a P a a P a a P a a P a a a a P a� �

    

 
2 H H H H

r r r r r r r r rα α α α α α α α α= − + = − + = −A A Aa a P a a a a P a a Q a  (3.4.21) 

using r r=AP a a  (from (3.4B.1)), (3.3A.5) and = −A AQ I P . This differs from the single 

signal case in that there we note that 
H H H 0r r r r r rα α α α= =Aa P a a a a a , from (3.3A.4). For 

Fr we have, similarly, 

 
H

r r rF ε ε= − Aa Q a  

but for Er we note that 

 ( ) ( ) ( ) ( )H H H HRe +Re Re +Re
r r r r r r r r r

E αε α ε αε α ε= = AA A
a P a a P a a a a P a� � . (3.4.22) 

We see, in a derivation similar to that of  (3.3A.5), we have 

 ( ) ( ) ( )2H T T
Re Re * 2 *k k k k k kk k k

a a n a aαε αε α ε α ε= = − π = −∑ ∑ ∑a a r e r e   

 H

α ε= −a a    (3.4.23)  

using equations (3.3A.3b) and then (3.3A.2). From (3.4.22) and (3.4.23) we have  

 ( ) ( ) ( )H H H HRe +Re +Re
r r r r r r r r r

E αε α ε α ε α ε= = −A Aa a a P a a a a P a .  
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 ( )HRe
r rα ε= − Aa Q a  (3.4.24)  

Putting these results into (3.3.7), giving the parameter errors in the case of two 

parameters, but now for the multiple target case, we have, for the errors on the estimates 

of target r, 

 

1

1r r r r

r r

r r r r

D E B

E F C

−

−∆α     
= − =     ∆ε     

U u  (3.4.25) 

where 

            
( )

( )

H H

H H

Re

Re

r r r r

r

r r r r

α α α ε

α ε ε ε

 
 =
 
 

A A

A A

a Q a a Q a
U

a Q a a Q a
 and 

( )
( )

H

H

Re

Re

r r

r

r r

α

ε

 ∆
 =
 ∆ 

A

A

a Q a
u

a Q a
. (3.4.26) 

These correspond to U and u given in (3.3.8) and (3.3.9) as applicable to the single 

signal case. (For example, U(1,1) = ( ) ( )2H H HReα α α αα− = = −a I aa a a a a  using 

(3.2A.6) and the fact that 
H 0α =a a .) 

3.4.4 Measurement error due to PSV error; two targets, two parameter case 

Equations (3.4.25) and (3.4.26) cannot be easily simplified into a form corresponding to 

(3.3.10) in the general multiple signal case, but the general case is not of great interest 

theoretically – little can be determined in the way of simple statements about the 

accuracy. For well separated signals (particularly if their number m is well below the 

number of array elements n) we expect the accuracy of measurement of each of the 

signals to approach that given by the single signal case, given in §3.3, and for close 

signals we expect the accuracy of measurement of one signal to be affected by the 

proximity of the others. In this section we take the case of only two close signals; this is 

both more tractable and also of more general practical value.  

Taking the (1,1) element of Ur we have  

 
H H H(1,1)r r r r r r rU α α α α α α= = −A Aa Q a a a a P a  (3.4.27) 

From (3.3A.2) and (3.2.31)  

 ( )H 2 T 2 T T4 4r r r r r rnα α α α α α= π = πa a e Me e RR e . (3.4.28) 

(This is the same as –D in §3.3.1 (see (3.3.10) and (3.3.8)), obtained equivalently via 

(3.3A.6) and (3.3A.7).) The second term on the right side of (3.4.27) is given, for target 

1, using (3.4C.5), by 
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H H H H H H H H

1 1 1 1 1 1 2 2 1 2 2 1 1 2 2 1( * )α α α α α α= − γ − γ + µ = µAa P a a a a a a a a a a a a a a a  (3.4.29) 

where we have used 
H

1 1 0α =a a  from (3.3A.4), 
H

1 2γ = a a  and 21 | |µ = − γ .  

Now (using (3.3.2a)) 

   ( )H T T T

1 2 1 1 2 1 1
2 * 2 2

k k k kk k k
i a a i b iα α α α= − π = − π = − π∑ ∑a a r e R e e Rb  (3.4.30) 

where 1 2*k k kb a a=  as in (3.4C.3). Using (3.4.30) in (3.4.29) gives 

 ( )H H H 2 T H T

1 1 1 2 1 2 1 1
* 4α α α α α α= µ = π µAa P a a a a a e Rbb R e . (3.4.31) 

Thus we have, from (3.4.27), (3.4.28) and (3.4.31), 

 
H

2 T T

1 1 1

1
(1,1) 4U

n
α α

 
= π − µ 

bb
e R I R e . (3.4.32) 

We note that the matrix ( )H T1 n − µR I bb R  is Hermitian so it follows that U1(1,1) is 

real, and so we need only the real part of this matrix and we can put 

 
2 T

1 1 1(1,1) 4U α α= π e Me�  (3.4.33) 

where 

 
H H T

T1 Re( )
Re

n

   
= − = −  µ µ  

bb R bb R
M R I R M� . (3.4.34) 

We clearly have a similar result for target 2, replacing 1 by 2, so we can replace 1 in 

(3.4.33) by r (r = 1 or 2). We also see that we have a similar result, with ε replacing α, 

for element (2,2) of Ur. For the off-diagonal elements of Ur, following the argument 

above, we obtain 

    ( )( )2 T H T 2 T
(1,2) Re 4 1 4 (2,1)r r r r r rU n Uα ε α ε= π − µ = π =e R I bb R e e Me� .  (3.4.35) 

With these results, we see that, for the two signal case, we have a modified form of 

(3.3.10): 

 

T T

2 2 T

T T
4 4r r r r

r r r

r r r r

α α α ε

ε α ε ε

 
= π = π 

 

e Me e Me
U E ME

e Me e Me

� �
�

� �
 (3.4.36) 

with M�  given in (3.4.34) and Er as in (3.3.10). 

For the first component of ur we have 
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 ( ) ( ) ( )H H H(1) Re Re Re
r r r r r r r

u α α α= ∆ = ∆ − ∆A Aa Q a a a a P a . (3.4.37) 

Similarly to the derivation of (3.4.30) we have 

     ( )H T T T

1 1 1 1 1 1 1 1 12 * 2 2k k k kk k k
i a a i z iα α α α∆ = − π ∆ = − π = − π∑ ∑a a r e R e e Rz  (3.4.38) 

where 1 1 1*k k kz a a= ∆ . 

From (3.4.37), (3.4.38) and (3.4C.9) we have 

 ( )T T H T

1 1 1 1 1
(1) Re 2 2 ( )u i i nα α= − π + π − µe Rz e Rbb I 11 z  

 ( ) }{T H T

1 12 Im ( )nα= π − − µe R I bb I 11 z  (3.4.39) 

 ( ) }{T H

1 12 Imα= π − µe R I bb J z  (3.4.40) 

where we put  

 T
n= −J I 11 . (3.4.41) 

Clearly u1(2) is as u1(1) with ε replacing α, and for u2(1) and u2(2) we replace 1 by 2 in 

the suffices, so in general we can put  

 ( ) }{T H
2 Imr r r= π − µu E R I bb J z . (3.4.42) 

3.4.5 Error covariance matrix, two targets 

As before the error covariance matrix is given by (3.3.12) except that we use (3.4.36) 

and (3.4.42) for Ur and ur, for target r (r = 1 or 2), giving 

  
1 T 1

r r r r r

− −=Ψ U u u U . (3.4.43) 

In Appendix 3.4D (equations (3.4D.1) and (3.4D.5)) we find an expression for T

r r
u u  

from (3.4.42), and we see that 
T

r r
u u  depends on both σφ

2
, the phase error variance 

and σa
2
, the fractional amplitude variance, and in different ways (i.e. proportional to 

σφ
2SST

 + σa
2TTT

 where SST
 and TTT

 are different functions of b). It follows that, only 

if we could find that both SST
 and TTT

 were proportional to M� , as in (3.4.36), could we 

find
T

r r
u u  proportional to U. Thus, as this is not the case, we have the rather 

cumbersome form for the parameter error covariance (for target r) 
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 ( )
2

1 T 2 T 2 T T 1

2

4
r r r a r r

n

− −
φ

π
Ψ = σ + σU E R SS TT R E U . (3.4.44) 

where S and T are respectively the real and imaginary parts of K (see (3.4D.2)) and Ur 

is given in (3.4.36). However, in the case where the amplitude and phase errors have the 

same variance, we find that T

r r
u u  is given by (σφ

2
/n)U (see (3.4D.9)) and in this case 

we have the simpler form 

  

2

1

2r r
n

φ −
σ

=Ψ U  (3.4.45) 

with Ur given in (3.4.36). 

3.4.6 Simulation results 

3.4.6.1 Comparison of two target and single target cases 

In this section we present results for some pairs of targets, giving both simulation results 

and the values given by the theory in equations (3.4.36), (3.4.44) and (3.4.45). In the 

case of two targets it is not possible to produce general plots, whether linear or contour 

plots, covering all target possibilities, as there are four independent target variables 

(azimuth and elevation for each of two targets). One simplification would be to fix one 

target position and give contour plots of the s.d. azimuth and elevation errors over all 

positions for the second target. However, there would be a degree of arbitrariness in the 

choice of position of the first target, and in principle a set of results over a considerable 

number of first target positions would be desirable. Instead of attempting any such 

general forms of results, we limit the examples here to a number of target positions, 

showing that the theoretical results agree well with the simulation results, and exploring 

a few interesting cases. 

2 target simulation 2 target theory single targets sim’n. 1: (10,25) 

2: (35,45) 1 2 1 2 1 2 

azimuth s.d. 0.54 0.87 0.54 0.87 0.47 0.64 

elevation s.d. 1.47 0.71 1.46 0.71 1.03 0.57 

Table 3.2 Example results for two target angle estimation with channel errors 

The results for the first example are given in Table 3.2. This is for the irregular 2D array 

R1, illustrated in Figure 3.8. In this case the targets are at (10º,25º) and (35°,45°) in 

azimuth-elevation coordinates and the s.d. of the phase errors is 5° (with equal level 

amplitude errors, i.e. equal to the phase error s.d in radians). The results in the first four 

columns show excellent agreement between simulation and theory. The last two 
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columns show the s.d. errors that would be given in the cases of single targets in the 

positions of targets 1 and 2 – i.e. the results if target 2 and target 1 respectively, were 

not present. These results are better (i.e. with lower s.d. errors) showing that the 

interaction between the targets in the two target case makes the angle estimation more 

sensitive to system errors, as might be expected. Figure 3.16 shows the MUSIC function 

plotted over an angular region including the two targets (with small crosses marking 

their positions). In Figure 3.16(a) the function is plotted as in Figure 2.4(b) and the 

contours are at 3dB intervals. In Figure 3.16(b) it is in linear form, as used in the peak 

finding process and the contours are ¼dB intervals. The function peaks are not quite at 

the target positions, due to the errors included in the simulation. In particular we note 

the tendency of the dip between the two peaks to fill in, with a ridge being seen between 

them. This rapidly fills as the targets are moved closer, until the two peaks merge and 

only one peak is seen. In this case the targets are not resolved.  

In Table 3.3 we investigate the effect of moving the targets closer together. Again the 

channel error s.d. was set at 5° but the array was 2×R1 – i.e. R1 doubled in size. This 

should reduce the variance of the estimation errors (proportional to RRT
) by a factor of 

4 and the s.d. by a factor of 2. (This is what might be expected – doubling the aperture 

of the array should increase the precision of measurement by a factor of 2.) This is seen 

(in part (a) of the table) to be approximately the case, though the target positions and 

relative separations (and hence the degree of interaction) are different from Table 3.2. 

Again we see that in the single target cases, with targets at the positions 1 and 2, the 

results are better, in the absence of interaction between the targets. In Table 3.3(a) the 

targets are separated by 8 degrees in both azimuth and elevation, in (b) by 7 degrees, in 
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2 target simulation 2 target theory single targets sim. 1: (10,15) 

2: (18,23) 1 2 1 2 1 2 

azimuth s.d. 0.29 0.32 0.29 0.32 0.22 0.24 

elevation s.d. 0.95 0.59 0.95 0.59 0.84 0.54 

  (a) Separation 8 degrees in azimuth and elevation 

2 target simulation 2 target theory single targets sim. 1: (10,15) 

2: (17,22) 1 2 1 2 1 2 

azimuth s.d. 0.34 0.36 0.32 0.35 0.22 0.24 

elevation s.d. 0.99 0.63 0.96 0.62 0.84 0.57 

  (b) Separation 7 degrees in azimuth and elevation 

2 target simulation 2 target theory single targets sim. 1: (10,15) 

2: (16,21) 1 2 1 2 1 2 

azimuth s.d. 0.44 0.42 0.37 0.40 0.22 0.23 

elevation s.d. 1.02 0.67 0.98 0.66 0.84 0.59 

  (c) Separation 6 degrees in azimuth and elevation 

2 target simulation 2 target theory single targets sim. 1: (10,15) 

2: (15,20) 1 2 1 2 1 2 

azimuth s.d. 0.51 0.80 0.44 0.46 0.22 0.23 

elevation s.d. 1.06 0.94 1.02 0.71 0.85 0.62 

  (d) Separation 5 degrees in azimuth and elevation 

Table 3.3 Effect of target separation 

(c) by 6 degrees and in (d) by 5 degrees. (The single target results are the same in all 

four cases for target 1, which is not moved, and change a little for target 2, as its 

position varies slightly as seen by the array.) At 8 degrees (and also at higher values of 

separation, such as 10° and 15°, not shown) the agreement between simulation (over 
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10000 trials) and theory is excellent. At 7°, as the targets are closer, the theory shows 

poorer performance (higher error variance), and so do the simulation results, but now 

the simulation results diverge slightly from the theory, being a little worse. This trend 

increases as the separation is reduced to 6° and 5°, and is attributable to the gradual 

failure of the small error approximations that are clearly valid at higher separations. In 

fact Figure 3.17 shows that, at 5º separation in both angles, the two peaks have almost 

merged, with the dip between them very much shallower than in Figure 3.16. (The 

contours are at 3dB intervals in Figure 3.16(a) and 0.04dB in part (b) of the figure, for 

comparison with Figure 3.16). NB: We can see from the angular nature of the contour 

lines that the function is only evaluated at 1° intervals. However the peak positions have 

been estimated using 2D quadratic interpolation, which gives very good accuracy with 

modest computational requirements.) The results are also found to be much more 

variable, even over runs of 10000 trials, suggesting that some errors may have high 

values. This is observed mainly for target 2. The estimated half-beamwidth is about 13 

degrees along the line of the targets (computed using (3.4E.6) from Appendix 3.4E) so 

the target separation (about 7°) is only about 1/4 beamwidth. We conclude that the 

theoretical expressions give the s.d. of the errors very accurately for separations to well 

under a half beamwidth, successfully taking into account the interaction of the target 

responses, with some falling off in accuracy as the targets are brought closer still, but 

Figure 3.18 Effect of target separation on errors
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then we are starting to approach the limit of resolution.  

The values in Table 3.3 (with some extra values) are plotted in Figure 3.18. Each of the 

three sets of curves shows the simulation results (the highest values at 5 degrees 

separation), the theoretical values and, the lowest curve, the value in the case when only 

a single signal is present. These confirm the deductions already made – the good 

agreement between the simulation and the two signal theory above, say, 7° separation, 

with some divergence when the targets are closer, and the lower error values when the 

targets are present on their own, as might be expected. The two signal errors fall a little 

as the separation increases but not as low as the single target values, even at high 

separations, in the case considered here of amplitude errors as well as phase errors. 

3.4.6.2 Effects of phase and amplitude errors 

2 target simulation 2 target theory single target theory 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.31 0.35 0.31 0.35 0.23 0.25 

elevation s.d. 0.80 0.55 0.80 0.54 0.63 0.45 

   (a) phase and amplitude errors, same in the two channels 

2 target simulation 2 target theory targets theory single  1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.31 0.36 0.31 0.35 0.22 0.25 

elevation s.d. 0.80 0.54 0.80 0.54 0.63 0.45 

     (b) phase and amplitude errors, different in the two channels 

2 target simulation 2 target theory single targets theory 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.22 0.24 0.23 0.25 0.23 0.25 

elevation s.d. 0.64 0.46 0.64 0.45 0.62 0.44 

      (c) phase errors only, same in the two channels 

2 target simulation 2 target theory single targets sim. 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.21 0.24 0.21 0.24 0.002 0.002 

elevation s.d. 0.47 0.28 0.47 0.28 0.008 0.005 

      (d) amplitude errors only, same in the two channels 

              Table 3.4  Effect of different error models  

In Table 3.4 we show the effect of different forms of error, taking the case of the targets 

separated by 8° in both azimuth and elevation, with targets at (10°,20°) and (18°,28°). 

In part (a) of the table we again see excellent agreement between simulation and theory 
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and also the rather better performance achieved in the single signal cases. In this case 

the errors for the simulation were set to be the same in the two channels. In part (b) the 

errors were taken to be independent between the two channels, though again with zero 

mean normal distributions of equal variance in phase and relative amplitude (5° s.d.). 

We see that there is little difference in the simulation results, any differences being 

likely to be due to statistical fluctuation. There is no difference in the theory results, in 

cases (a) and (b), which does not distinguish between the cases, and again there is 

almost complete agreement (to 2 decimal places) between simulation and theory. In part 

(c) we applied phase errors only and again there is good match between simulation and 

theory. We note the estimation errors in the two signal case are lower than in the case of 

both amplitude and phase errors, as seems reasonable. However in the single target 

cases the errors are essentially the same as for the case with amplitude errors also 

present, confirming that amplitude errors have no effect on the angle estimation in the 

single target cases (at least for small errors, allowing first order approximations to be 

used in the theory), as previously noted. What is also of interest is that the two target 

errors with only phase channel errors are essentially the same as the single target errors, 

suggesting that interactions between the target responses occur only as a result of 

amplitude errors.  

Finally, in part (d) we see that with amplitude errors only there are significant 

estimation errors in the two target case (and again the simulation results match the 

theory) but in the single target cases the errors are very small. In fact if we run the 

simulation with zero s.d. channel errors we obtain exactly the same results, showing that 

the non-zero results given in the single target case are just the result of the limit on the 

accuracy of the peak position determination used. (Higher accuracy would be possible 

at higher computational cost, but this degree of accuracy is clearly satisfactory for the 

rest of the results.) 

A further study of amplitude and phase errors only is given in Table 3.5. Here we see 

that with phase errors only, even with the target separation as low as 4 degrees (in both 

azimuth and elevation) the simulation results match the theoretical results very well (in 

part (a) of the table). Also the single target theory matches the two target theory almost 

exactly. In part (b) we give the result for targets at only 4 degrees separation with only 

amplitude errors present and we see that there is now a divergence of the simulation 

results from the theory, unlike the case of 8 degrees separation, seen in Table 3.4(d). 

(The single target results in theory should be zero; here the simulation results confirm 
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this, within the accuracy used.) These results indicate that the difference between the 

simulation results and theory, when the targets are close, shown in Figure 3.17, are due 

to the presence of amplitude errors. 

2 target simulation 2 target theory single target theory 1: (10,20) 

2: (14,24) 1 2 1 2 1 2 

azimuth s.d. 0.21 0.22 0.23 0.24 0.23 0.24 

elevation s.d. 0.63 0.53 0.63 0.52 0.63 0.52 

 (a) phase errors only 

2 target simulation 2 target theory single target theory 1: (10,20) 

2: (14,24) 1 2 1 2 1 2 

azimuth s.d. 0.62 0.69 0.54 0.57 (0) (0) 

elevation s.d. 0.79 0.63 0.72 0.51 (0) (0) 

 (b) amplitude errors only 

        Table 3.5 Target at 4 degrees separation with phase or amplitude errors only 

3.4.6.3 Phase errors only 

Here we look more closely at the result shown in Table 3.4(c) above and in Table 

3.5(a). These appeared to show that in the case of phase errors only the two target 

results might be exactly the same (allowing for small differences due to taking a limited 

statistical sample) as if the targets were present independently. A study of the theoretical 

expressions did not show that those for the two target theory in the absence of amplitude 

errors could be made to equal those for the single target case. A possibility appeared to 

be that the two signal theory was not quite correct and that it should be the same as the 

2 target simulation 2 target theory single target theory 1: (10,20) 

2: (150,65) 1 2 1 2 1 2 

azimuth s.d. 0.283 0.622 0.285 0.626 0.226 0.459 

elevation s.d. 0.675 0.257 0.676 0.259 0.628 0.256 

(a) widely separated targets 

2 target simulation 2 target theory single target theory 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.227 0.251 0.230 0.252 0.226 0.247 

elevation s.d. 0.642 0.457 0.642 0.455 0.628 0.446 

(b) close targets 

                                 Table 3.6 Higher accuracy results, phase errors only 

single target theory when only phase errors are present. However, taking results to three 

decimal places, both in simulation and theory, confirmed (1) that the two signal theory 
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matches the simulation results very well and (2) also that both the two signal theory and 

simulation differ slightly from the single signal theory. This is shown in Table 3.6 for 

two cases, a pair of widely separated targets and two fairly close targets (8 degrees 

separation in both dimensions). 

These results show that the two targets interact, even when widely separated in angle, 

but with only phase errors, the error performance is very close to the case of single 

targets. 

3.4.6.4 Conclusions of two signal error study on MUSIC accuracy 

In conclusion, we see that the theory for the two target angle estimation accuracy is very 

accurate, for target separations down to considerably less than one beamwidth (3dB) 

separation, and moderately accurate below that, approaching the separation at which the 

targets cease to be resolved. We also see that, while only channel phase errors affect the 

estimation performance when only a single target is present (at least for moderate 

amplitude error levels), amplitude errors do affect the estimation performance when two 

signals are present. However if only phase errors are present the two target results are 

very close to the single target results, indicating only a very small effect on the accuracy 

of estimation of each target due to the presence of the other in this case. 

3.4.7 Comparison with the Cramer-Rao bound, two parameter case 

In §3.2.5 we found that the expressions for the variance in the estimate of the value of a 

single parameter for a single target when limited only by noise (given by the CRB) and 

the variance when limited only by errors in the array data have precisely the same 

functional form. The two expressions only differ by scaling factors proportional to the 

signal to noise ratio and the variance on the array errors, respectively. The comparison 

showed that the array phase error variance σφ
2
 is related to the integrated signal to noise 

ratio (iSNR) in each channel by 

  
2

2

1
iSNR  

2

pa

φ

= =
ψ σ

, (3.4.46) 

(see (3.2.37)). Here we show that these results apply also to the single target, two 

parameter case, and for one form of the two target case, though not quite for the general 

two target case. In this section we consider only the EPP form of array. 

In the case of a single target with two parameters, the CRB is given (from (2.D.2) by 
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1
H H

2 H H

Re( )
( , )

2 Re( )npa

−

α α α ε

ε α ε ε

  ψ
α ε =      

a a

a a

a Q a a Q a
B

a Q a a Q a
 (3.4.47) 

(We have replaced s�  by the mean square signal amplitude a
2
, and d1 and d2 by aα and 

aε, to correspond to the notation of this section. We have also included the factor n 

required because of the different scaling of vectors in the CRB expression and the array 

error analysis, as discussed in §2.5.) Putting Qa = I – aaH
 and using aHaα = 0 and aHaε = 

0, this becomes 

 

1
2 H

2 2H

Re( )
( , )

2 Re( )npa

−

α α ε

ε α ε

  ψ   α ε =
    

a a a
B

a a a
. (3.4.48) 

The parameter estimate covariance matrix in the case of array errors is given in (3.3.17) 

by 

 

2

1( , )
n

φ −
σ

α ε =Ψ U  (3.4.49) 

where U is given in (3.3.8). Using (3.3A.5) and equivalents for the other components of 

U we have 

 

2 H

2H

Re( )

Re( )

α α ε

ε α ε

 
 =
  

a a a
U

a a a
 (3.4.50) 

so that we see, from (3.4.48) and (3.4.50) that 

 1

2
( , )

2npa

−ψ
α ε =B U . (3.4.51) 

As in the single parameter case, the forms of the expressions in (3.4.49) and (3.4.51) are 

the same, and the relationship between the scaling factors is the same as in that case, 

given in (3.4.46) above. 

We now consider the case of two targets, and two parameters. For target r the CRB 

error covariance matrix is given. from (2.D.18), by 

       

1
H H

1

2 2H H

Re( )
( , )

2 2Re( )

r r r r

r r r

r r r r
npa npa

−

−α α α ε

ε α ε ε

  ψ ψ
α ε = =     

A A

A A

a Q a a Q a
B U

a Q a a Q a
 (3.4.52) 

where Ur is given in (3.4.26). From (3.4.43) we have, for the covariance matrix of 

parameter errors due to array errors only,  
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 1 T 1( , )
r r

− −α ε =Ψ U uu U  (3.4.53) 

so if we could show that 

 

2

T

n

φσ
=uu U  (3.4.54) 

then, again, B and ΨΨΨΨ would have the same functional form, and the relationship between 

the array error variance and the integrated signal to noise ratio would be the same as for 

the single target case. In fact we show in Appendix 3.4D that (3.4.54) does not quite 

hold (though the relationship is close) in the most general case, where the amplitude and 

phase errors have different variances, so that the CRB (with appropriate choice of SNR) 

is not quite a correct model for the effect of array errors in the general two (or higher) 

signal case. However in the case where these variances are equal we find (see the 

discussion leading to (3.4D.8)) that (3.4.54) does hold and it follows that  

 

2

1( , )r r
n

φ −
σ

α ε =Ψ U  (3.4.55) 

in this case. This has the same form as (3.4.52) for the CRB with the same relationship 

between the variances (in both phase and amplitude) of the components of the PSVs and 

the effective integrated signal to noise ratio. 

3.4.8 Accuracy of IMP in the two target case 

Following the fruitful approach to the analysis of the effect of PSV errors on the 

performance of MUSIC taken in earlier sections, an attempt was made to apply the 

same method to the IMP function with two targets. However, this function, in the form 

of a ratio with a denominator that is error sensitive as well as its numerator, is more 

complex than that of the MUSIC function with two targets. Furthermore the errors on 

the PSVs near both targets seem to be combined in the expression, as the errors on 

signal 1 affect the projection matrix Q1 which enters the expression (in both numerator 

and denominator) when attempting to find the function peak in the region of signal 2. 

The IMP expression also includes both signal power levels (which can be combined into 

a single parameter, the power ratio, when we consider no noise, or negligible noise, to 

be present), which is not the case for MUSIC. It seemed that the expressions relating the 

parameter error estimates to the PSV errors were becoming rather complex, with little 

likelihood of obtaining compact and convenient expressions, so this study was left but 

simulations were nevertheless carried out to determine whether IMP appeared to be 
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more or less accurate than MUSIC. 

Before comparing IMP and MUSIC the first investigations were to find out whether the 

relative signal strengths affected the performance of IMP, and also how a degree of 

correlation might affect the performance. IMP differs from MUSIC in being able, in 

principle, to determine the parameters of partially correlated, or even fully correlated, 

signals. (Strictly, MUSIC can also be used with partially correlated signals, but with 

less effectiveness as the degree of correlation increases. With two fully coherent signals 

MUSIC will search for only one signal with a PSV which is a power-weighted 

combination of the PSVs of the two signals, and generally this will not correspond 

closely to any manifold PSV. IMP, in principle, at least, should find the two PSVs 

which minimize the received power.)  Figure 3.19 shows the effect of varying the ratio 

ρ = p2/p1 where p1 and p2 are the powers of signals 1 and 2, considered to be high 

compared with receiver noise. We see that over a large range (from about 0.2 to about 

5) there is very little sensitivity to this parameter (or possibly none, considering that any 

small variations may due to the finite set of cases (4000) taken for the statistics). We 

note that when p2 is relatively small enough (ρ = 0.1) the accuracy to target 2 starts to 

fall (or the error s.d. values rise) and correspondingly when p1 is relatively small (ρ = 

10) the accuracy to target 1 starts to fall. (In this case we used the array 2×R1 again and 

the targets were at (10°,20°) and (18°,28°) with 5deg rms phase errors and equivalent 
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level amplitude errors.) Below each simulation curve is plotted the theoretical s.d. value 

for MUSIC, and it is seen that IMP essentially gives the same performance. 

Defining a correlation coefficient by 
H

1 2 1 2
n p pγ = u u where

2

k kp n= u  (k = 1,2) 

and uk is the set of n samples of the waveform of signal k, we see that γ may be 

complex, in general, and rises to value 1 when the signals are perfectly correlated. In 

Figure 3.20 we show the effect of correlation on IMP accuracy. In part (a) the 

coefficient is real and plotted over the range 0 to 1. We see that the errors rise very little 

up to γ = 0.4, rising more sharply as the correlation approaches unity. It is more difficult 

for IMP to separate fully correlated signals (and impossible for MUSIC) which is 

reflected in the sharply increased errors for this condition. (In compiling the error 

statistics a small  fraction of the trials were rejected, and repeated with another set of 

errors, when IMP failed to 

resolve the targets.) In the case 

of the correlation coefficient 

being imaginary, shown in part 

(b), there is still an increase of 

errors as the signals become 

more closely correlated, but less 

dramatically as γ approaches 

unity. The sensitivity to 

correlation is likely to differ with 

signal separation, but this has not 

been explored here. In particular 
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we note that for a modest degree of correlation the performance is not greatly affected, 

and is close to that given by the MUSIC theory for two (uncorrelated) targets. 

In Figure 3.21 we show the performance of both MUSIC and IMP with varying signal 

separation. The MUSIC results are those already presented in Figure 3.18 and the IMP 

results are for the same conditions (with the signal ratio ρ set at 0.5 and the correlation 

coefficient to zero). As already seen before, the MUSIC curves are close to the 

theoretical curves for all four target parameters, and here we see that IMP is equally 

close, in general – in fact slightly closer at the lowest target separations. This might be 

because of the better resolution achievable by IMP, with MUSIC approaching the limit 

of its capability. In any case, we see again that the IMP performance matches the 

MUSIC theory very well. 

2 target simulation 2 target theory IMP simulation 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.31 0.35 0.31 0.35 0.31  0.36  

elevation s.d. 0.80 0.55 0.80 0.54 0.81 0.54 

   (a) phase and amplitude errors, same in the two channels 

2 target simulation 2 target theory IMP simulation 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.31 0.36 0.31 0.35 0.31 0.35 

elevation s.d. 0.80 0.54 0.80 0.54 0.80 0.54 

     (b) phase and amplitude errors, different in the two channels 

2 target simulation 2 target theory IMP simulation 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.22 0.24 0.23 0.25 0.23 0.25 

elevation s.d. 0.64 0.46 0.64 0.45 0.64 0.45 

      (c) phase errors only, same in the two channels 

2 target simulation 2 target theory IMP simulation 1: (10,20) 

2: (18,28) 1 2 1 2 1 2 

azimuth s.d. 0.21 0.24 0.21 0.24 0.21 0.25 

elevation s.d. 0.47 0.28 0.47 0.28 0.49 0.30 

      (d) amplitude errors only, same in the two channels 

               Table 3.7 Effect of different error models comparing IMP and MUSIC 

Finally, in Table 3.7, we compare IMP and MUSIC with different error conditions. 

Again the MUSIC results have been given in Table 3.4, but here we add IMP results for 

the same target positions. We see that the IMP results, as well as the MUSIC results, are 
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very close to the MUSIC theory for all the error conditions. (There is an indication that 

IMP may be slightly more sensitive in the case of amplitude errors only, but the IMP 

results were taken over only 4000 cases, rather than 10000 for MUSIC (as the IMP 

program takes longer) so the statistics may be more variable.) As with the other results, 

these generally indicate that the performance of IMP is essentially the same as that of 

MUSIC, and that the MUSIC theory derived here is an accurate description of this 

performance. 

 

 

Appendix 3.4A: First order approximation for perturbed projection matrix 

Let = + δA A A�  where δA is a small perturbation to A. (In general A is n×m with m ≤ 

n.) We require to find an approximation to the projection matrix  

 
H 1 H( )−=

A
P A A A A�

� � � �  (3.4A.1) 

to first order in δA. First we have 

 H H H H H H( ) ( )= + δ + δ = + δ + δ + δ δA A A A A A A A A A A A A A� �  

          H ( )= +A A I Z  (3.4A.2) 

where 

 H H H( ) ( )−= δ + δ1Z A A A A A A  (3.4A.3) 

to first order in δA. Then the inverse, from (3.4A.2), is 

 H 1 1 H 1 H 1( ) ( ) ( ) (  . . . )( )− − − −= + = − + −2A A I Z A A I Z Z A A� �  

             H 1( )( )−= −I Z A A  (3.4A.4) 

to first order in Z and hence also in δA. From (3.4A.1), using (3.4A.4) to first order in 

δA, 

 
H 1 H H 1 H( )( ) ( ) ( )( )( ) ( )− −= + δ + δ = + δ − + δ

A
P A A A A A A A A I Z A A A A�

� �  

         H 1 H H 1 H H 1 H( )( ) ( ) ( )− − −= − + δ + δA I Z A A A A A A A A A A A , 

where we have neglected terms including both Z and δA as these are of second and 

third order. Substituting Z from (3.4A.3) and putting 
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 H 1 H( )+ −=A A A A  (3.4A.6) 

where A+
 is a pseudoinverse of A, such that A+A = Im (where A is n×m and m < n), we 

have 

 
H 1 H H 1 H H 1 H( ) ( ) ( )− − −= − + δ + δAA

P P AZ A A A A A A A A A A A�  

       H H H H+ + + += − δ − δ + δ + δA A AP P AA A A P AA A A  

       H H+ += + δ + δA A AP Q AA A A Q , (3.4A.7) 

where QA = I – PA.  

Appendix 3.4B: Results on products including a vector in A 

(1) We note that 
H 1 H( )−= =AP A A A A A A A , where [ ]2 . . . m= 1A a a a , from 

which we can see that  

 r r=AP a a   (3.4B.1) 

where ar is the rth column of A. 

(2) Similarly ( )n n m×= − = − =AQ A I P A A A 0  from which, considering column r of A, 

we have 

 r n=AQ a 0  . (3.4B.2)  

(3) We have [ ]H 1 H

1 2( ) . . . m m

+ −= = =A A A A A A I u u u  where ur is column r of 

the m×m identity matrix. Taking column r of A and I we see that 

 r r

+ =A a u   (3.4B.3) 

and so 

 r r

+ =BA a b  (3.4B.4) 

where br is column r of B (which is a matrix of m columns). 

Appendix 3.4C: Auxiliary results for case of two signals 

(a) Projection matrix 

We first obtain an expression for PA = A(AHA)
-1AH

. In this case the matrix of signal 

PSVs contains only two vectors, thus A = [a1 a2] so  
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 [ ]
H H H

H 1 1 1 1 2

1 2H H H

2 2 1 2 2

1

* 1

γ     
= = =     γ    

a a a a a
A A a a

a a a a a
 

and so 

   ( )
1

1 2H
1 1

(1 )
* 1 * 1

−
− γ −γ   

= = − γ   γ −γ   
A A  (3.4C.1) 

where 
H

1 2γ = a a . Using (3.3A.1) for the components of ar we have 

       ( ) ( )T T

1 2 2 1
* exp 2 ( ) exp 2

k k k kk k k
a a i n i nγ = = π − = π ∆∑ ∑ ∑r e e r e  (3.4C.2) 

where 2 1∆ = −e e e . If we put  

 1 2*k k kb a a=  (3.4C.3)  

then we can put 

 T

1 2*k k kk k
a a bγ = = =∑ ∑ 1 b . (3.4C.4)  

The projection matrix is thus, from (3.4C.1), 

       [ ]
H

H H H H1

1 2 1 1 1 2 2 1 2 2H

2

1
( * )

* 1

−γ   
= µ = − γ − γ + µ  −γ   

a
P a a a a a a a a a a

a
, (3.4C.5) 

where µ is given, using (3.4C.4), by 

 
2 T H1 1µ = − γ = − 1 bb 1 , (3.4C.6) 

(b) H

r rα ∆Aa P a  

To evaluate H

r rα ∆Aa P a , we have, using (3.3A.4) in (3.4C.5),  

             H H H H H H

1 1 1 1 1 2 2 1 2 2( * )α α= − γ − γ + µAa P a a a a a a a a a . 

 H H H

1 2 2 1( * )α= − γ µa a a a  (3.4C.7) 

Now we note, from (3.4C.3) and (3.3A.1), that 
2

1 1 2 2k k k k ka b a a a n= = , so that 

H H

2 1 2 1 1 1 1( * ) ( * * *) ( * *) *k k k k k kk k
a a a nb a a− γ ∆ = −γ ∆ = −γ ∆∑ ∑1a a a  

 H H T H T

1 1 1 1( * *) ( )k kk
nb z n n= −γ = − = −∑ b z b 11 z b I 11 z  (3.4C.8) 

where we have substituted for γ from (3.4C.4) and also put T

1 1kk
z =∑ 1 z . Combining 
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(3.4.30), (3.4C.7) and (3.4C.8) gives, for target r, 

 H T H T2 ( )r r ri nα α∆ = − π − µAa P a e Rbb I 11 z . (3.4C.9) 

(c) Alternative form for µ 

We note that ( )
2

1 2
1 1/

k k k
b a a n n= = =  and so  

 
2 2 2 H1/ 1/kk k

b n n= = = =∑ ∑b b b , 

 so we can put µ, from (3.4C.6) in the form 

 T H H H T H T H1 ( )n nµ = − = − = − =1 bb 1 b b b 11 b b I 11 b b Jb  (3.4C.10) 

using (3.4.41). 

Appendix 3.4D: Expectation of uuT 

From (3.4.42) we can put (dropping the suffix r in this section, for less cluttered 

notation) the expectation of uuT
 can be written in the form 

 2 T T T 2 T T4 Im( ) Im( ) 4= π = πTuu E R Kz Kz R E E RLR E  (3.4D.1) 

where 

 H= − µK I bb J  (3.4D.2) 

(with J given in (3.4.41)) and  

 TIm( ) Im( )=L Kz Kz . (3.4D.3) 

Now let K = S + iT and z = x + iy where S, T, x and y are real, then we have 

 
T T T T( )( )= + +L Sy Tx y S x T  

 T T T T T T T T= + + +S yy S S yx T T xy S T xx T . (3.4D.4) 

Now in Appendix 2D we found that ( )T 2 2
nφ= σyy I  where 

2

φσ  is the phase error 

variance. Following the same argument we find that ( )T 2 2

a
n= σxx I , where 2

aσ  is 

the amplitude error variance, and we also assume the independence of these errors, so 

that T =xy 0 . With these results we have, from (3.4D.4), 

 2 2 T 2 2 T( ) ( )an nφ= σ + σL SS TT . (3.4D.5) 
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In the case of equal variance errors we have 

 ( )2 2 T T 2 2 H( )( ) ( ) Ren nφ φ= σ + = σL SS TT KK . (3.4D.6) 

We note  

 H H H H H 2= − µ − µ + µKK I bb J Jbb bb JJbb   

but using J2
 = nJ (from (3.4.41)) and bHJb = µ from (3.4C.10) the last term becomes 

H
n µbb  and substituting for J then gives 

 H H T H( * )n= − µ + γ + γ µKK I bb b1 1b . (3.4D.7) 

Now n=R1 r where r is the centroid of the array – the mean position of the array 

elements, and if we take the array positions in R as relative to the centroid then we have 

=r 0 so that  

 H T H T H TRe( ) Re( ) ( Re( ) )n n= = − µ =R KK R RKK R R I bb R M� , (3.4D.8) 

using (3.4.34). From (3.4D.8), (3.4D.6) and (3.4D.1) we have, for the equal variance 

case,  

 2 2 T 2(4 ) ( )n nφ φ= π σ = σTuu E ME U� . (3.4D.9)
 

Appendix 3.4E: Approximate beamwidth of general array 

The normalized gain in direction (α,ε) when steered in direction (α0,ε0) is given by 

 ( )T

0 0 0 0

1
( , ; , ) exp 2 ( ( , ) ( , ))

kk
g i

n
α ε α ε = π α ε − α ε∑ r e e . (3.4E.1) 

Expanding the exponentials, putting 0 0( , ) ( , )∆ = α ε − α εe e e , we have 

 ( ) ( )
2 3

2 3
T T T

0 0

2 (2 ) (2 )
( , ; , ) 1

2! 3!
k k kk k k

i i
g

n n n

π π π
α ε α ε = + ∆ − ∆ − ∆ +∑ ∑ ∑r e r e r e  

  ( )
4

4
T(2 )

 . . .
4!

kkn

π
+ ∆ +∑ r e  

and if we take the array centroid as the origin for the element coordinates then the 

second term disappears, as kk
=∑ r 0 . Also, although this does not make the fourth 

term zero, except for arrays with a degree of symmetry, it will be the case that this term 

will generally be low compared with the even power terms. Thus we have  
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 ( ) ( )
2 4

2 4
T T

0 0

(2 ) (2 )
( , ; , ) 1 ...

2! 4!
k kk k

g
n n

π π
α ε α ε ≈ − ∆ + ∆ +∑ ∑r e r e  (3.4E.2) 

The 3dB gain is given by the value of ∆e such that g = 1/√2. If we ignore the last term 

we have 

  ( )
2

2
T(2 ) 1

1 0.293
2! 2

kkn

π
∆ ≈ − =∑ r e . (3.4E.3) 

If we put 

 
2 4

1 2 2 4

(2 ) (2 )
1 1

2! 4!
g T T S S

π π
≈ − + = − +  (3.4E.4) 

where ( )2
T

2 kk
S n= ∆∑ r e  and ( )4

T

4 kk
S n= ∆∑ r e  then we can compare the terms T1 

and T2 taking two extreme cases. In the first case we suppose T   k k∆ = ρ ∀r e , the same 

value for all the elements. In this case we see that S2 = ρ2
 and S4 = ρ4

, so that 

2

1

(2 )

2!
T

πρ
=  and 

4

2

(2 )

4!
T

πρ
= and so 

2

2 1 (2 ) 2! 4!T T = πρ . Also, from (3.4E.3) see that 2

1 (2 ) 2! 0.293T = πρ ≈  so that  

 2

2 1 0.293(2!) 4! 0.293 6 0.05T T ≈ = < . 

In the other case we suppose that only one component is significant so that T

k ∆ = ρr e  

for only one value of k. In this case S2 = ρ2
/n and S4 = ρ4

/n, and following through the 

argument we find 

 2 1 0.293 6T T n≈ . 

If n = 6 (as in the array R1) then 2 1 0.293 6 0.3T T n≈ < . Thus we see that the fourth 

power term is between 3/10 (when n = 6) and 1/20 of the magnitude of the second 

power term, with, in practice, being rather closer to the lower value, in general. Thus it 

is reasonable to neglect the fourth power term to obtain a fairly good approximation to 

the beamwidth. 

Now we want to find the half-beamwidth ∆θ of a beam at 

the position of target 1 along the line between target 1 and 

target 2. If target 2 is at position (∆α,∆ε) relative to target 

1 then this line is at an angle φ, given by tanφ = ∆ε/∆α, as 

illustrated. We can put  

∆α

∆ε

φ
∆θ
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 ∆e ≈ eα∆α + eε∆ε = (eαcosφ + eεsinφ)∆θ = eφ∆θ  (3.4E.5) 

where eα and eε are the partial derivatives of e(α,ε) with respect to α and ε respectively. 

The estimate of ∆θ is then given, from (3.4E.3), by 

 ( )
2

2
T(2 )

0.293
2!

kkn
φ

π
∆θ =∑ r e  

Using the result obtained earlier (see (3.3A.6) for example),  

 ( )2
T T T T

kk
nφ φ φ φ φ= =∑ r e e RR e e Me ,  

we have 

 2

2 T T

0.293 0.015

2 φ φ φ φ

∆θ = =
π e Me e Me

 (3.4E.6) 

with T
n=M RR  and eφ given in (3.4E.5). 

 

 As  T( , ) [cos cos sin cos sin ]α ε = α ε α ε εe   

we see that T( , ) [ sin cos cos cos 0]α α ε = − α ε α εe  

and T( , ) [ cos sin sin sin cos ]ε α ε = − α ε − α ε εe .  

Two beam patterns are shown in Figure 3.22 for the array R2 (defined in §3.3.6) 

doubled in size to reduce the beam pattern. The array R2 was formed by taking the 

irregular planar array R1 and varying the element heights to form a 3D array, for which 

there is no simple expression for the beamwidth. In Figure 3.22(a) the beam was 
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Figure 3.22  Beam patterns for an irregular 3D array

(a) beam centred at (10,20) (b) beam centred at (90,20)
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pointed at 10° in azimuth and 20° in elevation. The contour levels, relative to the peak 

of the beam, are at –1, -2, . . . , -6, -8, -10, . . . ,-20. The blue dots show the half-

beamwidth positions – i.e. the estimated 3dB points – calculated using (3.4E.6) at φ 

values 0°, 60°, . . . , 300°, and we see that these are reasonably accurate, though 

generally lying slightly within the 3dB contour, and in one case quite near the 2dB 

value. Moving the beam to azimuth 90° (in (b)) we see that there is one point at –2dB, 

four between –2 and –3dB, and one between –4 and –5dB. However, as an 

approximation, it is generally quite good and relatively simple. 

The half-beamwidth in the azimuth or elevation plane is simply given by setting φ to 0º 

or 90º and eφ to eα or eε. 

3.5. SUMMARY OF CHAPTER 3 

3.5.1 General approach 

In this chapter we have limited the error study to the case of large signals only, ignoring 

the effect of noise in further limiting the parameter estimation accuracy. The results, 

therefore, show the best that can be achieved with given error levels, and hence to what 

levels the errors (of the stored manifold PSVs relative to the actual vectors seen by the 

signals) should be reduced in order to achieve (at best) some required accuracy of 

parameter estimation. The effect of noise on accuracy, at least in the single target case is 

given by the Cramer-Rao bound. 

We have developed the theory for the accuracy of MUSIC in stages from the simplest 

case – a uniform linear array, so estimating a single angle parameter only, and for a 

single target – up to the case of multiple targets using general (planar or volume) arrays, 

with two angle parameters. In principle only the most complicated case might have been 

presented, from which the results for simpler cases could have been derived, but the 

advantages of this progressive presentation are that it should be easier for the reader to 

follow the theory as the complexity increases in stages, and that any user interested in a 

simpler case can find the result without having to understand and simplify a higher level 

result. 

The single target accuracy is of most interest as it is also close to the accuracy of 

measurement in multiple target cases when the targets are well separated. The next case 

of interest is that of two close targets, and these are the cases studied. The single target 

case is the same for both MUSIC and IMP, which have essentially the same function in 
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this case. For the two target case theoretical results were found only for MUSIC; the 

approach used very effectively for MUSIC becomes too difficult when applied to the 

more complex IMP function, so IMP results have been obtained in simulation only. 

Also the study has been applied almost solely to the case of equal, parallel pattern (EPP) 

arrays. These form a very substantial proportion of practical arrays. The case of non-

EPP arrays is of less easy practical application because the performance will depend on 

the actual element patterns and a considerable amount of information on the element 

patterns and orientations will be needed in order to use the theoretical results. However, 

this case was tackled, in the single target case, and theoretical expressions obtained, 

confirmed, as for the EPP theory, by simulations. 

3.5.2 Results achieved  

(a) As expected, the angular accuracy of an array with errors depends directly on the 

array aperture – that is to say that the s.d. error is inversely proportional to the linear 

extent of the array normal to the signal direction. This is not particularly original or 

interesting, but more so is the fact that the theory shows that the error variance (or 

squared s.d. error) is inversely proportional to the second moment of the array 

positions about their mean.  

(b) The result for the single target case is equivalent to the Cramer-Rao Bound (CRB) 

with an error variance replacing the signal to noise ratio figure – i.e. the array errors 

are equivalent to a specific level of S/N as given in Figure 3.7. 

(c) There is excellent agreement between theory and simulation for the arrays 

chosen. (See Figures 3.2, 3.3, 3.5, 3.8, 3.9, 3.11, 3.12. . . , Tables 3.2 – 3.7) 

(d) The results are, in general, for arrays of equal parallel pattern elements (an EPP 

array) – in practice the most common form – but the case of non-parallel pattern 

elements, with a single target, was taken and results obtained, again confirmed in 

simulation. (In this case the centroid is of the element positions weighted by the element 

power gains in the signal direction. Thus the centroid varies with signal direction, in 

general.) 

(e) An expression for the error sensitivity on a single target for an EPP array (the s.d. 

error with unit variance phase error) was defined (§3.3.6) and could be used for any 

specified array, to indicate the performance to be expected using the array (for azimuth 

and elevation estimation). (Figures 3.13 and 3.14 show the advantage of increasing the 

elevation aperture for a non-planar array relative to the planar form. 
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(f) From the error sensitivity study two rules of thumb, giving the approximate general 

performance in terms of sensitivity, were obtained for an array with a single target were 

devised: (1) for regular circular planar EPP arrays (again a quite likely form of array) 

with half wavelength spacing in terms of the number of elements and (2) for more 

general arrays in terms of the aperture (in wavelengths). These are intended to give an 

rough, but easily obtained, estimate of the performance to be expected from an array. 

(g) The expression for the s.d. errors in the two target case was obtained. This shows 

there is interaction between the signals, when relatively close (e.g. within a beamwidth) 

reducing the performance. The results were confirmed to well below a beamwidth (in 

fact down to about ¼ beamwidth separation) when some of the approximations made 

start to fail.  

(h) In all the single target cases the theory showed that only the phase errors (or 

imaginary parts) of the errors in the components of the PSVs contributed to parameter 

estimation errors (within the reasonable approximations used). This was confirmed in 

simulation, where, with only amplitude errors included, the parameter errors were 

negligible . . .  

(k) . . . but with two targets amplitude errors also affect the performance. This was 

also confirmed in simulation, with excellent agreement. 

(l) Not directly related to the error study, but using some of the theory developed, a 

useful approximate expression for the beamwidth of an irregular array in any 

given direction was obtained. 

(m) Simulation results indicated that the accuracy of IMP was very similar to that of 

MUSIC, for which the theory has been confirmed. This is a reasonable result on the 

basis that in the absence of errors (limited by noise alone) the accuracy of both methods 

approaches the CRB, while with errors we have, for MUSIC, an expression of the form 

of the CRB, so we see that errors have a noise-like effect on MUSIC (statistically). On 

this basis it is not surprising that the accuracy of IMP with errors is similar. 

(n) If phase errors are dominant (relative to amplitude errors) then the performance with 

two signals present is found to be very close to the performance to the two single signal 

cases. This is useful as the single signal case is more easily obtained and the rules of 

thumb are applicable. 
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Chapter 4: Resolution of IMP 

4.1. RESOLUTION BASED ON THE METHOD OF SPEIRS ET AL  

4.1.1 Negligible errors 

An approach to determining the potential resolution performance of IMP, and similar 

methods, is proposed in SMCR99 [41]. This is based on the detectability of a second 

target when the first target has been removed by setting a null on it. The principle is that 

if the second target is above the threshold level for detection with a null directed onto 

the first target (assumed to be the larger) then the second target will be detected and an 

estimate of its position will be found, and in this sense the two targets will have been 

resolved. This has the weakness, for practical systems, that it assumes the first signal’s 

position has been found accurately, and the null has been placed correctly at this 

position, so one implicit assumption is that there are no system errors, that the signals 

are large enough for the effect of noise on the position estimates to be negligible and 

that the signals are uncorrelated (and the observation interval is long enough to use this 

fact). Given these assumptions, this is a promising basis for an estimate of the resolution 

in good (or ideal) conditions, and so will represent a bound, which might be approached 

closely in practice in some cases. Speirs et al also consider that the null, rather than 

being a perfect one (given by orthogonal projection, as in IMP, using vectors Qa0a(θθθθ) 

looking in direction θθθθ with a null in direction θθθθ0 with the PSV a0) could be chosen to be 

signal strength dependent, as given by the Wiener adaptive array solution (using vectors 

R-1a(θθθθ), where R is the system covariance matrix). In this latter case, as the null is not 

quite so deep it follows that the attenuation of the second signal will not be so great and 

the resolution will be better. However this effect is likely to be small in general, and as 

it does not correspond to the IMP-type approach, we will not consider this variation and 

consider only the projection null. Also, although the paper considers an example of the 

three signal case, this case is difficult to cover in general terms as there are too many 

variables (the three target strengths and the three separations of the targets from each 

other) so we restrict attention to the main problem, the resolution of two close targets. In 

the Speirs paper plots are given of the power loss due to a nearby null but this loss and 

the limiting separation for resolution are not given in terms of the array parameters. The 

aim of this section is to obtain an expression for this loss, leading to expressions for the 

resolution limit and the resolution improvement factor.  

With the assumption of a null accurately placed at the position of target 1, the signal to 
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noise power gain at target 2 is proportional to 

 ( ) 22 2 2H H H H

21 2 1 2 2 1 1 1 2 2 1 2 1g = = − = −a Q a a I a a a a a a a a  . (4.1.1) 

[If a weight vector w is applied to an array then the signal to noise power ratio for a 

signal in some direction with PSV a2 is proportional to |wTa2|
2
/||w||

2
. (This is the ‘white 

noise’ case where the noise is uniform across the receiver channels. We make this 

common assumption here.) If nulls are set in directions with PSVs contained in A the 

weight vector maximizing the signal to noise ratio is given, (see Appendix 2B, eq. 

(2.B.12)) within a constant, by w* = QAa2, or equivalently wT
 = a2

HQA (as QA = QA
H
), 

and then the ratio in (2.B.2) becomes r0|a2
HQAa2|

2
/a2

HQAa2 = r0a2
HQAa2. (We have used 

||QAa2||
2 

= a2
HQA

HQAa2 and QA
HQA = QA

2
 = QA for a projection matrix, and also the 

fact that a0
HQAa0 is real as QA is Hermitian.) In the case considered here we have a 

single null, so we can put A = a1, and so
2H

1 1= = −
11 a 1Q Q I a a a .] 

Without the null the power gain ratio is g20 = ||a2||
2
 (on putting I for Q1 in (4.1.1)) so the 

power loss is 

   
2 2 2H

21 21 20 1 2 1 2
1l g g= = − a a a a . 

We see that this loss expression would be the same if we multiplied a1 or a2 by an 

arbitrary (non-zero) constant so we could use the normalized vectors here. Taking the 

PSVs to be normalized, we can write 

  
2 2H

21 1 2
1 1l = − = − γ = µa a  (4.1.2) 

where γ and µ are as in Chapter 3 (eq. (3.4.29)). The gain loss in the direction of signal 

1 with a null at the position of signal 2 is given by  

 
( )2 2H H HH

1 2 2 2 1 2 112 1 2 1

12 2 2 2 2

10 1 1 1 2

1
g

l
g

−
= = = = −

a I a a a a a aa Q a

a a a a
 

and we see that l12 = l21, i.e. the power gains to the two signals suffer the same loss due 

to a null placed on the other one.  

To express µ in terms of the array position coordinates we use the approach of 

Appendix 3.4E of Chapter 3 (taking the common case of an EPP array). The gain γ is 

given (following (3.4E.1)) by 
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 ( )H T

1 2 2 2 1 1

1
exp 2 ( ( , ) ( , ))

k
i

n
γ = = π α ε − α ε∑ ka a r e e  (4.1.3) 

Expanding as before with 2 1∆ = −e e e  (the unit direction vectors in the directions of 

signals 1 and 2, i.e. ek = e(αk,εk)) then putting kk
=∑ r 0  (using centroid coordinates) 

and taking the second order approximation, as in Chapter 3, we have  

 ( )
2

2
T T 2 T 22 (2 )

1 1 2
2!

k kk k

i

n n
φ φ

π π
γ ≈ + ∆ − ∆ = − π ∆θ∑ ∑r e r e e Me  (4.1.4) 

using ( )2
T T T T and 

kk
nφ φ φ φ φ φ∆ ≈ ∆θ = =∑e e r e e RR e e Me  (from (3.3A.6)). Finally, 

again taking the lowest order approximation, we have 

 2 T 24 φ φµ ≈ π ∆θe Me  (4.1.5) 

as the loss in power gain. Here 
2 2 2 2 2

2 1 2 1( ) ( )∆θ = ∆α + ∆ε = α − α + ε − ε and eφ = 

eαcosφ + eεsinφ, (as illustrated below) where eα and eε are the derivatives with respect to 

α and ε of the direction vector, evaluated in the immediate region of the signals – for 

example at the position of signal 1, or of signal 2, or at the midpoint between them, and 

tanφ = ∆ε/∆α.  

Now let the power level of signal 2 

be a factor ρ above the minimum 

level for detection, then the targets 

are at the limit of detection (and 

equally, in the case of IMP, at the 

limit of resolution) when the separation is such that signal 2 is reduced to the minimum 

detection level, i.e. the loss is equal to 1/ρ. The limiting separation for resolution ∆θres 

(in radians) is thus given by µ = 1/ρ or 

 2 2 T

res 1 (4 )φ φ∆θ = π ρe Me . (4.1.6) 

The resolution limits in azimuth and elevation, rather than the general direction φ (in the 

α-ε parameter space) are given by 

 T

res 1 2 α α∆α = π ρe Me  and T

res 1 2 ε ε∆ε = π ρe Me . (4.1.7) 

This gives the resolution in terms of the array element positions (in the moment matrix 

M) and the derivatives of the unit direction vector in the region of the targets being 

(α
1
,ε

1
)

(α2,ε2)

∆θ
∆ε

∆α
φ

target positions

eε
eφ

eα

φ

direction vector

derivatives
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resolved, eα and eε, as well as the weaker signal power relative to the minimum 

detectable power ρ.  

We can also define a figure of merit for resolution, which is the ratio of the array 

beamwidth (approximately the resolution limit in the simple, beamforming case) to the 

minimum separation for resolution in the superresolution case. This ratio is essentially 

the resolution improvement factor given by the superresolution processing, and the 

higher the figure the better the resolution. For irregular arrays the beamwidth is not 

simply defined, but we can use the expression obtained in Appendix 3.4E (equation 

(3.4E.6)). This expression gives the half-beamwidth (along direction φ in parameter 

space), so if θB is the beamwidth, this equation becomes 

 

2

2 T

0.293

2 2

B

φ φ

θ 
=  π  e Me

 (4.1.8) 

and combining this with (4.1.5) we have 

 2 2 2

B B8 0.293( ) 2.34( ) 2.34 rµ = × ∆θ θ = ∆θ θ =  (4.1.9) 

Combining these expressions (with 1/µ = ρ at the resolution limit) we have 

 B

res

1.53r
θ

= = ρ
∆θ

 (4.1.10) 

where r is the resolution improvement factor. This is a remarkably simple result, not 

requiring any details of the array (as both the detection limit and the beamwidth depend 

on the array moment M in the same way). The improvement seems to increase 

indefinitely (as √ρ) with the power level of the weaker signal, but in practice, of course, 

errors will limit this factor. If the weaker signal is 10dB above the minimum detectable 

level this gives a resolution improvement factor of 4.8, i.e. the signals should be at the 

limit of resolution at about 0.2 beamwidths separation, and at 20dB the value of r will 

be about 15.3 indicating resolution at 0.065 beamwidths, which seems optimistic. 

4.1.2 Resolution with errors 

Errors will limit the cancellation of signal 1 (taken to be the stronger of the two) and so, 

if it is strong enough there will be a residue above noise level. If the detection level is 

left at a value defined by noise level (i.e. to give a suitably low false alarm rate on 

noise), which is appropriate for weaker signals, this residue of the strong signal will 

generate false detections at essentially 100% probability when no second signal is 
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present. (If there is a second signal present then false alarms will be generated after the 

second scan, and so on.) Thus it is essential to raise the threshold in this case, to a 

certain factor below the peak of the function on the first scan. The factor will need to be 

based on the estimated levels of the errors (e.g. 4º rms in phase or the equivalent 0.6dB 

rms in amplitude), or perhaps could be found experimentally from observed residues 

with given input signals.  

In order to estimate the resolution performance with errors we need first to determine 

the residue level. The gain to signal 1 with an error corrupted null on this signal is 

 

2 22H H

1 1 1 1 1H

11 1 1 2 2

1 1

1eg
−

= = − =
1a

a a a a a
a Q a

a a
�

� � �

� �
 (4.1.11) 

where 1 1 1= + δa a a�  is the error vector (not normalized). Noting that  

    

( ) ( )2 2 22 2H H H H H

1 1 1 1 1 1 1 1 1 1 1 1
1 2 Re  and 1 1 2 Re= + δ + δ = + δ = + δ + δa a a a a a a a a a a a� �

 

(where we have taken 
2

1 1=a ) equation (4.1.11) becomes  

         
( ) ( ) 2 22 2H H H H

1 1 1 1 1 1 1 1 1 1

11 2 2

1 1

1 2Re (1 2 Re )

eg
+ δ + δ − + δ + δ δ − δ

= =
a a a a a a a a a a

a a� �
 

or 
22 H

11 1 1 1e
g = δ − δa a a   

to the lowest order approximation in δa1.  We note that g11e ≥ 0 (by the Schwarz 

inequality, with equality only if δa1 = ka1 for some 

constant k) and has maximum value ||δa1||
2
.  With the 

error in channel k given by ak(δrk + iδφk) where δrk is 

the relative amplitude error and δφk the phase error, as 

shown, then we have 

H

1 1 1 1* ( ) ( ) /k k k k k kk k
a a r i r i nδ = δ + δφ = δ + δφ∑ ∑a a . 

We see that we can put 
H

1 1 r iδ = δ + δφa a  

where rδ and δφ  are the mean relative amplitude and phase errors over the n array 

channels. As we take the errors to be from zero mean distributions we expect these 

error model

a
k

amplitude

error

a
k
δr

k

phase error

ia
k
δφ

k

δφ
k
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mean values to be low, tending to zero as n becomes large, and so we expect 
2

H

1 1
δa a  

to be small compared with 
2

1δa , and we take 
2

11 1eg ≈ δa . Thus we have 

        
2 22 2 2

11 1
( ) 

e k k k k kk k
g a r i r i n r≈ δ = δ + δφ = δ + δφ ≈ δ + δφ∑ ∑a  

 a eφ= ψ + ψ = ψ  (4.1.12) 

where
2

a rψ = δ and
2

φψ = δφ are the variances of the amplitude and phase errors and ψe 

is the total error variance. We have neglected the cross terms as these will be small, 

assuming the amplitude and phase errors are uncorrelated.  

On the first scan (with no nulls inserted) the peak level will be essentially p1 + p2 + pn 

where pk is the power received when the beam is pointed at signal k and pn is the noise 

power level. (We assume that the targets to be resolved are close together in terms of 

the beamwidth, in which case the gains will be almost the same to both targets). We do 

not know, at this stage, whether there is only one target or more close targets giving this 

peak; in any case, if a null is directed, during the second scan, towards the position of 

the peak of the first scan, then, because of errors, a gain of g11e (equal to the total error 

variance ψe, as shown in (4.1.12) above) will be applied, rather than a perfect null. Thus 

we must set a threshold related to the residue ψe(p1 + p2) plus the noise contribution pn, 

rather than related to the noise level alone. A suitable threshold, in the case of looking 

for a target in the presence of noise alone, is given in Appendix 4A (eq. (4.A.6)). With a 

signal residue present we need to raise this threshold. If we treat the residue as a noise-

like signal then we replace ψn in this expression for the threshold by this power level. 

We will detect a second signal if the residue of signal 1, with the error limited null, plus 

signal 2 with a loss due to the proximity of the null directed on signal 1 (given by µ), 

together exceed the new threshold. Thus we require 

 1 2 1 2( ( ) )(1 )e n e np p p p p p uβψ + µ + ≥ ψ + + +   

or 

 2 2 1(1 ) ( )e e np p u p p uβ βµ ≥ ψ + + ψ + . (4.1.13) 

(uβ defines the threshold on noise, see Appendix 4A), taking into account the integration 

factor p and the required false alarm rate, β.) The limit of resolution is when this is an 

equality, and using (4.1.9) for µ and rearranging we find 
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1 2 2

1.53 ( 1 )
e n

r u p p u u p pβ β β= ψ + + + . (4.1.14) 

If 1e pψ , the residue of signal 1 after imperfect nulling, dominates pn then we have, 

more simply, 

 1 2
1.53 ( 1 )

e
r u p p uβ β= ψ + + . (4.1.15) 

We see that the smaller the error variance the larger r and the larger the signal power 

ratio p1/p2 the smaller r, both expected results. We also note that the performance is now 

limited by the error levels and the power ratio of the signals, not on the actual signal to 

noise ratios, as long as they are high enough to require a redefinition of the threshold 

(based on the expected residue.) 

We note that without errors (ψe = 0) the inequality (4.1.13) becomes 2 np u pβµ ≥ , 

leading to  

 
2

1.53 1.53
n

r u p pβ= = ρ  (4.1.16) 

where nu pβ  is the minimum detectable power level and 2 np u pβρ = is the ratio of 

signal 2 power to this minimum, as in §4.1.1 above (eq. (4.1.10)). We can now put 

(4.1.14) in the form  

 
1 2

1.53 ( 1 ) 1
e

r u p p uβ β= ψ + + + ρ  (4.1.17) 

which reduces to (4.1.10) if we put ψe = 0. To put in some example values, let us set β 

at 3.2×10
-5

 (giving a false alarm rate of 3.2% over a scan of 1000 points at beamwidth 

intervals), as in Appendix 4A, then the normal distribution cumulative probability 

threshold tβ is 4 standard deviations. Let the number of samples per channel p be 100 

then we have uβ = tβ√(2/p) = 0.57. Also let the phase errors be 5º rms so that ψφ = 

0.0076 and the amplitude errors be the same level (corresponding to about 0.73dB rms) 

then ψe = 0.0152 (giving a null depth of 18.2dB). Let there be 10dB difference between 

the signals, then we find, from (4.1.17) (and ignoring 1/ρ for strong signals), that  

 r = 4.6. 

This suggests that the signals can be resolved, given these parameter values, down to 

about 0.22 beamwidths. We note that the signals are in fact quite large, as we assume 

the first peak is over 18dB above noise level, so that the residue is high enough to use a 

residue-based threshold, and furthermore there is an integration factor of 100 which 
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effectively increases the signal to noise ratio by this factor. If we took the smaller signal 

(before integration) to be 20dB above the detection level, then the threshold detection 

condition in the negligible error case is given, from (4.1.10) or (4.1.16), by r = 15.3, so 

we see that errors can limit the resolution considerably. 

4.1.3 Modified method based on null depth (error free case) 

We can modify the method of Speirs et al [41] by following the IMP method more 

closely. (We take the error free case here and uncorrelated signals, as before.) We carry 

out the first scan to find the peak position, then place a null at this point (rather than at 

the position of the larger signal) for the second scan. In the region of the signals we scan 

a unit gain beam except for the null, so we find the residues of the two signals resulting 

from this null and compare this with the threshold. In Appendix 4B we find that the 

peak position on the first scan is given by  

 1 2

pk 1 2

1 2 1 2

p p

p p p p
= +

+ +
θ θ θ   (4.1.18) 

where 
k

k

k

α 
=  ε 

θ , in general, and we see that pkθ  is between 1θ  and 2θ and weighted as 

the signal strengths, as might be expected. We have, from (4.1.2) and (4.1.5), an 

expression for the gain loss due to a null at a point at relative position (∆α,∆ε), so we 

need these angle differences for the two signal positions relative to the position of the 

null. 

We have, using the result (4.1.18), 

 1 1 2 2 2 1 2

1 1 pk 1

1 2 1 2 1 2

( )p p p

p p p p p p

 α α α − α
∆α = α − α = α − + = + + + 

  

 2

1 2

p

p p

∆α
= −

+
 (4.1.19a) 

where ∆α = α2 – α1. Similarly 

 1

2 2 pk

1 2

p

p p

∆α
∆α = α − α =

+
 (4.1.19b) 

and we have corresponding results for ∆ε1 and ∆ε2: 
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 2

1 1 pk

1 2

p

p p

∆ε
∆ε = ε − ε = −

+
  and  1

2 2 pk

1 2

p

p p

∆ε
∆ε = ε − ε =

+
. (4.1.20) 

From (4.1.5) the gain loss at the position of signal k due to a null is given by µk where  

2 T 24
k kφ φµ ≈ π ∆θe Me  and 2 2 2

k k k∆θ = ∆α + ∆ε  so, from (4.1.19) and (4.1.20), 

   

2 2

2 2 2 22 2

1

1 2 1 2

( )
p p

p p p p

   
∆θ = ∆α + ∆ε = ∆θ   + +   

 and 

2

2 21

2

1 2

p

p p

 
∆θ = ∆θ + 

.  (4.1.21) 

We now equate the residues, plus noise, to the detection threshold: 

 1 1 2 2 (1 )n np p p u pβµ + µ + ≥ +  

or 

 1 1 2 2 np p u pβµ + µ ≥  (4.1.22) 

From (4.1.5) and (4.1.21) we have 

   
2 2

2 T 2 2 T 22 1 1 2 1 2

1 1 2 2 2 2

1 21 2 1 2

4 4
( ) ( )

p p p p p p
p p

p pp p p p
φ φ φ φ

   
µ + µ = π ∆θ + = π ∆θ   ++ +   

e Me e Me  

and putting this into (4.1.22) gives 

 
2 T 21 2

1 2

4 n

p p
u p

p p
φ φ β

 
π ∆θ ≥ + 

e Me .  

Using 
2 T 2 2 2 2

B4 2.34 2.34 rφ φπ ∆θ = ∆θ θ =e Me from (4.1.8) we have finally 

 1 2 1 2 1 2

1 2 1 2 1 2

1.53 1.53 1.53
( ) ( ) ( )n

p p
r

p p u p uβ β

σ σ ρ ρ
= = =

+ σ + σ ρ + ρ
 (4.1.23) 

where σk = pk/pn, the signal to noise value of signal k and ρk = pk/uβpn is the ratio of 

signal k power to the minimum detectable signal, to replace (4.1.10). This expression 

will give little difference in its result compared with (4.1.10) when signal 1 is much 

larger than signal 2, but when they are closer it will make more difference. In particular, 

if they are equal (at value ρ) then (4.1.23) gives r = 1.53√(ρ/2) which reduces the 

resolution figure by a factor √2 compared with (4.1.10). 
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4.2. RESOLUTION IN COHERENT (RADAR) CASE 

4.2.1 Detection of a second target 

In this case, instead of taking the IMP function as the starting point, we take the 

(negative, reduced) maximum likelihood function, in the form of equation (2.A.27) for 

the general case, or (2.A.33) for the coherent case. This function is minimized when the 

correct signal PSVs are used for the projection matrix QA (projecting into the 

orthogonal space of A). If there is only one target present then there will be only 

residual noise left, so if the function is over the threshold corresponding to this noise 

level (set high enough to keep the false alarm rate at a suitable level), we deduce that 

there is at least one more target present. In the case of two targets this does not actually 

qualify as resolving them, as two distinct estimated target positions have not been 

found, but at least a second target (or more) has been detected. (We note that in the case 

of MUSIC two signals can be detected, through finding the number of non-trivial 

eigenvalues, but may not necessarily be resolved, as only one MUSIC peak may be 

formed if the targets are close enough.) 

In the case of a single data frame the received set of values across the array is given by 

 y = As + n  (4.2.1) 

where, as before, A is a n×m matrix of the PSVs of the m targets, s is the set of complex 

amplitudes of the signals (at the sampling instant) and n is an n-vector of noise samples. 

This could represent the radar case, using a single pulse. [NB: If we had p samples but 

the s vector remained essentially constant over the set of samples, as is effectively the 

case for radar, as long as the total sampling time is short compared with any Doppler 

frequency period, then n is replaced by n , the mean value of n over the p vectors (see 

§2A.3(b)). The components of n  are from a distribution with variance ψ/p if ψ is the 

variance of the distribution from which the components of n are samples.] The system 

sample covariance matrix, RY = YYH
 in the multiple sample case, becomes just the rank 

one matrix yyH
 in this case. 

Thus the likelihood function is, in the radar case,   

 F(ΘΘΘΘ) = trace(QARY) = trace(QAyyH
) = yHQAy = ||QAy||

2 (4.2.2)  

where ΘΘΘΘ is the m×q array of the parameters which define A – q parameters for each of 

the m targets. We have used the result trace(UV) = trace(VU) for any matrices of 

compatible size (size(U) = size(VT
)) and the fact that the trace of a scalar (or 1×1 
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matrix) is just the scalar value. (The last equality in (4.2.2) results from Q = Q2
 = QHQ 

for a projection matrix.) The value for the general matrix A in (4.2.2) which actually 

minimizes F and maximizes the likelihood is A as given in (4.2.1) and in this case we 

note QAy = QAn as QAA = 0. We use this result to set a threshold for detecting a second 

target on the first scan. 

If there is only one signal present then the peak on the first scan will occur (in the 

absence of errors) at the position of this signal, given by parameters θθθθ1 with PSV a1. 

The value of the function F with a null set using these parameters (by the projection 

matrix
1aQ ) will simply be nHQAn which will be below the threshold with probability 1 

– εFA, if εFA is the false alarm probability. If there is a second signal present then the 

peak will not actually be at θθθθ1 in parameter space, but on the line through θθθθ1 and θθθθ2
 
(as 

shown in Appendix 4B). In this case neither target 1 nor target 2 will be removed 

completely, and the residue will be greater than QAn. We take the second target to be 

detected if the noise plus residue exceeds the threshold, as this is the condition that the 

single target model (A = a1) is not adequate to account for the data and maximize the 

likelihood, and a higher order model is needed. We now need to determine the level of 

the ML function with a null at the position of the peak of the first IMP scan. 

Using θθθθ for the parameter vector 
α 
 ε 

 in general (and θθθθk for 
k

k

α 
 ε 

, ∆θθθθ for 
∆α 
 ∆ε 

 and so 

on) and a circumflex over a variable to indicate its value at the peak position, we have 

 Hˆ ˆ ˆ= −Q I aa  and (from (4.B.16)) 1 1 2 2

1 2

ˆ S S

S S

+
=

+

θ θ
θ  (4.2.3) 

with k kS r= σ +  as in (4.B.15). If there are two signals present then 

 

2
H H H H H Hˆ ˆ ˆ ˆ ˆˆ ( ) ( ) 2 Re( )F = = + + = + +y Qy s A n Q As n QAs n QAs n Qn . (4.2.4) 

We neglect the signal-noise cross term (this will be more justifiable with large n) and 

approximate the last term to the expectation value (n – 1)ψ. If we compare F̂ with the 

threshold given in Appendix 4A (eq. (4.A.8)) we see that we detect a second target if 

 
2

ˆ ( 1) ( 1) 2( 1)n n t nδ+ − ψ ≥ − ψ + ψ −QAs  

or 
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2

ˆ 2( 1)t n uδ δ≥ ψ − = ψQAs  (4.2.5) 

where  

 2( 1)u t nδ δ= − , (4.2.6) 

and we take the resolution limit to be when the equality holds. 

Now we have 

              

( )2 2 2 22 2H

1 1 2 2 1 1 1 2 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 Re ( ) *s s s s s s= + = + +QAs Qa Qa Qa Qa Qa Qa   (4.2.7) 

and 

 
2 2 2H H

ˆ
ˆ ˆ ˆ ˆ1 1k k k k k k= = − = − γ = µaQa a Q a a a  (4.2.8) 

where 

 Hˆ ˆ
k kγ = a a  and  

2
ˆˆ 1k kµ = − γ . (4.2.9) 

Also 

 
H H H H H

1 2 1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) *= = − = γ − γ γQa Qa a Qa a a a aa a . (4.2.10) 

Now the general result in (4.1.4), 

 2 T 21 2 φ φγ = − π ∆θe Me  

(to lowest order approximation) gives γ in terms of the distance between two points in 

parameter space, ∆θ, along the direction φ (see the diagram above (4.1.6)). We have 

already noted that θ̂  lies on the line (in parameter space) joining 1θ  and 2θ  so 1
ˆ∆θ  and 

2
ˆ∆θ  have the same orientation as ∆θθθθ, and so this result is applicable to ˆ

kγ , with the 

change of scale, giving 

 
2 T 2ˆˆ 1 2

k kφ φγ = − π ∆θe Me  

where ˆ ˆ ˆ
k k k∆θ = ∆ = −θ θ θ . For more compact expressions we put 

 
2 T4m φ φ= π e Me  (4.2.11) 

to give 
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 2ˆˆ 1 2k kmγ = − ∆θ  and 2ˆˆ
k kmµ = ∆θ  (4.2.12) 

to the same approximation. 

From (4.C.11) we have 

 2

1 1

1 2

ˆ ˆ S

S S

− ∆
∆ = − =

+

θ
θ θ θ  and 1

2 2

1 2

ˆ ˆ S

S S

∆
∆ = − =

+

θ
θ θ θ   

where ∆θθθθ = θθθθ2 – θθθθ1. Using these results 

 
2 2

2 2 2

1 1 1 2

1 2

ˆˆˆ 1
( )

mS
m

S S

∆θ
µ = − γ = ∆θ =

+
 and 

2 2

1

2 2

1 2

ˆ
( )

mS

S S

∆θ
µ =

+
. (4.2.13) 

Also, from (4.2.10) and (4.2.12) we have, to second order, 

 
2 2 2 22

H 2 1

2 2 2

1 2 1 2

ˆ ˆ( ) (1 ) (1 )(1 )
2 2( ) 2( )

mS mSm

S S S S

∆θ ∆θ∆θ
= − − − −

+ +1Qa Qa  

 
2 2 22

1 2 1 2

2 2

1 2 1 2

1
2 ( ) ( )

S S mS Sm

S S S S

 + ∆θ∆θ
= − = − 

+ + 
. (4.2.14) 

Putting results (4.2.8), (4.2.13) and (4.2.14) into (4.2.7) we have 

 ( )( )
22 2 22 2

2 1 1 2 1 2 1 22

1 2

ˆ 2 Re *
( )

m
S s S S s s S s

S S

∆θ
= − +

+
QAs . (4.2.15) 

Now only the relative phase factor of s1 and s2 is significant, rather than the individual 

phase values, so let φ be the phase difference between them. Then for Re(s1*s2) we now 

put |s1||s2|cosφ and Sk = |sk|
2
+ |s1||s2|cosφ, then, with some rearranging, (4.2.15) becomes 

 

2 22 2
2

1 2

2 2

1 1 2 2

sin
ˆ

2 cos

m s s

s s s s

∆θ φ
=

+ φ +
QAs . (4.2.16)  

This shows that if the amplitudes are in phase (φ = 0) or antiphase (φ = π) then the target 

residue is zero to second order in ∆θ, and a higher order approximation is required. 

However for relative phases not close to these values the residue is proportional to ∆θ2
. 

From (4.2.5) and (4.2.16) a second signal is detected when 

 

2 22 2

1 2

2 2

1 1 2 2

sin

2 cos

m s s
u

s s s s
δ

∆θ φ
≥ ψ

+ φ +
 

with uδ given in (4.2.6), and so the resolution threshold is given by 
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2 2

1 1 2 22

2 2 2

1 2

2 cos

sin

s s s s
u

m s s
δ

+ φ +
∆θ = ψ

φ
.  

In terms of the target signal to noise ratios σk = |sk|
2
/ψ or the signal level relative to the 

minimum detectable level at this point, ρk = |sk|
2
/ψuε we have 

 
1 1 2 2 1 1 2 2

2 2

1 2 1 2

2 cos 2 cos

sin sin
u

m m
δ

σ + σ σ φ + σ ρ + ρ ρ φ + ρ
∆θ = =

σ σ φ ρ ρ φ
.  (4.2.17) 

With m given in (4.2.11).  In the case of quadrature echoes (φ = ±π/2) we have 

 1 2 1 2

1 2 1 2

u
m m

δ

σ + σ ρ + ρ
∆θ = =

σ σ ρ ρ
. (4.2.18)  

We see that this is as (4.1.6) with ρ1ρ2/(ρ1 + ρ2) replacing ρ, and (4.2.18) also leads to 

the same result as (4.1.23), for the non-coherent case. Thus the case of coherent echoes 

in quadrature is exactly the same, in terms of resolution, as the non-coherent case. 

4.2.2 Resolution of a second target 

In order to find the second target in the way that IMP operates we need to find the peak 

value on the second scan, with a single null at the peak position, given by (4.B.16) in 

Appendix B. We will use a circumflex over all functions evaluated at this point, given 

by 
ˆ

ˆ
ˆ

α 
=  ε 

θ . A problem with evaluating the function when a null is included is that the 

function cannot be evaluated at the null point as both the numerator and the 

denominator of the function are zero (as ˆ
ˆ ˆ ˆ= =aQa Q a 0  where ˆˆ ( )=a a θ ). However, the 

function does have a finite value at this point, determined using l’Hôpital’s Rule as 

shown in Appendix 4C. Thus we have 

 
H H

H H

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( )
ˆ ˆˆ ˆ ˆ ˆ

f
′ ′

= =
′ ′

a QRQa a QRQa
θ

a Qa a Qa
 

in general, or, for the single data frame case, 

 
H H

H

ˆ ˆˆ ˆˆ( )
ˆˆ ˆ

f
′ ′

=
′ ′

a Qyy Qa
θ

a Qa
. (4.2.19) 

where ˆ ′a  is the derivative of â  with respect to any suitable parameter. In this section 

we assume that the two targets at θθθθ1 and θθθθ2, at the limit of resolution, are close enough 
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to θ̂  to allow the use of this form for ( )f θ  in the region of interest, including the peak 

of the second scan, yet to be found. We also assume that the peak of the second scan 

will occur on the line through θθθθ1 and θθθθ2, as is θ̂ , the position of the peak of the first 

scan, and let all θθθθ values be of the form ˆ x= + ∆θ θ θ  (and ˆ
k kx= + ∆θ θ θ ).  

With y = As + n the function at θθθθ becomes 

              
H H H H H H H H H

H H H

ˆ ˆ ˆ ˆ ˆ ˆ( )( )
( )

ˆ ˆ ˆ
f

′ ′ ′ ′ ′ ′+ +
= = +

′ ′ ′ ′ ′ ′

a Q As n s A n Qa a QAss A Qa a Qnn Qa
θ

a Qa a Qa a Qa
 

on ignoring signal-noise cross terms. Putting u = ˆ ˆ′ ′Qa Qa  (with 
2

H ˆ ˆ′ ′ ′=a Qa Qa ), 

the noise term becomes |uHn|
2
. If the noise terms are from zero-mean normal 

distributions with variance ψ (~N[0,ψ]) and u is a unit norm vector, then uHn is also a 

sample from this normal distribution (as shown for the components of v in Appendix 

4A). Thus |uHn|
2
 has a Rayleigh distribution (or, following Appendix 4A, a χ2

 

distribution with only one degree of freedom (p = 1)). This distribution determines the 

threshold for any required false alarm probability β, which we define as (τβ + 1) ψn, 

relating the threshold to the noise level so that we require, for detection of a second 

signal on the second scan that the signal contribution to f above, fs, should exceed τβ ψn, 

i.e. 

 

2
H H

H

ˆ

( )
ˆsf β

′
ψ = ≥ τ

′ ′ψ

s A Qa
θ

a Qa
 (4.2.20) 

with equality at the resolution limit.  

Expanding the numerator, putting sHAH
 = s1*a1

H
 + s2*a2

H
 we have 

 
2 2

H H H H

1 1 2 2
ˆ ˆ ˆ* *s s′ ′ ′= +s A Qa a Qa a Qa  

 ( )2 22 2H H H H

1 1 1 2 1 2 2 2
ˆ ˆ ˆ ˆ2Re * ( ) *s s s s′ ′ ′ ′= + +a Qa a Qa a Qa a Qa  

It is found in (4.2.22) below that the products 
H ˆ

k
′a Qa  are in fact real, so we have   

 ( )
2 2 2H H H 2 H H H 2

1 1 1 2 1 2 2 2
ˆ ˆ ˆ ˆ ˆ2 Re *s s s s′ ′ ′ ′ ′= + +s A Qa a Qa a Qa a Qa a Qa  

 ( )H 2 H H H 2

1 1 1 2 2 2
ˆ ˆ ˆ ˆ2r′ ′ ′ ′= ψ σ + + σa Qa a Qa a Qa a Qa  (4.2.21) 
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where 
2

k ksσ = ψ  and ( )1 2Re *r s s= ψ as in (4.B.15).  

Putting
Hˆ ˆ ˆ= −Q I aa  we can now evaluate the signal term, requiring a number of inner 

products. In general, if ˆ( ) ( )k k kx= = + ∆a a θ a θ θ  and ˆ( ) ( )x= + ∆a θ a θ θ  the inner 

products are given in (4.C.6) – (4.C.10) (assuming µx
2
 is small for all values of x used). 

Using these results we have 

 H 2ˆ ( ) (1 2)( ) (1 2)k k k k kx x x x x x x′ = −µ − − − µ −µ = µ − µa Qa  (4.2.22) 

Thus (4.2.21) becomes 

      ( )(2 2H H 2

1 1 1 1 1 2 2
ˆ (1 2) 2 (1 2) (1 2)x x x rx x x x x x′ = ψµ σ − µ + − µ − µ +s A Qa   

  + ( ) )2

2 2 2(1 2)x x xσ − µ . (4.2.23) 

The numerator of the target contribution in (4.2.20) is thus N(x), given, from (4.2.23) by 

 2 2( ) ( 2 )N x A Bx Cx= ψµ − +  (4.2.24) 

where 

 2 2

1 1 1 2 2 22A x rx x x= σ + + σ         (4.2.25a) 

 ( )3 3

1 1 1 2 1 2 2 2
( 2) 2 ( )B x rx x x x x= µ σ + + + σ         (4.2.25b) 

 ( )2 4 2 2 4

1 1 1 2 2 2
( 2) 2C x rx x x= µ σ + + σ .       (4.2.25c) 

Using (4.C.11) for x1 and x2, equations (4.2.25) can be put in the form 

 
2 2 2

1 2 1 2 1 2 2 1( ) 2A S S S rS S S+ = σ + σ         (4.2.26a) 

 ( )3 3 3

1 2 1 2 1 2 1 2 2 1
( ) ( 2) 2 ( )B S S S rS S S S S+ = µ −σ + + + σ         (4.2.26b) 

 ( )24 4 2 2 4

1 2 1 2 1 2 2 1
( ) ( 2) 2C S S S rS S S+ = µ σ + + σ .       (4.2.26c) 

The denominator is D(x), given by 

 
22H H 2 2 2ˆ ˆ( ) (1 )D x x x′ ′ ′ ′ψ = = − = µ − µ = µ − µa Qa a a a  (4.2.27) 

using (4.C.9) and (4.C.10). Thus (4.2.20) becomes 

 
2

2

( ) 2
( )

( ) 1
s

N x A Bx Cx
f x

D x x

− +
ψ = = µ

− µ
. (4.2.28) 
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Again assuming µx
2
 is small we can put, approximating to second order, 

 
2 2 2( ) ( 2 )(1 ) 2 ( )sf x A Bx Cx x A Bx C A xψµ ≈ − + + µ ≈ − + + µ . (4.2.29) 

This is a quadratic function of x and we find that the peak value is given by 

 
2

( )s

B
f x A

C A
ψµ = −

+ µ
	

 (4.2.30) 

where  

 
B

x
C A

=
+ µ

	
  (4.2.31) 

is the value of x at the peak position of the second scan. 

On putting in the expressions for A, B and C from (4.2.26) and Sk as in (4.B.15), we 

obtain the peak value in terms of σ1, σ2, φ and µ only. As µ contains ∆θ, we can obtain 

an expression for the limiting separation in terms of the signal powers and the array 

parameters, or, using (4.1.9), we can obtain an expression for the resolution 

improvement factor r. 

Expressions for A, B and C are obtained in Appendix C, but these show that A and B are 

both proportional to sin
2φ, where φ is the relative phase of the two signal amplitudes. 

Thus both these have value zero in the in-phase (φ = 0) and antiphase (φ = π) cases. This 

means (from (4.2.30)) that the apparent peak signal residue is zero, which is not a 

realistic result. In fact we have been approximating the inner products to lowest order 

(as ∆θ2
) and we deduce that the peak value, if expressed as a power series in ∆θ, is of 

higher order than two. We do not expect a significant response of order three, but rather 

of order four. Setting the peak value as c(σ1,σ2,φ)∆θ4
 and equating this to some 

threshold value τ we have ( )1/ 4
c∆θ = τ  – the separation at the limit of resolution, in the 

in-phase and antiphase cases, is the fourth root of a function of the signal powers (taken, 

from noting the other results obtained to be linear, or of the form σ1σ2/(σ1+σ2)). The 

implication is that the resolution only improves slowly as the powers are increased. For 

example if both powers are increased by 10dB the resolution improvement ratio will 

only increase by about 1.8 times. 

However we can use the results for the quadrature case (φ = ±π/2) and for a range of 

angles for which the second order approximation dominates. (Unfortunately, until the 

fourth order term is determined this range cannot be found, but it is likely that the 
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second order result will be applicable over most of the angular range.) Here we 

investigate the strictly quadrature case. 

From equations (4.C.16), (4.C.17) and (4.C.18) with φ = ±π/2 (so 1 2
cos 0r = σ σ φ = , 

k kS = σ , 2sin 1φ = ) we have 

 1 2 1 2

12

1 2 1 2

S S
A

S S

σ σ
= = = σ

+ σ + σ
, (4.2.32) 

 
2 2

1 2 1 2 1 2 1 2

12 123

1 2 1 21 2

( )

2 2 2( )

S S S S S S S S
B

S S S SS S

− −µ µ µ
= = = δ σ

+ ++
, (4.2.33) 

where 

 1 2

12

1 2

σ − σ
δ =

σ + σ
, (4.2.34) 

and 

 

2 22 2 2 2

1 2 1 2 1 2 1 2 1 2

123 3 2 2

1 2 1 2 1 2 1 2

( ) ( )

2 2( ) ( ) ( ) ( )

S S S S S S S S S S
C

S S S S S S S S

   − −µ µ   = + = σ +      + + + +      
 

 

2 22

1 2 1 2

12 12 122 2

1 2 1 2

( )

2 2( ) ( )

 σ − σ σ σµ µ   = σ + = σ ε    σ + σ σ + σ    
. (4.2.35) 

where  

 
2

12 1 2 1 21 3 ( )ε = − σ σ σ + σ .  (4.2.36) 

We note that 
2

1 2 1 2( ) 1/ 4σ σ σ + σ ≤  (from (σ1 – σ2)
2
 ≥ 0, so that (σ1 + σ2)

2
 ≥ 4σ1σ2, 

with equality when σ1 = σ2) so 121 4 1≤ ε < .  

We take two extreme conditions, (a) σ1 >> σ2 and (b) σ1 = σ2. 

(a) In this case, as σ1/σ2
 → ∞, from (4.2.32) and (4.2.36) we have  δ12 → 1 and ε12 → 1, 

and so, from (4.2.32), (4.2.33) and (4.2.35) we have A → σ2, B → µσ2/2 and C → 

(µ/2)
2σ2. Using these results, the peak position, from (4.2.31), is at 2/(µ+4) which is 

slightly under ½. (As, from (4.C.11), we have x1 near zero in this case (i.e the first scan 

peak is near to x1 as expected, this moves the second scan peak to close to the midpoint 

between the targets. We continue to make the assumption that µ is small if conditions 

are such as to give good resolution.) The peak value is given, from (4.2.30), by 
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2

2

2 2

( 2)
( ) 1

1 4( 2)
sf x

  σµ
ψµ = σ − =  + µµ + µ 

	
 

which is slightly less than σ2.  If we approximate this to σ2 the resolution limit, from 

(4.2.20), is when 

 2 δµσ = τ  

and, putting 22.34 / rµ = , where r is the resolution improvement factor, we obtain 

 
2

22.34r δ= σ τ  (4.2.37) 

where σ2 is the signal to noise ratio in the array for signal 2 and signal 1 is much greater 

than signal 2. We see that the resolution improvement rises as the square root of the 

weaker signal strength, without bound, until in practice limited by system errors.  

(b) Let the equal signal strengths (signal to noise ratios) be σ, then in this case we have 

σ12 = σ/2,   δ12 = 0 and ε12 = 1/4, giving A = σ/2, B = 0 and C = µ2σ/32. The peak 

position is at 0x =
	

, coinciding with the first peak position, which is the midpoint 

between the targets from (4.C.11), as expected, and the peak value is given by 

 ( ) 2sf x ψµ = σ
	

. 

The resolution improvement factor is thus given by 

 2 2.34 2 1.17r δ δ= σ τ = σ τ  (4.2.38) 

and we see that this gives a result for the resolution measure which is a factor of √2 

lower than for the case where one signal dominates strongly.  

[NB: We note that the second scan peak, in the equal signal case coincides with the first. 

In this case continuing with the basic IMP algorithm is not possible as the second null 

will simply be the same as the first. In fact, having determined that there is a second 

signal present, the procedure is to form two new null positions separated by perhaps ½ 

beamwidth, and proceed with the tweaking convergence.] 

APPENDIX 4A:  DETECTION THRESHOLDS 

4A.1 IMP scan threshold 

The IMP function is given, at stage k + 1 (i.e. after finding k targets), in Chapter 2 (eq. 

(2.2.27)) by 
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H

2

( ) ( )
( )   

( )
kf = Yb θ R b θ
θ

b θ
 (4.A.1) 

where ( ) ( )
k

= Ab θ Q a θ  and Ak contains the PSVs of the signals found so far. RY = 

YYH
/p is the (estimated) system covariance matrix (taken over p data frames). If all m 

targets have been found the final scan becomes (putting Y = AS + N) 

 
H H H H H H

2 2

( ) ( )( ) ( ) ( ) ( )
( ) =

( ) ( )
mf

p p

+ +
= A A A Aa θ Q AS N S A N Q a θ a θ Q NN Q a θ

θ

b θ b θ
 

 
H H

2

( ) ( )

( )p
=

b θ NN b θ

b θ
 (4.A.2) 

as =AQ A 0 . The expectation value of NNH
/p is ψnI where ψn is the noise level in each 

channel and I is the n×n identity matrix so the expectation value of the function is ψn. 

However, we need to know the statistics of fm in order to set a detection threshold giving 

a suitably low false alarm rate. 

We note that ( ) ( )=u b θ b θ is a unit norm vector and we can put  

 
2H H H

1

p

m k

k

f p v
=

= = =∑u NN u v v . (4.A.3) 

where we omit the parameter vector θθθθ for clarity, and we have put v = NHu/√p. 

Now 
1

*
n

k jk j

j

v n u p
=

=∑  where each component of N (e.g. njk) is from a zero mean 

normal distribution with variance ψn (i.e. njk ~ N[0,ψn]) and it follows (see [30], for 

example) that 

normal distribution

Figure 4.1  Probability density functions of normal and χ2 distributions

variance 1

area β

0
χν

2 distribution
ν

variance 2ν

0

area β

tβ 2tβν + ν
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2

1

N[0, ] N[0, ]
n

k k n n

j

v u p p
=

ψ = ψ∑∼   (4.A.4) 

as u is of norm unity. Thus we see that v is a p-vector with components from a zero 

mean normal distribution of variance ψn/p. This result is independent of θθθθ so we see that 

at all points over the IMP scan (i.e. over the parameter domain) the function is given by 

(4.A.3) and (4.A.4). If we look at the expectation value of fm we have <fm> = 

uH
<NNH

>u/p = uHψnIu = ψn, as expected. 

A random variable y obtained by summing the squares of ν random variables xk (i.e. 

y = Σxk
2
) all with a zero mean, unit variance normal distribution (i.e. xk ~ N[0,1] for k = 

1 to ν) has a χν
2
 distribution, with a mean ν and variance 2ν.  For a moderately large 

number of degrees of freedom ν, the χν
2
 distribution starts to approach a normal 

distribution as shown (in diagram form) in Figure 1. The main differences are that it has 

a non-zero mean and has no probability of negative values for y (from the definition of 

y) so is not quite symmetrical. Various approximations for the value of the cumulative 

χν
2
 distribution in terms of Φ(u) (the cumulative probability for the normal distribution 

– the area under the curve up to the point u) are available (see p.176 of [18], for 

example) but the simplest is to model the χν
2
 distribution as normal i.e. to take y ~ 

N[ν,2ν] (see equation (26) on p.176 of [18]). This is relatively poor by comparison with 

the more complicated forms, but should be quite adequate for the application here. In 

this case there are p degrees of freedom, and the normal distribution has variance ψn/p 

so that the approximating distribution function for f is N[p×ψn/p,2p×(ψn/p)
2
], or 

N[ψn,2ψn
2
/p]. The mean level of this distribution, ψn, agrees with the expectation level 

for fm, obtained above. 

To keep the false alarm rate down – i.e. to avoid deciding there is a signal present on a 

peak value due to noise alone (on the last scan, when all the signals have been nulled), 

we set a threshold such that this probability is quite low. If the rate is to be β<<1 then a 

threshold tβ is required at a few standard deviations from the mean, as shown in Figure 

4.1. Because the χν
2
 distribution is similar to a normal distribution we can equate the 

threshold relative to the mean level to the equivalent threshold tβ for the normal 

distribution, where the area under the curve for this distribution, above this point, is also 

β. If Φ(u) is the cumulative probability for the normal distribution then tβ, is given by  

 Pr[U< tβ] = Φ(tβ) = 1 – β. (4.A.5) 
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In this case we have, for the normal distribution with mean ψn and variance 2ψn
2
/p, the 

required threshold is 

 
22 (1 2 ) (1 )n n n nT t p t p uβ β β β= ψ + ψ = ψ + = ψ +  (4.A.6) 

with tβ defined by (4.A.5) for a given β (or false alarm rate) and obtained from tables of 

Φ, and putting 2u t pβ β= .  [NB: fm is not flat, with a single value from the χ2
 

distribution over the scan, as different u vectors sum noise samples differently so fm 

varies over the scan region with values from this distribution. If fm is evaluated at K 

points it might appear that for a false alarm rate over the whole scan δ to be some 

reasonably low value, where the false alarm rate on each point is β, then we have  

 δ = 1 – (1 – β)
K
 ≈  1 – e

-Kβ
 ≈ Kβ 

for Kβ small. However, this assumes the noise sums differently at every sample point, 

however close the points may be. This will not be the case, as two close u vectors will 

sum the noise samples to two close values. The noise samples will be effectively 

independent at intervals of the beamwidth in each parameter domain, so we should 

choose  

 
1
( )

q

k k
k

K range beamwidth
=

= Π  

where rangek is the range of parameter k and beamwidthk is the natural beamwidth of 

the scan, given by the aperture in the observation domain. As example values, if we take 

tβ = 4 then β = 3.2×10
-5

 and if K = 1000 we have δ = 0.032.] 

4A.2 ML threshold for detection of second target 

If only one target is present, the minimum of the ML function (i.e. the reduced ML 

function used for IMP) is given in the radar case, (i.e. with coherent targets) from 

(2.A.33) and (2.2.2) with the following discussion, by 
2

min
F =

1aQ n , where a1 is the 

PSV of target 1, and n is the vector of noise samples across the n receiver channels. If 

the samples are from a zero mean normal distribution with variance ψ then Fmin will 

have the a χ2
 distribution with n – 1 degrees of freedom – not n (as ||n||

2
 would have) as 

1aQ projects the n-vector n into a space of n – 1 dimensions. We can show this by 

noting that in general QA, where A is n×m, has n – m eigenvalues of unity and m of 

zero. Also, as Q is Hermitian its eigenvectors are orthogonal, so we can find a unitary 
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matrix U (i.e. UUH
 = UHU = I) such that UQUH

 = ΛΛΛΛ = diag[1 . . . 1 0 . . . 0], containing 

m zeros. First we note that (for any n×n unitary matrix and n-vector v) 

  
2 2H H H= = =Uv v U Uv v v v .  

Thus we can put 

 
1

2 2 2 2H 2

1

n

k

k

n
−

=

′= = = =∑1 1 1a a aQ n UQ n UQ U Un ΛUn  

where ′n  (with components kn′ , all from a distribution with variance ψ) is given by Un. 

As ′Λn has only n – 1 non-zero components it follows that 
2

1aQ n  has a χ2
 distribution 

with n – 1 degrees of freedom. 

Thus 
2

1aQ n  has a mean of (n – 1)ψ and variance of 2(n – 1)ψ2
. Again if n is not too 

small we approximate this χ2
 distribution by a normal distribution with the same mean 

and variance. As in §4A.1 above, if we set a false alarm probability δ and the threshold 

for this is tδ standard deviations from the mean, then the required threshold is   

 2( 1) 2( 1) ( 1 2( 1))n t n n t nδ δ− ψ + − ψ = ψ − + − .  

(We use δ here, rather than β as in §4A.1 above, as this test is at a single point, rather 

than over a whole scan, so if we want a false alarm rate δ on this set of data, as in 

§4A.1, we set a threshold tδ.) 

APPENDIX 4B:  PEAK POSITIONS ON FIRST SCAN 

4B.1 Non-coherent case 

The IMP function of the first scan (with no nulls) is given, in the non-coherent case with 

multiple data frames, by 

 
H

0 ( ) ( ) ( )f =θ a θ Ra θ  (4.B.1) 

where the system covariance matrix (in practice this is estimated over a finite number p 

of data frames) is  

 H= + ψR APA I  (4.B.2) 

where A = [a1 a2], 
1

2

0

0

p

p

 
=  
 

P , ψ is the noise variance and I is the identity matrix of 
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order n. ak and pk are the PSV and power level of signal k. Putting (4.B.2) into (4.B.1) 

gives (omitting θθθθ for clarity) 

 

H
2 21H H 1

0 1 2 1 1 2 2H
2 2

0

0

p
f p p

p

  
 = + ψ = γ + γ + ψ   

   

a a
a a a a I I

a a
 (4.B.3) 

where
H

j jγ = a a  (j = 1,2). 

To find the peak of f0 we need to set its derivatives with respect to α and ε to zero, i.e. 

we need  

 0 1 2

1 1 2 22 Re * 2 Re * 0
f

p p
∂ ∂γ ∂γ   

= γ + γ =   ∂α ∂α ∂α   
 (4.B.4) 

and similarly for the derivative with respect to ε. Now (from (4.1.4) for example) 

 ( )
2

2
T2

1j k jkn

π
γ ≈ − ∆∑ r e  (4.B.5) 

to lowest order, where (for small target separations ∆α = α2 - α1 and ∆ε = ε2 - ε1)  

 α ε

∆α 
∆ = ∆α + ∆ε =  ∆ε 

e e e E   (4.B.6) 

and [ ]α ε=E e e , the derivatives of the unit direction vector in the immediate target 

area. Thus we have 

 
2 T

1 2
j

j j j

j

∆α 
 γ = − π ∆α ∆ε    ∆ε 

E ME  (4.B.7) 

using (3.3A.6) from Chapter 3, with ∆αj = α – αj and ∆εj = ε – εj. The derivatives of γj 

are thus given by 

 [ ]2
4 1 0

jj

j

∆α∂γ  
= − π  ∆ε∂α  

K  and [ ]2
4 0 1

jj

j

∆α∂γ  
= − π  ∆ε∂ε  

K  (4.B.8) 

where K = ETME Then we have, to first order (so, setting γj ≈ 1, and noting that γj and 

its derivative are real), using (4.B.8) in (4.B.4), 

 [ ] [ ]1 22 20

1 2

1 2

8 1 0 8 1 0 0
f

p p
∆α ∆α∂    

= − π − π =   ∆ε ∆ε∂α    
K K  

and 
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 [ ] [ ]1 22 20

1 2

1 2

8 0 1 8 0 1 0
f

p p
∆α ∆α∂    

= − π − π =   ∆ε ∆ε∂ε    
K K . 

Combining these we have (as 
[ ]
[ ]
1 0

0 1

 
= 

 
I ) 

 
1 2

1 2

1 2

p p
∆α ∆α   

+ =   ∆ε ∆ε   
K K 0   or  1 1 2 2p p∆ + ∆ =K θ K θ 0 . (4.B.9) 

Putting ∆θθθθ1 = θθθθpk – θθθθ1, etc. (as this equation defines the peak position) and rearranging, 

we have 

  ( )1 2 pk 1 1 2 2( )p p p p+ = +Kθ K θ θ  

or 

 1 2

pk 1 2

1 2 1 2( ) ( )

p p

p p p p
= + +

+ +
θ θ θ k  (4.B.10) 

where k is in the null space of K. However, K is of full rank (two) in general so k is 

zero. The result given in (4.B.10) is not surprising, given a lowest order approximation 

(on the basis that the targets will be quite close, in terms of beamwidth, when at the 

limit of resolution); it states that the peak position is on the line (in parameter space) 

between the two targets and is at their centroid, when weighted by the powers of the 

targets. 

4B.2 Coherent case 

We take the case of a single data frame with two large signals present and ignore the 

contribution of noise. The argument follows that of §B1.1 above, with some significant 

differences. 

Let the received data be y where ak and sk are the PSV and signal amplitude for signal k. 

(sk is complex in general, and its phase is that at the array element position reference 

point, generally the array centroid, and its amplitude is that which would be received in 

the array when steered with (normalized) PSV ak.) Then we have 

 1 1 2 2s s= +y a a  (4.B.11) 

and the first scan function is given by 

 ( )2 2H H H H H

0 1 1 1 1 2 1 2 2 2 2( ) ( ) ( ) ( ) 2Re( * ) ( )f s s s s= = + +θ a θ yy a θ a θ a a a a a a a θ   
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or, dropping θθθθ for clarity 

 
2 2 2 2

0 1 1 1 2 1 2 2 22 Re( * * )f s s s s= γ + γ γ + γ  (4.B.12) 

with γj as in (4.B.3). This is the equation corresponding to (4.B.3) for the non-correlated 

case. The equivalent of (4.B.4) is  

20 1 1 2

1 1 1 2 2 1

*
2 Re * 2 Re * *

f
s s s

∂ ∂γ  ∂γ ∂γ    
= γ + γ + γ +    ∂α ∂α ∂α ∂α    

   

                                     
22

2 22Re * 0s
∂γ 

+ γ = ∂α 
 (4.B.13) 

and similarly for the derivative with respect to ε. Using (4.B.8) and approximating γj to 

unity as  before we obtain 

   [ ] ( ) [ ] [ ]21 1 220

1 1 2

1 1 2

8 1 0 Re * 1 0 1 0
f

s s s
  ∆α ∆α ∆α∂      

= − π + + +        ∆ε ∆ε ∆ε∂α       
K K K            

   +[ ] 22

2

2

1 0 0s
∆α 

= ∆ε  
K  

where ( ) ( ) ( ) ( )
j

j j j j

j

α ε

∆α 
∆ = − ≈ α − α + ε − ε =  ∆ε 

e e θ e θ e e E  and K = ETME. With the 

equivalent for the derivative of f0 with respect to ε, we have, combining these, 

 ( )2 21 1 2 2

1 1 2 2

1 1 2 2

Re *s s s s
 ∆α ∆α ∆α ∆α       

+ + + =        ∆ε ∆ε ∆ε ∆ε        
K K K K 0  

or 

 
1 2

1 2

1 2

S S
∆α ∆α   

+ =   ∆ε ∆ε   
K K 0  (4.B.14)  

where, after dividing by the noise level, ψ, we define S1 and S2 by 

 k kS r= σ +  with 
2

2k sσ = ψ  and ( )1 2Re *r s s= ψ . (4.B.15) 

Putting ∆α1 = αpk - α1, etc., we obtain 

 
pk 1 2

1 2 1 2

pk 1 2

( )S S S S
α α α     

+ = +     ε ε ε    
K K K  
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or 

 
pk 1 21 2

pk 1 21 2 1 2

S S

S S S S

α α α     
= +     ε ε ε+ +    

 (4.B.16) 

(taking K as non-singular). This is similar in structure to (4.B.10) for the non-correlated 

case, but the coefficients are significantly different. We can put 

               ( )2 2 2

1 2 1 2 1 2 1 22 cosS S s s s s s s+ = + + φ ψ = + ψ  

where φ is the phase difference between the signal amplitudes (φ = arg(s2) – arg(s1)). In 

particular, if their magnitudes are close and their phases differ by π then s1 + s2 is near 

zero and we can get some solutions for the peak position which are far outside the 

interval between the target positions. 

We can also put (4.B.16) in the form 

 1 1 2 2

pk

1 2

S S

S S

+
=

+

θ θ
θ  (4.B.17) 

where 
k

k

k

α 
=  ε 

θ  is the parameter vector for points 1, 2 and pk, represented by k, as in 

§4B.1. 

If we put 0 1 2 2 1(  ) 2  and  = + ∆ = −θ θ θ θ θ θ , where 0θ  is the midpoint between the 

two signal positions, and ∆θ  is their vector separation (and so 

1 0 2 02  and 2= − ∆ = + ∆θ θ θ θ θ θ ) then we find that the position of the peak is given 

by 

 pk 0 t= + ∆θ θ θ  

where the factor t is given by 

  
( )2 2

2 1 2 1 2 12 1

2

2 1 2 1 2 12 1

Re ( ) * ( )
.

2( ) ( ) * ( )2

s s s s s sS S
t

S S s s s ss s

− − +−
= = =

+ + ++
 

We see that the solution for the peak position is on the line joining the points (θθθθ1 and 

θθθθ2). In most cases it will be between the points but this is not necessarily so. We see that 

if one of the signals is dominant then the solution is close to the position of that signal. 

For example, if |s2| >> |s1| then we have t close to ½ and so θθθθ is close to θθθθ2, as expected. 

However, if the amplitudes are close and the signal amplitudes are in antiphase (s2 ≈ –
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s1) then the denominator of t is close to zero and the peak may be anywhere on the line, 

including at points a long way beyond either signal position. (We note that as s2 → – s1 

both the numerator and the denominator approach zero, but the numerator does so as, 

|δs| where s2 =  –s1 + δs, while the denominator does so as |δs|
2
, so at this point t → ∞.) 

In fact the extreme cases will arise only rarely – even if the echoes are essentially the 

same in amplitude, the relative phase will not generally also be near 180º. 

However, we note that we can be well outside the points, i.e. many times the length of 

the interval ∆θθθθ, but, if ∆θθθθ is small enough, the peak could still be within a beamwidth, 

in which case IMP could still converge. If it is more than a beamwidth then the 

convergence, if at all, will be to the wrong solution. 

APPENDIX 4C: AUXILIARY RESULTS FOR SECOND SCAN PEAK VALUE. 

4C.1. Function value at a null point 

An expression of the form  

  
H

H
( )f = a a

a

a Q RQ a
θ

a Q a
 

where =aQ a 0 , is clearly indeterminate as it stands, but may in fact have a finite value. 

By l’Hôpital’s Rule we evaluate the function by taking differentials of both numerator 

and denominator. Thus we can put 

 
H

H

2Re( )
( )

2 Re( )
f

′
=

′
a a

a

a Q RQ a
θ

a Q a
 

but we still have the factor aQ a  in both numerator and denominator, so we need a 

second derivative, to obtain 

 
H H H

H H H

2Re( ) 2 Re( )
( )

2 Re( ) 2 Re( )
f

′ ′ ′ ′′+
= =

′ ′ ′ ′′+
a a a a a a

a a a

a Q RQ a a Q RQ a a Q RQ a
θ

a Q a a Q a a Q a
 

or 

 
H

H
( )f

′ ′
=

′ ′
a a

a

a Q RQ a
θ

a Q a
 (4.C.1) 

using =aQ a 0  and the fact that the non-zero terms are real. 
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4C.2. Inner products 

 Let θθθθ1 and θθθθ2 be two points at distances x1 and x2 from θ̂  along the line at angle φ in 

parameter space (i.e. at points ˆ
kx+ ∆θ θ ) then component j of ak is given by 

ˆ(1 )exp(2 ( ))kj j ka n i x= π + ∆Tr e θ θ . Also ˆ ˆˆ( ) ( )k kx x φ+ ∆ ≈ + ∆θe θ θ e θ e  where ˆˆ ( )=e e θ , 

φe  is the derivative of e along the direction φ (see below (4.1.5)) and ∆θ is the 

magnitude of ∆θθθθ. Also let the general point along this line be given by ˆ x= + ∆θ θ θ , 

then the components of a(θθθθ) are given (dropping θθθθ or θ̂  as understood) by 

 ˆ(1 ) exp 2 ( )
j j

a n i x φ= π + ∆θTr e e  

 ˆ ˆexp 2 expj j j ja i x a ixqφ= π ∆θ =Tr e   (4.C.2) 

where 2j jq φ= π ∆θTr e . Also 
2 2

ˆ 1
j j

a a n= = .  

Taking the array element positions to be given relative to the centroid we have (as in 

(3.3A.6) for example)  

 T2 0j jj j
q φ= π∆θ =∑ ∑ r e  (4.C.3) 

and also we have 

 2 2 T 2 2 2(1 ) (2 ) ( ) 4j jj j
n q nφ φ φ= π∆θ = π ∆θ = µ∑ ∑ r e e Me . (4.C.4) 

Differentiating (4.C.2) with respect to x we have 

 ˆ expj j j ja iq a ixq′ = . (4.C.5) 

From (4.1.9) we note that if r is greater than 3 or 4 then µ is small and so is µx
2
 if x is of 

order unity, which will be the case for x (and x1 and x2) in most cases, particularly if the 

targets are of considerably different strengths. Assuming the conditions are such that we 

have a moderately high resolution improvement factor then we take µ, µx
2
 and µxk

2
 etc. 

to be small and we use this fact to expand the exponentials. With these preliminary 

results we can easily obtain the inner products required. From (4.C.2), (4.C.3) and 

(4.C.4) 

 ( )2
H 2 2

1 2 2 1 2 1 2 1
ˆ exp ( ) (1 ) 1 ( ) ( ) 2j j j jj j
a iq x x n iq x x q x x= − ≈ + − − −∑ ∑a a  

 
2

2 11 ( ) 2 1 2x x= − µ − = − µ   (4.C.6) 
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as x2 – x1 = 1 from (4.C.11) below, 

and similarly  

 
H 21 ( ) 2k kx x= − µ −a a  and 

H 2ˆ 1 2k kx= − µa a . (4.C.7) 

Also 

 ( )H (1 ) exp ( ) (1 ) 1 ( )  . . .k j j k j j kj j
n iq iq x x n iq iq x x′ = − ≈ + − −∑ ∑a a  

 ( )kx x= −µ − . (4.C.8) 

and (as x = 0 for â , replacing xk) 

 Hˆ x′ = −µa a . (4.C.9) 

From (4.C.5) 

 
2

H 2 2ˆ
j j jj j

q a q n′ ′ = = = µ∑ ∑a a . (4.C.10)   

For the actual points θθθθ1 and θθθθ2 we have 

 1 1 2 2 2 1 2 2

1 1 1

1 2 1 2 1 2

( )ˆ S S S S
x

S S S S S S

+ − ∆
− = ∆ = − = = −

+ + +

θ θ θ θ θ
θ θ θ θ  

and 

 1 1 2 2 1 2 1 1
2 2 2

1 2 1 2 1 2

( )ˆ S S S S
x

S S S S S S

+ − ∆
− = ∆ = − = =

+ + +

θ θ θ θ θ
θ θ θ θ  

so we see that  

 2 1

1 2 2 1

1 2 1 2

,    and  1
S S

x x x x
S S S S

= − = − =
+ +

. (4.C.11) 

4C.3 Evaluation of constants A, B and C 

Here we evaluate A, B and C, given in (4.2.25), with  

         1 2 1 2 2 1 1 2 1 2( )    ( )        cosk kx S S S x S S S S r r= − + = + = σ + = σ σ φ   (4.C.12) 

and φ is the difference in phase between the signal amplitudes (φ = arg(s2) – arg(s1)). 

Then we have 

          2 2 2 2 2

1 2 1 2 2 1 2 1 1 2 1 2 2 1( ) 2 ( ) 2 ( )A S S S rS S S S r S rS S S r S+ = σ − + σ = − − + −  

 2 2

1 2 1 2 1 1 2 2( ) ( 2 )S S S S r S S S S= + − + + . 
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or 

 1 2 1 2 1 2( ) ( )A S S S S r S S+ = − + . (4.C.13) 

Now, using (4.C.12), 

 1 2 1 2 1 2 1 2( ) ( )( ) ( 2 )S S r S S r r r r− + = σ + σ + − σ + σ +  

 2 2 2

1 2 1 2 1 2(1 cos ) sinr= σ σ − = σ σ − φ = σ σ φ  (4.C.14) 

and  

 1 2 1 2 1 2
2 cosS S+ = σ + σ + σ σ φ . (4.C.15) 

Thus A is given by 

 
2

1 2

1 2 1 2

sin

2 cos
A

σ σ φ
=

σ + σ + σ σ φ
, (4.C.16) 

though the denominator could be put in the alternative form S1 + S2 if convenient. 

B is given by 

 3 3 2 2 3

1 2 1 2 2 1 1 2 2 1

2
( ) ( ) ( ) ( )B S S S r S r S S S S S r S+ = − − + − + + −

µ
 

           ( )2 2 3 3 2 2 2 2

1 2 1 2 2 1 1 2 2 1 1 2 1 2 1 2( ) ( ) ( ) ( )S S S S r S S S S S S S S S S r S S= − + − + − = − − + , 

so 

 
3

1 2

1 2 1 22 2

1 2

( )2
( )

( )

B S S
S S r S S

S S

+
= − +

µ −
. 

Cancelling a factor of (S1 + S2) and using (4.C.14) and (4.1.12) we have 

 
2 2

1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2

( ) sin ( ) sin

2 2( ) ( cos )

S S
B

S S

− σ σ φ σ − σ σ σ φµ µ
= =

+ σ + σ + σ σ φ
. (4.C.17)  

C is given by 

 

2

4 4 2 2 4

1 2 1 2 2 1 2 1

2
( ) ( ) 2 ( )C S S S r S rS S S r S

 
+ = − + + − µ 

 

 3 3 2 2 2

1 2 1 2 1 2( ) ( )S S S S r S S= + − − . 

This can be manipulated to give 
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 ( )
2

4 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

2
( ) ( ) ( ) ( ) ( )C S S S S S S S S r S S S S S S

 
+ = − + − + + + µ 

 

and using (4.C.14) again we have 

 

2 2 2 2 2

1 2 1 2 1 2

3 3

1 2 1 2

( ) sin

2 ( ) ( )

S S S S
C

S S S S

 − σ σ φµ = +   + +   
  

or 

 

2 2 2 2 2

1 2 1 2 1 2

33
1 21 2 1 2

( ) sin

2 ( )( 2 cos )

S S
C

S S

 σ − σ σ σ φµ = +    +σ + σ + σ σ φ   
. (4.C.18) 
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Chapter 5: Conclusions 

5.1 RESULTS ON ACCURACY 

The results on accuracy are given concisely in the summary of Chapter 3, §3.5.2, which 

we recapitulate and enlarge on here, in the list below. We emphasize that these are in 

general (apart from early results in Chapter 3, where the method used was being 

established in simpler cases) for the case of two angle parameters, and require a 2D or 

3D array. In fact the theory is the same for the 3D array as for the apparently simpler 

case of the 2D array (which is generally more likely to be found in practice), so all the 

theoretical results are applicable to both. This is in contrast with most of the previous 

work on superresolution accuracy, which is for a single angle parameter and a linear 

array (or in some cases a planar array, but with the sources in the plane of the array, so 

still being only a single parameter case).  

(1) A general observation is that the array moment matrix M (the 3×3 matrix of second 

moments of the matrix elements about the mean, for each pair of element coordinates – 

x
2
, xy, xz etc.) is a very significant factor in determining the accuracy (and indeed also 

the resolution). This, at least in the 3D form (rather than the scalar form derived in the 

linear array case), is not a quantity seen in the literature reviewed, but is a relatively 

simple and clearly important factor. 

(2) Although superresolution systems can give parameter estimates of multiple signals, 

the accuracy in the single signal case may still be of interest. This case is the same for 

MUSIC and IMP which both reduce to simple beamforming. (The results down to (5) 

below are for the single signal case.) The analysis gives the parameter estimates 

covariance matrix as quite a simple expression ((3.3.17)), proportional to the inverse of 

a scalar function of M. (Thus the larger M the lower the variance, and the higher the 

accuracy.) The parameter error variances are proportional to the variance of the system 

phase errors, but are independent of the system amplitude errors (at least up to any 

likely practical values). This interesting result (the independence from amplitude errors, 

confirmed by simulations) was not seen in the literature reviewed, when generally two 

signals were taken to be present. However this result does not hold when two (or more) 

signals are present. 

(3) Most practical arrays are of similar elements, oriented in parallel (an EPP array) and 

this work has generally taken this to be the case (as apparently has generally been so in 

the literature reviewed). However, an investigation into the case where this does not 
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hold produced a closely related but slightly more complicated expression ((3.3.26) with 

(3.3.23) and (3.3.25)), requiring two moment matrices, one M1 with weighting of the 

element positions by their power gains in the direction of the signal (given in (3.2.24)), 

and another M2 with the element positions weighted by the square of these power gains 

(see below (3.3.25)). As for the other results on accuracy, this expression was confirmed 

by simulation. (It was checked, in the course of the simulations, that using only one of 

these matrices in the theory does not give a result matching the simulation results.) 

(4) As the parameter estimation error variances are simply proportional to the system 

error variance, it is possible to define an error sensitivity as the ratio of the standard 

deviation (s.d., the square root of the variance for unbiased distributions) of the 

parameter estimates to the s.d. of the system phase errors. The theory enables this 

sensitivity to be presented in the form of contour plots over a two dimensional angle 

region, which could be useful when designing or choosing an array for a given 

application.  

(5) It was possible to derive two remarkably simple rules of thumb for the array 

sensitivity, or ratio of parameter estimate s.d. to the s.d. of the system errors; one gives 

the sensitivity as approximately 4/n√n, for a circular array of n elements (with half 

wavelength element spacing), over a substantial angular region (see §3.3.7). (Thus for a 

12 element circular array, with 5° phase errors, the s.d. of the estimates of the (single) 

target azimuth and elevation are about 0.5°, within a factor of 2 over a considerable 

range of angles.) The other is for more general planar arrays of aperture k wavelengths 

giving sensitivity of about 1/2k over most of angle space. 

(6) For the multiple target case, an elegant expression for the errors (but not their 

statistics) in the parameter estimates was derived ((3.4.25) with (3.4.26)). However it is 

difficult to obtain the error variances in this case. On the basis that the case of two 

targets (particularly two close targets) is of considerable interest, a more complex 

expression for the error covariance matrix than for the single source was derived though 

having some structural similarity ((3.4.44)). This shows the parameter errors depending 

on both the phase and amplitude system errors. If these errors have the same variance 

then the parameter error covariance matrix becomes much simpler ((3.4.45) with 

(3.4.36)). However, in both cases we require a modified form M�  (in (3.4.34)) of the 

element covariance matrix M. 

(7) The error analyses have all been for the case of large signals, where errors limit 
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performance, rather than noise, which was ignored. However, it was found that the 

parameter estimates covariance matrix was identical in structure to the Cramér-Rao 

bound (CRB) matrix, enabling an equivalence to be made between the system errors 

and a corresponding noise level. (This is the case when only one signal is present and 

also in the two signal case strictly only when the phase and amplitude errors have the 

same variance.) This interesting result indicates at what signal to noise levels system 

errors, rather than noise, limit the accuracy obtainable. With this comparison we see that 

the CRB can be given in terms of the array moment matrix (see (3.4.52) and (3.2.35)), 

which is a result not clearly shown in other literature. 

(8) The theoretical accuracy of IMP in the two signal case is more difficult to derive 

than for MUSIC, as it uses a different basic scan function, so was investigated only in 

simulation. In fact this showed that the accuracy of IMP is essentially identical to that of 

MUSIC in simulation and to the theoretical expressions for MUSIC. As both methods 

approach the CRB in accuracy when limited by noise, so have similar accuracy in this 

case, perhaps the result that they have similar accuracy when limited by system errors is 

not surprising. 

(9) Finally, using results required for the accuracy study, a good approximate 

expression for the beamwidth of a general (irregular 2D or 3D) EPP array was obtained. 

This may be of interest in itself, but is also of use in defining resolution performance, in 

relating the target separation at the limit of resolution to the beamwidth. 

5.2 RESULTS ON RESOLUTION 

The starting point for the resolution study of IMP, in the non-coherent target case, was 

the paper by Speirs et al [41], which suggested that resolution failed when the weaker 

signal was reduced to the threshold of detection by the null placed on the first signal. 

This seemed a realistic basis, but the paper did not relate the resolution performance to 

the array description. This was the initial result of Chapter 4, giving a simple expression 

((4.1.6) or (4.1.7)) again using the array moment matrix M. The angular resolution 

limits were found to be inversely proportional to the square root of a scalar function of 

M, so that if the array is scaled by some factor k, then M scales as k
2
 (containing the 

second moments) and the resolution as 1/k – i.e. the resolution limit is inversely 

proportional to array size. It is also found to be inversely proportional to the square root 

of the strength of the weaker signal (its signal to noise power ratio, or to the ratio of the 

weaker signal power as received to the minimum level for detection – the minimum 
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detectable signal power). This led to a very simple expression ((4.1.10)) for the 

resolution improvement factor r, defined as the ratio of the array beamwidth to the 

minimum angular separation for resolution. 

These expressions for the resolution limit or the resolution improvement factor show 

resolution improving indefinitely with the strength of the weaker signal. In practice, of 

course, this cannot be the case, and at some point errors will limit the performance. In 

fact errors will lead to the null applied to the large signal being reduced to a finite level 

(rather than, in principle, to zero) and so to detect a second signal (avoiding false 

alarms) a suitable raised threshold will have to be set. This leads to a modified result 

((4.1.14), (4.1.15) or (4.1.17)) involving the ratio of the two signal powers. 

In practice, of course, the peak of the first IMP scan, which is where the null is set for 

the second scan, searching for the second signal, is not precisely at the first signal 

position. An expression was found for this peak position ((4.1.18)) and used to refine 

the initial result ((4.1.23)). This is a more satisfactory expression, using both signal 

powers, while the first result corresponded to the case of a very large (effectively 

infinite) first signal. However, the actual figure is not changed greatly, being reduced by 

a factor of √2 at the most, when the targets are equal in strength. 

The study so far corresponds to the case of non-coherent signals. The case of coherent 

targets, including the case of resolving two targets using a single pulse, as in the radar 

case, was investigated in §4.2. Initially we considered only the limiting condition for the 

detection of a second target (using the ML function, rather than the second scan IMP 

function). This is not quite the same as resolution, in the sense of forming an estimate of 

its parameters. In fact it gave a result ((4.2.18)) for the case of echoes in quadrature (i.e. 

with the arguments of their complex echo amplitudes differing by π/2 radians) which 

was the same as for the coherent case ((4.1.23)), interestingly. However, in the in-phase 

or antiphase cases (phase differences of 0 or π) – the signals being ‘relatively’ real – 

there was effectively no residual signal component to the ML function, indicating that 

the single target model satisfied the condition of maximizing the likelihood function, at 

least at the level of approximation used, hitherto successfully. 

Finally, an analysis of the second IMP scan, finding an analytic expression for the peak 

value, was attempted in §4.2.2 Again, for the in-phase and antiphase cases the ‘peak’ 

signal value was found to be zero, with a realistic non-zero level for the quadrature case. 

(In general the peak is proportional to sin
2φ, where φ is the phase difference between the 
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complex signal amplitudes, so there is a non-zero peak in general except at the exact in-

phase or antiphase conditions, though not necessarily exceeding the threshold.) For this 

case the quadrature condition gives essentially the same result as before ((4.2.37) and 

(4.2.38)) and also the same as the detection condition.  

In the course of determining a threshold limit it was necessary to provide a threshold 

value for the IMP scan function. Rather than assuming some heuristically chosen figure, 

a theoretical (slightly approximate) figure was found based on a chosen false alarm rate, 

which may be useful as a basis for practical IMP implementations. Similarly a 

(different) threshold for the detection decision, using the ML function, was also 

determined. Although normal IMP does not perform this detection test, it could be 

incorporated at the end of each scan (and after the subsequent tweaking) to decide 

whether another signal is present, before carrying out a further scan. 

5.3 GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

A general conclusion to this work is that some useful progress has been made on the 

subjects of both accuracy and resolution of superresolution systems, in this case MUSIC 

and IMP specifically, but the work has also been less successful at some points and a 

number of loose ends remain.  

Firstly, the accuracy of IMP as limited by system errors has not been established 

theoretically. This is disappointing, rather than disastrous, as it is clear that its 

performance is close to that of MUSIC, the theoretical performance of which has been 

found.  

Secondly, the coherent signal, or single pulse, resolution performance of IMP has not 

been found for the ‘real’ target case, where the signal echoes are in phase or in 

antiphase. It might be suggested that this is because the single target model satisfies the 

condition of maximizing the likelihood in this ‘real’ case, but if we consider the case of 

well separated targets this is not likely to be true. However it may be very nearly true 

for two very close targets, and the failure is because the approximations used are of too 

low order in this case, though these approximations worked well in the accuracy study. 

It would be of interest to determine the actual dependence of the separation on the array 

element positions and the signal power levels, which may require a fourth order 

approximation. This would help to define a cross-over level at which the ‘real’ (φ = 0 or 

π) case differed from the more general case, centred on the quadrature condition (φ 

= ±π/2). It may be the case that a different approach would be more fruitful, such as that 
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of Manikas et al [26, 27] based on differential geometry. 

Thirdly, although the resolution of MUSIC has been investigated previously, with and 

without errors, this could be revisited in the approach taken here, with the aim of 

expressing it in a form using the array moment matrix, and also in simple (perhaps ‘rule 

of thumb’) form, even if with some loss of precision. Furthermore, there needs to be a 

further development of the resolution measure, to give the probability of resolution as a 

function of signal separation, rather than a simple threshold of separation above or 

below which the targets are or are not resolved. This has already been done for MUSIC 

(for the case without errors) [25, 54], albeit giving rise to very complex expressions, and 

simpler forms would be of interest. 

Finally, noting that the approach used has been very successful in the application to 

accuracy estimation of MUSIC with errors (and also beamwidth estimation for irregular 

arrays), the work done and techniques used could well be a basis for further work in the 

areas highlighted above. We note that the aim of finding simple expressions in some 

cases, and simple rules of thumb), have been achieved, in the areas where results have 

been achieved at all.  
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