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Abstract 

 

 

Complex dynamic control tasks (CDC tasks) are a type of problem-solving environment used for 

examining many cognitive activities (e.g., attention, control, decision making, hypothesis testing, 

implicit learning, memory, monitoring, planning, and problem solving). Because of their 

popularity, there have been many findings from diverse domains of research (Economics, 

Engineering, Ergonomics, Human Computer Interaction (HCI), Management, Psychology), which 

remain largely disconnected from each other. The objective of this article is to review theoretical 

developments and empirical work on CDC tasks, and to introduce a novel framework (Monitoring 

and Control framework) as a tool for integrating theory and findings. The main thesis of the 

Monitoring and Control framework is that CDC tasks are characteristically uncertain 

environments, and subjective judgments of uncertainty guide the way in which monitoring and 

control behaviors attempt to reduce it. The article concludes by discussing new insights into 

continuing debates and future directions for research on CDC tasks.  
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Controlling Uncertainty: A Review of Human Behavior in Complex Dynamic Environments 

 

Problem solving is regarded by many (Anderson & Lebiere, 1998; Laird, Newell, & Rosenbloom, 

1987; Newell & Simon, 1972; Sweller, 2003) as the most important cognitive activity in everyday 

and professional contexts, especially problem solving of the kind needed to control complex 

dynamic environments. As the complexity of the systems that we interact with in our daily lives 

grows (e.g., phones, computers, automated driving systems) so too does the importance of 

research on how we learn to control dynamic environments. Before detailing the issues 

surrounding the various research domains that investigate control behaviors, the illustrations 

below provide a general flavor of the kind of real world and laboratory tasks in which control 

behaviors have been studied. 

 

Illustration 1: Ecosystem Control System. In a laboratory-based task, people are presented 

with a simulated environment of an African landscape with different flora and fauna. The goal is 

to manage the environment in order to improve the living conditions of the native population. 

This involves controlling the system over several weeks by managing many interconnected 

variables that have a complex feedback process, both negative and positive, and with time delays. 

 

Illustration 2: Automated Pilot System. Trained pilots are required to take part in flight 

scenarios (including take-off and landing) in a flight simulator, in which they control the system 

while responding to a variety problems, including delays between their commands and their actual 

execution in the system, failings in the system, and miscued problems from the control panel. 
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Illustration 3: Solid Incineration Plant. A municipal solid waste incineration plant is a large-

scale industrial system that requires the interaction of skilled process and control engineers. The 

main objectives of operators a control system of this kind are (1) to keep the furnace temperature 

at its set point; (2) to avoid bad combustion caused by a lack of waste; (3) to avoid the flame going 

out because of overfeeding; and (4) to maintain stable steam production. 

 

Illustration 4: Investment Game. In a simulated task environment, trainee economists 

assume the role of traders. On each trading day, traders receive information on market 

fluctuations, news reports, and rumored information. They can buy as many shares as their cash 

holdings allow, sell up to the number of shares they currently possess, or refrain from trading that 

day with the aim of maximizing end of period profits. 

 

Illustration 5: Sugar Factory Plant Control Task. In a laboratory task, people are told to 

adopt the role of a worker in the plant, and their job is to control the rate of production of sugar, 

by deciding exactly what work force to use at a given time. The system operates based on the 

following rule: (P = (2 * W – P1t-1) +R) in which the relevant variables are the work force (W), 

current sugar output (P), previous sugar output (P1), and a random variable (R).  

 

Illustration 6: Water Purification System. In a laboratory-based task, people are told that 

there are three substances (Salt, Carbon, Lime) which are used to change the water quality of a 

processing plant designed to purify the water supply. There are also three indicators of water 

quality: Chlorine Concentration, Temperature, Oxygenation. By manipulating the levels of the 

three substances, people are expected to control the water quality to specific criteria. 
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What do the above examples have in common?  

The first is one of the earliest control tasks devised (Dörner, 1975). It is classed as a 

dynamic system because the problem solvers interact with variables that change in real time, both 

as a consequence of the problem solvers‘ actions, and autonomously. To achieve a particular 

outcome, people are required to make multiple decisions that have to accommodate multiple 

elements of the system, each of which can change in real time, and with different forms of 

feedback (i.e. random, positive, negative, delayed). The next three examples (Brandouy, 2001; 

Carrasco, Llauró, & Poch, 2008; Sarter, Mumar, & Wickerns, 2007), like the first, involve 

controlling variables as they change in real time. However, these tasks examine how experts 

interact with genuine or simulated control systems. In contrast, the last two examples (Berry & 

Broadbent, 1984; Burns & Vollmeyer, 2002) are static systems, and only the interventions of the 

problem solver will affect a change in the system from one trial to the next. Complexity comes 

from the structure of the systems, which may include a combination of non-linear, linear, and 

noisy relations between inputs and outputs. 

In general terms, control tasks involve complex sequential decision making. The decisions 

are interrelated1, and the cumulative effects are designed for the purpose of achieving a desired 

goal (Brehmer, 1992). The environment in which decisions are made can change autonomously, 

and as a direct consequence of the decision maker‘s actions; and often, decisions are made in real 

time (Brehmer, 1992). The examples above have been variously described as complex problem 

solving tasks (e.g., Burns & Vollmeyer, 2002; Miller, Lehman, & Koedinger, 1999), computer-

simulated scenarios (e.g., Brehmer & Dörner, 1993), dynamic decision making tasks (e.g., Berry & 

Broadbent, 1984), micro-worlds (e.g., Dörner, 1975; Kluge, 2008a), naturalistic decision making 

tasks (e.g., Lipshitz et al., 2001), process control tasks (e.g., Sun et al., 2007), simulated task 

environment/microworlds (e.g., Gray, 2002), and system control tasks (e.g., Kaber & Endsley, 
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2004). For the sake of simplicity, the present article will refer to them all as Complex Dynamic 

Control tasks (hereafter CDC tasks).  

 

A paradigm in search of a framework 

 

CDC tasks have their roots in problem-solving research (Broadbent, 1977; Dörner, 1975; 

Toda, 1962), and were originally devised to examine how people learn to make appropriate 

decisions that control highly complex simulated environments. The aim was ambitious. Given that 

the tasks were micro-simulations of real-world scenarios in which numerous variables could 

interact in thousands of possible ways, they would offer the opportunity to understand how 

people learn to respond (i) to ill-structured problems (ii) in uncertain dynamic environments, (iii) 

with shifting, ill-defined, or competing goals, (iv) feedback loops, (v) time pressures, (vi) high 

stakes, (vii) multiple players, and (viii) under the presence of organizational goals and norms 

(Funke, 2001).  

It seems that the complexity of the paradigm itself is in turn an indication of the 

complexity and range of the psychological phenomena involved. Since their conception, CDC 

tasks have spawned much interest, and provided fertile ground for the study of Implicit learning 

(Berry & Broadbent, 1984; Dienes & Fahey, 1998), Skill learning (Sun et al., 2005; Sun et al., 2007; 

Vicente & Wang, 1998), Observational learning (Osman, 2008a, 2008b, 2008c), Dynamic decision-

making (Busemeyer, 2002; Lipshitz et al., 2001), Group behavior (e.g., Broadbent & Ashton, 

1978), Motivation (e.g., Bandura & Locke, 2003; Locke & Latham, 1990, 2002), Motor control 

(e.g., Osman et al., 2008; Witt et al., 2006), Memory (Broadbent, 1977; Gonzalez, Lerch, & 

Lebiere, 2003), Planning (Dörner, 1989), and Attention (Burns & Vollmeyer, 2002; Gonzalez et al., 

2003; Lerch & Harter, 2001).  
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Despite the many reviews of Complex problem solving (Dörner, 1989; Funke, 2001; 

Gonzalez, Vanyukov, & Martin, 2005; Gray, 2002; Hsiao & Richardson, 1999; Quesada, Kintsch, 

& Gomez, 2005), Implicit learning (Dienes & Berry, 1997; Sun et al., 2007), Dynamic learning 

(Gibson, 2007; Sterman, 2002), Dynamic decision making (e.g., Busemeyer, 2002; Kerstholt & 

Raaijmakers, 1997; Lipshitz, Klein, Orasanu, & Salas, 2001), and Goal-setting (Locke, 1991, 2000; 

Locke & Latham, 2002) that have drawn on work using CDC tasks, they have had limited success 

in bridging the many disparate fields of research. 

For example, Busemeyer‘s (2002) review discusses the various computational models (e.g., 

Anzai, 1984; Dienes & Fahey, 1995; Gibson, Fichman, & Plaut, 1997; Sutton & Barto, 1998) used 

to describe the findings from Berry and Broadbent‘s (1984) sugar factory task, and other 

laboratory-based CDC tasks. However, the models are based on a small sub-set of the wide range 

of research on CDC tasks. Likewise, Lipshitz et al.‘s (2001) discussion of different theoretical 

accounts of CDC tasks (e.g., Cohen, Freeman, & Wolf‘s (1996) Recognition/Metacognition 

model; Klein‘s (1998) Recognition-primed model of naturalistic decision making; Lipshitz & 

Strauss‘s (1997) RAWFS [Reduction, Assumption-based reasoning, Weighing pros and cons, 

Forestalling and Suppression] heuristic model), although extensive, focuses on how people behave 

in CDC tasks after they have developed expertise. 

The above reviews examine the theories and evidence within the range of CDC tasks that 

they were developed to explain, but their focus is too narrow to provide a broad understanding of 

how the different domains of research on CDC tasks relate to each other. Moreover, while the 

many theoretical accounts of CDC task behavior may claim that they are generalizable across 

domains, attempts to do so have thus far been limited. This is problematic, because a continuing 

lack of unity is likely to produce a great deal of redundancy in research. For instance, many 

different research domains overlap with respect to critical issues concerning the psychological and 
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task properties that define CDC tasks, contrasts between experts and novices, the success of using 

measures of cognitive ability to predict performance in CDC tasks, and ―scaling up‖ issues 

concerning whether cognitive modeling of complex behaviors in the lab can be scaled up to 

complex environments such as aviation and driving (Kirlik, 2007). 

Crucially, the lack of unity in the study of CDC tasks is compounded by a continuing 

debate as to whether there are in fact underlying associations between the different research 

domains (Economics, Engineering, Ergonomics, HCI, Management, Psychology) that have used 

CDC tasks (Buchner & Funke, 1993; Campbell, 1988; Funke, 2001; Gatfield, 1999; Kerstholt & 

Raaijmakers, 1997; Quesada et al., 2005). In particular, given the difficulty in defining the 

dynamical and relational properties of CDC tasks, and how complexity is treated (i.e., should 

research focus on psychological complexity, or task complexity, or the interaction between the 

two? (Campbell, 1988)), the lack of cohesion amongst the different research domains remains. 

Clearly then, there is, at the very least, a need to consider how the different research approaches to 

CDC tasks may relate, in order to achieve a general understanding of psychological behavior in 

complex dynamic control environments. 

 

Goal of the Article 

 

The main objective then, is to adopt a unifying approach throughout this review by 

considering the underlying associations between the theoretical developments and the evidence 

from the different domains of research on CDC tasks. First, the review presents the theoretical 

foundations of research on psychological behavior in CDC tasks. To this end, five main classes of 

theoretical accounts are presented (Exemplar/Instance-learning, Hypothesis-testing, Self-

regulation, Expert Adaptive Decision Making, and Computational). Given the wealth of theories, 
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the aim here is to introduce the key claims that they make, in order to identify their family 

resemblances more easily. It then becomes possible to discuss the various approaches to 

understanding CDC task behavior in a way that cuts meaningfully across research boundaries. In 

so doing, this section concludes that the different accounts are unified by the psychological 

processes that help to reduce uncertainty. 

This lays the foundations for detailing the Monitoring and Control framework (hereafter 

MC framework). Monitoring involves processing the task environment (i.e., Task-monitoring) and 

tracking actions and decisions in the pursuit of goals (i.e., Self-Monitoring). Control involves the 

generation and application of relevant actions to reach goals. This section presents the two main 

tenets of the framework: 1) Uncertainty has a mediating role in Monitoring (Task-monitoring, Self-

monitoring) and control behaviors and 2) that there is a reciprocal relationship between 

Monitoring (Task-monitoring, Self-monitoring) and control behaviors. While the different theories 

that have been reviewed may share common underlying themes, they have established their own 

research focus, and the empirical findings in the different domains remain disparate. Thus the 

function of the MC framework is to provide some basic principles from which research findings 

across the different research domains can be integrated. From this, the evidence from the different 

research domains is reviewed, summarized, and integrated with respect to the framework. 

The concluding section presents new insights and future directions for research on CDC 

tasks. First, the final discussion considers how the MC framework provides ways of tackling the 

following questions: Can we define complexity in CDC task? Are there differences between 

experts and novices? Is there a relationship between cognitive ability and CDC task performance? 

What are the effects of practice on CDC task performance? Are their dissociable mechanisms for 

declarative and procedural knowledge? Are there differences between Prediction and Control? 

Second, in their work on control behavior in highly skilled engineering environments, Kirlik, 
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Miller, and Jagacinski (1993, p. 933) emphasize that ‗without detailed consideration of the task 

environment human behavior is simply too unconstrained to be effectively modeled.‘  If we 

assume that one of the main goals of research on CDC tasks is to model human behavior in 

complex dynamic environments (Rothrock & Kirlik, 2003), then developing models of the 

underlying causal relations in the environment, and relating these to how we learn causal relations, 

and how agency2 influences this, would be a significant step toward achieving this objective.  

 

Theories of CDC task behavior 

 

The following section begins by introducing the various theoretical accounts of CDC 

tasks, in order to discuss their key claims and arguments. There are five classes of theoretical 

accounts of CDC tasks, each focusing on particular aspects of behavior found in CDC tasks: 

Exemplar/Instance-learning, Hypothesis-testing, Self-regulation, Expert Adaptive Decision 

making, and Computational.  

 

Exemplar/Instance-learning accounts 

One of the earliest theories of CDC tasks arose from pivotal work by Broadbent (Berry & 

Broadbent, 1984, 1987, 1988; Broadbent, Fitzgerald, & Broadbent, 1986) and others (Marescaux, 

Luc, & Karnas, 1989; Stanley et al., 1989): the Instance-based theory (alternatively referred to as 

Exemplar theory). The theory proposes that in the early stages of goal-directed learning every 

encounter with the system generates an instance which comprises the perceptual features of the 

system and the decisions-actions taken (i.e. the specific input values that were varied on that 

occasion, and the output value that was generated). Only instances that lead to successful 

outcomes are stored in memory, in a type of ―look-up table‖ (Broadbent et al, 1986); this 
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determines what response is made by matching the perceptual properties of the current situation 

to stored instances. Because learning relies on generating responses from memory, there is a 

distinct lack of analytical thinking about the rules that govern the behavior of the CDC task. Thus, 

instance based learning leads to successful control of a CDC task, but at the expense of gaining 

knowledge of the underlying structural properties of it, and with limited transferability of 

knowledge, because it is bound to tasks that are structurally and perceptually similar to the original 

training task (Berry & Broadbent, 1987; Buchner, Funke, & Berry, 1995; Lee, 1995; Stanley et al., 

1989).  

Formal models of Instance-based theory of control learning (Dienes & Fahey, 1995, 1998) 

like other Instance-based models of learning and memory (e.g., Logan, 1988; Medin & Schaffer, 

1978; Nosofsky, Kruschke, & McKinley, 1992) propose that instance-based processes involve a 

similarity match between environmental cues with previous stored instances. The most similar of 

which will be activated in memory without reference to any explicit rule that would govern their 

activation. In contrast, rule-based processes involve directly inferring the relationship between 

inputs and outputs and forming abstract propositional representations of the structural properties 

of the task during learning (Dienes & Fahey, 1995). The distinction between instance and rule 

based knowledge maps onto that of procedural knowledge and declarative knowledge, and are 

commonly regarded as sub-served by different underlying brain regions3. Procedural knowledge 

includes knowledge of how to perform skills and operations via goal-directed incidental learning, 

while declarative knowledge includes knowledge of episodes and facts which is propositional in 

form (Anderson, 1982; Squire, 1986).  

 Though Gilboa and Schmeidler‘s (1995) Case-based decision theory describes naturalistic 

repeated decision making in uncertain environments, theirs is essentially an instance-based theory, 

and has wide applications in CDC tasks in naturalist decision making environments (see ‗Expert 
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Adaptive Decision-making‘). They propose that when faced with a new problem, decisions are 

made based on the outcome of behaviors in similar previously encountered problems. Given the 

sample of instances or ‗cases,‘ which consists of details of the prior problem, actions taken, and 

outcomes generated, the crucial processing step is the comparison of these cases to a new problem 

scenario. The cases are weighted according to their similarity to the new problem, and as with the 

Instance-based theories of learning and memory, the most weighted will be triggered in memory, 

from which a decision will be made.  

Gonzalez et al.‘s (2003) recent advancement of the instance theory—the IBLT model 

(Instance-based learning theory)—describes instances as having three properties: the 

environmental cues in which they arise, the decisions taken at the time that generate the action, 

and the utility of the outcome of that decision. Their instance theory draws on the work of Gilboa 

and Schmeidler (1995), by suggesting that instances are essentially decisions made under 

uncertainty. They retain the basic assumptions of instance-based theory, but in addition propose 

an analytical component to initial knowledge acquisition which early Instance-based theories do 

not include. Under situations of high uncertainty, the learner evaluates the best action to take by 

relying on heuristics (referred to here as contextual factors that guide attentional focus) to 

determine which cues it is relevant to act upon in the task. As uncertainty decreases, the learner 

then evaluates the utility of an action by combining the utility from similar instances generated in 

the past. Therefore, people begin by assessing the relevancy of task information from which to 

base their decisions, but after extensive interaction with the task they replace this with instance-

based learning. 

 Summary: Early Instance-based theories and models describe instance-based and rule-

based knowledge as independent of each other because they are encoded, stored, and utilized 

entirely differently. Some theoretical developments have retained this idea, for example the case-
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based decision theory (Gilboa & Schmeidler, 1995) in which the course of action taken is 

determined by the similarity between a stored instance and a new problem, not by inferences from 

judgments of the similarity between the two. However, recent developments of the instance theory 

(Gonzalez et al., 2003) include an initial abstraction process that suggests that inferences are used 

to evaluate action-outcomes as well as formulating rules about the environment. Moreover, this 

also signals a shift in theory toward emphasizing the importance of explicit processes, in particular 

executive functions, such as monitoring, while learning to control a CDC task. 

 

Hypothesis-Testing accounts  

Many laboratory-based studies of CDC tasks have examined the effects of different 

methods of learning on control behavior (Burns & Vollmeyer, 2002; Vollmeyer, Burns, & 

Holyoak, 1996). Sweller‘s (Paas, Renkl, & Sweller, 2003; Sweller, 1988; van Merriënboer and 

Sweller, 2005) Cognitive Load Theory is a cognitive architecture that has been applied to many 

complex problem solving environments. It outlines the conditions in which expertise is developed, 

and in particular the way in which goals influence the success of problem solving skills (Sweller, 

1988). When goal-directed, the solver is concerned with achieving a particular outcome (i.e. a 

Specific Goal (SG)) typically through means-end analysis (a method of incrementally reducing the 

distance between the current and desired end state).  Because means-end analysis increases 

working memory load, only task information that directly bears on the immediate demands of the 

goal is learnt. This prevents any development of a deep understanding of the underlying properties 

of the task because there is limited opportunity to evaluate the information that is gained at any 

one time. For this to occur the problem solver needs to pursue a Non-Specific Goal (NSG). NSGs 

are constraint-free because knowledge acquisition is based on an exploratory hypothesis testing 

method which aims to find the best solution to the problem. Without the memory demands 
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imposed by a SG, problem solving under NSG conditions in turn leads to domain general 

knowledge.  The specific methods (e.g., instructions, goals) that Cognitive load theory describes 

for improving learning and problem solving skill in complex environments have been successfully 

applied to CDC tasks such as air traffic control (Camp, Paas, Rikers, & van Merriënboer, 2001; 

Salden, Paas, & van Merriënboer, 2004) and interactive games (Miller, Lehman, & Koedinger, 

1999).  

Burns and Vollmeyer (2002) offer an alternative to Sweller‘s (1988) Cognitive load theory 

of the goal-specificity effect. Their Dual-space hypothesis is a development of Klahr and Dunbar‘s 

(1988) and Simon and Lea‘s (1974) theory of problem solving and scientific thinking (Klahr & 

Simon, 1999). Rather than relating the effects of goal specificity to different demands of cognitive 

load, Burns and Vollmeyer (2002) described the goal-specificity effect in terms of the problem 

solver‘s focus of attention in the task. Burns and Vollemeyer claimed that a CDC task can be 

deconstructed into spaces: the rule space, which determines the relevant relationship between 

inputs and outputs, and the instance space, which includes examples of the rule being applied. 

Under SG instructions, the instance space is relevant because it is integral to the goal: that is, the 

solver‘s attention is focused primarily on achieving a particular instantiation of the rule, not on 

discovering the rule itself. Because NSGs lead to unconstrained attention is distributed across both 

instance and rule space. Moreover, searching through the rule space encourages hypothesis testing, 

which leads to a richer understanding of the underlying structure of the problem (e.g., Burns & 

Vollmeyer, 2002; Geddes & Stevenson, 1997; Vollmeyer, Burns, & Holyoak, 1996).  

 Summary: At heart, these theories focus on the relationship between the specificity of the 

goals pursued and how this can affect the development of expertise. Generally, knowledge 

acquired under SG instructions is pertinent only to CDC tasks that follow the same goal structure, 

whereas knowledge gained under NSG instructions is transferable beyond the original learning 
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context. For this reason, Burns and Vollmeyer (2002) have suggested that the types of behaviors 

associated with instance based learning (see previous section) are consistent with those found 

under SG learning. Sweller‘s (1988) Cognitive Load theory claims that the greater expenditure of 

cognitive effort incurred under SG instructions helps guide the problem solver to the problem 

goal, but prevents the uptake of knowledge of the underlying structure of the problem. Dual-space 

accounts claim that the reason for this is because SG instructions focus attention away from the 

rule space. However, both theories are in agreement that hypothesis testing promotes rule 

formation, and leads to superior structural knowledge about the system, because the learner is able 

to examine and evaluate their understanding of the task. This then suggests that rule- and instance-

based knowledge combined is more effective in skill acquisition in CDC tasks than instance-based 

knowledge alone. 

 

Self-regulatory accounts  

While some (Vancouver & Putka, 2000) have proposed that the internal dynamic process 

involved in attaining and maintaining goals in CDC tasks maps neatly on to control theories 

developed in cybernetics (Wiener, 1948), others (Bandura & Locke, 2003; Locke, 1991) question 

whether it is appropriate to draw an analogy between self-regulatory mechanical, biological, and 

electrical systems (e.g., thermostat, cells, circuits) and humans‘ self-regulatory control system. 

However, despite these differences, self-regulatory theories (Bandura and Locke‘s Social Cognitive 

Theory, 2003; Locke and Latham‘s Goal setting theory, 2002; Vancouver and Putka‘s Control 

theory, 2000) agree on a number of basic processes (e.g., goal setting, self-efficacy, motivation, 

evaluation) associated with learning to operate and control CDC tasks. 

The general claim of these accounts is that, at the heart of human cognition, are evaluative 

judgments of the success of self-generated actions, commonly referred to as perceived self-efficacy 
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(Bandura, 1977), and these help regulate motivational, affective, and decisional processes (e.g., 

Earley, Connolly, & Ekegren, 1989; Spering, Wagener, & Funke, 2005). Therefore, people‘s 

expectancies of their ability to exercise control over their environment determines the goals they 

assign themselves and the set of actions designed to meet them (Olson, Roese, & Zanna, 1996). A 

goal is referred to as a standard by which an individual evaluates the feedback received from their 

chosen action as a ‗good‘ or ‗poor‘ reflection of their performance (Locke & Latham, 1990). Goal 

directed behaviors are guided by attending to qualitative (i.e. perceived self efficacy) and 

quantitative (e.g., time, effort) aspects of ongoing behavior, which enables people to evaluate the 

status of their behavior in relation to a goal (Bandura & Locke, 2003; Karoly, 1993). In this way, 

evaluative judgments of self generated actions track goal-relevant information, modulate 

motivation, and maintain or terminate actions.  

Bandura‘s (Bandura, 1991; Bandura & Locke, 2003) Social Cognitive theory proposes that 

evaluation of the relationship between behavior and goals occurs in two different ways. Goals can 

be met through a feedback mechanism, common examples of which include error detection and 

correction, in which the individual reduces the discrepancy between the actual outcome and the 

desired outcome (Bandura, 1991; Bandura & Locke, 2003; Karoly, 1993; Lehmann & Ericsson, 

1997; Rossano, 2003). Working in concert is a type of feedforward mechanism which involves 

incrementally setting difficult challenges that broaden one‘s knowledge and experience of a skill 

(e.g., Bandura & Wood, 1989; Bouffard-Bouchard, 1990; Wood & Bandura, 1989).  

In contrast to Bandura‘s Social Cognitive theory is Control theory (Miller, Galanter, & 

Pribram, 1960; Powers, 1978; Vancouver & Putka, 2000). As with the main proposals of 

cybernetics, negative feedback drives behavior, and so regulation of behaviors is achieved by 

tracking the discrepancy between a desired goal and the actual outcome of behavior via a negative 

feedback loop. Through this method, progress is made by modifying behavior to reduce that 
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distance, thereby incrementally progressing toward the goal, but this also depends on the 

allocation of effort commensurate with one‘s perceived ability: the greater the ability, the fewer 

cognitive resources allocated (Vancouver & Kendall, 2006). Vancouver, More, and Yoder‘s (2008) 

most recent development of the Control theory captures the dynamic psychological process of 

control by proposing that there is a single nonmonotonic relationship between self-efficacy and 

motivation. Self-efficacy determines the amount of time and/or effort required to achieve a goal. 

The success in achieving a goal will change during interactions with a task, and if in some cases 

becomes increasingly more difficult to achieve, then this will switch from an online evaluation to a 

global assessment of the level of progress toward reaching and maintaining the goal. If the 

estimated probability of reaching a goal drops below a self assigned threshold, and the amount of 

estimated effort exceeds a certain judged threshold, this will determine whether or not continued 

effort will be spent in organizing behaviors designed to reach the goal.  

 Summary: The general consensus amongst Self-regulatory theories is that because 

controlling a CDC task is a goal-directed pursuit, and because such environments are uncertain, 

people must track and evaluate their behaviors in relation to the goals they pursue. Usually, 

identifying the right kind of goals to begin exploration of the task leads to the discovery of 

relevant strategies, and of the structural properties of the task, for which controlling the task is 

crucial. Regulatory processes enter into the early stages of acquisition, because monitoring serves 

as a self-correcting process; but they are also relevant when expertise has developed, because they 

are a means of building on and extending the reach of more complex goals. 

 

Expert Adaptive Decision-making  

Inherent in theories in the class of adaptive decision-making is the notion of uncertainty 

and how it affects what people decide to do, and how people differ according to their subjective 
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experiences of uncertainty: i.e., the type of uncertainty experienced by a novice is different from 

that of an expert (Lipshitz & Strauss, 1997). The theories describe the interactions between 

individual and complex tasks in terms of a naturalistic dynamic decision-making process. For 

example, Vicente‘s (Chery, Vicente, & Farrell, 1999; Jamieson, Miller, Ho, & Vicente, 2007; 

Vicente & Wang, 1998) work examines human-computer interaction in industrial scale control 

systems (nuclear power plant, petrochemical production, radio communication, thermo-hydraulic 

processor). 

In the initial stages of controlling a CDC task, many models that take an ecological 

perspective in describing expertise propose that pattern matching is involved. Cohen, Freeman, 

and Wolf‘s (1996) Recognition/Metacognition (R/M) model proposes that, when people interact 

with CDC tasks, the events (states) that are generated by the system cue related schemas (e.g., 

knowledge, goals, action-plans)  via a recognitional pattern matching. This process bears a close 

resemblance to that described by instance-based theories.. In Lipshitz and Strauss‘s (1997) 

RAWFS model, people begin generating actions, evaluating them, and mentally simulating the 

outcomes, but are also cued to recall relevant previously stored plans of behavior through pattern 

matching. People cycle through a process of implementing actions, monitoring the success of their 

understanding of the task, and modifying them to maintain the desired goal. In Klein‘s (1993, 

1997) Recognition-Primed Decision (RPD) model, the expert decision-maker begins by identifying 

critical cues, to attain a match between the current situation and previously experienced plans of 

action. During early interactions with a CDC task attention is focused on evaluating the conditions 

of the task itself, and by establishing early on what the task demands are then a course of action 

can be implemented with little need for evaluating behaviors. This tends to be a very robust 

finding, and is supported by research suggesting that, in long-term memory, expert knowledge is 

pattern-indexed in relation to domain-specific tasks, including those of fire fighters (Klein & Wolf, 
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1995), medical doctors (Einhorn, 1974), naval mine sweeping (Randel, Pugh, & Reed, 1996), and 

nursing (Crandall & Calderwood, 1989). 

As interactions with the task progress, the RM model proposes that monitoring and 

evaluative processes are recruited to help decision makers refine those past actions that may be 

repeatedly cued to better suit the demands of the task. This is achieved through critiquing, which 

involves identifying sources of uncertainty in the task, and correcting, which is designed to reduce 

uncertainty by searching through memory for relevant knowledge or using cues from the task. 

Similarly, in the RAWFS model, the decision maker judges their uncertainty in achieving a desired 

outcome, and if progress is judged to be slow in reducing it, this prompts them to devise plausible 

alterative actions. If, at any stage, no good action can be identified, or the decision maker cannot 

differentiate between several sensible options, they resort to suppression. This is a tactical and 

practical decision that enables the decision maker to continue operating within the system, while 

ignoring undesirable information, and to develop strong rationales for the course of action that is 

eventually decided upon. Similarly, the RPD model proposes that extensive interaction with a 

CDC task prompts diagnostic decision making, and the way in which it is carried out distinguishes 

expert from novice decision makers. Experts are adept at realizing when they do not have 

sufficient information to assess the uncertainty generated in a CDC task. The diagnosis is 

conducted using techniques such as feature matching – comparing current situations to previously 

experienced ones, and story building - mentally simulating actions and their consequences. Experts 

are also adept at recognizing anomalies between current and past situations where as novices are 

inexperienced in the task domain and so are less to detect them.  

Kirlik, Miller, and Jagacinski‘s (1993) HEI (Human Environment Interaction) model is 

unlike R/M, RAWFS and RPD in that it focuses on describing the properties of the CDC task 

domain along side the skilled operator‘s behavior. In fact, the HEI model avoids separating the 
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interactions between human and environment into stages, because the interaction is cyclic and 

dynamic, with the operator acting in a constant supervisory control capacity to respond to the 

frequently changing task demands of the environment. The environment is described according to 

‗affordances,‘ which refer to the relationships between the causal structure of the environment and 

an operator‘s cognitive capabilities (e.g., work load, experience, working memory capacity, 

optimality of decision making). Successfully extracting relevant information from the environment 

enables the operator to shift from resource-intensive inferential processes (problem solving, 

decision making, planning) to a ‗perceptual mode.‘ Reaching this mode indicates expert decision 

making, because the same kinds of inferential processes are automatically invoked there, because 

the diagnostic information for choosing an action has been encoded. 

Summary: Expertise is a shift from inefficient processing of the problem space to fluently 

reducing the uncertainty of the task. As with early knowledge acquisition in Instance/Exemplar-

based theories, Adaptive decision making theories describe pattern matching as an essential 

mechanism, which is able to automatically retrieve relevant action plans from memory. Cohen et 

al.‘s (1996) (R/M) and Lipshitz and Strauss‘s (1997) RAWFS model discusses the way decision 

makers utilize their skills to reduce uncertainty. Klein‘s (1993, 1997) (RPD) model describes how 

people use their experience to make rapid decisions under conditions of time pressure and 

uncertainty that preclude the use of analytical strategies. Moreover, the RPD model and much of 

Vicente‘s work also considers the impact of pressured high stake CDC tasks on decision making. 

While Kirlik, Miller, and Jagacinski‘s (1993) HEI model, and developments of it by Kirlik (Kirlik, 

2007; Kirlik & Strauss, 2006) and Jagacinski (Jagacinski & Flach, 2003), specifically concerns the 

relationship between the structural properties of the task domain and expert dynamic decision 

making.   
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Computational Accounts 

 Connectionist models have provided the most popular formal description of learning 

mechanisms in CDC tasks, and have also been implemented in general cognitive architectures 

such as CLARION (Connectionist Learning with Adaptive Rule Induction Online) and ACT-R 

(Adaptive Control of Thought-Rational).   

Neural Networks: Gibson‘s (Gibson, 2007; Gibson, Fichman, & Plaut, 1997) neural 

network model assumes that people adapt the knowledge they acquire during learning, based on 

their mental model of the environment: that is, they develop hypotheses about the input-output 

relations from which they decide which actions to take. The model makes two basic assumptions 

about knowledge acquisition in control tasks: 1) People acquire knowledge about how their actions 

affect the outcomes in the system, and 2) this knowledge is based on which actions are chosen to 

achieve specific desired outcomes. To achieve this, the model captures learning as two submodels: 

forward models and action models. The action submodel takes as input the current state of the 

environment and the specific goal to achieve, and generates as output an action that achieves that 

goal. The action then leads to an outcome that can be compared with the goal which guides the 

forward model. This model takes as input the current state of the environment and an action, and 

generates as output a predicted outcome. The predicted outcome is compared with the actual 

outcome to derive an error signal. Back propagation is then used to adjust the connection weights 

between action and predicted outcome, to improve the ability to predict the effects of actions on 

the environment. Gibson‘s (2007) later model builds on this by incorporating a process that 

described how people decide on which action to take online while tackling the changing demands 

of the environment. To achieve this, the model assumes that people begin by generating possible 

options and assessing their relative likelihood of success. The cumulative support for each decision 

option is calculated by summing over the absence and presence of all possible pieces of evidence, 
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weighted by past associations with success. Thus learning is accomplished by continually adjusting 

the weights based on the decision outcome, which is updated as changes in the CDC task occur. 

Similarly, Sun‘s (Sun, Merrill, & Peterson, 2001; Sun et al., 2005; Sun et al., 2007) 

CLARION (Connectionist Learning with Adaptive Rule Induction ONline) model has, like 

Gibson‘s model, been applied to CDC task behavior in Berry and Broadbent‘s sugar factory task. 

The motivation for the model comes from work on both the early stages and advanced levels of 

skill development. The main claim is that, early on, knowledge development moves from implicit 

to explicit knowledge: that is, trial and error learning progresses toward hypothesis testing, and, as 

the success of the action outcomes increases, these instances become regulated by explicit 

representational structures. With extensive experience of the CDC task, behavior moves from a 

process of explicit hypothesis testing to the automatic implementation of practiced instances 

(procedural knowledge referred to as ACS: action-centered subsystem) in combination with 

representations of the underlying structure and rules governing the task (declarative knowledge 

referred to as NACS: non-action-centered subsystem). Sun‘s (Sun et al., 2005; Sun et al., 2007) two 

recent additions to the CLARION framework are a motivational subsystem (the MS), and a meta-

cognitive subsystem (the MCS). The former self-regulates behaviors from the ACS and NACS, 

whereas the latter functions to monitor and evaluate, by refining and improving the quality of the 

rules and instances generated by the ACS and NACS. 

Probabilistic decision making: Decision Field theory (Busemeyer & Townsend, 1993; 

Busemeyer, Jessup, Johnson, & Townsend, 2006) formally described dynamic decision making 

under uncertainty, and has recently been applied to CDC tasks in which the individual chooses 

between allowing the system to operate automatically, and intervening directly (Goa & Lee, 2006). 

Dynamic decision making takes on two different meanings in this model: one refers to decision 

making behavior over time, and the other refers to the multiple interrelated decisions that are 
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made in response to the changing task environment. In general, the model considers how we 

decide between multiple decisions that are likely to vary in their respective outcomes at different 

points in time. Thus, the decision maker attaches a particular outcome to each risky option that 

they must choose between, where a change in choice behavior occurs will depend on the valance 

of the decision options. Goa and Lee (2006) treat the affect of outcomes as a reflection of the 

individual‘s trust in the ability of the control system to execute them. They connect this to 

perceived self-efficacy (Bandura, 1977) by proposing that the expectation of an outcome, and the 

fulfillment of it, influences judgments in successfully generating and controlling a desired outcome. 

ACT-R is a cognitive architecture that describes goal-directed behavior (Anderson & 

Lebiere, 1998; Ehret, Gray, & Kirschenbaum, 2000). The components of the cognitive system (i.e., 

goal, declarative memory, perceptual, and motor modules) contain information that production 

rules (conditional statements ‗if…then‘) use to carry out a cognitive operation (e.g., problem 

solving, decision making). There are separate stores of information for declarative knowledge, and 

for procedural knowledge – represented as production rules that control cognition. Collections of 

production rules (like action-plans) are formed to carry out a specific task and retrieved via a 

pattern-recognition system that matches the task demands to previously stored productions. ACT-

R has been successfully applied to model behavior in realistic CDC task domains that include 

navigation of a submarine by submarine-trained officers (Ehret et al., 2000), operating radar 

control systems (Gray, Schoelles, & Myers, 2002), and air traffic control (Taagten & Lee, 2003). 

Summary: Thus far, most models discussed here describe learning and decision making of 

non-experts in laboratory CDC tasks that are static environments (e.g., Berry & Broadbent‘s sugar 

factory task). This is largely because developing formal descriptions of realistic control systems is 

problematic given that the properties that need to be described (e.g., random fluctuations, 

probabilistic relationships between cause and effect, non-linearity) are not well understood 



Controlling Uncertainty 

 25 

(Lipshitz and Strauss, 1997). This is why formal models face an ongoing problem in closing the 

gap between the aim of modeling (i.e. formally describing the environment and what contributes 

to it being uncertain, complex and dynamic along with the skilled behaviors developed to manage 

and control it) and what they are equipped to model (Kirlik (2007).  

 

Family Resemblances 

The first integrative step is to consider how the accounts are connected according to their 

proposals of the psychological processes involved in CDC tasks, and view the tasks themselves.  

Common proposals of psychological behaviors: For almost all theoretical accounts, the acquisition 

of instance based knowledge is pivotal to the development of skill learning, particularly when there 

is a clearly defined goal. This is because a set of decisions and actions can be established early on 

which map the task demands to previously experienced decisions and actions. While, the accounts 

are divided as to the stage at which rule-based knowledge is acquired (e.g., initial (e.g., Hypothesis 

testing accounts) vs. extensive CDC task experience (Exemplar/Instance-learning accounts)), they 

do make similar claims concerning its involvement in monitoring behaviors. Monitoring involves 

tracking discrepancies between events based on expectancies which are formed from judging the 

outcome of goal-directed actions (self-monitoring) or from judging the outcome of learnt input-

output relations (task monitoring). Most accounts posit that rule-based knowledge is needed to 

predict outcomes, and enable flexibility in cases where the task demands require sudden changes in 

behavior.  

Instance and rule-based knowledge has been described as dissociated (e.g., 

Exemplar/Instance-learning) as well as integrated (e.g., Hypothesis testing accounts, Expert 

Adaptive Decision making). Despite these differences, there is general agreement across the 

accounts that expertise depends on the mediation between exploration in order to refine control 
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behaviors, and reinforcement of instance based knowledge through repeated practice. This is 

because uncertainty is managed by 1) extracting and evaluating relevant task information, on which 

to base their actions, while also 2) implementing actions without the need to evaluate them. 

Pursing both ensures that decisions and actions are sufficiently flexible in order to respond to the 

shifting demands of the situation which requires monitoring behaviors.  

Common proposals of task uncertainty: The common view of CDC tasks is that they are 

psychologically demanding because they are uncertain environments, and the source of uncertainty 

seems to either located at the task level, i.e. Environmental (e.g., random fluctuations, probabilistic 

relationships between cause and effect, non-linearity) or psychological level (e.g., inaccurately 

representing the structure of the task, poorly estimating the probabilistic relationship between 

Inputs and Outputs) (for review see Lipshitz and Strauss, 1997). Given that formal descriptions of 

the task environment are lacking in most accounts reviewed here, the psychological processes 

identified are specific to reducing psychological-based sources of uncertainty. The processes 

involved in reducing uncertainty can be organized as follows: Task-monitoring — tracking the 

events occurring in the task (e.g., decision-making, hypothesis testing); Self-monitoring — tracking 

the events occurring as a result of goal-directed behaviors (e.g., goal setting, self-efficacy); Control 

behaviors-generating goal-directed actions (e.g., pattern matching previous action-outcomes to 

current goal states).  

 

Novel aspects of the MC-Framework 

The next integrative step is to introduce the MC framework, which describes how Task-

monitoring, Self-monitoring, and Control behaviors are involved in CDC tasks. The MC 

framework differs from previous accounts of CDC tasks in two substantive ways. First, many 

studies on CDC task accounts have discussed the relationship between uncertainty and control 
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(Dörner, 1975; Kerstholt, 1996; Klein, 1997; Lipshitz & Strauss, 1997; Sterman, 1989; Toda, 1962), 

particularly Expert Adaptive Decision-making accounts. Moreover, some (e.g., Bandura & Locke, 

2003; Kirlik, 2007) have highlighted that judgments of uncertainty are pivotal to understanding 

how the environment is perceived and what behaviors are marshaled to control it. However, thus 

far the relationship between psychological uncertainty and how it guides behavior in CDC tasks 

has remained unspecified. The innovation of the MC framework is to propose that all CDC tasks 

generate psychological uncertainty which can be indexed according to: 1) people‘s subjective 

confidence in predicting outcomes of events in a CDC task (predictability of the environment), 

and 2) their expectancy that an action can be executed that will achieve a specific outcome 

(predictability of control). Uncertainty influences control behaviors in the same way regardless of 

expertise in the task because complete knowledge of the environment cannot be achieved, and 

processing costs are high (e.g., loading on working memory, processing time of task information), 

which can raise uncertainty (for real world examples, see Degani, 2004; Hoffman, Shadbolt, 

Burton, M, & Klein, 1995; Sheridan, 2002). 

Second, what has been overlooked in previous accounts of CDC task behavior is that 

monitoring and control behaviors change over time, and the source of change is most often, 

though not exclusively, the result of perceived judgments of uncertainty4. The MC framework 

proposes that as representations of uncertainty change so too will the behaviors involved in trying 

to reduce it. Indeed, recent neuropsychological, (e.g., Daw, Niv & Dayan, 2005; Huettel, Song, & 

McCarthy, 2005; Yu & Dayan, 2005), behavioral (e.g., Kording & Wolpert, 2006), and 

computational (e.g., Chater, Tenenbaum, & Yuille, 2006) work uses Bayesian learning algorithms 

to describe how estimations of the uncertainty of outcomes of actions influences the decisions 

people make and how prediction accuracy can change as a consequence of the dynamic properties 

of the environment. Thus, adapting to any uncertain environment requires that control behaviors 
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(i.e. goal-directed decision and actions) are flexible, and successful adaption depends on the 

accuracy of estimations of uncertainty. 

 

What are Monitoring and Control behaviors? 

Thus far, what has been established is that CDC tasks are uncertain environment that may 

be changing, either as a consequence of our actions, or autonomously, or both, and that goal-

directed behaviors are recruited to reduce uncertainty. This can be in terms of determining the 

outcome through direct interactions with the environment (control), developing an understanding 

of the environment (task-monitoring), and tracking the relationship between actions and outcomes 

(self-monitoring). Because monitoring and control behaviors have been referred to in many 

different ways, the aim here is to clarify what they mean with respect to the MC framework.  

Control behaviors: Control behaviors are goal-directed, that is, they involve the generation 

and application of actions designed to generate a particular future event (e.g., Lerch & Harter, 

2001; Locke & Latham, 2002; Rossano, 2003; VanLehn, 1996; Vollmeyer et al., 1996). Actions are 

generated either by mapping previous experiences of a control task to the current situation, or 

developing them online. In the latter case people quickly develop expectations of the likely 

outcomes of self-generated events from relatively little experience of the conditional relationship 

between the two (Bandura 1989). Also, close temporal proximity between self-initiated actions and 

outcomes in the world helps to bind these events, and to form causal representations (Lagnado & 

Sloman, 2004). Therefore, as purposive actions, control behaviors contribute to our sense of 

agency (Bandura, 2001; Pacherie, 2008)5. Control behaviors reduce uncertainty because 

determining the outcome through direct intervention generates feedback about the outcomes 

produced in the task environment which can be used to update the individual‘s understanding of 

the task. 
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 Task-monitoring: To manage a complex dynamic environment successfully people need 

to understanding the task itself which requires task-monitoring. This involves processes that draw 

from memory prior knowledge that informs assumptions about the task (Cohen et al., 1996; Klein, 

1993), or developing hypotheses online from the available information in the task. Processes that 

draw from memory may be either cognitively expensive (e.g., decision making, hypothesis testing, 

hypothetical thinking) or inexpensive (e.g., pattern matching). Hypothesis testing enables the 

development of structural knowledge of the task, by regularly updating and integrating feedback 

from the predictions of outcomes (e.g., Burns & Vollmeyer, 2002), while hypothetical thinking 

enables the simulation of various outcomes if prior relevant knowledge to test hypotheses is not 

available (Klein, 1993; Papadelis, Kourtidou-Papadeli, Bamidis, & Albani, 2007). Task monitoring 

behaviors reduce uncertainty by generating testable predictions about the behavior of the 

environment, the feedback of which can be used to update the individual‘s knowledge of the 

environment.  

Self-Monitoring: To manage an uncertain environment effectively involves self monitoring 

behaviors that track and evaluate the effectiveness of plans of action that have been implemented 

to reach a desired goal. Failing to accurately track the relationship between self-generated actions 

and decisions and outcomes in the environment can have severe consequences in the real world 

(e.g., disasters in aviation [1996 Charkhi Dadri mid-air collision], nuclear power systems [i.e., 

Chernobyl disaster], and rail [China Railway train disaster T195], as well as more frequently in the 

context of automated driving systems (Degani, 2004). Self-monitoring offers an adaptive 

advantage, because regularly assessing the effectiveness of actions can prompt quick adjustments 

in behavior in order to respond to the changing demands of the environment7. Many (e.g., 

Goldsmith & Koriat, 2003; Smith, Shields, & Washburn, 2003) have argued that conditions of 

uncertainty require a supervisory mechanism like monitoring because scrutinizing self-generated 
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actions and their effects reduces human and animals‘ (Kornell, Son, & Terrace, 2007)6 experiences 

of uncertainty.  

 

Main tenets of the MC-Framework 

Central to the MC framework is psychological uncertainty which is based on two types of 

judgments (predictability of the environment & predictability of control) and its influences on 

monitoring and control behaviors. It is important to distinguish between the kinds of effect that 

psychological uncertainty may have based on high and low experiences of uncertainty.  

Experiences of high uncertainty indicate that the environment is unpredictable and 

unstable.  This may lead to behaviors designed to explore the task, which will prompt a change in 

the goal-directed actions produced with the aim of controlling the environment and better 

understanding how it operates (e.g., Korbus, Proctor, & Holste, 2001). But, a sustained experience 

of high uncertainty may also lead to the abandonment of accurate hypotheses, which will also 

affect goal directed actions, and turn a seemingly controllable system into an impossible one 

(Osman, 2008a, 2008b). Experiences of low uncertainty indicate that the environment is 

predictable and stable (Latham & Locke, 2002), and can successfully lead to identifying good 

strategies to adjust goal directed behaviors as and when the environment fluctuates (e.g., Coury, 

Boulette, & Smith, 1989; Seijts & Latham, 2001; Wood & Bandura, 1989). However, this type of 

experience may also encourage the persistence of inappropriate strategies, because well-rehearsed 

behaviors are easily implemented, and there is less scrutiny of the events in the environment, and 

so if undetected can quickly increase uncertainty and reduce control (Dörner, 1989). From this, the 

first tenet proposed is 

1. Psychological uncertainty mediates monitoring (task-monitoring, self-monitoring) 

behaviors each of which in turn affect control behaviors. High uncertainty will lead to 
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continuous monitoring of the task and goal directed actions, and low uncertainty will 

lead to periodic monitoring of the task and goal directed actions 

Across the many interactions an individual has with a CDC task, their experience of 

uncertainty will fluctuate. This is why changes in performance have been reported, although they 

might be expected to stabilize after lengthy exposures to a CDC task (Sterman, 1989; Yeo & Neal, 

2006). The MC-framework describes the relationship between Monitoring (self-monitoring, task-

monitoring) and control as reciprocal. Monitoring (self-monitoring, task-monitoring) and control 

alternate in a cascaded pattern (Koriat, 1998; Koriat, Ma‘ayan, & Nussinson, 2006), with the 

outcomes generated from goal-directed actions (i.e. control behaviors) serving as the input for 

adjusting knowledge of the relationship between inputs and outputs (Task-monitoring), and 

adjusting evaluations of the success of self-generated actions (Self-monitoring) . From this, the 

second tenet proposed is 

2. There is a reciprocal relationship between monitoring and control behaviors. The 

relationship between both types of monitoring behavior and control behavior involves 

feedforward from monitoring to control, to generate appropriate control behaviors, and 

feedback to update knowledge of the task, and knowledge of the status between desired 

and achieved outcomes.  

The following discussion relates the key findings reported from studies on CDC tasks to 

the MC framework, by specifying how they can be grouped according to the two main tenets, as 

presented in Table 1. The full list of studies is presented in Table 1 are concerned with 

psychological phenomena found under conditions of either high or low uncertainty8. The 

framework proposes that, by examining changes in psychological uncertainty, it is also possible to 

describe the effects that these will have on monitoring and control behaviours, and on the 

reciprocal relationship between monitoring (task-monitoring, self-monitoring) and control 
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behaviors. Therefore, the explication of the tenets of the framework, and how they apply to CDC 

task phenomena, is organized according to what happens under high and low experiences of 

psychological uncertainty9.  

Insert Table 1. about here 

 
Task-Monitoring behaviors: 

The general classes of behaviors that are associated with task monitoring across the 

different research domains under high and low experiences of uncertainty are as follows: the 

reliance on biases, the applicability of previously learnt behaviors through pattern matching, the 

accuracy of task knowledge, and the development of strategies. 

High uncertainty: Einhorn and Hogarth (1981) claimed that biases reflect the response 

tendencies that are typically functional in dynamic environments. Biases are assumptions that 

people make about the behaviour of the task, and are designed to reduce uncertainty by generating 

hypotheses to test, or for predicting outcomes that are likely to occur (Brehmer, 1992; Coury, et al, 

1989; DiFonzo & Boridia, 1997; Shanteau & Stewart, 1992). They economize the search through 

task information that may be relevant based on prior expectancies (Degani, 2004). Both experts 

and novices are susceptible to biases, particularly under highly pressurized conditions in which 

immediate actions need to be generated in response to the demands of the environment (e.g., 

Kreuger, 1989; Lichacz, 2005), or because there simply is not enough information to decide on, or 

to predict, the outcome in the environment (Degani, 2004; Klein, 1997; Orasanu & Connolly, 

1993; Sauer et al., 2008). The most common biases involve assumptions such as one-to-one 

mapping of inputs to outputs (Schoppek, 2002), or that the action-outcome links are salient (i.e., 

their simplicity, plausibility, cause, and effect conform to expectations) (Berry & Broadbent, 1988; 

Chmiel & Wall, 1994). The input-output links are also assumed to be positive (Diehl & Sterman, 

1995; Sterman, 1989), linear (Brehmer, 1992; Strohschneider & Guss, 1999), and unidirectional 
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(Dörner, 1989). People are also biased towards inferring that changes occur only as a result of their 

actions (Kersholt & Raaijmakers, 1997), and expectancies of effects of their actions are assumed to 

be immediate, and long temporal delays between actions and effects tend to be forgotten or 

ignored (Bredereke & Lankenau, 2005; Brehmer, 1992; Degani, 2004; Diehl & Sterman, 1995; 

Kersholt & Raaijmakers, 1997).  

These biases, while offering a basis on which to test hypotheses and develop plans of 

actions that can advance the individual towards a goal, interfere with forming accurate 

representations of the environment, and prolonged reliance on biases leads to poor task 

knowledge, and poor control. As with biases, pattern-matching is a speedy means of isolating any 

features of the task that may relate to previous experiences of similar situations (Berry & 

Broadbent, 1984, 1987, 1988; Degani, et al, 2006; DeShon & Alexander, 1996; Hunter, et al, 2000; 

Schmitt & Klein, 1996), and these can be used as a basis for developing appropriate strategies (e.g., 

Kobus, Proctor, & Holste, 2001). However, evoking previously developed plans of actions 

through pattern matching may also lead to ineffective strategy application, and if such plans are 

inappropriate for the current CDC task then inaccurate knowledge of the task develops 

(Brandouy, 2001; Brézillon, et al, 1998; Dienes & Fahey, 1995; Geddes & Stevenson, 1997; Diehl 

& Sterman, 1995; Monxes (2000). This is further compounded under conditions of high 

uncertainty, because unsuccessful strategies can be difficult to identify, and people are also 

reluctant to change them after they have invested some effort in developing them (Bisantz, et 

al,2000; Brehmer, & Dörner, 1993; Gonzales, et al, 2003; Kleinmuntz, 1985, Langley & Morecroft, 

2004). Moreover, it is easier to maintain consistency in hypothesis testing behavior in a changing 

environment than it is to continually shift decisions, particularly with time dependencies, and when 

there are time restrictions on taking actions (Langley & Morecroft, 2004). 
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Low uncertainty: Because the process of detecting action-outcome associations is more 

accurate because the environment is easier to predict under low uncertainty, there is less reliance 

on biases (Dorner, et al, 1983; Schoppek, 2002; Sterman, 1989, 2002; Strohschneider & Guss 

(1999). However, pattern matching is still relied upon but for the reasons that there is a close 

match between the prior experience and task behavior and so previously stored knowledge can be 

applied quickly to the task (Degani et al, 2006; Klein & Hoffman, 1993; Mosier, et al, 2007; 

Pomerol & Brezillion, 1999, 2001; Strauss & Kirlik, 2006). In addition, task knowledge more 

accurately reflects the actual environment, because predicted outcomes from hypothesis testing are 

easier to detect (Anzai, 1984; Buchner, et al, 1995; Christoffersen, et al, 1998; Chmiel & Wall, 

1994, Monxes, 2000; Fredrickson & Mitchell, 1984, Rasmussen, 1985). However, in highly familiar 

settings in which expertise is relied upon, misperceiving delays in outcomes, or the severity of the 

consequences of failing to accurately control the outcome is more likely (Gonzales, et al, 2003; 

Kleinmuntz, 1985; Strohschneider & Guss, 1999; Langley & Morecroft, 2004; Thomas & Russo, 

2007).  

 

Self-Monitoring behaviors  

Self-monitoring refers to a host of behaviors that have a supervisory role in regulating 

many cognitive functions (e.g., conflict monitoring, conflict detection, overriding pre-potent 

behaviors, self-evaluation) in complex problem solving domains. Moreover, in the social cognition 

domain, self-monitoring includes judgments of self-efficacy, which is distinct from self-monitoring 

in the MC framework. The focus here is on discussing behaviors that track self-generated actions. 

From this, studies that have examined behavior of this kind under high and low experiences of 

uncertainty are known as detection and recall of action-outcomes. 
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High uncertainty: People‘s ability to successfully isolate action-outcome associations in the 

task environment is commonly reported to be poor (Broadbent, & Ashton, 1978; Gonzales,  et al, 

2003; Jensen & Brehmer, 2003; Kluge, 2008b; Kobus, et al, 2001; Sarter, et al, 2007; Sauer et al, 

2008); this is because the task environment appears unstable, and unpredictable. Consequently, 

accuracy in recalling action-outcome associations is also degraded, because of the high demands 

placed on working memory at the time in which the individual experiences uncertainty (e.g., 

Metzger & Parasuraman, 2006). More specifically, accuracy in recalling action-outcome 

associations is specific to events in which successful outcomes were achieved. This is because 

people ignore those actions that lead to unpredicted or negative outcomes (Bucher, Funke, & 

Berry, 1995; Stanley et al., 1989; Vicente & Wang, 1998).  

 Low uncertainty: Studies in which high accuracy of detection and recall of action-outcome 

associations is demonstrated (Lipshitz & Barak, 1995; Kluge, 2008b; Kobus et al, 2001; Sauer, et 

al, 2008; Vicente, et al 2001) suggest that the effects of actions and decisions are easier to isolate 

because the behaviors themselves are either well practiced, or salient to the individual (e.g., 

Buchner, Funke, & Berry, 1995). 

 

Relationship between Monitoring (task-monitoring, self-monitoring) and control  

There is strong support for a reciprocal relationship between monitoring (task-monitoring, 

self-monitoring) and control behaviors in complex decision making environments in studies of 

Economics (DiFonzo, et al, 1998; Earley, et al, 1990), Engineering (Kirlik et al., 1993; Jagacinski & 

Flach, 2003), Ergonomics (Farrington-Darby & Wilson, 2006; Kaber & Endsley, 2004), HCI 

(Brézillon, et al, 1998), Management (Aitkins, Wood, & Rutgers, 2002), Problem solving (e.g., 

Osman, 2008b), and Social cognition (Cervone, Jiwani, & Wood, 1991; Chesney & Locke, 1991; 

Kanfer et al., 1994).  
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High uncertainty: Concurrent monitoring (task-monitoring, self-monitoring) of control 

behaviors is commonly reported under experiences of high uncertainty (Cohen, et al, 1996; 

Dörner, 1989; Goa & Lee, 2006; Jamieson, et al, 2007; Sarter, et al, 2007). In general, difficulty in 

organizing plans of action designed to reduce the discrepancy between one‘s current and desired 

goals leads continual monitoring of behaviors (e.g., Bredereke & Lankenau, 2005; Degani, 2004; 

Degani, Shafto, & Kirlik, 2006; Sarter, Mumaw, & Wickens, 2007; Thomas & Russo, 2007). Many 

real-world examples involve this type of resource-intensive online monitoring that requires 

continual feedback from control behaviors, particularly in critical safety situations (e.g., air traffic 

control, automated piloting). In such cases, the user is highly skilled but, without accurate 

monitoring (task-monitoring, self-monitoring), there may appear to be a lack of continuity 

between the perceived state of the control system and the actual state of the system (e.g., Degani, 

2004; Degani, Shafto, & Kirlik, 2006; Sarter, Mumaw, & Wickens, 2007).  

Often, resource allocation is not well calibrated to the task (e.g., Camp, et al, 2001; Diehl & 

Sterman, 1995; Gonzales, 2005; Joslyn & Hunt, 1998; Yeo & Neal, 2006), because the individual is 

unable to gauge accurately the distance between the current status of the CDC task and the 

intended target (e.g., Diehl & Sterman, 1995; Jones & Mitchell, 1994). Consequently, there is often 

no relationship between performance and effort (Gonzalez, 2005; Vicente & Wang, 1998). Poor 

resource allocation is also evident in the way in which attention is directed toward actions and 

their outcomes in the task (Lipshitz & Strauss, 1997). While there is greater vigilance—or 

sustained attention to the task—people are unable to prioritize the relevant feedback from their 

actions, and so there is more attentional shifting (Patrick & James, 2004). For example, Metzger 

and Parasuraman (2006) examined expert air traffic controllers in a simulated task, in which they 

varied the air traffic (high traffic load, low traffic load). Under highly uncertain conditions, the 

controllers found it harder to detect and assess the outcome of the decisions they made in the task. 
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In laboratory-based control tasks of the sugar factory kind, contradictory feedback from the 

actions taken is harder to resolve when the environment to be controlled appears unpredictable 

(Kersholt & Raaijmakers, 1997). Moreover, such conditions can disrupt the way in which feedback 

from action outcomes is re-interpreted (Atkins, et al, 2002; Bredereke, & Lankenau, 2005; 

Brehmer & Allard, 1991; Osman, 2008b; Goa & Lee, 2006; Mosier, et al, 2007; Sterman, 1989), 

and used to generate different plans of action, and so inaccurate assessments distort the distance 

between achieved and target goals, leading to poor control performance (Osman, 2008a).  

Low uncertainty: The alternation between monitoring (task-monitoring, self-monitoring) and 

control behaviors is less frequent when the individual judges the environment to be sufficiently 

familiar to draw on highly practiced plans of actions (Cohen, et al, 1996; Kaber & Endsley, 2004; 

Goa & Lee, 2006; Hunter, et al, 2000; Kirlik, 2006; Kleinmuntz, 1985; Sarter, et al, 2007; Vicente, 

et al, 2001; Yeo & Neal, 2006), or is deemed predictable enough to plan actions and decisions 

online (e.g., Hogarth & Makridakis, 1981; Kersholt, 1996). Typically, people feels confident of 

judging accurately the outcome of their actions, and so this lowers the demand on cognitive 

resources (Camp, et al, 2001; Jones & Mitchell, 1994; Kluge, 2008a, 2008b; Mosier, et al, 2007; 

Orasanu & Connolly, 1993; Vincente, 2002; Yeo & Neal, 2006), because a highly familiar series of 

planned actions or decisions, which do not do require continual tracking of action-outcome, are 

implemented (e.g., Metzger & Parasuraman, 2006). For the same reason, other behaviors that have 

been commonly reported under these conditions include reduced attention to feedback from the 

actions and decisions taken (Kaber & Endsley, 2004; Kleinmuntz, 1985; Kirlik & Strauss, 2006; 

Lerch & Harter, 2001; Moxnes, 2000; Mosier, et al, 2007). However, when goals need to be 

changed, in response to changes in the task, responses can be adjusted to the demands of the task, 

and advance the individual towards their target goals more efficiently, without regular monitoring. 
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Stimulating Debate 

The concluding section of this article presents new insights and future directions for 

research on CDC tasks. Having drawn together the theoretical and empirical findings, the MC 

framework is used here as a way to address critical questions concerning the study of CDC tasks: 

How do we define complexity? What are the differences between experts and novices? What is the 

relationship between cognitive ability and CDC task performance? What are the effects of practice 

on CDC task performance? Are there distinct functional mechanisms that support declarative and 

procedural knowledge? What are the differences between Prediction and Control?  

The aim of the concluding section of this article is also to discuss future research 

directions, and in doing so to draw attention to the potential of the CDC task paradigm for 

examining the role of causal learning and agency in complex dynamic environments. 

 

New Insights into Old Issues 

Can we define complexity in CDC task? There have been considerable efforts to identify 

complexity in complex problem solving contexts (Buchner & Funke, 1993; Campbell, 1988; 

Funke, 2001; Gatfield, 1999, Jonassen & Hung, 2008; Kerstholt & Raaijmakers, 1997; Quesada et 

al., 2005). As yet, however, there has been no agreement on how it should be defined. In the main, 

from the variety of definitions of complexity that exist, complexity is determined by the objective 

task characteristics (e.g., transparency, time variance (dynamic, static), the number of information 

cues, cue intercorrelations, cue reliabilities, cue validities (i.e., task predictability, function forms 

(i.e., linear, curvilinear, stochastic, deterministic etc.)), and feedback (delayed or immediate)). For 

instance, even when individuals have become highly skilled, certain objective task characteristics of 

a CDC task may produce highly erratic and damaging outcomes (e.g., Degani, 2004; Hunter, Hart, 

& Forstye, 2000; Thomas & Russo, 2007). However, problems have arisen because defining 
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complexity in this way has not always been a successful predictor of performance on CDC tasks 

(e.g., Campbell, 1988; Quesada et al., 2005). However, direct comparison of CDC tasks on 

multiple dimensions of task complexity has yet to be investigated, and until work of this nature is 

conducted, this issue will remain. Regardless, complexity may also be the result of psychological 

factors, for instance, Campbell (1988) claims that that factors such as self-doubt, anxiety, and fear 

can make a CDC task appear complex, while Bandura (1989, 2001) basis this in terms of self-

efficacy, and Sterman (1989, 1994) suggested misperceptions of task properties make a task appear 

complex.  

The implications here are that, objective task characteristics may not be sufficient to 

capture what makes a CDC task complex, and that, in part, it may be that complexity is in the eye 

of the beholder (Degani & Heymann, 2002; Kleinmuntz, 1985). So, a pragmatic way of 

approaching the issue of complexity is to examine what the underlying factors are that reliably lead 

to deterioration as well as improvements in performance in these tasks. From the vast work on 

CDC tasks reviewed here, the one most reliable factor appears to be psychological uncertainty. 

More generally, beyond CDC tasks, belief updating models that use Bayesian algorithms formally 

describe how subjective uncertainty influences they way people make decisions in probabilistic and 

dynamic environments similar to those in CDC tasks. Until formal descriptions of the CDC task 

environment can be developed, the best solution to defining complexity is in terms of 

psychological uncertainty, which the MC framework has operationalized, and for which there are 

existing formal descriptions of (e.g., Chater, et al, 2006; Tenenbaum, Griffiths, & Kemp, 2006).   

Are there differences between experts and novices? What makes an expert? How do they differ 

from novices? These questions have been the source of much debate (Bandura & Locke, 2003; 

Ericsson & Lehman, 1996; Karoly, 1993; Lerch & Harter, 2001; Rossano, 2003; Sweller, 1998; 

VanLehn, 1996). Sweller (1998) proposed that at a representational level, one way to distinguish 
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novices from experts is that what a novice sees as separate experiences of a task, an expert can put 

together as a single recognizable configuration (Schema). At a processing level, examples of 

experts‘ superior processing prowess compared with novices in CDC tasks, include well-developed 

metacognitive abilities (Cohen et al., 1997), situational awareness (also referred to as pattern 

matching) (Kirlik & Strauss, 2006; Klein & Hoffman, 1993), accuracy of memory recall of action 

outcomes tied to specific goals (Vincente & Wang, 1998), and the ability to forward reason (i.e., 

simulation of prospective outcomes) (Patel & Groen, 1991). However, having reviewed these 

studies in the context of laboratory and real world examples of CDC task behavior, there are 

commonalities between early formation of skill as well as extensive training in CDC tasks. The MC 

framework proposes that, under conditions judged highly uncertain, experts can fall into the same 

traps as novices, and return to default-based assumptions or make errors in judgment, and their 

control performance degrades much in the same way as novices. 

Is there a relationship between cognitive ability and CDC task performance? The relationship between 

cognitive ability and control performance has a long history in research on complex problem 

solving. However, the evidence that IQ can predict performance in CDC tasks is unclear: some 

have observed associations (e.g., Gonzalez, 2005; Joslyn & Hunt, 1998; Rigas, Carling, & Brehmer, 

2002) between the two, and others have reported dissociations (e.g., Gebauer & Mackintosh, 2007; 

Kanfer & Ackerman, 1989; Rigas & Brehmer, 1999). For Instance-based theorists (e.g., Berry & 

Broadbent, 1987, 1988; Dienes & Berry, 1997), the lack of association between IQ and control 

performance also supports the position that, for early skill acquisition, people rely on implicit 

processes that are not tracked by IQ measures (Gebauer & Mackintosh, 2007).  

This has become a puzzling issue, particularly because control tasks appear to be good 

measure of executive functions that should be indexed by general measures of cognitive ability (for 

discussion see Funke, 2001). One reason why there is mixed evidence concerning this is that 
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control performance may be more accurately indexed by perceived estimates of uncertainty rather 

than of cognitive ability (Kluge, 2008a). If so, as proposed in the MC framework, the mixed 

findings concerning associations between IQ and control performance may be alternatively 

explained according to people‘s subjective experiences of uncertainty, and this third factor may 

help to account for when associations between ability and performance are found or absent.   

What are the effects of practice on CDC task performance? It is perhaps strange that, given the 

general processing difficulty commonly attributed to operating CDC tasks, the training procedure 

in laboratory versions of CDC tasks tends to be rather short (between 12 and 40 trials) (Berry & 

Broadbent, 1988; Burns & Vollmeyer, 2002; Lee, 1995; Sanderson, 1989; Stanley et al., 1989). 

Consequently, such limited training in CDC tasks also maintains people‘s experiences of 

uncertainty. However, strong evidence suggests that extended practice alone does not, in turn, 

reliably lead to improved performance (Gonzalez, 2004; Kanfer et al., 1994; Kerstholt, 1996; 

Kerstholt & Raaikmakers, 1997). However, in real world CDC task domains there is evidence that 

extended practice facilitates accurate reportable knowledge and improves skill (e.g., Lipshitz et al., 

2001). In addition, if the extended training also includes instructions that encourage meta-

cognitive thinking, then this improves task knowledge (Beradi-Coletta et al., 1995; Gatfield, 1999), 

longer retention of the newly acquired skills (Linou & Kontogiannis, 2004), appropriate goal 

setting (Morin & Latham, 2000), and better resource allocation (Brehmer & Allard, 1991).  

Again, the mixed findings concerning the relationship between practice and improved skill 

can be viewed in the context of the MC Framework. Regardless of practice, if experiences of 

uncertainty are maintained, then no improvements in control behaviors will be observed. 

Therefore, it is important to identify experiences of uncertainty in conjunction with training 

methods in order to understand their effects on performance.  
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Are their dissociable mechanisms for declarative and procedural knowledge? Since Berry and 

Broadbent‘s (1984) seminal study, there have been nearly 300 citations of their work. It has been 

pivotal in maintaining the prevailing view that instance based learning underpins early skill 

acquisition in CDC tasks, and that knowledge is procedural-based. The main proposal is that 

instance based learning produces procedural knowledge, and that the way in which this knowledge 

is acquired is inaccessible to consciousness, and dissociated from declarative knowledge of the 

CDC task. This view remains popular amongst researchers studying skill acquisition in laboratory 

based (e.g., Eitam, Hassan, & Schul, 2008), as well as real world CDC tasks (e.g., Gardner, Chmiel, 

& Wall, 1996).  

 Common to studies that have shown dissociations between procedural and declarative 

knowledge in CDC tasks is the prevention of monitoring behaviors designed to evaluate action-

outcomes and input-output associations. Many classic studies that claim dissociations (Berry, 1991; 

Berry & Broadbent, 1984, 1987, 1988; Lee, 1995; Stanley et al., 1989) instruct people to avoid 

hypothesis-testing during learning, or do not provide sufficient information for them to track their 

history of decisions and action-outcomes during learning - which has also been known to prevent 

hypothesis testing (Burns & Vollmeyer, 2002; Sanderson, 1989). Furthermore, in all studies 

demonstrating dissociation, tests probing task knowledge and recognition test of self generated 

behaviors are always presented at the end of the learning period. This is a methodological rather 

than a psychological factor because presenting knowledge tests after, rather than during the actual 

time at which it is acquired, indexes less accurate memory of the events that occurred in the task 

(Chmiel & Wall, 1994; Shanks & St John, 1994). When regular tests of knowledge are presented 

during learning, association rather than dissociation between procedural and declarative knowledge 

is found (Burns & Vollmeyer, 2002; Dandurand et al., 2004; Gonzalez, 2005; Osman, 2007, 2008a, 

2008b). Similarly, a close correspondence between declarative and procedural knowledge has been 
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founding using process tracing techniques. This refers to using verbal protocols in conjunction 

with other measures of self and task knowledge during different stages of experts control 

performance (e.g., blast furnace operators, nuclear reactor technicians, submarine operators, super 

tanker engine controllers - for review see Patrick and James, 2004).  

As has been suggested, dissociation between procedural and declarative knowledge relies 

on the prevention of concurrent monitoring behaviors during learning, and presenting knowledge 

tests at the end of learning. The MC Framework proposes that monitoring and control behaviors 

have a reciprocal relationship, and therefore there are no dissociable learning mechanisms that 

support procedural and declarative knowledge, because both types of knowledge are generated 

from monitoring and control processes.  

Are there differences between Prediction and Control? Alongside research on control behavior in 

dynamic environments, there has been a long tradition of research founded on Brunswik‘s Lens 

Model, which examines predictive behavior in uncertain decision making environments (for review 

see Karelaia & Hogarth, 2008). In essence, Brunswick‘s model describes how we utilize ―seen‖ 

information from the environment in order to make inferences about the ―unseen,‖ and compares 

this with the actual structure of the environment. One paradigm designed to exploit this 

comparison has been multiple cue probability learning (MCPL) tasks. Through a series of trials, an 

individual learns the probabilistic relationship between multiple cues (e.g., symptoms) and 

outcomes (e.g., diseases), by predicting the outcome of each trial based on the particular pattern of 

cues. Feedback on predictions comes in the form of either outcome feedback (e.g., the particular 

disease for that trial), or cognitive feedback (e.g., information about the relationship between 

symptoms and a disease).  

In general terms, MCPL and CDC tasks can be viewed as sharing fundamental 

characteristics: From limited available information, an individual learns either to predict, or to 
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control, a probabilistic and often dynamic environment. Some have drawn attention to this 

similarity (e.g., Bisantz et al., 2000; DeShon & Alexander, 1996) and have applied the lens model 

to describe judgment strategies in CDC tasks (e.g., simulated dynamic Anti-air warfare) (Bisantz et 

al., 2000; Degani, Shafto, & Kirlik, 2006; Rothrock & Kirlik, 2003). In the social cognition domain, 

the connections made between CDC tasks and MCPL tasks are based on goal-setting behaviors. In 

complex MCPL/CDC tasks, in which specific goals are set, the strategies that are developed are 

often too simple, and inappropriate to meet the demands of the goal (e.g., Burns & Vollmeyer, 

2002; Cervone et al., 1991; Earley et al., 1990). However, following general goals (e.g., ‗do your 

best‘, ‗explore the task‘) enhances predictive/control behavior, and a less constrained approach 

increases the likelihood of attending to relevant task cues that increase the accuracy of task 

knowledge (Locke & Latham, 1990). This has led some theorists to suggest that the way in which 

people judge self-efficacy is central to understanding how they learn about MCPL tasks (e.g., 

Bandura & Locke, 2003; Locke & Latham, 1990, 2002). As has been proposed in the MC 

framework, the second tenet outlines the relationship between monitoring and control in terms of 

feedback from the success of outcomes from self-generated actions, as well as feedforward 

estimations of the success of future actions. Therefore, prediction contributes to judgments of the 

uncertainty of the environment as well as developing methods to reduce it.  

 

Agency and Causality  

Reciprocal relationship between Agency and Causality: The interpretation of the relationship 

between causality and agency offered by the MC framework is that it is reciprocal, in that people 

treat the task environment as an uncertain one, and that, if there are factors contributing to 

dissonance between the predicted and actual outcomes, this will further reduce people‘s sense of 

agency which is a reflection of their ability to control the outcome in the CDC task and 
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uncertainty, and disrupt their causal understanding (e.g., their representations of the input-output 

associations in the CDC task). For example, in studies of CDC tasks, judgments of self-efficacy 

have used as an index of agency, and been shown to have powerful effects on causal knowledge 

(Jensen & Brehmer, 2003; Osman, 2008a). Osman (2008a) revealed that high judgments of self-

efficacy in turn led to the successful identification of causal structures in the CDC task, and to 

better control performance, which in turn lead to further increases in self-efficacy. However, low 

judgments of self-efficacy disrupted the way in which self-generated actions and their outcomes 

were perceived. Control performance suffered, and causal knowledge of the system was impaired, 

and further reduced the subsequent judgments of self-efficacy. Findings of this kind (e.g., Bandura 

& Wood, 1989; Bouffard-Bouchard, 1990; Osman, 2008a; Woods & Bandura, 1989) highlight the 

reciprocal relationship between agency and causality (Bandura, 2001; Pacherie, 2008). 

Correspondingly, findings on the temporal factors affecting control performance in CDC tasks 

indicates the same type of relationship between agency and causal knowledge based on action and 

their effects. The consensus is that long delays in experiencing effects from actions generated in 

the task are difficult to integrate, and so people reduce their expectancies of the effects because 

they have not been immediately experienced (Diehl & Sterman, 1995; Gibson, 2003; Kersholt & 

Raaijmakers, 1997). Consequently when the delayed effects are actually experienced, people 

interpret them as resulting from an unpredictable system, and so they reduce their expectancies of 

controlling it which undermines their sense of agency (Diehl & Sterman, 1995; Moxnes, 2000). 

Insights into the relationship between agency and causality can also be found in work on 

perception-action associations in simple motor behaviors (Hommel, 1998). To initiate actions, 

there needs to be some anticipation of the effects they will produce, much like formulating a 

hypothesis about the outcome of an action in a CDC task. In turn, attending to the corresponding 

causal dependency is crucial: if it goes unnoticed, this will result in the failure to perceive an 
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outcome-action (Elsner & Hommel, 2001; Flach et al., 2005) as well as action-outcome 

associations, and a decrease in any anticipatory behavior (Elsner & Hommel, 2004). Only in the 

case in which we have attended to a regular causal relationship between an intended action and an 

outcome can we form a representation that enables a sense of agency to develop (Hommel, 2003).  

In addition, the cognitive neuroscience and motor control literatures suggest that our sense 

of agency depends strongly on the degree to which there is congruence between the predicted and 

actual outcome of one‘s actions (Blakemore, Frith, & Wolpert, 2001; Blakemore, Wolpert, & Frith, 

1998), and between the predicted and observed outcomes (Osman, Wilkinson, Beigi, Castaneda, & 

Jahanshahi, 2008). Although David, Newen, and Vogeley (2008) highlight the limits of perception-

action research in understanding the relationship between agency and causality, they share the 

same view as Bandura (2001), in proposing that the reciprocal relationship between causality and 

agency needs to be understood in terms of environmental, cognitive, and biological events.  

A real world example in which causal knowledge and our sense of agency have 

consequences in controlling a CDC system is cars. If the vehicle breaks down, the driver must 

diagnose the cause of the failure (casual knowledge) (Klostermann & Thüring, 2007), and judge 

their capacity to control it (sense of agency) (Degani, 2004). However, these issues do not only 

arise during vehicle break down, but also as a result of the continued development of automated 

functions (e.g., Electric Power Assisted Steering (EPAS), Semi-Automatic Parking (SAP), Adaptive 

Cruise Control (ACC), Lane Departure Warning (LDW)). Here, the problem is that these systems 

are implemented based on specific information received from the state of the car and the 

environment. If the information is not sufficient, or does not satisfy certain condition, then the 

system will automatically hand back control to the driver. In most situations, drivers are unaware 

of this with the result that they may believe that the system is always operating under full 

automated control (Leen & Hefferman, 2002). Some awareness of the causal structures that 
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describe how the system operates is of critical importance to ensure driver safety, because this 

contributes to their agency in determining accurately when they actually have control of the 

vehicle. 

Future Directions: Our experiences of uncertainty, and their effects on our causal knowledge, 

have also been explored by a number of theorists (e.g., Jungermann & Thüring, 1993; Kersholt, 

1996; Krynski & Tenenbaum, 2007; Pearl, 2000; Tenenbaum et al., 2006). Much of this work 

considers how we make causal judgments using a Bayesian belief-updating process. There is 

considerable evidence supporting the claim that people often make causal judgments that 

approximate this form of reasoning (e.g., Krynski & Tenenbaum, 2007; Steyvers et al., 2003), but it 

has yet to be used to describe how people formulate causal models in complex dynamic 

environments. There is scope to do this, given that causal modeling has been used to formally 

describe CDC systems in artificial intelligence (e.g., Horvitz, Breese, & Henrion, 1988), 

engineering (Carrusco, Llauró, & Poch, 2006), and molecular biology (e.g., McAdams & Shapiro, 

1995). Clearly, it still remains to be explored how people develop and adapt their causal models 

online while interacting with a dynamic environment, and how that impacts on our sense of 

agency (and vice versa), and the point to take away here is that CDC tasks actually provide a ideal 

paradigm with which to study this. Moreover, if the common underlying goal of research in CDC 

tasks is to describe formally human behavior in complex dynamic environments (Rothrock & 

Kirlik, 2003), then the synthesis of causal structure learning research and CDC tasks research 

would be a significant step towards achieving this.  

 

Conclusions 
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This article introduces and integrates research from many domains (i.e., Economics, Engineering, 

Ergonomics, Human Computer Interaction (HCI), Management, Psychology) that has examined 

behavior in complex dynamic environments. In essence, work on CDC tasks can be characterized 

as addressing the following question: How do we learn, and control online, an environment that is 

changing, either as a consequence of our actions, autonomously, or both? Viewed in this way, 

CDC tasks are uncertain environments, and addressing this question involves understanding the 

psychological mechanisms that help to reduce uncertainty. The MC Framework is presented as a 

method of integrating the different domains of research under a single framework. It describes 

three main classes of behaviors involved in reducing uncertainty in CDC tasks: Task-monitoring, 

Self-monitoring, and control behaviors. Task-monitoring behaviors are directed towards 

processing task information, Self-monitoring tracks and evaluates one‘s behaviors in the task, and 

Control behaviors are actions and decisions that are guided by goals. The way in which we learn to 

control the changing demands of the CDC environment is described in terms of the mediating 

role that uncertainty has in monitoring behaviors, and the interactive relationship that monitoring 

and control behaviors share.  
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 Footnotes 

 

1. This poses a problem for many decision theories that assume that successive decisions are 

independent of each other (see Brown & Steyvers, 2005). 

2. David, Newen, and Vogeley (2008) insist that the sense of agency is not a unitary 

phenomenon, and that it comprises an implicit level of ‗‗feeling of agency,‖ which is a low-

level, pre-reflective, sensorimotor processes; and an explicit level of ‗‗judgment of agency 

which is high-order, reflective or belief-like process (i.e., the awareness or attribution of 

who has caused an action).‖ For the purposes of the review, ―sense of agency‖ is taken to 

refer to the latter.  

3. The basal ganglia is thought to be implicated in most motor functioning and supports 

procedural knowledge, and the medial temporal regions associated with episodic and 

semantic memories supports declarative knowledge. Much of the evidence of dissociations 

between procedural and declarative knowledge has come from patient studies. Amnesic 

patients with damage to medial parts of the temporal lobe (with specific focus on the 

hippocampus and amygdala) show deficits in declarative memory, but intact procedural 

memory of newly acquired skills (Squire, 1986). To compliment this, studies of Parkinsons 

patients with damage to the basal ganglia show impaired procedural learning, but intact 

declarative knowledge (Knowlton, Mangels & Squire, 1996).  

4. As discussed earlier, based on Lipshitz and Strauss‘s (1997) distinctions between objective 

task properties and psychological behaviors that contribute to experiences of uncertainty, 

the focus of the MC Framework is on the psychological sources of uncertainty, and their 

effect on subsequent monitoring and control behaviors.  



Controlling Uncertainty 

 50 

5. Causality and Agency are revisited in the concluding discussion section of this review. 

6. This is a particularly contentious point, implying that animals have the capacity for 

metacognition (For a discussion of this issue see Smith et al. (2003)). 

7. However, it seems that humans‘ ability to accurately monitor their behaviors is somewhat 

paradoxical, given that subject and object are one and the same (Comte‘s paradox). 

8. The list of studies included in Table 1 is designed to provide a comprehensive list of 

studies across the different domains of research on CDC tasks. However, because the 

terminology across the studies varies with respect to the treatment of uncertainty, the 

general descriptions of the task environment have been used as a guide to categorizing 

them according to high or low uncertainty.  

9. The studies presented in the table include those that recorded subjective judgments of 

uncertainty (e.g., confidence ratings, estimations of the action-outcome links, judgments of 

self-efficacy), as well as those that discussed uncertainty in association with the conditions 

of the task. 
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Table 1.  

 Pattern of 
behavior 
under High 
subjective 
experiences 
of 
uncertainty 

Representative Evidence Research 
Discipline 

Pattern of 
behavior 
under Low 
subjective 
experiences 
of 
uncertainty 

Representative Evidence Research 
Discipline 

Task 
Monitoring 

High 
reliance on 
biases 

Brehmer (1992) 
Coury, Boulette, & Smith (1989) 
DiFonzo & Boridia (1997) 
Shanteau & Stewart (1992) 
 

Psychology 
HCI 
Economics 
Psychology 

Limited-
reliance on 
biases 

Dorner, Kreuzig, Reither, & 
Staudel (1983) 
Schoppek (2002) 
Sterman (1989, 2002) 
Strohschneider & Guss (1999) 
 

Psychology 
 
Psychology 
Psychology 
Psychology 

 Patten-
matching 

Berry & Broadbent (1984, 1987, 
1988) 
Degani, Shafto & Kirlik (2006) 
DeShon & Alex&er (1996) 
Hunter, Hart, & Forsythe (2000) 
Schmitt & Klein (1996) 
 

Psychology 
 
Engineering 
Psychology  
Management 
Management  

Patten-
matching 

Degani, Shafto & Kirlik (2006) 
Klein & Hoffman (1993) 
Mosier, Sethi, McCauley, & Khoo 
(2007) 
Pomerol & Brezillion (1999, 2001) 
Strauss & Kirlik (2006) 
 

Engineering 
HCI 
HCI 
 
Management 
Engineering 

 High 
persistence 
of 
unsuccessful 
strategies 

Bisantz, Kirlik,Gay, Phipps, 
Walker, & Fisk (2000) 
Brehmer, & Dörner, (1993) 
Gonzales, Lerch, & Lebiere 
(2003) 
Kleinmuntz (1985) 
Langley & Morecroft (2004) 
Strohschneider & Guss (1999) 
 

Engineering  
 
Psychology 
Psychology 
Psychology 
Management 
Psychology 

Limited 
persistence 
of 
unsuccessful 
strategies 

Gonzales, Lerch, & Lebiere 
(2003) 
Kleinmuntz (1985) 
Strohschneider & Guss (1999) 
Langley & Morecroft (2004) 
 (1999) 
Thomas & Russo (2007) 
 

Psychology 
Psychology 
Psychology 
Management 
 
Engineering 
 

 Poor 
strategy 
development

Brandouy (2001) 
Brézillon, Pomerol, & Saker, 
(1998) 

Economics 
HCI 
Psychology 

Good 
strategy 
development

Anzai (1984) 
Buchner, Funke, & Berry (1995) 
Christoffersen, Hunter, &  

HCI 
Psychology 
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/ rule-based 
knowledge 

Dienes & Fahey (1995) 
Geddes & Stevenson (1997) 
Diehl & Sterman (1995) 
Monxes (2000)  
 
 

Psychology 
Psychology 
Engineering 
 

/ rule-based 
knowledge 
 

Vicente, (1998). 
Chmiel & Wall (1994) 
Monxes (2000)  
Fredrickson & Mitchell (1984) 
Rasmussen, (1985) 
 

HCI 
Engineering 
Engineering 
Management 
HCI 

Self- 
Monitoring 

Poor 
knowledge 
of action-
outcomes 

Broadbent, & Ashton (1978) 
Gonzales, Lerch,  & Lebiere, 
(2003) 
Jensen & Brehmer (2003) 
Kluge (2008b) 
Kobus, Proctor, & Holste (2001) 
Sarter, Mumaw, & Wickens, 
(2007) 
Sauer, Burkolter, Kluge, 
Ritzmann, & Schüler (2008) 
 

Economics 
Psychology 
Psychology 
HCI 
Engineering 
HCI 
HCI 

Good 
knowledge 
of action-
outcomes 

Lipshitz & Barak, (1995) 
Kluge (2008b) 
Kobus, Proctor, & Holste (2001) 
Sauer, Burkolter, Kluge, 
Ritzmann, & Schüler (2008) 
Vicente, Roth, & Mumaw (2001) 
 

HCI 
HCI 
Engineering 
HCI 
 
Engineering 
 

Monitoring 
(Self, Task) 
& Control 
Interaction 

Concurrent 
monitoring 
of control 
behaviors 

Cohen, Freeman & Wolf (1996)  
Dörner (1989) 
Goa & Lee (2006) 
Jamieson, Miller, Ho, & Vicente, 
(2007) 
Sarter, Mumaw, & Wickens, 
(2007) 

HCI 
Psychology 
Engineering 
Engineering 
 
HCI 

Intermittent 
monitoring 
& control 
behaviors 

Cohen, Freeman, & Wolf (1996) 
Kaber & Endsley (2004) 
Goa & Lee (2006) 
Hunter, Hart & Forstye (2000) 
Kirlik (2000) 
Kleinmuntz (1985) 
Sarter, Mumar & Wickerns (2007) 
Vicente, Roth, & Mumaw (2001) 
Yeo & Neal (2006) 
 

Managment 
HCI 
Engineering 
Management 
HCI 
Psychology 
Engineering 
HCI 
Psychology  
 

 Poor 
resource 
allocation 

Camp, Paas, Rikers, & Van 
Merriënboer (2001)  
Diehl & Sterman (1995) 
Gonzales (2005) 
Joslyn & Hunt (1998) 
Yeo & Neal (2006) 

HCI 
 
Psychology 
Psychology 
Psychology 
Psychology 

Good 
resource 
allocation 

Camp, Paas, Rikers, & Van 
Merriënboer (2001)  
Jones & Mitchell (1994) 
Kluge (2008a, 2008b) 
Mosier, Sethi, McCauley, & Khoo 
(2007) 

HCI 
 
HCI 
HCI 
HCI 
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Orasanu & Connolly (1993) 
Vincente (2002) 
Yeo & Neal (2006) 
 

HCI 
HCI 
Psychology 

 Mis-
perception 
of feedback 

Atkins, Wood, & Rutgers (2002) 
Bredereke, & Lankenau, (2005) 
Brehmer & Allard. (1991) 
Osman (2008b) 
Goa & Lee (2006) 
Mosier, Sethi, McCauley, & Khoo 
(2007) 
Sterman (1989) 

Psychology 
Engineering 
Psychology 
Psychology 
Engineering
HCI 
 
Psychology 

Poor 
attention to 
feedback 

Kaber & Endsley (2004) 
Kleinmuntz (1985) 
Kirlik & Strauss (2006) 
Lerch & Harter (2001) 
Moxnes (2000) 
Mosier, Sethi, McCauley, & Khoo 
(2007) 
 

HCI 
Psychology 
HCI 
HCI 
Engineering  
HCI 
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