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ABSTRACT. This paper studies single equation models for binary outcomes
incorporating instrumental variable restrictions. The models are incomplete in
the sense that they place no restriction on the way in which values of endogenous
variables are generated. The models are set, not point, identifying. The paper
explores the nature of set identification in single equation IV models in which
the binary outcome is determined by a threshold crossing condition. There
is special attention to models which require the threshold crossing function to
be a monotone function of a linear index involving observable endogenous and
exogenous explanatory variables. Identified sets can be large unless instrumental
variables have substantial predictive power. A generic feature of the identified
sets is that they are not connected when instruments are weak. The results
suggest that the strong point identifying power of triangular “control function”
models - restricted versions of the IV models considered here - is fragile, the wide
expanses of the IV model’s identified set awaiting in the event of failure of the
triangular model’s restrictions.

KEYwORDS: Binary Response, Control functions, Endogeneity, Incomplete
models, Index Restrictions, Instrumental variables, Probit Models, Set Identifi-
cation, Threshold Crossing Models, Triangular Models.
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1. INTRODUCTION

This paper explores the identifying power of single equation threshold-crossing models
for a binary response Y generated by a structural equation as follows.

y_[0, 0< U <p(X)
11, p(X)< U <1

Here U is a scalar continuously distributed random variable. The models allow ex-
planatory variables X to be endogenous and embody instrumental variable (IV) ex-
clusion and independence restrictions. Probit and logit models with endogenous
explanatory variables are familiar examples of parametric models to which the re-
sults of this paper apply. The analysis is essentially nonparametric but parametric
restrictions are very easy to incorporate as will be demonstrated.
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These IV models place no restrictions on the genesis of endogenous explanatory
variables. In this respect they are incomplete. One consequence of this is that
the models are set not point identifying for deep structural features. One of the
contributions of the paper is to characterize tight identified sets in nonparametric
and parametric versions of the IV binary response model.

Set identification results are given for general discrete outcome IV models in
Chesher (2007b, 2008). This paper studies the consequences of those results for the
binary response model and considers refinements obtained when additional restric-
tions that may be available in the binary response case are imposed. Specifically it is
shown that under additional monotonicity and single index restrictions concerning the
impact of explanatory variables on the binary response it is possible to visualise the
identified set of nonparametrically specified structural functions. Tight identification
sets for the index coefficients are defined. Those sets can be determined by calcula-
tions in which the threshold crossing function plays no role which is computationally
extremely beneficial.

Many complete models are restricted versions of the IV models studied here. A
leading case of interest in view of its dominance in applied econometric practice is
the triangular model which motivates widely used “control function” estimators. The
software suites STATA and LIMDEP both provide commands to compute estimates
using parametric versions of the control function model.!

Parametric and nonparametric control function models can be point identifying
for deep structural features but even the nonparametric models rely on very strong
restrictions concerning the genesis of potentially endogenous variables. The results
of this paper allow one to see what alternative binary response structures are obser-
vationally indistinguishable from some triangular structure, possible well-supported
by data, once the strong restrictions of the control function model are jettisoned.

A slightly depressing result of the paper is that in the endogenous binary response
setting the identified sets delivered by an IV model can be large unless instrumental
variables have substantial predictive power for the endogenous explanatory variables.
This is in contrast to cases with less coarse discrete responses such as arise when
studying ordered choice and interval censored outcomes. With continuous responses
the IV model can be point identifying as shown in Chernozhukov and Hansen (2005).

The message to take away from this is that in many cases with binary responses
the restrictions of a point identifying triangular model which underpin control func-
tion estimation may contribute enormously to the determination of the results those
estimators produce. Where those results are the basis for substantive decisions it may
be prudent to consider the range of magnitudes delivered by observationally equiva-
lent structures admitted by the less restrictive IV model, in the context of which the
control function restrictions are not falsifiable. The results of this paper allow this
to be done.

The triangular model and the control function idea are now briefly described.
Then the encompassing single equation IV model is introduced and its identifying
power is studied, first with no additional restrictions and then under a monotone index

!Statacorp (2007) and Greene (2007).
2The sensitivity of the identifying power of the IV model to varying amounts of discreteness in
responses is the focus of Chesher and Smolinski (2009).
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restriction in which the threshold-crossing function is a monotone function of a linear
index involving all the observed explanatory variables. The results are illustrated
with some exact calculations of identified sets of functions and, in parametric cases,
of parameter values. Estimation of identified sets is discussed and illustrated in a
small Monte Carlo experiment.

2. TRIANGULAR MODELS AND CONTROL FUNCTIONS

Let Y be a binary response and let X be a scalar, potentially endogenous, explanatory
variable. A triangular model motivating control function estimation has structural
equations as follows:

Y:{cll p(X()]

with: (U, V) continuously distributed, the function A monotone in scalar U and the

PR X =gz 1)

ANNVAN

U
U

IAINA

function g strictly monotone in scalar V', and (U, V) 1z , a vector of instrumental
variables that are excluded from p.> The system is triangular in the sense that Y
does not feature in the structural equation for X .

Since g is strictly monotone in V' there is a one-to-one correspondence between
V and X for every Z and a well defined single valued inverse function g~! such that
V =g 1(Z,X). This is known as the control function.

In this model X is endogenous if and only if U and V are dependently distributed.
So, for variations in Y, X and Z such that V = g=%(Z, X) is held constant, U and X
will vary independently® and the ceteris paribus effect of X on h can be identified if
the function g can be identified. That is easily done. With V' normalised Unif(0, 1)
the function ¢ is identified as the conditional quantile function of X given Z and ¢g~*
is the conditional distribution function of X given Z. See Matzkin (2003).

Since under the triangular model’s restrictions U 1 x |V there is:

PIY = 01X =2,V =] = P[U < p(a)|V = v] = Fyyy (pla)lo)
which leads to the following.
PlY =0|X =2,Z = 2] = Fyjy(p(x)|g " (2,2))

Here Fyy is the conditional distribution function of U given V. Control function
estimation can proceed in a variety of ways, for example by estimating the regression

3The notation A Il B has two interpretations. When B is a random variable it indicates that
random variables A and B are mutually independently distributed. A and B may be vector random
variables. When B is not a random variable, as would be the case if it took values purposively
chosen by an expermenter or survey designer, then it indicates that the distribution function of A
that applies when B = b does not vary with b.

4If X were a vector the triangular model would have additional structural equations determining
the value of X, none of them involving Y. See Chesher (2003) for an example.

’The triangular model comprising (1) and (U, V) A Z implies UJLX|V because conditional on
V', X varies only with Z and (U, V)JLZ implies UlLZ\V.
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function of Y given X and V, replacing V' with a first round estimate derived from
an estimate of g.

Control function methods in semi- and non-parametric settings are studied in
Chesher (2003), Blundell and Powell (2003, 2004) and Imbens and Newey (2009) and
in parametric settings in Rivers and Vuong (1988) and Smith and Blundell (1986).
Hausman (1978) and Heckman (1979) contain early examples of the use of control
function methods. STATA 10 (Statacorp (2007)) and LIMDEP 9.0 (Greene (2007))
have commands to perform parametric (probit) control function estimation in trian-
gular models for binary responses.

The support of the covariate Z places limits on what can be known of k. Chesher
(2003) shows that when X is continuous, with z,(z) = ¢(z,7) which is identified
by® Qxz(r|z), and with u,(r) = Quv(plr) there is, under the restrictions of the
triangular model:

QYXZ(p‘QX'Z<T'z)’z):{(1) < g e

from which it is clear that continuous variation in z is required if the threshold
crossing function is to be nonparametrically identified and that limits on the extent
of that variation may result in that function not being identifiable over ranges of its
argument.

The restrictions of this triangular control function model can be violated in many
ways, some of them set out below. In each case, relaxing the restrictions of the
triangular model to accommodate the violation can result in loss of point identifying
power.

1. Discrete endogenous variable. If X is discrete there is not a one-to-one
correspondence between V and X for each value of Z and the control function
does not control the value of V.7

2. Direct dependence of U and X. If U and X have dependence that arises
not just through U’s dependence on V then holding V fixed will not result in
independent variation of U and X.

3. Dependence between U and V is affected by Z. If the joint independence
restriction (U, V)ﬂZ fails to hold, for example because the dependence between

U and V varies with Z then the result UiLX|V will fail to hold.

4. Excess heterogeneity. If V' is not scalar, so that X is driven by more than
one source of stochastic variation as in a random coefficients set up, then even
if (U,V) 1l Z the model fails to identify p. One can always develop a reduced
form equation for X involving a scalar error, say V, which is independent of Z
but the condition (U, V) 1l Z will not hold in general.

Here V_|l Z is normalised Unif(0,1). The notation @ 4 5(p|b) indicates the conditional p-quantile
of random variable A given B = b.

"Chesher (2005) gives a set identification result in this case when there is a monotone variation
restriction on the dependence of U on V, namely that Qu v (p|v) be a monotone function of v.



SINGLE EQUATION ENDOGENOUS BINARY RESPONSE MODELS 9

5. Full simultaneity. If Y appears in the structural function g then even though
a reduced form equation for X is available with scalar unobservable, say V,
independent of Z the joint independence restriction (U, f/) 1 z win generally
not hold. The simultaneous entry game model of Tamer (2003) provides an
example.®

In each of these cases the triangular model fails to hold because it does not
correctly specify some aspect of the process generating the endogenous explanatory
variables. However in each case there remains as valid the instrumental variable
restriction that U is distributed independently of instrumental variables Z which
are excluded from the threshold-crossing function p(X). The single equation IV
model built on these restrictions concerning the genesis of the binary response Y
encompasses the triangular model and extensions which accommodate the departures
from the triangular model set out in 1 - 5 above.

The set identifying power of the single equation IV model is now considered.

3. IDENTIFYING POWER OF THE SINGLE EQUATION IV BINARY RESPONSE MODEL

3.1. The single equation model. In the single equation IV model considered
here the value of a binary variable Y € {0, 1} is uniquely determined by a structural
function as follows.

y_[0, 0< U <pX)
11, pX)< U <1

Here U is an unobserved scalar continuously distributed random variable and X is a
vector random variable which may be jointly dependently distributed with U. To the
extent that there is dependence between X and U then elements of X are endogenous.
The marginal distribution of U is normalised to be uniform on (0, 1).

There are instrumental (exogenous) variables arranged in a vector Z. The model
excludes these variables from p and imposes the restriction that U and Z are jointly
independently distributed. For most of the analysis Z need not be regarded as a
random variable and then the restriction P[U < u|Z = z| = u for all z € Z is
imposed, which embodies the uniform marginal distribution normalisation. When Z
is a random variable the set Z is the support of the random variable Z; otherwise it
is a set of valid instrumental values® of Z.

In what follows, because all probabilities are conditioned on Z, the instrumental
variables can appear as arguments of the threshold-crossing function p. Of course for
a model to have informative identifying power it will have to embody some restriction
on the impact of Z on p. Z will appear as an argument of p when index restrictions
are considered in Section 6 but for now, mainly to simplify notation, the model will
contain the restriction that Z is excluded from p.

The identifying power of this single equation model is now considered, answering
the question: what can be known of the function p from knowledge of the probability
distribution of Y and X given Z = z when z varies within Z7?

8Each of Tamer’s equations taken one-at-a-time along with the marginal independence restrictions
implied by his model satisfy the restrictions of the single equation IV model.
?Chesher (2007a) gives an analysis of identification in terms of instrumental values.
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4. SET IDENTIFICATION
The single equation IV model M is formally defined as follows.

Model M. Y is a binary random variable determined as follows:

v — 0 , 0 U p(X)
11, p(X)< U 1

IAIN

where U is a continuous scalar random variable normalised marginally Unif(0,1)
and U | Z where Z is a list of instrumental variables excluded from the threshold-
crossing function p and taking values in a set Z.

Consider a data generating structure Sy = {po, F8X| »} admitted by this model

in which pg is a threshold-crossing function and Fg x|z denotes a joint distribution
function for U and X given Z.

To be admitted by the model M the distribution function Fg x|z Must respect
the independence property, that is:

Fg\z(U’Z) = ng‘z(%ﬂz) =u

for all uw € (0,1) and z € Z. Here 7 is the upper limit of the support of X.
Let F3X| , denote the joint distribution function of ¥ and X given Z generated
0

by the structure Sy, determined as follows.!

F}QX\Z(OJ z|z) = FL(}X\Z(pO(x)7 x|2)

Let Prg indicate probabilities calculated with respect to this measure. Observation-
ally equivalent structures, S*, have threshold crossing functions p, and distribution
functions Fy; x|z such that

F;X‘Z(O,x]z) = FﬁX\Z(Z)*(m),ﬂz) = qux\z((),m!z)

for all z € supp(X) and z € Z.

Theorem 1 gives a system of inequalities which is satisfied by all threshold-crossing
functions in admissible structures that are observationally equivalent to an admissible
structure generating a joint distribution function F)(} x|z for all values of instrumental
variables z in some set of values Z.

Theorem 1

A structure So admitted by the model M generates a distribution FSX‘Z. If a
function p is a threshold crossing function in a structure admitted by the model M
and observationally equivalent to So then p satisfies the inequalities (3) and (4) for
all we (0,1) and all z € Z.

col(u, z;p) =ProlY =0Np(X) <ulZ =2 <u (3)

cou(t,z;p) =1 —ProlY =1Nu<pX)|Z=2]>u (4)

Since Y is binary, F$X|Z(1,x|z) = F2\2($|2)~
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Here subscripts “I” and “u” indicate respectively lower and upper bounding prob-
ability functions. The subscript “0” indicates that a function (co; or cp,) is calcu-
lated using the distribution function FS(;X‘ , generated by the structure Sp. Note
that, because there is conditioning on Z = z, Theorem 1 continues to hold when the
threshold-crossing function p includes Z as an argument.

Proof of Theorem 1
It is first shown that (3) and (4) hold for all u € (0,1) and all z € Z when p = po.
Consider the inequality (3) with p = pg. For all x such that pg(z) > u,

ProlY =0Npo(X) <ulX =2,Z2=2=0
and for all z such that po(z) < u:

ProlY =0Npo(X) <ulX =2,Z=2] = PrlY =0|X =2,7Z = 2]
= ProlU <po(2)|X = 2,7 = 2]
< Pro[U <u|X =2,7Z = 2]

and so for all x there is the following inequality.
ProlY =0Npo(X) <ulX =2,Z = 2] < Pro[lU <u|X =2,Z = 2]

Taking expected value over X given Z = z yields the inequality (3) with p = py.
Now consider the inequality (4) with p = pg. For all = such that u > pg(x),

1-PrY =1nu<pX)|[ X =2,Z=2]=1
and for all = such that u < pg(x):

1-PrlY =1nu<pyX)[X=2,Z=2 = 1-PrlY =1|X =2,Z =2
= Pro[U <po(z)|X =2,Z = 2]
> Pro[U <u|X =x,7Z = 2]

and so for all x there is the following inequality.
1-ProlY =1Nnu<py(X)|X =x,Z =2 >Pro|lU <u|X =2,7 = 2]

Taking expected value over X given Z = z yields the inequality (4) with p = py.
The result of the Theorem now follows directly since if some p, is an element of

a structure observationally equivalent to Sy then it generates the same probability

measure as Sy does, so (3) and (4) hold for all v € (0,1) and all z € Z when

p=px W
Theorem 1 states that all the threshold-crossing functions identified by the single
equation IV model lie in the set of functions defined by the inequalities (3) and (4)

as u varies across (0,1) and z varies across Z. Chesher (2008) shows that, when X
is continuous this set is the sharply defined identified set, that is all functions in the
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set are elements of observationally equivalent structures admitted by the model M.!!
This is also true when X is discrete, the case considered in the next Section.
The functions ¢y and ¢g, in (3) and (4) are non-decreasing in u and satisfy
inequalities:
0 < coylu,z;p) < F39|Z(0|z) < coul(u, z;p) <1 (5)

which hold for all z and v € (0, 1). Each function attains its lower and upper bounds
as u approaches respectively 0 and 1.

Since the inequalities (3) and (4) hold for all z € Z a threshold-crossing function
p is in the identified set if and only if for all v € (0, 1)

cor(u; p) = max coy(u, 2;p) < v < min coy(u, 2;p) = cou(u; p) (6)
z2€Z zEZ

The functions co,(u; p) and co;(u; p) are non-decreasing functions of w and it follows
from (5) that for all v and any admissible p.

0 < col(u;p)gmaxF8|Z(0|z)
2€Z

minF8|Z(O]z) < cou(u;p) <1
z2€EZ

the bounds being approached as u passes to 0 or 1. For all functions p in the identified
set cou(u;p) > coi(u;p) for every u € (0,1) but for functions p outside the identified
set violation of this inequality is possible.

Given a particular distribution for Y and X given Z and a set of instrumental
values, Z, a putative threshold-crossing function p can be assigned to the identified
set of structural functions by calculating the functions cg,(u;p) and co;(u;p) and
observing whether the inequalities (6) are satisfied for all u € (0, 1).

A restricted version of the model M may require the threshold-crossing function,
p, to be a member of a parametric family of functions. Later the case in which
p(z) has the “probit” form ®(ag + z’a;) is considered. When there are parametric
restrictions the inequalities (3) and (4) sharply define the identified set of values of
parameters associated with the distribution F{} |z and the model M.

In the parametric case it may be possible to obtain a complete characterisation of
the identified set but in general this is difficult without further restriction. In econo-
metric practice many of the parametric models that are used satisfy a “monotone
index” restriction, namely that the threshold-crossing function is a monotone func-
tion of a scalar index. Probit and logit models are leading examples.

The force of this semiparametric restriction is considered in Section 5. It leads
to a result which allows visualisation of identified sets of nonparametrically specified

" Chesher (2008) works with a structural equation Y = h(X,U) for a general discrete outcome
and with probabilities Pro[Y < h(X,u)|Z = 2] and Pro[Y < h(X,u)|Z = z|. In the binary Y case
studied here these probabilities are expressed in terms of the threshold-crossing function p associated
with a structural function h using the following identities.

{Y < h(X,u)} ={Y =0Npo(X) < u}

{Y <h(X,u)} ={Y > h(X,u)} ={Y =1Nnu < p(X)}
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monotone structural functions and characterisation of identified sets of values of index
coefficients.

First the case in which endogenous variables are discrete is considered and a proof
of sharp set identification for that case is provided.

4.1. Discrete Endogenous Variables. The probability inequalities that appear
in Theorem 1 are now given explicit representations for the case in which X is discrete.

Let X have support {z1,z2,...,zx} and for k € {1,..., K} define v, = p(zx) and
define vy = 0 and yg,; = 1. Since X is discrete its dimensionality is irrelevant. In
this discrete endogenous variable case it is the identification of the finite dimensional
sequence v = {v;, | that is of interest.

The set of values of v defined by the probability inequalities of Theorem 1 is the
union of K'! convex sets, one associated with each permutation of v. The sets are in
general disconnected and when instruments are strong many of them can be empty.
To proceed, without loss of generality let indices be assigned to the points of support
of X so that: v; < 7y < --- < k. Other permutations can be accommodated by
exchanging indices in what follows.

Now the inequalities (3) and (4) are expressed in terms of the v;’s.

For k € {1,..., K} define:

ap(z) =PrlY = 01X =z, Z = 2] 0r(2) = Pr[X = x| Z = 7]

and adopt the convention that sums from 1 to 0 are zero, Zgzl(-) s =0.

The values {§x(2)} | are required to all be non-zero for all z € Z in what follows.
This restriction could easily be relaxed but at the cost of some additional complexity
in the notation.

The probabilities that appear in the inequalities (3) and (4) have values that
depend upon the location of u in the sequence 7y, ....vg. Consider a value u € (0, 1)
such that for two elements in 7, v,_; and 7, 741 < © < 7. In this case the

probabilities are as follows.!?
k—1
Proly =0Np(X) <ulZ =z =) §;(2)e(2) (7)
j=1

12The first expression arises because

ProlY =0Np(X) < u|Z = 2] ProlY =0NX € {z: p(z) < u}|Z = 7]
k—1

= ) Pro[Y =0|X = 5,2 = 2] Pro[X = |2 = 2]
j=1

and the second expression arises from

1-ProY =1Nnu<pX)|Z=2] = 1-Pro]Y=1NnXe{z:u<p)}Z=72]
K
= 1-) Pro[Y =1|X =;,Z = 2| Pro[X = x,|Z = 2]
j=k

= 1- Zcij(z)(l —a;(2))

after substituting 1 — Z;{:k 0;(z) = 25;11 5;(2).



SINGLE EQUATION ENDOGENOUS BINARY RESPONSE MODELS 10

k—1 K
1= ProlY = 1nu < p(X)|Z =2 = 3 5;() + 3 65(2)(2) (®)
j=1 j=k

If there are many elements in -y equal to y;, then their associated values 6;(2)a;(z2)
all contribute to the summation from &k to K in (8). If there are many elements in
equal to 7v;_; then their associated values d;(z) and 6;(2)c;(z) all contribute to the
summations from 1 to &k — 1 in (7) and (8).

When v;,_; < u <7, the inequality (3) requires (i) that the probability Prg[Y =
0Np(X) < u|Z = z] in (7) be less than u for all values of w in that interval, so the
inequality

5;(2)0j(2) < e (9)
1

must hold, and (ii) that the probability 1 — Pro[Y = 1Nu < p(X)|Z = z] in (8) be
at least equal to u for all values of u in that interval, so the inequality:

<.
Il

??‘

-1

9 (z —i—Z(S ) > Y4 (10)
1

<.
Il

must hold. The inequality (7) holds for all values in ~ that are equal to 7;,_; and the
inequality (8) holds for all values in 7 that are equal to ;.
Bringing these two results together and replacing k£ — 1 by k in (9) delivers the

following sequence of inequalities for k € {1,..., K}.13
k k—1 K

D 8i(2)a(2) < <D 65(2) + D 6(2)a(2) (11)
j=1 j=1 j=k

If v, = 79 = --- = v are equal, say to some value 7, then the left and the right

hand sides of all the inequalities (11) are all equal to

K
> 6;(2)a(2) = ProlY = 0|Z = 2] = a(2)
j=1

and only 4 = @(z) is admissible. If @(z) varies at all as z varies in Z then there is no
admissible constant value 4 and threshold crossing functions p(x) which do not vary
with = are not admissible.

Inequality sequences for different permutations of + are obtained by exchange
of indices. For each permutation the set of values of « defined by the inequalities
(11) is precisely the subset of the identified set for the model M associated with the
permutation. This is the subject of Theorem 2.

"*Here the summation from 1 to k on the left hand side and the summation from k to K on the
right hand side include contributions §;(z)a;(z) associated with all elements of v equal to v,. The
summation from 1 to k — 1 on the right hand side includes contributions §;(z) from all elements of
v having values less than ~,.
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Theorem 2

For every sequence v, < vy < --- < 7y for which the system of inequalities (11)
holds, there exists a distribution function Fy|xz such that the following conditions
hold for k € {1,...,K} and each z € Z.

1. Proper conditional distribution functions:

0 < Fyixz(milwg, 2) < < Fyixz(vglek, 2) <1

2. Independence:*

K

> 6 Fuixz(vilwg, 2) =
=1

3. Observational equivalence:
Fyixz(Vilzk, 2) = ag(2)

A proof is given in the Annex to the paper.

5. MONOTONICITY AND INDEX RESTRICTIONS

The force of a restriction requiring the threshold function to be monotone is now
studied.

First the case in which X is scalar is considered. The threshold function is spec-
ified as p(z) with p monotone but with no restriction on the direction of the de-
pendence on z. The identified set of threshold functions is shown to comprise all
monotone functions that lie between pairs of bounding functions; one pair is increas-
ing, the other pair is decreasing. These functions are shown to be simple functionals
of the joint distribution of the binary outcome and the endogenous variable.

When instruments are not strong the identified set can contain both increasing and
decreasing functions, but not in general functions that are insensitive to variations in
x. In a sense then the identified set of structural functions may not be connected. The
results are illustrated using a probability measure generated by a Gaussian triangular
system and the impact of imposing parametric restrictions is considered.

The identified set of threshold functions is the intersection of sets determined by
pairs of upper and lower bounding functions. Each distinct value of the instrumental
variables generates a pair of bounds. A procedure for estimating sets defined by
intersection bounds is applied to this problem and studied in a small Monte Carlo
experiment.

Attention is then turned to models in which X may be a vector. Now Z is allowed
to appear in the structural function, possibly subject to some exclusion restrictions.
The models considered have threshold functions of the form p(X'a + Z'¢) with p
monotone. The identified set comprises a set of parameter values with each of which
is associated a set of monotone functions, p. For each value of (a*, ") in the identified

" This incorporates a normalisation, namely that U is marginally uniformly distributed. The point
is that the distribution function of U given Z = z alone must be independent of z.
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set, bounding functions are derived which define the set of functions associated with
(a*,0"). These are simply obtained by applying the methods derived for the scalar
X case, replacing the random variable X in that analysis by the random variable
X'a*+Z'§*. Under the monotonicity restriction there is no need to consider particular
alternative functions p when developing the identified set of index coefficients which
substantially simplifies the computation and estimation of that identified set.

5.1. Monotone threshold functions with scalar X. Let p~' denote the in-
verse function of p.!> When the threshold function is restricted to be monotone and
X is scalar, events such as {u > p(X)} can be expressed as {p~(u) > X} if p is
increasing and as {p~'(u) < X} if p is decreasing. Then the bounding functions in
(3) and (4) can be written as follows when p is increasing:

col(u,z;p) = Pro{Y =0}n{X <p l(w)}|z] <u (12)
cou(u, z;p) = 1-=Pro{Y =1} n{X > p_l(u)} |z] > u (13)

and as follows when p is decreasing.

col(u,z;p) = Pro{Y =0}n{X >p )}l <u (14)
cou(u,z;p) = 1—=Prg[{Y =1}n {X < p_l(u)} |z] > u (15)
Substituting ¢ = p~!(u) the threshold function is moved out of the bounding

functions to the right hand sides of the inequalities. The resulting bounding functions
and inequalities written in terms of o € supp(X) are, for increasing p, thus:

dgl(a, z) = Pro{Y =0} n{X <o}|z] < p(o) (16)
d) (0,2) = 1=Pro[{Y =1}n{X >0}|z] > p(0) (17)

and for decreasing p, thus.

d(0,2) = Pro[{Y =0} N{X > a}|z] < p(o) (18)
di,(0,2) = 1-Pr[{Y =1} N{X < o}|2] > p(o) (19)

It is very convenient to have the threshold-crossing function pulled out of the
bounding functions in this fashion because the bounding functions can be derived
or estimated just once and then compared with any candidate threshold function,
leading to visualisation of the identified set of threshold-crossing functions. An illus-
tration follows shortly.

The functions d[T]l and d(T)u are increasing in o; the functions dél and d(l)u are
decreasing in o. There are the following inequalities with left and right hand bounds
achieved as o approaches respectively —oo and +o0.

0<dl(0,2) <Proly =0]z] < d},(0,2) <1 (20)

L as follows

5For weakly monotonic functions p, define p~
p increasing: p~ ' (u) = inf{z : p(z) > u}

p decreasing: p~'(u) = inf{z : p(z) < u}

and restrict increasing p to be cadlag and decreasing p to be caglad.
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1> d,(0,2) > ProlY = 0[2] > d,(0,2) >0 (21)

An increasing function p is in the identified set of threshold functions if it satisfies
(16) and (17) for all o € supp(X) and all z € Z. A decreasing function p is in the
identified set of threshold functions if it satisfies (18) and (19) for all o € supp(X)
and all z € Z. The identified set of threshold functions is therefore the union of two
sets of functions: one comprising all increasing functions p that satisfy

max dgl(a, z) = dgl(a) <p(o) < d[T)u(O') = grélg dgu(a, z) (22)

for all o € supp(X), the other comprising all decreasing functions p that satisfy

max dél(a, 2) = dél(a) < p(o) < d(l)u(a) = irgg d(lm(a, z) (23)
for all o € supp(X). One of these sets may be empty and this will tend to happen
when instruments are strong with rich support as illustrated shortly.

If a model further restricts p to lie in a parametric family then only parameter
values leading to functions in the family that lie within the set defined by (22) and
(23) fall in the identified set of parameter values. Parametric (probit) restrictions are
considered shortly in an illustrative example.

In view of the definitions of the tight inequalities (20) and (21) there are the
following results on the large and small o behaviour of the tight bounding functions.

; 1 . 1
leaﬂfoo d?"(g) = min Prg[Y = 0]z] < maxPro[Y =0|z] = l?mUHJroo d?l(a)
limy 400 dg,, (0) 2€Z 2€Z limg_, oo d;(0)

Here the inequality is strict unless z has no effect on Pro[Y = 0|z] for all z € Z.

It follows that the constant function p(c) = ¢ free of o does not lie in the identified
set unless the structure generating the probability measure has PrglY = 0|z] for
all z € Z. However there can be both increasing and decreasing functions in the
identified set. In this respect the identified set may be disconnected. When p is
parametrically restricted this leads to identified sets of parameter values which may
be disconnected. The next Section illustrates.

This, at first sight, paradoxical result arises because the exclusion and indepen-
dence restrictions of the model require that Z affects Y only via the endogenous
X so even the smallest dependence of the outcome Y on the instruments Z implies
that the threshold function delivering the value of the binary outcome does depend
on the endogenous variable. However, with sufficiently feeble instruments, threshold
functions exhibiting positive or negative dependence on elements of X are capable
of delivering the probability measure used to calculate the identified set which in
consequence can be disconnected.

5.2. Illustration. These results are illustrated using probability measures gener-
ated by a triangular Gaussian structure which satisfies the restrictions of the single
equation IV model. The structural function for binary Y has a probit form with an
endogenous explanatory variable. This choice makes the calculation of the bounding
functions easy, it highlights the relative power of the control function model which
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would be point identifying in this case, and it places us in familiar applied economet-
rics territory.'0

The structure has binary Y recording whether latent Y™ is positive and Y* and X
are generated by structures with linear equations and jointly Gaussian unobservable
variables, as follows.

Y =1Y">0) Y*=ap+a1 X +W X=by+0Z+V

v () )

The joint distribution of Y* and X given Z = z is N(u(2),X) with:

ag + a1bg + a1b1z 14 2a18uy + a%sw Swo T Q18w
pn(z) = b+ b Y=
0+ 012 Owy + A1Svw Sovv

from which it is straightforward to calculate the probabilities that appear in (16) -
(19) as bivariate normal orthant probabilities.!” The (monotone) threshold function
for the structures employed in this example is p(z) = ®(—ap — a1x) where ® denotes
the standard normal distribution function.

5.3. Nonparametric model. The identifying power of the following nonpara-
metric model is considered.

0 , 0

1, p(X) f(X) vl z p monotone  (24)

Y:h(X,U):{

AN

U
U

ININ

The following graphs show the bounding functions (16) - (19) varying with o
for specific values of the instrument z and their envelope functions, (22) and (23).
The functions are calculated using the probability measure generated by Gaussian
triangular structures as defined above with the parameter values as shown in the
first row of Table 1 and with z taking 10 equally spaced values in [—1, +1]. At these
parameter values the structural threshold function is the standard normal distribution
function ®(x).

In Figure 1 the value of by, the coefficient on the instrumental variable in the
equation for endogenous X, is 0.3. The upper pane shows the increasing bounding
functions (16) - (17); the lower pane shows the decreasing functions (18) - (19). These
functions are drawn in blue.

The envelope bounding functions (22) and (23) are obtained at each value of o
as the maximum of the lower bounding functions and the minimum of the upper
bounding functions. They are drawn as dashed red lines. The identified set of
structural threshold functions comprises all increasing functions which pass between
the upper and lower envelope bounding functions in the upper pane and all decreasing

16 This structure with its linear equations is of the sort admitted by the triangular model underlying
STATA’s ivprobit command; see Statacorp (2007). The ML version of that command uses the
Gaussian specification employed in this illustration.

""The function pmvnorm in the mvtnorm package of R (Thaka and Gentleman (1996)) is used.
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Parameter H ag ‘ a1 ‘ bo ‘ b1 Sww ‘ Sow ‘
Figure 1 0|-110 0.3 0.5 1
Figure 2 0] —-11]0 0.4 0.5 1
Figure 3 0|-1]0 0.3 0.05 0.1
Figure 4 0|-110 0.3 0.005 | 0.01
Figure 5 0[-1]0 0.3 0.0005 | 0.001
Figure 6 0[-1]0 0.6 0.0005 | 0.001
0.3
0.6
Figure 7 0[-1]0 0.9 0.15 0.3
1.2
1.5

Table 1: Parameter values used in Figures 1 - 7

functions that pass between the upper and lower envelope bounding functions in the
lower pane.

The structural threshold function in the Gaussian triangular structure used to
generate the probability measure employed in these calculations, is the increasing
dashed line passing between the upper and lower bounding functions in the upper
pane. Any monotone increasing (decreasing) function passing between the red dashed
lines in the upper (lower) pane in Figure 1, together with a suitable chosen (typically
non-Gaussian) distribution for U and X given Z also generates the same probability
measure. A construction for producing one such distribution for U and X given 7 is
given in Chesher (2008).

When the power of the instrument is increased by setting the parameter b; = 0.4
the identified set is reduced as shown in Figure 2. The envelope bounding functions
in the lower pane now intersect - no decreasing function can pass between these
functions. The effect of the instrument is now sufficiently strong to eliminate all
monotone decreasing functions from the identified set. However the identified set of
increasing functions is little affected.

For Figure 3 the coefficient b is reset to its Figure 1 value, 0.3, and the strength
of the instrument is increased by drastically raising its predictive power, a situation
achieved by reducing s,, tenfold, from 1 to 0.1, while reducing s, to 0.05 so that
the correlation between W and V is unchanged at 0.25. This strengthening of the
instrument also serves to remove decreasing functions from the identified set and
produces a noticeable narrowing of the bounds around increasing functions but the
situation is still a long way from point identification even with this small value of s,,,.

To investigate the extreme situation that arises as the instrument approaches
the state of being a perfect predictor of endogenous X, Figures 4 and 5 show the
effect of further substantial increases in the predictive power of the instrument with
Sy = 0.01 in Figure 4 and s,, = 0.001 in Figure 5. The correlation between W and
V is kept constant at 0.25 as s,, is reduced. The bounds narrow very considerably
but there is still some significant degree of variation in functions within the identified
set. In Figure 5 particularly it is clear that the support restriction on Z is very
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influential. In the example Z is restricted to lie within [—1, 1] and takes a coefficient
of 0.3 and with the very small value of s,, there is only information delivered about
the structural function by the probability measure (as opposed to the monotonicity
restriction) for o € [—.3,.3]. Outside this range essentially every increasing function
lies in the identified set.

Figures 6 shows the effect on the identified set shown in Figure 5 of doubling by
(to 0.6), the coefficient on Z in the equation for X in the triangular structure used
here to generate probability measures. At this very small value of s,, the only effect
this has is to extend, by a factor of 2, the range of values of o effectively covered by
the identified set.

Figure 7 shows the effect of changing b; with the other parameter values set as
shown in the final row of Table 1. As b; is increased the identified set is reduced
in extent but the effect is virtually all at extreme rather than central values of o.
Changing by is equivalent to changing the units of measurement of, and so the range,
of Z. This increases the range of values of X for which the identified set is informative
but has almost no effect on the width of the identified set over that range.

5.4. Estimation. This Section considers estimation of the identified set of thresh-
old functions when they are restricted to be monotone. The method proposed in Cher-
nozhukov, Lee and Rosen (2009) (henceforth in this Section CLR) is employed. The
procedure delivers approximately pointwise median unbiased estimators of bounding
functions when these are, as here, defined as an infimum or supremum over a set of
functions whose members correspond to different values of instrumental variables. It
also produces an approximate confidence region for the identified set of functions.

The method is easiest described in the context of estimation of one of the bounding
functions introduced in Section 5.1. So, consider the upper bounding function for
monotone increasing functions defined in equation (17) as:

d(T)u (o) = gélél d[T]u(O', z)

where dgu(a, z) is defined as follows.
d) (0,2) =1—-Prg[{y =1} n{X >0}

In the case studied here there are n independent realisations from Fg x|z {Yi, Xi iy,
at instrumental values {Z;}7" ;. Inferences are made conditional on these instrumental
values. There are K values of Z, that is Z = {z(1),...,2x)}, with ng = 3711 1[Z; =
2()] realisations at z(,) and Zle ng = n. The analysis is carried out pointwise in
the argument o.

At each value of o there are the following analog estimates.

dg]u(a, Z(y) =1 - n;t Z 1Y =0NX; > 0N Z; = 23]
1=1

It is noted in CLR that the naive estimator of dgu(a) defined as the infimum of these
estimators over k € {1,..., K} is downward biased. A bias-corrected estimator is
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proposed in CLR, obtained by adding a correction term to each estimator (fgu(a, z(k)),
which depends on the precision of each estimate, less precise terms receiving larger
positive corrections.

In an initial step a data-dependent subset of the estimates is chosen. This con-
verges in probability to a non-stochastic set which contains the infimum of the set:
{dgu(a, z(k))}szl. Let K denote the subset of {1,..., K} which indexes the estimators
contained in this set. The following estimator is suggested in CLR:

K={ke{l,....K}:d,(0,20)) < iréi}(l{dgu(a, 2 Hey + A

for some choice \,, where \,, — 0 and nt/ 2\, — 00.

The bias corrected estimator is the infimum of the precision adjusted estimators
that have indexes k € K. In the case studied here the correction term applied to an
estimator cigu(o, Z(r)) is a constant k(p) multiplied by an estimate of the standard

error of the estimators (igu(a, Z(k)), k€ K. Since these are a linear transformations of
binomial random variables the estimated (squared) standard errors are as follows:

n,;lcigu(a, Z(k)) (1 — czgu(a, Z(k))) kek

and the estimators are asymptotically independently normally distributed.
In this circumstance the factor x(p) is the p-quantile of the maximum of K stan-
dard independent normal variates where K is the number of indexes in K. Define

ciTOM ®) (o) as follows.

(. . R 1/2
a%u(p)(a) = I’?ellrcl {dgu(a, Z(k)) + k(p) x (nk 1d8u(0, Z(k)) (1 — dgu(o, Z(k))>> }

Choosing p = 0.5 yields an approximately median unbiased estimator of dgu(a).
Choosing p = 1 — « yields an approximate one sided (1 — «) confidence region for
d(T)u (0).'® Regularity conditions, propositions and proofs and a more thorough expla-
nation are given in CLR.

Tables 3 - 6 report results of four Monte Carlo experiments (1000 replications
each) intended to demonstrate the feasibility of estimating bounding functions and
identified sets of functions in moderate sized samples using the CLR procedure.

The setting is as in Section 5.2 with the parameter values given in the row headed
“Figure 1”7 in Table 1 and with either 5 or 10 values of z equally spaced in [—1,1]. In
experiments MC1 and MC2 the sample size is n = 100; in experiments MC3 and MC4
the sample size is n = 400. In experiments MC1 and MC3 there are K = 5 equally
spaced values of Z with equal numbers of realisations at each value. In experiments
MC2 and MC4 there are K = 10 equally spaced values in Z with equal number of
realisations on each value. The value of the tuning parameter is adjusted accordingly.

Tables 3 - 6 show in the upper part, results for increasing bounding functions and
in the lower part results for decreasing bounding functions. Results for lower and
upper bounding functions are shown respectively to the left and the right. Results

®In the sense that for large n, P[d], (o) < dT)u(l_a)(o)] >1-a.
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are given for estimates at five values of o (the argument of the monotone threshold
function). Columns headed le(U) etc., give exact values of bounding functions at
the chosen values of 0. Columns headed by and bo give Monte Carlo estimates of
median bias (multiplied by 100) of respectively the naive (N) estimator and the bias
corrected (C) estimator at the indicated value of o. Columns headed RM SEy and
RMSE¢ give Monte Carlo estimates of the root mean squared error of respectively
the naive (N) estimator and the bias corrected (C) estimator.

Figures 12 - 15 accompany the tables of results and are helpful in interpreting
them. Upper and lower panes show results for estimated sets of respectively increasing
and decreasing functions. In each case lines coloured brown show medians of naive
estimates across the 1000 replications, calculated pointwise over values of o. In
all cases expect MC3 these suggest that the identified set contains no decreasing
functions. The shaded blue areas indicate the median position of the boundaries of
the identified sets once the bias correction is applied. In all cases these bias adjusted
estimated sets contain increasing and decreasing functions. Red dashed curves show
the exact bounding functions. It is evident that the bias correction is quite effective.
Finally the outer grey lines show the pointwise median position of upper and lower
one sided 95% confidence regions for the estimated bounding functions.

The bias in the naive estimators is quite substantial when there are 10 values of Z
(MC2 and MC4) rather than 5 and in these cases the bias correction is very effective.
The confidence regions are tolerably small in the larger sample size cases.

5.5. Parametric model. When this nonparametric model is augmented with
parametric restrictions the identified set is reduced to the subset of the identified set
of nonparametric functions in which lie only functions that are members of the family
of functions specified in the parametric model. To illustrate, consider the identifying
power of the following probit parametric model,

0 5 OS U S@(—ao—qu)

1 , @(—ag—alX)< U <1 ULZ

Y =hX,U)= {
when Y and X are determined by the structure used to produce Figure 1 for which
the parameter values are given in the first row of Table 1. At these parameter values
the structural threshold-crossing function is ®(x) corresponding to a negative value
a1 = —1 in the parameterisation used here.

The identified set of parameter values comprises the set of values of (ag, )
which deliver functions ®(—ap— a3 X) that lie between the envelope upper and lower
bounding functions graphed (red dashed) in Figure 1. Figure 8 shows this set - the
set is not connected. The small set in the upper part of the graph corresponds to the
monotone decreasing functions in Figure 1.

Figure 9 redraws Figure 1 and superimposes some of the probit functions that lie
in the identified set. In the upper pane monotone increasing functions (a3 < 0) are
drawn. Functions drawn in violet, black and green have intercept term «g equal to
respectively —0.4, 0 and 4+0.4. In the lower pane, which shows decreasing functions
(a1 > 0), only functions with ag = 0 are shown.

In Figure 10 the identified set (shaded light blue) obtained when b; is increased
to 0.4 is superimposed on the set obtained when b; = 0.3 (shaded dark blue). The
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nonparametric bounding functions for this case are shown in Figure 2 and it can be
seen that there are no decreasing functions in the identified set with this larger value
of b1. As a result the light blue set shown in Figure 10 is connected.

The symmetry in these identified sets arises because of essential symmetry in the
probability measure used in this example. Figure 11 shows asymmetric identified sets
of parameters in the parametric probit model obtained under a different probability
measure. Here the structure generating the probability measure has been modified so
that it no longer satisfies the full set of triangular model restrictions. The triangular
form of the structural equations is maintained and the unobservable variables are
jointly Gaussian but the covariance of the unobservables conditional on the instru-
mental variable (now written as Sy, (z)) now depends on the instrumental variable’s
value, as follows.!?

_ a2 exp(mo+mz) —1
Swv (Z) = S
exp(mo + m12) + 1

The unobservables (W, V) are now not jointly independent of Z unless 713 = 0 but
they are marginally independent of Z. The value of 7 is set equal to In(3) which
gives Suy(0) = 0.5 and 71 = 1.5 so that the conditional covariance is an increasing
function of z.

In Figure 11 the smaller light blue shaded set is obtained with parameters set as in
Figure 2 (see Table 1) which has a relatively strong instrument with b; = 0.4. This set
is connected. The dark blue shaded set is obtained with parameters set as in Figure
1 and has a relatively weak instrument with b; = 0.3. This set is not connected being
the union of two connected (indeed convex) sets one of which contains only negative
values of oy while the other contains only positive values. The symmetry evident in
Figure 10 is not present in Figure 11.

6. MONOTONE INDEX RESTRICTION

Now consider cases in which X may be a vector and the exogenous variables, Z, may
appear in the structural function, possibly subject to some restrictions.

Consider models in which there is a monotone index restriction, namely that
for all values, x and z, of X and Z the threshold crossing function can be written
as p(a’z + §'z) for some constant finite dimensional vectors « and d, where p is a
monotone function. The resulting monotone (linear) index binary outcome model is
as follows.

/ !
O L R BT Pa—
There will typically be a restriction excluding some elements of Z from this index,
that is requiring some elements of § to be zero. There will be a normalisation; for
example one might set equal to 1 an element of § corresponding to an exogenous
variable whose coefficient is restricted to be non-zero.

19This functional form respects the condition that the correlation between U and V given Z lie
between —1 and 1.
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Consider a threshold function p(o/x 4 §'z) which lies in the identified set for the
probability measure Pry.
Analogous to (12) and (13) there is, for increasing p:

col,2h) = Pro[{Y =0} N {0/ X +8'Z < p~t(w)} 2] < u (25)
cou(t,z;h) = 1-Pro{Y =1} n{o/X +8Z>p(u)}|z] > u (26)
with inequalities reversed in the definitions of events when p is decreasing.
Continuing along the lines taken in Section 5.1 there is, on substituting v = p(o),
for increasing p:
dgl(a, z;a,0) = Pro{Y =0}n{d/X <o —4dz}|z] <plo) (27)
Ay, (0,250,0) = 1-Pr[{Y =1} n{a’X >0 — &z} |2] > p(o) (28)

and for decreasing p:

dél(a, z;a,0) = Pro{Y =0}n{d/X >0 —dz}|z] <plo) (29)
d(l)u(a,z;a, §) = 1-Pro{Y =1}n{d’X <o -0z} 2] > p(o) (30)

which both hold for all z € Z and o € supp(X). Since there is conditioning on Z = z
it is the random variables Y and o/ X that are involved in the probability calculations.

If (and only if) p(a/x + ') lies in the identified set these inequalities hold at each
o € supp(X) for all z € Z. So it is the largest and smallest values of the respectively
lower and upper bounding probabilities that are relevant. Defining;:

1. _ T 1o e .
dy(o;0,6) = max dy (0, 23, 0) dy,(05a,0) = min do, (0,2, 0)
dél(a; a,0) = max d(l)l(o, z;a,0) d(l)u(a; a,0) = mig d(l)u(o', z;a,0)

z€ ze

there are the following inequalities:
increasing p: dgl(a; a,0) < plo) < dgu(a; a,0) (31)

decreasing p: d[l)l(a; a,0) < p(o) < d(l)u(a; a,0) (32)

which hold for all o € supp(X) and all (and only) structural functions p(a/z + §'z)
in the identified set under the monotone index restriction.

The identified set Iy associated with a structure Sy that generates a probabil-
ity measure F8X| , (indicated by Prg) comprises all (p,,d) for which one of the
inequalities (31) and (32) hold for all o € supp(X).

The identified set can be characterised as follows. There are two components,
a set of values of the finite dimensional parameters, o and J, denoted 18‘5 and for
each element of this set, a set of monotone functions If(c, d). This set of monotone
functions is the union of two sets:

IP(a,8) = Al(a, 6) U Af (e, 6)
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one, Ag(a, J), containing no decreasing functions, the other, Aé(a, ) containing no
increasing functions. These sets of functions are defined as follows.

A, 8) = (p: d)(0;0,8) < p(o) < d},(0;0,0) Vo € supp(X)}

A(l)(a,é) ={p: dél(a; a,0) < plo) < déu(a;oz, d) Vo €supp(X)}

If a pair of upper and lower bounding functions, (dgl, dgu) or (dél,déu), intersect then
the corresponding set (respectively A(T) and Aé) is empty. Let ¢ denote the empty set.
The component of the identified set which relates to the finite dimensional parameters
is defined as follows.

189 = {0 Il (o, 6) # ¢}

To summarise: all (and only) values (a,d) which generate bounding functions
between which can pass monotone functions p (increasing, decreasing or both) are
in the identified set and each such value (a*, ") is associated with all the monotone
functions that can pass between the bounding functions that are generated by (a*, §*).

If for a value (a*,d%) the sets Ag(a*,5*) and A(l)(a*,é*) are both empty, which
will happen if and only if the upper and lower envelope bounding functions defining
each set intersect, then (a*,d*) is not in the identified set of parameter values. If
interest is centred on the finite dimensional parameters («, ¢) then only the identified
set 1§90 is of interest and it can be determined as the set of values (a, d) such that at
least one of the following inequalities holds for all o € supp(X).

v

dgu(a; a,0) — dgl(a; a,0) 0
déu(a;a,é) — dél(a;a,é) > 0

The monotonicity restriction delivers enormous computational benefits because
it allows the identified set of index coefficient values to be characterised without
reference to the unknown threshold crossing function, p.

6.1. Illustration: specification. The probability measures used in this illus-
tration are, as earlier, generated by triangular structures with a single endogenous
variable. There are two exogenous variables (instruments), Z = (Z1.Z2) with Z;
excluded from the structural equation for Y.

YZl[Y*>0] Y*=ag+a1 X +diZ1+doZo+W X=by+b1Z1+bZ5+V

V(B L))

There is the normalisation Var(W) = 1.
The model whose identifying power is considered is as follows.

<
Y—{O , 0< U <plaaX + 2Z) Ul z p monotone

1 , p(OqX—i—Zg)< U <1

The coefficient on Z5 is normalised equal to 1.
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To calculate the identified set the joint distribution of Y* and a3 X given Z = z
is required. Here a7 is a trial value for inclusion in the identified set Ig“s. The
distribution is N (u, ¥) with parameters as follows.

_ aibg + (a1b1 + dl) 21+ (a1b2 + dg) 29
- a1 (bo + b1z1 + baza)

Y = |: 1+ 2a18u0 + a%svv al(swv + alsvv) :|
o al(swv + alsvv) a%svv
Given this distribution it is straightforward to compute the bounding functions (27),
(28), (29) and (30) as bivariate normal orthant probabilities and the envelope bound-
ing functions that appear in (31) and (32) are obtained by finding minimum and
maximum values for z = (z1,22) € Z = Z1 x Z5. In this illustration Z; = [—2,2] and
two intervals Z are considered: [—2,2] and [—3, 3].
The parameter values used in the illustrative calculations are as follows.

ap=0 a1=-1 di=0 di=1 by=0 b1€[0.17,1.5] bo =0 Sy =0.5 sy

There is an exclusion restriction, di; = 0, and ds is set equal to —1 which is consistent
with the normalisation employed in the model.

The coefficient by is zero, so in this illustration X is uncorrelated with Z,. The
variable Z, effectively provides a scale against which the impact of endogenous X on
the index is measured. As already noted, two ranges of values of Z5 are considered,
[—2,2] and [—3,3]. If Zy were not present, for example because it exhibited no
variation at all or because ds were actually zero, then the model would not have any
identifying power for a;. This suggests that identified sets will be smaller when Z5
exhibits more variation.

In the structures employed in this illustration the structural function is ®(—a; X —
daZ3) which is (X + Z3) for the parameter values employed.

6.2. Illustration: results. The identified sets are shown in Table 2. For small
values of b; (the actual value of the coefficient on Z; in the equation for endogenous
X) the identified sets are not connected; there is an interval containing negative values
of a; (the coefficient on endogenous X in the structural function) and an interval
containing positive values. The value a; = 0 and values close to zero never lie in the
identified set. This is because, as explained earlier, in the structure that generates
the probability measure in this illustration the distribution of the outcome Y does
depend on the instrumental variable, Z.

For values of by larger than around 0.2 the identified set is connected, containing
only positive values of «;. The value in the structure employed in the illustration
is positive (it is one). The size of the identified set decreases as the value of b;
increases. That reduction reduces as by increases. Substantial further reductions in
the size of the identified set can only be achieved by increasing the predictive power
of the instrument, that is by reducing s,,. As anticipated, identified sets are smaller
when the range of Z; (the exogenous variable in the index in the structural equation)
is wide.
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22 € [—2,2] Z9 € [—3, 3]

bph |L<0 U<0[L>0 U>0|L<0]JU<O0[L>0[U>0
0.170 | -2.38  -0.38 | 0.11  8.69 | -2.38 | -0.21 | 0.09 | 8.14
0.175 | -2.21  -0.41 | 0.11 841 | -2.16 | -0.26 | 0.10 | 7.90
0.190 | -1.57 -0.49 | 0.12  7.67 | -1.69 | -0.37 | 0.11 | 7.26
0.250 | - : 017  5.72 : : 0.15 | 5.51
0.500 || - : 0.33  3.15 : : 0.31 | 2.94
0.750 || - : 045  2.82 : : 044 | 221
1.000 || - : 0.54  2.83 : : 0.54 | 1.83
1.500 || - : 0.60  2.87 : : 0.66 | 1.75
2.000 | - : 0.60  2.80 : : 0.70 | 1.77

Table 2: Identified sets for oy for a sequence of values of b; and two ranges of values
of zo. At small values of b; the set is the union of two disjoint sets one containing
negative values, one containing positive values .

7. CONCLUDING REMARKS

A single equation IV threshold crossing model for a binary response is set, not point,
identifying for the threshold function even when it is parametrically restricted.

When the predictive power of the instrumental variables is not very great, having
low predictive power for the endogenous variable, the identified sets can be large in
extent and they may not be connected. In this situation the identifying power of
the additional restrictions embodied in the triangular model that motivates control
function estimation is very substantial.

If there is doubt about the validity of the triangular model’s restrictions then it
is prudent to consider the sets identified by the single equation IV model. Sharp
identifying sets have been characterized in this paper and estimation has been shown
to be feasible. Requiring the threshold function to satisfy a monotonicity restriction
yields very substantial computational benefits.

Suppose a triangular binary response structure is supported by data. The identi-
fied set for the single equation IV model calculated using the distribution of Y and X
given Z from which that data is generated characterises the observationally equivalent
structures that the data supports under the IV model’s restrictions. Because these
structures are observationally equivalent no features of data can ever distinguish any
of these structures from the triangular structure. The results of this paper show the
extent of these observationally equivalent structures.

If the estimates delivered by the triangular model for a binary response are used
it will be because one has faith in that model’s restrictions since no evidence will be
ever be found in data to support those restrictions in the context of the encompassing
single equation IV model.
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ANNEX: PROOF OF THEOREM 2

Theorem 2 is proved by constructing a conditional distribution function with the
required properties.?’ The construction is done for a representative value z € Z and a
particular permutation of v = {’yk}le. Without loss of generality it is assumed that
indices are assigned so that 7; < 9 < --- < . Assume the system of inequalities
associated with this permutation given in equation (11) holds.?! Define v, = 0 and

Y1 =1

In order to simplify notation, dependence of various conditional probabilities on z
is not made explicit in the notation. Thus d;(z) is written as d; and ay(z) is written
as «y. Define

K
a=PrlY =0[Z=2=)_6;a
j=1

For all k € {0,1,..., K + 1} define:

Y =min(y, &) Y =max(0,y;, — @)
and note that
Ve + V= Tk
and that the inequalities (11) imply the following inequality.

Y1 <<k

Define (K +2) x K arrays [%Bkj] and [5j3kj] with elements (which depend on z)
defined recursively for each k € {0,1,..., K + 1} as follows as j ascends through the
sequence {1,..., K}.

j—1
53-Bkj :min{éjaj,max{(),’?kZ&sﬁks}} (33)
s=1
j—1
0;Bk; :min{5]~(1—ozj),max{o,’yk—z&ﬁks}} (34)
s=1

Define the required conditional distribution function at u = v, for k € {0,1,..., K+
1} as: ) R
Fyixz(iklzs, 2) = Bij + Biy (35)
which implies®® Fyjxz(0]z;,2) = 0, Fyyxz(1]zj, z) = 1. The distribution function is
endowed with non-decreasing line segments between each suucessive distinct pair of
elements in ~.23

20The construction used here was proposed by Martin Cripps.
2IThe systems of inequalities associated with other permutations of 4 are obtained simply by
exchange of indices.
2Since 7o = 0, 9 = 4 = 0, 50 By; = 0 and B,; = 0 for all j which yields Fy|xz(0|z;,z) = 0.
Since x4 =1, g1 = @ and g,y = 1 — @, so for all 7, BKHj = a; and BKHJ- =1 — «a; which
yields Fyxz(1|z;,2) = 1.
Linear segments will deliver piecewise uniform conditional distributions of U given X and Z.
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Before proceeding further with the proof it is helpful to describe the resulting
arrays of conditional distribution function values.

For each value of k, as j increases, 9; B kj i assigned the value J;c; until a value
of j is reached such that 7, — ZS 15 as < 6;05. This the value of j such that
Ve — Zi:l dsas < 0. At this value of ], denoted j(k), &; Bk] is assigned the value
Y — 287} dsas which equals 7, — Zs 10 B, and values of §; ﬁkj for larger values
of j are assigned the value zero. The result is that ES 1 sﬁks = 7. The function

j(k) has the following representation.

j—1

j(k) = max{j : 74 — > _ dsas > 0} (36)
s=1

Since the 7, ’s are a non-decreasing sequence j(k:) is a non-decreasing function of k.
It is shown below that for all j the sequence {d;3 kj} 1 is non-decreasing.

For each value of k, as j increases, ¢, ﬁ kj is assigned the value d; (1 — ;) until a
value of j is reached such that 4, — Zs 1 10sBhs < dj (1 — «j). This is the value of j
such that 4, —>"7_; ds(1—a;) < 0. At this value of 7, denoted j(k), 6, By is assigned
the value 4, — 2371 0s(1 — as) which equals 5, — Zé 10515 and values of 4 Bk] for
larger values gf j are assigned the value zero. The result is that Z =1 Sﬁks = Y-
The function j(k) has the following representation.

j—1

j(k) = max{j: 4, — > _ 6. (1 —as) >0} (37)
s=1

Since the 4;,’s are a non-decreasing sequence E(k) is a non-decreasing function of k. At
low values of k the value of 4, can be zero in which case 3(1@) = 0 and every element
in {5j6k]}] 1 s zero. It is shown below that for all j the sequence {5]Bk]}k | s
non-decreasing.

Here is an example - a case in which K =5 with 6 = {J; }] 1, 0= {aj}JK:l (for

some value of z) and vy = {'yj ., take the following values.

0.1 0.2 03 0.1 03]

[
[05 03 04 05 08 ]
[03 04 05 06 08 ]
[

The (7 x 5) arrays [5]-Bkj] and [, Bk]] are as follows.

[ 0.00 0.00 0.00 0.00 0.00 ] 7 0.00 0.00 0.00 0.00 0.00

0.05 0.06 0.12 0.05 0.02 0.00 0.00 0.00 0.00 0.00

0.05 0.06 0.12 0.05 0.12 0.00 0.00 0.00 0.00 0.00

[0;8k;] = | 0.05 0.06 012 0.05 022 | [6;8,]= | 0.00 0.00 0.00 0.00 0.0
0.05 0.06 0.12 0.05 0.24 0.05 0.03 0.00 0.00 0.00

0.05 0.06 0.12 0.05 0.24 0.05 0.14 0.09 0.00 0.00

| 0.05 0.06 0.12 0.05 0.24 | | 0.05 0.14 0.18 0.05 0.06




SINGLE EQUATION ENDOGENOUS BINARY RESPONSE MODELS 28

The values of the constructed distribution functions of U conditional on X = ¢ €

{z1,...,25} (and Z = z) at the 7 values 7g,...,7¢ are given in the columns of the
(7 x 5) array [By;], below with the associated values 7y, ..., 7 shown alongside.
[ 0.00 0.00 0.00 0.00 0.00 T [ 0.0 ]
0.50 0.30 0.40 0.50 0.06 0.3
0.50 0.30 0.40 0.50 0.40 0.4
[Br;] = | 050 0.30 0.40 0.50 0.73 [yl = | 0.6
1.00 0.45 0.40 0.50 0.80 0.6
1.00 1.00 0.70 0.50 0.80 0.8
| 1.00 1.00 1.00 1.00 1.00 | 1.0 |

The proof now proceeds by showing the distribution function (35) is: (1) proper,
(2) satisfies the independence restriction, and, (3) has an observational equivalence
property. The properness and independence conditions are satisfied by construction,
as will be shown. Satisfaction of the observational equivalence condition relies on the
elements of 7 satisfying the system of inequalities (11).

1. Proper conditional distributions
The proposed conditional distribution functions are proper if, for all j:

0<pBy; < <Pk

0< By << B

and B, + BK]‘ <1
It is evident that all elements of the arrays [3;;] and [3;;] are non-negative. For

A

all 7 each element Bij is bounded above by «; and each element Bij is bounded above
by 1 — «; and so there can be no values of ¢ and j at which Bij + Bij exceeds 1.

It is now shown that for all j and k, §;8; < 08541, Use is made of the fact
that j(k) is a non-decreasing function of k.

o If j < 3(]{:) then j < 5(]43 + 1) SO 6J'Bkj = 5jBk+1j = 5jaj.
o If j > j(k) then 5]-Bkj = 0 and, since all elements of the array [Bm] are non-
negative, 0;8y; < d;8;11;-
e There remains only the possibility that j = j(k). In this case JjBkj = A —
Y111 bsars < Gy,
— Otherwise j = j(k+1) and 5]-Bk+1j = Y1 — Z‘;: ds0s and since Yy, 1 >
Vi, there is ;85 < d;B511;-

It is now shown that for all 7 and k, 53‘31@ < 5j3k+1j~ Use is made of the fact

that j(k) is a non-decreasing function of k.
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o If j < j(k) then j < j(k+1) 50 8;B; = 0;Bp41; = 0;(1 — aj).
e If j > j(k) then 6]-Bkj = 0 and, since all elements of the array [BU] are non-
negative, §;8y; < 6841 -
e There remains only the possibility that j = j(k) when 5jBkj =9 —ZZ;% ds(1—
as) < 65(1 — o).
— Otherwise j = j(k + 1) and 5]-Bk+1j = Vi1 — Zi;} ds(1 — as)and since
Vi1 = Vg there is 0;5x; < 0841 -

2. Independence
It was noted above that, for all k:

K K
D ik =T 0Bk =
j=1 j=1
from which it follows that for all k:
K ~
Z(Sj <5kj + 5kj) =Y+ Y% = Yk
j=1
as required.
3. Observational equivalence
The observational equivalence property holds if, for all k:
kB + OkBri = Ok

The inequalities (11) can be written as follows.

k k—1
D djaj<qp<a+ ) 5i(1—ay) (38)
=1 j=1

There are two cases to consider.
First suppose v, < @& Then 4, = 7, and 4, = 0. From (38) there is on
substituting v, = 7;:
k—1

T — D 505 > bray,
=1

and s0 63, = Opug. Since 4y, = 0, 6334, = 0 and the result follows.
Now suppose that v, > &. Then 74, = &, 4, = v — &. Since & — 25;11 dja >
O3ty OxBri = Opcur. From (38) there is on substituting ), — @ = 4.

k—1
Ak < 81— ay)
j=1

and so in the definition of 033, max{O,’yk — Zf;ll (553,%} =050 083, = 0 and
the result follows.
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Figure 1: Bounding functions (blue) at 10 values of z € [—1,1] with tight bounds
(dashed red) between which lie the monotone functions in the identified set. A
relatively weak instrument with b; = 0.3.
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Figure 2: Bounding functions (blue) at 10 values of z € [—1,1] with tight bounds
(dashed red) between which lie the monotone functions in the identified set. A slightly
stronger instrument than in Figure 1 with by = 0.4. The set of decreasing functions
(lower pane) is empty because the tight bonds intersect.
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Figure 3: Bounding functions (blue) at 10 values of z € [—1,1] with tight bounds
(dashed red) between which lie the monotone functions in the identified set. A slightly
stronger instrument than in Figure 1 with more predictive power for X: b; = 0.3 as
in Figure 1 but o4, = 0.05, 0y, = 0.1 (0.5 and 1 in Figures 1 and 2). The set of
decreasing functions (lower pane) is empty.



SINGLE EQUATION ENDOGENOUS BINARY RESPONSE MODELS 33

o - -—
— ’-’
d
/7
/7
/
0 — ’
o
Q_
(@]
0
c
e
—
o
[
=]
—
(&)
= < -
5 ]
c o
>
o
O
(\!_
o
o - .-
o

Figure 4: Bounding functions (blue) at 10 values of z € [—1,1] with tight bounds
(dashed red) between which lie the monotone functions in the identified set. An
instrument with great predictive power: b; = 0.3 as in Figure 1 but o,, = 0.005,
oy = 0.01 (0.5 and 1 in Figures 1 and 2). There are no decreasing functions in the
identified set.
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Figure 5: Bounding functions (blue) at 10 values of z € [—1,1] with tight bounds
(dashed red) between which lie the monotone functions in the identified set. An
instrument with very great predictive power: b; = 0.3 as in Figure 1 but oy, =
0.0005, 04, = 0.001 (0.5 and 1 in Figures 1 and 2). There are no decreasing functions

in the identified set.
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Figure 6: Bounding functions (blue) at 10 values of z € [—1,1] with tight bounds
(dashed red) between which lie the monotone functions in the identified set. An
instrument with very great predictive power: b; = 0.6 twice the value in Figure 1
and 0, = 0.0005, 0., = 0.001 (0.5 and 1 in Figures 1 and 2). There are no decreasing
functions in the identified set.
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Figure 8: Identified sets for a parametric probit model for the structure set out in
the first row of Table 1.
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Figure 9: Some parametric probit functions falling in the identified set when b; = 0.3
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Figure 10: Identified sets for a parametric probit model for the structure set out in
the first row of Table 1. with b = 0.3 (dark blue) and b; = 0.4 (light blue)
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Figure 11: Identified sets for a parametric probit model when a probability measure
is generated by a structure not satisfying triangular model conditions
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bounding functions

bounding functions

Figure 12: Monte Carlo experiment MC1. Bounding functions (dashed red), medians
of naive estimates (brown), medians of corrected estimates (enclosing the shaded blue
areas) and medians of boundaries of upper and lower 95% confidence regions.
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Figure 13: Monte Carlo experiment MC2. Bounding functions (dashed red), medians
of naive estimates (brown), medians of corrected estimates (enclosing the shaded blue
areas) and medians of boundaries of upper and lower 95% confidence regions.
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Figure 14: Monte Carlo experiment MC3. Bounding functions (dashed red), medians
of naive estimates (brown), medians of corrected estimates (enclosing the shaded blue
areas) and medians of boundaries of upper and lower 95% confidence regions.



SINGLE EQUATION ENDOGENOUS BINARY RESPONSE MODELS 48

bounding functions

bounding functions

Figure 15: Monte Carlo experiment MC4. Bounding functions (dashed red), medians
of naive estimates (brown), medians of corrected estimates (enclosing the shaded blue
areas) and medians of boundaries of upper and lower 95% confidence regions.



