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Abstract
Econometric inequality hypotheses arise in diverse ways. Examples include

concavity restrictions on technological and behavioural functions, monotonic-
ity and dominance relations, one-sided constraints on conditional moments in
GMM estimation, bounds on parameters which are only partially identi�ed,
and orderings of predictive performance measures for competing models. In
this paper we set forth four key properties which tests of multiple inequality
constraints should ideally satisfy. These are (1) (asymptotic) exactness, (2) (as-
ymptotic) similarity on the boundary, (3) absence of nuisance parameters from
the asymptotic null distribution of the test statistic, (4) low computational com-
plexity and boostrapping cost. We observe that the predominant tests currently
used in econometrics do not appear to enjoy all these properties simultaneously.
We therefore ask the question : Does there exist any nontrivial test which, as
a mathematical fact, satis�es the �rst three properties and, by any reasonable
measure, satis�es the fourth ? Remarkably the answer is a¢ rmative. The paper
demonstrates this constructively. We introduce a method of test construction
called chaining which begins by writing multiple inequalities as a single equality
using zero-one indicator functions. We then smooth the indicator functions.
The approximate equality thus obtained is the basis of a well-behaved test.
This test may be considered as the baseline of a wider class of tests. A full
asymptotic theory is provided for the baseline. Simulation results show that the
�nite-sample performance of the test matches the theory quite well.
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1 Introduction and related literature

The growing importance of research on testing econometric multiple inequality
hypotheses cannot be disputed. Such hypotheses now arise in diverse contexts,
both classical and at the frontier. This is illustrated by the following selection
of six non-exclusive groupings in which we give literature examples where for-
mal inference on multiple inequalities is called for. Additional references will
be found within the papers listed. Group 1 : Concavity and other restrictions
characterizing consumer-producer optimality and technology. See Hazilla and
Kopp (1986), Kodde and Palm (1987), Koebel, Falk and Laisney (2003), Reis
(2006) and Wolak (2007). Group 2 : Multiperiod inequalities due to liquidity-
risk premiums and random walk e¤ects in �nancial markets. See Richardson,
Richardson and Smith (1992), Boudoukh, Richardson, Smith and Whitelaw
(1999), Fisher, Willson and Xu (1998) and Fleming, Kirby and Ostdiek (2006).
Group 3 : Stochastic dominance and monotonicity restrictions. See Anderson
(1996), Davidson and Duclos (2000), Barrett and Donald (2003), Post (2003),
Linton, Maassoumi and Whang (2005), Linton, Song and Whang (2008) and
Lee, Linton and Whang (2009). Group 4 : One-sided constraints on (con-
ditional) moments in GMM estimation. See Rosen (2008) and Andrews and
Soares (2009). Group 5 : Bounds on parameters which are only partially iden-
ti�ed. See Guggenberger, Hahn and Kim (2008) and McAdams (2008). Group
6 : Orderings of predictive performance measures for competing models. See
White (2000), Hansen (2005), Hansen and Lunde (2005) and Martin, Reidy and
Wright (2009). It will be noticed that the dates of the papers above fall within
the last 20 or so years. This is a re�ection of the fact that econometric theory for
handling multiple inequalities has largely developed in that period of time and
is still very much incomplete. The purpose of the present paper is to address
four outstanding concerns in test design and to show constructively that there
does exist a theoretically sound test which can simultaneously satisfy four key
properties. That test is based on the novel concept of constraint chaining.
The articles cited above consider null hypotheses of the type where, for some

�nite or in�nite subset S of the real line, the �true�values of parameters �r; r 2
S, in a given econometric model are all nonnegative whilst the alternative is that
at least one is negative. The subscript r may be simply an indexing argument
but it could also be the value of an observable economic variable, in which case
S may be a entire interval. This is the case in some papers of Group 3 above.
In other groups, S is generally the set of integers

f1; 2; : : : ; pg

for some �nite p . The baseline statistical properties we set forth shortly for tests
of composite null hypotheses are relevant regardless of S. The paper conducts
most of its speci�c analysis for �nite p but that extends to the case where S is
a continuum. We allow the vector

� � (�1; �2; : : : ; �p)0

2



to be functionally dependent on other parameters in the model. This framework
is then su¢ ciently general to cover most �nite multiple inequality contexts.
The di¢ culty of designing tests arises because simple one-sided testing of the

single scalar parameter case ( p = 1) does not carry over in an obvious way to the
situation where p � 2. It is tempting to try to solve the problem by conducting
a family of p individual tests each at reduced signi�cance level in an attempt
to keep the family-wide error rate (overall signi�cance level) within a nominal
value. However, since the actual overall signi�cance level generally falls well
short of the nominal, the family of tests is �inexact�and, being �conservative�,
is likely to have lower power than an e¢ cient test which is designed to attain
the nominal level. The family of tests (or �multiple comparisons�) approach has
useful features (Savin (1980, 1984), Hochberg and Tamhane (2007)) but we do
not consider it in this paper since it does not enjoy the most important of the
four key properties which set the standard in tests of composite null hypotheses.
These are as follows.

Property 1 : (Asymptotic) exactness.
This property requires that the nominal test size is (asymptotically) achieved

at some point of the null hypothesis (and not exceeded at any point).

Property 2 : (Asymptotic) similarity on the boundary of a composite null
hypothesis.
Applied to the present context, this property requires that a test should have

constant rejection probability at all points � � 0 where at least one element of �
is exactly zero. Theoretical work indicates that bias and inadmissibility of test,
for example, can result from failure of Property 2. See Hansen (2003, 2005) and
Linton, Song and Whang (2008).

Property 3 : Absence of nuisance parameters from the (asymptotic) null
distribution of the test statistic.
The nuisance parameter (any parameter other than that subject to the null

hypothesis) is usually a covariance matrix. When Property 3 fails, true test
critical values cannot be evaluated even if the analytical form of the null distri-
bution is known completely. Estimates of critical values can be obtained either
by plugging consistent estimates of the nuisance parameters into the analytical
formula (if available) for the critical values. Alternatively, one may directly
estimate the critical values as quantiles of the bootstrap distribution of the
test statistic. But the bootstrap samples must be adjusted to ensure that they
mimic a population in which the null hypothesis holds (Politis, Romano and
Wolf (1999, Section 1.8)). Using the bootstrap to eliminate nuisance parame-
ters is quite separate from its potential in securing higher order improvement
over �rst-order asymptotic approximation to the true �nite-sample cdf of test
statistics Indeed, the latter may be adversely a¤ected by the former (Horowitz
(2001)).

Property 4 : Inexcessive computational complexity and boostrapping cost.
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Attempts to rescue tests from violation of Properties 1-3 may compromise
Property 4.

In relation to the above properties, we proceed now to review the two pre-
dominant approaches used in econometrics for testing the validity of a set of
inequality hypotheses. We initially assume that the exists an estimator b� based
on sample size T such that

p
T (b�� �)

is (asymptotically) multivariate normal with mean 0 and covariance matrix V
consistently estimated by bV , both nonsingular. V and �may depend on common
parameters but this is generally kept implicit for notational simplicity.
The �rst test approach measures empirical discrepancy between unrestricted

and inequality-restricted models using a quadratic form such as

min
�:��0

T (b�� �)0 bV �1(b�� �): (1)

This approach extends classical Wald, LM and LR equality tests to the context
of multiple inequalities. The literature on this extension is vast and we therefore
direct the reader to the key articles by Perlman (1969), Kodde and Palm (1986),
Shapiro (1988), Wolak (1987, 1988, 1989a, 1989b, 1991), Dufour (1989) and the
textbooks by Robertson, Wright and Dykstra (1988), Gourieroux and Monfort
(1995, Chapter 27) and Silvapulle and Sen (2005, Chapters 3 and 4). The
(asymptotic) distribution of (1) depends on the value of the DGP parameter �
from which data are drawn. For the case where V is known hence bV = V , the
work of Perlman (1969) and Wolak (1987, 1988) shows that the (asymptotic)
cdf of (1) at the particular point � = 0 is of the so-called chi-bar squared
distribution3

pX
r=0

wr;p(V )F (xjr) (2)

due to Kudo (1963), where wr;p(V ) are nonnegative weights summing to 1 and
F (xjr) is the cdf of a central chi-square variate with r degrees of freedom. At
boundary points of the composite null hypothesis � � 0, the cdf is also chi-bar
but with p replaced by d, the number of binding constraints, and V replaced
by a submatrix corresponding to those constraints4 . Since the quantiles of
this distribution vary with d, a test using quantiles as critical values calculated
assuming � = 0 hence d = p necessarily fails to have the desirable Property
2 (asymptotic similarity on the boundary) listed earlier. Nonetheless, in the

3The use of quadratic form statistic and chi-bar squared test is also related to the test
problem of a simple null hypothesis against the one-sided alternative. See e.g., Kudo (1963),
Nuesch (1966), Gourieroux, Holly and Monfort (1982), King and Smith (1986), Andrews
(1998) and Feng and Wang (2007). See also Goldberg (1992) for discussions of the relation
between the two testing problems in the context of the chi-bar squared approach.

4See equation (4.116) in Silvapulle and Sen (2004, pp 204).
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case bV = V , Property 1 (asymptotic exactness) still holds because Perlman
(1969) proved that the particular value � = 0 is least favourable (LF) to the
null hypothesis in the sense that the (asymptotic) rejection probability of the
test based on the quadratic form statistic (1) is maximized over points satisfying
� � 0 by the choice � = 0, provided that V is not functionally related to �.
Since the cdf of the test statistic at � = 0 is known, a critical value can in
principle be calculated such that any nominal test size is attained. However,
the weight wr;p(V ) cannot be given a general algebraic form as it represents the
probability that r elements out of a p�dimensional vector of correlated normal
variables with covariance V take value in a cone determined by the constraints.
Computation of these weights is non-trivial when p, the number of inequality
constraints exceeds three. When p is large, numerical simulation of the weights
or the tail probability of (2) is required. Silvapulle and Sen (2005, pp.78-81)
provide a helpful recent review of available simulation techniques for the chi-bar
squared distribution. Note that to ensure a reasonable estimate of the chi-bar
squared distribution, iterations of constrained quadratic programming of (1)
also have to be performed. This cycle of optimization and simulation could
hardly be described as routine and has an adverse impact on Property 4.
There is unfortunately a further problem with the chi-bar squared test de-

scribed above. When V is related to �, which inevitably happens if � is a
nonlinear function of some underlying parameters, the choice � = 0 is no longer
LF. In such cases, it is generally impossible to locate an LF value. One way out
of this problem is to derive conservative bounds on the LF distribution. See, e.g.,
Kodde and Palm (1986). The bounds approach is not only popular, but it has
even been proposed as necessary since, in most instances, it is quite di¢ cult to
obtain an empirically implementable asymptotically exact test, especially when
the test is a NOS (nonlinear one-sided) hypothesis test. On the other hand, it
runs the risk of inconclusive test results. Wolak (1991) discusses this problem in
depth and points out that for tests with high dimensional inequality constraints,
the bounds become very slack, making inconclusive test results more likely. The
consequence is that a test based on the quadratic form statistic (1) using bounds
of critical values will almost certainly not satisfy Property 1 (asymptotic exact-
ness). Guggenberger, Hahn and Kim (2008) give an equivalence result which
implies that the problem of testing speci�cation of models containing moment
inequality constraints involving partially identi�ed parameters is equivalent to
testing an appropriately-de�ned set of nonlinear multiple inequalities. Indeed
Rosen (2008), using Wolak-style chi-bar theory in a partially identi�ed setting,
notes that his model speci�cation test may be conservative. In a more general
distributional setting also allowing partially identi�ed parameters in moment
inequalities, Andrews and Soares (2009, pp.22-23) warn that their GMS model
speci�cation test is conservative to unknown extent (hence may lose Property
1) in some cases. Finally, even when V is not related to �, it is a nuisance
parameter in the sense of Property 3 when its value is unknown. This causes
the problems discussed in the paragraph following the statement of Property 3
and thus compromises Property 4.
The second predominant approach to testing the hypothesis � � 0, which
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we call the extreme value (EV) method, is based on the statistic

min f
p
Tb�1;pT b�2; : : : ;pTb�pg (3)

where b�r denotes the r-th element of b�. Recent heightened interest in this
approach is due to White (2000). If precisely d � 1 elements of the true value
of � are zero (the rest being strictly positive), the asymptotic null distribution
of (3) is that of the minimum element of a normal vector with mean 0 and
covariance equal to an appropriate d�d submatrix of V . An analytic expression
for the cdf of this distribution is not generally available, hence the cdf has to be
obtained by simulation for each given V and d. That can be done to arbitrary
accuracy but may impact on Property 4. Since the asymptotic null distribution
of (3) depends on d, the test cannot satisfy Property 2. However, as long as
V does not depend on �, the cdf for the case d = p is dominated by the cdfs
for d < p. So the point � = 0 is least favourable hence Property 1 will hold.
When V is related to �, this conclusion is not sustained and we are faced with
the problems discussed in connection with the chi-bar squared test. When V
is not related to � but its value is unknown, it is a nuisance parameter in the
sense of Property 3 and the issues discussed in connection with that property
come into play. But note that Property 4 is less a¤ected than in the case of the
chi-bar squared test whose statistic requires an inequality-constrained quadratic
minimization coupled with V inversion.
The EV method of White has been modi�ed in two ways by Hansen (2005)

and Hansen and Lunde (2005). First, Hansen works with t-ratios of the b�r
rather than their raw values. Second, and more relevant to the four baseline
properties we have set forth in this paper, White computes his critical val-
ues from an estimated null-hypothesis compliant cdf which corresponds to a
population having mean � = 0, whereas Hansen�s mean is data-driven having
a particular element equal to zero only if the corresponding element of b� is
negative or close to zero (the measure of closeness diminishing as sample size
increases). Asymptotically, Hansen is consistently estimating the correct value
of d, the true number of zeros to use in the asymptotic null distribution of the
test statistic. In consequence, unlike White�s test, Hansen�s test will achieve
the key Property 2. Nuisance parameter issues concerning V are the same as in
White�s test. The importance of estimating the number of binding inequality
constraints (or �contact points� in the notion of Linton, Song, Whang (2008))
and the bene�ts of automatic data-driven components in test procedures has
been further addressed in a number of more recent papers which include notably
Linton, Song, Whang (2008), Andrews and Jia (2008), and Andrews and Soares
(2009).
In the light of the above discussion, it is compelling to ask if there exists any

approach which is theoretically guaranteed to satisfy Properties 1 through 3 as
a mathematical fact and, by any reasonable measure, satis�es Property 4. For
the last property, it is desired to develop a simple and reasonably e¤ective test
of multiple inequality constraints whenever the cost or complexity of alterna-
tive testing procedures is prohibitive. The test should be applicable under wide
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assumptions and be easy to implement without need for bootstrapping or numer-
ical simulation. Remarkably, the answer is a¢ rmative. The rest of the present
paper demonstrates this. We set out an approach to inequality test construc-
tion which is philosophically and operationally very di¤erent from the chi-bar
squared and EV tests. The new idea is to chain multiple inequalities into a
single equality by exploiting zero-one indicator functions. Thus testing multiple
inequalities is reduced to testing a single equality. Then we smooth these func-
tions to overcome the distribution problems of discrete functions of continuous
variates. The smoothing embodies a data-driven importance weighting feature
which at the outset automatically concentrates weight onto those parameter
estimates having most inferential value. In respect of the role of smoothing,
there is some a¢ nity between our paper and the work of Horowitz (1992). The
zero-one indicator in Horowitz�s context represents a binary choice probability
depending on model parameters. By working with a smoothed version of the
indicator which approaches the original zero-one with increasing sample size,
Horowitz �nds that his smoothed maximum score estimation method results in
parameter estimates which achieve root of sample size convergence rate and are
asymptotically normal, quite unlike the original estimates obtained by Manski
(1975, 1985) without smoothing which converge at slower rate (cubic root of
sample size) and have very complicated nonstandard asymptotic distribution.
Our paper is therefore a counterpart in testing of Horowitz�s idea in estimation.
Smoothed indicator functions invariably involve a function of sample size, called
a �bandwidth� (Horowitz (1992, 2002)) or �tuning parameter� (see the works
cited at the end of the previous paragraph), which controls the rate at which
the smoothed indicator approaches the original. Since smoothed indicator func-
tions which simply shift the discontinuity away from the origin, the size of that
shift is the bandwidth. The work of Horowitz (2002) suggests that, with some
additional restrictions on bandwidth, Edgeworth-type higher-order expansions
are derivable for test statistics constructed using smoothed indicators, hence
bootstrapping may improve test performance. This is a potential future bonus
for the test of this paper but our present objective is restricted to setting out
a complete �rst-order theory for an asymptotic test that enjoys Properties 1-4.
In fact, we also present results of simulations which show that the test works
quite well without bootstrapping.
At this junction, the related work by Andrews (1999, 2000, 2001, 2002)

on hypothesis testing involving inequality restrictions should be noted since he
raises issues which may at �rst sight appear to restrict the methods of the
present paper. However, his work highlights reasons for nonstandard behaviour
of test statistics other than those we have pointed out in our review above.
For example, Andrews considers estimation and testing when the parameter
estimates lie in a set de�ning a maintained hypothesis some of whose boundary
points are included in the set de�ning the null hypothesis. In this case, the
asymptotic distribution of the estimator cannot be symmetric under all points
of the null hypothesis and thus conventional quadratic-form test statistics based
on the estimator cannot be standard chi-square (see Andrews (1999, 2001)).
Indeed, even bootstrap tests may not work (Andrews (2000)). This scenario
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would apply, for example, to testing that a variance parameter is zero using a
variance estimate which is naturally nonnegative. By contrast, the boundary
of the null hypothesis set considered in this paper lies within the interior of
the maintained hypothesis set. So the scenario envisaged by Andrews is not
applicable within the setup of this paper.
The rest of the paper is organized as follows. Section 2 sets up the constraint

chaining framework and the smoothing indicator functions. We note that, whilst
the philosophy of our approach leads uniquely to a statistic which is of �quasi-
linear�form, this can be thought of as a special case of a wider class of forms all
using only products of parameter estimates and smoothed indicators. Section 3
states distributional assumptions and completes the construction of the chaining
test statistic. Section 4 investigates the asymptotic properties of the chaining
test. Section 5 discusses issues in choosing the smoothing indicator functions.
Section 6 proposes a computable interpolating power function which re�ects the
intentional di¤erential impact of importance weighting on power at local to ori-
gin points compared with medium to distant point. Section 7 studies the test�s
�nite sample power using Monte Carlo simulations. Section 8 presents proofs
of the stated theorems. Section 9 sketches, without proof, how the constraint
chaining method extends to a test of

�(x) � 0; a � x � b

, where �(x) is a function of an observable variate x . Section 10 concludes the
paper.

2 The chaining framework and the smoothing
indicators

Let � = (�1; �2; :::; �p)
0 be a column vector of (functions of) parameters appear-

ing in an econometric model. The problem is to test :

H0 : �j � 0 for all j 2 f1; 2; :::; pg versus H1 : �j < 0 for at least one j: (4)

Note that in this problem neither the number nor the speci�c values of j are
known for which �j = 0 under H0 or �j < 0 under H1.
Let D(x); x 2 R, be the indicator function where D(x) = 1 if x � 0 and

D(x) = 0 if x > 0. Then we can chain the multiple inequalities with the
indicators to rewrite the hypothesis under test as follows :

H0 :

pX
j=1

D(�j)�j = 0 versus H1 :

pX
j=1

D(�j)�j < 0 (5)

Evidently, testing multiple inequalities is equivalent to one-sided single equal-
ity testing. With parameter estimates b� in hand, one can consider the constraint
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chaining test statistic
pX
j=1

D(b�j)b�j : (6)

However, a complication arises from the discontinuity of the indicator func-
tion D(x) at the origin. Such discontinuity will result in the above chaining
statistic having an asymptotic distribution which is the same as that of a sum
of correlated and truncated random variables. The operational problems this
incurs will hence be of similar di¢ culty to those arising with the chi-bar squared
test methods. To overcome this problem, instead of directly working with D(x),
we construct a sequence of functions f	T (x)g each of which is continuous at
the origin and converges to the indicator D(x) pointwise (except possibly at the
origin) as the sample size T goes to in�nity. In particular, we require that this
sequence have a functional structure

	T (x) = 	(K(T )x)

satisfying the following assumptions:

[A1] 	(x) is non-negative, bounded, and non-increasing in x 2 R
[A2] 	(x) is continuous at x = 0 and 	(0) > 0
[A3] K(T ) is positive and increasing in T
[A4] K(T ) �!1 and K(T )=

p
T �! 0 as T �!1

[A5] 	(x) �! 1 as x �! �1
[A6]

p
T	(K(T )x) �! 0 as T �!1 for x > 0

We shall refer to any 	T (x) = 	(K(T )x) that satis�es the above assump-
tions as an (origin-) smoothing indicator. The technique of improving asymp-
totic behaviour by replacing a discrete indicator function with a smoothed ver-
sion was �rst notably used by Horowitz (1992) in parameter estimation. Our
paper shows the idea is also e¤ective in hypothesis testing. Note that our
smoothness assumptions are not completely the same as those in his (1992)
paper or the follow-up (2002) and his �bandwidth� parameter is actually the
inverse counterpart of our tuning parameter K(T ). In our framework, the set
of assumptions on 	T (x) is not very restrictive and the range of choice for a
valid 	(x) is wide. In particular, one can use 	(x) = 1 � F (x) where F (x) is
the cdf of an arbitrary random variable with F (0) < 1. We shall discuss issues
in choosing 	(x), K(T ) and particular examples in Section 5.
All the assumptions on	T (x) enable the smoothing indicator to approximate

D(x) pointwise at just such a rate that the smoothed version
pX
j=1

	T (b�j)b�j of
pX
j=1

D(b�j)b�j has the property of asymptotic normality even though the latter
itself is not asymptotically normal. Moreover, the idea of imposing [A6] is to
create data-driven importance weighting in the sense that each individual b�j
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corresponding to a strictly positive �j is likely to contribute ever less to the
value of the test statistic as sample size T increases. As a consequence, the
test statistic will be asymptotically dominated by those b�j corresponding to
zero or negative �j , detection of which is indeed the purpose of the test. By
such importance weighting, we are therefore able to design a simple consistent
one-sided test of H0 versus H1.
Note that the idea of chaining constraints with indicators is quite general

and also �exible in terms of formulation. In particular, for arbitrary strictly
positive scalars �j , j 2 f1; 2; :::; pg, it is clear that the original problem could
also be posed more generally as the following.

H0 :

pX
j=1

D(�j�j)�j�j = 0 versus H1 :

pX
j=1

D(�j�j)�j�j < 0: (7)

One key choice of �j which can be motivated from standardization of para-
meter estimators is �j = (Vjj)

�1=2 where Vjj denotes the asymptotic variance
of b�j5 . Furthermore, we note that the unsmoothed and smoothed quasi-linear
chaining test quantities

pX
j=1

D(b�j)b�j and pX
j=1

	T (b�j)b�j
may be thought of as special cases of a class of plausible test quantities generated
by taking the unsmoothed

� � (�1; �2; :::; �p) where �j � D(b�j)b�j
and the smoothed

e� � (e�1;e�2; :::;e�p) where e�j � 	T (b�j)b�j
in a suitable class of functions g(�); � 2 Rp including at least the following

g(�) =

pX
j=1

�j ; g(�) = �
0U�; g(�) = minf�1; �2; :::; �pg

where U is a positive semi-de�nite matrix. This paper develops a complete test
theory for the case of linear function. It is the benchmark. The quadratic case
is considered in Chen (2009, Chapter 4)6 .

5See Hansen (2005) for motivating arguments of the use of standardized individual statistic
for the test construction in the context of multiple inequality testing.

6Chen (2009, Chapter 4) shows that the smoothed indicator test based on quadratic form
of g(e�) can also simultaneously satisfy the four properties discussed in Section 1. In the
contrast, the extreme value form of g(e�) is not smooth in e� and thus even used with smoothed
indicator, such extreme value test still su¤ers from the problem of nuisance parameter from
unknown covariance V as in White (2000) and Hansen (2005).
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3 Distributional assumptions and the chaining
test statistic

Let the true value and estimator of the parameter vector be denoted respectively
by �� = (��1; �

�
2; :::; �

�
p)
0 and b� = (b�1; b�2; :::; b�p)0. In the simplest distributional

set-up, b� is assumed to be pT consistent and
[D1]

p
T (b�� ��) d�! N(0; V )

where V is some �nite positive de�nite matrix. For notational ease, we
keep implicit the possible dependence of V on the values of any underlying
parameters. We assume there is available an estimator bV , almost surely positive
de�nite, such that

[D2] bV p�! V .

Regarding the scalars introduced at the end of Section 2, we assume the
availability of strictly positive estimators b�j ; j 2 f1; 2; :::; pg, such that
[D3] b�j p�! �j :

To construct the chaining test statistic, we introduce the following objects.
Let � and b� be the p dimensional square matrices

� � diag(�1; �2; :::; �p) (8)b� � diag(b�1;b�2; :::;b�p) (9)

Let b	 be the p dimensional column vector
b	 � (	T (b�1b�1);	T (b�2b�2); :::;	T (b�pb�p))0: (10)

De�ne Q1 and Q2 as

Q1 �
p
T b	0 b�b� (11)

Q2 �
pb	0 b�bV b�b	: (12)

We de�ne a test statistic Q as follows :

Q =

�
�(Q1=Q2) if Q2 > 0
1 if Q2 = 0

�
(13)

where �(x) is the standard normal distribution function. For asymptotic sig-
ni�cance level �, we reject H0 if Q < �. The chaining statistic Q is therefore
a form of tail probability or p-value. We now sketch the reasoning which moti-
vates our test procedure. Formal theorems and rigorous proofs are given later.
Intuitively, we should reject H0 if Q1 is too small. For those parameter points
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under H0 for which the probability limit of Q2 is nonzero, Q2 will be strictly
positive with probability approaching one as sample size grows. Then the ratio
Q1=Q2 will exist and be asymptotically normal. By contrast, for all points under
H1, the value of Q1 will go in probability to minus in�nity as sample size grows.
Therefore, in cases where Q2 is positive, we propose to reject H0 if Q1=Q2 is
too small compared with the normal distribution. Note that our assumptions
on the smoothing indicators do not exclude discrete functions. Only continuity
at origin is required. Therefore, a discrete function that is continuous at origin
can be a candidate of the smoothing indicator and such an example is presented
in Section 5. If all parameters are strictly positive and 	 is a discrete function,
then b	T is zero with probability approaching one as sample size grows. In this
case, Q2 is also zero with probability approaching one. Therefore, occurrence of
the event that Q2 = 0 signals that we should not reject H0. Note that it is not
an adhoc choice to set Q to be one for which the event Q2 = 0 occurs because
the probability limit of �(Q1=Q2) is also one when all parameters are strictly
positive and 	 is an everywhere continuous function7 .

4 Asymptotic properties of the chaining test

The �rst-order asymptotics of the chaining test can be justi�ed by the following
four theorems, whose proofs are given in Section 8. To facilitate the statement
of those theorems, we introduce some convenient notation. Let S denote the set
f1; 2; :::; pg. Decompose S as S = A [M [W , where

A � fj 2 S : ��j > 0g; M � fj 2 S : ��j = 0g; W � fj 2 S : ��j < 0g:

Let dMW be p-dimensional selection vector whose jth element is unity or zero
according as j 2M [W or j =2M [W . Let dS be the p-dimensional vector in
which all its elements are unity. De�ne the scalars, !MW and !S as

!MW � d0WM�V�dWM (14)

!S � d0S�V�dS : (15)

Note that these scalars are in fact the variances of the asymptotic distribu-
tion of the sum

X
j

p
T�j(b�j � ��j ) over j 2M [W and j 2 S respectively.

Theorem 1 (Asymptotic Null Distribution)

Given [D1], [D2] and [D3], the following are true under H0 : ��j � 0 for all
j 2 f1; 2; :::; pg.
(1) If M 6= ?, then Q d�! U(0; 1):

7The case of 	 being everywhere continuous is more complicated because Q2 in this case is
almost surely strictly positive. If all parameters are strictly positive, then both numerator and
denominator in the "t�ratio", Q1=Q2 go to zero in probability. See Section 8 for derivation
of asymptotic properties of the test statistic for such non-standard scenario.
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(2) If M = ?, then Q p�! 1:

Note that the asymptotic size of the test is the supremum of the asymptotic
rejection probability with respect to those �� restricted to the set de�ned under
H0. Therefore, Theorem 1 implies that the asymptotic test size is equal to �.
Furthermore, we observe that the size is attained uniformly over all points on
M , the boundary of null-restricted parameter space and thus the test achieves
asymptotic similarity on the boundary. In contrast to the chi-bar squared and
the extreme value test approaches, the limiting null distribution of the chaining
test, when non-degenerate, is uniform, which clearly ful�lls ease of implementa-
tion as required in Property 4.

Theorem 2 (Consistency)

Given [D1], [D2], and [D3], the following is true under H1 : ��j < 0 for
some j 2 f1; 2; :::; pg :

P (Q < �) �! 1 as T �!1:

Theorem 2 shows that the chaining test is a consistent test. Besides consis-
tency, we are also interested in the local behavior of the test. In order to derive
a local power function of the chaining test, we need to view the magnitudes
of ��j for j 2 W as becoming smaller when T �! 1 (See McManus 1991).
Speci�cally, we imagine that

[L1] For j 2W , ��j =
cjp
T
, where cj is a �xed negative scalar.

Then we have the following result.

Theorem 3 (Neyman-Pitman Local Power)

Assume [D1], [D2] and [D3] hold with the elements ��j of �
� taking the T-

dependent forms [L1] for j 2W but keeping �xed values for j 2 SnW where W
is non-empty. De�ne

cW �
X
j2W

�jcj < 0:

Then as T �!1

P (Q < �) �! �(��1(�)� !�1=2MW cW ): (16)

Theorem 3 shows that the asymptotic local power of the test is increasing in
the absolute magnitude of each negative cj . Further, this power is not diluted
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by any �xed positive ��j . On the other hand, suppose we extend the imagined
condition [L1] to

[L2] For j 2 A [W , ��j =
cjp
T
, where cj is a �xed scalar taking negative

value for j in W but positive value for j in A.

Then Theorem 3 would be replaced by the following.

Theorem 4 (Two-Sided Local Analysis)

Assume [D1], [D2] and [D3] hold with the elements ��j of �
� taking the

T-dependent forms [L2] for j 2 A [W , where A and W are both non-empty.
De�ne

cAW �
X

j2A[W
�jcj :

Then as T �!1

P (Q < �) �! �(��1(�)� !�1=2S cAW ): (17)

In the case of two-sided local analysis, it is clear from Theorem 4 that the
chaining test could be locally biased8 . However, any parameter region of local
bias will be shrinking as sample size increases, and its practical relevance will
become negligible. An argument we present later in Section 7.2 using a speci�c
origin-smoothed indicator function sheds further light on this matter. Moreover,
the simulations we report there are encouraging of the view that local bias is
not an issue of practical concern and rather a small price to pay for an otherwise
e¤ective test that is so easy to apply.

5 The choice of smoothing indicator

For �xed T , our proposed chaining approach implicitly replaces the testing
problem (5) with the technically easier problem of testing

H0 :

pX
j=1

	T (�j)�j = 0 versus H1 :

pX
j=1

	T (�j)�j < 0 .

Though the former testing problem is equivalent to the original problem of
testing multiple inequalities, the latter is only asymptotically equivalent to the

8Though Theorem 1 shows that the chaining test is asymptotically similar on the bound-
ary, such property is only necessary rather than su¢ cient for the test to be asymptotically
unbiased (See Theorem 5 in Hansen (2003)). However, as shown by Hansen (2003, Theorem
3 and Corollary 6), the LF-based test that is asymptotically non-similar on the boundary is
asymptotically inadmissible when compared with another test which is asymptotically similar
on the boundary. In other words, while both are asymptotically exact tests, the power of the
former test against local alternatives is dominated by the latter.
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former and hence for any �xed sample size T , the smoothed version of the test
is indeed testing a deformed hypothesis. In principle, optimization exercises
are desired to �nd choices of 	(x) and K(T ) that minimize the discrepancy
between the limiting distribution of the chaining statistic and its actual �nite
sample distribution. This is neither the same as nor incompatible with the
objective of minimizing the discrepancy the original (unsmoothed) and the de-
formed (smoothed) hypotheses subject to the restrictions on the smoothing
indicators imposed under [A1] ~[A6]. The whole problem is complicated by
the fact that any such optimization has to consider all relevant values of sample
size T simultaneouly since 	(x);as distinct from 	T (x) = 	(K(T )x); has to be
independent of T: Thus a formal objective function will need to be in the nature
of a sum of terms over T: Because any choice of 	(x) and K(T ) will in theory
yield the same �rst order asymptotic properties as long as the conditions [A.1]
to [A.6] are met, such optimization is unlikely to produce a tractable solution
without some judicious approximation. In Appendix A of this paper, we give a
preliminary analysis where we suggest that the "interpolating power function"
to be introduced in the next section could play a useful role. Nonetheless,
we leave a thorough analysis of this second-level problem for further research.
In this paper, we propose a set of valid smoothing indicators by appealing to
simplicity of functional form (an Occam�s razor type of argument) and then
implementing simulation exercises to assess practical size and power potential.
The simplest choice of 	(x) that satis�es [A.1]-[A.2] is the following.

Step-at-unity : 	(x) = 1 if x � 1; and 	(x) = 0 if x > 1.

Another convenient choice of 	(x) that is everywhere continuous is the fol-
lowing.

Logisitic9 : 	(x) = (1 + exp(x))�1.

For the choice of K(T );we propose to set K(T ) �
p
T= log(T ); which is sim-

ple and complies fully with the conditions [A.3] ~[A.6] on smoothing indicators.
To implement the chaining test in practice, we also argue for an adjustment to
account for the potentially overwhelming e¤ect of the total number of inferen-
tially uninformative parameter estimates. To understand this point, note that
we should reject H0 even if only one of ��j , j 2 f1; 2; :::; pg is negative. Hence,
though the asymptotic properties of the test are not a¤ected, it is still desir-
able that the smoothing indicator be made dependent on p, the total number
of parameters in such a way that it is decreasing in p for x > 0. Then, in �nite
samples, the inferential value of a single negative b�j is less likely to be over-
whelmed by additional numbers of positive b�j as p increases. To achieve this,
an easy way is to replace 	(x) with 	(h(p)x) where h(p) is a positive function
increasing in p. For example, we can use the quadratic speci�cation for h(p)
such that h(p) � p(p� 1) for p � 2 and h(1) � 1:

9Note that this 	(x) is the complement of the logisitc distribution: 	(x) = 1�F (x), where
F (x) is the logistic cdf.
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6 An interpolating computable theoretical power
function

The results of Section 4 show that the power function (rejection probability) of
the chaining test depends on which of the scenarios [L1] or [L2] is appropriate.
Scenario [L2] applies if all ��j are viewed as being small enough to be �local�.
Scenario [L1] applies if only the negative (and zero) ��j are viewed as small
enough to be local, but in that case the importance weighting via smoothing
indicators comes into play to eliminate the �nuisance�positive ones. If negative
��j cannot be considered small enough to be local, then local power theory does
not apply and instead consistency of the chaining test simply gives an asymptotic
power of unity.
But how do we judge what is small enough to be �local�? In other words,

how do we know which of the two local power functions or the power of unity is
appropriate ? A way to resolve this issue is to use smoothing indicator functions
which automatically interpolate between the two local powers and the unity. In
other words, we let the �numbers do the talking�and avoid the adhoc suggestion
that we should �x an arbitrary point value which explicitly distinguish �local�
from �nonlocal�.
Accordingly, our proposal is to use an �interpolating theoretical power func-

tion�de�ned by P � �(��1(�)� !�1=2c), where

c =
p
T

X
j2AUW

	T (�j�
�
j )�j�

�
j ; (18)

! = d0�V�d; (19)

d = (	T (�1�
�
1);	T (�2�

�
2); :::;	T (�p�

�
p))

0: (20)

Note the limit of P as T tends to in�nity is the power function (16) under
the Neyman-Pitman local sequence [L1] yet is (17) under the two-sided local
sequence [L2]. Moreover, for �xed (�nonlocal�) and negative ��j , (18) tends to
minus in�nity as T approaches in�nity, thus correctly yielding asymptotic power
of unity in such a �nonlocal� case. Note that the interpolating power P can
also be computed for those cases of �� implied under H0. If all ��j are non-local
and positive, then !�1=2c tends to in�nity as T goes to in�nity and the limit of
P in such case is zero10 . If all ��j are non-local and non-negative with at least
one ��j being zero, then the limit of P in this case is equal to �, the size of the
test. Therefore, in between these extreme scenarios the formula of P acts as
an interpolation11 . The algebraic form of the function 	 used in interpolating
power need not be the same as used in the construction of the test statistic since
it serves for a di¤erent purpose. That purpose is to automatically interpolate

10Note that in this case, both c and ! go to zero. However, the ratio !�1=2c goes to in�nity
as a consequence of the properties of the smoothing indicators. Proof of this result can be
based on the same arguments as that of part (2) of Theorem 1 given in Section 8.
11 Indeed the power function P automatically interpolates the rejection probabilities ob-

tained in the four theorems of Section 4.
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between the three di¤erent scenarios. The 	 function that is used in computing
P should be continuous (such as the logistic speci�cation) because interpolation
is a form of continuous smoothing12 .
In the next section we make some illustrative computations of the interpo-

lating power function and compare its graphs with those of power functions
obtained by simulation.

7 Monte Carlo studies of �nite sample test power

In this section we conduct a series of Monte Carlo simulations to study the �nite
sample power of the test statistic and to compare the �nite sample performance
of di¤erent choices of the smoothing indicators.

7.1 The simulation setup

The smoothing indicators 	(h(p)K(T )x) are formed using the following speci-
�cation :

(i) Step-at-unity : 	(x) = 1fx � 1g
Logistic : 	(x) = (1 + exp(x))�1

(ii) K(T ) =
p
T= log(T )

(iii) No dimension adjustment : h(p) = 1
Quadratic adjustment : h(p) = p(p� 1)

Microeconomic and �nancial datasets are nowadays typically large, but we
decided nonetheless to check the validity of our asymptotic theory by going
down to a sample as small as 50. In fact, we generated R replications for each
of two sample sizes and according to the following scheme :

(iv) Parameters : r1 � �1�1 and r2 � �2�2

(v) Two (p = 2) jointly normal variates br1 and br2 such that� br1br2
�
� N(

�
r1
r2

�
;
V

T
), where V =

�
1 �
� 1

�
with known �.

The variates in (v) are generated via

br1 = r1 +
"1p
T

br2 = r2 + �(br1 � r1) + p1� �2p
T

"2

12The transition from power at scenarios of local points such as [L1] or [L2] to power at non-
local large points is continuous. A further investigation of this issue would ideally be covered
by a higher-order asymptotic theory and (Edgeworth) expansions in T . In the absence of that,
we propose the novel technique of interpolation formula P based on everywhere continuous
interpolating weights.
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where "1 and "2 are independently drawn from the N(0; 1) distribution. The
number of draws made was R = 100000 . Each draw led to a particular value
of our test statistic and to a particular decision (reject or accept). The simu-
lated rejection probabilities enabled graphical presentations of a quality which
suggests that the number of draws used was more than adequate for the accu-
racy of our general and speci�c conclusions. We focused on a nominal test size
of � = 0:05. We shall also refer to the simulated rejection probability as the
(simulated) power of the test. Hence under H1, the power of an unbiased test
should be no smaller than �. Furthermore, the test size is not distorted if the
power of the test under H0 is not greater than �.
We considered several pre-�xed values of r2 and for each such value we con-

ducted simulations yielding an empirical power function calculated on a grid
of 1000 values of r1. In particular, we chose r2 2 f�0:5; 0; 0:5g because they
illustrate the issues and depict an informative range of behaviour with visual
clarity. Corresponding to each empirical power function we calculated an in-
terpolating theoretical power function for comparison. Based on Section 6, the
corresponding interpolating power in current simulation setup is

P � �(��1(�)� !�1=2c); (21)

where

c =
p
T (	T (r1)r1 +	T (r2)r2); (22)

! = 	T (r1)
2 +	T (r2)

2 + 2�	T (r1)	T (r2): (23)

Since interpolation is a form of continuous smoothing, we use the continuous
logistic function for interpolating power even when the step-at-unity function is
used in constructing the test statistic.

7.2 Simulation results for large samples

To study how well the asymptotic properties of the test hold in �nite samples,
we �rst consider a very simple simulation con�guration : 	(x) is step-at-unity
and there is no adjustment for p. Table 3.113 shows the simulated power curves
in the left column and the corresponding interpolating theoretical power curves
in the right column when r2 is kept �xed and the sample size T is 1000. These
curves are functions of r1 varying from �1 to 1 when r2 is kept �xed at the
values �0:5 (dashed curve), 0 (continuous curve) and 0:5 (dotted curve). These
choices allow r1 to vary equally widely, small and large, in both positive and
negative con�gurations. They are thus concisely informative about test rejection
probability both under the null hypothesis and under the alternative. The
top pair of panels in Table 1 show rejection probability when br1 and br2 are
uncorrelated (� = 0), the middle panels when negatively correlated (� = �0:8),
and the bottom panels when positively correlated (� = 0:8). The non-zero
values �0:8 were chosen to represent serious correlation.
13All tables in this paper can be found at the end of Section 7.
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In interpreting Table 3.1, we note that our proposed interpolating theoretical
power formula describes very well the �nite sample behavior of the test. All
interpolating theoretical power curves �t remarkably well the corresponding
curves of simulated power. Regarding the performance of the test, we �rst
look to check whether rejection probability under the null anywhere exceeds
nominal size � = 0:05. The null hypothesis is e¤ective on those fragments
of the dotted (r2 = +0:5) and continuous (r2 = 0) curves lying to the right
of r1 = 0 (inclusive). The following observations apply to both simulated and
interpolating theoretical curves in all panels of Table 3.1. It is clear that no point
on those curve fragments is above 0.05 in height. The continuous curve soon
climbs back at height 0.05 for values of r1 exceeding 0. The dotted curve lies
almost immediately at a height of zero and is barely discernible as it coincides
with the horizontal axis. This happens because the dotted line represents the
case where both r1 and r2 are strictly positive and so the importance weighting
e¤ect of the smoothing indicator wipes out the impact of these values with high
probability in large samples.
A second check of Table 3.1 should look for high rejection probability at

least equal to the nominal size � = 0:05 under the alternative hypothesis. The
alternative hypothesis is e¤ective on all curves at points to the left of r1 = 0 in all
panels of Table 3.1. It is additionally e¤ective on the dashed curves (r2 = �0:5)
at points to the right of r1 = 0 (inclusive). Note that the dashed curve is always
at height 1, thus indicating that the test is extremely successful even when only
one parameter value is strictly negative. The dotted and continuous curves are
at height no lower than the nominal size, and mostly at height 1, at all points
strictly to the left of r1 = 0. It is evident that the test is successful.

7.3 Simulation results for small samples

Table 3.2 shows the simulation results using the same con�guration as Table 3.1
but a smaller sample size (T = 50). The �ndings are similar to those in Tables
3.1. Rejection probability under the null hypothesis is bounded by the nominal
size � = 0:05. The rejection probability under that region of the alternative
hypothesis represented by the dashed curves is reduced compared with that of
Table 3.1; however it remains at value 1 for the most part and everywhere still
exceeds ten times the nominal size. The heights of the continuous curves stay
above the nominal size in the alternative hypotheses region to the left of r1 = 0
and increase towards 1 as becomes ever more negative. The height of the dotted
curve in the lower left-hand panel falls below the nominal size in the tiny local
alternative region �0:04 � r1 < 0. As r1 becomes ever more negative (to -1),
the height increases progressively to 1. Overall the theoretical curves match the
simulated well, though not as well as in the large sample case of Table 3.1.
The above simulation results show that the chaining test seems to perform

quite well in �nite samples even under a very simple choice of the smoothing in-
dicator. In the next simulations, we consider the e¤ect of making an adjustment
for the number of parameters, p. Hence, we use the same simple con�gurations
as above to study the e¤ect of introducing the quadratic version of the adjust-
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ment function h(p).

7.4 E¤ect of adjustment for number of parameters

Tables 3.3 and 3.4 show the simulated di¤erence in power between using a
quadratic adjustment function h(p) = p(p�1) and using no adjustment h(p) = 1.
In computing this power, r2 is kept �xed and the sample size T is set to be 1000
and 50, respectively. We �nd that the introduction of quadratic adjustment
h(p) has indeed raised the �nite sample power. The power gain occurs over a
much wider range of r1 values for small samples than for large. The maximal
gains achievable are greatest in small samples when the correlation between
parameter estimators is nonnegative.

7.5 E¤ect of di¤erent choices of the 	(x) function on power

Tables 3.5 and 3.6 shows the curves of di¤erence of rejection probabilities of
the logistic and the step-at-unity speci�cations of 	(x) when r2 is kept �xed
and the sample size T is 1000 and 50 respectively. These tables suggest that
the logistic speci�cation generally incurs no greater probability of Type 1 error
(rejecting the null hypothesis when both r1 and r2 are non-negative) than the
step-at-unity. Also, the logistic is generally more powerful than the step-at-
unity against the alternative hypothesis when r2 is negative (dashed curves).
The non-negativity of the continuous curves in the region r1 < 0 indicates that
the logistic smoothing indicator yields power at least as great as that of the
step-at-unity when r2 = 0.
The dotted curves concern the case r2 > 0. They almost coincide with the

horizontal axis where r1 < 0 in Table 3.5, thus suggesting that the logistic and
step-at-unity speci�cations have similar power in large samples when r2 > 0.
But in Table 3.6 the dotted curves go below the horizontal axis where r1 < 0.
Thus, in small samples, the logistic seems to be is less powerful than step-at-
unity when r2 > 0. This �nding can be attributed to the fact that the step-at-
unity indicator is capable of eliminating positive parameter estimates completely
from the test statistic. In the contrast, the logistic does not completely eliminate
these estimates and hence the power-reducing e¤ect of such positives may have
more impact in small samples compared to large where asymptotic equivalences
between all smoothing indicators satisfying the theory assumptions [A1]-[A6].
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Table 3.1 : Power function of step-at-unity 	 under h(p) = 1; T = 1000
Vertical axis measures rejection probability.
Dotted, continuous, dashed curves represent r2 values +0:5; 0;�0:5 respectively.
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Table 3.2 : Power function of step-at-unity 	 under h(p) = 1; T = 50
Vertical axis measures rejection probability.
Dotted, continuous, dashed curves represent r2 values +0:5; 0;�0:5 respectively.
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Table 3.3 : Power for h(p) = p(p� 1) minus power for h(p) = 1 (T = 1000)
Vertical axis measures di¤erence of rejection probabilities.
Dotted, continuous, dashed curves represent r2 values +0:5; 0;�0:5 respectively.
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Table 3.4 : Power for h(p) = p(p� 1) minus power for h(p) = 1 (T = 50)
Vertical axis measures di¤erence of rejection probabilities.
Dotted, continuous, dashed curves represent r2 values +0:5; 0;�0:5 respectively.

24



Table 3.5 : Logistic power minus step-at-unity power for h(p) = p(p� 1) (T = 1000)
Vertical axis measures di¤erence of rejection probabilities.
Dotted, continuous, dashed curves represent r2 values +0:5; 0;�0:5 respectively.
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Table 3.6 : Logistic power minus step-at-unity power for h(p) = p(p� 1) (T = 50)
Vertical axis measures di¤erence of rejection probabilities.
Dotted, continuous, dashed curves represent r2 values +0:5; 0;�0:5 respectively.
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8 Proofs of theorems

Recall that S denotes the set f1; 2; :::; pg and the sets A, M , and W are de�ned
as

A � fj 2 S : ��j > 0g; M � fj 2 S : ��j = 0g; W � fj 2 S : ��j < 0g:

8.1 Probability limits of the smoothing indicator

We �rst prove a lemma that states the probability limits of the smoothing
indicator 	T (b�jb�j), which will be referred to in the proofs of the main theorems
in this paper.

Lemma 5 (Probability Limits of the Smoothing Indicator)

Assume [A1] ~[A6], [D1] and [D3], then as T �! 1, the smoothing indi-
cator 	T (b�jb�j) = 	(K(T )b�jb�j) has the following probability limits that depend
on �j :

(1) If j 2 A, then
p
T	T (b�jb�j) p�! 0

(2) If j 2M , then 	T (b�jb�j) p�! 	(0)

(3) If j 2W , then 	T (b�jb�j) p�! 1

Proof. To show part (1), for " > 0 and for � > 0, we want to �nd some
T �("; �) > 0 such that for T � T �("; �),

P (
p
T	T (b�jb�j) � ") � 1� �.

By [D1] and [D3], we have b�jb�j p�! �j�j , which is strictly positive for j 2 A.
Then there is a T1(�) such that for T > T1;

P (�j�j=2 � b�jb�j � 3�j�j=2) � 1� �:
By [A1] and [A3], we have

1� � � P (�j�j=2 � b�jb�j � 3�j�j=2)
� P (	T (3�j�j=2) � 	T (b�jb�j) � 	T (�j�j=2))
� P (	T (b�jb�j) � 	T (�j�j=2))
� P (

p
T	T (b�jb�j) � pT	T (�j�j=2))

where the third inequality follows because 	 is a non-negative function. [A6]
implies that

p
T	T (�j�j=2) �! 0 as T �! 1. Therefore, there is some T2(")

such that for T > T2;
p
T	T (�j�j=2) < ". Combining all these results, part (1)

in this lemma follows by choosing T �("; �) = max(T1; T2):
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To show part (2), note that

	T (b�jb�j) = 	(K(T )b�jb�j)
= 	(

K(T )p
T

p
Tb�jb�j):

If j 2M , by [D1] and [D3], we have
p
Tb�jb�j = Op(1). By [A4] K(T )p

T
= o(1)

so that K(T )p
T

p
Tb�jb�j p�! 0. By [A2], 	 is continuous at origin. Therefore, part

(2) follows from the application of the continuous mapping theorem.
To show part (3), for " > 0 and for � > 0, we want to �nd some T �("; �) > 0

such that for T � T �("; �),

P (1� " � 	T (b�jb�j) � 1 + ") � 1� �. (24)

Following the proof given in part (1), we have that there is a T1(�) such that
for T > T1

1� � � P (�j�j=2 � b�jb�j � 3�j�j=2)
� P (	T (3�j�j=2) � 	T (b�jb�j) � 	T (�j�j=2)).

Note that if j 2 W , then �j�j < 0 thus by [A5] 	T (�j�j=2) �! 1 and
	T (3�j�j=2) �! 1. Then there is some T3(") such that for T > T3, 	T (�j�j=2) �
1 + " and 	T (3�j�j=2) � 1 � ". Therefore, part (3) follows by choosing
T �("; �) = max(T1; T3):

8.2 Asymptotic properties of
p
T	T (b�jb�j)b�jb�j

Based on Lemma 5, we derive the asymptotic properties of the components
corresponding to j 2 A; j 2M; j 2W of the sum

Q1 =
X
j2S

p
T	T (b�jb�j)b�jb�j :

The results are stated in the following lemma.

Lemma 6 (Asymptotic Properties of
p
T	T (b�jb�j)b�jb�j)

Let Vjj be the asymptotic variance of b�j. Assume [A1] ~[A6], [D1] and [D3],
then as T �!1,

p
T	T (b�jb�j)b�jb�j has the following asymptotic properties that

depend on �j :

(i) If j 2 A, then
p
T	T (b�jb�j)b�jb�j p�! 0

(ii) If j 2M , then
p
T	T (b�jb�j)b�jb�j d�! N(0; (	(0)�j)

2Vjj)

(iii) If j 2W , then
p
T	T (b�jb�j)b�jb�j p�! �1
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Proof. Note that part (i) follows from [D1], [D3] and part (1) of Lemma 5. To
show part (ii), note that by [D1] and [D3], if j 2M , we have that

p
Tb�jb�j d�! N(0; �2jVjj):

Therefore, part (ii) follows by applying part (2) of Lemma 5. To show part (iii),
note that for j 2W;

p
T	T (b�jb�j)b�jb�j = 	T (b�jb�j)pTb�j(b�j � ��j ) + 	T (b�jb�j)pTb�j��j : (25)

Therefore, part (iii) follows from the fact that by [D1], [D3] and part (3) of
Lemma 5, the �rst term on the right hand side of (25) is Op(1) and the second
term goes to �1 in probability.

8.3 Proof of Theorem 1

The proof of part (1) of Theorem 1 is obtained from the proof of Theorem 3 by
setting W = ? and hence cW vanishes.
Regarding part (2), we �rst consider the simpler situation where 	 is chosen

such that the event 	T (b�jb�j) = 0 can occur with positive probability. Note
that this is the case for 	 being an origin-smoothed discrete function such as
the step-at-unity smoothing indicator. In this scenario, part (1) of 5 implies that
P (	T (b�jb�j) = 0) �! 1 for j 2 A and hence P (Q2 = 0) �! 1:Now we consider

the situation where 	 is chosen such that the event 	T (b�jb�j) > 0 occurs almost
surely. Note that this is the case for 	 being everywhere continuous such as the
logistic smoothing indicator. In this scenario, Q2 is almost surely positive and
hence Q = �(Q1=Q2) almost surely. We write

Q1
Q2

=
X
j2A

p
Tb�j b�j ;

where b�j = b�j	T (b�jb�j)=Q2:
Note that each b�j is almost surely positive and each b�j for j 2 A is strictly
positive with probability tending to 1 as T �!1: Therefore,

Q1
Q2

� (
X
j2A

b�j)(min
j2A

f
p
Tb�jg) � max

j2A
fb�jgmin

j2A
f
p
Tb�jg

with probability tending to 1 as T �!1: Since

max
j2A

fb�jg �s1
p

X
j2A

b�2j
and by eigenvalue theoryX

j2A

b�2j = b	0 b�b�b	b	0 b�bV b�b	 � 1b�max ;
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where b�max is the largest eigenvalue of bV . Combining these inequalities, we
have

Q1
Q2

� min
j2A

f
p
Tb�jg

s
1

pb�max :
Because the mapping from a positive de�nite matrix to its maximum eigenvalue
is continuous on the space of such matrices,b�max p�! �max > 0;

where �max is the largest eigenvalue of V . Since for each j 2 A,p
Tb�j = pT (b�j � ��j ) +pT��j

in which by assumption [D1], the �rst term in the sum of the right-hand side
is bounded in probability. The second term goes to in�nity as T �! 1 since
each ��j is positive by supposition. Putting together all these results, we can
conclude that Q1=Q2 goes to in�nity in probability and hence

Q = �(Q1=Q2)
p�! 1:

8.4 Proof of Theorem 2

Note thatW is non-empty under H1. By [D2], [D3] and Lemma 5, the probabil-
ity limit ofQ2 is �nite and strictly positive. Lemma 6 says that

p
T	T (b�jb�j)b�jb�j

is bounded in probability for j 2 SnW . Since
p
T	T (b�jb�j)b�jb�j p�! �1 for

j 2 W , Q1=Q2 goes to �1 in probability and hence P (Q < �) �! 1 as
T �!1 under H1.

8.5 Proof of Theorem 3

Under [L1], for j 2W ,

K(T )b�jb�j = (K(T )=pT )pTb�j(b�j � ��j ) + (K(T )=pT )b�jcj
and hence by [A4], [D1] and [D3], K(T )b�jb�j p�! 0. Using [A2] and the contin-

uous mapping theorem, 	(K(T )b�jb�j) p�! 	(0) for j 2W: This result and part
(2) of Lemma 5 imply that 	(K(T )b�jb�j) p�! 	(0) for j 2 M [W and thusb	 p�! 	(0)dMW . Therefore, under [D1], [D2], [D3] and [L1], Q1 is asymptoti-
cally equivalent in probability to

	(0)d0MW�
p
Tb� = 	(0)d0MW�

p
T�� +	(0)d0MW�

p
T (b�� ��)

= 	(0)cW +	(0)d0MW�
p
T (b�� ��)

and thus has an asymptotic normal distribution with mean 	(0)cW and vari-
ance 	(0)2!MW . Using similar arguments, we �nd that Q2

p�! 	(0)!
1=2
MW .

Therefore, Theorem 3 follows by noting that

Q1
Q2

d�! N(!
�1=2
MW cW ; 1).
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8.6 Proof of Theorem 4

The proof of Theorem 4 proceeds along similar lines to that of Theorem 3
except that now ��j is allowed to vary from both sides of the origin as speci�ed

in [L2]. In particular, 	(K(T )b�jb�j) p�! 	(0) for j 2 S and in this case Q1 is
asymptotically equivalent in probability to

	(0)d0MW�
p
Tb� = 	(0)cAW +	(0)d0S�

p
T (b�� ��)

and thus has an asymptotic normal distribution with mean 	(0)cAW and vari-
ance 	(0)2!S . Furthermore, Q2

p�! 	(0)!
1=2
S : Therefore, Theorem 4 follows

by noting that
Q1
Q2

d�! N(!
�1=2
S cAW ; 1).

9 Extension of the constraint chaining method
to testing a continuum of inequalities

In this section we brie�y sketch how the quasi-linear chaining test developed in
the preceding sections could be extended to testing a continuum of inequalities
such as those arising in stochastic dominance hypotheses. A full theory is outside
the scope of this paper. Suppose instead of the test problem (4), we want to
test

H0 : �(x) � 0 for x 2 [a; b] versus H1 : �(x) < 0 for some x 2 [a; b] (26)

for the function �(x), which is the parameter to be tested and a and b are given
scalars. To test this hypothesis, we would use the following continuous analog
for (11) and (12) as :

Qc1 �
p
T

Z b

a

	(K(T )b�(x))b�(x)dx
Qc2 � [

Z b

a

Z b

a

	(K(T )b�(x))	(K(T )b�(y))bV (x; y)dxdy]1=2;
where b�(x) is a consistent estimator of the function �(x) such that

p
T (b�(x)� �(x)) =) G; (27)

where =) denotes weak convergence as T ! 1 and G = fG(x) : x 2 [a; b]g
denotes some zero-mean Gaussian process with covariance kernel V consistently
estimated (in an appropriate function norm) by bV = fbV (x; y) : (x; y) 2 [a; b]2g.
The continuous analogue of the key result of discrete chaining is that

Qc1
d�!
p
T

Z b

a

1f�(x) = 0gG(x)dx (28)
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which implies that Qc1 is asymptotically normal with mean zero and varianceZ b

a

Z b

a

1f�(x) = 0g1f�(y) = 0gV (x; y)dxdy (29)

the square root of which will be the probability limit of Qc2 . Thus the ratio of
Qc1 to Q

c
2 will be asymptotically unit normal under the null hypothesis whenever

the above variance expression (29) is nonzero. Hence the test statisticQ de�ned
as in Section 3, originally for the �nite dimensional parameter scenario but now
using Qc1 and Q

c
2 in place of the original Q1 and Q2, will continue to be valid in

the present extension. Note that the asymptotic unit normality certainly holds
at the LF point (�(x) = 0 for x 2 [a; b]) of the null hypothesis where integral
expression (29) simpli�es to Z b

a

Z b

a

V (x; y)dxdy

which is strictly positive for a non-degenerate Gaussian process.
To illustrate the continuous extension above, we use the simplest example

of the stochastic dominance hypothesis in which it is desired to test whether a
given known baseline cdf H(x) �rst order stochastically dominates an unknown
population cdf F (x) on support [a; b]. Under this hypothesis, the function �(x)
de�ned as

�(x) � F (x)�H(x); a � x � b;
satis�es the inequality

�(x) � 0 for x 2 [a; b]:
This is precisely the null hypothesis of (26). We can use

b�(x) = bF (x)�H(x)
where bF (x) is an empirical cdf based on a random sample of observations. It is
a known fact that root of sample size times the di¤erence between an empirical
cdf bF and the true population cdf F converges weakly to GF ; the F�brownian
bridge process (van der Vaart (1998) pp 266). This limiting process forms the
basis of derivation of G(x) in (27).
In the context of testing (26), Linton, Song and Whang (2008) use a test

statistic which, restricted to the present case of �rst-order stochastic dominance,
simpli�es to Z b

a

[minf0;
p
Tb�(x)g]2dx: (30)

Under the null hypothesis, (30) converges in distribution toZ b

a

1f�(x) = 0g[minf0;
p
Tb�(x)g]2dx: (31)

Just as result (28) demonstrated for the chaining statistic, (31) also shows that
the non-degenerate limiting null distribution of Linton-Song-Whang statistic

32



depends only on the �contact� set fx 2 [a; b] : �(x) = 0g. A major objective
of these authors is to design a bootstrap method in which test critical values
are based on an estimate of this set rather than on the �least favorable� case
which simply replaces 1f�(x) = 0g everywhere with the value 1. Their argument
and solution is a continuous version of the discrete case advanced by Hansen
(2005). In both versions the idea is to make the test asymptotically similar on
the boundary of the null hypothesis to improve test performance. Asymptotic
similarity on the boundary is also achieved by the chaining test of the present
paper, but in a conceptually very di¤erent way. Rather than using estimates of
contact points to adjust the critical values of test statistics ex-post, the construc-
tion of the chaining statistic ex ante reduces e¤ects due to null hypothesis points
outside the contact set by using the smoothed indicator function 	(K(T )b�(x)).
Thus �xed critical values can be used and bootstrapping adjustments are not
needed.

10 Conclusions

This paper has set out four key properties which tests of multiple inequality
constraints should satisfy. These are (1) (asymptotic) exactness, (2) (asymp-
totic) similarity on the boundary, (3) absence of nuisance parameters from the
asymptotic null distribution of the test statistic, (4) low computational com-
plexity and boostrapping cost. We noted that predominant tests currently used
in econometrics do not appear to have all these properties simultaneously. In
this paper, we demonstrated that it is possible to design a test procedure that
simultaneously enjoys the four desired properties. We introduced a method of
test construction called constraint chaining which begins by writing multiple
inequalities as a single equality using zero-one indicator functions. We noted
that substituting parameter estimates into this equality would lead to awkward
distributions. To get round this, we harnessed an idea of Horowitz (1992) orig-
inally used to remedy a similar di¢ culty in parameter estimation theory rather
than hypothesis testing. The idea is to �rst smooth the indicator functions. The
approximate equality thus obtained is the basis of a well-behaved test. This test
could also be considered as the baseline of an interesting wider class of tests.
We provided a full asymptotic theory for the baseline test. The smoothed

indicator function in the test acts as an importance weight, enhancing the e¤ect
of inferentially critical parameter values and diminishing the e¤ect of others. We
therefore supplemented the asymptotic theory with a computable interpolating
power function which captures the di¤erential impact of importance weighting
on power at local to origin points compared with medium and distant points.
Simulation results show that the �nite-sample performance of the test matches
the theory quite well.
A number of topics for further research arise from the present paper :
(1) How far is test performance sensitive to the choice of smoothed indicator

and the �bandwidth�or �tuning�parameter that determines its convergence to
the discrete indicator ?. Is it feasible to pin down an optimum choice in some

33



metric ? Some preliminary ideas on this are discussed in Appendix A to this
paper.
(2) Given the �smoothness� of the test statistic of this paper and the fact

that it is asymptotically pivotal on the boundary, bootsrapping may enhance
its performance. To investigate this fully, some work on the possibility of an
Edgeworth-type expansion is called for. This may also give an alternative formal
justi�cation for the descriptive interpolating power function proposed in this
paper.
(3) Even if the normality assumption made in the paper is dropped, the

smoothing which eases the asymptotics still holds, as indicated in Appendix B
to this paper. But, without normality, the asymptotic distribution of the test
statistic will not be standard. However, it might be successfully obtainable by
the bootstrap precisely because of the smoothing. So the research agenda item
(2) above applies here too.
(4) The extension of the test to continuous functions sketched in the paper

may bene�t from a full and more general analysis based on empirical process
theory.
An investigation of the �nite-sample performance of this extension based on

simulation at least and analytical derivation when tractable is desirable.
(5) We note that, whilst the philosophy of the approach of this paper leads

uniquely to a statistic which is of �quasi-linear� form, this can be thought of
as a special case of a wider class of forms all using only products of parameter
estimates and smoothed indicators. A full investigation of this class is a matter
for further research. Some �ndings are already available (Chen (2009, chapter
4)).
(6) Monte Carlo simulations involving comparison with other tests are of

limited use without understanding the theoretical properties on which tests may
di¤er ex ante and thus be responsible for experimental results ex post. Given
that this paper has focussed upon such properties as a key motivation in the
design of tests, a future research project comparing the practical performance
of the chi-bar squared, extreme value and chaining tests is now worth pursuing.

A A proposal of optimal choice of the smoothing
indicator

Let L(xj��) be the limiting distribution of the chaining statistic de�ned by
(13)14 . Note that Theorems 1 and 2 imply that L(xj��) depends on the value of
��: Let FT (xj	;K) be the actual �nite sample distribution of the test statistic
Q implemented based on the smoothing indicator 	T (x) = 	(K(T )x) in which
	(x) and K(T ) satisfy the regularity conditions [A1] � [A6]. We want to choose
	 andK such that FT (xj	;K) can be well approximated using L(xj��) that has
been derived in this paper. In other words, we consider the following criterion

14For ease of exploration, in this appendix we assume �j = 1 for all j.
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for optimality of the smoothing indicator.

1X
T=1

�T jjFT (xj	;K)� L(xj��)jj2;�; (32)

where jjf jj2;� of a given function f is its �-weighted L2 norm de�ned as

jjf jj2;� � [
Z 1

0

f(x)2�(x)dx]1=2;

and �T is the weight re�ecting how seriously the user takes discrepancies be-
tween FT and L at sample size T . For instance, if it takes at leastm observations
to ful�ll the rank condition of computing the OLS estimator b�; then �T can be
set to zero for T < m. For hypothesis testing and p-values, the tails of distrib-
utions are more important than the central part and thus �(x) can be designed
to re�ect this concern.
Since L(xj��) is also a function of �� and FT (xj	;K) is unknown; the cri-

terion (32) is infeasible. However, we can consider its empirical feasible version
de�ned as

1X
T=1

�T jj bFT (xj	;K)� L(xjb�)jj2;�; (33)

where bFT (xj	;K) is the bootstrapped estimator of FT (xj	;K) and b� is a con-
sistent estimator of ��. Then the smoothing indicator (	;K) is chosen to be the
minimizer of the criterion (33) subject to the conditions [A1]� [A6]. Though
formulation of optimality of the smoothing indicator based on (33) is imple-
mentable, analysis of such optimization problem is a non-trivial task. The
Monte Carlo simulation results discussed in Section 7 suggest that our devel-
oped interpolating power formula PT (�j	;K; ��) matches well the �nite sample
simulated rejection probability. Thus we can consider a simpli�ed criterion as
follows by replacing bFT (�j	;K) with PT (�j	;K; b�) for the test with signi�cance
level �15

1X
T=1

�T jPT (�j	;K; b�)� L(�jb�))j: (34)

Since PT has a simple closed-form formula, it is easier to analyze the opti-
mization problem based on the criterion (34). Note that

j bFT (�j	;K)�L(�jb�)j � j bFT (�j	;K)�PT (�j	;K; b�)j+jPT (�j	;K; b�)�L(xjb�)j:
Thus we require that the approximation error j bFT (�j	;K)� PT (�j	;K; b�)j is
of small order of magnitude so that (34) can be a useful approximating criterion
for optimality. We will investigate this issue in our further research work of this
project.

15This amounts to taking �(x) = 1 if x = � and �(x) = 0; otherwise.
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B The case of asymptotically non-normal esti-
mators

The regularity condition [D1] assumes asymptotic normality of b� :
p
T (b�� ��) d�! N(0; V ):

If the normality assumption [D1] is dropped, can the constraint chaining method
survive ? That will depend on what replaces [D1]. If [D1] is only required to
hold under the null hypothesis, but under the alternative hypothesis b� still
converges in probability to the true ��, then the asymptotic null distribution of
the chaining test statistic remains as before and the test is still consistent. But
local power properties cannot then be derived.
Suppose, more drastically, that [D1] is replaced by

�(T )(b�� ��) d�! ND;

where �(T ) is a scalar increasing function of T (or diagonal matrix of increasing
functions of T ), and ND denotes some nondegenerate distribution which need
not be normal. For example, in time series models, the presence of unit roots
can cause certain parameter estimates to require normalisation by �(T ) = T 3=2

rather than T 1=2 in order to get an asymptotically nondegenerate distribution.
Moreover, the limit distribution in unit root models is often non-normal. In
such cases, the numerator of the smoothing statistic would need to be adjusted
to

Q1 � b	0�(T )b�b�:
With appropriate modi�cations of the regular conditions [A1] to [A6] to re�ect
the change of T 1=2 to �(T ), the following key feature of the smoothing indicator
still holds : b	 p�! dM under H0,

where dM is a p-dimensional vector in which its j-th element is untiy if ��j = 0
and is zero, otherwise. Thus, under the null hypothesis, Q1 would be asymp-
totically distributed as

d0M�X;

where X � ND.
It is at this point that the particular distribution of ND would have to

be inserted to enable the next step of getting p-values. The required task of
getting p-values will vary according to application and may be very di¢ cult.
Nonetheless, the chaining method has enabled us to get this far.
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