

INTEGRATED OPTICAL AND ELECTRONIC INTERCONNECT PCB MANUFACTURING (OPCB)

IeMRC FLAGSHIP PROJECT

IeMRC Annual Conference Loughborough

4th July 2008

PROJECT OBJECTIVES

- Enhance fabrication techniques for optical waveguides 1.
- 2. Integrate optical layers into Printed Circuit Boards (PCBs)
- 3. Develop technology enablers: Connectors, CAD, Design Rules
- Deploy Electro-Optical PCBs into end-user applications 4.

Research Objectives

- □ Investigate optical PCB technology
- □ Identify technology challenges
- Develop optical PCB and connector technology
- □ Integrate OPCB backplanes into storage systems
- □ Aid commercial proliferation

xyratex•

COST IMPLICATIONS OF HIGH SPEED COPPER

High frequency copper issues

- Crosstalk
- Reflections
- Electromagnetic Interference (EMI)
- Dielectric Loss / Skin effect
- □ Skew

Signal Frequency

- Optical signal pipelines possible
- Send optical data further
- □ Fit more optical channels
- Send data faster
- No EMI outside the waveguide
- Send multiple signals (WDM)

Data storage systems increasing in complexity, density and speed

Storage demand increasing

- Manage more storage
- □ Increased complexity

Disk sizes decreasing

□ Increased system density

Data rates increasing

□ Data access speeds:

□ 3 Gb/s SAS -> 6 Gb/s SAS

□ 10 Gb/s Gigabit Ethernet

□ <u>12 Gb/s SAS</u>

Two different classes of optical polymer evaluated and compared for waveguide production

Polyacrylates

- □ Truemode® polymer Exxelis
- New polymer formulations Heriot Watt U

Polysiloxane

Polysiloxane formulations – Dow Corning

OPTICAL WAVEGUIDE FABRICATION

Four techniques for fabricating optical waveguides investigated and characterised

Photolithography

Laser Writing

ERIOT

UNIVERSITY

Laser Ablation

Ink Jet Printing

Loughborough University

Design services for optical waveguide layout developed

Design Rules and Characterisation

- □ PCB layout constraints for waveguides:
 - □ Minimum bend radius
 - □ Separation
 - Crossing angle

OPCB CAD Design

Cadence software adapted to layout optical tracks

□ Software used to design optical backplane

ELECTRO-OPTICAL PCB MANUFACTURE

PCB Manufacturer to adapt fabrication techniques toward commercial production of electro-optical PCBs

TAKING TECHNOLOGY FURTHER

Deployment by end-users of OPCB technology into various applications

Data Storage / processing

□ High density, fast

communication within storage

backplanes

<u>Sensors</u>

□ Flexible optical

sensors for biomedical

applications

Military

□ Robust, low EMI, high

speed communication within

military vehicles

RENISHAW apply innovation[™]

BAE SYSTEMS

POLYMER WAVEGUIDE TECHNOLOGY EXISTS

Source: Exxelis Ltd

Source: Fraunhofer IZM

Source: Fraunhofer Institute

Source: IBM Zürich

Source: Exxelis

Splitters

- □ 1 many power splitters possible
- Depends on loss budget

□ Signal crossovers on same layer without

shorts

Source: IBM Zürich

Source: Exxelis

Right Angled Bends (In-plane)

- Overcomes bend radius restrictions
- □ Allows higher density routing

Right Angled Bends (Out-of-plane)

- Eases optical signal insertion
- Basis for optical vias

Reduction in PCB Waste Material

Reduced Power Consumption

X OPCB

Parallel Optical Transceiver

- Small form factor
- □ 10 Gb/s per channel
- □ Microcontroller with I²C interface

Backplane Connector Module

- Automated connector mechanism
- □ High precision alignment

Sites

<u>xyratex</u>•

Electro-Optical Backplane

Compact PCI architecture

- Electrical layers for power
- Electrical layers for low speed
- Optical layer for 10 Gb/s traffic
- 4 optical PCB connector sites

Connector slots for line cards

DEMONSTRATION PLATFORM FOR ECOC 2008

Х ОРСВ

xyratex•

DEMONSTRATION PLATFORM FOR ECOC 2008

xyratex•

Andy Walker, Aongus McCarthy, Himanshu Suyal

- Direct Laser-writing of waveguides
 - Increase writing speeds and manufacturability
- Photo-polymer Formulation
 - Optimise for faster writing; alternative polymer systems; possible dry formulation
- Writing over a large areas (400 500 mm long)
 - Stationary "writing head" with board moved on long translation stage
- Connectors
 - Possible use of 45-deg out-of-plane mirrors
- Advanced Optoelectronic Integration

DIRECT LASER-WRITING SETUP: SCHEMATIC

- Slotted baseplate mounted vertically over translation, rotation & vertical stages; components held in place with magnets
- By using two opposing 45° beams we minimise the amount of substrate rotation needed

OPCB

- flat-top, rectangular laser spot

Images of the resulting waveguide core cross-sections

OPCB

SEM images of polymer structures written using imaged 50 µm square aperture (chrome on glass)

- Writing speed: ~75 µm / s
- Optical power: ~100 μW
- Flat-top intensity profile
- Oil immersion
- Single pass

Optical microscope image showing end on view of the 45° surfaces

Out-of-plane coupling, using 45-deg mirror (silver)

OPCB

Microscope image looking down on mirror coupling light towards camera

OPTICAL INPUT

- Polymer Types: Acrylate (HWU custom & Exxelis) & polysiloxane systems (Dow Corning)
- Tuning of refractive index and viscosity is possible
- Equivalent to negative photoresist processing
- Compatible with a wide range of substrates
- Mechanical and thermal properties compatible with PCB processing
- "Wet" format processing; Possibility of a dry film format formulation
- Low optical loss at 850 nm (>0.1 dB/cm typical)
- Polymer deposition techniques include: Spinning, doctor-blading, casting, spray coating

Polymer system / formulation

Writing speed

New Aerotech stages capable of speeds of up to 2 m/s

Intensity profile

- Gaussian
- Flat top (imaged aperture)

Optical power

- Gaussian beam: up to ~10 mW
- Imaged aperture: up to ~1.5 mW

Oil immersion

- Permits writing of 45° surfaces
- Excludes oxygen, which inhibits polymerisation process

Number of passes

- Exposure process is non-reciprocal
- Can obtain better results with multiple fast passes than single slow pass

CURRENT RESULTS

Laser-writing Parameters:

- Intensity profile: Gaussian
- Optical power: ~8 mW
- Cores written in oil

Polymer:

- Custom multifunctional acrylate photo-polymer
- Fastest "effective" writing speed to date: 50 mm/s

(Substrate: FR4 with polymer undercladding)

HERIOT

- 100 µm aperture was de-magnified
- Optical power at sample ~0.5 mW
- HWU custom photo-polymer

8 mm/s 63 x 74 µm

4 mm/s 69 x 78 μm 2 mm/s 76 x 84 µm

HERIOT

- Stationary "writing head" with board moved using Aerotech sub-µm precision stages
- Waveguide trajectories produced using CAD program

- Requires a minimum of 700 x 1000 mm space on optical bench
- Height: ~250 mm
- Mass:

•

- 300 mm: 21 kg
- 600 mm: 33 kg
- Vacuum tabletop

HERIOT

LARGE BOARD PROCESSING: WRITING

The spiral was fabricated using a Gaussian intensity profile at a writing speed of 2.5 mm/s on a 10 x 10 cm lower clad FR4 substrate. Total length of spiral waveguide is \sim **1.4 m**. The spiral was upper cladded at both ends for cutting.

Key challenge: Dispensing / applying a uniform layer of liquid photo polymer over a large are FR4 boards.

We plan to experiment with a number of techniques including the use of a roller system (as shown in the CAD drawing on right)

- Shims along edge
- Mylar sheet

Board Developing: Appropriate container for developing large FR4 boards after UV exposure

Inkjet Fabrication of Optical Waveguides IeMRC, 4th July 2008

John Chappell, David Hutt

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University

Integrated Optical and Electronic Interconnect PCB Manufacturing

- Advantages
 - selective deposition of core and clad less wastage: picolitre volumes
 - large area printing
 - low cost
- Target core dimensions of 50-100 microns height/width

- Material properties tailored to inkjet head
- Optimising 'waveform' for each fluid - fluid dynamics
- Interaction of material with substrate: wetting, adhesion
- Control and stability of liquid structures
- Truemode (Exxelis) suitable material core/clad
- Solvent needed to tailor viscosity

Room temperature substrate

Extensive spreading
 drop spacing of 70 microns

Substrate temperature ~-20°C

- Controlled spreading

 drop spacing of 17.5 microns
 (4x jetting frequency)
- (a) low BP solvent
 (b) high BP solvent
 - rate of solvent evaporation affecting line shape

- Young's Equation $\sigma_{_{\!\!A\!S}}=\sigma_{_{\!S\!W}}+\sigma_{_{\!A\!W}}\cos\Theta$
- Balance of surface tensions acting at the contact lines
- Differences in material properties will affect the contact angle of the drop with the surface
- Surface tension (and viscosity) are temperature related lowering the temperature increases surface tension (and viscosity)

- Increase contact angle of liquid on substrate to reduce the wetting of liquid core
- Change the surface energy
- Choose a model hydrophobic surface octadecyltrichlorosilane (OTS) on glass
- Cladding substrate shows water contact angles of ~73°
- Gives water droplet contact angles >100°
- Creates adhesion problems

- Drop spacing of 70 microns
- Room temperature (left) and cold substrate (right)
- Discrete droplets no splashing: material tailored well to inkjet system
- Temperature not the dominant factor in controlling feature shapes
- Possible demixing of solvent and core material at lower temperature

Room temp. substrate

Cold substrate

- Increasing the material deposited causes periodic features in the line shape - due to a combination of contact angles, viscosity and surface tension
- Surface roughness of 'tracks' is ~1nm

 investigating optical
 properties of these
 structures
- Poor adhesion between treated glass and inkjetted material
- Aspect ratio of 5:1
 aiming towards 1:1

Loughborough University

- Ablation to leave waveguides
- Excimer laser Loughborough
- Nd:YAG Stevenage Circuits
- Ablation process characterised
- Investigating machining of curved mirrors

- Straight waveguides 480 mm x 70 µm x
 70 µm
- Bends with a range of radii
- Crossings
- Splitters
- □ Spiral waveguides
- Tapered waveguides
- Bent tapered waveguides
- Surface Roughness
- Loss
- Crosstalk
- Misalignment tolerance
- Bit Error Rate, Eye Diagram

â

 $50 \ \mu m$ 50 μm waveguide

 $50 \ \mu m$ 140 μm waveguide

- Photolithographicly fabricated by Exxelis
- Cut with a dicing saw, unpolished
- VCSEL illuminated

SURFACE ROUGHNESS

WAVEGUIDE 90 BEND TEST PATTERN

OPCB

Schematic diagram of one set of curved waveguides.

Light through a bent waveguide of R= 5.5 mm - 34.5 mm

- Radius *R*, varied between 5.5 mm < R < 35 mm, ΔR = 1 mm
- Light lost due to scattering, transition loss, bend loss, reflection and back-scattering
- Illuminated by a MM fiber with a red-laser.

Width (µm)	Minimum Radius (mm)	Minimum Loss (dB)
50	13.5	0.74
75	15.3	0.91
100	17.7	1.18

OPCB

The input section w_{in} = 50 μm, and its length I_{in} = 11.5 mm
 The tapered bend transforms the waveguide width from w_{in}, to w_{out}
 The width of the tapered bends varies linearly along its length
 Output straight waveguide length I_{out} = 24.5 mm.
 Output widths w_{out} = 10 μm, 20 μm, 25 μm, 30 μm and 40 μm

□ Dashed lines correspond to the boundaries of the w_{in} = 50 µm tapered bend

Dotted lines correspond to the boundaries of the 20 µm bend
 Tapered bend has more misalignment tolerance for a slight loss penalty

Â

DESIGN RULES FOR WAVEGUIDE CROSSINGS

□ Loss of 0.023 dB per 90 crossing consistent with other reports □ The loss per crossing (L_c) depends on crossing angle (θ), L_c =1.0779 · θ ^{-0.8727.}

OPCB

100 μm 110 μm 120 μm 130 μm 140 μm 150 μm

- □ Light launched from VCSEL imaged via a GRIN lens into 50 µm x 150 µm waveguide
- □ Photolithographically fabricated chirped with waveguide array
- D Photomosaic with increased camera gain towards left

â

70 µm 70 µm waveguide cross sections
 Waveguide end facets diced but unpolished scatters light into cladding
 In the cladding power drops linearly at a rate of 0.011 dB/µm
 Crosstalk reduced to -30 dB for waveguides 1 mm apart

Â

Fully connected waveguide layout using design rules

□ Papakonstantinou,I., et al., (2008). Low cost, precision, self-alignment technique for coupling laser and photodiode arrays to waveguide arrays. *IEEE Transactions on Advanced Packaging*. ISSN: 1521-3323

□ Papakonstantinou,I., et al., (2008). Insertion Loss and Source Misalignment Tolerance in Multimode Tapered Waveguide Bends. *IEEE Photonics Technology Letters* 20(12), 1000-1002. ISSN: 1041-1135

□ Papakonstantinou,I., et al., (2008). Optical 8-Channel, 10 Gb/s MT Pluggable Connector Alignment Technology for Precision Coupling of Laser and Photodiode Arrays to Polymer Waveguide Arrays for Optical Board-to-Board Interconnects. *ECTC, May 27-30, Florida, USA*,

□ Selviah, D.R. (2008). Invited Conference Plenary Paper: Integrated Optical and Electronic PCB Manufacturing. *IEEE Workshop on Interconnections within High Speed Digital Systems, Santa Fe, USA, 18-21 May 2008*, Santa Fe, New Mexico, USA:IEEE

□ Selviah,D.R. (2008), UK Displays and Lighting, Korean Trade Visit, Department of Business, Enterprise and Regulatory Reform, 1.

 Selviah, D.R., et al., (2008). Integrated Optical and Electronic Interconnect Printed Circuit Board Manufacturing. *Circuit World* 34(2), 21-26. ISSN: 0305-6120

OPCB

□ Selviah, D.R., (2008). Invited Author: Computational Modeling of Bound and Radiation Mode Optical Electromagnetic Fields in Multimode Dielectric Waveguides. *Progress In Electromagnetics Research Symposium PIERS* 2008 in Cambridge, USA, 2-6 July, 2008

□ Selviah,D.R.(2008). 19th IEEE LEOS Workshop on High Speed Interconnections within Digital System, HSD '08, May 18th-21st, Santa Fe, New Mexico, USA

□ Selviah, D.R., et al., (2008). Innovative Optical and Electronic Interconnect Printed Circuit Board Manufacturing Research. 2nd Electronics System-Integration Technolgy Conference (ESTC) Greenwich, UK, 1st-4th September 2008,

□ Wang,K., et al., (2008). Photolithographically Manufactured Acrylate Multimode Optical Waveguide Loss Design Rules. 2nd Electronics System-Integration Technolgy Conference (ESTC) Greenwich, UK, 1st-4th September 2008,

□ Baghsiahi,H., et al., (2008). Photolithographically Manufactured Acrylate Multimode Optical Waveguide Misalignment Design. 2nd Electronics System-Integration Technolgy Conference (ESTC) Greenwich, UK, 1st-4th September 2008,

OPCB

THANK YOU FOR YOUR ATTENTION

Dave Milward Project Manager

E-mail: dave milward@xyratex.com

David Selviah Technical Lead

E-mail: <u>d.selviah@ee.ucl.ac.uk</u>

Supplemental Slides

Integrated Optical and Electronic Interconnect PCB Manufacturing

- Deposit lower cladding 1.
- 2. Cure
- Deposit core 3.
- 4. Align mask
- Cure waveguides 5.
- 6. Remove uncured material
- Deposit upper cladding 7.

Integrated Optical and Electronic Interconnect PCB Manufacturing