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To achieve a given motor task a single trajectory must be
chosen from the infinite set of possibilities consistent with the
task. To investigate such motor planning in a natural environ-
ment, we examined the kinematics of reaching movements
made around a visual obstacle in three-dimensional space.
Within each session, the start and end points of the movement
were uniformly varied around the obstacle. However, the distri-
bution of the near points, where the paths came closest to the
obstacle, showed a strong anisotropy, clustering at the poles of
a preferred axis through the center of the obstacle. The pre-
ferred axes for movements made with the left and right arms
were mirror symmetric about the midsagittal plane, suggesting
that the anisotropy stems from intrinsic properties of the arm
rather than extrinsic visual factors. One account of these results

is a sensitivity model of motor planning, in which the movement
path is skewed so that when the hand passes closest to the
obstacle, the arm is in a configuration that is least sensitive to
perturbations that might cause collision. To test this idea, we
measured the mobility ellipse of the arm. The mobility minor
axis represents the direction in which the hand is most inertially
stable to a force perturbation. In agreement with the sensitivity
model, the mobility minor axis was not significantly different
from the preferred near point axis. The results suggest that the
sensitivity of the arm to perturbations, as determined by its
inertial stability, is taken into account in the planning process.
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Movement planning can be considered as the specification of a
movement trajectory from the infinite number of possible trajec-
tories that are consistent with a given task (for review, see
Wolpert, 1997). Although many theories of motor planning have
been proposed, they fall into two main classes: extrinsic and
intrinsic. Proponents of extrinsic planning suggest that the pro-
cess is hierarchical, beginning with the specification of the trajec-
tory of the end point, such as the hand or finger, in extrinsic visual
space (Bernstein, 1967; Morasso, 1981; Abend et al., 1982; Flash
and Hogan, 1985; Flash and Gurevich, 1991; Lackner and DiZio,
1994; Shadmehr and Mussa-Ivaldi, 1994; Flanagan and Rao, 1995;
Wolpert et al., 1995; Sabes, 1996). This class of models suggests
that the end point trajectory of visually guided tasks will depend
only on the visual task constraints. Proponents of intrinsic plan-
ning suggest that the intrinsic kinematics of the trajectory (e.g.,
the trajectory of joint configurations) are planned directly, taking
into account intrinsic properties of the limb (Soechting and Lac-
quaniti, 1981; Kaminsky and Gentile, 1986; Soechting and
Flanders, 1989; Uno et al., 1989; Flanagan and Ostry, 1990;
Desmurget et al., 1995). Theoretical models of both classes of
motor planning have been based mainly on the optimal control
framework in which planning is considered as the process of
finding the trajectory, which minimizes some cost associated with
the movement. However, within that framework cost functions
that depend on both purely intrinsic (Uno et al., 1989) or extrinsic

(Flash and Hogan, 1985) parameters can account fairly well for
simple point-to-point reaching data.

Part of the difficulty in resolving the extrinsic–intrinsic contro-
versy lies in the lack of rich task constraints in the extensively
studied experimental paradigm of point-to-point reaching. In an
attempt to move toward task constraints such as those present in
everyday goal directed movement, Sabes and Jordan (1997) in-
vestigated reaching in the presence of an obstacle. By considering
movements that were identical except for the rotation of the start
and end points around the tip of the obstacle, they found a
systematic variation in the path, suggesting that movements are
not planned based purely on the extrinsic task specification.
These variations support a model in which planning takes account
of the sensitivity of the arm to external perturbations or uncer-
tainty in joint level control or proprioception. The model posits
that paths are chosen to minimize the sensitivity of the arm to
perturbations in the direction of the obstacle when the arm is at
the point of nearest approach to the obstacle.

Here, we present an obstacle avoidance experiment in three
dimensions. As in the previous work by Sabes and Jordan (1997),
the task is devised so that the task constraints have a rotational
symmetry across trials, but here we explore three different axes of
symmetry. This paper addresses a number of unresolved issues.

First, we investigate whether the path variations observed in
obstacle avoidance movements can be explained in terms of a
perceptual, rather than motor, anisotropy. We conducted two
identical sets of experiments with each participant, once with
each arm. If the path asymmetry is attributable to intrinsic prop-
erties of the arm, then the paths from the two arms should be
mirror symmetric about the midsagittal plane. However, if the
asymmetry is attributable to extrinsic factors, such as a visual
perceptual process, the asymmetry should be independent of the
arm used.
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Second, the results of Sabes and Jordan (1997) suggest that the
inertial properties of the arm could play a central role in the
process of planning obstacle avoidance movements, but measure-
ments of the arm’s inertia were not available. Here, we make
direct measurements of the inertia and compare the predictions
of the sensitivity model to the data from the obstacle rotation
experiment.

Finally, the majority of motor-planning studies have been re-
stricted to movements involving an interaction with a planar
surface or 2 df manipulandum. This method places these move-
ments into the domain of compliant control (Hollerbach, 1982), in
which an entirely different strategy may be used for planning
movements (Desmurget et al., 1997). This is problematic when
trying to investigate the way that the CNS interacts with a
particular object, namely the obstacle, because additional con-
straints could confound our results. In the present study, partici-
pants’ arms were completely unconstrained, and movements were
made around obstacles in a variety of orientations.

MATERIALS AND METHODS
Five participants, two left-handed and three right-handed, gave their
informed consent and took part in the experiment. All participants had
normal or corrected to normal vision. Two authors (P.S. and D.W.) were
participants, and the remaining three participants were naive as to the
purpose of the study.

Obstacle rotation
Apparatus. A three-dimensional virtual visual feedback system (Fig. 1)
was used to record the motion of the hand and to generate the obstacles
and feedback of the hand’s position. An Optotrak 3020 infrared position
monitoring system (Northern Digital, Waterloo, Ontario, Canada)
tracked the position of an infrared emitting diode (IRED) mounted on
the tip of the participant’s index finger. These positions were sampled by
a Silicon Graphics (Mountain View, CA) Indigo (SGi) 2 XZ workstation
at 200 Hz and used both on-line to drive the visual display as well as
stored for spatial analysis of the paths.

The targets and feedback of finger position were presented as virtual
three-dimensional images. This was achieved using a cathode ray tube
projector (Electrohome, Rancho Cucamonga, CA; Marquee 8000 with a
P43 low-persistence phosphor green tube) driven by the SGi workstation
to project an image onto a horizontal rear projection screen suspended
above the participant’s head. A horizontal front-reflecting semisilvered
mirror was placed face up below the participant’s chin (30 cm below the
projection screen). The participant viewed the reflected image of the rear

projection screen through field-sequential shuttered glasses (Crystal
Eyes; Stereo-graphic Inc.) by looking down at the mirror. The SGi
workstation displayed left and right eye images (1280 3 500 pixels) of the
scene to be viewed at 120 Hz. The shuttered glasses alternately blanked
the view from each eye in synchrony with the display, allowing each eye
to be presented with the appropriate planar view. Participants therefore
perceived a three-dimensional scene. A coordinate frame was chosen for
the workspace with the X-axis lying along the transverse direction, the
Y-axis along the sagittal direction, the Z-axis along the vertical, and an
origin located at the center of the eyes (Fig. 2 A–C). The workspace for
the virtual feedback was centered at (0.0,35.0,241.4) cm, which will be
referred to as the center point.

Before each experiment, the visual feedback system was calibrated to
ensure that the absolute positions determined by the Optotrak were in
register with the perceived three-dimensional location of the visual
feedback. By illuminating the semisilvered mirror from below, the virtual
image and the IRED could be lined up by eye. Each participant cali-
brated on 30 target locations uniformly distributed throughout the work-
space. A linear regression fit of image position to IRED position was
performed, and the results were then used on-line to position the targets
and hand feedback images. Finally, participants were asked to point to 10
more targets to validate the regression fit. Only participants who achieved
a validation root mean square error of ,0.8 cm were used in the
experiment.

During the experiment an opaque sheet was fixed beneath the semi-
silvered mirror to block a direct view of the arm, and the room was
darkened. Hand feedback was then provided by a 1 cm white wire cube
in the virtual scene. The targets were presented as 3-cm-diameter spheres
and the obstacle as a 2-cm-diameter cylinder.

Figure 1. Three-dimensional virtual visual feedback system.

Figure 2. Visual scene for the obstacle rotation experiment. A–C, Visual
scene at sample presentation angles for each of the three planes of
movement. The viewer is looking down the length of the obstacle (open
circle). Above each figure, the obstacle axis and the plane of rotation are
listed. D, Obstacle and start and target spheres, with dimensions labeled.
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Procedure. Each trial began with a white (start) sphere, a blue (target)
sphere, and a red cylindrical obstacle appearing in the workspace (Fig.
2 D). Participants were instructed to move their finger into the start
sphere and wait for a tone, at which point they were to reach around the
obstacle to the target sphere, making sure to avoid hitting the obstacle
with their finger (a sample path is shown in Fig. 3). If the fingertip
collided with the obstacle, or if participants attempted to go directly to
the target sphere without going around the obstacle, a low tone was
sounded, and the trial was restarted. Otherwise, when the participant’s
fingertip came to rest in the target sphere, a high tone sounded, and the
screen went blank until the next trial. Participants were given no further
instructions, except to move naturally and comfortably.

The experiment was divided into blocks during which the cylindrical
obstacle was fixed in space with its center at the center point of the
workspace and its length lying along either the X-, Y-, or Z-axis. Within
a block, the start and target points were always located in the plane that
passed through the center point, perpendicular to the obstacle. The
presentation angle f determined the orientation of the start and target
points relative to the obstacle. Therefore, within each block the geometry
of the start and target spheres and the cylindrical obstacle were, apart
from a single rotation, identical. f is defined as the angle of the line passing
from the intertarget axis through the obstacle, as shown in Figure 2A–C.

Trials occurred in “there-and-back” pairs: identities of the start and
target circles were switched within a pair, but the presentation angle was
held fixed. A trial block consisted of 120 pseudo-randomly ordered
movement pairs with presentation angles located at 3° increments around
the circle. Before each block, participants were given ;10 practice trials
to familiarize them with the upcoming task. Participants performed two
sessions on different days, one with the right hand and one with the left.
Each session consisted of three blocks, one with the obstacle along each
axis. The order of the sessions and blocks within a session were
randomized.

Data analysis. We define the path near point as the locus on the path that
comes closest to the obstacle. We also define a near point angle, d, as the
angle of the line connecting the obstacle and the near point measured
with respect to the perpendicular bisector defining the presentation angle
(Fig. 3). Because the end point (i.e., fingertip) paths lay primarily in the
plane perpendicular to the obstacle, and motion along the obstacle does
not change the distance to the obstacle, the near point angle was defined
in the plane perpendicular to the obstacle.

Mobility measurements
We will consider a sensitivity model for path planning that relies on the
notion of the arm’s mobilit y. The mobility matrix is the inverse of the
joint inertia matrix transformed into Cartesian space (Hogan, 1985).
Formally, it is defined as:

W~u ! 5 J~u !I21~u !J9~u !, (1)

where I(u) is the inertia matrix of the arm, and J(u) is the Jacobian of the
arm, both of which are functions of the joint configuration of the arm, u.
The prime denotes the matrix transpose. The mobility relates a pertur-
bative force, f, at the end point to the resulting acceleration:

a 5 Wf. (2)

We measured the mobility of the left arm and the right arm at the
center point for four of the five participants in the obstacle rotation
experiment (including one author, D.W.). By repeatedly perturbing the
hand, held stationary at the center point, with forces in variety of
directions, we were able to estimate the mobility matrix by measuring the
resulting hand acceleration and using the relationship of Equation 2.

Apparatus. The experimental apparatus used for the mobility measure-
ment was the same as in the obstacle rotation experiment, except that
participants grasped the handle of a lightweight, carbon fiber robotic
manipulator (Phantom haptic interface; Sensable Devices, Cambridge,
MA). This robot, which is free to move in three dimensions, can exert
forces of up to 20 N in any direction in three-dimensional space (back-
drive friction, 0.02 N; closed loop stiffness, 1 N/mm; apparent mass at the
tip, ,150 gm). A custom-designed handle allowed rotation about the
center in all three directions so that no torques would be transferred to
the hand.

Procedure. At the beginning of each measurement, a target circle
appeared in the visual display at the center of the workspace, and the
manipulandum assisted the participant back to this position by simulating
a weak spring attached to that point. When the participant was within 2
cm of the center point and the hand velocity was ,1 cm/sec for at least
200 msec, the robot produced an 8.0 N force pulse of 200 msec duration
in a specified direction. The position of the participant’s hand was
monitored with the Optotrak at 1500 Hz for the duration of the pulse.

An experiment consisted of 72 pseudo-randomly ordered force per-
turbations at 5° intervals around the circle in either the sagittal ( X),
frontal ( Y), or horizontal ( Z) planes (capital letters refer to the cardinal
axis, which is perpendicular to the respective plane). For each partici-
pant, six experiments were conducted, one for each arm in each of the
three planes.

Data analysis. For a constant perturbative force, Equation 2 predicts a
constant acceleration. Thus, ignoring for the moment the effects of the
nonlinear terms of the dynamics and participants’ reactions to the per-
turbation, we expect the hand position to be a quadratic function of time:

F xt

yt
G5F x0 vx0 ax0/2

y0 vy0 ay0/2 G F1
t
t2G. (3)

A
Ç

The matrix of parameters A was estimated with linear regression over
varying temporal windows for each trial. For this analysis, the time origin
was chosen as the midpoint of the interval, meaning that twice the third
column of the matrix A is an estimate of the acceleration at the center of
the temporal window under consideration. We also calculated the R 2

statistic of each regression: the proportion of variance in position ac-
counted for by the regression.

The mobility matrix was estimated by regressing the acceleration
measurements from a particular trial on the direction of the perturbative
forces, according to the linear relationship of Equation 2. Because we are
only concerned with the shape of the mobility matrix, not its absolute
size, the forces (and thus the resulting W estimates) were arbitrarily
scaled. Because we computed mobility estimates within a single experi-
ment, the resulting quantities are the 2 3 2 mobility matrices for each of
the three cardinal planes.

Finally, the mobility, as defined in Equation 1, is necessarily symmet-
ric. However, the estimation procedure described above does not con-
strain our estimates of W to be symmetric; they may contain an antisym-
metric component known as curl. There are a variety of factors that could
contribute to the curl in our mobility estimates. First, the marker was not
positioned exactly at the point where the force acted on the hand, so
there may be some rotation in the data. Second, noise in the acceleration
measurements will result in spurious nonsymmetric components to the
least squares estimate of W. In particular, the actual forces delivered to
the hand were not ideal force pulses but contained some non-negligible
temporal dynamics. We expect this factor to be worse with shorter time
windows. Third, Equation 2 only relates perturbative forces to the
acceleration that directly results from the perturbation and only at
the location for which W is computed. The longer the window we use, the

Figure 3. Definitions of the path near point (NP) and the near point
angle, d.
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further the arm will be from the center point, and the greater the hand’s
velocity will be, meaning that other terms of the dynamics will play a
larger role in the arm’s acceleration. Also, at longer intervals beyond the
stimulus onset, participants’ reactions to the perturbation will be a factor.

Our theoretical interpretation of the mobility requires the existence of
real eigenvectors for W, but a curl component in our mobility estimate
can lead to complex eigenvalues. We therefore used a symmetrized
version of our estimate W for further analysis: Ws 5 (W 1 W9)/2. As a
measure of the curl in our mobility estimate, we will consider the ratio of
the absolute value of the determinants of the antisymmetric and sym-
metric components of W, udet(W 2 W9)u/udet(Ws )u, which we will call the
curl index. Note that the index is ,1 when the mobility estimate’s
symmetric part is larger than its antisymmetric part.

Sensitivity model
Sabes and Jordan (1997) showed that in a planar, 2 df version of the
obstacle rotation experiment, trajectory near points tended to cluster at
opposite poles of the center point, on an axis approximately aligned with
the orientation of the forearm. To account for this effect, they proposed
a sensitivity model for the planning of obstacle avoidance movements.
We will briefly review the model here.

In the obstacle avoidance task, the only constraint on the movement,
other than the start and target points, is to avoid collision with the
obstacle. Thus, it would be desirable to choose a path that minimizes the
sensitivity of the arm to sensor or actuator uncertainty or external
perturbations in the direction of the obstacle. The sensitivity model
suggests that the near point of a path should be chosen to lie close to the
axis of minimum sensitivity to perturbation or noise. This axis is called
the (near point) preferred axis. Sabes and Jordan (1997) introduced
three definitions of sensitivity—one purely kinematic, one based on the
arm’s elastic properties, and one based on its inertial properties—the last
of which was shown to best account for the data from the planar obstacle
rotation experiment. Here, we concentrate on that last measure, the
arm’s mobility W (see Methods, Mobility measurements).

The eigenvectors of W have a simple interpretation: the major (minor)
eigenvector is the direction along which force perturbations have the
largest (smallest) effect. Thus, the sensitivity model would predict that
the near points should cluster toward the mobility minor axis. In other
words, the mobility minor axis should be the near point preferred axis.
We tested this theory by comparing it with the results from the two
experiments presented in this paper.

Data analysis. To assess whether the near points cluster about a
preferred axis, we examined the near point angle, d, as a function of
presentation angle f. Consider the case in which movement paths are
perfectly symmetric (i.e., swapping target and start positions does not
change the path), and the apex of the movement comes closest to the
obstacle. Here, all near points would lie along the axis defined by the
presentation angle, and d, which is the difference angle between the near
point and the presentation angle, would always be 0, independently of f.
The sensitivity model suggests that the near point will lie not at d 5 0 but,
rather, some portion of the way from there to a preferred axis. This
prediction can be formalized into a statistical model of the dependence
of d on f:

d 5 b~v 2 f!%180 1 e, (4)

where e is zero mean, normally distributed noise with SD se, the “signed
modulus,” y 5 x%180, is defined as the y in the interval (290,90) such
that x 5 y 1 180 n for some integer n, and all angles are in degrees. The
two parameters of the model are the preferred axis v and the slope b.
The latter is a measure of the strength of the dependence of d on f. This
model describes a piecewise linear relationship between d and f, in
which the preferred axis v acts as an attractor. Given a data set we can
find the maximum likelihood parameter values, the values that best
account for the experimental data, as well as confidence limits on those
estimates. The details of this calculation are given in a previous article by
Sabes and Jordan (1997). The estimated confidence interval for the
preferred axis is not necessarily symmetric about the maximum likeli-
hood value. It is also important to note that the slope b plays the same
role here as in standard linear regression: if b is significantly different
from zero, the null hypothesis that d does not depend on f (i.e., a strictly
intrinsic planning model) is rejected in favor of the preferred axis model.

We will also have occasion to ask whether two sets of axial data (e.g.,
near point preferred axes and mobility minor axes) have the same mean.
Because the data lie on a circular domain, we cannot use standard linear

techniques such as a one-way ANOVA. Instead, we use a nonparametric
test for common mean direction of two sample populations (Fisher,
1993). The test is based on the Y statistic, which plays the role of the F
statistic in an ANOVA. Because we do not want to assume a model
distribution for the data (i.e., we want a nonparametric test), yet we will
be making comparisons between small sample populations, we use a
bootstrapping technique to obtain appropriate significance levels. Details
of both the Y statistic and the bootstrapping method can be found in the
work of Fisher (1993).

RESULTS
Obstacle rotation
Participants were able to perform the task easily, colliding with
the obstacle or attempting to short-cut behind it on average about
six times in a block of 240 successful trials. The mean (SD)
movement time across trial blocks was 1143 (314) msec, and the
mean (SD) distance from the path near point to the obstacle was
4.2 (1.2) cm. There were no significant differences in these two
measures across obstacle axes or choice of arm used for reaching.

Sample obstacle avoidance paths are shown in Figure 4. The
three sets of paths were all taken from the same trial block, but

Figure 4. Sample obstacle avoidance paths. All three rows show sample
plots from the same trial block: participant P.S., Y-axis, left hand. The
three plots of each row present the same paths projected onto the three
cardinal axes. Each row displays all trials with presentation angles within
10° of the value in the title. Solid lines are for counterclockwise move-
ments; dashed lines are for clockwise. The black and gray circles mark the
counterclockwise and clockwise near points, respectively. The line d 5 0
is shown by the dotted line bisecting the obstacle. Note that in these plots
and all that follow, f is zero on the positive horizontal axis and increases
with counterclockwise rotation, as in the usual two-dimensional case.
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the presentation angles are different. There are distinct qualita-
tive differences between the sets of paths. Those in the top row,
f near 90°, are fairly symmetric, with near points clustering along
the line d 5 0. When the presentation angle is near 135°, the paths
become reliably skewed, and the near points cluster to the right of
the presentation axis. Finally, when f is near 180°, the obstacle
clearance is larger, and the near points cluster at either side of the
d 5 0 axis. This example illustrates a trend seen for all the
participants; near point placement varies as a function of presen-
tation angle in a manner that causes the near points of all paths
to cluster toward a preferred axis, in this case approximately
aligned with the X-axis.

These effects can be seen more clearly by examining all the near
points for a particular trial block. Sample near point data for
three different participants and three different obstacle orienta-
tions are shown in Figure 5. The plots on the top row show a
distinct clustering of the near points in the plane perpendicular to
the obstacle. Furthermore, the bottom plots, showing near point
angle versus presentation angle, are nearly piecewise linear with
a negative slope, indicating the existence of a near point pre-
ferred axis within each plane.

These preliminary impressions were confirmed with the near
point regression analysis. The results are summarized in Figure 6.
For every participant, with both hands, and in every plane, the
near point regression showed a significant piecewise linear de-
pendence of d on f, i.e., b was significantly .0. Furthermore,
within an experimental condition, there was no more than ap-
proximately a 30° spread for the preferred axes across participants
(with the exception of C.S., Z-plane), despite large variations
across conditions.

The effect does not seem to be learning-dependent. There is no
significant interaction between the strength of the near point
clustering (as evidenced by the slope b) or the quality of fit of the
model (as evidenced by the R2 statistic) for a trial block and the
order of that block. And when the near point regression analysis
is performed separately for the first and second halves of each
trial block, there is no clear trend in the preferred axis, the
strength of the clustering, or the quality of fit of the model.

These results show that three-dimensional, unconstrained ob-
stacle avoidance movements display path variations that are not
explicable in terms of the extrinsic task constraints. As is the case
with planar, 2 df movements, the near points of the path tend to
cluster along a preferred axis that is approximately constant
across participants.

Left hand versus right hand
One explanation for the path variations seen in these experiments
is that anisotropies in the perceptual system could lead to differ-
ent movement plans at different orientations. If the path variabil-
ity is perceptual in origin, then we would expect it to be the same
for both left- and right-hand movements. Alternatively, if the
effects are attributable to either the kinematic or dynamic prop-
erties of the arm, then we would expect intermanual differences in
behavior. In particular, for experiments centered on the midline,
as ours were, we would predict that path variations for one arm
should be the mirror image of those of the other arm, reflected
about the midline.

Figure 7 shows two sets of sample paths from the same partic-
ipant with the same obstacle orientation and presentation angle,
but from movements made with different arms. Note that the
paths are skewed in both cases, but the direction of the skew is the
opposite in the two cases. Approximately speaking, the obstacle
avoidance paths of one arm are the mirror images of the paths of
the other, reflected about the line X 5 0.

To make this same comparison over the whole data set, the
preferred axes from Figure 6 have been replotted in a circular
format in Figure 8. Each annulus corresponds to a single partic-
ipant, and each pair of arc-shaped boxes marks a preferred axis
and 95% confidence interval. There are two plots for the hori-
zontal (Z) and frontal (Y) planes. The plots on the left display the
actual data from the experiment, whereas in the plots on the right,
the axes from left-handed blocks are reflected about the midsag-
ittal plane. If movement paths are symmetric about the midline,
then data from the two hands should overlap in these latter plots.
Paths that lie in the sagittal (X) plane do not change on reflection

Figure 5. Sample near point results. Top,
Near point locations relative to the obstacle
in the plane perpendicular to the obstacle
length. The obstacle’s cross-section is also
shown. Bottom, Near point angle versus
presentation angle. In all plots, circles are
for clockwise movements, and triangles are
for counterclockwise movements.
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about that plane; therefore, symmetry predicts the same pre-
ferred axes for either hand.

For each plane of movement, we performed a nonparametric
test for common mean preferred axis between left- and right-
hand sessions (see Methods, Sensitivity model). For horizontal
and frontal plane movements, this analysis was repeated two
times, once with the actual data and once with the left-reflected
data of Figure 8. The results of the comparisons are shown in
Table 1. For Z-plane movements, the left- and right-hand pre-
ferred axes are significantly different. However, when the left-
hand data are reflected about the midline, the two means are
statistically indistinguishable. In the case of the Y-plane, the
preferred axes for both hands lie very near the X-axis (90°), so it
is difficult to draw any conclusions. However, we note that al-
though there is no significant difference between the groups in
either the actual data or the reflected data, the Y statistic is
smaller for the reflected data, showing the same trend as that seen
for the Z-plane. Finally, the X-plane data for the two hands have

nearly identical mean preferred axes, as predicted by symmetry
about the midline.

These findings support the claim that the near point place-
ments for movements with the two hands are mirror symmetric
about the midline, allowing us to rule out a perceptual origin for
the movement asymmetries seen in the obstacle rotation
experiment.

Mobility measurements
To estimate the hand’s acceleration we must first specify the
width of the temporal window of hand positions to be used in this
analysis. There were several factors to consider. First, we wanted
to choose as early and narrow a window as possible, because we
are trying to estimate the instantaneous acceleration attributable
to the perturbative forces. The quality of that estimate will
deteriorate as the window becomes too long, for the reasons
discussed above (see the discussion on curl in Methods, Mobility
measurements). Also, beyond ;100 msec, participants can begin
to react to the perturbation (Flanders et al., 1986; Flanders and
Cordo, 1989). On the other hand the variable errors in the
acceleration measurements (and hence the mobility measure-
ments) should decrease as the window gets longer.

Three quantities related to the mobility analysis were consid-
ered: the R2 statistics for the acceleration and mobility regres-
sions and the curl index. The values of these measures for win-
dows between 20 and 80 msec in duration, beginning at the onset
of the force pulse, are shown in Figure 9. The two regressions
improved and the curl index decreased as the window size was
increased. The plots in Figure 9 suggest that any window beyond
;65 msec, at which the curl index first falls to ,0.1, would be a
good choice. We chose a window of 70 msec for the mobility
estimates.

Figure 10 compares the mobility minor (stable) axes of the left

Figure 6. Near point angle regressions. Each point represents the esti-
mated parameter for one participant, and error bars represent 95%
confidence intervals (which are generally not symmetric). Top, Near point
preferred axis, v. Bottom, Regression slope, b.

Figure 7. Intermanual path comparisons. Both rows show paths made by
T.F. in Z-axis trial blocks, but the arm used was different in each case.
Each row displays all trials with presentation angles within 10° of the
Y-axis. Solid lines are for counterclockwise movements; dashed lines are
for clockwise. The black and gray circles mark the counterclockwise and
clockwise near points, respectively. The line d 5 0 is shown by the dotted
line bisecting the obstacle.
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and right hands. The results are largely symmetric about the
midsagittal plane, as would be expected for the true mobility.

Comparison of mobility measurements and obstacle
rotation experiments
Figure 11 displays each of the measured mobility ellipses, with
minor axes drawn in thick lines. Superimposed on those figures
are the respective near point preferred axis 95% confidence
regions. Qualitatively, the mobility predictions agree quite well
with the observed preferred axes. Only the Z-plane data displays
a noticeable systematic error, with the near point axes tending
more toward the midline than the mobility minor axes.

We assessed the quality of the mobility predictions by using the
nonparametric common mean direction test, described in Meth-
ods, Sensitivity model. The measured mobility minor axes and the
near point preferred axes were compared for each of the six
movement plane–hand combinations, and none of the differences
approached significance (Table 2). This result could be attribut-
able to small sample size, because there were only four data

points in each of the groups compared. Thus, for each plane of
movement we performed an additional comparison with the data
from the left- and right-hand sessions pooled together, after
reflecting the left-hand data about the midline. Although the

Figure 8. Intermanual comparisons of near point placement. Each plot depicts all the preferred axes for a given obstacle orientation. A single annulus
represents one participant and contains two pairs of boxes, each lying along a single axis. The boxes mark the preferred axis (middle line) and 95%
confidence intervals (which are generally not symmetric). The outside gray box represents left-hand movements; the inside white box is for right-hand
movements. Top, Actual data. Bottom, Data from the left hand have been reflected about the X-axis. The rightmost plot shows the actual results for the
X-axis movements.

Figure 9. Measures of the quality of the mobility estimate for a range of
window sizes. All windows begin at the onset of the force pulse. Each
point represents the mean (SD; error bars) across experiments. Top, R 2

statistic for the acceleration regression. Middle, R 2 statistic for the mo-
bility regression. Bottom, Curl index of the mobility estimate.

Table 1. Comparisons of mean preferred axis for left- and
right-hand sessions

Plane

Actual Reflected

v# right v# left Y p v# right v# refl Y p

Z 95.7 52.7 18.0 0.014 95.7 127.3 0.475 0.290
Y 84.5 91.8 2.70 0.156 84.5 88.2 0.657 0.423
X 23.4 22.8 0.014 0.892

Reflected (refl) refers to data for which the preferred axes in left-hand sessions were
reflected about participants’ midline. The Y statistic was computed for each com-
parison, and its probability under the null hypothesis of common mean preferred
axis was computed using bootstrapping. Large values for Y indicate a lower likeli-
hood that the two population means are the same (see Methods, Sensitivity model;
Fisher, 1993).
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sample sizes were twice as big, still none of the comparisons
revealed significant differences.

It should be noted that we did not track participants’ posture
during the mobility measurements. Differences in posture be-
tween the obstacle avoidance and mobility experiments could bias
the mobility-based near point axis predictions. However, the two
experiments were conducted in same apparatus and with the
same visual feedback, and there appeared to be little variation in
posture between the two experiments.

DISCUSSION
There are three main results presented in this paper. First, the
three-dimensional, unconstrained obstacle rotation experiment
shows predictable variations in movement paths. The near points,
where the path makes its closest approach to the obstacle, were
not uniformly distributed but tended to cluster on a preferred
axis. This distribution was consistent with a previously proposed
sensitivity model in which the paths are skewed such that when
the hand passes closest to the obstacle, the arm is in a configu-
ration that is most stable to actuator or proprioceptive noise.
Second, the near point distribution for the right and left hands
showed mirror symmetry about the midline, suggesting that the
preferred axis is determined by properties intrinsic to the arm
rather than extrinsic factors such as perceptual distortion. Last,
measurements of the arm’s mobility were made. The minor axis
of the mobility matrix, which represents the axis in which the
hand is most stable in response to perturbations, was in good
agreement with the preferred axis about which the near points of
the paths clustered. Together these results provide evidence that
knowledge of the stability of the arm is taken into account when
planning movements that interact with objects in the environment.

Unconstrained obstacle avoidance
Obstacle avoidance reaching has been investigated in several
previous studies. Abend et al. (1982) asked participants holding
the handle of a 2 df manipulandum to reach around a linear
obstacle protruding into the straight line path to the target. They
found that obstacle avoidance paths displayed high-curvature,
low-velocity regions near the tip of the obstacle. This result was
modeled by Flash and Hogan (1985), who showed that the min-
imum jerk trajectory constrained to go through an appropriately
chosen via point would display similar kinematics. This work
suggests that obstacle avoidance planning can be performed, in
large part, by the same types of mechanisms that have already
been proposed for unconstrained point-to-point reaching. How-
ever, the work does not address the issue of how the via point (or
any other appropriate trajectory constraints) would be chosen.

Dean and Brüwer (1994) studied reaching around various line-
shaped obstacles at a number of different positions in the work-
space. Sabes and Jordan (1997) systematically investigated similar
obstacle avoidance movements in a planar version of the experi-
ments presented in this paper. Both of these studies found that
obstacle avoidance paths vary over the location and orientation of
the movement in the workspace. The latter paper proposed the
sensitivity model to account for these variations.

The basic idea behind the sensitivity model is that the planning
process takes into account those dynamic characteristics of the
arm that affect the difficulty of satisfying the task constraints (e.g.,
not hitting the obstacle). However, these previous studies com-
prised movements made while either resting the arm on a table or
grasping a planar manipulandum. Recent work comparing point-
ing movements made on a tabletop with either the unconstrained
fingertip or a hand-held cursor found that unconstrained move-

Figure 10. Intermanual comparisons of measured mobility orientations. Each plot depicts all the mobility minor axes for a plane. A single annulus
represents one participant and contains two pairs of tick marks each lying along an axis. The outside, black tick marks represent the left hand; the inside,
white tick marks are for the right hand. Top, Actual data. Bottom, Data from the left hand have been reflected about the midsagittal plane. The rightmost
plot shows the actual results for the X-axis movements.
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ments were more curved that those forced to lie along the table-
top (Desmurget et al., 1997). These results suggest that the nature
of interactions with the environment can have a significant effect
on movement kinematics. It is thus possible that some of the path
variability seen in the planar obstacle avoidance study could be
attributable to the interaction between the arm and the table
supporting it. The unconstrained movements considered here are
free of the artificial constraints inherent in planar movement. We
can thus conclude that the anisotropic distribution of near points
is attributable to the task constraint under investigation: avoiding
a collision with the obstacle.

The task we have examined is a simplified version of real-world
obstacle avoidance. Participants were only required to avoid col-
lision with their fingertip, rather than with the entire arm. Simi-
larly, the sensitivity model deals with the sensitivity at the actua-
tor end point (i.e., the fingertip). We chose to study this more
tractable task to gain insights into the constraints the CNS uses in
motor planning. Although in the physical world additional con-
straints would likely be required, we believe that the sensitivity
criterion captures a significant constraint on the motor planner
and that our methods can be extended to explore how other
constraints are incorporated into the planning process.

Intrinsic and extrinsic factors
Although the sensitivity model claims that the observed move-
ment anisotropies are the result of a planning process that ac-

counts for the arm’s dynamics, the data of the earlier planar study
could in fact be attributable to purely extrinsic factors. It is known
that visual distortions of the workspace can be associated with
corresponding distortions in movement path. Wolpert et al.
(1994) showed that across participants, path curvature for point-
to-point reaching correlates with the perceived curvature of
straight lines at the same location in the workspace. Thus, one
explanation for the asymmetries seen in the obstacle rotation
experiment is that perceptual anisotropies distort the task con-
straints in a systematic manner as the presentation angle is varied.
The planning process in the CNS could then rely exclusively on
this distorted visual information for planning movements and still
produce paths with the systematic asymmetries observed.

However, any path variability of perceptual origin should look
the same independent of the arm used for the movement. In
contrast, asymmetries that are based on the kinematic or dynamic
characteristics of the arm should exhibit a mirror symmetry about
the midline. In fact, we found a mirror symmetry in obstacle
avoidance paths. Although there were significant differences be-
tween the near point preferred axes with the left and right hands,
those differences disappeared when the mirror symmetry was
taken into account. This finding rules out a perceptual origin for
the path variability in the obstacle rotation experiment and
strongly supports the claim that the factors leading to these
anisotropies derive from the kinematic or dynamic properties of
the arm.

Mobility and the sensitivity model
Our perturbation-based measurements of the inertia of the arm
are similar to previous measurements of the arm’s stiffness in the
horizontal plane (Mussa-Ivaldi et al., 1985; Gomi and Kawato,
1996) or during single joint movements (Bennett et al., 1992;
Bennett, 1993a). The planar stiffness measurements required
using data from 300 msec and longer after the force perturbation,
raising concerns about whether participants’ responses to the
perturbation could bias the results. Because our analysis used
much smaller time windows (70 msec), we can rule out the effects
of central responses, which take on the order of 100 msec
(Flanders et al., 1986; Flanders and Cordo, 1989). On the other

Figure 11. Comparison of measured mobility matrices and obstacle
preferred axes. The ellipses represent the estimated mobility matrices,
with minor and major axes drawn in bold and thin lines, respectively. The
gray wedges show the 95% confidence regions for the near point preferred
axes. The projections onto each plane are the same as those for previous
figures, e.g., Figure 5.

Table 2. Comparisons of mean near point preferred axis and mobility
minor axis across participants

Plane v
Minor
axis Y p

Right
Z 29.0 49.4 0.632 0.368
Y 96.3 91.6 0.673 0.402
X 25.2 24.9 0.000 0.994

Left
Z 129.8 113.1 0.213 0.496
Y 83.4 86.2 0.183 0.591
X 26.8 27.7 0.0429 0.820

Reflected/pooled
Z 140.4 123.6 0.249 0.402
Y 83.6 87.3 0.745 0.358
X 26.4 26.3 0.000 0.998

The mean axes (in degrees) are shown in the first two columns. Comparisons were
carried out for each plane with data from the right-hand, the left-hand, and pooled
data in which the left-hand data were reflected about the midline. The Y statistic was
computed for each comparison, and its probability under the null hypothesis of
common mean preferred axis was computed using bootstrapping (see Methods,
Sensitivity model; Fisher, 1993).
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hand, reflex responses to torque perturbations have EMG laten-
cies of ;25 msec (Bennett, 1993b). We argue that these auto-
matic, low-level responses should be considered part of the neu-
romuscular dynamics, and so including their effects in our
measurements is consistent with the spirit of the sensitivity
model.

In fact, the predictions of the sensitivity model, based on our
empirical estimates of the mobility, showed close agreement with
the results of the obstacle avoidance experiment. The preferred
axis predictions were statistically indistinguishable from the ex-
perimental results.

Our results should be compared with those of Gordon et al.
(1994), who investigated point-to-point reaching to targets in a
circular array about a fixed origin. They found systematic varia-
tions in the kinematics of these movements that are consistent
with a movement plan that does not take into account the arm’s
anisotropic inertia. Because the movement trajectories observed
here also vary predictably based on the the inertial properties of
the arm, one should consider whether they too might result from
a planner and controller that fails to take adequate account of
those properties. Such a model would predict very different tra-
jectories for movements made in the clockwise and counterclock-
wise directions, contrary to what was observed in this study
(compare Figs. 4, 7). Furthermore, when participants perform a
similar experiment with artificially displaced visual feedback, the
preferred near point axis lies closer to that normally observed at
the visually perceived location of the arm than that of the arm’s
actual location (Sabes, 1996).

We argue that the difference between our results and those of
Gordon et al. (1994) is attributable to the constraints inherent in
the two tasks. In a simple pointing task, there are no external
criteria for which the inertial information would make a differ-
ence, save the acquisition of the final goal position. And in fact,
although the peak acceleration and velocities in the work of
Gordon et al. (1994) show a striking match to the inertia-
independent model, the final positional biases show a much
weaker effect. Participants were able to vary the movement time
to partially offset the inertial effects. The obstacle avoidance task
includes a very different kind of constraint, avoiding collision with
the obstacle, for which inertial information is useful at a much
earlier point in the movement.

Taken together, the experiments of this paper strongly support
the notion that the CNS uses intrinsic criteria, based on the arm’s
dynamics, in the planning of obstacle avoidance movements.
These results show that new task constraints lead to new planning
strategies, beyond the extrinsic smoothness criteria observable in
simple point-to-point movements.
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