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Abstract

It is well established that - in the absence of market distortions - permit trading
provides a cost efficient implementation mechanism for a range of different
environmental policy issues where objectives can be set - either explicitly, or
implicitly - in absolute terms (e.g. tonnes of carbon).  However in many policy
areas, objectives are formulated in relative terms (i.e. as rates).  For example,
objectives may be set for energy efficiency rates in certain industrial sectors
(i.e. energy consumption per unit output), or for the mix of secondary and
primary materials used in the manufacture of certain products. Furthermore, in
a second-best setting with distortionary taxes, there may be significant social
cost advantages to using rate-based instruments, even when the underlying
policy objective is expressed in absolute terms.

This paper extends the analysis of the cost efficiency of trading schemes to
encompass a broader range regulatory rules.  It is demonstrated that for a
generic form of trading - “performance-based credit trading” (PBCT), a market
equilibrium will always exist, and that it will achieve the cost efficient outcome
for any policy objective that can be expressed in the form of a linear
“performance rule”.  The general formulation of this rule is very flexible, and it
can incorporate both absolute performance targets, and rate-based targets.  In
the case of an absolute performance target, it is shown that while PBCT is
functionally equivalent to permit (i.e. “allowance”) trading, it has different
implications for property rights.  In relation to rate-based regulation, an
application of PBCT to an energy efficiency target for a particular sector is
used to demonstrate how “performance adjustment factors” can be used to
differentiate individual firm targets while ensuring that the overall sector
constraint is satisfied.
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1. Introduction

It is well established that - in the absence of market distortions1 - permit trading
provides a cost efficient implementation mechanism for a range of different
environmental policy objectives.  In particular, Montgomery (1972) shows that
- where there is a linear relationship between (N) emissions sources and (M)
pollution receptors - a system of tradable pollution licences (allowances) will
ensure that environmental quality standards at each receptor point are met at
least total cost. This general framework applies to a wide range of environ-
mental policy concerns (e.g. acid rain, global warming, biological oxygen
demand in water) where an absolute objective can be set - either explicitly as a
quantity (e.g. X tonnes of carbon), or implicitly as a change versus a base year
value (e.g. a X% reduction in greenhouse gas emissions from 1990 levels by
2010).

However in many policy contexts, especially at the national level, objectives
are formulated in terms of relative objectives (i.e. as rates).  For example,
objectives may be set for energy efficiency rates in particular industrial sectors
(i.e. energy consumption per unit of output); or for the mix of secondary (i.e.
recycled) and primary material used in the production of certain products.
Furthermore, even in a situation where the underlying policy objective is
defined in absolute terms (e.g. an aggregate emissions limit for NOX for a
particular sector), there may be advantages in converting this to a “rate-based”
regulatory rule, based on the expected level of activity (e.g. emissions of NOX
per unit of output).  In a comparison of the cost efficiency of alternative policy
instruments, Goulder et al., (1998) find that in a second-best setting with pre-
existing factor taxes, the use of a performance standard to achieve a given
absolute target can be significantly less costly to society than using an allocated
(e.g. “grandparented”) permit scheme.2  While their analysis was primarily
concerned with the tax interaction and revenue recycling impacts of the
different instruments and did not consider the issue of implementation
                                                
1 Atkinson and Tietenberg (1991) discuss the issue of market failure in relation to emissions
trading schemes; Hahn (1984) addresses the issue of market power; while Stavins (1995)
considers the implications of transactions costs.

2 Goulder et al., (1998) undertake a numerical simulation of various different policy
instruments for reducing NOX emissions in the USA.  They find that, in the absence of
distortionary taxes, the cost to society (expressed as an index) of a 40% reduction in
emissions is equal to 100 for an allocated permit scheme, while for a “performance rate”
regulation it is equal to 103.  However, when distortionary labour taxes are present, the
situation is reversed and the respective costs of the two instruments are 203 and 141 (i.e. the
performance rate is 30% less costly than the permit scheme).
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efficiency, it suggests that rate-based regulation may be an attractive policy
option in many situations.3

However, in the same way that setting a common emissions limit for all firms is
unlikely to be cost efficient, there is no reason to suppose that the imposition of
a common performance rate will achieve the overall objective at least cost.
Therefore, it would be of great benefit if some form of market mechanism could
be found that would ensure the efficient implementation of this type of policy
rule. To that end, this paper extends the analysis of the cost efficiency of
trading schemes to encompass a broader range of regulatory rules, including
those based on performance rates.  It is demonstrated that a generic form of
trading - “performance-based credit trading” - will achieve the cost efficient
outcome for any policy objective that can be expressed in the form of a linear
“performance rule”.

Definition 1
An aggregate performance rule for a group of firms (or sector4) is
characterised by the constraint

α α α α ⋅ ( i
i

y
=
�

1

N

)  +   K   ≥   0

where yi∈ RM is the input-output vector for firm i, αααα∈ RM is a vector of
parameters, and K is a scalar constant.

This formulation is very flexible, and by choosing appropriate values for the
vector α and the scalar K, it is possible to represent a variety of different
regulatory rules, with a wide range of potential policy applications.  To
illustrate this, let the input-output vector be partitioned into (yi | wi | zi) where
yi∈ RJ is a vector of outputs, wi∈ RK- is a vector of market inputs (e.g. different
types of energy), zi∈ RL- is a vector of non-market inputs (e.g. emissions of air

                                                
3 The analysis assumed that firms were homogeneous, and that initial allocations of permits
were identical.  Therefore the initial distribution of permits was cost efficient, and the issue of
trading did not arise.

4 In this context, the definition of a sector is very flexible.  It can incorporate any collection of
firms and / or industrial (sub-)sectors based on arbitrary characteristics (e.g. size of company,
SIC group, etc.).
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pollutants5); and partition the parameter vector correspondingly into (αααα | ββββ | γγγγ).
As can be seen in Table 1, by choosing appropriate values for the vectors αααα, ββββ
and γγγγ and the scalar K it is possible to generate a number of different types of
regulatory rule.  In particular, the general formulation can incorporate relative
(or “rate based”) targets such as those illustrated by the last two cases - i.e.
energy efficiency and minimum recycled content.

Table 1: Examples of linear performance rules

Parameter values Performance rule Example of policy application

αααα = 0
ββββ = 0
γγγγ = (1, 0, … , 0)
K = K

− Σi z1i   ≤  K Emissions limit for CO2

αααα = 0
ββββ = 0
γγγγ = (γ1, … , γL)
K = K

− Σi γγγγ⋅zi   ≤  K Emissions limit for a basket of
greenhouse gases

αααα = (rα1, … , rαJ)
ββββ = ββββ
γγγγ = 0
K = 0

− ⋅�

⋅�
≤ββββ

αααα
i

i

w
y

i

i

r Energy efficiency target

αααα = 0
β = (-1, r, 0, … , 0)
γγγγ = 0
K = 0

1

2

w
w

≥ r Minimum recycled content for
newsprint

In the next section, the cost efficient outcome under the generalised
performance rule is characterised, and its existence is proved.  Section 3 then
outlines the mechanics of performance-based credit trading (PBCT), and the
necessary and sufficient conditions are derived for a market equilibrium in

                                                
5 The output of emissions to the environment is equivalent to the input of (non-marketed)
environmental services.
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performance credits.  It is demonstrated that a market equilibrium will exist,
and that it will coincide with the cost efficient outcome.  In section 4, PBCT is
applied to the specific case of an energy efficiency target, and it is shown how
performance adjustment factors can be used to differentiate the target between
firms. Finally, in section 5, a number of issues are discussed, and PBCT is
compared with “allowance” permit trading in terms of the differences in
property rights under the two approaches.
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2. Cost Efficient Regulation

For the purposes of the analysis, it is assumed that the regulatory rule applies to
a specific sector of the economy, which comprises a fixed number of firms (N).
The production set of firm i∈ I6 is denoted by:

Gi   =  { (yi | wi | zi) ; gi(yi | wi | zi) ≤ 0 }

where yi∈ RJ is a vector of outputs; wi∈ RK- is a vector of market inputs; and
zi∈ RL- is a vector of non-market inputs.  It is assumed that for all i∈ I, Gi is
closed with a non-empty interior, and that the transformation function
gi(yi | wi | zi) is continuous and strictly convex.

The vector (y | w | z) denotes the overall production plan for the sector, where
y = (y1 | … | yN), w = (w1 | … | wN) and z = (z1 | … | zN).  The sector production
set is denoted by:

G  =  { (y | w | z) ; (yi | wi | zi)  ∈  Gi  ∀  i∈ I }

It follows directly that the set G is also closed with a non-empty interior.

For a specified aggregate performance rule (PR), the set of “allowable” sector
production plans is given by the closed half-space:

S  =  { (y | w | z) ;  ~αααα ⋅y+  
~
ββββ ⋅w  +  ~γγγγ ⋅z  +  K  ≥  0 } 7

Given the general formulation of the performance rule, it is possible that for
certain parameter values there may be no technically feasible production plan
(y | w | z) which also satisfies the rule.  In order to avoid this possibility, the
notion of a technically feasible performance rule is introduced.

                                                
6 The set I is the set of integers {1, 2, …, N}.  Similar notation is used for the sets J and K.

7 ~αααα is the (×N) repeated vector of parameters (αααα | … | αααα).  Hence ~αααα ⋅y = αααα⋅(Σi yi ).  Similarly
for 

~
ββββ  and ~γγγγ .
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Definition 2
A performance rule is technically feasible if there exists (yi | wi | zi) ≠ 0
∀  i∈ I , such that:

a) gi(yi | wi | zi)   <   0 ∀  i∈ I   ; and

b) ~αααα ⋅y  +   
~
ββββ ⋅w   +   ~γγγγ ⋅z   +   K   >   0

i.e.  if the set  G ∩ S  has a non-empty interior.

It is assumed that in the absence of any regulatory rule, there exists a finite
solution to each firm’s “unregulated” optimization problem (UPi)8, and that the
resultant profit of each firm i∈ I is given by πi

u  =  py⋅yi
u  +  pw⋅wi

u
 ; where py > 0

is a J-dimension vector of exogenous output prices; and pw > 0 is a K-
dimension vector of exogenous input prices.9  Consequently, the maximized
aggregate profit for the sector is given by  Πu  = yp~ ⋅yu + wp~ ⋅wu.10

The cost associated with a particular sector production plan (y | w | z) ∈  G ∩ S
is defined to be  Πu - ( yp~ ⋅y  +  wp~ ⋅w) .  A production plan (y*| w*| z*) is cost
efficient if it minimizes this difference.   Since the reference level of profit (Πu)
is unaffected by the choice of production plan, this is equivalent to finding the
plan which maximizes sector profit under the performance rule.

More formally, a production plan (y*| w*| z*) is cost efficient if it is a solution to
the following problem (CE):

                                                
8 Maximize    py⋅yi  +  pw⋅wi      subject to   gi(yi | wi | zi)  ≤  0
    yi  wi  zi

9 The assumption of exogenous prices has been made to allow the analysis to focus solely on
the market in performance credits.  It reflects a situation where the sector is not sufficiently
large to affect input prices, and sells its output in international markets.  The use of alternative
assumptions to close the model (e.g. downward sloping demand curves, etc) would not affect
the conclusions of the analysis.

10 yp~ is the (×N) repeated vector of parameters (py | … | py).  Hence yp~ ⋅yu  =  py ⋅(Σi yi
u

 ).
Similarly for wp~ .
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Maximize   yp~ ⋅ y    +   wp~ ⋅ w
y, w, z

subject to (y | w | z)   ∈    G ∩ S

Given the convexity of the transformation functions and the performance rule,
if the performance rule is technically feasible (see Definition 2), then the Slater
constraint qualification is satisfied.11  Therefore, if (y*| w*| z*) is a solution to
CE, then there exist non-negative multipliers µi

* ∀  i∈ I and η∗ , such that yji
*,

wki
*, zli

*, µi
* and η* satisfy the following first-order conditions for all i∈ I:

pyj  -  µi gi
j  +  η α j  =  0 ∀  j∈ J,

pwk - µi gi
k + η  βk ≤  0 wki [pwk  - µi gi

k + η  βk]  =  0 ∀  k∈ K

- µi
 gi

l + η γl  ≤  0 zli [- µi
 gi

l + η  γl ]  =  0 ∀  l∈ L

gi(yi, wi, zi)  ≤  0 µi [ gi(yi, wi, zi) ]  =  0

and

~αααα ⋅y + 
~
ββββ ⋅w + ~γγγγ ⋅z + K  ≥  0 η [ ~αααα ⋅y + 

~
ββββ ⋅w + ~γγγγ ⋅z + K]  =  0

Since the objective function is linear, and each constraint function is convex,
these conditions are also sufficient.  Hence, if there exists a vector (y*| w*| z*)
satisfying the above set of first-order conditions, it is a global maximizer of the
cost efficiency problem (CE).

Proposition 1
If there exists a finite solution to each firm’s “unregulated” optimization
problem (UPi); and if the performance rule is technically feasible; then
there exists a finite solution to the cost efficiency problem (CE).

Proof : see appendix 1

                                                
11 See, for example, Simon and Blume (1994), page 477.
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Interpretation of the first-order conditions is facilitated by the assumption of a
“non-corner” solution (y*| w*| z*), in which case the following
I×(J×(K+L)+1)+1 conditions characterize completely the cost efficient solution:

pwk  + η*βk = (gi
k
* / gi

j
*) ( pyj  +  η*α j )    ∀  i∈ I, k∈ K, j∈ J (CE1)

η*γl = (gi
l
* / gi

j
*) ( pyj  +  η*α j )    ∀  i∈ I, l∈ L, j∈ J (CE2)

gi(yi
*, wi

*, zi
*) = 0 ∀  i∈ I (CE3)

~αααα ⋅y*  +  
~
ββββ ⋅w*  + ~γγγγ ⋅z*  +  K   =   0 (CE4)

The marginal product conditions (CE1) and (CE2) show how the market prices
must be amended in order to induce a cost efficient solution.  Depending on the
exact nature of the performance rule (i.e. the specific values of the elements of
the parameter vector (αααα | ββββ | γγγγ)), adjustments may be required to input prices, or
to output prices, or to both.12  For an aggregate emissions limit (i.e. Table 1 -
cases 1), the prices of all marketed inputs and outputs remain unaltered (i.e. αααα =
ββββ = 0); the only change being to the I×J conditions for the pollutant in question,
where the value of the marginal product is now set equal to the shadow price of
associated non-market input (η*).  Similarly, if a constraint is imposed on the
relative levels of two specific marketed inputs (i.e. Table 1 - case 4), then it is
only the 2×I×J conditions relating to these inputs that are affected, with the
input prices being increased by η* and r η* respectively.

                                                
12 Since there are no restrictions on the sign of the elements of (αααα | ββββ | γγγγ), the adjustments to
prices can, in theory, be in either direction.  However for most practical policy applications
the parameter values will be non-negative, and the effect of any adjustments will be to
increase prices above the exogenous base level.
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3. Performance-Based Credit Trading

Under performance-based credit trading (PBCT), each firm i∈ I is subject to an
individual performance rule (PRi), of the form:

αααα⋅yi  +  ββββ⋅wi  +  γγγγ⋅zi   +   k   +  ai   ≥   0

The parameter vectors αααα, ββββ, and γγγγ are the same as those that apply to the
aggregate rule (PR), and k = (1/N)×K.  However, the individual rule includes an
extra term (ai), which represents an individual “performance adjustment factor”
for each firm i∈ I.  This factor allows the distributional impacts of the aggregate
performance rule to be varied.  For example, if K represents an absolute
aggregate target (e.g. case 1 in Table 1), then if ai > 0 the individual target for
firm i (i.e. k + ai) is above the average, and if ai < 0 it is below.  In terms of
traditional “allowance” trading schemes, this is equivalent to varying the initial
distribution of a fixed number of permits.

However, if the actual production plan (yi | wi | zi) of firm i∈ I is such that this
satisfies the performance rule (PRi) as a strict inequality, then it is allowed to
generate “performance credits” which it can sell to other firms in the sector.
The purchasing firm can use these credits towards satisfying its performance
rule.  However, net of all transactions, each firm must satisfy its own individual
performance rule.  Thus, if ci represents the number of credits bought or sold by
firm i∈ I (ci < 0 for purchases and ci > 0 for sales), then the set of “allowable”
augmented production plans for firm i∈ I is given by:

Si  =  { (yi | wi | zi | ci) :  αααα⋅yi  +  ββββ⋅wi  +  γγγγ⋅zk +  k  +  ai  -  ci   ≥   0 }

In equilibrium, the market will clear with each firm maximizing its profit (net
of sales or purchases of credits) subject to this “post-trading” performance rule.
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    Definition 3
Given exogenous price vectors py and pw, a competitive market
equilibrium for performance credits comprises a scalar price qc** ≥ 0,
and vectors y**, w**, z**, and c**, such that yi

**, wi
**, zi

**, and ci
**

a)  solve each firms “regulated” optimization problem (RPi); i.e.

maximize py⋅yi  +  pw⋅wi  +  qc**ci
yi wi zi ci

subject to (yi | wi | zi)   ∈    Gi

 (yi | wi | zi | ci)   ∈    Ri

for all i∈ I;

b)  satisfy the market clearing conditions (MC); i.e.

Σi ci   ≥  0 ; qc ( Σi ci )  =  0 ; qc ≥ 0

For each firm i∈ I, the constraint qualification is satisfied13.  Therefore, if
(yi

**| wi
**| zi

**| ci
**) is a solution of RPi, then there exist non-negative multipliers

µi
** ∀  i∈ I and ηi

** ∀  i∈ I, such that yji
**, wki

**, zli
**, ci

**, µi
** and ηi

** satisfy the
following conditions ∀  i∈ I:

pyj  -  µi gi
j  +  ηi α j  =  0 ∀  j∈ J

qc**  -  ηi   =   0

pwk - µi gi
k  +  ηi βk  ≤  0 wki [pwk  - µi gi

k + ηi βk]  =  0 ∀  k∈ K

- µi
 gi

l + ηi γl  ≤  0 zli [- µi
 gi

l + ηi α l ]  =  0 ∀  l∈ L

gi(yi | wi | zi)  ≤  0 µi [ gi(yi | wi | zi) ]  =  0

αααα⋅yi + ββββ⋅wi + γγγγ⋅zi + k + ai - ci  ≥ 0 ηi [ αααα⋅yi + ββββ⋅wi + γγγγ⋅zi + k + ai - ci ] =  0

                                                
13 This follows directly from the assumption of a non-empty interior for each firms
production set, plus the absence of any restrictions on the sign of ci.
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Again, since the objective function is linear, and each constraint function is
convex, these conditions are also sufficient and therefore, if there exists
(yi

**| wi
**| zi

**| ci
**) satisfying this set of first-order conditions, it is a global

maximizer of the firms “regulated” optimization problem (RPi).  Consequently,
these conditions for each i∈ I, together with the market clearing condition (MC)
are necessary and sufficient for the existence of a market equilibrium.

Proposition 2
For any technically feasible aggregate performance rule, if Σi ai  = 0,
then a market equilibrium for performance credits exists

Proof : see appendix 2

Furthermore:

Proposition 3
If  Σi ai  = 0, then any market equilibrium for performance credits is a
solution to the cost efficiency problem (CE)

Proof : see appendix 3.

Thus, provided that the individual adjustment factors are set such that they sum
to zero (i.e. there is no net adjustment to the rule in aggregate), one can
conclude that not only will a market equilibrium for performance credits be
guaranteed to exist, but also the resultant outcome will achieve the overall
performance target at least cost.14  The second part of this statement can be seen
if one again assumes a “non-corner” solution, in which case the market
equilibrium can be characterised completely by the following set of
I×(J×(K+L)+2)+1 conditions:

                                                
14 Subject to the proviso that a solution exists to each firm’s “unregulated” optimization
problem (UPi), and that the performance rule is technically feasible.
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pwk  +  qc**βk =  (gi
k
**/ gi

j
**) ( pyj  +  qc**α j ) ∀  i∈ I, k∈ K, j∈ J (ME1)

qc**γl =  (gi
l
**/ gi

j
**) ( pyj  +  qc**α j )   ∀  i∈ I, l∈ L, j∈ J (ME2)

gi(yi
**| wi

**| zi
**) = 0 ∀  i∈ I (ME3)

αααα⋅yi
** +  ββββ⋅wi

** +  γγγγ⋅zi
∗∗  +  k  +  ai  -  ci

**  =  0 ∀  i∈ I (ME4)

Σi ci
**   =  0 (ME5)

Taken together, conditions ME4 and ME5 imply that:

~αααα ⋅y  +  
~
ββββ ⋅w  + ~γγγγ ⋅z  +  K   +  Σi ai   =   0 (ME4a)

Comparing ME1-ME4a with CE1-CE4, it is clear that if Σi ai  =  0, then the two
sets of necessary and sufficient conditions are identical for qc** = η* (i.e. the
market clearing price for performance credits equal to the shadow cost of the
performance rule).
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4. Application of PBCT to Energy Efficiency

An interesting potential policy application of PBCT is in the area of industrial
energy efficiency, where a target rate is set for aggregate energy consumption
per unit of output for a particular sector.  In this case the generic performance
rule parameters take the values:  αααα ≡ (rα1, … rαJ); ββββ ≡ (β1, … , βk, 0, … , 0)15;
γγγγ = 0; K = 0; where the scalar r is the target energy efficiency rate for the sector,
and the vectors αααα and ββββk represent conversion factors for the different types of
output and energy inputs.  The aggregate performance rule becomes:

r αααα⋅(Σi yi )  +  ββββ⋅(Σi wi )   ≥   0 or equivalently − ⋅�

⋅�
≤ββββ

αααα
i

i

w
y

i

i

r

The first term (or denominator) represents the total output for the sector in
common units (e.g. tonnes), while the second term (or numerator) represents
the total amount of energy consumed by the sector in common units (e.g. kJ).
Assuming a “non-corner” solution, the cost efficient solution requires that the
marginal product conditions for each firm satisfy:

pwk  + η*βk =  - (gi
k
* / gi

j
*) ( pyj  +  η*α j )    ∀  i∈ I, j∈ J, k = 1, …, k

pwk =  - (gi
k
* / gi

j
*) ( pyj  +  η*α j )    ∀  i∈ I, j∈ J, k = k+1, …, K

Thus, not only does cost minimisation under an energy efficiency constraint
change the marginal product condition for each energy input (k = 1, …, k), it
also changes the marginal product conditions for all other inputs.  This reflects
the fact that, due the inclusion of output in the performance rule, the shadow
price of each output j is increased by an amount η*α j.

The “post-trading” performance rule for firm i is given by:

r αααα⋅yi  +  ββββ⋅wi +  ai  - ci   ≥   0 or equivalently − ⋅ +
⋅

≤
⋅

ββββ
αααα αααα

i

i i

w
y y

i ic r + a

                                                
15 It is assumed that energy inputs are represented by the first k elements of the vector wi.
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from which it can be seen that - in this case - the performance credits are
denominated in units of energy.

If the adjustment factors are set to zero for each firm (i.e. ai = 0 ∀  i∈ I) then,
after trading has taken place, each firm must achieve the same energy efficiency
rate (r).  However, by setting non-zero adjustment factors it is possible to vary
the “effective” target efficiency rates between different firms (or groups of
firms), i.e. if ai < 0 then the firm faces a more stringent efficiency target than
the sector average. It should be noted that while the adjustment factor (ai) is
constant, the impact of the factor on the target rate is not.  The latter will vary
depending on the level of the firm’s output - reducing in magnitude as output
increases.

While PBCT will ensure that the aggregate cost of meeting the sector efficiency
target is minimized irrespective of the individual values of ai (provided that Σi
ai = 0), the cost burden on individual firms will depend critically on these
values.  For example, if “pre-regulation” energy efficiency rates vary
significantly across the sector, a common target rate is likely to result in widely
differing cost burdens on individual firms.  However, if the divergence of
performance reflects genuine differences in the characteristics of individual
firms, such an outcome may be hard to justify. For example, the sector may
comprise a number of distinct sub-sectors with substantially different inherent
energy intensities.

The inclusion of the adjustment factors in PBCT provides a flexible mechanism
that can be used to address this issue.  In particular, it allows a number of
different approaches to be adopted for the determination of the adjustment
factors.  If information is available, then values could be calculated on the basis
of the expected costs of improved energy efficiency to individual firms (or sub-
sectors).  Alternatively a more mechanistic approach could be adopted, with
adjustment factors calculated on the basis of a pre-determined rule.16  One such
rule might be that each firm should be required to make the same percentage
improvement in its energy efficiency rate.17  This rule can be considered as the

                                                
16 While the use of expected cost information would in theory allow the calculation of
adjustment factors that reflected some notion of fairness (e.g. ability to pay), in practice a
mechanistic rule may prove to be more acceptable to the constituent firms.

17 A variant of this rule would be that each sub-sector should be required to make the same
percentage reduction in its aggregate energy efficiency rate, with each firm in the sub-sector
then facing the same “adjusted” target rate.  In this case, an aggregate adjustment factor
would be calculated for each sub-sector, which would then be divided equally amongst the
constituent firms.  This approach has the advantage of rewarding firms which have taken



15

performance-based equivalent of the use of grandparenting as the allocation
rule for “allowance” permits.

Suppose that prior to the introduction of any regulation, the actual energy
efficiency of each firm is i

~r and that the overall energy efficiency of the sector
is ~r , where:

i
~ ~

~r = − ⋅
⋅

ββββ
αααα

i

i

w
y

and ~
~

~r =
− ⋅

⋅
�

�

ββββ

ββββ
i

i

w
y

i

i

If the aggregate target rate for the sector is r then, under this rule, the target
performance rate for firm i would be ( )r r r~ ~

i  , and consequently, the
adjustment factor for firm i would be given by:

( ) ( )ia
r
r r ri= �

�
�

�
�
� − ⋅~ ~ ~ ~αααα iy

The sign of the adjustment factor for a particular firm depends on whether its
(pre-regulation) performance rate is above or below the sector average; while
the relative magnitude of  the factor depends on the extent to which its rate
differs from the average, and on its actual energy consumption.  It is
straightforward to show that the adjustment factors calculated under this rule
satisfy the requirement that Σi ai  =  0.
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steps to improve their energy efficiency, while recognising the intrinsic differences between
sub-sectors.
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= [ ]− �
�
�

�
�
� ⋅ − ⋅� �

r
r~

~ ~ββββ ββββi iw wi i
= 0

When this adjustment factor is applied, the performance rule for firm i
becomes:

− ⋅ +
⋅

≤ + −�
�
�

�
�
�

⋅
⋅

�

�
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�
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αααα
αααα
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i

i i
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y

ic r r
r

1 1
~
~

~y
y

from which it can be seen that the ex post target rate will only be equal to
( )r r r~ ~

i  if the output (in tonnes) of firm i remains at the pre-regulation level.
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5. Discussion

The preceding analysis has shown that it is possible to use a generic trading
mechanism - performance-based credit trading (PBCT) - to achieve the cost
efficient implementation of any regulatory objective that can be expressed in
the form of a linear performance rule.  Furthermore, the use of performance
adjustment factors allows the distributional impact of the rule to be varied, to
reflect either normative concerns of equity and fairness, or pragmatic concerns
of political acceptability.

It is important to note that cost efficiency is defined relative to the specified
performance rule, which need not necessarily be the same as the underlying
policy objective.  For example, the former may be expressed in terms of a rate
(e.g. tonnes of carbon per unit of output) while the latter is defined in terms of
an absolute quantity (e.g. tonnes of carbon).  In this case, if there are no
distortionary taxes in the economy, then PBCT will not lead to the cost efficient
achievement of the policy objective as it does not induce the necessary
reduction in output.  However as was noted in section 1, in the presence of
distortionary taxes, an efficiently implemented rate-based performance rule
may often be less costly than a quantity-based instrument.

While PBCT is of particular relevance for the implementation of rate-based
performance rules, it can also be used in the case of an absolute (or quantity-
based) performance rule such as an aggregate limit on the emissions of a
particular pollutant.  For a regulatory rule of this type, the individual
performance rule for a firm i is given by:

- zk   +  ci   ≤    ki   (where  ki  =  k  +  ai ;  and  Σi ki = K) 

which is exactly the same as the rule that the firm would face under an
“allowance” permit trading scheme when it receives an initial allocation of
permits equal to ki.

However, while PBCT and permit trading are functionally equivalent, they
differ fundamentally in terms of property rights.  Under permit trading, the firm
is given property rights in relation to its entire initial allocation (i.e. ki) and it is
free to transfer any proportion of these rights to another party.  In contrast,
under PBCT, the firm can only generate property rights up to the amount by
which it beats its individual target (i.e. ki - (- zk)).  This distinction could have
significant policy implications.  In particular, it may well be easier for the
authorities to reduce the aggregate target (K) under PBCT than under permit
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trading, particularly if past permit allocations are considered by firms to confer
de facto future property rights.

The analysis of PBCT undertaken here assumes that there is a fixed number of
firms in the sector, and hence no consideration has been given to the issue of
entry and exit.  In the special case of an undifferentiated rate-based rule (for
example, where all firms in the sector face a common energy efficiency target),
it is clear that the entry and exit of firms will not affect the cost efficient
achievement of the aggregate target.  In all other cases, some provision must be
made to deal with this issue.  One possible approach that could be adopted in
the case of a differentiated rate-based rule, would be set the value of the
adjustment factors such that Σi ai < 0, with the balance being held by the
regulator.  This reserve could then be used to allocate adjustment factors to any
new entrants during the course of the year on the basis of the sub-sector to
which they belong, with any remainder being sold off as additional
performance credits at the end of the year.
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Appendix 1 : Proposition 1

If: (i) for each firm i∈ I there exists a solution (yi
*) to the “unregulated” problem,  max

p ⋅ yi   s.t.   yi  ∈  Gi  , where Gi = { yi ∈  RM;  gi(yi)  ≤  0} is closed, and the
transformation function gi(yi) is continuous and strictly convex;

(ii) the performance rule is technically feasible, i.e. the set G ∩ S  has a non-empty
interior, where G = { y ∈  RNM;  yi ∈  Gi ∀  i∈ I } and
S = { y ∈  RNM; ~αααα ⋅ y  ≥  - K };

then there exists a solution to the aggregate “regulated” problem,  max ~p ⋅ y   s.t.   y ∈  G ∩ S,
where  y = (y1 | … | yN) and ~p  = (p | … | p).18

Proof:

•  Since by assumption there exists a solution to each firms unregulated problem, it follows
directly that there exists a solution19 (Π*  =  ~p ⋅ y*  =  ~p ⋅ (y1

* | ………… | yN
*)) to the aggregate

“unregulated” problem,  max ~p ⋅ y   s.t.  y ∈  G.  Consequently, the supporting hyperplane
for G at y* is given by ~p ⋅ y  =  Π*.

•  Take any vector y/ ∈  Int (G ∩ S), with ~p ⋅ y/  =  Π/  <  Π*, and let A/ = { y ; ~p ⋅ y  ≥ Π/ }.
By Lemma 1 (see below), the set G ∩ A/ is compact.

•  Since the half-space S is closed, it follows that B = S ∩ (G ∩ A/)  is closed, and hence that
B ⊂   (G ∩ A/) is compact.

•  Therefore, since the profit function ~p ⋅ y is continuous, by Weierstrass’s Theorem, there
exists a solution (y**) to the problem,  max  ~p ⋅ y   s.t.   y  ∈   B = (G ∩ S) ∩ A/.

•  However, by construction there exists some vector y// ∈  G ∩ S , with ~p ⋅ y//  >  Π/, which
implies that ~p ⋅ y** >  Π/.   Hence, the constraint associated with the set A/ is not binding,
and its removal will not change the solution.  Therefore, the vector y** is also a solution to
the problem,  max  ~p ⋅ y   s.t.   y  ∈   G ∩ S.

Q.E.D.

                                                
18 For simplicity, the distinction between inputs and outputs has been dropped.

19 This solution may not be unique.
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Lemma 1

If :    (i) for all i∈ I,  Fi  = { xi ∈  RK ; fi(xi) ≤ 0}  is closed, with fi(xi) continuous and
strictly convex;

 
(ii) q ⋅ x  =  L*  is the supporting hyperplane for F at the point x* (x* ∉  Int F),  where

x  = (x1 | … | xN)  and  F = { x ;  xi ∈  Fi ∀  i∈ I };

(iii) H  =  { x ;  q ⋅ x  ≥  L};

then for any L ≤ L*, the set F ∩ H is compact (i.e. closed and bounded).

Figure A1 : Example with N=1 and K=2

Proof:

F ∩ H  is closed

•  The half-space H is closed by definition, and each set Fi is closed by assumption.
Therefore, it follows directly that F is closed, and hence that F ∩ H  is also closed.  F ∩ H
is bounded

•  Note that the distance between the supporting hyperplane q ⋅ x  =  L* and an arbitrary
“parallel” hyperplane q ⋅ x  =  L  ≤  L* (i.e. the distance along the line orthogonal to the
two hyperplanes), is given by dL = (L* - L) / || q ||.

dL
z2

 d2

x2d1

x1

z1
z

q

x*

f(x) = 0

q⋅x = L*

q⋅x = L

H

F

d

x = z1 - dq

C
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•  Consider a vector z, with || z || = 1, in any arbitrary direction such that q ⋅ z = 0, and
construct a sequence of points {zm}m = 0…∞  along the surface of the supporting hyperplane
q ⋅ x = L*,  where zm = x* + mz,  and hence || x* - zm || = m.

•  For each point zm, construct the normal line  x = zm - dq (where d is some scalar), and let
xm = argminx { || zm - x || ; x = zm - dq  for some value of d, and fi(xi) ≤ 0 for all i∈ I }, with
dm = || zm - xm ||  (see Figure A1 for example with N=1 and K=2).
Note that since fi(xi) is continuous and strictly convex for all i∈ I, it must be the case that
for all m, fi(xi

m) = 0 for some i∈ I and dm > 0.

•  Since fi(xi) is strictly convex for all i∈ I, it must be the case that  dm+1 - dm  >  dm - dm-1.  If
this is not so then, by construction, the line joining xm-1 and xm+1 will intersect the normal
line  x = zm - dq  at the point m

�x = 0.5 xm-1 + 0.5 xm+1, with || zm - m
�x ||  ≤  || zm - xm ||.  But

since each fi(xi) is strictly convex, it follows directly that fi( i
m
�x ) < 0 for all i∈ I.  Therefore,

since each fi(xi) is continuous, there exists a vector mx  such that fi( i
mx ) < 0 for all i∈ I and

|| zm - mx ||  <  || zm - m
�x ||  ≤  || zm - xm ||, which contradicts xm being the argmin.

•  Therefore, {dm}m = 0…∞ is a divergent, monotonically increasing sequence.  Hence for any
value of dL, and an arbitrary direction vector z along the supporting hyperplane, there
exists a finite value M such that for all m < M, dm ≤ dL, and for all m ≥ M, dm > dL.

•  Therefore, it is possible to construct an (N×K)-dimensional “cylinder” C around an axis
defined by the line x = x* - dq, with finite radius M and length d  (where M  is the
maximum value of M, and d  is the maximum value of dM, across all possible direction
vectors z), such that for all x ∉  C, either q ⋅ x  < L, or fi(xi) > 0 for some i∈ I, or both (see
Figure A1).  Hence (F ∩ H) ∩ Cc  =  ∅ , which implies that F ∩ H is bounded.

Q.E.D.
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Appendix 2 : Proposition 2

For any technically feasible performance rule, if Σi ai  = 0, then a market equilibrium for
performance credits exists.

Proof:

By Proposition 1, for any technically feasible performance rule, there exist vectors y**≥ 0,
w*≤ 0, z*≤ 0, and µµµµ*≥ 0, and a scalar η∗ *≥ 0, such that the necessary and sufficient conditions
for a cost efficient solution are satisfied, i.e. (∀  i∈ I):

pyj  - µi
* gi

j
* + η∗ αj  =  0 ∀  j∈ J

pwk - µi
*gi

k
* + η∗ βk ≤  0 wki

*[ pwk - µi
*gi

k
* + η∗ βk ]  =  0 ∀  k∈ K

- µi
*gi

l
* + η∗ γl  ≤  0 zli

*[- µi
*gi

l
* + η∗ γl]  =  0 ∀  l∈ L

gi(yi
*| wi

*| zi
*)  ≤  0 µi

*[ gi(yi
*| wi

*| zi
*) ]  =  0

and

~αααα ⋅y* + 
~
ββββ ⋅w* + ~γγγγ ⋅z* + K  ≥  0 η* [ ~αααα ⋅y* + 

~
ββββ ⋅w* + ~γγγγ ⋅z* + K]  =  0

Now consider the final complementary slackness condition (relating to the performance rule).
If Σi ai = 0, then this condition can be restated (in expanded form) as:

Σi [αααα⋅yi
* + ββββ⋅wi

* + γγγγ⋅zi
* + K + ai] ≥  0 η∗ [Σi [αααα⋅yi

* + ββββ⋅wi
* + γγγγ⋅zi

* + K + ai]  =  0

(i) If η∗  >  0, then  Σi [αααα⋅yi
* + ββββ⋅wi

* + γγγγ⋅zi
* + K + ai]  =  0.

Therefore, there exists c* = (c1
*, … , ci

*, … , cN
*)  with  Σi ci

* =  0 , such that

αααα⋅yi
* + ββββ⋅wi

* + γγγγ⋅zi
* +  k +  ai  -  ci

*  =  0   ∀  i∈ I. (NB:  k = K/N)

(ii) If η∗  =  0, then  Σi [αααα⋅yi
* + ββββ⋅wi

* + γγγγ⋅zi
* + K + ai]  ≥  0.

Therefore, there exists  d* = (d1
*, … , di

*, … , dN
*)  with  Σi di

* ≥ 0 , such that

Σi [αααα⋅yi
* +  ββββ⋅wi

* +  γγγγ⋅zi
* +  K +  ai  -  di

*]  =  0

Therefore, there exists δδδδ* = (δ1
*, … , δi

*, … , δN
*)  with  Σi δi

* =  0 , such that

αααα⋅yi
* +  ββββ⋅wi

* +  γγγγ⋅zi
* +  k +  ai  -  di

* -  δi
*  =  0 ∀  i∈ I

Letting  di
* + δi

* = ci
*;  Σi ci

* ≥  0  and  αααα⋅yi
* + ββββ⋅wi

* + γγγγ⋅zi
* +  k +  ai  - ci

*  =  0   (∀  i∈ I).
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Thus the final complementary slackness condition implies that for any cost minimum solution
there exists some vector c* such that the following I+1 conditions are satisfied for all i∈ I:

αααα⋅yi
* + ββββ⋅wi

* + γγγγ⋅zi
* + k + ai  - ci

* =  0 η∗ [ αααα⋅yi
* + ββββ⋅wi

* + γγγγ⋅zi
* + k + ai - ci

*] = 0 

Σi ci
* ≥  0 η∗ [Σi ci

*]  =  0

Now let:

yi
** =  yi

* ; wi
** =  wi

* ; zi
** =  zi

* ; µµµµi
** = µµµµi

* ∀  i∈ I

ci
** =  ci

* ; ηi
** = η*  ∀  i∈ I

qc
** = η* 

then it follows directly from the above that ∀  i∈ I:

pyj  - µi
** gi

j
** + η∗∗ αj  =  0 ∀  j∈ J

- qc
** +  ηi

**  =  0

pwk - µi
**gi

k
** + η∗∗ βk ≤  0 wki

**[ pwk - µi
**gi

k
** + η∗∗ βk ]  =  0   ∀  k∈ K

- µi
**gi

l
** + η∗∗ γl  ≤  0 zli

**[- µi
**gi

l
** + η∗∗ γl]  =  0   ∀  l∈ L

gi(yi
**| wi

**| zi
**)  ≤  0 µi

**[ gi(yi
**| wi

**| zi
**) ]  =  0

αααα⋅yi
** +  ββββ⋅wi

** +  γγγγ⋅zi
** +  k  +   ai  -  ci

** =  0

ηi
∗∗ [ αααα⋅yi

** + ββββ⋅wi
** + γγγγ⋅zi

** +  k  +  ai  - ci
**] =  0

and

Σi ci
** ≥  0  qc

∗∗ [ Σi ci
** ]  =  0 qc

∗∗  ≥ 0

Thus, the necessary and sufficient conditions for a market equilibrium for performance credits
are satisfied.

Q.E.D.
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Appendix 3 : Proposition 3

If  Σi ai  = 0, then any market equilibrium for performance credits is a solution to the cost
efficiency problem (CE).

Proof:

From the necessary and sufficient conditions for a market equilibrium for performance
credits, comprising a scalar price qc** ≥ 0: and vectors y**≥ 0, w**≤ 0, z**≤ 0 and c**, there
exist vectors of multipliers µµµµ**≥ 0 and ηηηη**≥ 0 such that following conditions are satisfied
∀  i∈ I:

pyj  - µi
** gi

j
** + ηi

∗∗ αj  =  0 ∀  j∈ J

- qc
** +  ηi

**  =  0

pwk - µi
**gi

k
** + η∗∗ βk ≤  0 wki

**[ pwk - µi
**gi

k
** + η∗∗ βk ]  =  0    ∀  k∈ K

- µi
**gi

l
** + η∗∗ γl  ≤  0 zli

**[- µi
**gi

l
** + η∗∗ γl]  =  0 ∀  l∈ L

gi(yi
**| wi

**| zi
**)  ≤  0 µi

**[ gi(yi
**| wi

**| zi
**) ]  =  0

αααα⋅yi
** + ββββ⋅wi

** + γγγγ⋅zi
** + k  + ai  - ci

**  ≥   0

ηi
∗∗ [ αααα⋅yi

** + ββββ⋅wi
** + γγγγ⋅zi

** + k  + ai  - ci
**]  =  0 ∀  i∈ I

and

Σi ci
** ≥  0  qc

∗∗ [ Σi ci
** ]  =  0

The last two complementary slackness conditions, together with the condition that qc
** =  ηi

**

∀  i∈ I,  imply that:

Σi[αααα⋅yi
** + ββββ⋅wi

** + γγγγ⋅zi
** + ai ]  + K  ≥  0

qc
**[Σi[αααα⋅yi

** + ββββ⋅wi
** + γγγγ⋅zi

** + ai ] + K] =  0 qc
** ≥ 0

Now let:

yi
* =  yi

** ; wi
* =  wi

** ; zi
* =  zi

** ; µi
* = µi

** ; ∀  i∈ I

η* =  qc
**

then if Σi ai = 0, it follows directly from the above that ∀  i∈ I:
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pyj  - µi
* gi

j
* + η∗ αj  =  0 ∀  j∈ J

pwk - µi
*gi

k
** + η∗ βk ≤  0 wki

*[ pwk - µi
*gi

k
* + η∗ βk ]  =  0    ∀  k∈ K

- µi
*gi

l
* + η∗ γl  ≤  0 zli

*[- µi
*gi

l
* + η∗ γl]  =  0 ∀  l∈ L

gi(yi
*| wi

*| zi
*)  ≤  0 µi

*[ gi(yi
*| wi

*| zi
*) ]  =  0

and

~αααα ⋅y* + 
~
ββββ ⋅w* + ~γγγγ ⋅z* + K  ≥  0 η* [ ~αααα ⋅y* + 

~
ββββ ⋅w* + ~γγγγ ⋅z* + K]  =  0

Thus, the necessary and sufficient conditions for a cost minimum are satisfied.

Q.E.D.
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