Investigation of geographical dependence of road traffic casualties in highly deprived areas of Greater Manchester

Sanjay Rana

UCL Project Members

Heather Ward and Roselle Thoreau
TOPICS

1. Project NRSI
2. Methodology to investigate geographical dependence
3. Data - STATS19, Index of Multiple Deprivation and Ethnicity
4. Preliminary Results
5. Future directions
1. Project NRSI - Motivation

• The government wants to:
 – tackle the significantly higher incidence of road traffic injuries in disadvantaged communities.
 – Reduce the number of deaths and seriously injured from road injuries by 40% (50% for children) by 2010 (compared to the average for 1994 – 1998).

• Launch of Neighbourhood Road Safety Initiative (NRSI) in late 2004 with a budget of £30M.
1. Project NRSI – Key Facts

- Deprived wards of 8 local authorities, namely Blackpool, Blackburn with Darwen, Bradford, Liverpool, Nottingham, Sandwell, Stoke, and the Greater Manchester.

- Several project partners linked together by the Central Team located in Manchester.

- UCL is part of the evaluation team. Our main responsibilities include impact assessment of NRSI, understanding the causal links and more.
1. Project NRSI- Anatomy of a road traffic accidents (RTAs)

In general, RTAs occur because of:

- Driver mistake e.g. speeding, poor judgment
- Poor road environment e.g. road engineering issues, poor lighting, poor visibility.
- Casualty mistake e.g. carelessness
- Vehicle faults e.g. brake failure, skidding
- Combination of above
1. Project NRSI- Anatomy of RTAs

Road users in deprived areas seem to be affected more than the road users from other areas. Why?

- Road and road networks in poor areas are particularly worse?
- Lack of awareness regarding road safety?
- Socio-economic-cultural lifestyles of road users lead to more exposure?
2. Methodology- Use of thematic overlays

- Work so far has focused on extracting the relationship between the socio-economic-cultural lifestyles and RTA types, using various spatial analyses e.g. overlays and manual cluster detection.

- **Map Themes:**
 - RTA types and Index of Multiple Deprivation
 - RTA types and Residency of Casualty
 - Spatial Distribution of Child Pedestrian Casualties
 - Child Pedestrian Casualty and Ethnicity
 - Location of different accident types amongst NRSI ward residents
 - Provenance of casualties in NRSI wards
2. Methodology- Data and Software

- **Data:**
 - 1999 – 2001 (pre- NRSI) STATS19 collected from Local Authorities.
 - Index of Multiple Deprivation (2004) collected from ODPM at the Super Output Area level.
 - Census (2001) data from CASWEB at ward level.
 - Census boundaries at ward level from UKBORDERS.

- **Software:**
 - GMAXI and GMAPS – MS ACCESS and MapInfo GIS combo for querying, basic analysis and visualisation of STATS19 data.
 - ArcGIS GIS for making multi-thematic maps.
 - SPSS and MS EXCEL for making basic statistical charts.
2. Methodology - Study Areas in Greater Manchester
3. Data – STATS19

- STATS19 is the most common source of data on RTAs.
- Collected by local Police Force mostly on-site, later validated by Local Authorities and finally sent off to DfT for further validation.
- Most important STATS19 fields for spatial analyses are the location of the accident and driver/casualty residence.
3. Data – STATS19

- The geographic location of accident is almost always available in the STATS19.
- However, there is often minor to substantial number of records with missing casualty/driver residence location.
- Within the NRSI wards, the proportion of records with casualty residence location varies from 15% to 80%.
- This introduces an uncertainty in the spatial pattern.
 - Does the uncertainty vary according to the casualty class?
3. Data – STATS19

Proportion of records with residence postcodes in deprived wards of 2 NRSI districts

Tameside

Wigan

Still Okay

Uncertain
3. Data – STATS19

- Does the uncertainty vary according to the socio-economic status of the area?

 • Proportion of records with residence postcodes in 31 affluent (top 30% least deprived) wards in the NRSI districts were collected.
3. Data – STATS19

Proportion of records with residence postcodes in affluent wards of 2 NRSI districts

- Produced by the Office of the Deputy Prime Minister in 2004, was used as a composite indicator of the socio-economic environment in the NRSI Wards.
- Represented over the spatial extent of the Lower layer of the Super Output Area (SOA).
 - Minimum population 1000; mean 1500. Built from groups of Output Areas (typically 4 to 6) and constrained by the boundaries of the Standard Table wards used for 2001 Census outputs.

- Each SOA has a rank ranging from 1 (most deprived; in Liverpool) to 32482 (least deprived; in Basingstoke and Deane).
- SOA level representation provides an insight into the sub-ward level variations in the socio-economic indicators.
3. Data – Ethnicity

Some of the highly deprived areas suffering from child pedestrian casualties also have a substantial ethnic minority population:

- Is the road environment not suitable for children?
- Are children vulnerable due to multiple journeys related to faith learning, playgrounds, school trip?
- Does the cultural background of children affect their road usage behaviour?
3. Data – Ethnicity

Ethnicity data at ward level was collected from the 2001 Census, and a Black and Minority Ethnic Ratio is calculated by adding the population of:

- Mixed
- Asian or Asian British
- Black or Black British
- Chinese
- Other Ethnic Group

and normalising it by total population.
4. Preliminary Results

Map Themes:

- Accident types and Index of Multiple Deprivation
- Child Pedestrian Casualty and Ethnicity
- Accident types and Residency of casualty
- Location of different accident types amongst NRSI ward residents
- Provenance of casualties in NRSI wards
NRSI Districts in Greater Manchester (1999-2001)

Proportion of Accidents (%)

Top 10% most deprived

\[y = 50.411e^{-0.0001x} \]

\[R^2 = 0.9768 \]

\[n = 29203 \]

National Average Deprivation

Top 10% least deprived

IMD Rank
Child (0-15) Pedal Cyclist Accidents
Child Passenger Accidents

Legend
- Greater Manchester district
- NRSI ward
- Child Passenger Casualty (1999-2001)
Child Pedestrian Accidents
Older Teen and Young Adult (16-25) Driver accidents
Older Teen and Young Adult Passenger accidents
Older Teen and Young Adult Pedestrian accidents
Adult (26-59) Driver accidents
Adult Passenger accidents
Adult Pedestrian accidents
Spatial proximity of religious sites and a cluster of child pedestrian casualties in Oldham
Lack of clusters of child pedestrian casualties in Bolton with high BME population
Cluster of child pedestrian accidents in Rochdale close to a green space
Adult Driver Casualties in Bury

Influence of road types and traffic conditions on adult driver casualties.
Residence locations of child casualties – where do the children injured in NRSI areas live?

~70% casualties were NRSI wards residents.

Non-NRSI ward residents

Socio-economic background:

<table>
<thead>
<tr>
<th>Deprivation Rank</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 10% most deprived</td>
<td>~18.2</td>
</tr>
<tr>
<td>Top 10-20% most deprived</td>
<td>~16.2</td>
</tr>
<tr>
<td>Top 20% most deprived to National Average Deprivation</td>
<td>~40.2</td>
</tr>
<tr>
<td>National Average Deprivation to top 20% least deprived</td>
<td>~22.2</td>
</tr>
<tr>
<td>Top 20% least deprived</td>
<td>~3.2</td>
</tr>
</tbody>
</table>
Residence locations of adult drivers – Do drivers from affluent areas cause/suffer accidents in deprived areas?

41% drivers were NRSI wards residents.

Non-NRSI ward residents

Socio-economic background:

<table>
<thead>
<tr>
<th>Deprivation Rank</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 10% most deprived</td>
<td>~28%</td>
</tr>
<tr>
<td>Top 10-20% most deprived</td>
<td>~20%</td>
</tr>
<tr>
<td>Top 20% most deprived to National Average Deprivation</td>
<td>~30%</td>
</tr>
<tr>
<td>National Average Deprivation to top 20% least deprived</td>
<td>~19%</td>
</tr>
<tr>
<td>Top 20% least deprived</td>
<td>~3%</td>
</tr>
</tbody>
</table>
5. Future Directions – Only Short Term

• Establishing the relationship between proximity to certain land use and casualty classes e.g., are children and older people injured more near shops, playground, schools etc.?

• Implementing clustering algorithms for an automated detection of accident hotspots.
CHILL Out SLOW Down

RESPECT OUR NEIGHBOURHOODS, EASE YOUR SPEED.

2006 CTS Research Seminars

Disclaimer: Work in Progress, E&OE