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This paper considers tests for the rank of a matrix for which a Tootnsistent
estimator is availabldHowever in contrast to tests associated with the minimum
chi-square and asymptotic least squares princifiesestimator’s asymptotic vari-
ance matrix is not required to be either full or of known rarést statistics based on
certain estimated characteristic roots are proposed whose limiting distributions are
aweighted sum of independent chi-squared varialesse weights may be simply
estimatedyielding convenient estimators for the limiting distributions of the pro-
posed statistic#\ sequential testing procedure is presented that yields a consistent
estimator for the rank of a matriA simulation experiment is conducted comparing
the characteristic root statistics advocated in this paper with statistics based on the
Wald and asymptotic least squares principles

1. INTRODUCTION

Establishing the rank of a matrix is an important problem in a wide variety of
econometric and statistical contex&sr examplethe classical identification prob-
lem in linear simultaneous equation models involves the rank of particular sub-
matrices of the reduced form parametese among othersRothenbergl973.
Moreover in a more general likelihood settinthere is an intimate relationship
between the rank of the information matrix and the identifiability of a vector of
parametergsee Hsiapl983. Such notions may be suitably adapted for the iden-
tifiability of parameters estimated by other methobise need for knowledge of

the rank of particular matrices also arises in many other situations in economet-
rics; for examplethe rank of the substitution matrix in systems of demand equa-
tions(Lewbel 1991 for other examplesseg among othersCragg and Donald
1997 Gill and Lewbe] 1992. Moreover in misspecified mode]sasymptotic
covariance matrices required for inference purposes may be singelace for
statistics to possess the usual limiting chi-squared behavmmsistent estima-
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tor for a generalized inverse is needed that may be problematic if the asymptotic
covariance matrix is of unknown ranfOn conditions for the consistent estima-
tion of generalized inverses of matricege Andrews1987,)

This paper is concerned with tests for the rank of a matrix that is unobserved
but for which a root-T consistedRTC) estimator is availableGill and Lewbel
(1992 were the first authors to consider this problddowever their solution
based on estimators for the zero pivots obtained from an LDU decomposition of
the RTC matrix estimator is in error as was shown by Cragg and Dahagb.
Cragg and Donald1997) provided tests for the rank of a matrix in this frame-
work based on a minimum chi-squar@dC) criterion (Ferguson1958 Roth-
enberg 1978 However as they recognizedn essential feature for the application
of the MC principle to testing for rank is knowledge of the rank of the asymptotic
variance matrix of the limiting normal distribution of the RTC matrix estimator

Thereforgan important departure for the approach taken in this paper is that no
explicit assumptions are made concerning the rank or structure of the asymptotic
covariance matrix of the limiting normal distribution of the RTC matrix estimator
In particularwe allow the asymptotic variance matrix to be less than full rani
moreoveythis rank may be unknowiror examplethe matrix of interest may be
subject to(possibly unknowpa priori nonlinear restrictions and may have been
estimated as such which will yield an asymptotic covariance matrix for the RTC
estimator that is of less than full ranldnlike our methodthe MC and other test
procedures for rank such as asymptotic least squayeS) (Gouriéroux Mon-
fort, and Trognon1985 require that the form of these a priori restrictions and
hencethe rank of the metric employed in these procedurekaosvn.(For fur-
ther discussion of tests of rank based on MC and ALS criteria in such circum-
stancessee Robin and Smitl1995) However we do require an assumption that
the rank of a matrix involving the asymptotic covariance matrix for the RTC es-
timator and matrices of certain characteristic vectors is nongeassumption
is empirically nonverifiable without further information on the constituent
matrices

The main focus of the paper is variants of a statistic originally proposed by
Anderson(1951), which is a functional of certain estimated characteristic roots
Anderson’s statistic is a likelihood ratio test for the rank of a regression coeffi-
cient matrix in a multivariate normal linedaMNL ) model In the MNL mode)
Anderson’s statistic has a limiting chi-squared distribution under the null hypoth-
esis that the matrix possesses a given rahis result arises because the asymp-
totic variance matrix of the limit normal distribution of the maximum likelihood
(least squargsestimator for the regression coefficient matrix has a special Kro-
necker product structuréVe relax this assumption to allow for a general asymp-
totic variance matrix that may not necessarily be of full rank and the rank of
which may not be knowrHowever the limit distributions of the proposed test
statistics under the null hypothesis of given rank depend on certain nuisance
parameters that may be consistently estimaded thus an estimator for these
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limit distributions may be obtaineél sequential testing procedure that is specific
to general is advocated that an asymptotic sensshould never accept a lower
rank for the matrix of interest than the true rank of the matrix and tiaén a
particular dependence of the asymptotic sizes at each stage of the sequence on the
sample sizgresults in a consistent estimator for the rank of the matrix

Section 2 outlines the problem under consideration and defines notation to-
gether with certain assumptiahe basis for the testing procedures of this paper
is also introduced in Section Zest statistics for the rank of a matrix based on
certain characteristic roots are described in Section 3 and their limiting distribu-
tions derived An estimation procedure for these limiting distributions is pro-
vided in Section 4and critical regions for tests of the rank hypothesis are also
provided Section 5 details the consistency properties of the critical regions of
Section 4 and provides a sequential procedure for the consistent estimation of the
rank of a matrix To evaluate the size and power properties of tests based on
characteristic roots and other methp8gction 6 presents a simulation experi-
ment Section 7 concludes the papAH proofs are relegated to the Appendix

2. SOME PRELIMINARIES
2.1. The Problem

The unobservedp,q) matrix B has unknown true rank* where 0= r* =<
min(p,q), which we state formally as the following assumption

Assumption 21. (Rank ofB) The(p,q) matrixB, p= g, is finite and has rank
r*where0=r*=q.

The problem of interest concerns constructing tests for the rank of the unob-
served matriXB. We denote the hypothesis that the raniBdg equal tor by

H,:rk(B) =, (2.1)

where 0= r = g. Initially, Section 3 discusses tests for the null hypothesis
H,-:rk(B) = r * against the alternative hypothesis-: rk(B) > r*, which are
also the hypotheses considered by Cragg and Dofib9®3 1996 1997).
Furthermorgin Section 5 we consider the use of a sequential testing proce-
dure for the null hypothesisl, : rk(B) = r against the alternative hypothesis
H/:rk(B) >r,r =0,1...,q — 1, to reveal(at least asymptotical)ythe true
rankr* of the matrixB.

2.2. Notation and Further Assumptions

Our second assumption concerns the information on the natisailable to the
researcher
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Assumption 22. (Root-T consistent estimator f@) The estimatoB is root-T
consistent for thé p,q) matrix B, wherep = q; that is

T¥2vedB — B) —' N,4(0,0), (2.2)
whereQ is finite andrk(Q) = s, 0 < s= pq.

The notation—" denotes convergence in distributjevhereas convergence in
probability is indicated by-P. The theoretical development of this paper makes
no explicit a priori assumption regarding the ram&f the (pg, pg) asymptotic
covariance matrix}. In particular & may be less than full raniMore impor-
tantly, our procedure does not require explicit knowledge of the rank or structure
of Q, unlike other procedures based on the M&agg and Donaldl997) and
ALS (Gouriéroux et al 1985 principles Hence we allow for the possibility that
the rank and structure @ are unknown

The statistical basis of the procedure adopted in this paper involves a matrix
quadratic form in the RTC estimat8rthat is similar in structure to the statistic
considered by Andersof1951). Anderson’s statistic is a likelihood ratid.R)
statistic for the rank of a matrix and is a functional of certain characteristic roots
(CR’s) of a matrix quadratic formAnderson was concerned with a particular
multivariate normal problem in which the matriXin (2.2) has a special Kro-
necker product structuythis special case of our results is discussed subsequently
To derive the large sample properties of the requisite functioimgbarticular the
CR’s, of the matrix quadratic form employed in our procediiress necessary first
to describe the properties of its population analogue

Let 3 and¥ denote(p, p) and(q,q) positive definite matricegespectively
Consider the p, p) matrix quadratic form irB given by3B¥B’, which, under
Assumption 22, is the population analogue of the statistic considere(Bih)
subsequentlyNow, rk(3B¥B’) = rk(B). Therefore testing for the rank oB is
equivalent to testing for the rank BB¥B’. Moreoverunder Assumption.2, the
matrix quadratic forn® B¥B' hasr * nonzero andp —r *) zero CR's We denote
the ordered CR's B¥B' by7¢= --- =72 >0andr , = --- = 72= 0, which
are the solutions to the determinantal equation

BB — 23| = 0. (2.3)

The characteristic vectdCV) associated withr? from (2.3) is denoted byc;,
such tha’ci’E‘lcj = &, whered; is the Kronecker delta,j =1,...,p. The(p, p)
matrix C = (cy,...,Cp) collects as columns the CVs, i = 1,...,p, and the
columns ofC are partitioned a€ = (C,-,C,_, ) conformably with respect to the
r*nonzero andp — r *) zero CR's{r} of 3B¥B’. HenceX = CC' = C,-C/|- +
Cpr+Cp_,+. For a unique CR?, the corresponding CY is identified up to a
normalization on its lengttor example|c;|| = 1, whereas additionally for mul-
tiple roots includingz?=0,i =r* + 1,..., p, the corresponding CV’s are iden-



TESTS OF RANK 155

tified up to an orthonormal matrix of dimension equal to the multiplicity of the
roots

An alternative representation for the CR%= --- =72 >0andr2 ;= --- =
74 =0 corresponding to th), q) matrix quadratic formB’ 3B is obtained from
the determinantal equation

IB'SB — 72% 1| = 0. (2.4)

The CV associated with® from (2.4) is denoted byl;, such thad; ¥ ~*d; = §;,
i,j =1...,q, and we define thég,q) matrix of CV'sD = (d,,...,dq). Similarly
to C, we partition the columns dd conformably with respect to the' nonzero
and(q— r*) zero CR's{r?} of ¥B'3B asD = (Dy+,Dg—+). Thus ¥ = DD’ =
D,+D;+ + Dq_,»Dg_,+. Similar comments to those earlier for the C\(5} are
also applicable for the identification of the C\{4d;}.

The next assumption allows for the possibility that for particular unknown
positive definite matrice¥ and¥ consistent estimato&and¥ are available as
arises for example in the statistics proposed by Andersd®51).

Assump}ion 23 (Consistent estimators f& and¥) The (p,p) and(qg,q)
estimatorx and¥ are positive semidefinite and weakly consistent for the finite
positive definite matrice¥ and¥, respectivelythatis 3, — 3 = 0p(1) and¥ —

’\I’ = Op(l).

As will become apparent in the next sectiparticular importance is attached
to an interaction between the asymptotic variance ma&trof (2.2) and the ma-
trices of CV'sC,_,-andD,_, - corresponding to the zero CR's?}l .-, 0of (2.3)
and{7?2} ..., of (2.4), respectively The associated condition is only of rele-
vance when the true rank &fis such that * < q.

Assumption 24. (Rank condition If r* < g =p, the[(p — r*)(q — r*),
(p— r*)(q — r*)] matrix (Dg_+ @ Cp_+)'Q(Dg_» ® Cp_;+) is nonzero
that is

rk[(qur* ® Cpfr*)/Q(qur* ® Cpfr*)] >0, (25)

where the(p,p — r*) and(qg,q — r *) matricesC,_,- andD,,_, - are defined fol-
lowing (2.3) and(2.4), respectively

Assumption 24 equivalently states thaD, - @ C,_,+) & N(Q), where
N(-) denotes the null spader kerne) of the matrix(-).? In other wordsthe
columns of the matriXD,_,« ® C,_,+) do not all lie in the space spanned by
the characteristic vectors associated with the zero characteristic ro@s of
Under Assumption 2, the nullity of @ or the dimension of\(Q) is pq — s.
As C,_,» andD_,~ are full column rankp — r* andq — r*, respectivelythe
matrix (Dy—,+ ® Cp_;+) is full column rank(p — r*)(q — r*). Therefore
Assumption 24 is automatically satisfied if*> — (p + q)r * + s> 0, which is
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true if and only ifr * lies inside the intervdlD,{(p + ) — ((p + )2 — 4s)¥/?}/2).
In generalhoweveras botlr * andsare unknownor, more preciselywithout more
explicit knowledge of the characteristic vector structur@oit is impossible to
guarantee that either this condition(@r5) of Assumption 24 will not be violat-
ed® Of courseif Q is positive definitethat is s = pg, Assumption 24 is auto-
matically satisfied

3. TEST STATISTICS FOR THE RANK OF A MATRIX USING
CHARACTERISTIC ROOTS

The tests for the rank & considered in this paper are based on functionals of the
matrix quadratic form

A

VB’ (3.1)

he ordered estimators of the CR’s derived frBB¥B’ of (3.1) are denoted as
1= = /\p, which solve the determinantal equation correspondin@.®,

p>
T

>—

|B¥B’ — AS71| = 0. (3.2)

LEMMA 3.1. (Consistency of the CR estimatorf Assumption®.2 and2.3
hold, then the ordereR estimatorg A; }; that sobe the determinantal equa
tion (3.2) are consistent estimators for the corresponding ordeC®is {2},
that sobe the determinantal equatid2.3).

Thereforefrom Lemma 31, under Assumption 2, A—oPOi=r*+1,..., p
Asp=q, A, =0,i=q+1...,p

The consistency of the CR estimatdps ! for their population counterparts
{77} obtained from(2.3) and(2.4) suggests basing a test for the null hypothesis
that the rank oB isr %, H, - : rk(B) = r*, against the alternative that the rank of
B exceeds *,H/-:rk(B) > r* on a suitable functional of the CR estimators
(A, ., , defined via(3.2).

First, howeveritis necessary to derive a representation for the limiting distri-
bution of the CR'§{A; 1, ;.

THEOREM 31. (Limiting distribution of the CR estimators for the zero CR'’s
If Assumption®.1-24 hold, then theCR estimators 'ﬁi, i=r*+1...,q9, from
(3.2), have the same limiting distribution as the figt— r *) orderedCR’s of the
determinantal equation

IC, +TY2(B = B)Dg_,+D}; + TY2(B = B)'Cp_y» — TAl p_y+| = 0, (3.3)

whereC,,_,- andD,_,- are defined followind2.3) and(2.4), respectiely.

Note that( p — ) CR’s of the determinantal expressi@@3) are also automat-
ically zero app = q.
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As it stands Theorem 3L is not particularly useful for formulating a test of
H,-:rk(B)=r*against,-: rk(B) > r *. Howeveranumber of test statistics may
be formulated in terms of particular functions of the CR estimaftafs', ;.

Assumption 3L. (Functiong The functionh(-) is nonnegativgh(z) = 0,0 =
z< oo, and possesses continuous derivatives at least up to the first order such that
h(0) = 0 andh’(0) = 1.

Particular examples of functioms - ) satisfying the conditions of Assumption
3.1areh(z) = [exp(uz) — 1]/, u = 0, and the Box—Cox transformatidnz) =
[(1+ 2)* —1]/p, u = 0. Other familiar examples are the logarithmic function
h(z) = In(1+ z) and the identity functioh(z) = z, which are special cases of the
Box—Cox transformatiarthese functional forms are considered further later

We are concerned with tests for the null hypothésis: rk(B) = r * against the
alternative hypothesisl,-:rk(B) > r* Consider a CR statistic based on the
functionalsh(};),i =r* +1...,q, defined by

q
CRT-=T > h(i). (3.4)
i=r*+1
Note that from Theorem.8 and Assumption3 CRZ,- =T X .-, A; + 0p(1).
Hence this form of statistia3.4) is analogous to the trace form of Anderson’s
(195)) LR statistic for testing the null hypothedt - : rk(B) = r * against the
alternative hypothesid/-: rk(B) > r*

THEOREM 32. (Limiting distribution of the CR statisticIf r * < g and As
sumptions2.1-24 and3.1 hold, then theCR statistic CR7,- =T 3 -, , h(},)
of (3.4), has a limiting distribution described by

Az,

M-

i=1

where ¢ = min{s(p—r*)(q—r*hL A, = .- = /\{I are the nonzero ordered
CR’s of the matrix

(qur* @ Cpfr*)’Q(qur* ® Cpfr*) (35)
and{Zz, }}il are independent standard normadriates

As {Z?} ~ x2(1) are mutually independenthe limiting distribution given
in Theorem X for the CRT statistic(3.4) is that of a weighted sum of
t* independent chi-squared variahlesach with one degree of freedom
where the weights are given by thé nonzero CR's{A!} of the matrix
(Dg—r* ® Cp—+)'Q(Dg—r+ ® Cp;+) in (3.5), which are identical to those
of (Dg—r*Dg—r+ ® Cp+Cp_;+)Q. Hence as the matriceC, - and D,
are identified up to postmultiplication byp —r*,p—r*)and(q—r*qg—r")
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orthonormal matricesrespectively the result given in Theorem.3 is un-
affected by the choice of identifying constraifits

The limiting distribution for the CR test statis{i{8.4) may be derived straight-
forwardly from Theorem 2 in the special case whem takes the special Kro-
necker product structur@r ! ® 371) as in Andersori1951).

COROLLARY 3.1. (Limiting distribution of the CR statistic whe® =
(T ® =Y. If r* < q and Assumptiong.1-24 and 3.1 hold andQ
(¢! ® 371, then theCR statistic CR7;+ = T> ., h(};) of (3.4), has a
limiting x2[(p — r*)(q — r *)] distribution

Analogously to Anderson’¢1951) LR test a statistic may be based on the
functionh(z) = In(1 + z), which yields the LR form for the CR test statistic

q
CRTR=T 3 In(1+A)). (3.6)
i=r"+1
Moreover secondalso in an analogous fashioa Wald form for the CRT may
also be defined using(z) = z, namely

q

CRTV=T 3 A. (3.7)

r
i=r*+1
The next result immediately follows from the conditions of Theoret 3

COROLLARY 3.2. (Limiting distribution of the LR and Wald forms of the
CR statisti¢ If the conditions of TheorerB.2 hold, then theLR and Wald
forms of theCR statistic CRZ;*R =T XL, In(1 + A;) of (3.6) andCRT,Y =
T3, .14 of (3.7), have identical limiting distributions to that of théR sta-
tistic given in Theoren3.2.

4. ESTIMATION OF THE LIMITING DISTRIBUTION
OF THE CR TEST STATISTICS

To apply the results of Theorem23and Corollary 2, an estimator for the lim-
iting distribution of the CR statisti¢c$3.4), (3.6), and(3.7), is requiredWe adopt
the following notation for the cumulative distribution functi¢nd.f.) of the ran-
dom variable>!_; A} Z2, where{Z;}!_, are independent standard normal vari-
ates which characterizes the limiting distribution of these CR statistics

.
FSRT(c) = 73{2 Nz < c], c=0. (4.1)
i=1

Initially, suppose thaB and the asymptotic variance matik of (2.2) are
known Knowledge of the positive definite matricBsand¥ would imply that
under Assumption .2, the CV matricesC,_,- andD,,_, -, given following(2.3)
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and (2.4), respectively are available andthus the t* nonzero CR's{A} }'_;
of (Dg—r* ® Cp—+)Q(Dy—+ ® Cp_;+) in (3.5) are also knownTherefore
the cd.f. F5R7(-) of (4.1) may be obtained using the methods described in Davies
(1980 and Farebrothe(198Q 1984. Alternatively this cd.f. may be straight-
forwardly simulated given knowledge of the characteristic réaté}iﬁl

However in generalthe asymptotic variance matrix of (2.2) is not known
Hence we assume that a positive semidefinite and weakly consistent estimator
for Q is available to the researcher

Assumption 41. (Consistent estimator for the asymptotic variance mawjx
The estimatof is positive semidefinite and weakly consistent for the asymptotic
variance matrix} of (2.2); thatis @ — Q = o0p(1).

Consider the following estimator for thedd. F5R'(-) of (4.1):

(p—r*)(q—r™)

ﬁrQRT(c)EP{ > ?\E*Zfsc}, c=0, (4.2)

i=1

Where{X’*}(p‘r*’(q‘r*) are the ordered CR’s dD,_,+ ® C, +)'Q®(Dy_,+ ®
Cor-) and {Z PO are mdependent standard normal variat€se
(p,p —r ) and (g,g — r®) matrlcest i+ = (€+4q,...,6) and Dq e
(d,+iq,....d ) are the estimated counterparts of the matrlces of G3s,~
and Dq P obtamed from the characteristic equatm(r&IfB’ - A2 e = O
i=r*+1...,pand(B'SB— A, ¥ 1)d;=0,i=r*+1,..

THEOREM 41. (Estimation of the limiting distribution of the QR statistjics
If r* < q and Assumption®1-24, 3.1, and4.1 hold, then the «.f. F<R7(.) of
(4.2) corverges to the @.f. FSRT(.) of (4.1); thatis F,<R"(c) — FSR™(c) = o(1),
c=0.

Let¢;”, denote the 100 — «) percentile of the @.f. FERT(+) of (4.2); that is

(pr)(qr)A*
P > Nziz=élt=a

i=1

Using Theorem 4, we may define critical regions based on the CR statistics
(3.4), (3.6), and(3.7) of Section 3

THEOREM 42. (Critical region of tests based on the CR statistitfsr * < q
and Assumption®.1-24, 3.1, and 4.1 hold, a test for the null hypothesis
H,-:rk(B) = r * against the alternatie hypothesis H : rk(B) > r * with asymp
totic sizew, 0 < a < 1, is given by the critical regiodCRZ; - = ¢} }, where€¢; ",
is the100(1 — «) percentile of the @.f. FEXT(+) of (4.2).
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5. CONSISTENT ESTIMATION OF THE RANK OF A MATRIX

Of course the true rank * of B is unknown The next result is informative for
constructing a sequential procedure to ascertain the true rank of the Batrix

THEOREM &1. (Consistency of the critical region of the CR statistif r <
r* = qgand Assumptiond1-24, 3.1, and4.1 hold, a test for the null hypothesis
H, :rk(B) = r against the alternatie hypothesis H rk(B) > r with critical re-
gion{CR7, = ¢{_, } is consistentwhere¢;_, is thel00(1 — «,) percentile of
the cd.f. FCRT(.) defined in(4.2).

Theorem 51 emphasizes that a sequential procedure testingk(B) = r
againstH; : rk(B) > r based on the CR statisti€3.4), (3.6), and(3.7), for r =
0,1,...,9— 1 and halting at the first value farfor which the CR statistic indi-
cates nonrejection d¢d, : rk(B) = r will never asymptotically choose a valuerof
less thar *. However at the stage =r ¥, if r * < g, there is a positive asymptotic
probability «, - that the true hypotheshs, - : rk(B) = r * will be rejected There-
fore, such a sequential procedure will not deliver a weakly consistent estimator
for the true rank *, if r * < g, without further elaboratiorHowever as the critical
regions{CR7; = é{,ar} are only defined for values of=0,...,q—1,if r*=q,
this sequential procedure does provide a weakly consistent estimatdr for

A weakly consistent estimator for the true rank of the matrixB may be
obtained with an appropriate adjustment dependeiittorihe asymptotic size,
of the CR test at each stagef the sequential procedune=0,...,q — 1, based
on the results of P6tsch€t983 and BaugrPotscherand Hackl(1988. Cragg
and Donald 1997, Sect 3.2) used a similar approach to estimateusing statis-
tics based on minimum chi-squared that unlike our methoavevey required
that the rank of the asymptotic variance matoe known(for further discus-
sion of this pointsee Robin and Smit1995.

The revised critical region at stagés given by{CR7, = ¢]_,__} with asymp-
totic sizea,r underH, : rk(B) =r,r=0,...,q— 1, and we define the estimator for
rk(B) as

f=  min }{r :CRT, = ¢l_,
1

i=0,...,r —LCRT, <€ ..} (5.1)
re{o,..., q—

iT?

THEOREM 52. (A consistent estimator fak(B) =r*.) If r* < g and As
sumption®.1-24, 3.1, and4.1 hold and if(a) ;. = 0o(1) and(b) =T *In a1 =
o(1), then the estimatatdefined in(5.1) is weakly consistent for (IB) = r *; that
is, f —r*=0p(1).

Similar estimators for the true rank of the matrixB can be defined in a
likewise fashion ta of (5.1) using the CR statistia8R7,“R of (3.6) andCR7Z,"
of (3.7),r=0,...,q— 15
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6. A SIMULATION EXPERIMENT
6.1. Experimental Design

The Monte-Carlo experiments reported subsequently use data drawn from the
UK Family Expenditure SurveyES for the period 1974-1992vhich are the
data used in the applications reported in Blundell and R@89781997hH. We
have chosen these data as a basis for our simulations to provide a degree of
realism for our studyThus the results reported subsequently should bear some
relation to the type of situation that applied workers are likely to encounter in
practice The sample selected is reasonably homogenewitk 4,981 house-
holds each of which consists of a married couple with two childferavoid the
potential problem of zero expenditures in the tobacco and gasoline categories the
sample includes only car owning households in which at least one adult smokes
The data comprise purchases of 14 nondurable and service:gudoolso| food
consumed at homédéood consumed outside the hoyemergy clothing house-
hold servicespersonal goods and servi¢dsisure goodsentertainmentother
leisure servicgdares tobaccg motoring and gasoline

Our study examines a linearized version of Deaton and Muellba(380
almost ideal demand systemhere each budget share is regressed on a constant
a set of three seasonal indicatdise logarithm of relative pricegnd the loga-
rithm of real total expendituteéhe deflator used is the Stone price indBgcause
all shares sum to onene equation is redundaiind consequently the final equa-
tion is eliminated Thus relative prices are computed as the ratio of the price
index for the commodity group and that of the excluded commowitych in this
study is gasoline

The system of demand equations may be writtenas Az, + Bp, + &, where
w, is the vector consisting of the 13 linearly independent budget shares of house-
holdt,t=1,...,4,981 z, comprises the constant teythe three seasonal indica-
tors and logged real total expendityg is the vector of relative pricese,} are
uncorrelated error terms with zero mean and constant positive definite variance
matrix andA and B conformable matrices of unknown parameiédsir study
concerns the rank of the matrix of relative price effdf{hiencep =q=13.

Economic theory indicates that the matrix of relative price eff€ts sym-
metric. Thereforethe symmetry restriction oB is imposed in the second stage
of estimation of the parameter matricksandB by minimum chi-squaredrhe
rank of B is assessed using this estimafable 1 summarizes the results of four
rank tests

The first columnCR7 corresponds to the Wald form of the CR statistic
CRT,W of (3.7), with the weighting matrices¥ and 3 both set equal to
(p, p) identity matricesThe second columiCR7T is a weighted version of
the Wald form of the CR statistic when thie and 2 matrices are chosen by
analogy with the within and between variance estimators in linear panel data
models(Hsiag 1986, namely ¥ = (I, ® ¢,)Q(l, ® ¢,)/(¢,3 4,) and
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TaBLE 1. P-values

Statistics
r CRT WCRT ALS w
0 0.046 Q000 Q000 Q000
1 0.300 Q002 Q000 Q000
2 0.240 Q008 Q000 Q000
3 0.298 Q074 Q000 Q000
4 0410 Q142 Q000 Q000
5 0.638 Q130 Q052 Q000
6 0.788 Q174 Q499 Q000
7 0.946 Q432 0618 Q000
8 0.946 Q772 Q780 Q000
9 0.896 Q866 Q687 Q001
10 0798 Q950 Q971 Q0228
11 0470 Q904 Q920 Q139
12 0162 Q650 Q598 Q229

31= (thp ® 1) Q(ep ® 1o)/[(¢h ® L;))ﬂ(bp ® Lp)/(%ﬁ’lbp)], whereu, is a
p-vector of unit If @ = ¥~ ® 3%, which in our set of simulation experi-
ments is the structure of the asymptotic variance of the estimatd fwior to
imposing symmetrythis choice of¥ andZ, results in a weighted CR statistic
identical to that of Andersofi195)) (cf. Corollary 31).

The last two columns of Table 1 relate to tests proposed by Cragg and Donald
(1996 1997 and Gouriéroux et al1985. UnderH, : rk(B) = r, to apply tests
based on the MC and ALS principlésis necessary first to isolate asymptotically
an(r,r) submatrix ofB that is nonsingulatUnder certain condition€ragg and
Donald(1996 Secs 3 and 5 see also Gill and Lewbgl1992 demonstrated that
a suitable estimator for such a submatrix may be achieved by performnovg
and column permutations via an LU decomposition with complete pive@Ry
on the RTC estimatoB without affecting the limiting distribution of the MC
statistic for testing the hypothedit : rk(B) = r againstH, : rk(B) > r, even in
the presence of tie6n particular see Cragg and Donald996 Corollary 1,

p. 13095. Hence we partition the(p, p) symmetric matrixB = [(B'j)] = [(Bj)]
into its firstr and lasfp — r rows and columns with thep, r) and(r, r) submatri-
cesB'; andBj; assumed full column rank and nonsingulaspectivelyunder
H, :rk(B) = r. Consequentlythe (p — r)(p — r) dimensional rank hypothesis
H,:rk(B) = r may be equivalently stated in freedom equation fornBgs=
B".B,, where B, = (BY;)!B!,, and in constraint equation form &}, =
B5,B111BY,. The third columnALS is the ALS(Gouriéroux et al 1985 statis-
tic based on the freedom equation foBf, = B",B,.” The final column»
corresponds to the Wald teg€ragg and Donaldl996 of the constraint equa-
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tion form BS, = B, B} 11B,.2 Both statistics are obtained subject to the a priori
symmetry constraint oB. UnderH, : rk(B) = r, both statistics have a limiting
x2[(p—r)(p—r+1)/2] distribution r = 0,1,...,q — 1, although the distribu-
tions of these statistics may differ in finite samples

Examining thep-values reported in Table 1esting sequentially the hypoth-
esedH,:rk(B)=r,r=0,1,...,qg — 1 itis immediately clear that the tests select
very different values for the rank &f; at the 005 nominal levell, 3, 5, and 1Q
respectively To appreciate this disparity in outcomathough the sample size
seems largéhouseholds surveyed during the same month appear to face the same
prices because the FES does not record individual pri@@ssequentlywe have
imputed to each household the National Account Retail Price Indices of the month
in which it is surveyedHence there are effectively only 228=19 X 12) differ-
ent prices for each commoditin the following simulationswe have chosen
B to be the estimated matrix of relative price effects corresponding to a rank
equal to §that is the true rank * = 6. To provide differing relative price vari-
ables at each data point in the simulatiotie original prices are perturbed by
the addition of a sample drawn from a normal distribution with zero mean and
variance given by that of the corresponding price in the original sample that
yields an observed sample of exogenous varialalep;, t = 1,...,4,981
The variance matrixV for the simulated error terms is calculated as
1/4,9813+%8(w, — Az, — Bp,) (W, — Az, — Bp,)’ divided by 9 wherd\ is the
corresponding sample estimaidiis choice for the variance matrix of the simu-
lated errors reduces the signal-noise ratio in the full sample to such a level that
each of the preceding rank tests gives identical inferehces

6.2. Monte-Carlo Results

We consider sample sizds= 250 900, and 2000 Each experiment comprises
2,500 replicationsWithin each replicatiors = 1,...,2,500, a random sample
{e8}_, is drawn from aN;5(0,V) population and the simulated budget share
vectors computed fromvy = Az, + Bp, + 7. The parameter matricédsandB are
initially estimated unrestrictedly equation by equation by ordinary least squares
and then symmetry is imposed on the estimatorBoFinally, the rank ofB is
evaluated using each of the preceding four procedures

Figures 1-6 present PP plots for sample sizes250 900, and 2000 Given
a probabilityp and its associated nominal critical valgé p) obtained from the
limiting distribution of the statistic undét, : rk(B) =r, the simulations estimate
the exact probabilityr, (p) that the statistic exceeds(p). Each panel in the
figures provided the PP plot @fon the vertical axis against, (p) on the hori-
zontal axisr =0,...,12.

First, consider the results presented in Figures 1 and Z fer250 The panel
corresponding to the null hypothesis: rk(B) = 6, the true rank oB, in Figure 2
indicates thatfor the upper tail of its distributigrthe unweighted CR statistic
(CRT) has empirical size substantially below the nominal size predicted by the
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FiGcure 1. PP plots T = 250

asymptotic theory of Section Blowevey the deviation between empirical and
nominal sizes for the weighted CR statistid/CR7T) is less pronouncedCon-
sequentlyboth CR statistics are likely to accept too low a rank BorFor the
ALS, ALS and the Wald)V statistics the reverse situation occumsith empir-

ical size much in excess of nominal size obtained by use of the limjtt(g8)
distribution Hence the ALS and Wald procedures with LUCP are likely to in-
duce acceptance of too high a rank BorExamination of the power properties of
these tests displayed in the panels of Figure 1 for the null hypothkses(B) =
r,r=0,...,5reveals that both the CR statistics have poor power characteristics
with the unweighted CR statisti€sR 7 particularly bad in this regaravhereas
both ALS andW appear to perform weltonfirming the preceding observation
The relatively poor performance 6fR7 vis-a-visWCRT may reflect the pop-
ulation values of the nonzero CRs reported in notel@wever given the diver-
gence between empirical and nominal sizes for both statistics discussed earlier
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Ficure 2. PP plots T = 250(plot continued from Figure)l

one would expect that if the results in these panels had been based on size-
corrected critical values the CR statistics would perform somewhat pelttereas

the ALS and Wald statistics would perform somewhat worse than indicated in
Figure 1 Given the relatively small price variation present in the actual sample
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discussed in Section.B the disparity between the statistics exhibited in Fig-

ures 1 and 2 underlines the differences in inferences from the tests displayed in

Table 1 The remaining panels in Figure 2 for the null hypothedestk(B) =,

r=17,...,12 reflect the nonstandard distributions of the various rank statistics

whenr > r* (see also Cragg and DonaltP96 Sect 3, pp. 1303—-1304
SecongFigures 3 and 4 present results fo= 900 The situation for both of

the CR statistics is now much improveas is revealed by the = 6 panel of

Figure 4 in which the empirical and nominal sizes differ by very littMore-

over, the power characteristics for both statistics given inrtke0,...,5 panels

of Figure 3 are correspondingly much improyeed consequentlynonrejec-

tion of too low a rank foB appears to be much less of a probléramination of

ther = 6 panel for the ALS and Wald statistics shows some butprisingly

relatively little improvementThe power of these statistics based on the nominal
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FiGURE 4. PP plots T = 900(plot continued from Figure)3

critical values given in the = 0,...,5 tableaus has also improved vis-a-vis Fig-
ure 1 but not nearly as dramatically as compared to the CR statistics

Third, the results reported in Figures 5 and 6 for The 2,000 case indicate
that the empirical size properties given in the 6 panel of Figure 6 for both CR
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statistics are approximated well by those indicated by the asymptotic theory of
Section 3 More surprisinglythose for the ALS and Wald statistics again show
relatively little improvementThe panels of Figure 5 correspondingte0,...,5
demonstrate that all four statistics have good power characteristics

7. SUMMARY AND CONCLUSIONS

This paper considers tests for the rank of a matrix for which a RTC estimator is
available but where the rank of the estimator’s asymptotic variance matrix may
be neither full nor knownTest statistics based on certain estimated characteristic
roots are proposedinder the null hypothesis of a given rartkeir limiting dis-
tribution is shown to be a weighted sum of independent chi-squared vatiables
each of which has one degree of freeddrhe limiting null distribution of the
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characteristic root tests may be estimated either by simulation or by use of widely
available algorithmsIn an asymptotic sens¢hese test procedures will never
accept a value for the rank of the matrix less than the true. I@oksistent esti-
mation procedures for the rank of the matrix are proposed
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A simulation experiment conducted on a system of budget share equations
indicates that for moderate sample sizes the empirical size of characteristic root
tests is less than that indicated by asymptotic theshgereas statistics based on
asymptotic least squares and the Wald principle appear to be overssieede
for such sample sizethe former statistics are likely to accept a value of the rank
of the matrix lower than the true rankWwhereas the latter statistics are likely to
accept too high a ranlkt is only when the sample size is large that empirical and
nominal sizes are similar for characteristic root statiszth forms of statistic
have good power properties for such sample siZessequentlyin such circum-
stancescharacteristic root statistics may possibly offer useful tests for the rank of
a matrix However it would appear that for smaller sample sizes it may prove
efficacious to examine more than one form of test for the rank of a matrix

NOTES

1. Model selection methods offer an alternative approach to the consistent estimation of the rank
of a matrix(see e.g., Phillips, 1996. Chao and Phillipg1999 applied such methods to the joint
determination of cointegration rank and lag length within a vector autoregressive system

2. For examplelet B = B(¢), whereB obeys the a priori constrain® = B(¢) continuously
differentiable to the first ordetp is ans-vector of parameterandT ¥2(¢ — ¢p) —- N(0, V), V finite
and positive definiteHence & = ®V®’, where® = V, vedB(¢)) is assumed full column ran(f.
Assumption 22). Thereforg Assumption 24 is equivalent tdDy_,+ @ Cp_,+) & N(®').

3. In the simulations of Section,® = g = 13 ands = 91. Assumption 24 is therefore automati-
cally satisfied ifr * € {0,1,2,3,4}.

4. The matrix quadratic forr@B¥B’ has the same characteristic roots as

“13B¥B'F = (F13F1)(F'BG)(G 1¥G'1)(F'BG),

whereF andG are arbitrary conformable nonsingular matricEserefore the CR statisti¢3.4) is
invariant under the transformatiéh— B = F’BG for given2 and¥ if and only if F = CHC L and
G = DKD™L, whereC andD are respectivelythe (p, p) and(q,q) matrices of estimated CVi&f.
following (2.3) and(2.4)) andH andK are arbitrary conformable orthonormal matricparticular
examples of which are permutation matrideshe case wheB =1, and¥ = | o, the CR statisti¢3.4)
is invariant to such transformations if and onlyFifandG themselves are constrained to be arbitrary
conformable orthonormal matrices

5. Alternative conservative procedures for testithg rk{B} = r againstH, : rk{B} > r that avoid
computing the CR estimatofa’}{P7"@™" described in Theorem.# for the CR's{A1}(P77(@~" of
the matrix(Dq—r ® Cp-r)'Q(Dg-r ® Cp-r) may be constructed by noting¥? (¥ ® =)0QY2 -
01/2' (Dg-r ® Cp-r)(Dg-r ® Cp—r)' QY2 = 0, whereQ = QY20Y?. Hence Aoy = Af = AL, i =

L(p—r)(q—r), where A, and{Aj};_, are the maximum CR and nonzero ordered CR’s of

(\I' ® 3)Q, respectlvelyTherefore AmaxE(p N z2 = SPNET Yr72 = S ArZ2, and
hence ,P{/\max (p (- r)zz =cl = ’P{Z(p r(q-r) /\*ZZ =c = FCRT(C) Where{Z }(p r(gq—r)
are |ndependent standard normal varia@ensistent estimators f(»tmaX and A%, A%, and A%,
i=1...,(p—r)(q—r) are obtained from the ordered CR's(@f ® 2)@ (cf. Lemma 31). Hence
conservative critical regions for testing the hypothesijsrk(B) = r againstH, :rk(B) > r to-
gether with associated sequential procedures for the consistent estimatidnntdy be con-
structed along similar lines to those of Theorem® dnd 52, respectively In particular the
critical region{ A% 1CRT, < xZ .[(p — r)(q — )]} has asymptotic size no greater than0 <
a < 1, underH, : rk(B) = r, wherey?__(-) denotes the 10Q — «) percentile of they2(-) distribu-
tion. However it is possible that in practice such critical regions will be too nayr@ading to
rejection ofH, : rk(B) =r, r < r* too infrequently(see Section 6
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6. The scalar divisors i ! and2 ! may be ignoregdas the critical regions based on the CR
statistics are invariant to scale transformations

7. Thatis TE'(MQM') £, the sum of squared weighted generalized least squares res&luals
computed via the auxiliary regressidhvedB’) = P,(B", ® lp—r)vedB;) + £, whereR =
diag(ls(p-r), Lr),Lristhe((p—r)(p—r+1)/2,(p—r)?) elimination matrix Magnus and Neudecker
1980, ¢ is treated as having mean zero and variance matifM’ with @ the estimated variance
matrix of B andM = R(1, ® (—By, 1 ,—)) K p2 with K ;2 the ( p? p?) commutation matrixMagnus
and Neudeckefl988 Sect 3.7, pp. 46—48. In our experimentsan initial estimator foB; is obtained
using ordinary least squares and the preceding equation then iterated three times

8. Writing the rank restrictions ak,[vedB)] = ved B, — B5,Bi;11B},) = 0, the deriva-
tive matrix ofh, (-) is given byH[(-) = Vieqg)h, (-) = (=BL2(B11) % 15) ® (BB 1, 1),
which is full row rank (p — r)2 The Wald statistic forH,:rk(B) = r is given by
Th, [vecB)]'L/(L, A, QHA,L))~1L, h,[vedB)], whereL, is the((p— r)(p —r + 1)/2,(p — 1)?)
elimination matrix andd, = H/(vec(B)).

9. Assumption 24 was satisfied for both forms of CR statisti@$e ordered nonzero CR(sor-
malizing the maximum CR to be unjtyf SB¥B’ for the CR7 and WCRT statistics were D0Q
0.51390.19280.1376 0.0759 0.0644 and 100Q 0.5267,0.4013 0.3174 0.2307,0.0787 respectively
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APPENDIX

Proof of Lemma 3.1. Under Assumptions .2 and 23, from (2.2), we have that
B »PB,3 —P3, andd —»P ¥. Thereforefrom (3.1), $3B¥B’ -»PSB¥B’. As the CR’s
{72}P, defined in(2.3) and(2.4) are continuous functions of the elementS&¥B’, we
therefore have that; »>P 72,i=1,...,p. ]

Define the(r % r*) diagonal matrixY,- = diag(ry,...,7,+), C'"t = (C",CP™"") and
D~ = (D",D9 "'y, whereC andD are defined via2.3) and(2.4), respectivelyand

C’~t andD™! are partitioned conformably with respect to thienonzero andp — r *)
and(qg — r*) zero characteristic roots ¢2.3) and(2.4), respectively

LEMMAA .1. A(p,q) matrix B of rank r* may be expressed as
B=Cry, D" (A.1)
Proof. The proof is similar to that of Ra@l 973 1¢.3(v), pp. 42—43. We may write

3 =>P ccl. Hence

B :2_1<§Ci0{>8=2‘1<_§ cic{>B

*

=

7% tcd ¥ t=3%"1C,-Y,-D;. ¥ !
1

CcrY,.D"".



TESTS OF RANK 173

The second equality follows froef{B¥B’c; = 0,i =r* + 1,..., p, which impliesB’c; =
0,i=r*+1,...,p,as¥ is positive definitecf. (2.3). The third equality follows ad; =
77 1¥B'c,i=1,...,r* are CV's ofB’3B in the metric? ~* (cf. (2.4)). The final equality
follows asy *=C'"'Ctand¥ '=D"'D L u

Remark. Note thatC;.C"" = |-andC),_,-C" =0.

Proof of Theorem 3.1. The proof follows along similar lines to that of Johan$&891,
proof of Theorem 2, pp. 1569-1571. We are concerned with the solutions to the deter-
minantal equatiofB¥B’ — A3 | = 0 corresponding to the zero CR{s?}! ., of
3BW¥B'. First, define
S(\) =B¥B —AS L (A.2)
Secondwriting B = B + (B — B), we have from Lemma A (cf. (A.1) and the preceding
remark that under Assumptions.2 and 22,

C;-B=1Y,-D"" + Op(T ¥2),T¥2C; ,.B=C| -T¥3(B - B). (A.3)
Next from Lemma 31, A; »P 0,i =r* + 1,...,9. Hence from (A.2) and(A.3), under
Assumption 23, consider
(CrWTl/szfr*),é(xi)(cr*le/chfr*)
Y2 + 0p(1) Y,-D-TY2(B - B)'C,_,- + 0p(1)
- Ch +TY2(B-B)D,+Y,+ + 05(1) Cj ,-TY2(B - B)¥T¥2(B - B)'Cp_,+ + 0p(1)

[ Oe(T™H) 0p(T2)
—TA; s (A.4)
Op(T™2) 1o+ 0p(D)
i=r*+1...,9. Therefore
0=[S(A)| =(C,+,T¥2Cp+)' S(A)(C,+, T¥2Cyy )
- Y2 Y,-D;-TY2(B-B)'C,_,-
C, +TY2(B-B)D,:Y,» C, .TY2(B-B)¥TY2(B-B)'C,_-
o o W
-TA + 0p(1
i 0 Ip—r* P
= |YZ||C},_«T¥2(B = B)Dg_,+Djy < T¥2(B = B)'Cp_,» — TAjl,_+| + 0p(1),
(A.5)

i=r*+1,...,9, where the third equality follows frorfA.4) and the final equality from Rao
(1973 complements and problemgi2p. 32), also noting tha® — D, - [}; =Dgq +Dgr=
Hence from Assumption 24 and(A.5), the limiting distribution ofTA;,i =r* +1,...,q
is the same as that of thég — r*) nonzero CR's ofC;,,r+Tl/2(I§ - B) X
Dg-r+Dy-TY2(B—B)C,_, . Note thai p— g) CR’s in the second determinant(@.5)
are automatically zero gs= q. u

Proof of Theorem 3.2. Define

X,»=Cl «TY2(B = B)Dy_,-. (A.6)
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Hence from Assumptions 2 and 24 and(A.6),
ved X, +) =5 Nip—r+)q—r-(0,(Dy_+ @ Cp, <) Q(Dg_r+ @ Cpp_+)). (A.7)
Now the CR statistic 0f3.4) may be written from Theorem.Band(A.6) as
CRT;» = tr{X,=X}+} + 0p(1)
= vedX,-)'vedX,+) + 0p(1); (A.8)

thatis CR7Z, - is a quadratic formin the asymptotically normally distributed random vector
vedX,+). Therefore from (A.7) and(A.8), it immediately follows from Vuongl989
Lemma 32, p. 312) thatCR 7, - has the limiting distribution stated

Remark. Note that
rk((Dy ;- ® Cpp ;-)Q(Dg,+ ® Cp,+))
= min{rk(Dq_=Dy_+ ® Cp+Cp_;+), Tk(Q)}
= min{s,(p—r*)(q—r*)h

Proof of Corollary 3.1. The result immediately follows &S,
andD_,-¥~ D —r»=lg_r=.Hence (Dy_+ ® Cp,_)Q(Dg_» @ Cp_+) = (I 4—

)

-1 —
3IC, =1,

@
[]

Proof of Theorem 4.1. Without loss of generalitywe impose the normalizations
l&l=Li=r"+1.. ,pand”d [=21i —r*+L 0. HenceCp r)«—Op(l)andD
Op(l) Now, C *B\FB C o= A «, where A - = diag (A,4q,..., p) As
Ap o+ =0p(T™ 1) from Lemma 31 and Theorem 2, usmg Assumption 3, B’ C e
0p(1) and from Assumption 2, B’ Cp .+ = 0p(1). That is the columns on o are a
weakly consistent estimator for a basis of the null sp&c&’) of B”. Hence subject to
normalization and identifying constralnl@ — C,_+ = 0p(1), and by a similar ar-

gumenj D — Dg—r- =0p(1). Thereforefrom Assumption 41,

(D ® c;,,r*m(qu_rx ® Cpr) = (Df 1+ ® Cpp_)Q(Dy_+ ® Cpr+) = 0p(1).

Consequentlyby a similar argument to that used in the proof of LemmA &e or-
dered CR estimatorgA’ }{P;" @ ") are consistent for their ordered counterparts
{A}(PyT@TT  Therefore noting the continuity of the .d.f. FER™(+) of (4.1), the
result follows as>,(P;" @ (A" — AT)Z2 = 0p(1). [

Proof of Theorem 4.2. Letc}", denote the 10l — «) percentile of the al.f. FEXT(+)
of (4.1); thatisP{thlx\”Z Cfu} a. Consider the identical everfi@R 7, - = 1"}
and {CR7,- — (&_, — ci",) = ci_,}. From Theorem 4, as the a.f. FCRT( ) is
continuousé;", — ci_, = o(1). Hence the statistic€ R7; - andCRT;» — (¢}, — ci_,)
have identical limiting distributions Therefore lim,, P{CRT- = ¢ .}

lim_.. P{CRT;-=c}_ L u
Proof of Theorem 5.1. From Lemma 3., A; —P 72> 0,i =1,...,r* Thereforg
CRT, 5P oo, r=0,...,r =1 [ ]

Proof of Theorem 5.2. Define the eventd,r = {CRT, = ¢;_, .}, r=0,..., — 1.
Hence P{f=r}=P{NIZ3 A+ N A%}, whereAS: denotes the complement df;. From
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Potscher(1983 and Theorem 4, if (a) o, = 0(1), then¢i_, . — oo, and if (b)
~T 'Inayr =0(1), thenT ¢}, = o(1).
First, consider the case< r *. Hence by Lemma 31 and(b),

P{f =1} = P{AG} =1~ P{A+}
=1-P{TCRT, =T ¢, } >0

asT — oo. Secongconsider the case> r* Thus by Theorem 2 and(a),

P{f =r}=P{A -} =P{CRT,-=¢ ", .} >0

asT — oo. Thereforelim,_, ., P{f =r*} =1. |



