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This paper considers tests for the rank of a matrix for which a root-T consistent
estimator is available+ However, in contrast to tests associated with the minimum
chi-square and asymptotic least squares principles, the estimator’s asymptotic vari-
ance matrix is not required to be either full or of known rank+Test statistics based on
certain estimated characteristic roots are proposed whose limiting distributions are
a weighted sum of independent chi-squared variables+These weights may be simply
estimated, yielding convenient estimators for the limiting distributions of the pro-
posed statistics+A sequential testing procedure is presented that yields a consistent
estimator for the rank of a matrix+A simulation experiment is conducted comparing
the characteristic root statistics advocated in this paper with statistics based on the
Wald and asymptotic least squares principles+

1. INTRODUCTION

Establishing the rank of a matrix is an important problem in a wide variety of
econometric and statistical contexts+For example, the classical identification prob-
lem in linear simultaneous equation models involves the rank of particular sub-
matrices of the reduced form parameters~see, among others, Rothenberg, 1973!+
Moreover, in a more general likelihood setting, there is an intimate relationship
between the rank of the information matrix and the identifiability of a vector of
parameters~see Hsiao, 1983!+ Such notions may be suitably adapted for the iden-
tifiability of parameters estimated by other methods+ The need for knowledge of
the rank of particular matrices also arises in many other situations in economet-
rics; for example, the rank of the substitution matrix in systems of demand equa-
tions~Lewbel, 1991; for other examples, see, among others, Cragg and Donald,
1997; Gill and Lewbel, 1992!+ Moreover, in misspecified models, asymptotic
covariance matrices required for inference purposes may be singular+ Hence, for
statistics to possess the usual limiting chi-squared behavior, a consistent estima-
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tor for a generalized inverse is needed that may be problematic if the asymptotic
covariance matrix is of unknown rank+ ~On conditions for the consistent estima-
tion of generalized inverses of matrices, see Andrews, 1987+!

This paper is concerned with tests for the rank of a matrix that is unobserved
but for which a root-T consistent~RTC! estimator is available+ Gill and Lewbel
~1992! were the first authors to consider this problem+ However, their solution
based on estimators for the zero pivots obtained from an LDU decomposition of
the RTC matrix estimator is in error as was shown by Cragg and Donald~1996!+
Cragg and Donald~1997! provided tests for the rank of a matrix in this frame-
work based on a minimum chi-squared~MC! criterion ~Ferguson, 1958; Roth-
enberg 1973!+However, as they recognized, an essential feature for the application
of the MC principle to testing for rank is knowledge of the rank of the asymptotic
variance matrix of the limiting normal distribution of the RTC matrix estimator+

Therefore, an important departure for the approach taken in this paper is that no
explicit assumptions are made concerning the rank or structure of the asymptotic
covariance matrix of the limiting normal distribution of the RTC matrix estimator+
In particular,we allow the asymptotic variance matrix to be less than full rank,and,
moreover, this rank may be unknown+ For example, the matrix of interest may be
subject to~possibly unknown! a priori nonlinear restrictions and may have been
estimated as such which will yield an asymptotic covariance matrix for the RTC
estimator that is of less than full rank+ Unlike our method, the MC and other test
procedures for rank such as asymptotic least squares~ALS! ~Gouriéroux, Mon-
fort, and Trognon, 1985! require that the form of these a priori restrictions and,
hence, the rank of the metric employed in these procedures areknown.~For fur-
ther discussion of tests of rank based on MC and ALS criteria in such circum-
stances, see Robin and Smith, 1995+! However,we do require an assumption that
the rank of a matrix involving the asymptotic covariance matrix for the RTC es-
timator and matrices of certain characteristic vectors is nonzero; this assumption
is empirically nonverifiable without further information on the constituent
matrices+

The main focus of the paper is variants of a statistic originally proposed by
Anderson~1951!, which is a functional of certain estimated characteristic roots+
Anderson’s statistic is a likelihood ratio test for the rank of a regression coeffi-
cient matrix in a multivariate normal linear~MNL ! model+ In the MNL model,
Anderson’s statistic has a limiting chi-squared distribution under the null hypoth-
esis that the matrix possesses a given rank+ This result arises because the asymp-
totic variance matrix of the limit normal distribution of the maximum likelihood
~least squares! estimator for the regression coefficient matrix has a special Kro-
necker product structure+We relax this assumption to allow for a general asymp-
totic variance matrix that may not necessarily be of full rank and the rank of
which may not be known+ However, the limit distributions of the proposed test
statistics under the null hypothesis of given rank depend on certain nuisance
parameters that may be consistently estimated, and, thus, an estimator for these
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limit distributions may be obtained+Asequential testing procedure that is specific
to general is advocated that, in an asymptotic sense, should never accept a lower
rank for the matrix of interest than the true rank of the matrix and that, given a
particular dependence of the asymptotic sizes at each stage of the sequence on the
sample size, results in a consistent estimator for the rank of the matrix+1

Section 2 outlines the problem under consideration and defines notation to-
gether with certain assumptions+The basis for the testing procedures of this paper
is also introduced in Section 2+ Test statistics for the rank of a matrix based on
certain characteristic roots are described in Section 3 and their limiting distribu-
tions derived+ An estimation procedure for these limiting distributions is pro-
vided in Section 4, and critical regions for tests of the rank hypothesis are also
provided+ Section 5 details the consistency properties of the critical regions of
Section 4 and provides a sequential procedure for the consistent estimation of the
rank of a matrix+ To evaluate the size and power properties of tests based on
characteristic roots and other methods, Section 6 presents a simulation experi-
ment+ Section 7 concludes the paper+ All proofs are relegated to the Appendix+

2. SOME PRELIMINARIES

2.1. The Problem

The unobserved~ p,q! matrix B has unknown true rankr * where 0# r * #
min~ p,q!, which we state formally as the following assumption+

Assumption 2+1+ ~Rank ofB! The~ p,q! matrixB, p$ q, is finite and has rank
r * where 0# r * # q+

The problem of interest concerns constructing tests for the rank of the unob-
served matrixB+We denote the hypothesis that the rank ofB is equal tor by

Hr : rk~B! 5 r, (2.1)

where 0# r # q+ Initially, Section 3 discusses tests for the null hypothesis
Hr * : rk~B! 5 r * against the alternative hypothesisHr *

' : rk~B! . r *, which are
also the hypotheses considered by Cragg and Donald~1993, 1996, 1997!+
Furthermore, in Section 5, we consider the use of a sequential testing proce-
dure for the null hypothesisHr : rk~B! 5 r against the alternative hypothesis
Hr
' : rk~B! . r, r 5 0,1, + + + ,q 2 1, to reveal~at least asymptotically! the true

rank r * of the matrixB+

2.2. Notation and Further Assumptions

Our second assumption concerns the information on the matrixB available to the
researcher+
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Assumption 2+2+ ~Root-Tconsistent estimator forB! The estimatorZB is root-T
consistent for the~ p,q! matrix B, wherep $ q; that is,

T 102 vec~ ZB 2 B! rL Npq~0,V!, (2.2)

whereV is finite andrk~V! 5 s, 0 , s# pq+

The notationrL denotes convergence in distribution,whereas convergence in
probability is indicated byrP+ The theoretical development of this paper makes
no explicit a priori assumption regarding the ranks of the ~ pq, pq! asymptotic
covariance matrixV+ In particular, V may be less than full rank+ More impor-
tantly, our procedure does not require explicit knowledge of the rank or structure
of V, unlike other procedures based on the MC~Cragg and Donald, 1997! and
ALS ~Gouriéroux et al+, 1985! principles+Hence,we allow for the possibility that
the rank and structure ofV are unknown+

The statistical basis of the procedure adopted in this paper involves a matrix
quadratic form in the RTC estimatorZB that is similar in structure to the statistic
considered by Anderson~1951!+ Anderson’s statistic is a likelihood ratio~LR!
statistic for the rank of a matrix and is a functional of certain characteristic roots
~CR’s! of a matrix quadratic form+ Anderson was concerned with a particular
multivariate normal problem in which the matrixV in ~2+2! has a special Kro-
necker product structure; this special case of our results is discussed subsequently+
To derive the large sample properties of the requisite functionals, in particular the
CR’s, of the matrix quadratic form employed in our procedure, it is necessary first
to describe the properties of its population analogue+

Let S andC denote~ p, p! and~q,q! positive definite matrices, respectively+
Consider the~ p, p! matrix quadratic form inB given bySBCB', which, under
Assumption 2+2, is the population analogue of the statistic considered in~3+1!
subsequently+ Now, rk~SBCB'! 5 rk~B!+ Therefore, testing for the rank ofB is
equivalent to testing for the rank ofSBCB'+Moreover, underAssumption 2+1, the
matrix quadratic formS BCB' hasr * nonzero and~ p2 r *! zero CR’s+We denote
the ordered CR’s ofSBCB' byt1

2 $ {{{ $ tr *
2 . 0 andtr *11

2 5{{{5tp
250,which

are the solutions to the determinantal equation

6BCB' 2 t2 S21 6 5 0+ (2.3)

The characteristic vector~CV! associated withti
2 from ~2+3! is denoted byci ,

such thatci
'S21cj 5 dij , wheredij is the Kronecker delta, i, j 51, + + + , p+ The~ p, p!

matrix C [ ~c1, + + + ,cp! collects as columns the CV’sci , i 5 1, + + + , p, and the
columns ofC are partitioned asC5 ~Cr * ,Cp2r * ! conformably with respect to the
r * nonzero and~ p2 r *! zero CR’s$ti

2% of SBCB'+ Hence, S 5 CC'5 Cr *C r *
' 1

Cp2r *Cp2r *
' + For a unique CRti

2, the corresponding CVci is identified up to a
normalization on its length, for example, 7ci751, whereas additionally for mul-
tiple roots, includingti

2 5 0, i 5 r *1 1, + + + , p, the corresponding CV’s are iden-
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tified up to an orthonormal matrix of dimension equal to the multiplicity of the
roots+

An alternative representation for the CR’st1
2 $ {{{ $ tr *

2 . 0 andtr *11
2 5{{{5

tq
25 0 corresponding to the~q,q! matrix quadratic formCB'SB is obtained from

the determinantal equation

6B'SB 2 t2C21 6 5 0+ (2.4)

The CV associated withti
2 from ~2+4! is denoted bydi , such thatdi

'C21dj 5 dij ,
i, j 51, + + + ,q, and we define the~q,q! matrix of CV’sD 5 ~d1, + + + ,dq!+ Similarly
to C, we partition the columns ofD conformably with respect to ther * nonzero
and~q 2 r *! zero CR’s$ti

2% of CB'SB asD 5 ~Dr * ,Dq2r * !+ Thus, C 5 DD' 5
Dr *Dr *

' 1 Dq2r *Dq2r *
' + Similar comments to those earlier for the CV’s$ci % are

also applicable for the identification of the CV’s$di %+
The next assumption allows for the possibility that for particular unknown

positive definite matricesS andC consistent estimatorsZS and ZC are available as
arises, for example, in the statistics proposed by Anderson~1951!+

Assumption 2+3+ ~Consistent estimators forS and C! The ~ p, p! and ~q,q!
estimators ZS and ZC are positive semidefinite and weakly consistent for the finite
positive definite matricesS andC, respectively; that is, ZS 2 S 5 oP~1! and ZC 2
C 5 oP~1!+

As will become apparent in the next section, particular importance is attached
to an interaction between the asymptotic variance matrixV of ~2+2! and the ma-
trices of CV’sCp2r * andDq2r * corresponding to the zero CR’s$ti

2% i5r *11
p of ~2+3!

and $ti
2% i5r *11

q of ~2+4!, respectively+ The associated condition is only of rele-
vance when the true rank ofB is such thatr * , q+

Assumption 2+4+ ~Rank condition! If r * , q # p, the @~ p 2 r *!~q 2 r *!,
~ p 2 r *!~q 2 r *!# matrix ~Dq2r * J Cp2r * !

'V~Dq2r * J Cp2r * ! is nonzero;
that is,

rk@~Dq2r * J Cp2r * !
'V~Dq2r * J Cp2r * !# . 0, (2.5)

where the~ p, p 2 r *! and~q,q 2 r *! matricesCp2r * andDq2r * are defined fol-
lowing ~2+3! and~2+4!, respectively+

Assumption 2+4 equivalently states that~Dq2r * J Cp2r * ! Ó N ~V!, where
N ~{! denotes the null space~or kernel! of the matrix~{!+2 In other words, the
columns of the matrix~Dq2r * J Cp2r * ! do not all lie in the space spanned by
the characteristic vectors associated with the zero characteristic roots ofV+
Under Assumption 2+2, the nullity of V or the dimension ofN ~V! is pq 2 s+
As Cp2r * andDq2r * are full column rankp 2 r * andq 2 r *, respectively, the
matrix ~Dq2r * J Cp2r * ! is full column rank ~ p 2 r *!~q 2 r *!+ Therefore,
Assumption 2+4 is automatically satisfied ifr *2 2 ~ p 1 q!r * 1 s . 0, which is
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true if and only ifr * lies inside the interval@0,$~ p1 q! 2 ~~ p1 q!2 2 4s!102%02!+
In general,however,as bothr * andsare unknown,or,more precisely,without more
explicit knowledge of the characteristic vector structure ofV, it is impossible to
guarantee that either this condition or~2+5! of Assumption 2+4 will not be violat-
ed+3 Of course, if V is positive definite, that is, s5 pq, Assumption 2+4 is auto-
matically satisfied+

3. TEST STATISTICS FOR THE RANK OF A MATRIX USING
CHARACTERISTIC ROOTS

The tests for the rank ofB considered in this paper are based on functionals of the
matrix quadratic form

ZS ZB ZC ZB'+ (3.1)

The ordered estimators of the CR’s derived fromZS ZB ZC ZB' of ~3+1! are denoted as
Zl1 $ {{{ $ Zlp, which solve the determinantal equation corresponding to~2+3!,

6 ZB ZC ZB' 2 l ZS21 6 5 0+ (3.2)

LEMMA 3 +1+ ~Consistency of the CR estimators! If Assumptions2+2 and2+3
hold, then the orderedCR estimators$ Zl i % i51

p that solve the determinantal equa-
tion ~3+2! are consistent estimators for the corresponding orderedCR’s $ti

2% i51
p

that solve the determinantal equation~2+3!+

Therefore, from Lemma 3+1, under Assumption 2+1, Zl i r
P 0, i 5 r *11, + + + , p+

As p $ q, Zl i 5 0, i 5 q 1 1, + + + , p+
The consistency of the CR estimators$ Zl i % for their population counterparts

$ti
2% obtained from~2+3! and~2+4! suggests basing a test for the null hypothesis

that the rank ofB is r *,Hr * : rk~B! 5 r *, against the alternative that the rank of
B exceedsr *,Hr *

' : rk~B! . r *, on a suitable functional of the CR estimators
$ Zl i % i5r *11

q defined via~3+2!+
First, however, it is necessary to derive a representation for the limiting distri-

bution of the CR’s$ Zl i % i5r *11
q +

THEOREM 3+1+ ~Limiting distribution of the CR estimators for the zero CR’s!
If Assumptions2+1–2+4 hold, then theCR estimators TZl i , i 5 r *11, + + + ,q, from
~3+2!, have the same limiting distribution as the first~q2 r *! orderedCR’s of the
determinantal equation

6Cp2r *
' T 102~ ZB 2 B!Dq2r *Dq2r *

' T 102~ ZB 2 B!'Cp2r * 2 TlI p2r * 6 5 0, (3.3)

whereCp2r * andDq2r * are defined following~2+3! and~2+4!, respectively+

Note that~ p2 q! CR’s of the determinantal expression~3+3! are also automat-
ically zero asp $ q+

156 JEAN-MARC ROBIN AND RICHARD J. SMITH



As it stands, Theorem 3+1 is not particularly useful for formulating a test of
Hr * : rk~B!5 r * againstHr *

' : rk~B! . r *+However, a number of test statistics may
be formulated in terms of particular functions of the CR estimators$ Zl i % i5r *11

q +

Assumption 3+1+ ~Functions! The functionh~{! is nonnegative, h~z! $ 0, 0 #
z,`, and possesses continuous derivatives at least up to the first order such that
h~0! 5 0 andh'~0! 5 1+

Particular examples of functionsh~{! satisfying the conditions of Assumption
3+1 areh~z! 5 @exp~mz! 21#0m, m $ 0, and the Box–Cox transformationh~z! 5
@~11 z! m 2 1#0m, m $ 0+ Other familiar examples are the logarithmic function
h~z! 5 ln~11 z! and the identity functionh~z! 5 z,which are special cases of the
Box–Cox transformation; these functional forms are considered further later+

We are concerned with tests for the null hypothesisHr * : rk~B!5 r * against the
alternative hypothesisHr *

' : rk~B! . r *+ Consider a CR statistic based on the
functionalsh~ Zl i !, i 5 r *1 1, + + + ,q, defined by

CRTr * [ T (
i5r *11

q

h~ Zl i !+ (3.4)

Note that from Theorem 3+1 and Assumption 3+1 CRTr *5 T (i5r *11
q Zl i 1 oP~1!+

Hence, this form of statistic~3+4! is analogous to the trace form of Anderson’s
~1951! LR statistic for testing the null hypothesisHr * : rk~B! 5 r * against the
alternative hypothesisHr *

' : rk~B! . r *+

THEOREM 3+2+ ~Limiting distribution of the CR statistic! If r * , q and As-
sumptions2+1–2+4 and3+1 hold, then theCRstatistic, CRTr * 5 T (i5r *11

q h~ Zl i !
of ~3+4!, has a limiting distribution described by

(
i51

t *

l i
r *Zi

2,

where t* # min$s,~ p 2 r *!~q 2 r *!%, l1
r * $ {{{ $ lt *

r * are the nonzero ordered
CR’s of the matrix

~Dq2r * J Cp2r * !
'V~Dq2r * J Cp2r * ! (3.5)

and$Zi % i51
t * are independent standard normalvariates+

As $Zi
2% ; x2~1! are mutually independent, the limiting distribution given

in Theorem 3+2 for the CRT statistic~3+4! is that of a weighted sum of
t * independent chi-squared variables, each with one degree of freedom,
where the weights are given by thet * nonzero CR’s$l i

r * % of the matrix
~Dq2r * J Cp2r * !

'V~Dq2r * J Cp2r * ! in ~3+5!, which are identical to those
of ~Dq2r *Dq2r *

' J Cp2r * Cp2r *
' !V+ Hence, as the matricesCp2r * and Dq2r *

are identified up to postmultiplication by~ p 2 r *, p 2 r *! and~q 2 r *,q 2 r *!
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orthonormal matrices, respectively, the result given in Theorem 3+2 is un-
affected by the choice of identifying constraints+4

The limiting distribution for the CR test statistic~3+4! may be derived straight-
forwardly from Theorem 3+2 in the special case whenV takes the special Kro-
necker product structure~C21 J S21! as in Anderson~1951!+

COROLLARY 3+1+ ~Limiting distribution of the CR statistic whenV 5
~C21 J S21!!+ If r * , q and Assumptions2+1–2+4 and 3+1 hold andV 5
~C21 J S21!, then theCR statistic, CRTr * 5 T (i5r *11

q h~ Zl i ! of ~3+4!, has a
limiting x2@~ p 2 r *!~q 2 r *!# distribution+

Analogously to Anderson’s~1951! LR test, a statistic may be based on the
functionh~z! 5 ln~11 z!, which yields the LR form for the CR test statistic

CRTr *
LR [ T (

i5r *11

q

ln~11 Zl i !+ (3.6)

Moreover, second, also in an analogous fashion, a Wald form for the CRT may
also be defined usingh~z! 5 z, namely,

CRTr *
W [ T (

i5r *11

q

Zl i + (3.7)

The next result immediately follows from the conditions of Theorem 3+2+

COROLLARY 3+2+ ~Limiting distribution of the LR and Wald forms of the
CR statistic! If the conditions of Theorem3+2 hold, then theLR and Wald
forms of theCRstatistic, CRTr *

LR5 T (i5r *11
q ln~11 Zl i ! of ~3+6! andCRTr *

W5
T (i5r *11

q Zl i of ~3+7!, have identical limiting distributions to that of theCR sta-
tistic given in Theorem3+2+

4. ESTIMATION OF THE LIMITING DISTRIBUTION
OF THE CR TEST STATISTICS

To apply the results of Theorem 3+2 and Corollary 3+2, an estimator for the lim-
iting distribution of the CR statistics, ~3+4!, ~3+6!, and~3+7!, is required+We adopt
the following notation for the cumulative distribution function~c+d+f+! of the ran-

dom variable(i51
t * l i

r *Zi
2, where$Zi % i51

t * are independent standard normal vari-
ates, which characterizes the limiting distribution of these CR statistics:

Fr *
CRT~c! [ P H(

i51

t *

l i
r *Zi

2 # cJ , c $ 0+ (4.1)

Initially, suppose thatB and the asymptotic variance matrixV of ~2+2! are
known+ Knowledge of the positive definite matricesS andC would imply that,
under Assumption 2+1, the CV matricesCp2r * andDq2r * , given following~2+3!
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and ~2+4!, respectively, are available and, thus, the t * nonzero CR’s$l i
r * % i51

t *

of ~Dq2r * J Cp2r * !
'V~Dq2r * J Cp2r * ! in ~3+5! are also known+ Therefore,

the c+d+f+ Fr *
CRT~{! of ~4+1! may be obtained using the methods described in Davies

~1980! and Farebrother~1980, 1984!+ Alternatively, this c+d+f+ may be straight-
forwardly simulated given knowledge of the characteristic roots$l i

r * % i51
t * +

However, in general, the asymptotic variance matrixV of ~2+2! is not known+
Hence, we assume that a positive semidefinite and weakly consistent estimator
for V is available to the researcher+

Assumption 4+1+ ~Consistent estimator for the asymptotic variance matrixV!
The estimator ZV is positive semidefinite and weakly consistent for the asymptotic
variance matrixV of ~2+2!; that is, ZV 2 V 5 oP~1!+

Consider the following estimator for the c+d+f+ Fr *
CRT~{! of ~4+1!:

ZFr *
CRT~c! [ P H (

i51

~ p2r * !~q2r * !

Zl i
r *Zi

2 # cJ , c $ 0, (4.2)

where$ Zl i
r * % i51

~ p2r * !~q2r * ! are the ordered CR’s of~ ZDq2r * J ZCp2r * !
' ZV~ ZDq2r * J

ZCp2r * ! and $Zi % i51
~ p2r * !~q2r * ! are independent standard normal variates+ The

~ p, p 2 r *! and ~q,q 2 r *! matrices ZCp2r * 5 ~ [cr *11, + + + , [cp! and ZDq2r * 5
~ Zdr *11, + + + , Zdq! are the estimated counterparts of the matrices of CV’sCp2r *

andDq2r * obtained from the characteristic equations~ ZB ZC ZB' 2 Zlt ZS21! [ci 5 0,
i 5 r *1 1, + + + , p and~ ZB' ZS ZB 2 Zl i ZC21! Zdi 5 0, i 5 r *1 1, + + + ,q+

THEOREM 4+1+ ~Estimation of the limiting distribution of the CR statistics!
If r * , q and Assumptions2+1–2+4, 3+1, and4+1 hold, then the c+d+f+ ZFr *

CRT~{! of
~4+2! converges to the c+d+f+ Fr *

CRT~{! of ~4+1!; that is, ZFr *
CRT~c! 2 Fr *

CRT~c! 5 o~1!,
c $ 0+

Let [c12a
r * denote the 100~12 a! percentile of the c+d+f+ ZFr *

CRT~{! of ~4+2!; that is,

P H (
i51

~ p2r * !~q2r * !

Zl i
r *Zi

2 $ [c12a
r * J 5 a+

Using Theorem 4+1, we may define critical regions based on the CR statistics
~3+4!, ~3+6!, and~3+7! of Section 3+

THEOREM 4+2+ ~Critical region of tests based on the CR statistics! If r * , q
and Assumptions2+1–2+4, 3+1, and 4+1 hold, a test for the null hypothesis
Hr * : rk~B! 5 r * against the alternative hypothesis Hr *

' : rk~B! . r * with asymp-
totic sizea, 0, a , 1, is given by the critical region$CRTr *$ [c12a

r * %,where [c12a
r *

is the100~12 a! percentile of the c+d+f+ ZFr *
CRT~{! of ~4+2!+
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5. CONSISTENT ESTIMATION OF THE RANK OF A MATRIX

Of course, the true rankr * of B is unknown+ The next result is informative for
constructing a sequential procedure to ascertain the true rank of the matrixB+

THEOREM 5+1+ ~Consistency of the critical region of the CR statistic! If r ,
r * # q and Assumptions2+1–2+4, 3+1, and4+1 hold, a test for the null hypothesis
Hr : rk~B! 5 r against the alternative hypothesis Hr

' : rk~B! . r with critical re-
gion $CRTr $ [c12ar

r % is consistent, where [c12ar

r is the100~12 ar ! percentile of
the c+d+f+ ZFr

CRT~{! defined in~4+2!+

Theorem 5+1 emphasizes that a sequential procedure testingHr : rk~B! 5 r
againstHr

' : rk~B! . r based on the CR statistics~3+4!, ~3+6!, and~3+7!, for r 5
0,1, + + + ,q 2 1, and halting at the first value forr for which the CR statistic indi-
cates nonrejection ofHr : rk~B! 5 r will never asymptotically choose a value ofr
less thanr *+ However, at the stager 5 r *, if r * , q, there is a positive asymptotic
probabilityar * that the true hypothesisHr * : rk~B! 5 r * will be rejected+ There-
fore, such a sequential procedure will not deliver a weakly consistent estimator
for the true rankr *, if r *, q,without further elaboration+However, as the critical
regions$CRTr $ [c12ar

r % are only defined for values ofr 5 0, + + + ,q21, if r *5 q,
this sequential procedure does provide a weakly consistent estimator forr *+

A weakly consistent estimator for the true rankr * of the matrixB may be
obtained with an appropriate adjustment dependent onT to the asymptotic sizear

of the CR test at each stager of the sequential procedure, r 5 0, + + + ,q21, based
on the results of Pötscher~1983! and Bauer, Pötscher, and Hackl~1988!+ Cragg
and Donald~1997, Sect+ 3+2! used a similar approach to estimater * using statis-
tics based on minimum chi-squared that unlike our method, however, required
that the rank of the asymptotic variance matrixV be known~for further discus-
sion of this point, see Robin and Smith, 1995!+

The revised critical region at stager is given by$CRTr $ [c12arT

r % with asymp-
totic sizearT underHr : rk~B!5 r, r 50, + + + ,q21, and we define the estimator for
rk~B! as

[r [ min
r[$0, + + + ,q21%

$r : CRTi $ [c12aiT

i , i 5 0, + + + , r 2 1,CRTr , [c12arT

r %+ (5.1)

THEOREM 5+2+ ~A consistent estimator forrk~B! 5 r *+! If r * , q and As-
sumptions2+1–2+4, 3+1, and4+1 hold and if~a! arT 5 o~1! and~b! 2T21 ln arT 5
o~1!, then the estimator[r defined in~5+1! is weakly consistent for rk~B!5 r *; that
is, [r 2 r *5 oP~1!+

Similar estimators for the true rankr * of the matrixB can be defined in a
likewise fashion to [r of ~5+1! using the CR statisticsCRTr

LR of ~3+6! andCRTr
W

of ~3+7!, r 5 0, + + + ,q 2 1+5
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6. A SIMULATION EXPERIMENT

6.1. Experimental Design

The Monte-Carlo experiments reported subsequently use data drawn from the
UK Family Expenditure Survey~FES! for the period 1974–1992, which are the
data used in the applications reported in Blundell and Robin~1997a, 1997b!+We
have chosen these data as a basis for our simulations to provide a degree of
realism for our study+ Thus, the results reported subsequently should bear some
relation to the type of situation that applied workers are likely to encounter in
practice+ The sample selected is reasonably homogeneous, with 4,981 house-
holds each of which consists of a married couple with two children+ To avoid the
potential problem of zero expenditures in the tobacco and gasoline categories the
sample includes only car owning households in which at least one adult smokes+
The data comprise purchases of 14 nondurable and service goods: alcohol, food
consumed at home, food consumed outside the home, energy, clothing, house-
hold services, personal goods and services, leisure goods, entertainment, other
leisure services, fares, tobacco, motoring, and gasoline+

Our study examines a linearized version of Deaton and Muellbauer’s~1980!
almost ideal demand system,where each budget share is regressed on a constant,
a set of three seasonal indicators, the logarithm of relative prices, and the loga-
rithm of real total expenditure; the deflator used is the Stone price index+Because
all shares sum to one, one equation is redundant, and consequently the final equa-
tion is eliminated+ Thus, relative prices are computed as the ratio of the price
index for the commodity group and that of the excluded commodity,which in this
study is gasoline+

The system of demand equations may be written aswt 5Azt 1Bpt 1«t ,where
wt is the vector consisting of the 13 linearly independent budget shares of house-
hold t, t 51, + + + ,4,981; zt comprises the constant term, the three seasonal indica-
tors, and logged real total expenditure; pt is the vector of relative prices; $«t % are
uncorrelated error terms with zero mean and constant positive definite variance
matrix andA andB conformable matrices of unknown parameters+ Our study
concerns the rank of the matrix of relative price effectsB; hence, p 5 q 5 13+

Economic theory indicates that the matrix of relative price effectsB is sym-
metric+ Therefore, the symmetry restriction onB is imposed in the second stage
of estimation of the parameter matricesA andB by minimum chi-squared+ The
rank ofB is assessed using this estimate+ Table 1 summarizes the results of four
rank tests+

The first columnCRT corresponds to the Wald form of the CR statistic,
CRTr

W of ~3+7!, with the weighting matrices ZC and ZS both set equal to
~ p, p! identity matrices+ The second columnWCRT is a weighted version of
the Wald form of the CR statistic when theZC and ZS matrices are chosen by
analogy with the within and between variance estimators in linear panel data
models~Hsiao, 1986!, namely, ZC21 5 ~I p J ip

' ! ZV~I p J ip!0~ip
' ZS21ip! and
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ZS21 5 ~ip
' J I p! ZV~ip J I p!0@~ip

' J ip
' ! ZV~ip J ip!0~ip

' ZS21ip!# , whereip is a
p-vector of units+6 If V 5 C21 J S21, which in our set of simulation experi-
ments is the structure of the asymptotic variance of the estimator forB prior to
imposing symmetry, this choice ofC andS results in a weighted CR statistic
identical to that of Anderson~1951! ~cf+ Corollary 3+1!+

The last two columns of Table 1 relate to tests proposed by Cragg and Donald
~1996, 1997! and Gouriéroux et al+ ~1985!+ UnderHr : rk~B! 5 r, to apply tests
based on the MC andALS principles, it is necessary first to isolate asymptotically
an~r, r ! submatrix ofB that is nonsingular+ Under certain conditions, Cragg and
Donald~1996, Secs+ 3 and 5; see also Gill and Lewbel, 1992! demonstrated that
a suitable estimator for such a submatrix may be achieved by performingr row
and column permutations via an LU decomposition with complete pivoting~CP!
on the RTC estimatorZB without affecting the limiting distribution of the MC
statistic for testing the hypothesisHr : rk~B! 5 r againstHr

' : rk~B! . r, even in
the presence of ties~in particular, see Cragg and Donald, 1996, Corollary 1,
p+ 1305!+ Hence, we partition the~ p, p! symmetric matrixB 5 @~B+ j

r !# 5 @~Bij
r !#

into its first r and lastp2 r rows and columns with the~ p, r ! and~r, r ! submatri-
cesB+1

r andB11
r assumed full column rank and nonsingular, respectively, under

Hr : rk~B! 5 r+ Consequently, the ~ p 2 r !~ p 2 r ! dimensional rank hypothesis
Hr : rk~B! 5 r may be equivalently stated in freedom equation form asB+2

r 5
B+1

r Br , where Br 5 ~B11
r !21B12

r , and in constraint equation form asB22
r 5

B21
r B11

r21B12
r + The third columnALS is the ALS~Gouriéroux et al+, 1985! statis-

tic based on the freedom equation formB+2
r 5 B+1

r Br +7 The final columnW
corresponds to the Wald test~Cragg and Donald, 1996! of the constraint equa-

Table 1. P-values

Statistics

r CRT WCRT ALS W

0 0+046 0+000 0+000 0+000
1 0+300 0+002 0+000 0+000
2 0+240 0+008 0+000 0+000
3 0+298 0+074 0+000 0+000
4 0+410 0+142 0+000 0+000
5 0+638 0+130 0+052 0+000
6 0+788 0+174 0+499 0+000
7 0+946 0+432 0+618 0+000
8 0+946 0+772 0+780 0+000
9 0+896 0+866 0+687 0+001

10 0+798 0+950 0+971 0+228
11 0+470 0+904 0+920 0+139
12 0+162 0+650 0+598 0+229

162 JEAN-MARC ROBIN AND RICHARD J. SMITH



tion formB22
r 5 B21

r B11
r21B12

r +8 Both statistics are obtained subject to the a priori
symmetry constraint onB+ UnderHr : rk~B! 5 r, both statistics have a limiting
x2@~ p 2 r !~ p 2 r 1 1!02# distribution, r 5 0,1, + + + ,q 2 1, although the distribu-
tions of these statistics may differ in finite samples+

Examining thep-values reported in Table 1, testing sequentially the hypoth-
esesHr : rk~B! 5 r, r 5 0,1, + + + ,q 21, it is immediately clear that the tests select
very different values for the rank ofB; at the 0+05 nominal level, 1, 3, 5, and 10,
respectively+ To appreciate this disparity in outcome, although the sample size
seems large, households surveyed during the same month appear to face the same
prices because the FES does not record individual prices+Consequently,we have
imputed to each household the NationalAccount Retail Price Indices of the month
in which it is surveyed+ Hence, there are effectively only 228~519312! differ-
ent prices for each commodity+ In the following simulations, we have chosen
B to be the estimated matrix of relative price effects corresponding to a rank
equal to 6, that is, the true rankr * 5 6+ To provide differing relative price vari-
ables at each data point in the simulations, the original prices are perturbed by
the addition of a sample drawn from a normal distribution with zero mean and
variance given by that of the corresponding price in the original sample that
yields an observed sample of exogenous variableszt ,pt , t 5 1, + + + ,4,981+
The variance matrixV for the simulated error terms is calculated as
104,981(t51

4,981~wt 2 Azt 2 Bpt !~wt 2 Azt 2 Bpt !
' divided by 9 whereA is the

corresponding sample estimate+ This choice for the variance matrix of the simu-
lated errors reduces the signal-noise ratio in the full sample to such a level that
each of the preceding rank tests gives identical inferences+9

6.2. Monte-Carlo Results

We consider sample sizesT 5 250, 900, and 2,000+ Each experiment comprises
2,500 replications+ Within each replications 5 1, + + + ,2,500, a random sample
$«t

s%t51
T is drawn from aN13~0,V! population and the simulated budget share

vectors computed fromwt
s5Azt 1Bpt 1«t

s+ The parameter matricesA andB are
initially estimated unrestrictedly equation by equation by ordinary least squares,
and then symmetry is imposed on the estimator forB+ Finally, the rank ofB is
evaluated using each of the preceding four procedures+

Figures 1–6 present PP plots for sample sizesT5 250, 900, and 2,000+ Given
a probabilityp and its associated nominal critical valuecr ~ p! obtained from the
limiting distribution of the statistic underHr : rk~B! 5 r, the simulations estimate
the exact probabilitypr ~ p! that the statistic exceedscr ~ p!+ Each panel in the
figures provided the PP plot ofp on the vertical axis againstpr ~ p! on the hori-
zontal axis, r 5 0, + + + ,12+

First, consider the results presented in Figures 1 and 2 forT5 250+ The panel
corresponding to the null hypothesisH6 : rk~B!56, the true rank ofB, in Figure 2
indicates that, for the upper tail of its distribution, the unweighted CR statistic
~CRT ! has empirical size substantially below the nominal size predicted by the
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asymptotic theory of Section 3+ However, the deviation between empirical and
nominal sizes for the weighted CR statistic~WCRT ! is less pronounced+ Con-
sequently, both CR statistics are likely to accept too low a rank forB+ For the
ALS, ALS and the Wald,W statistics, the reverse situation occurs, with empir-
ical size much in excess of nominal size obtained by use of the limitingx2~28!
distribution+ Hence, the ALS and Wald procedures with LUCP are likely to in-
duce acceptance of too high a rank forB+ Examination of the power properties of
these tests displayed in the panels of Figure 1 for the null hypothesesHr : rk~B!5
r, r 5 0, + + + ,5 reveals that both the CR statistics have poor power characteristics,
with the unweighted CR statisticsCRT particularly bad in this regard, whereas
bothALS andW appear to perform well, confirming the preceding observation+
The relatively poor performance ofCRT vis-à-visWCRT may reflect the pop-
ulation values of the nonzero CRs reported in note 9+ However, given the diver-
gence between empirical and nominal sizes for both statistics discussed earlier,

Figure 1. PP plots: T 5 250+
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one would expect that if the results in these panels had been based on size-
corrected critical values the CR statistics would perform somewhat better,whereas
the ALS and Wald statistics would perform somewhat worse than indicated in
Figure 1+ Given the relatively small price variation present in the actual sample

Figure 2. PP plots: T 5 250~plot continued from Figure 1!+
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discussed in Section 6+1, the disparity between the statistics exhibited in Fig-
ures 1 and 2 underlines the differences in inferences from the tests displayed in
Table 1+ The remaining panels in Figure 2 for the null hypothesesHr : rk~B! 5 r,
r 5 7, + + + ,12 reflect the nonstandard distributions of the various rank statistics
whenr . r * ~see also Cragg and Donald, 1996, Sect+ 3, pp+ 1303–1304!+

Second, Figures 3 and 4 present results forT 5 900+ The situation for both of
the CR statistics is now much improved, as is revealed by ther 5 6 panel of
Figure 4, in which the empirical and nominal sizes differ by very little+ More-
over, the power characteristics for both statistics given in ther 5 0, + + + ,5 panels
of Figure 3 are correspondingly much improved, and, consequently, nonrejec-
tion of too low a rank forB appears to be much less of a problem+ Examination of
the r 5 6 panel for the ALS and Wald statistics shows some but, surprisingly,
relatively little improvement+ The power of these statistics based on the nominal

Figure 3. PP plots: T 5 900+
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critical values given in ther 5 0, + + + ,5 tableaus has also improved vis-à-vis Fig-
ure 1 but not nearly as dramatically as compared to the CR statistics+

Third, the results reported in Figures 5 and 6 for theT 5 2,000 case indicate
that the empirical size properties given in ther 5 6 panel of Figure 6 for both CR

Figure 4. PP plots: T 5 900~plot continued from Figure 3!+
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statistics are approximated well by those indicated by the asymptotic theory of
Section 3+ More surprisingly, those for the ALS and Wald statistics again show
relatively little improvement+The panels of Figure 5 corresponding tor 50, + + + ,5
demonstrate that all four statistics have good power characteristics+

7. SUMMARY AND CONCLUSIONS

This paper considers tests for the rank of a matrix for which a RTC estimator is
available but where the rank of the estimator’s asymptotic variance matrix may
be neither full nor known+ Test statistics based on certain estimated characteristic
roots are proposed+ Under the null hypothesis of a given rank, their limiting dis-
tribution is shown to be a weighted sum of independent chi-squared variables,
each of which has one degree of freedom+ The limiting null distribution of the

Figure 5. PP plots: T 5 2,000+
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characteristic root tests may be estimated either by simulation or by use of widely
available algorithms+ In an asymptotic sense, these test procedures will never
accept a value for the rank of the matrix less than the true rank+ Consistent esti-
mation procedures for the rank of the matrix are proposed+

Figure 6. PP plots: T 5 2,000~plot continued from Figure 5!+
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A simulation experiment conducted on a system of budget share equations
indicates that for moderate sample sizes the empirical size of characteristic root
tests is less than that indicated by asymptotic theory, whereas statistics based on
asymptotic least squares and the Wald principle appear to be oversized+ Hence,
for such sample sizes, the former statistics are likely to accept a value of the rank
of the matrix lower than the true rank, whereas the latter statistics are likely to
accept too high a rank+ It is only when the sample size is large that empirical and
nominal sizes are similar for characteristic root statistics+ Both forms of statistic
have good power properties for such sample sizes+Consequently, in such circum-
stances, characteristic root statistics may possibly offer useful tests for the rank of
a matrix+ However, it would appear that for smaller sample sizes it may prove
efficacious to examine more than one form of test for the rank of a matrix+

NOTES

1+ Model selection methods offer an alternative approach to the consistent estimation of the rank
of a matrix ~see, e+g+, Phillips, 1996!+ Chao and Phillips~1999! applied such methods to the joint
determination of cointegration rank and lag length within a vector autoregressive system+

2+ For example, let ZB 5 B~ Zf!, whereB obeys the a priori constraintsB 5 B~f! continuously
differentiable to the first order, f is ans-vector of parameters, andT 102~ Zf 2 f! rL N~0,V!, V finite
and positive definite+ Hence, V 5 FVF', whereF 5 ¹f

' vec~B~f!! is assumed full column rank~cf+
Assumption 2+2!+ Therefore, Assumption 2+4 is equivalent to~Dq2r * J Cp2r * ! Ó N ~F'!+

3+ In the simulations of Section 6, p 5 q 5 13 ands5 91+ Assumption 2+4 is therefore automati-
cally satisfied ifr * [ $0,1,2,3,4%+

4+ The matrix quadratic formZS ZB ZC ZB' has the same characteristic roots as

F21 ZS ZB ZC ZB'F 5 ~F21 ZSF'21!~F' ZBG!~G21 ZCG'21!~F' ZBG!',

whereF andG are arbitrary conformable nonsingular matrices+ Therefore, the CR statistic~3+4! is
invariant under the transformationZB r EB 5 F' ZBG for given ZS and ZC if and only if F 5 ZCH ZC21 and
G 5 ZDK ZD21, where ZC and ZD are, respectively, the ~ p, p! and~q,q! matrices of estimated CV’s~cf+
following ~2+3! and~2+4!! andH andK are arbitrary conformable orthonormal matrices, particular
examples of which are permutation matrices+ In the case whenZS5 I p and ZC5 I q, the CR statistic~3+4!
is invariant to such transformations if and only ifF andG themselves are constrained to be arbitrary
conformable orthonormal matrices+

5+ Alternative conservative procedures for testingHr : rk$B% 5 r againstHr
' : rk$B% . r that avoid

computing the CR estimators$ Zl i
r % i51

~ p2r !~q2r ! described in Theorem 4+1 for the CR’s$l i
r % i51

~ p2r !~q2r ! of
the matrix~Dq2r J Cp2r !

'V~Dq2r J Cp2r ! may be constructed by notingV102'~C J S!V102 2
V102'~Dq2r J Cp2r !~Dq2r J Cp2r !

'V102 $ 0, whereV 5 V102V102'+ Hence, lmax
* $ l i

* $ l i
r , i 5

1, + + + ,~ p 2 r !~q 2 r !, wherelmax
* and $l i

*% i51
s are the maximum CR and nonzero ordered CR’s of

~C J S!V, respectively+ Therefore, lmax
* (i51

~ p2r !~q2r ! Zi
2 $ (i51

~ p2r !~q2r ! l i
*Zi

2 $ (i51
t l i

r Zi
2, and,

hence, P $lmax
* (i51

~ p2r !~q2r ! Zi
2 # c% # P $(i51

~ p2r !~q2r ! l i
*Zi

2 # c% # Fr
CRT~c!, where $Zi %i51

~ p2r !~q2r !

are independent standard normal variates+ Consistent estimators forlmax
* and l i

*, Zlmax
* and Zl i

*,
i 5 1, + + + ,~ p 2 r !~q 2 r ! are obtained from the ordered CR’s of~ ZC J ZS! ZV ~cf+ Lemma 3+1!+ Hence,
conservative critical regions for testing the hypothesisHr : rk~B! 5 r againstHr

' : rk~B! . r to-
gether with associated sequential procedures for the consistent estimation ofr * may be con-
structed along similar lines to those of Theorems 4+2 and 5+2, respectively+ In particular, the
critical region$ Zlmax

*21CRTr , x12a
2 @~ p 2 r !~q 2 r !#% has asymptotic size no greater thana, 0 ,

a , 1, underHr : rk~B! 5 r, wherex12a
2 ~{! denotes the 100~12 a! percentile of thex2~{! distribu-

tion+ However, it is possible that in practice such critical regions will be too narrow, leading to
rejection ofHr : rk~B! 5 r, r , r *, too infrequently~see Section 6!+
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6+ The scalar divisors inZC21 and ZS21 may be ignored, as the critical regions based on the CR
statistics are invariant to scale transformations+

7+ That is, T Zj '~ ZM ZV ZM '!21 Zj, the sum of squared weighted generalized least squares residualsZj
computed via the auxiliary regressionPr vec~ ZB+2r' ! 5 Pr ~ ZB+1r J I p2r !vec~Br

' ! 1 j, where Pr 5
diag~I r ~ p2r !,L r !,L r is the~~ p2 r !~ p2 r 11!02,~ p2 r !2! elimination matrix~Magnus and Neudecker,
1980!, j is treated as having mean zero and variance matrixM ZVM ' with ZV the estimated variance
matrix of B andM 5 Pr ~I p J ~2Br

' , I p2r !!K p2 with K p2 the ~ p2, p2! commutation matrix~Magnus
and Neudecker, 1988,Sect+ 3+7, pp+ 46–48!+ In our experiments, an initial estimator forBr is obtained
using ordinary least squares and the preceding equation then iterated three times+

8+ Writing the rank restrictions ashr @vec~B!# 5 vec~B22
r 2 B21

r B11
r21B12

r ! 5 0, the deriva-
tive matrix ofhr ~{! is given byH r

' ~{! [ ¹vec~B!
' hr ~{! 5 ~2B12

r' ~B11
r !'21, I p2r ! J ~2B21

r B11
r21, I p2r !,

which is full row rank ~ p 2 r !2+ The Wald statistic for Hr : rk~B! 5 r is given by
Thr @vec~ ZB!# 'L r

' ~L r ZH r
' ZV ZH r L r

' !21L r hr @vec~ ZB!# , whereL r is the~~ p 2 r !~ p 2 r 1 1!02,~ p 2 r !2!
elimination matrix and ZH r 5 H r

' ~vec~ ZB!!+
9+ Assumption 2+4 was satisfied for both forms of CR statistics+ The ordered nonzero CR’s~nor-

malizing the maximum CR to be unity! of SBCB' for the CRT andWCRT statistics were 1+000,
0+5139,0+1928,0+1376,0+0759,0+0644 and 1+000,0+5267,0+4013,0+3174,0+2307,0+0787, respectively+

REFERENCES

Anderson, T+W+ ~1951! The asymptotic distribution of certain characteristic roots and vectors+ In J+
Neyman~ed+!, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, pp+ 103–130+ Berkeley: University of California Press+

Andrews, D+W+K+ ~1987! Asymptotic results for generalized Wald tests+ Econometric Theory3,
348–358+

Bauer, P+, B+M+ Pötscher, & P+ Hackl ~1988! Model selection by multiple tests+ Statistics19, 39–44+
Blundell,R+W+& J+-M+Robin~1997a! Estimation in Large and Disaggregated Systems:An Estimator

for Conditionally Linear Systems+ Discussion paper 97-2, University College, London+
Blundell, R+W+ & J+-M+ Robin ~1997b! Latent Separability: Grouping Goods without Weak Separa-

bility+ Mimeo, University College, London+
Chao, J+C+ & P+C+B+ Phillips ~1999! Model selection in partially nonstationary vector autoregressive

processes with reduced rank structure+ Journal of Econometrics91, 227–271+
Cragg, J+G+ & S+G+ Donald~1993! Testing identifiability and specification in instrumental variable

models+ Econometric Theory9, 222–240+
Cragg, J+G+ & S+G+ Donald~1996! On the asymptotic properties of LDU-based tests of the rank of a

matrix+ Journal of the American Statistical Association91, 1301–1309+
Cragg, J+G+& S+G+Donald~1997! Inferring the rank of a matrix+ Journal of Econometrics76, 223–250+
Davies, R+B+ ~1980! The distribution of a linear combination ofx 2 random variables+ Applied Sta-

tistics, Series C29, 323–333+
Deaton,A+S+& J+Muellbauer~1980!An almost ideal demand system+American Economic Review70,

312–336+
Farebrother, R+W+F+ ~1980! Pan’s procedure for the tail probabilities of the Durbin–Watson statistic+

Applied Statistics, Series C29, 224–227; 30, 189+
Farebrother, R+W+F+ ~1984! Remark on Pan’s procedure for the tail probabilities of the Durbin–

Watson statistic+ Applied Statistics, Series C33, 363–366+
Ferguson, T+ ~1958! A method of generating best asymptotically normal estimates with application to

the estimation of bacterial densities+ Annals of Mathematical Statistics29, 1046–1061+
Gill , L+ & A + Lewbel~1992! Testing the rank and definiteness of estimated matrices with applications

to factor, state-space, and ARMA models+ Journal of the American Statistical Association87,
766–776+

Gouriéroux,C+,A+Monfort,&A +Trognon~1985! Moindres carres asymptotiques,Annales de l’INSEE
58, 91–122+

Hsiao,C+ ~1983! Identification+ In Z+Griliches and M+D+ Intrilligator ~eds+!,Handbook of Economet-
rics, vol+ 1, pp+ 223–283+ Amsterdam: North-Holland+

TESTS OF RANK 171



Hsiao,C+ ~1986! Analysis of Panel Data.Econometric Society Monograph 11+New York:Cambridge
University Press+

Johansen, S+ ~1991! Estimation and hypothesis testing of cointegration vectors in Gaussian vector
autoregressive models+ Econometrica59, 1551–1580+

Lewbel,A+ ~1991! The rank of demand systems:Theory and nonparametric estimation+Econometrica
59, 711–730+

Magnus, J+R+ & H + Neudecker~1980! The elimination matrix: Some lemmas and applications+ SIAM
Journal on Algebraic and Discrete Methods1, 422–449+

Magnus, J+R+ & H +Neudecker~1988! Matrix Differential Calculus with Applications in Statistics and
Econometrics.New York:Wiley+

Phillips, P+C+B+ ~1996! Econometric model determination+ Econometrica64, 763–812+
Pötscher, B+M+ ~1983! Order estimation in ARMA models by Lagrange multiplier tests+ Annals of

Statistics11, 872–885+
Rao, C+R+ ~1973! Linear Statistical Inference and Its Applications, 2nd ed+ New York:Wiley+
Robin, J+-M+& R+J+Smith~1995! Tests of Rank+Document de travail 9505,CREST-INSEE,Paris, and

D+A+E+ working paper 9521, University of Cambridge+
Rothenberg, T+J+ ~1973! Efficient Estimation with a Priori Information.New Haven: Yale University

Press+
Vuong, Q+H+ ~1989! Likelihood ratio tests for model selection and non-nested hypotheses+ Econo-

metrica57, 307–333+

APPENDIX

Proof of Lemma 3.1. Under Assumptions 2+2 and 2+3, from ~2+2!, we have that
ZB rP B, ZS rP S, and ZC rP C+ Therefore, from ~3+1!, ZS ZB ZC ZB' rPSBCB'+ As the CR’s

$ti
2%i51

p defined in~2+3! and~2+4! are continuous functions of the elements ofSBCB', we
therefore have thatZl i r

P ti
2, i 5 1, + + + , p+ n

Define the~r *, r *! diagonal matrixYr * 5 diag~t1, + + + ,tr * !, C'21 5 ~Cr *,C p2r * ! and
D21 5 ~Dr *,Dq2r * !', whereC andD are defined via~2+3! and ~2+4!, respectively, and
C'21 andD21 are partitioned conformably with respect to ther * nonzero and~ p 2 r *!
and~q 2 r *! zero characteristic roots of~2+3! and~2+4!, respectively+

LEMMA A +1+ A~ p,q! matrix B of rank r* may be expressed as

B 5 Cr *Yr *D
r *'+ (A.1)

Proof. The proof is similar to that of Rao~1973, 1c+3~v!, pp+ 42–43!+We may write
S 5 (i51

p ci ci
' + Hence

B 5 S21S(
i51

p

ci ci
'DB 5 S21S(

i51

r *

ci ci
'DB

5 (
i51

r *

ti S
21ci di

'C21 5 S21Cr *Yr *Dr *
' C21

5 Cr *Yr *D
r *'+
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The second equality follows fromci
'BCB'ci 5 0, i 5 r *1 1, + + + , p, which impliesB'ci 5

0, i 5 r *1 1, + + + , p, asC is positive definite; cf+ ~2+3!+ The third equality follows asdi 5
ti

21CB'ci , i 51, + + + , r * are CV’s ofB'SB in the metricC21 ~cf+ ~2+4!!+ The final equality
follows asS21 5 C'21C21 andC21 5 D'21D21+ n

Remark. Note thatC r *
' Cr * 5 I r * andCp2r *

' Cr * 5 0+

Proof of Theorem 3.1. The proof follows along similar lines to that of Johansen~1991,
proof of Theorem 2+1, pp+ 1569–1571!+We are concerned with the solutions to the deter-
minantal equation6 ZB ZC ZB' 2 l ZS216 5 0 corresponding to the zero CR’s$ti

2%i5r *11
q of

SBCB'+ First, define

ZS~l! [ ZB ZC ZB' 2 l ZS21+ (A.2)

Second, writing ZB 5 B 1 ~ ZB 2 B!, we have from Lemma A+1 ~cf+ ~A+1! and the preceding
remark! that, under Assumptions 2+1 and 2+2,

C r *
' ZB 5 Yr *D

r *' 1 OP~T2102!,T 102Cp2r *
' ZB 5 Cp2r *

' T 102~ ZB 2 B!+ (A.3)

Next, from Lemma 3+1, Zl i r
P 0, i 5 r * 1 1, + + + ,q+ Hence, from ~A+2! and~A+3!, under

Assumption 2+3, consider

~Cr * ,T 102Cp2r * !
' ZS~ Zl i !~Cr * ,T 102Cp2r * !

5 F Yr *
2 1 oP~1! Yr *Dr *

' T 102~ ZB 2 B!'Cp2r * 1 oP~1!

Cp2r *
' T 102~ ZB 2 B!Dr *Yr * 1 oP~1! Cp2r *

' T 102~ ZB 2 B!CT 102~ ZB 2 B!'Cp2r * 1 oP~1!
G

2T Zl iF OP~T21! oP~T2102!

oP~T2102! I p2r * 1 oP~1!
G , (A.4)

i 5 r *1 1, + + + ,q+ Therefore,

0 5 6 ZS~ Zl i !65 6~Cr * ,T 102Cp2r * !
' ZS~ Zl i !~Cr * ,T 102Cp2r * !6

5 *F Yr *
2 Yr *Dr *

' T 102~ ZB 2 B!'Cp2r *

Cp2r *
' T 102~ ZB 2 B!Dr *Yr * Cp2r *

' T 102~ ZB 2 B!CT 102~ ZB 2 B!'Cp2r *
G

2 T Zl iF0 0

0 Ip2r *
G*1 oP~1!

5 6Yr *
2 6 6Cp2r *

' T 102~ ZB 2 B!Dq2r *Dq2r *
' T 102~ ZB 2 B!'Cp2r * 2 T Zl i I p2r * 61 oP~1!,

(A.5)

i 5 r *11, + + + ,q,where the third equality follows from~A+4! and the final equality from Rao
~1973, complements and problems 2+4, p+ 32!, also noting thatC2Dr *Dr *

' 5Dq2r *Dq2r *
' +

Hence, from Assumption 2+4 and~A+5!, the limiting distribution ofT Zl i , i 5 r *1 1, + + + ,q
is the same as that of the~q 2 r *! nonzero CR’s of Cp2r *

' T 102~ ZB 2 B! 3
Dq2r *Dq2r *

' T 102~ ZB2B!Cp2r * +Note that~ p2q! CR’s in the second determinant of~A+5!
are automatically zero asp $ q+ n

Proof of Theorem 3.2. Define

X r * [ Cp2r *
' T 102~ ZB 2 B!Dq2r * + (A.6)
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Hence, from Assumptions 2+2 and 2+4 and~A+6!,

vec~X r * ! r
L N~ p2r * !~q2r * !~0,~Dq2r *

' J Cp2r *
' !V~Dq2r * J Cp2r * !!+ (A.7)

Now the CR statistic of~3+4! may be written from Theorem 3+1 and~A+6! as

CRTr * 5 tr$X r *X r *
' % 1 oP~1!

5 vec~X r * !
'vec~X r * ! 1 oP~1!; (A.8)

that is, CRTr * is a quadratic form in the asymptotically normally distributed random vector
vec~X r * !+ Therefore, from ~A+7! and ~A+8!, it immediately follows from Vuong~1989,
Lemma 3+2, p+ 312! thatCRTr * has the limiting distribution stated+ n

Remark. Note that

rk~~Dq2r *
' J Cp2r *

' !V~Dq2r * J Cp2r * !!

# min$rk~Dq2r *Dq2r *
' J Cp2r *Cp2r *

' !, rk~V!%

5 min$s,~ p2r * !~q 2 r * !%+

Proof of Corollary 3.1. The result immediately follows asCp2r *
' S21Cp2r * 5 I p2r *

andDq2r *
' C21Dq2r * 5 I q2r * + Hence, ~Dq2r *

' J Cp2r *
' !V~Dq2r * J Cp2r * ! 5 ~I q2r * J

I p2r * !+ n

Proof of Theorem 4.1. Without loss of generality, we impose the normalizations
7 [ci751, i 5 r *11, + + + , pand7 Zdi751, i 5 r *11, + + + ,q+Hence, ZCp2r *5OP~1! and ZDq2r *5
OP~1!+ Now, ZCp2r *

' ZB ZC ZB' ZCp2r * 5 ZLp2r * , where ZLp2r * 5 diag ~ Zlr *11, + + + , Zlp!+ As
ZLp2r * 5 OP~T21! from Lemma 3+1 and Theorem 3+2, using Assumption 2+3, ZB' ZCp2r * 5

oP~1! and, from Assumption 2+2, B' ZCp2r * 5 oP~1!+ That is, the columns of ZCp2r * are a
weakly consistent estimator for a basis of the null spaceN ~B'! of B'+ Hence, subject to
normalization and identifying constraints, ZCp2r * 2 Cp2r * 5 oP~1!, and, by a similar ar-
gument, ZDq2r * 2 Dq2r * 5 oP~1!+ Therefore, from Assumption 4+1,

~ ZDq2r *
' J ZCp2r *

' ! ZV~ ZDq2r * J ZCp2r * ! 2 ~Dq2r *
' J Cp2r *

' !V~Dq2r * J Cp2r * ! 5 oP~1!+

Consequently, by a similar argument to that used in the proof of Lemma 3+1, the or-
dered CR estimators$ Zl i

r * %i51
~ p2r * !~q2r * ! are consistent for their ordered counterparts

$l i
r * %i51

~ p2r * !~q2r * ! + Therefore, noting the continuity of the c+d+f+ Fr *
CRT~{! of ~4+1!, the

result follows as(i51
~ p2r * !~q2r * !~ Zl i

r * 2 l i
r * !Zi

2 5 oP~1!+ n

Proof of Theorem 4.2. Let c12a
r * denote the 100~12 a! percentile of the c+d+f+ Fr *

CRT~{!
of ~4+1!; that is,P $(i51

t * l i
r *Zi

2 $ c12a
r * %5a+Consider the identical events$CRTr *$ [c12a

r * %
and $CRTr * 2 ~ [c12a

r * 2 c12a
r * ! $ c12a

r * %+ From Theorem 4+1, as the c+d+f+ Fr *
CRT~{! is

continuous, [c12a
r * 2 c12a

r * 5 o~1!+ Hence, the statisticsCRTr * andCRTr * 2 ~ [c12a
r * 2 c12a

r * !
have identical limiting distributions+ Therefore, limTr` P $CRTr * $ [c12a

r * % 5
limTr` P $CRTr * $ c12a

r * %+ n

Proof of Theorem 5.1. From Lemma 3+1, Zl i r
p ti

2 . 0, i 5 1, + + + , r *+ Therefore,
CRTr r

P `, r 5 0, + + + , r *2 1+ n

Proof of Theorem 5.2. Define the eventArT [ $CRTr $ [c12arT

r %, r 5 0, + + + ,q 2 1+
Hence,P $ [r 5 r % 5P $ùi50

r21AiT ù ArT
c %,whereArT

c denotes the complement ofArT + From
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Pötscher~1983! and Theorem 4+1, if ~a! arT 5 o~1!, then [c12arT

r r `, and, if ~b!
2T21 ln arT 5 o~1!, thenT21 [c12arT

r 5 o~1!+
First, consider the caser , r *+ Hence, by Lemma 3+1 and~b!,

P $ [r 5 r % # P $ArT
c % 5 1 2 P $ArT %

5 12 P $T21CRTr $ T21 [c12arT

r % r 0

asT r `+ Second, consider the caser . r *+ Thus, by Theorem 3+2 and~a!,

P $ [r 5 r % # P $Ar *T % 5 P $CRTr * $ [c12ar *T

r * % r 0

asT r `+ Therefore, limTr`P $ [r 5 r *% 5 1+ n
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