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This paper is concerned with estimating a conditional quantile function that is
assumed to be partially linear+ The paper develops a simple estimator of the para-
metric component of the conditional quantile+ The semiparametric efficiency bound
for the parametric component is derived, and two types of efficient estimators are
considered+ Asymptotic properties of the proposed estimators are established un-
der regularity conditions+ Some Monte Carlo experiments indicate that the pro-
posed estimators perform well in small samples+

1. INTRODUCTION

Many econometrics problems are concerned with estimating a conditional lo-
cation function such as conditional mean, conditional median, or conditional
quantile+ Since the seminal work of Koenker and Bassett~1978!, there have
been many theoretical and applied papers that are related to the estimation of
conditional quantiles, including the conditional median as a special case+ Most
of these papers are based on a priori assumptions about the functional form of
the conditional quantile function+ The estimation results can be misleading,
however, if the model is misspecified+ On the other hand, a fully nonparamet-
ric method such as the local polynomial estimator in Chaudhuri~1991a, 1991b!
could reduce the possibility of misspecification, whereas the curse of dimen-
sionality occurs as the dimension of independent variables increases+ Semi-
parametric methods that can obtain dimension reduction, therefore, are useful
because they can avoid the loss of precision due to the curse of dimensional-
ity and they make weaker assumptions about the functional form of the regres-
sion model+
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In particular, this paper develops an estimation method for a partially linear
quantile regression model+ The model has the form

Y 5 qa~X ! 1 Z 'ba 1 Ua , (1)

whereY is a scalar dependent variable, X is a dx 3 1 vector of continuous ran-
dom variables, Z is adz 3 1 vector of continuous or discrete random variables,
qa~{! is an unknown real-valued function, ba is a dz 3 1 vector of unknown
parameters, andUa is an unobserved random variable that satisfies Prob~Ua #
06X 5 x,Z 5 z! 5 a for all x andz, wherea indexes the quantile of interest+ If
a 5 0+5, the model reduces to a partially linear median regression model+

There is a growing literature on estimating semi- and nonparametric quantile
regression models+1 For example, see Chaudhuri~1991a, 1991b!, Fan, Hu, and
Truong~1994!, and Welsh~1996! for local polynomial quantile regression; see
Chaudhuri, Doksum, and Samarov~1997!, Chen and Khan~2000, 2001!, Khan
~2001!, and Khan and Powell~2001! for semiparametric estimators based on
local polynomial approximations; see Koenker, Ng, and Portnoy~1994! and
He, Ng, and Portnoy~1998! for smoothing splines; see He and Shi~1994, 1996!
for B-spline approximations; see He and Liang~2000! for errors-in-variable mod-
els+ Among these papers, three are especially concerned with partially linear
quantile regression models+ He and Shi~1996! consider M-type regression splines
using bivariate tensor-productB-splines+ He and Liang~2000! develop estima-
tors for linear and partially linear errors-in-variables models+ Chen and Khan
~2001! propose an estimation method for a partially linear censored quantile
regression+ The aforementioned estimators are not asymptotically efficient un-
der the conditional heteroskedasticity ofUa in ~1!+

The main purpose of this paper is to develop an asymptotically efficient es-
timator of ba+2 The paper first develops a simple, two-stage estimator ofba

that is an average of nonparametric estimators+ In the first stage, ba is esti-
mated locally at each data point by some nonparametric method+ These esti-
mates ofba are averaged in the second stage to obtain the parametric rate of
convergence+ This estimator, which will be called the average quantile regres-
sion ~AQR! estimator, is n2102-consistent and asymptotically normal, but it is
not asymptotically efficient+ The semiparametric efficiency bound forba is cal-
culated based on a projection formula, and then two types of efficient estima-
tors of ba are constructed, depending on the assumption aboutUa+ If Ua is
homoskedastic, then an optimally weighted version of the AQR estimator can
attain the efficiency bound+ When Ua is possibly heteroskedastic, a one-step
asymptotically efficient estimator is used to attain the efficiency bound+

The rest of the paper is organized as follows+ Section 2 gives sufficient con-
ditions under whichba andqa are identified+ Section 3 describes the AQR es-
timator of ba+ In Section 4, asymptotic properties of the AQR estimator are
given under a certain set of regularity conditions+ In Section 5, the semipara-
metric efficiency bound forba is derived+ In Section 6, it is shown that the
bound is attainable by constructing efficient estimators ofba+ Section 7 presents
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some Monte Carlo experiments that illustrate the finite sample performance of
the proposed estimators+ Concluding remarks are given in Section 8+ The proofs
of theorems are in the Appendix+

2. IDENTIFICATION OF ba AND qa

Before we consider estimation ofba andqa in ~1!, we have to find conditions
under which the partially linear quantile regression model can be identified+
The model is identified ifba andqa are uniquely determined by the population
distribution of~Y,X,Z!+ The following result gives sufficient conditions for the
identification of the model+

THEOREM 1+ Suppose thatProb~Y # qa~X ! 1 Z 'ba6X 5 x,Z 5 z! 5 a for
all x and z. If

(1) the conditional density of Ua is positive at zero for all x and z, and
(2) var~Z6X 5 x! is nonsingular at every x,

then qa and ba are identified.

The sufficient conditions can be relaxed but are stated in the form used to
derive asymptotic properties of the proposed estimators+ Condition~1! is stan-
dard but can be relaxed+ For example, Knight ~1998! derives the asymptotic
distributions for linear median regression estimators under a more general as-
sumption than condition~1!+ See also Smirnov~1952! for limiting distributions
of sample quantiles under general assumptions+ Condition ~2! excludes a con-
stant variable forZ+ Furthermore, it requires that no components ofZ be per-
fectly predictable by components ofX+ A similar but less stringent exclusion
restriction is also needed for partially linear mean regression+ For example, it
is assumed in Robinson~1988! thatE @var~Z6X !# is positive definite+ See Rob-
inson~1988! for detailed discussion+ It is assumed throughout the remainder of
this paper thatba andqa are identified+

3. DESCRIPTION OF THE AVERAGE QUANTILE
REGRESSION ESTIMATOR

This section presents the main idea behind the estimation method and de-
scribes the AQR estimator ofba+ The estimation procedure involves two
stages: in the first stage, ba is estimated locally at each data point; in the sec-
ond stage, these local estimates are averaged to obtain ann2102-consistent es-
timator of ba+

To describe the estimation procedure, we need some notation+ Let $~Yi ,
Xi ,Zi !;1 # i # n% be a random sample of~Y,X,Z! in ~1! with sizen+ Let Cn~Xi !
be a cube inRdx centered atXi with side length 2dn, wheredn is a sequence of
positive real numbers such thatdn r 0+ For u 5 ~u1, + + + ,udx

!, a dx-dimensional
vector of nonnegative integers, let @u# 5 u1 1 {{{ 1 udx

+ Let Ak be the set of
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all dx-dimensional vectorsu such that@u# # k for some integerk $ 0 and let
s~Ak! denote the number of elements inAk+ For z [ Rdx with u [ Ak, let zu 5

) i51
dx zi

ui + In addition, given X1,X2 [ Rdx , define

Pn~c,X1,X2! 5 (
u[Ak

cuF X1 2 X2

dn
Gu

,

where c 5 ~cu!u[Ak
is a vector of dimensions~Ak!+ Define ra~t ! 5 6 t 6 1

~2a 2 1!t+ For eachXi , the first-stage estimatorZba~Xi ! of ba is defined by
Zba~Xi ! [ Zb, where~ [c', Zb'!' is the solution to the following minimization problem:

min
c,b

(
j51, jÞi

n

ra $Yj 2 Pn~c,Xj ,Xi ! 2 b'Zj %1~Xj [ Cn~Xi !!, (2)

where 1~{! is a standard indicator function+ Notice that the preliminary estima-
tor defined here is a leave-one-out estimator and a multivariate uniform kernel
is used in~2!+

It is important to note that only local data points aroundXi are used in~2!+
As a consequence, Zba~Xi ! converges in probability toba at a nonparametric
rate+ A more efficient estimator forba requires the use of all data points+ Be-
cause Zba~Xi ! can be obtained at each data pointXi , the proposed estimation
strategy in this paper is to average allZba’s to estimateba+ This averaging method
ensures that all data points are used and thus leads to a faster rate of convergence+

In the second stage, the AQR estimator Zba of ba is now obtained by

Zba 5

(
i51

n

tx~Xi ! Zba~Xi !

(
i51

n

tx~Xi !

,

wheretx~x! is a trimming function such thattx~x! 5 1~x [ X ! with a compact
subsetX of Rdx + The trimming function is introduced to estimate the param-
etersba without being overly influenced by the tail behavior of the distribution
of X+ It will turn out in Section 4 that this AQR estimator isn2102-consistent
for ba and asymptotically normal+

The first-stage estimation procedure is a simplified version of the local poly-
nomial estimation procedure developed in Chaudhuri~1991a, 1991b! and
Chaudhuri et al+ ~1997!+ The estimation method considered here is different
from that used in Chaudhuri~1991a, 1991b! and Chaudhuri et al+ ~1997! in
that only a linear term with respect toZ is adopted, no cross products between
X and Z are included in~2!, and local weighting is carried out in terms of
only X, not bothX and Z, because the partially linear form of the regression
model is assumed in this paper+ A similar type of preliminary estimation pro-
cedure is also considered in Chen and Khan~2001!+ The main advantage of
using this method is that the Bahadur-type expansion of the estimator is al-

4 SOKBAE LEE



ready well established and can be easily specialized for the purpose of this
paper+

We conclude this section by mentioning the numerical algorithm of~2!+ Be-
cause the uniform kernel is independent ofc and b, the problem~2! can be
easily shown to have a linear programming representation+ From the perspec-
tive of linear quantile regression, problem~2! can be understood as just weighted
quantile regression with weight equal to the uniform kernel+ All computational
algorithms developed for linear quantile regression, therefore, can be used to
solve problem~2! ~see, e+g+, Buchinsky, 1998, and references therein!+

4. ASYMPTOTIC PROPERTIES OF THE AVERAGE QUANTILE
REGRESSION ESTIMATOR

This section gives regularity conditions under which the AQR estimator ofba

is n2102-consistent and asymptotically normal+ Let 7{7 denote the Euclidean
norm+

Assumption 1+ $~Yi , Xi , Zi !;1 # i # n% is a random sample of~Y, X, Z!
in ~1!+

Let Fa~{6x, z! andfa~{6x, z!, respectively, denote the cumulative distribution
function and the density function ofUa conditional on~X,Z! 5 ~x, z!+ More-
over, let g~x! denote the density function ofX and letgxz~x, z! denote the joint
density ofX andZ with respect to an appropriate measure+ Suppose thatZ can
be divided intoZ 5 ~Z~c!,Z~d! !, whereZ~c! denote the continuous components
of Z andZ~d! denote the remaining discrete components+ Assume thatZ~d! has
finitely many mass points+ Let Wx andWz 5 Wz

c 3 Wz
d be supports ofX and

Z 5 ~Z~c!,Z~d! ! such thatWx andWz
c are nonempty convex sets inRdx andRdz

c

+

Assumption 2+

~a! Fa~06x, z! 5 a for all ~x, z! in Wx 3 Wz,
~b! fa~u6x, z! is bounded away from zero and continuously differentiable with re-

spect tou in a neighborhood of zero for all~x, z! in Wx 3 Wz, and
~c! g is positive onWx except on the boundary+

Following the nonparametric estimation literature, a functionm: Rd r R will
be said to have the order of smoothnessp on a convex setW in Rd with p 5
l 1 g, where l $ 0 is an integer and 0, g # 1, and will be written asm [
Hp~W !, if ~i! partial derivativesDum~x! [ ]@u#m~x!0]x1

u1 + + +]xd
ud exist and are

continuous for allx [ W and @u# # l and ~ii ! there exists a constantM . 0
such that

7Dum~x1! 2 Dum~x2!7 # M7x1 2 x27g for all x1, x2 [ W and @u# 5 l+
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In other words, a functionm is l-times continuously differentiable and thelth
derivative is Hölder continuous with exponentg+ The order of smoothness, if it
applies to a vector or matrix-valued function, will be understood componentwise+

Assumption 3+ The functionqa~{! has the order of smoothnesspq . 3dx02
on Wx+

Assumption 4+ There exists ag, 0 , g # 1 such that

~a! fa~u6x, z! andgxz~x, z!, as functions ofx, belong toHg~Wx! for all u in a neigh-
borhood of zero and everyz in Wz, and

~b! g [ Hg~Wx!+

Assumption 5+ The distribution ofZ has bounded support+

Assumption 6+ dn @ n2k , where k is a positive real number satisfying
10~2pq! , k , 10~3dx! +

Assumption 7+ The trimming functiontx~x! has compact supportX, where
X has a nonempty interior andX , Wx+

Assumption 8+ For all x [ Wx, the matrixS~x! is nonsingular, where

S~x! 5 EFfa~06X,Z!S1 Z '

Z ZZ'D*X 5 xG +
Moreover, S~x!, considered as a function ofx, is in Hg~Wx! with someg, 0 ,
g # 1+3

It is necessary to make some comments regarding regularity conditions+ Con-
dition ~a! of Assumption 2 imposes the conditional quantile restriction, and con-
dition ~b! is important for identification+ Condition ~c! ensures that there will
be sufficiently manyXj ’s nearXi asymptotically asn r `+ This condition with
Assumption 4~b! guarantees that the marginal density ofX is bounded away
from zero and infinity onX+ As done in Chen and Khan~2001!, it is possible to
include discrete random variables forX+ This, however, is not explicitly done
here for the sake of simplicity+

Assumption 3 requires that the order of smoothnesspq of qa grow as the
dimension ofX increases+4 Assumptions 4 and 5 are needed to derive a Bahadur-
type expansion similar to that developed in Chaudhuri et al+ ~1997!+5

Assumption 6 restricts the range of the bandwidth+6 As is common in the
semiparametric estimation literature, undersmoothing is required+ That is, As-
sumption 6 requires thatdn converge to zero faster than 10~2pq 1 dx!, which
is the asymptotically optimal rate for a nonparametric estimator ofqa+ This
is not surprising because averaging the first-stage estimators makes the vari-
ance of the AQR estimator become smaller than those of the first-stage estima-
tors+ The left inequality fordn in Assumption 6 is used to make the estimator
have no asymptotic bias, whereas the right inequality is necessary to make the
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remainder terms of the Bahadur-type expansion negligible+ For the trimming
functiontx, aX that is too small can induce the loss of efficiency, whereas aX
that is too large allows the estimator to be unduly influenced by the tail behav-
ior of g~x!+

Finally, Assumption 8 ensures that the variance of the asymptotic distribu-
tion of the estimator is well defined+7 In a homoskedastic case wherefa~06x, z!
is independent ofx andz, Assumption 8 is satisfied if identification conditions
in Theorem 1 hold and var~Z6X 5 x! is Hölder continuous+

The next theorem establishes then2102-consistency and asymptotic normal-
ity of the AQR estimator ofba+ Let ez

' be thedz 3 ~dz 1 1! matrix such that
ez
' 5 ~0, Idz

!, where0 denotes thedz-dimensional zero vector andIdz
an iden-

tity matrix+

THEOREM 2+ Suppose that the order of the polynomial in (2) is k5 @ pq# .
Let Zba denote theAQR estimator ofba. Let Assumptions 1–8 hold. Then as
n r `,

Mn~ Zba 2 ba! rd N~0,V !,

where

V 5 a~12 a!E @$tx
*~X !%2ez

'S~X !21VS~X !21ez#

with

V 5 S1 Z '

Z ZZ'D and tx
*~x! 5

1~x [ X !

Pr~X [ X !
+

Although then2102-consistency and asymptotic normality of the AQR esti-
mator are established, the varianceV in Theorem 2 is somewhat complicated+
It will be shown in Section 5 that in general this variance is different from the
efficient variance bound+ The varianceV in Theorem 2 can be simplified under
a stronger condition than in Assumption 2+ The following corollary restates Theo-
rem 2 under the assumption of homoskedasticity+

COROLLARY 3+ Assume that the conditions in Theorem 2 hold. Further-
more, suppose that the conditional density of Ua given x and z, evaluated at
zero, is independent of~x, z!, namely, fa~06x, z! 5 fa~0! for all ~x, z! in Wx 3
Wz. Then as nr `,

Mn~ Zba 2 ba! rd N~0, FV !,

where

FV 5
a~12 a!

fa
2~0!

E @$tx
*~X !%2$E @ZZ' 6X # 2 E @Z6X #E @Z6X # ' %21# +
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The AQR estimator may be compared with other existing estimators in the
literature+ He and Shi~1996! consider M-type regression splines using bivari-
ate tensor-product B-splines+ They establish the asymptotic results under the
assumption thatUa is independent of~X,Z!+ He and Liang~2000! develop es-
timators for linear and partially linear errors-in-varables models+ Their asymp-
totic results are established under a stringent assumption thatE~Z6X 5 x! 5 0
for all x+ Chen and Khan~2001! propose an estimation method for a partially
linear censored quantile regression+ Their estimator uses a two-stage estimation
procedure+ In the first stage, the conditional quantile function is nonparametri-
cally estimated by the local polynomial method, which is also the case for the
AQR estimator+ In the second stage, they estimateba by a least-squares-type
estimator using differenced values of the estimated conditional quantiles as
dependent variables+ The implementation of their estimator requires a kind of
tuning parameter that they call a “selection function+” None of the existing es-
timators in the literature are asymptotically efficient under the conditional het-
eroskedasticity ofUa+ An asymptotically efficient estimator will be constructed
in Section 6+

We end this section by considering estimation of the nonparametric compo-
nentqa~{! of the model~1!+ Because the parametric componentba can be esti-
mated with ann2102 rate, which is faster than the fastest possible rate of
convergence for the nonparametric component, it is possible to estimateqa~{!
as asymptotically efficiently as ifba were known+ The functionqa~{! can be
estimated by carrying out a local polynomial quantile regression ofY 2 Z ' Zba

on X+ See Fan and Gijbels~1996, p+ 202! and Yu and Jones~1998! for rule-of-
thumb bandwidths+

5. THE SEMIPARAMETRIC EFFICIENCY BOUND

In this section, the semiparametric efficiency bound forba will be derived by
adopting the method used in Newey and Powell~1993!+ The semiparametric
efficiency bound may be viewed as the supremum of the Cramér-Rao-type
bounds for regular parametric submodels+ This bound can be calculated rigor-
ously by a projection formula+ More specifically, the efficiency boundVB for
ba is the inverse of the expectation of the outer product of the efficient score
for ba, namely, VB 5 $E @Sa Sa

' #%21, where the efficient scoreSa is defined by
the projection of the score function forba onto the orthogonal complement of
the tangent space in the nonparametric direction+ See, for example, Newey~1990!
and Bickel, Klaassen, Ritov, and Wellner~1993! for further discussion+

We consider the following parametric submodel for the nonparametric com-
ponentqa~{! of the regression function:

qa,h~{! 5 qa~{! 1 h 'h~{!,

whereh is an arbitrary function ofX that satisfiesE7h72 , `+ As in Newey
and Powell~1993!, this paper does not attempt to specify an explicit paramet-
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ric submodel for the distribution of~Ua,X,Z!+ Instead, we use the existing re-
sults of Newey and Powell~1990! to derive the efficient scores~Sba

,Sh! for
~ba
' ,h ' !' + Then the efficient scoreSa for ba will be calculated by finding the

projection ofSba
onto the orthogonal complement of the tangent space forh+

To begin, it is important to notice that the parametric submodel can be writ-
ten as a linear quantile regression model with parameters~ba

' ,h ' !' + It then fol-
lows from Newey and Powell~1990! that the efficient scores forba andh have
the form

Sba
5 k~Ua ,X,Z!Z and Sh 5 k~Ua ,X,Z!h~X !,

where

k~Ua ,X,Z! 5
1

a~12 a!
fa~06X,Z!@a 2 1~Ua # 0!# +

By Proposition A+3+5 of Bickel et al+ ~1993, p+ 433!, the projection ofSba
onto

the tangent space forh can be calculated by

k~Ua ,X,Z!h*~X ! 5 k~Ua ,X,Z!$E @k~Ua ,X,Z!2 6X #%21E @Sba
k~Ua ,X,Z!6X #

5 k~Ua ,X,Z!T~X !,

where

T~X ! 5
E @ fa

2~06X,Z!Z6X #

E @ fa
2~06X,Z!6X #

+

Thus, the efficient score forba is

Sa~Y,X,Z,qa ,ba! 5 Sba
2 k~Ua ,X,Z!h*~X !

5
fa~06X,Z!

a~12 a!
@a 2 1$Y2 qa~X ! 2 Z 'ba # 0%# @Z 2 T~X !# +

This yields the efficiency boundVB

VB 5 a~12 a! HE @ fa
2~06X,Z!ZZ' #

2 EF E @ fa
2~06X,Z!Z6X #E @ fa

2~06X,Z!Z ' 6X #

E @ fa
2~06X,Z!6X # GJ21

provided thatE @Sa Sa
' # is nonsingular+ This result implies that the AQR estima-

tor is not efficient in general+ If the distribution ofUa is homoskedastic andX
andZ are jointly normal, then the variance of the AQR estimator is the same as
the efficiency bound, ignoring the effect of trimming+ This does not necessarily
mean that the AQR estimator is efficient in that special case because imposi-
tion of the additional restriction could change the efficiency bound+
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6. EFFICIENT ESTIMATION OF ba

This section constructs efficient estimators ofba+ WhenUa is homoskedastic
with respect toZ, more precisely iffa~06x, z! is independent ofz, an optimally
weighted AQR estimator will deliver asymptotic efficiency; if Ua permits gen-
eral heteroskedasticity, then a one-step estimator will be constructed+

6.1. Homoskedastic Ua

In this section, we will show that the efficiency bound can be attained by con-
sidering a weighted version of the AQR estimator+ Because the AQR estimator
is just a simple average of the nonparametric estimators, it is plausible to con-
jecture that a weighted average can improve asymptotic efficiency+ Indeed, an
efficient estimator ofba can be obtained by choosing a proper weighting func-
tion whenUa is homoskedastic+ To show this, let w~x! be adz 3 dz matrix-
valued, weighting function such thatE @tx~X !w~X !# is nonsingular andw~x! is
in Hg~Wx! for someg, 0 , g # 1+ A weighted AQR estimator Dba can be de-
fined as

Dba 5 F 1

n (
i51

n

tx~Xi !w~Xi !G21F 1

n (
i51

n

tx~Xi !w~Xi ! Zba~Xi !G+
It is straightforward to show that whenfa~06x, z! 5 fa~0! for all x andz,

Mn~ Dba 2 ba! rd N~0, FVw!,

where

FVw 5
a~12 a!

fa
2~0!

E @tx~X !w~X !#21E @tx~X !w~X !var~Z6X !21w~X !#

3 E @tx~X !w~X !#21+

Clearly the optimal choice of the weight function is to setw~x! 5 var~Z6X5 x!+
In practical applications, it is likely that var~Z6X 5 x! is unknown; however, it
can be replaced by its uniformly consistent estimator+ For instance, we can use
the following weighting function:

[w~x! 5 ZE @ZZ' 6X 5 x# 2 ZE @Z6X 5 x# ZE @Z6X 5 x# ',

where ZE @{6X 5 x# denotes a kernel estimator of the corresponding expectation+
Let Dba

* denote the weighted AQR estimator with weight function[w~x!+ In the
following theorems, 6{6 andop~1! will be understood componentwise+
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THEOREM 4+ Assume that the conditions in Corollary 3 hold. Moreover,
suppose that

sup
Xi[X
6 [w~Xi ! 2 var~Z6Xi !6 5 op~1!+

Then as nr `,

Mn~ Dba
*2 ba! rd N~0, FV* !,

where

FV* 5
a~12 a!

fa
2~0!

E @tx~X !var~Z6X !#21+

Sufficient conditions for uniform consistency of[w on a compact set can be
easily obtained using the results of the literature, for example, Bierens~1983,
1987! and Andrews~1995!+ It is easy to see that whenfa~06x, z! 5 fa~0! for all
~x, z!, the variance FV* is the same as the efficiency bound except for the exis-
tence of the trimming function+ The estimator constructed in this paper is not
efficient in a strict sense because it does not use all observations+ It is expected
that the loss of efficiency due to the existence of the trimming function could
be eliminated by letting the support oftx grow very slowly as the sample size
increases+ For example, Robinson~1988! considers the trimming function 1~6 Zfi 6
. b! ~in his notation!, where Zfi is a kernel estimator of the probability density
function ofXi andb is a positive constant+ The effect of trimming is eliminated
in Robinson~1988! by lettingb converge to zero very slowly+ In addition, Klein
and Spady~1993! use elaborate trimming procedures to obtain an efficient semi-
parametric estimator for binary response models+ Details are not worked out
here, however+

If Ua permits restricted heteroskedasticity, in other words, Ua is homoske-
dastic with respect toZ, it is also possible to construct an efficient estimator
via optimal weighting+ More specifically, if fa~06x, z! 5 fa~06x! for all z, then
the asymptotic varianceFVw for the weighted AQR estimatorDba has the follow-
ing form:

FVw 5 a~12 a!E @tx~X !w~X !#21E @tx~X !w~X !$ fa
2~06X !var~Z6X !%21w~X !#

3 E @tx~X !w~X !#21+

This reveals that the optimal weighting function isw~x! 5 fa
2~06x!var~Z6X 5

x!+ The efficiency bound, therefore, can be attained by using a consistent esti-
mator offa

2~06x!var~Z6X 5 x! as the weighting function+ The conditional den-
sity fa~06x! can be consistently estimated using estimatedUa’s+ On the other
hand, if Ua permits general heteroskedasticity, then no weighted AQR estima-
tor can deliver asymptotic efficiency+ In the next section, an efficient estimator
will be obtained by the one-step method+
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6.2. Heteroskedastic Ua

In this section, a one-step asymptotically efficient estimator ofba is con-
structed by taking one step from the AQR estimator ofba+8 Let Zba denote the
AQR estimator defined in Section 3+

If Sa were known except forba, a one-step asymptotically efficient estima-
tor Zba

* would be obtained by

Zba
* 5 Zba 1 F(

i51

n

Sa~Yi ,Xi ,Zi ,qa , Zba!Sa~Yi ,Xi ,Zi ,qa , Zba!'G21

3 (
i51

n

Sa~Yi ,Xi ,Zi ,qa , Zba!+

Of course, this estimator is not feasible becauseSa contains unknown popula-
tion quantities such asqa~X !, fa~06X,Z!, andT~X !+ Moreover, as pointed out
by Newey and Powell~1990!, the score function is not continuous in param-
etersba+ As a result of this discontinuity, Newey and Powell~1990! make use
of a sample splitting method for the efficient estimation of a~censored! linear
quantile regression model+ The sample splitting method adopted in Newey and
Powell ~1990! consists of using each half of the observations to estimate the
efficient score for the other half+ As a result, the ordering of the data may mat-
ter for the estimation ofba+

Instead of using the technique of Newey and Powell~1990!, this paper
smooths the score function+ Differentiability of the score function enables us to
use standard Taylor series methods to obtain the asymptotic properties of the
one-step estimator+ The smoothing method requires the introduction of an ad-
ditional tuning parameter, but we feel that this is acceptable because it is very
hard to find any reasonable rule to choose the ordering of the data in practical
applications+ In addition, it will be shown in Section 7 that the simulation re-
sults are somewhat insensitive to the choice of the tuning parameter+9

Horowitz ~1998a! uses a smoothed least-absolute-deviations estimator for a
linear median-regression model to obtain asymptotic refinements of boot-
strap tests+ Following his idea, we replace the indicator function inSa with a
smooth function+ Specifically, let J be a bounded, differentiable function satis-
fying J~t ! 5 0 if t # 21 andJ~t ! 5 1 if t $ 1+ The functionJ can be regarded
as the integral of a kernel function+ Let $ jn% be a sequence of positive real
numbers that converges to zero+ In addition, let t~x, z! 5 1~x [ X, z~c! [ Z !,
whereX andZ are some compact subsets ofRdx and Rdz

c

, respectively+ The
trimming functiont~x, z! is introduced for the same reason as before+ For a
given b, a smoothed feasible score functionZSai ~b! is then defined as

ZSai ~b! 5 t~Xi ,Zi !
Zfa~06Xi ,Zi !

a~12 a! Fa 2 1 1 JSYi 2 [qa~Xi ! 2 Zi
'b

jn
DG

3 @Zi 2 ZT~Xi !# ,
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where [qa~x!, Zf ~06x, z!, and ZT~x! denote consistent estimators ofqa~x!, fa~06x, z!,
andT~x!, respectively+ Notice that 12 J~{0jn! can be arbitrarily close to 1~{ # 0!
for sufficiently largen+ An actual one-step estimator proposed here is

Zba
* 5 Zba 1 F2(

i51

n

] ZSai ~ Zba!0]bG21

(
i51

n

ZSai ~ Zba!+ (3)

To complete the description of the one-step efficient estimator, we need to
specify the nonparametric estimators ofqa~Xi !, fa~06Xi ,Zi !, and T~Xi !+ First
of all, qa~Xi ! can be estimated by the first element of[c of ~2!+ For fa~06x, z!, a
standard kernel density estimator may be used+ Observe thatfa~06x, z! can be
written asfa~06x, z! 5 f1~0, x, z!0f2~x, z!, wheref1 and f2 are joint densities of
~Ua,X,Z! and~X,Z!, respectively+ This suggests that the conditional density of
Ua at zero can be estimated consistently by obtaining the ratio of the kernel
estimator off1 to the kernel estimator off2+ More specifically, the kernel esti-
mator Zfa~06Xi ,Zi ! is defined as

Zfa~06Xi ,Zi ! 5

~nn1n
dx1dz11!21 (

j51

n

t~Xj ,Zj !KuxzS ZUaj

n1n

,
Xj 2 Xi

n1n

,
Zj 2 Zi

n1n
D

~nn2n
dx1dz!21 (

j51

n

t~Xj ,Zj !KxzS Xj 2 Xi

n2n

,
Zj 2 Zi

n2n
D

,

where ZUai 5 Yi 2 [qa~Xi ! 2 Zi
' Zba , Kuxz is a ~dx 1 dz 1 1!-dimensional kernel

function with a bandwidthn1n, andKxz is a ~dx 1 dz!-dimensional kernel func-
tion with a bandwidthn2n+ Finally, T~Xi ! can be estimated by

ZT~Xi ! 5

(
j51

n

t~Xj ,Zj ! Zfa2~06Xj ,Zj !Zj KxS Xj 2 Xi

gn
D

(
j51

n

t~Xj ,Zj ! Zfa2~06Xj ,Zj !KxS Xj 2 Xi

gn
D
,

whereKx is a dx-dimensional kernel function with a bandwidthgn+
The following additional regularity conditions are useful to derive the asymp-

totic properties of the one-step estimator ofba+

Assumption 9+ The trimming functiont~x, z! has compact supportX 3 Z,
whereX 3 Z has a nonempty interior andX 3 Z , Wx 3 Wz

c+

Assumption 10+ The conditional densityfa~u6x, z! is continuously twice
differentiable with respect tou in a neighborhood of zero for all~x, z! in
Wx 3 Wz+

Assumption 11+ Let J ~i !~v! 5 diJ~v!0dv i +

PARTIALLY LINEAR QUANTILE REGRESSION 13



~a! J~{! is bounded, J~v! 5 0 if v # 21, andJ~v! 5 1 if v $ 1+
~b! J is twice differentiable, J ~1!~v! is symmetrical aboutv 5 0, J ~2! is Lipschitz

continuous, andJ ~i !~v! is bounded fori 5 1,2+
~c! *21

1 J ~1! ~v! dv 5 1, *21
1 vJ ~1! ~v! dv 5 0, and*21

1 v2J ~1! ~v! dv . 0+

Assumption 12+ jn @ n2h , whereh is a positive real number satisfying14
_ ,

h , 5
18
_+

Assumption 13+

~a! sup
~Xi ,Zi ![X3Z

6 Zfa~06Xi ,Zi ! 2 fa~06Xi ,Zi !6 5 op~1!+

~b! sup
Xi[X
6 ZT~Xi ! 2 T*~Xi !6 5 op~1!,

where

T*~x! 5
E @t~X,Z! fa

2~06X,Z!Z6X 5 x#

E @t~X,Z! fa
2~06X,Z!6X 5 x#

+

Assumptions 10–12 are necessary to make smoothing have no effect on the
asymptotic distribution of the one-step estimator+ Just like the assumption for
[w in Theorem 4, Assumption 13 is a high-level assumption that requires that

kernel estimators be uniformly consistent on the compact sets+ It is easy to ob-
tain sufficient conditions for Assumption 13 using the results of Bierens~1983,
1987! and Andrews~1995!+ The main result of this paper is as follows+

THEOREM 5+ Let Zba
* denote the one-step estimator defined in (3). Let As-

sumptions 1–13 hold. Then as nr ` (assuming that V* is well defined),

Mn~ Zba
*2 ba! rd N~0,V* !,

where

V* 5 a~12 a! HE @tfa
2~06X,Z!ZZ' #

2 EF E @tfa
2~06X,Z!Z6X #E @tfa

2~06X,Z!Z ' 6X #

E @tfa
2~06X,Z!6X # GJ21

with t 5 t~X,Z!.

The variance of Theorem 5 is the same as the efficiency bound except for
the effect of the trimming functiont+ Just like the case of homoskedasticUa,
the effect of the trimming function is likely to be eliminated by letting the sup-
port of t grow+

For statistical inference, it is necessary to obtain a consistent estimator of the
varianceV*+ There may be several ways to estimate this variance matrix, but a
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simple consistent estimator ofV* that is a by-product of the estimation proce-
dure is

ZV* 5 F2n21 (
i51

n

] ZSai ~ Zba!0]bG21

+

It is shown in the proof of Theorem 5 in the Appendix thatZV* converges toV*
in probability+ An alternative way to estimateV* is to replace the components
of V* with its empirical counterparts+ A consistent estimator can be given by

ZV* 5 a~12 a! Hn21 (
i51

n Fti Zf 2~06Xi ,Zi !Zi Zi
'

2
ZE @tfa

2~06X,Z!Z6Xi # ZE @tfa
2~06X,Z!Z ' 6Xi #

ZE @tfa
2~06X,Z!6Xi #

GJ21

,

where Zf ~06x, z! and ZE @{6x# denote consistent nonparametric estimators of
fa~06x, z! andE @{6x# +

Adopting the same idea, one can obtain a consistent estimator of the asymp-
totic varianceV of the AQR estimator+ Specifically, the consistent estimatorZV
has the form

ZV 5 a~12 a!Fn21 (
i51

n

$ [tx
*~Xi !%

2ez
' ZS~Xi !

21Vi ZS~Xi !
21ezG,

where

Vi 5 S 1 Zi
'

Zi Zi Zi
'D, [tx

*~x! 5
1~x [ X !

n21 (
i51

n

1~Xi [ X !

,

and ZS~x! is a nonparametric estimator ofS~x! using the estimatedfa~06X,Z!+
It is also straightforward to obtain consistent estimators of the variances of the
AQR estimator and the weighted AQR estimator whenUa is homoskedastic+

7. MONTE CARLO EXPERIMENTS

This section presents the results of a Monte Carlo investigation of the finite
sample performance of the proposed estimators in the previous sections+ In all
experimentsa 5 0+5 andn 5 100+ Following Robinson~1988! and Chen and
Khan ~2001!, we considered the following model:

Yi 5 q~X ! 1 Z 'b 1 s~Xi ,Zi !«i , i 5 1, + + + , n,

whereXi andZi were drawn from a bivariate standard normal distribution with
correlation 0+5 and«i was drawn from the standard normal distribution that is
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independent ofX andZ+ Three different functions forq and two different func-
tions for s were simulated:

q1~x! 5 11 x, q2~x! 5 x 1 4 exp~22x2!YYM2p, q3~x! 5 sin~px!,

and

s1~x, z! 5 3
1
2, s2~x, z! 5 C exp@0+25~x 1 z!# ,

whereC is a constant that was chosen to makes~Xi ,Zi ! have standard devia-
tion 1

3
_ + The functionq2, which is taken from Härdle~1990, p+ 122!, has a bell-

shaped hump around zero+ The parameterb was set to be 1+ The trimming
function used in the experiments wastx~x! 5 1~6x6 # 2!+10

Computing the AQR estimates requires choosing the order of polynomialk
and the bandwidthdn in ~2!+ In the experimentsk 5 3+ The asymptotic results
of Section 3 only provide the range ofdn in terms of the asymptotic order+ A
higher order asymptotic theory is required to obtain an asymptotically optimal
dn+ However, there is a simple, informal selection rule based on the rule-of-
thumb bandwidth for the estimation of the nonparametric componentqa+ Let Dhn

be the rule-of-thumb bandwidth for the estimation ofq whenk 5 3, suggested
by Fan and Gijbels~1996, p+ 202!+ Specifically, Dhn is of the form

Dhn 5 2+8133 a~12 a!@ Zf $ ZF21~a!%#22Ew0~x! dx

(
i51

n

@~ [qa
~4!~Xi !!#

2w0~Xi ! 4
109

,

wherew0~{! is a weight function, [qa~x! is obtained from a global polynomial
fit , Zf ~{! is a kernel density estimate of the residuals of the global polynomial
fit , and ZF21~a! is the ath sample quantile of the residuals+ Also, [qa

~4!~x! de-
notes the fourth derivative of[qa~x!+ The weight function was set to bew0~x! 5
1~6x6 # 2!+ The global polynomial fit was obtained by carrying out the me-
dian regression ofY on the constant term, X,X2, + + + ,X5, andZ+ The bandwidth
Dhn converges at raten2109, which is optimal for the estimation ofq+ Under-

smoothing is required for the estimation ofb+ A simple bandwidth such as
Zdn 5 Dhn 3 n109 3 n2105 converges at raten2105 and satisfies Assumption 6

whenpq $ 3+ By some preliminary simulations, the averages of ad hoc band-
widths Zdn ranged between 0+7 and 1+1 across the designs considered in the
experiments+ In the experiments, dn [ $0+5, 0+6, + + + ,1+5% , which includes the
range of the averages ofZdn+ There were 1,000 replications in each experiment+
The computations were carried out in GAUSS with GAUSS pseudo-random
number generators+

Figure 1 shows the asymptotic~dashed lines! and empirical~solid lines! root
mean squared errors~RMSEs! of the AQR estimates ofb+ The asymptotic
RMSEs were calculated~ignoring the effect of trimming! by the formula of the
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asymptotic variance given in Section 4+ For all designs, the empirical RMSEs
are quite close to the asymptotic RMSEs over a wide range of bandwidths in-
cluding the range of the averageZdn+ It can be seen that the results forq3 are
more sensitive to the bandwidth than those forq1 andq2, but the results for all

Figure 1. Results of the Monte Carlo experiments for the AQR estimates ofb+
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designs are quite insensitive to the bandwidth in the range of the rule of thumb+
The empirical biases of the AQR estimates were also computed and were neg-
ligible relative to the empirical standard deviations, so they are not reported
here+

More tuning parameters are required to compute the one-step efficient esti-
mates+ The trimming function was set to bet~x, z! 51~6x6# 2, 6z6# 2!+ Gauss-
ian kernels were used to estimatefa~06Xi ,Zi !+ Bandwidths weren1n 5 n2107

and n2n 5 n2106 with respect to standardized designs+ For the estimation of
T~Xi !, gn 5 sxn2105, wheresx is the sample standard deviation ofX+ The smooth-
ing functionJ is the integral of the quartic kernel such that

J~v! 5 5
0 if v , 21

0+5 1
15

16Sv2
2

3
v3 1

1

5
v5D if 6v6# 1

1 if v . 1+

The AQR estimates ofb and the estimates ofq~{! were computed using band-
width dn 5 0+8 Finally, the bandwidthjn has to be chosen, but the asymptotic
theory in Section 5 provides only qualitative restriction for the choice ofjn+
The experiments focused on the sensitivity to the choice ofjn+ In the experi-
ments, jn 5 $0+1, 0+2, + + + ,2+0% +

Figure 2 shows the asymptotic~dashed lines! and empirical~solid lines!
RMSEs of the one-step estimates ofb+ In addition, it also shows the empirical
RMSEs~dotted lines! of the AQR estimates+ Asymptotic results given in previ-
ous sections indicate that the AQR estimator is as efficient as the one-step es-
timator for homoskedastic designs+ Furthermore, the optimally weighted AQR
estimator is basically the same as the AQR estimator because var~Z6X ! is a
constant in the experiments+ On the other hand, it can be checked by some
calculation that the asymptotic RMSE of the AQR estimator exceeds that of the
one-step estimator by a factor of 1+4 for heteroskedastic designs+ One notewor-
thy result is that the empirical RMSEs of the one-step estimates are somewhat
larger than asymptotic counterparts for the heteroskedastic designs+ This is not
too surprising because the one-step estimates use several nonparametric esti-
mates, which can be inaccurate for small sample size such asn 5 100+ The
one-step estimates perform better than the AQR estimates for most of the val-
ues of bandwidthjn+ It also appears that the results are somewhat insensitive to
the choice of the bandwidthjn as long asjn is not too small+ In summary, the
results of Monte Carlo experiments indicate that our proposed estimators work
reasonably well in the finite samples+

8. CONCLUSIONS

This paper has developed a new estimation method for the partially linear quan-
tile regression model+ It is shown that the parametric componentba can be
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efficiently estimated+ This paper does not investigate methods for optimally
choosing the tuning parameters that are required to implement the estimation
method+ Because the asymptotic distributions of the proposed estimators ofba

do not depend on bandwidths, a higher order theory is required to choose opti-

Figure 2. Results of the Monte Carlo experiments for the one-step estimates ofb+
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mal bandwidths+ There is no theoretical work~that we are aware of! regarding
a higher order approximation for semiparametric quantile regression+ This is a
topic of future research+ Another problem that needs to be studied is how to
conduct a specification test of the regression model+ Although partially linear
regression is quite flexible, it still has a possibility of misspecification+ It would
be also an interesting problem to test a particular parametric quantile regres-
sion model against a partially linear alternative+

NOTES

1+ For semi- and nonparametric mean regression models, see Härdle~1990! and Horowitz
~1998b! among many others+

2+ See Newey and Powell~1990! and Zhao~2001! for asymptotically efficient estimation of
linear quantile regression models+

3+ The exponentsg in Assumption 4~a! and~b! and Assumption 8 do not have to be same+ For
brevity, we assume thatg denotes the minimum of the threeg’s+

4+ This is common among semiparametric regression estimators+ Higher order kernels are of-
ten used when the first-stage estimation is based on kernel-type estimators+ Assumption 3 is not
needed to derive the efficiency bound in Section 5, however+

5+ In particular, Assumption 5 is made to exploit Bernstein’s inequality+ This assumption can
be satisfied by dropping observations with very large values ofZ, if necessary+

6+ Assumption 6 allows for only deterministic bandwidth sequences+ It is necessary to use
data-based bandwidths in applications; however, it is beyond the scope of this paper to investigate
the asymptotic properties of the estimator with data-dependent bandwidth sequences+ In simple
cases such as nonparametric density and regression estimation, the usual kinds of data-based band-
width selection do not affect the first-order asymptotics of the estimators~see, e+g+, Andrews, 1995!+

7+ The condition thatS~x! is nonsingular at everyx is stronger than needed to estimateba+
For example, ba can be identified and estimated only using observations for whichS~x! is nonsin-
gular as long as Prob$S~x! is nonsingular% is positive+ Assumption 8 is adopted here to minimize
the complexity of the proof+

8+ In fact, any n2102-consistent estimator ofba can be used as an initial estimator+
9+ Another alternative could be to invoke stochastic equicontinuity arguments in Andrews~1994!+

Unlike the mean regression case, [qa is a step function and therefore is not smooth enough to apply
the existing results in the literature+

10+ If the number of observations that satisfy6Xj 2 Xi 6 , dn in ~2! is less than 5, which is the
number of regressors in the local cubic fitting, then the estimation procedure will break down+
Hence, those points were additionally excluded in the experiments+
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APPENDIX

A.1. The Proofs of Theorems+ This part of the Appendix provides the proofs of theo-
rems+ The proofs of Corollary 3 and Theorem 4 are omitted because they are straight-
forward modifications of the proof of Theorem 2+ The stochastic order symbols such as
op~1! or Op~1! will be understood componentwise+ In addition, 6{6 is also considered
componentwise+ Let Uai 5 Yi 2 qa~Xi ! 2 Zi

'ba +

Proof of Theorem 1. Let Fy~{6x, z! denote the conditional distribution ofY given
X 5 x andZ 5 z+ Then we haveFy

21~a6x, z! 5 qa~x! 1 z'ba+ Notice thatFy
21 is unique

given x andz by condition~1!+ Rewrite this as

~1 z' !Sqa~x!

ba
D 5 Fy

21~a6x, z!+

Premultiplying both sides by~1 z'!' , we have

S1 z'

z zz'DSqa~x!

ba
D 5 S Fy

21~a6x, z!

zFy
21~a6x, z!D

for all x andz+ Taking expectations on both sides givenx, we have

S 1 E @Z6X 5 x# '

E @Z6X 5 x# E @ZZ' 6X 5 x#DSqa~x!

ba
D5S E @Fy

21~a6X,Z!6X 5 x#

E @ZFy
21~a6X,Z!6X 5 x#D+

Notice thatqa~x! is just a point givenx+ If condition ~2! is satisfied, then the matrix on
the left-hand side is invertible+ This implies thatqa~x! andba are uniquely determined+
Because the choice ofx is arbitrary, this completes the proof+ n

Proof of Theorem 2. Let ntx
5 (i51

n tx~Xi !+ Write

Zba 2 ba 5
1

ntx

(
i51

n

tx~Xi !$ Zba~Xi ! 2 ba%

5
1

n Pr~X [ X ! (
i51

n

tx~Xi !$ Zba~Xi ! 2 ba% 1 Rtx,n

[ Tn 1 Rtx,n+

First notice thatRtx,n results from the replacement ofntx
with n Pr~X [ X !+ It is easy to

see thatRtx,n 5 op~n2102! because Pr~X [ X ! is the expectation oftx~X !+
To obtain the asymptotic distribution ofZba 2 ba, one needs to plug in a Bahadur-

type expansion of Zba~Xi ! 2 ba+ Fortunately this type of expansion has been already
well established in Chaudhuri~1991a, 1991b! and Chaudhuri et al+ ~1997!+ A modified
version of the Bahadur-type linear representation for partially linear quantile regression
is given in the second section of this Appendix+ To describe the linear representation,
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we need additional notation+ Let b~dn,Xj 2 Xi ,Zj ! denote the~s~Ak! 1 dz!-dimensional
vector

b~dn,Xj 2 Xi ,Zj ! 5 ~$dn
2@u#~Xj 2 Xi !

u, @u# # k% ',Zj
'!' (A.1)

and letGn~Xi ! denote the~s~Ak! 1 dz! 3 ~s~Ak! 1 dz! matrix

Gn~Xi ! 5E
@21,1# dx

E
Wz

fa~06Xi 1 dn t, z!b~1, t, z!b~1, t, z!' dPZ~z6Xi 1 dn t !

3 gdn
~t,Xi ! dt, (A.2)

where

gdn
~t,Xi ! 5

g~Xi 1 dn t !

E
@21,1# dx

g~Xi 1 dn t ! dt

+

Also, PZ~z6x! denotes a probability measure with respect toZ given X 5 x+ Let e' de-
note thedz 3 ~s~Ak! 1 dz! matrix such thate' 5 ~0, Idz

!, where 0 denotes thedz 3
s~Ak!-dimensional zero matrix andIdz

an identity matrix+ In addition, let Nn~Xi ! denote
the number of allj ’s satisfying6Xj 2 Xi 6 # dn for j Þ i, j 5 1, + + + , n, and letqa

*~Xj ,Xi !
be thek-order Taylor polynomial defined in~A+10!, which follows+

It follows from Lemma 1 in the second section of this Appendix that

Zba~Xi ! 2 ba 5 e'$Nn~Xi !Gn~Xi !%
21

5 (
j51, jÞi

n

b~dn,Xj 2 Xi ,Zj !@a 2 1$Yj # qa
*~Xj ,Xi ! 1 Zj

'ba%#

3 1$6Xj 2 Xi 6# dn% 1 Rn~Xi !,

where

max
Xi[X
6Rn~Xi !6 5 o~n2102! almost surely asn r `,

provided that 10~2pq 1 d! , k , 10~3dx!+ It is worth noting thatb~dn,Xj 2 Xi ,Zj ! and
Gn are different from those of Chaudhuri et al+ ~1997! because a partially linear regres-
sion model is considered here+

Now substituting the Bahadur-type expansion ofZba~Xi ! 2 ba into Tn and following
arguments similar to those in the proof of Theorem 2+1 of Chaudhuri et al+ ~1997! ~in
particular, we require 10~2pq! , k , 10~3dx!!, we have

Tn 5 Un 1 op~n2102!,

whereUn is a U-statistic with the kernel dependent onn:

Un 5 (
1#i,j#n

jn~zi ,zj !,
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with zi 5 ~Yi ,Xi ,Zi !, jn~zi ,zj ! 5 hn~zi ,zj ! 1 hn~zj ,zi !, pn~X ! 5 dn
dx*@21,1# dx g~X 1

dnt ! dt, and

hn~zi ,zj ! 5
1

n
tx
*~Xi !e

'$npn~Xi !Gn~Xi !%
21b~dn,Xj 2 Xi ,Zj !$a 2 1~Uaj # 0!%

3 1$6Xj 2 Xi 6# dn%+

Define Pn to be the projection ofUn, so that

Pn 5 ~n 2 1! (
i51

n

mn~zi !,

where

mn~zi ! 5 E @jn~zi ,zj !6zi #

5
1

n2 $a 2 1~Uai # 0!%

3 E @tx
*~Xj !e

'$ pn~Xj !Gn~Xj !%
21b~dn,Xi 2 Xj ,Zi !1$6Xi 2 Xj 6# dn%6Xi ,Zi # +

As in the proof of Theorem 2+1 of Chaudhuri et al+ ~1997!, an application of the stan-
dard Hoeffding decomposition ofUn yields

E~Un 2 Pn!2 5
n~n 2 1!

2
~Ejn

2~z1,z2! 2 2Emn
2~z1!!

#
n~n 2 1!

2
Ejn

2~z1,z2!

# 2n~n 2 1!Ehn
2~z1,z2!+

Using the facts that~a! in view of Assumption 8, 7Gn
21~Xi !7 is uniformly bounded for

Xi [ X asn r `, ~b! pn~Xi ! 5 dn
dx*@21,1# dx fa~Xi 1 dnt ! dt, and~c! each component of

b~dn,X2 2 X1,Z2!1$6X2 2 X16 # dn% is bounded, we have

Ehn
2~z1,z2! 5 O~10n4dn

2dx!+

This implies that

E~Un 2 Pn!2 5 OS 1

n2dn
2dxD

and, hence, using Assumption 6,

Un 5 Pn 1 op~n2102!+

The next step is to evaluate the limit of the projectionPn+We will show subsequently
that

E~Pn 2 EPn!2 5 op~n21!, (A.3)
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where

EPn 5
n 2 1

n2 (
i51

n

$a 2 1~Uai # 0!%tx
*~Xi !n~Xi ,Zi !

with

n~x, z! 5 ez
'EFfa~06X,Z!S1 Z '

Z ZZ'D*X 5 xG21S1

zD+
Conditioning on~Xi ,Zi !, we have

E~Pn 2 EPn!2 5
~n 2 1!2a~12 a!

n3 E$E @tx
*~Xj !e

'$ pn~Xj !Gn~Xj !%
21b~dn,Xi 2 Xj ,Zi !

3 1$6Xi 2 Xj 6# dn%6Xi ,Zi # 2 tx
*~Xi !n~Xi ,Zi !%

2+

(A.4)

As in Lemma 4+2~b! of Chaudhuri et al+ ~1997!, it can be shown that

dn
dx$ pn~Xj !Gn~Xj !%

21

5 Hg~Xj !E
@21,1# dx

E @b~1, t,Z!b~1, t,Z!' fa~06X,Z!6X 5 Xj # dtJ21

1 OL2~dn
g!,

whereOL2~{! denotes a remainder term that is bounded in theL2 norm+ By a change of
variables, the inner expectation in~A+4! becomes

E
@21,1# dx

tx
*~Xi 2 dnu!e' HE

@21,1# dx

E @b~1, t,Z!b~1, t,Z!' fa~06X,Z!6X 5 Xi 2 dnu# dtJ21

3 b~1,u,Zi ! du1 OL2~dn
g!+

Using this and a Taylor series expansion, we can show that the outer expectation in
~A+4! converges to zero, which proves~A+3!+ By Chebyshev inequality, ~A+3! implies

Pn 5 EPn 1 op~n2102!+

Therefore,

Mn~ Zba 2 ba! 5
1

Mn (
i51

n

$a 2 1~Uai # 0!%tx
*~Xi !n~Xi ,Zi ! 1 op~1!,

from which the desired result follows immediately using the multivariate central theorem+
n

Proof of Theorem 5. Let I* 5 V*
21+ Write

Mn~ Zba
*2 ba! 5 Mn~ Zba 2 ba! 1 F2n21 (

i51

n

] ZSai ~ Zba!0]bG21

n2102 (
i51

n

ZSai ~ Zba!+
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Let

Sai ~b! 5 t~Xi ,Zi !
fa~06Xi ,Zi !

a~12 a!
@a 2 1$Yi 2 qa~Xi ! 2 Zi

'b # 0%# @Z 2 T*~X !# +

It will be shown subsequently that

2n21 (
i51

n

] ZSai ~ Zba!0]b 5 I*1 op~1!, and (A.5)

n2102 (
i51

n

ZSai ~ Zba! 5 n2102 (
i51

n

Sai ~ba! 2 I*Mn~ Zba 2 ba! 1 op~1!+ (A.6)

It then follows that

Mn~ Zba
*2 ba! 5 I*

21n2102 (
i51

n

Sai ~ba! 1 op~1!,

which gives the desired result immediately+
As in Lemma 4+3~a! of Chaudhuri et al+ ~1997!, it can be shown that

sup
Xi[X
6 [q~Xi ! 2 qa~Xi !6 5 op~n2103!+ (A.7)

In fact, we require that 10~2pq 1 dx! , k , 10~3dx! in view of Lemma 1~in particular,
see step 3 in the proof!+ Furthermore, by similar arguments as in the proof of Theo-
rem 2, it can be proved that

n21 (
i51

n

tx~Xi !@ [q~Xi ! 2 qa~Xi !# 5 Op~n2102!+ (A.8)

Let ti 5 t~Xi ,Zi !, fi 5 fa~06Xi ,Zi !, and Zfi 5 Zfa~06Xi ,Zi ! for shorthand notation+ To
show~A+5!, note that

2n21 (
i51

n

] ZSai ~ Zba!0]b 5
1

njn
(
i51

n ti Zfi
a~12 a!

J ~1!S ZUai

jn
D @Zi 2 ZT~Xi !#Zi

'

5
1

njn
(
i51

n ti fi
a~12 a!

J ~1!S ZUai

jn
D @Zi 2 T*~Xi !#Zi

'1 op~1!

5
1

njn
(
i51

n ti fi
a~12 a!

J ~1!SUai

jn
D @Zi 2 T*~Xi !#Zi

'1 op~1!

5 I*1 op~1!,

where the first equality comes from differentiation, the second equality follows in view
of the uniform consistency ofZfa~06Xi ,Zi ! and ZT~Xi !, and the fourth equality can be
proved using methods similar to those used to calculate the asymptotic mean of kernel
density estimators+ To prove the third equality, note that by a Taylor series expansion,
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1

njn
(
i51

n

J ~1!S ZUai

jn
D 5

1

njn
(
i51

n

J ~1!SUai

jn
D1

1

njn
2 (

i51

n

J ~2!SUai

jn
D~ ZUai 2 Uai ! 1 Rn, J ,

(A.9)

where the remainder termRn, J is

Rn, J 5
1

njn
2 (

i51

n FJ ~2!S EUai

jn
D2 J ~2!SUai

jn
DG~ ZUai 2 Uai !

and EUai is between ZUai andUai + Observe that the second term in~A+9! is of orderop~1!,
because supi ti 6 ZUai 2 Uai 6 5 op~1! by ~A+7! and

1

njn
2 (

i51

n

J ~2!SUai

jn
D 5 Op~1!

with the restriction thatnjn
3 r `+ Now we need to show thatRn, J 5 op~1!+ To see this,

use the fact thatJ ~2! is Lipschitz continuous to obtain

6Rn, J 6 # MJ* 1

njn
3 (

i51

n

ti ~ ZUai 2 Uai !*sup
i

ti 6 EUai 2 Uai 6

for some constantMJ+ It follows from ~A+7!, ~A+8!, and the restriction onjn thatRn, J 5
op~ jn

23n2506! 5 op~1!+
For ~A+6!, first note that once again by the uniform consistency ofZfa~06Xi ,Zi ! and
ZT~Xi !,

n2102 (
i51

n

ZSai ~ Zba!

5 n2102 (
i51

n ti fi
a~12 a! Fa 2 1 1 JSYi 2 [qa~Xi ! 2 Zi

' Zba

jn
DG

3 @Zi 2 T*~Xi !# @11 op~1!#

[ n2102 (
i51

n

DSai ~ [qa , Zba!@11 op~1!# +

Using a Taylor series expansion,

n2102 (
i51

n

DSai ~ [qa , Zba! 5 n2102 (
i51

n

DSai ~qa ,ba! 1 Fn21 (
i51

n ] DSai ~qa ,ba!

]b GMn~ Zba 2 ba!

1 n2102 (
i51

n ] DSai ~qa ,ba!

]q
@ [qa~Xi ! 2 qa~Xi !# 1 Rn,S,

whereRn,S is a Taylor series remainder term+ As before, the expression in the brackets
of the second term is2I*1 op~1!+ Using the same arguments as in~A+9!, one can show
that the remainder termRn,S is op~1!+ As in Lemma 3~k! of Horowitz ~1998a!, it is not
difficult to show that using Chebyshev inequality,
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n2102 (
i51

n FJSUai

jn
D2 1~Uai . 0!G5 Op~n102jn

2 1 jn
102!+

This implies that using the restriction onjn,

n2102 (
i51

n

DSai ~qa ,ba! 5 n2102 (
i51

n

Sai ~ba! 1 op~1!+

To prove~A+6!, it now suffices to show that the third term in the Taylor series expan-
sion isop~1!+ To see this, note that under Assumption 10,

n2102 (
i51

n ] DSai ~qa ,ba!

]q
5 2n2102 (

i51

n ti fi
a~12 a! jn

J ~1!SUai

jn
D @Zi 2 T*~Xi !#

5 n102Op~ jn
2 1 ~njn!2102!

by Chebyshev inequality+ Hence,

*n2102 (
i51

n ] DSai ~qa ,ba!

]q
@ [qa~Xi ! 2 qa~Xi !#*

# *n2102 (
i51

n ] DSai ~qa ,ba!

]q * sup
Xi[X
6 [qa~Xi ! 2 qa~Xi !6

5 op~1!,

where the last equality follows from~A+7! and the restriction onjn+ n

A.2. Linear Representation for the First-Step Estimators+ The result presented here
is an extension of the Bahadur-type representation for the local polynomial conditional
quantile estimators given in Lemma 4+1 in Chaudhuri et al+ ~1997!+ The following lemma
assumes partially linear quantile regression and gives a uniform result in the conditional
variablesXi +

Define thek-order Taylor polynomial

qa
*~x 1 dn t, x! 5 (

u[Ak

cn,u~x!t u, (A.10)

with the coefficientscn,u~x! 5 ~u!!21Du~x!dn
@u# , where u! 5 u1! + + +ud! + Let ca~x! 5

~cn,u~x!!u[Ak
denote thes~Ak!-dimensional vector of Taylor coefficients in~A+10!+ In

addition, let [aa~Xi ! 5 ~ [ca~Xi !
', Zba~Xi !

'!' denote the~s~Ak! 1 dz!-dimensional vector
that minimizes~2! and letaa~Xi ! 5 ~ca~Xi !

',ba
' !' + Moreover, let b~dn,Xj 2 Xi ,Zj ! and

Gn~Xi ! be defined in~A+1! and~A+2!, respectively+
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LEMMA 1 + Let Assumptions 1–5, 7, and 8 hold. Then we have

[aa~Xi ! 2 aa~Xi ! 5 $Nn~Xi !Gn~Xi !%
21

3 (
j51, jÞi

n

b~dn,Xj 2 Xi ,Zj !@a 2 1$Yj # qa
*~Xj ,Xi ! 1 Zj

'ba%#

3 1$6Xj 2 Xi 6# dn% 1 Rn~Xi !, (A.11)

where the remainder term Rn~Xi ! satisfies

max
xi[X
6Rn~Xi !6 5 o~n23~12kdx!04 @ log n# 304! almost surely as nr `,

provided thatdn @ n2k with 10~2pq 1 d! , k , 10dx+

Proof of Lemma 1. We will provide the main ideas and indicate the differences that
result from partially linear quantile regression+We will split the proof into several steps+

Step 1.Step 1 of the proof of Lemma 4+1 in Chaudhuri et al+ ~1997! can be repeated
without any modification for our purpose+ Specifically, we can choose a pair of positive
constantsc1 andc2 such that

Pr~ lim inf En! 5 1,

where

En 5 $c1n12kdx # Nn~Xi ! # c2n12kdx for all Xi [ X %,

provided that 0, k , 10dx+

Step 2.The rate of the uniform convergence can be derived by using arguments sim-
ilar to those in Chaudhuri et al+ ~1997!+ It can be shown that there exists a positive
constantK1 such that

Pr~ lim inf Fn! 5 1, (A.12)

where

Fn 5 $6 [aa~Xi ! 2 aa~Xi !6# K1n2~12kdx!02~ log n!102 for all Xi [ X %,

provided thatk . 10~2pq 1 dx!+ Under Assumptions 1–5, 7, and 8, Fact 6+5 in Chaudhuri
~1991b! and Fact 5+2 in Chaudhuri~1991a! can be easily restated for our purpose+ Then
~A+12! follows from simple modifications of the arguments used in the proofs of Theo-
rem 3+2 in Chaudhuri~1991b! and Theorems 3+2 and 3+3 in Chaudhuri~1991a!+
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Step 3.Let [qa~x 1 dnt, x! denote the Taylor polynomial with estimated coefficients,
which is ~A+10! with [ca~x!+ Define

EHn~dn,Xi ! 5E
@21,1# dx

E
Wz

Fa @qa
*~Xi 1 dn t,Xi ! 2 qa~Xi 1 dn t !6Xi 1 dn t, z#

3 b~1, t, z! dPZ~z6Xi 1 dn t ! gdn
~t,Xi ! dt,

ZHn~dn,Xi ! 5E
@21,1# dx

E
Wz

Fa @ [qa~Xi 1 dn t,Xi ! 2 qa~Xi 1 dn t !

1 z'~ Zba~Xi ! 2 ba!6Xi 1 dn t, z#

3 b~1, t, z! dPZ~z6Xi 1 dn t ! gdn
~t,Xi ! dt,

and

Rn
~1!~Xi ! 5 ZHn~dn,Xi ! 2 EHn~dn,Xi ! 2 Gn~Xi !$ [aa~Xi ! 2 aa~Xi !%+ (A.13)

Using the result in step 2 and the continuous differentiability offa~u6x, z! with respect
to u in a neighborhood of zero, we can show that

Rn
~1!~Xi ! 5 ~n2~12tdx! log n!

almost surely asn r ` uniformly in Xi [ Wx+

Step 4.For eachXi , define an~s~Ak! 1 dz!-dimensional random vectorxn~Xi ! as

xn~Xi ! 5 (
j51, jÞi

n

$b~dn,Xj 2 Xi ,Zj !1$Yj # [qa~Xj ,Xi ! 1 Zj
' Zba~Xi !%

2 ZHn~dn,Xi !%1$6Xj 2 Xi 6# dn%

2 (
j51, jÞi

n

$b~dn,Xj 2 Xi ,Zj !1$Yj # qa
*~Xj ,Xi ! 1 Zj

'ba%

2 EHn~dn,Xi !%1$6Xj 2 Xi 6# dn%+

It follows from arguments similar to those used in the proof of Theorem 3+3 in Chaudhuri
~1991b! that

xn~Xi ! 5 ~n~12tdx!04 @ log n# 304! (A.14)

almost surely asn r ` uniformly in Xi [ Wx+ To exploit Bernstein’s inequality, it is
assumed here thatZ is bounded+

Step 5.Write

@Nn~Xi !#
21 (

j51, jÞi

n

b~dn,Xj 2 Xi ,Zj !@a 2 1$Yj # qa
*~Xj ,Xi ! 1 Zj

'ba%#1$6Xj 2 Xi 6# dn%

5 @Nn~Xi !#
21xn~Xi ! 1 ZHn~dn,Xi ! 2 EHn~dn,Xi ! 1 Rn

~2!~Xi !, (A.15)
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where on the eventEn+ As in step 3 of the proof of Theorem 3+3 in Chaudhuri~1991b!,
it can be shown that

Rn
~2!~Xi ! # Mn2~12kdx! (A.16)

for some constantM, which is uniform inXi [ X+ Finally, the desired result of the
lemma follows by combining~A+13!–~A+16! and the fact thatGn~Xi ! is invertible as
n r `+ n
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