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This paper is concerned with estimating a conditional quantile function that is
assumed to be partially linedrhe paper develops a simple estimator of the para-
metric component of the conditional quantiléne semiparametric efficiency bound

for the parametric component is deriveahd two types of efficient estimators are
consideredAsymptotic properties of the proposed estimators are established un-
der regularity conditionsSome Monte Carlo experiments indicate that the pro-
posed estimators perform well in small samples

1. INTRODUCTION

Many econometrics problems are concerned with estimating a conditional lo-
cation function such as conditional meamnditional medianor conditional
guantile Since the seminal work of Koenker and Bas4d@78, there have

been many theoretical and applied papers that are related to the estimation of
conditional quantilesincluding the conditional median as a special c&8est

of these papers are based on a priori assumptions about the functional form of
the conditional quantile functioniThe estimation results can be misleading
however if the model is misspecifiedOn the other hancda fully nonparamet-

ric method such as the local polynomial estimator in Chaudii®91a 1991h

could reduce the possibility of misspecificatiomhereas the curse of dimen-
sionality occurs as the dimension of independent variables increSses-
parametric methods that can obtain dimension redugtlerefore are useful
because they can avoid the loss of precision due to the curse of dimensional-
ity and they make weaker assumptions about the functional form of the regres-
sion model
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In particular this paper develops an estimation method for a partially linear
guantile regression moderhe model has the form

Y=q,(X)+28,+U, (1)

whereY is a scalar dependent variapkis ad, X 1 vector of continuous ran-
dom variablesZ is ad, X 1 vector of continuous or discrete random variables
0.(+) is an unknown real-valued functipg, is ad, X 1 vector of unknown
parametersandU, is an unobserved random variable that satisfies Righk=
0|X = x,Z = z) = «a for all x andz wherea indexes the quantile of interest
a = 0.5, the model reduces to a partially linear median regression model

There is a growing literature on estimating semi- and nonparametric quantile
regression modefsFor examplesee Chaudhui1991a 19910, Fan Hu, and
Truong(1994), and Welsh(1996 for local polynomial quantile regressipsee
Chaudhuri Doksum and Samaroy1997), Chen and Khari200Q 2001), Khan
(2001, and Khan and Powell2001) for semiparametric estimators based on
local polynomial approximationssee KoenkerNg, and Portnoy(1994 and
He, Ng, and Portnoy1998 for smoothing splinessee He and SHiL994 1996
for B-spline approximationsee He and Lian@2000 for errors-in-variable mod-
els Among these papershree are especially concerned with partially linear
quantile regression modelde and Shi1996 consider M-type regression splines
using bivariate tensor-produBtsplines He and Liang(2000 develop estima-
tors for linear and partially linear errors-in-variables modé&ken and Khan
(2001 propose an estimation method for a partially linear censored quantile
regressionThe aforementioned estimators are not asymptotically efficient un-
der the conditional heteroskedasticity @f in (1).

The main purpose of this paper is to develop an asymptotically efficient es-
timator of 8,.2 The paper first develops a simplevo-stage estimator g8,
that is an average of nonparametric estimattmsthe first stage ., is esti-
mated locally at each data point by some nonparametric meffioese esti-
mates off3, are averaged in the second stage to obtain the parametric rate of
convergenceThis estimatarwhich will be called the average quantile regres-
sion (AQR) estimatoy is n~Y2-consistent and asymptotically normabt it is
not asymptotically efficientThe semiparametric efficiency bound 8y, is cal-
culated based on a projection formuénd then two types of efficient estima-
tors of B, are constructeddepending on the assumption abdi. If U, is
homoskedasticthen an optimally weighted version of the AQR estimator can
attain the efficiency boundWVhen U, is possibly heteroskedastia one-step
asymptotically efficient estimator is used to attain the efficiency bound

The rest of the paper is organized as folloBsction 2 gives sufficient con-
ditions under whichs, andq, are identified Section 3 describes the AQR es-
timator of B,. In Section 4 asymptotic properties of the AQR estimator are
given under a certain set of regularity conditiohs Section 5 the semipara-
metric efficiency bound foB,, is derived In Section 6 it is shown that the
bound is attainable by constructing efficient estimatorg ofSection 7 presents
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some Monte Carlo experiments that illustrate the finite sample performance of
the proposed estimatorSoncluding remarks are given in Section®e proofs
of theorems are in the Appendix

2. IDENTIFICATION OF 8, AND g,

Before we consider estimation @f, andq, in (1), we have to find conditions
under which the partially linear quantile regression model can be identified
The model is identified i3, andq, are uniquely determined by the population
distribution of(Y, X, Z). The following result gives sufficient conditions for the
identification of the model

THEOREM 1 Suppose thaProl(Y = q,(X) + Z'8,| X =X,Z = z) = « for
all x and z. If

(1) the conditional density of Uis positive at zero for all x and z, and
(2) var(Z|X = x) is nonsingular at every x,

then g, and B, are identified.

The sufficient conditions can be relaxed but are stated in the form used to
derive asymptotic properties of the proposed estimat@osndition(1) is stan-
dard but can be relaxedror example Knight (1998 derives the asymptotic
distributions for linear median regression estimators under a more general as-
sumption than conditiofil). See also Smirnoy1952 for limiting distributions
of sample quantiles under general assumpti@mndition (2) excludes a con-
stant variable foZ. Furthermoreit requires that no components @fbe per-
fectly predictable by components &t A similar but less stringent exclusion
restriction is also needed for partially linear mean regresston exampleit
is assumed in Robinsdii988 thatE[var(Z|X)] is positive definite See Rob-
inson (1988 for detailed discussiarit is assumed throughout the remainder of
this paper thag, andq, are identified

3. DESCRIPTION OF THE AVERAGE QUANTILE
REGRESSION ESTIMATOR

This section presents the main idea behind the estimation method and de-
scribes the AQR estimator @8,. The estimation procedure involves two
stagesin the first stagef,, is estimated locally at each data poimt the sec-
ond stagethese local estimates are averaged to obtain @f?-consistent es-
timator of 3,,.

To describe the estimation procedumee need some notatioret {(Y;,
Xi,Zi);1 =i = n} be arandom sample ¢¥, X, Z) in (1) with sizen. Let C,(X;)
be a cube irR% centered a¥; with side length 3,,, wheres, is a sequence of
positive real numbers such th@t— 0. Foru = (uy,..., Uy ), ady-dimensional
vector of nonnegative integeret [u] = u; + --- + ug . Let A, be the set of
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all d,-dimensional vectorsi such thafu] = k for some integek = 0 and let
s(Ay) denote the number of elementsAp. Forz € R% with u € A, let z =
% z%. In addition given Xy, X, € R%, define

Xy — X, |u
Pn(C,Xl,Xz) = 2 Cu|:¥:| )

UEA 8n

wherec = (c,),ea, is @ vector of dimensiors(,f\k). Define p,(t) = |t] +
(A2a - 1)9 For each)fi, the first-stage estimatdn,(X;) of B, is defined by
b,(X;) = b, where(¢’,b’)’ is the solution to the following minimization problem

n

min 3 pal = Pule. X, X) ~D'Z 10X € CiOX)), )
where 1) is a standard indicator functioiotice that the preliminary estima-
tor defined here is a leave-one-out estimator and a multivariate uniform kernel
is used in(2).

It is important to note that only local data points aroufidare used in2).
As a consequencd,(X;) converges in probability t@, at a nonparametric
rate A more efficient estimator fopB, requires the use of all data poin3e-
causeb,(X;) can be obtained at each data poiat the proposed estimation
strategy in this paper is to averagefa]ls to estimates,. This averaging method
ensures that all data points are used and thus leads to a faster rate of convergence

In the second stagéhe AQR estimatop3,, of B, is now obtained by

n

2 Tx(xi)ﬁa(xi)

a n )

2 7 (X)

i=1

wherer,(X) is a trimming function such that(x) = 1(x € X’) with a compact
subsetX of R%. The trimming function is introduced to estimate the param-
etersB, without being overly influenced by the tail behavior of the distribution
of X. It will turn out in Section 4 that this AQR estimator is /2-consistent
for B, and asymptotically normal

The first-stage estimation procedure is a simplified version of the local poly-
nomial estimation procedure developed in Chaudi@f91g 1991h and
Chaudhuri et al(1997). The estimation method considered here is different
from that used in Chaudhufil991a 1991h and Chaudhuri et al(1997) in
that only a linear term with respect ibis adoptedno cross products between
X and Z are included in(2), and local weighting is carried out in terms of
only X, not bothX and Z, because the partially linear form of the regression
model is assumed in this papérsimilar type of preliminary estimation pro-
cedure is also considered in Chen and Kt{2801). The main advantage of
using this method is that the Bahadur-type expansion of the estimator is al-
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ready well established and can be easily specialized for the purpose of this
paper

We conclude this section by mentioning the numerical algorithri2pfBe-
cause the uniform kernel is independentcodnd b, the problem(2) can be
easily shown to have a linear programming representakoom the perspec-
tive of linear quantile regressioproblem(2) can be understood as just weighted
quantile regression with weight equal to the uniform kerAdlcomputational
algorithms developed for linear quantile regressithrerefore can be used to
solve problem2) (see e.g., Buchinsky 1998 and references theregin

4. ASYMPTOTIC PROPERTIES OF THE AVERAGE QUANTILE
REGRESSION ESTIMATOR

This section gives regularity conditions under which the AQR estimatgt,of
is n~Y2-consistent and asymptotically normélet |-| denote the Euclidean
norm

Assumption 1 {(Y;, X, Z);1 =i = n} is a random sample ofY, X, Z)
in (2).

Let F,(-|x, z) andf,(-|X, z), respectivelydenote the cumulative distribution
function and the density function &, conditional on(X,Z) = (x, z). More-
over, let g(x) denote the density function of and letg,,(x, z) denote the joint
density of X andZ with respect to an appropriate measuBeppose thaZ can
be divided intoZ = (2©,Zz®), wherez© denote the continuous components
of ZandZ'¥ denote the remaining discrete componeAtsume thaZ @ has
finitely many mass points.et W, and W, = W¢ X W4 be supports oK and
Z=(Z9,z¥) such thatV, andW¢ are nonempty convex setsRfx andR%.

Assumption 2

(@) F,(0|x,2) = a for all (x,2) in Wy X W,,

(b) f.(u|x,z) is bounded away from zero and continuously differentiable with re-
spect tou in a neighborhood of zero for aflk, z) in W, X W,, and

(c) gis positive onW, except on the boundary

Following the nonparametric estimation literatuagfunctionm: RY — R will
be said to have the order of smoothnessn a convex setV in RY with p =
| + vy, wherel = 0 is an integer and & y = 1, and will be written asm €
Hp(W), if (i) partial derivativeDm(x) = aIm(x)/ax{" ... xS« exist and are
continuous for alx € W and[u] = | and (ii) there exists a constaM > 0
such that

[D'm(x;) = D"M(X,)| = M|/ X, — X,|? forallx;, x, €W and [u] =1.
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In other words a functionm is I-times continuously differentiable and thti
derivative is Holder continuous with exponentThe order of smoothnest it
applies to a vector or matrix-valued functiamill be understood componentwise

Assumption 3 The functiong,(-) has the order of smoothnepg > 3d,/2
onW,.

Assumption 4 There exists g, 0 < y = 1 such that

(@ f.(ulx,z) andgy(X, 2), as functions ok, belong toH, (W) for all uin a neigh-
borhood of zero and evewyin W,, and
(b) g € Hy(Wx).

Assumption 5 The distribution ofZ has bounded support

Assumption 6 6, o« n™*, where «x is a positive real number satisfying
1/(2pg) < k < 1/(3dy).

Assumption 7 The trimming functionr,(x) has compact suppo#t, where
X has a nonempty interior andl C W,.

Assumption 8 For all x € W,, the matrixX(x) is nonsingularwhere

1 Z
S(X) = Elfa(0|x, Z)<Z ZZ’)‘X: x}.

Moreover X(x), considered as a function a&f is in H, (V) with somey, 0 <
Y= 13

It is necessary to make some comments regarding regularity condiions
dition (a) of Assumption 2 imposes the conditional quantile restrigtard con-
dition (b) is important for identificationCondition (c) ensures that there will
be sufficiently manyX;’s nearX; asymptotically a® — co. This condition with
Assumption 4b) guarantees that the marginal density>ofs bounded away
from zero and infinity onX. As done in Chen and Khai2001), it is possible to
include discrete random variables f&r This, howevey is not explicitly done
here for the sake of simplicity

Assumption 3 requires that the order of smoothngssf g, grow as the
dimension ofX increased Assumptions 4 and 5 are needed to derive a Bahadur-
type expansion similar to that developed in Chaudhuri et1897).°

Assumption 6 restricts the range of the bandwitiths is common in the
semiparametric estimation literatunendersmoothing is requiredhat is As-
sumption 6 requires thal, converge to zero faster than(2p, + dy), which
is the asymptotically optimal rate for a nonparametric estimatoq,0fThis
is not surprising because averaging the first-stage estimators makes the vari-
ance of the AQR estimator become smaller than those of the first-stage estima-
tors The left inequality fors, in Assumption 6 is used to make the estimator
have no asymptotic biasvhereas the right inequality is necessary to make the
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remainder terms of the Bahadur-type expansion negligibdée the trimming
functionr,, a X' that is too small can induce the loss of efficienajnereas at
that is too large allows the estimator to be unduly influenced by the tail behav-
ior of g(x).

Finally, Assumption 8 ensures that the variance of the asymptotic distribu-
tion of the estimator is well definedin a homoskedastic case whe€0|x, z)
is independent ok andz, Assumption 8 is satisfied if identification conditions
in Theorem 1 hold and véZ| X = x) is HOlder continuous

The next theorem establishes thie?-consistency and asymptotic normal-
ity of the AQR estimator of3,. Let €, be thed, X (d, + 1) matrix such that
e, = (0,14,), where0 denotes thel,-dimensional zero vector ang, an iden-
tity matrix.

THEOREM 2 Suppose that the order of the polynomial in (2) is Kk pq].
Let B, denote theAQR estimator of3,. Let Assumptions 1-8 hold. Then as
n — co,

VN(B. = Ba) 2a N(OV),

where

V= a(l- o) E[{ri(X)PeX(X) 102 (X) e, ]
with

o[t 7 0 oo MXED
“\z zz) ¥ "7 bxexy

Although then=%¥2-consistency and asymptotic normality of the AQR esti-
mator are establishethe varianceV in Theorem 2 is somewhat complicated
It will be shown in Section 5 that in general this variance is different from the
efficient variance boundrhe variance/ in Theorem 2 can be simplified under
a stronger condition than in AssumptionTae following corollary restates Theo-
rem 2 under the assumption of homoskedasticity

COROLLARY 3. Assume that the conditions in Theorem 2 hold. Further-
more, suppose that the conditional density qofdiven x and z, evaluated at
zero, is independent @k, z), namely, £(0|x, z) = f,(0) for all (x,z) in W, X
W,. Then as n— oo,

Vn(B, — B.) =a N(O,V),
where

- a(l-a) . ) ) o
V=" ElROOPERZZ X] - ELZIXIEZIXT) ).
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The AQR estimator may be compared with other existing estimators in the
literature He and Shi(1996 consider M-type regression splines using bivari-
ate tensor-product B-spline$hey establish the asymptotic results under the
assumption that), is independent ofX, Z). He and Liang(2000 develop es-
timators for linear and partially linear errors-in-varables modeheir asymp-
totic results are established under a stringent assumptioretZaX = x) = 0
for all x. Chen and Khar{2001) propose an estimation method for a partially
linear censored quantile regressidiheir estimator uses a two-stage estimation
procedureln the first stagethe conditional quantile function is nonparametri-
cally estimated by the local polynomial methathich is also the case for the
AQR estimator In the second stagéhey estimate, by a least-squares-type
estimator using differenced values of the estimated conditional quantiles as
dependent variableFhe implementation of their estimator requires a kind of
tuning parameter that they call a “selection functiddone of the existing es-
timators in the literature are asymptotically efficient under the conditional het-
eroskedasticity ot),. An asymptotically efficient estimator will be constructed
in Section 6

We end this section by considering estimation of the nonparametric compo-
nentq,(-) of the model(1). Because the parametric componggptcan be esti-
mated with ann%¥2 rate which is faster than the fastest possible rate of
convergence for the nonparametric componéris possible to estimatg,(-)
as asymptotically efficiently as 8, were known The functionq,(-) can be
estimated by carrying out a local polynomial quantile regressio¥ efZ'g3,,
on X. See Fan and Gijbeld 996 p. 202) and Yu and Jone€l998 for rule-of-
thumb bandwidths

5. THE SEMIPARAMETRIC EFFICIENCY BOUND

In this sectionthe semiparametric efficiency bound 8y, will be derived by
adopting the method used in Newey and Pow&#93. The semiparametric
efficiency bound may be viewed as the supremum of the Cramér-Rao-type
bounds for regular parametric submodédlkis bound can be calculated rigor-
ously by a projection formulaMore specifically the efficiency bound/ for
B. is the inverse of the expectation of the outer product of the efficient score
for B,, namely Vs = {E[S,S.]} %, where the efficient scorg, is defined by
the projection of the score function f@;, onto the orthogonal complement of
the tangent space in the nonparametric direct®ae for example Newey (1990
and Bicke] KlaassenRitov, and Wellner(1993 for further discussion

We consider the following parametric submodel for the nhonparametric com-
ponentq,(-) of the regression function

qa,n(') = qa(') + ﬂ'h(),

whereh is an arbitrary function oK that satisfieEE|h|? < oo. As in Newey
and Powell(1993, this paper does not attempt to specify an explicit paramet-
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ric submodel for the distribution dlJ,, X, Z). Instead we use the existing re-
sults of Newey and Powell1990 to derive the efficient scoretS; ,S,) for
(BL,m") . Then the efficient scor&, for B, will be calculated by finding the
projection ofS; onto the orthogonal complement of the tangent spacefor
To begin it is important to notice that the parametric submodel can be writ-

ten as a linear quantile regression model with paraméf@ysn’)’. It then fol-
lows from Newey and Powe{L990 that the efficient scores fg@, and»n have

the form

S, = k(U,,X,2)Z and S, =k(U,,X,Z2)h(X),

where

kU,, X,Z2) = - f,(0|X,Z)[a — L(U, = 0)].

(1-a)

By Proposition A3.5 of Bickel et al (1993 p. 433), the projection ofS; onto
the tangent space fay can be calculated by

k(U,, X, Z)h*(X) = k(U,, X, Z{E[k(U,, X, Z2)?|X]} *E[S;, k(U,, X, Z)| X]
=k(U,, X, Z)T(X),
where

E[ f2(0]X 2)Z|X]
E[ 201X, 2)|X]

T(X) =

Thus the efficient score fopB,, is
S.(Y,X,Z,q,,B,) = Sz, — k(U,, X, Z)h*(X)

 1,(01%,2)
 al-a)
This yields the efficiency boundg

[ —HY—q,(X) = Z'B, = O}[Z— T(X)].

Ve = a(l-a) {E[ £2(0/X,2)2Z']

E E[ f2(01X,2)Z|X]E[ f2(0|X,2)Z'|X] || *
E[12(01X,2)|X]

provided tha€[S,S,] is nonsingularThis result implies that the AQR estima-

tor is not efficient in generalf the distribution ofU, is homoskedastic ank

andZ are jointly normalthen the variance of the AQR estimator is the same as
the efficiency boungdignoring the effect of trimmingThis does not necessarily
mean that the AQR estimator is efficient in that special case because imposi-
tion of the additional restriction could change the efficiency bound
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6. EFFICIENT ESTIMATION OF B8,

This section constructs efficient estimators@f. WhenU,, is homoskedastic
with respect taZ, more precisely iff,(0|x, z) is independent of, an optimally

weighted AQR estimator will deliver asymptotic efficiendf U, permits gen-
eral heteroskedasticitjhen a one-step estimator will be constructed

6.1. Homoskedastic U,

In this sectionwe will show that the efficiency bound can be attained by con-
sidering a weighted version of the AQR estima®ecause the AQR estimator
is just a simple average of the nonparametric estimaibis plausible to con-
jecture that a weighted average can improve asymptotic efficidndged an
efficient estimator of3,, can be obtained by choosing a proper weighting func-
tion whenU, is homoskedasticTo show this let w(x) be ad, X d, matrix-
valued weighting function such thd [ 7, (X)w(X)] is nonsingular anav(x) is

in H,(W) for somey, 0 < y = 1. A weighted AQR estimatog, can be de-
fined as

i=1

i=1

~ 12 i o R

Ba= {E 2 Tx(xi)w(xi):| {_ 2 T (XDW(X) b, (X)) |.

It is straightforward to show that whefp(0| x, z) = f,(0) for all x andz,
\/ﬁ(ga - 1801) _)d N(O’VW)’

where

- al-a)

Vi = £200) E[m(X)W(X)] P E[m (X)w(X)var(Z|X)w(X)]

X E[r,(X)w(X)] "%

Clearly the optimal choice of the weight function is to @) = var(Z| X = x).
In practical applicationst is likely that var(Z| X = x) is unknown however it
can be replaced by its uniformly consistent estimafor instancewe can use
the following weighting function

W(x) = E[ZZ'|X = x] — E[Z|X = X]E[Z| X = X]’,
whereE[-|X = x] denotes a kernel estimator of the corresponding expectation

Let B3 denote the weighted AQR estimator with weight functidfx). In the
following theorems|-| ando,(1) will be understood componentwise
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THEOREM 4 Assume that the conditions in Corollary 3 hold. Moreover,
suppose that

sup|W(X,) — var(Z| X,)| = 0,(.
X,ex

Then as n— oo,
\/ﬁ(gz - 1801) _)d N(Ovv*)v
where

- all-a)

V, = £200) E[r,(X)var(Z|X)] %

Sufficient conditions for uniform consistency @f on a compact set can be
easily obtained using the results of the literajdfoe example Bierens(1983
1987 and Andrewg1995. It is easy to see that whep(0|x, z) = f,(0) for all
(x, ), the varianceV, is the same as the efficiency bound except for the exis-
tence of the trimming functianThe estimator constructed in this paper is not
efficient in a strict sense because it does not use all observatiaga&xpected
that the loss of efficiency due to the existence of the trimming function could
be eliminated by letting the support af grow very slowly as the sample size
increasesFor exampleRobinson(1988 considers the trimming function(fif; |
> b) (in his notation, wheref; is a kernel estimator of the probability density
function of X; andb is a positive constanThe effect of trimming is eliminated
in Robinson(1988 by lettingb converge to zero very slowlyn addition Klein
and Spady1993 use elaborate trimming procedures to obtain an efficient semi-
parametric estimator for binary response modBlstails are not worked out
here however

If U, permits restricted heteroskedasticity other words U, is homoske-
dastic with respect t@, it is also possible to construct an efficient estimator
via optimal weighting More specifically if f,(0|x, z) = f,(0]x) for all z then
the asymptotic varianc¥, for the weighted AQR estimatgs,, has the follow-
ing form:

Vi = a(1 = a) E[r(X)W(X)] E[r (X)W (X){ f2(0]X)var(Z| X)} ~*w(X)]
X E[r (X)W(X)] %

This reveals that the optimal weighting functionvigx) = f2(0|x)var(Z|X =

X). The efficiency boundtherefore can be attained by using a consistent esti-
mator off 2(0|x)var(Z| X = x) as the weighting functiarThe conditional den-
sity f,(0|x) can be consistently estimated using estimdie. On the other
hand if U, permits general heteroskedasticittyen no weighted AQR estima-
tor can deliver asymptotic efficiencin the next sectionan efficient estimator
will be obtained by the one-step method
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6.2. Heteroskedastic U,

In this section a one-step asymptotically efficient estimator @f is con-
structed by taking one step from the AQR estimatopof Let 3, denote the
AQR estimator defined in Section 3

If S, were known except foB,, a one-step asymptotically efficient estima-
tor B would be obtained by

-1

B: = léoz + E Soz(YivXi7Zi’qavléa)Sa(Yi’Xi’zivqavﬁa)’
i=1

n
X 2 Sa(Yi’Xi’tha,Ba)-
i=1

Of course this estimator is not feasible becaugecontains unknown popula-
tion quantities such asg,(X), f,(0| X, Z), and T(X). Moreover as pointed out

by Newey and Powel(1990, the score function is not continuous in param-
etersf,. As a result of this discontinuiffNewey and Powel{1990 make use

of a sample splitting method for the efficient estimation dtansoredllinear
guantile regression modélhe sample splitting method adopted in Newey and
Powell (1990 consists of using each half of the observations to estimate the
efficient score for the other halfs a resulithe ordering of the data may mat-
ter for the estimation o8,.

Instead of using the technique of Newey and Pow#&B90), this paper
smooths the score functiobDifferentiability of the score function enables us to
use standard Taylor series methods to obtain the asymptotic properties of the
one-step estimatofhe smoothing method requires the introduction of an ad-
ditional tuning parametebut we feel that this is acceptable because it is very
hard to find any reasonable rule to choose the ordering of the data in practical
applications In addition it will be shown in Section 7 that the simulation re-
sults are somewhat insensitive to the choice of the tuning parafeter

Horowitz (19984 uses a smoothed least-absolute-deviations estimator for a
linear median-regression model to obtain asymptotic refinements of boot-
strap testsFollowing his ideawe replace the indicator function i8, with a
smooth functionSpecifically let J be a boundeddifferentiable function satis-
fying J(t) = 0if t = —1 andJ(t) = 1 if t = 1. The functionJ can be regarded
as the integral of a kernel functiohet {j,} be a sequence of positive real
numbers that converges to zeto addition let 7(x,z) = 1(x € &, z© € Z),
where X and Z are some compact subsets R¥ and R%, respectively The
trimming function7 (X, z) is introduced for the same reason as beférer a
givenb, a smoothed feasible score functidp (b) is then defined as

§,(b) = 7(X,Z) M{Q_HJ(\G ~ (%) —z;b)}
all=a) in
X [Zl _-r(xl)]’
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whereq, (x), f(0|x, z), andT (x) denote consistent estimatorsepf x), f,(0]x, z),
andT(x), respectivelyNotice that 1- J(-/j,) can be arbitrarily close to(1 = 0)
for sufficiently largen. An actual one-step estimator proposed here is

-1 n

B;=Ba+[—§aéai</§a>/ab} 2 i (Ba). ©)

To complete the description of the one-step efficient estimaterneed to
specify the nonparametric estimators af( X;), f,(0]X;, Z;), and T(X;). First
of all, q,(X;) can be estimated by the first elementéadf (2). Forf,(0|x, z), a
standard kernel density estimator may be usgllserve thaf,(0|x, z) can be
written asf,(0]x, z) = f1(0, x, 2)/f.(X, z), wheref, andf, are joint densities of
(U,, X, Z) and(X, Z), respectivelyThis suggests that the conditional density of
U, at zero can be estimated consistently by obtaining the ratio of the kernel
estimator off; to the kernel estimator db. More specifically the kernel esti-
matorf,(0|X;, Z;) is defined as

n lja
(an +d, +1) 127_()( Z)KUXZ<V J’

j=1 in Vin Vin

f,(01X;,Z) =

n X X Z Z,
(™%~ X 7(X;, Z; )sz(— )
Von

=1

whereU,i = Y, — G.(X)) — Z! B, Kux is a(dy + d, + 1)-dimensional kernel
function with a bandwidth,,, andK,, is a(d, + d,)-dimensional kernel func-
tion with a bandwidthv,,,. Finally, T(X;) can be estimated by

n X —Xi
> 7(X,Z)f20]X%, J)ZK< y )

j=1 n

T(X) =

n A2 XJ - Xi ’
2 T(Xj,zj)fa (0|Xj,zj)Kx
ji=1 Yn

whereK, is ad,-dimensional kernel function with a bandwidifj.

The following additional regularity conditions are useful to derive the asymp-
totic properties of the one-step estimator®f

Assumption 9 The trimming functionr (x, z) has compact suppoft’ X Z,
whereX X Z has a nhonempty interior antl X Z C W, X W;.

Assumption 10 The conditional densityf,(u|x, z) is continuously twice
differentiable with respect ta in a neighborhood of zero for allx, z) in
Wy X W,

Assumption 11 Let 3V (v) = d'J(v)/dv.
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(@ J(-) is boundedJ(v) =0ifv = —1,andJ(v) =1ifv =1

(b) Jis twice differentiable J®(v) is symmetrical about = 0, J@ is Lipschitz
continuousandJ®(v) is bounded foi = 1,2.

© [MIYw)dv=1, [*,0IP(w)dv =0,and[*,v2ID (v) dv > 0.

Assumption 12 j,, o« n~7, wheren is a positive real number satisfying<
n< %.
Assumption 13

(@  sup |f,(0X,Z)—f,0X,Z)| = 0,(1).

(X, Z)EXXZ

(b) sup|T(X) = T.(X)| = 0,(2),

X, X
where

Ty - ELTX 220X, 2)Z|X = X]
X = (X2 201X )X =x]

Assumptions 10-12 are necessary to make smoothing have no effect on the
asymptotic distribution of the one-step estimathrst like the assumption for
W in Theorem 4 Assumption 13 is a high-level assumption that requires that
kernel estimators be uniformly consistent on the compact Bdtseasy to ob-
tain sufficient conditions for Assumption 13 using the results of Bie(@883
1987 and Andrewq1995. The main result of this paper is as follows

THEOREM 5 Let B; denote the one-step estimator defined in (3). Let As-
sumptions 1-13 hold. Then as-# oo (assuming that Vis well defined),

\/ﬁ(B: - Ba) —d N(O,V,‘),

where

V,=a(l—a) {E[’Tfaz(0| X,2)27']

c E[+f2(0|X, 2)Z| X ]E[f2(0|X,2)Z'|X] )
a E[f2(0|X,Z)|X]

with7 = 7(X,2).

The variance of Theorem 5 is the same as the efficiency bound except for
the effect of the trimming functiom. Just like the case of homoskedadilg,
the effect of the trimming function is likely to be eliminated by letting the sup-
port of 7 grow,

For statistical inferencget is necessary to obtain a consistent estimator of the
varianceV,. There may be several ways to estimate this variance miuixa
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simple consistent estimator & that is a by-product of the estimation proce-
dureis

n -1
v [—nl zaéaima)/ab] .
i-1

It is shown in the proof of Theorem 5 in the Appendix thatconverges td/,
in probability An alternative way to estimat, is to replace the components
of V, with its empirical counterpart#\ consistent estimator can be given by

n
V,=a(l—a) {nl > |:Ti 2(0X,2)Z Z,
-1

E[f2(01X, 2)Z|X JE[f2(0[X, 2)Z' X ] || *
E[f2(0X,2)|%] ’
wheref(0|x,z) and E[-|x] denote consistent nonparametric estimators of
f,(0|x,2) andE[-|x].
Adopting the same ideane can obtain a consistent estimator of the asymp-

totic varianceV of the AQR estimatorSpecifically the consistent estimataf
has the form

V= a(l—a) {n_l i {%;(Xi )}Zeéi(xi )_lQi i(xi )_1ez:|’
i=1

where

1z ) 1(X € X)
Q‘i = 7 7.7 ’ T:(X) = n ’
P N> 1(X € X)

i=1

and3(x) is a nonparametric estimator 8{x) using the estimatetj,(0|X, Z).
It is also straightforward to obtain consistent estimators of the variances of the
AQR estimator and the weighted AQR estimator whé&nis homoskedastic

7. MONTE CARLO EXPERIMENTS

This section presents the results of a Monte Carlo investigation of the finite
sample performance of the proposed estimators in the previous sedtiaib
experimentsy = 0.5 andn = 100. Following Robinson(1988 and Chen and
Khan (2001, we considered the following model

Yizq(x)+zlﬁ+a-(xi7zi)8i’ i=17"',n7

whereX; andZ; were drawn from a bivariate standard normal distribution with
correlation 06 ande; was drawn from the standard normal distribution that is
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independent oK andZ. Three different functions fog and two different func-
tions foro were simulated

(X)) = 1+ X, G(X) = X+ 4 exp(—2x2)/\ 27, 0s(x) = sin(x),
and
o(%,2) =%, o,(X,2z) = Cexg0.25(x + 2)],

whereC is a constant that was chosen to makeX;, Z;) have standard devia-
tion %. The functiong,, which is taken from Hardl€199Q p. 122), has a bell-
shaped hump around zer®he paramete was set to be 1The trimming
function used in the experiments wagx) = 1(|x| = 2).1°
Computing the AQR estimates requires choosing the order of polyndmial
and the bandwidt,, in (2). In the experiment& = 3. The asymptotic results
of Section 3 only provide the range 6f in terms of the asymptotic ordek
higher order asymptotic theory is required to obtain an asymptotically optimal
6,. However there is a simpleinformal selection rule based on the rule-of-
thumb bandwidth for the estimation of the nonparametric companentet h,,
be the rule-of-thumb bandwidth for the estimationqoivhenk = 3, suggested
by Fan and Gijbel$1996 p. 202). Specifically h, is of the form
1/9
@1~ o[ FE )] [ wolx) ax
h, = 2813 )

n

E (G52 (X ))]2Wo( X))

wherew(+) is a weight function§,(x) is obtained from a global polynomial
fit, f(-) is a kernel density estimate of the residuals of the global polynomial
fit, and F ~(«) is the ath sample quantile of the residualslso, 4 (x) de-
notes the fourth derivative @f,(x). The weight function was set to vy (x) =
1(|x| = 2). The global polynomial fit was obtained by carrying out the me-
dian regression oY on the constant ternX, X2 ..., X%, andZ. The bandwidth
h, converges at rate~'/°, which is optimal for the estimation af. Under-
smoothing is required for the estimation Bf A simple bandwidth such as
5, = h, X n¥? x n~¥5 converges at rate~Y/°> and satisfies Assumption 6
whenpg = 3. By some preliminary simulationshe averages of ad hoc band-
widths &, ranged between.® and 11 across the designs considered in the
experimentsin the experimentss, € {0.5, 0.6,...,1.5}, which includes the
range of the averages 6f. There were D00 replications in each experiment
The computations were carried out in GAUSS with GAUSS pseudo-random
number generators

Figure 1 shows the asymptotidashed linesand empiricalsolid lines root
mean squared errofRMSES of the AQR estimates oB. The asymptotic
RMSEs were calculate@gnoring the effect of trimmingby the formula of the



PARTIALLY LINEAR QUANTILE REGRESSION 17
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Ficure 1. Results of the Monte Carlo experiments for the AQR estimatg3. of

asymptotic variance given in Section HBor all designsthe empirical RMSEs

are quite close to the asymptotic RMSEs over a wide range of bandwidths in-
cluding the range of the averagg. It can be seen that the results fgy are
more sensitive to the bandwidth than thosedpandq,, but the results for all
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designs are quite insensitive to the bandwidth in the range of the rule of thumb
The empirical biases of the AQR estimates were also computed and were neg-
ligible relative to the empirical standard deviatips® they are not reported
here

More tuning parameters are required to compute the one-step efficient esti-
mates The trimming function was set to ke x, z) = 1(|x| = 2, |z| = 2). Gauss-
ian kernels were used to estimdig0|X;, Z;). Bandwidths werev;,, = n=Y7
and v,, = n~ Y6 with respect to standardized desigf®r the estimation of
T(X;), yn= SN Y®, wheres, is the sample standard deviationXfThe smooth-
ing functionJ is the integral of the quartic kernel such that

0 ifo<-—1

15 2 1
J(v) =405+ 1—6<v—§vg+gvs> if lv|=1

1 if v > 1.

The AQR estimates g8 and the estimates @f(-) were computed using band-
width 8, = 0.8 Finally, the bandwidth,, has to be choserut the asymptotic
theory in Section 5 provides only qualitative restriction for the choicg,of
The experiments focused on the sensitivity to the choicg,.oih the experi-
ments j, = {0.1, 0.2,...,2.0}.

Figure 2 shows the asymptoticashed linesand empirical(solid lineg
RMSEs of the one-step estimates@fln addition it also shows the empirical
RMSEs(dotted lineg of the AQR estimatesAsymptotic results given in previ-
ous sections indicate that the AQR estimator is as efficient as the one-step es-
timator for homoskedastic desigrisurthermorethe optimally weighted AQR
estimator is basically the same as the AQR estimator becausg|¥aris a
constant in the experiment®©n the other handit can be checked by some
calculation that the asymptotic RMSE of the AQR estimator exceeds that of the
one-step estimator by a factor ofIfor heteroskedastic desigr@ne notewor-
thy result is that the empirical RMSEs of the one-step estimates are somewhat
larger than asymptotic counterparts for the heteroskedastic deSigjiisss not
too surprising because the one-step estimates use several nonparametric esti-
mates which can be inaccurate for small sample size sucim as100 The
one-step estimates perform better than the AQR estimates for most of the val-
ues of bandwidtlj,. It also appears that the results are somewhat insensitive to
the choice of the bandwidtfy as long ag, is not too small In summarythe
results of Monte Carlo experiments indicate that our proposed estimators work
reasonably well in the finite samples

8. CONCLUSIONS

This paper has developed a new estimation method for the partially linear quan-
tile regression modellt is shown that the parametric compong)t can be
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FiGURE 2. Results of the Monte Carlo experiments for the one-step estimajgs of

efficiently estimatedThis paper does not investigate methods for optimally
choosing the tuning parameters that are required to implement the estimation
method Because the asymptotic distributions of the proposed estimatg@s of

do not depend on bandwidthes higher order theory is required to choose opti-
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mal bandwidthsThere is no theoretical workhat we are aware ofregarding

a higher order approximation for semiparametric quantile regresstus is a

topic of future researchAnother problem that needs to be studied is how to
conduct a specification test of the regression mo#8lkhough partially linear
regression is quite flexiblét still has a possibility of misspecificatioit would

be also an interesting problem to test a particular parametric quantile regres-
sion model against a partially linear alternative

NOTES

1. For semi- and nonparametric mean regression modele Hardle(1990 and Horowitz
(1998h among many others

2. See Newey and Powe(ll990 and Zhao(2001) for asymptotically efficient estimation of
linear quantile regression models

3. The exponenty in Assumption 4a) and(b) and Assumption 8 do not have to be sarfer
brevity, we assume thag denotes the minimum of the threés.

4. This is common among semiparametric regression estimatagher order kernels are of-
ten used when the first-stage estimation is based on kernel-type estinfegstsnption 3 is not
needed to derive the efficiency bound in Sectigméwever

5. In particulay Assumption 5 is made to exploit Bernstein’s inequalitiiis assumption can
be satisfied by dropping observations with very large value2, @f necessary

6. Assumption 6 allows for only deterministic bandwidth sequentie’s necessary to use
data-based bandwidths in applicatiphswever it is beyond the scope of this paper to investigate
the asymptotic properties of the estimator with data-dependent bandwidth sequensiesple
cases such as nonparametric density and regression estinthgarsual kinds of data-based band-
width selection do not affect the first-order asymptotics of the estimésesse.g., Andrews 1995.

7. The condition tha&(x) is nonsingular at every is stronger than needed to estim@g
For example, can be identified and estimated only using observations for whief is nonsin-
gular as long as PrdB(x) is nonsingulay is positive Assumption 8 is adopted here to minimize
the complexity of the proof

8. In fact, any n~¥2-consistent estimator ¢, can be used as an initial estimator

9. Another alternative could be to invoke stochastic equicontinuity arguments in An¢te@4.
Unlike the mean regression casg is a step function and therefore is not smooth enough to apply
the existing results in the literature

10. If the number of observations that satigly; — Xi| < &, in (2) is less than 5which is the
number of regressors in the local cubic fittinpen the estimation procedure will break dawn
Hence those points were additionally excluded in the experiments
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APPENDIX

A.1l. The Proofs of Theorem§his part of the Appendix provides the proofs of theo-
rems The proofs of Corollary 3 and Theorem 4 are omitted because they are straight-
forward modifications of the proof of Theorem Phe stochastic order symbols such as
0p(1) or Oy(1) will be understood componentwiskn addition |-| is also considered
componentwiseLet U, = Y, — q.(X) — Z{ B,.

Proof of Theorem 1. Let Fy(-|x, z) denote the conditional distribution of given
X = xandZ = z Then we havé, *(a|x,2) = q,(x) + Z'B,. Notice thatF, * is unique
givenx andz by condition(1). Rewrite this as

a0\
a z) 8 =F, Ya|x, 2).

Premultiplying both sides byl z’)’, we have

1 7\ (0. Fy t(alx,2)
z 22)\ B. | \zFYalx2)
for all x andz Taking expectations on both sides giverwe have
1 E[Z[X=X]" [du(X) E[Fy, *(alX Z2)[X=x]
E[zIx=x] E[zZ|X=x]/\ B. ) \E[zF Ya|X2)|X=x])
Notice thatq,(x) is just a point giverx. If condition (2) is satisfied then the matrix on

the left-hand side is invertibl& his implies thaig,(x) andg,, are uniquely determined
Because the choice afis arbitrary this completes the proof u

Proof of Theorem 2. Letn, = 3, 7, (X;). Write

X 12 .

Ba _IBa = n_ 2 Tx(Xi){ba(xi) - Ba}
- S xMbu(x
- nPr(XEX) i:ElTX( I){ a( i)_Ba}+RTx,n
=T, TR n

First notice thaR, _, results from the replacement of with nPr(X € X). Itis easy to
see thaR, ,, = 0,(n"Y/?) because RiX € X) is the expectation of,(X).

To obtain the asymptotic distribution @, — 8., one needs to plug in a Bahadur-
type expansion ob,(X;) — B,. Fortunately this type of expansion has been already
well established in Chaudhut1991a 1991h and Chaudhuri et al1997). A modified
version of the Bahadur-type linear representation for partially linear quantile regression
is given in the second section of this Appendlo describe the linear representation
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we need additional notatiohet b(8,, X; — X, Z;) denote th&s(Ay) + d,)-dimensional
vector

b(Sn, Xj — X, Z)) = ({8;[u](xj - X)4ul =k, Z)) (A1)

and letG,(X;) denote thgs(Ay) + d,) X (s(Ay) + d,) matrix

Gn(Xi)=f f f, (01X + 8,1, 2)b(1,1,2)b(1, 1, 2)' dP,(z| X; + 8,1)
[-1,11%Jw,

X g5, (6 X,) it (A2)

where

g(X; +3,t)

f g(X; + 8,t) dt
[-11]%

05, (t, %) =

Also, P,(z|x) denotes a probability measure with respecZtgiven X = x. Let e’ de-
note thed, X (s(Ay) + d;) matrix such thae’ = (0,14,), where0 denotes thed, X
S(Ay)-dimensional zero matrix anid, an identity matrix In addition let N,(X;) denote
the number of alj’s satisfying|X; — Xi| = 8, forj # i, =1,...,n, and letq;(X;, X;)
be thek-order Taylor polynomial defined ifA.10), which follows

It follows from Lemma 1 in the second section of this Appendix that

B, (X)) = Bo = €N, (X)) G,(X)} 2

= > b(8n, Xj — Xi, Zj) [a — Y, = q3(X, X)) + Z] B, }]
=1 j#i

X HIX = X[ = 8n} + Ru(X)),
where

max|R,(X;)| = o(n"%2) almost surely ag — oo,
XX

provided that 1(2pq + d) < k < 1/(3dy). It is worth noting that (8, X; — X, Zj) and
G, are different from those of Chaudhuri et 61997 because a partially linear regres-
sion model is considered here

Now substituting the Bahadur-type expansiorbgfX;) — S, into T, and following
arguments similar to those in the proof of Theorerh @f Chaudhuri et al(1997) (in
particular we require X(2p,) < « < 1/(3dy)), we have

T, = U, +0,(n"Y?),

whereU, is a U-statistic with the kernel dependent an

Un = E fn(givgj)y

1=i<j=n
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with & = (Y, Xi,Z), &8, &) = mn(8, &) + ma(8, 6D, Pa(X) = 8811179 9(X +
Spt) dt, and

1
nn(gir_[j) = _TX(X )e {nph(x )G (X )} lb(5n7 ] |7 J){a 1(Uaj —O)}
XX = X[ = 8n}-
Define P, to be the projection ob,, so that
= (n - 1) E mn(§i)>
i=1

where

my(&) = E[tfn(fhfj”fi]

! -1U, =0
e —{e -1, =0}
X E[75(X)€{Pa(X) Gn(X)} h(8,, Xi — X, ZD L X — X[ = 8,3 %, Z; 1.

As in the proof of Theorem.2 of Chaudhuri et al(1997), an application of the stan-
dard Hoeffding decomposition &f, yields

E(un—Pn)Z—”( D (E2(40.0,) - 2EMR(Z)

n(n—1)

= 2 Efg({la 52)

= 2n(n— DEni({1, o).
Using the facts thata) in view of Assumption 8| G, 1(X;)| is uniformly bounded for
Xi € Xasn — oo, (b) pu(X;) = Srﬁ‘xf[,l,l]ax f, (X + 8,t) dt, and(c) each component of
b(8n, X5 — X1, Z2) I{| X5 — X4| = 8.} is boundedwe have
End({1,{2) = O(1/n*52%).

This implies that

1
E(Un - pn)2 = O(W)
n

and hence using Assumption 6
U, = P, +0,(n"%2).

The next step is to evaluate the limit of the projectRnWe will show subsequently
that

E(Pn - ﬁn)z = Op(n71)5 (A3)
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where

_ n-12 .

Po= " 2= 1Uu = Ok (X)v (X, Z)
i=1

with

P 1 zZ “1/1
v(Xx,2) = eE| f, (0|X,2) —— X=X -t

Conditioning on(X;, Z;), we have

(n—1)2%a(1l—a)

E(R,—PR)? = e E{E[m (X)e'{pn(X)Gn(X)} *b(8n, Xi — X}, Z;)

XX = X[ =8,}X,Z ] — (X)) v (X, Z)}2
(A.4)
As in Lemma 42(b) of Chaudhuri et al(1997), it can be shown that

ESX{pn(Xj)Gn(xj)}_l
-1
= {Q(X,-)J E[b(1,t,Z2)b(1,t,2)'f,(0]X,Z)|X = X,-]dt} +0.2(87),
[-1,1]%

whereO, 2(-) denotes a remainder term that is bounded inltheorm By a change of
variables the inner expectation ifA.4) becomes

-1
f 5 (X — Spu)e’ U E[b(1,t,Z)b(1,t,2)'f, (0| X, Z)| X = X; — 8,u] dt}
[-11% [-11]%
X b(L,u,Z;) du+ Op2(8%).

Using this and a Taylor series expansiove can show that the outer expectation in
(A.4) converges to zeravhich proves(A.3). By Chebyshev inequalify(A.3) implies

P, =P, +0,(n"¥2).
Therefore
R 12
\/E(Ba - Ba) = ﬁ 2 {a - l(Uai = O)}’T;(XI)V(X”ZI) + Op(l),
i=1
from which the desired result follows immediately using the multivariate central theorem

| ]
Proof of Theorem 5. Let |, = V, % Write

-1

\/E(BA; - Ba) = Vﬁ(,éa - Ba) + |:_n_1 Eaéal(ﬁa)/ab] n vz 2 éai(éa)‘
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Let

0 1 ]
Su(0) = 7(%,2) 02 [ 101 - 4,04) - Zib = OIZ - T.OX)

It will be shown subsequently that

-nt iaéai (B.)/ab =1, +0,(1), and (A.5)
NY23 Si(B.) =N Y2 S, (Ba) — LAN(B, — Ba) + 0p(D). (A.6)
i=1 i=1

It then follows that
N n
VN(B; = B.) = 1,102 X S, (B,) + 0,(1),
i=1

which gives the desired result immediately
As in Lemma 43(a) of Chaudhuri et al(1997), it can be shown that

sup|g(X;) — . (X)| = 0,(n~3). (A7)

X, ex

In fact we require that A(2pq + dy) < k < 1/(3dy) in view of Lemma 1(in particular
see step 3 in the proaf Furthermore by similar arguments as in the proof of Theo-
rem 2 it can be proved that

N~ 3 n(X)[6(X) — 6u(X)] = Op(n"¥2). (A.8)

Let 7 = 7(Xi, Z), fi = £,(0|X;,Z), andf = f,(0|X;, Z;) for shorthand notatiarilo
show(A.5), note that

ni :i LJ@([JJ )[z T(x)1Z;

_n71 Izzlasal(ﬁa)/ab (l—a)

= i > T‘—ﬂJﬂ)(U—)[z T.(X)]Z{ + 0,(1)
Njp i1 a(l- ) j P
= L > LJQ)(U_)[Zi — T.(X)]Z{ + 0,(2)
Njp (=1 a(1- @) j P

=1, +0,(1),

where the first equality comes from differentiatidhe second equality follows in view
of the uniform consistency of,(0|X;,Z;) and T(X;), and the fourth equality can be
proved using methods similar to those used to calculate the asymptotic mean of kernel
density estimatorsTo prove the third equalitynote that by a Taylor series expansion
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- Jo = — Jo J@ U, —U,)+R.3,
an.El ( i ) an.zl ( jn ) nj2 El ( i >( )+ Ra
(A.9)

where the remainder terR, ; is

=%§[J<2><J ) J<2><l]’ )](ua.— U.0)

andU,; is betweerlJ,; andU,;. Observe that the second term(i&.9) is of orderoy(1),
because sup;i|U, — U,i| = 05(1) by (A.7) and

iz En: J(2)<%> =0,(1)

Njn i=1

with the restriction thanj? — co. Now we need to show th&,, ; = 0p(1). To see this
use the fact thal® is Lipschitz continuous to obtain

n
‘Rn,J| = MJ E (Uai - Uai)

_3 SupT; 10, — Ugil
n I

for some constaril;. It follows from (A.7), (A.8), and the restriction ofy thatR, ; =
0p(jn °n7%%) = 0,(1).

For (A.6), first note that once again by the uniform consistency,6®|X;,Z;) and
T(X),

n-2 i S (B.)
i=1

:n—1/2§n: 7 fi |:a_1+J<Yi_qu(>.(i)_Zi,Ba>:|

Tial-a) In

X [Z; = T.(X)][1+ 0,(D)]
=n Y23 8w A1+ 0y(D).

Using a Taylor series expansion

_1”w

n—1/2 E Sozi (QONBAa) = n—1/2 2 Sozi (qouﬂa) +|n \/ﬁ(éa - Ba)
i=1 i=1 i=1 db
—1/2 i asﬂi (qa’ Ba)

i=1 aq

+n [QC((XI) - qa(xi )] + Rn,51

whereR;, s is a Taylor series remainder terds before the expression in the brackets
of the second term is-1.. + 0y(1). Using the same arguments as/M.9), one can show
that the remainder terR, s is op(1). As in Lemma 3Kk) of Horowitz (19983, it is not
difficult to show that using Chebyshev inequality
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1/22[ ( J )—1<u >0>}—op<nl/21n2+j&/2>.

This implies that using the restriction ¢f
n N n
n71/2 2 Sai (qou :304) = n71/2 E Sai(Ba) + Op(l)-
i=1 i=1

To prove(A.6), it now suffices to show that the third term in the Taylor series expan-
sion isop(1). To see thisnote that under Assumption 10

e 8B & i

Ui
@ _
i=1 aq Sal- a)]nJ ' ( In )[Z T*(XI)]

= nY20,(ji + (nj,)2)

by Chebyshev inequalityHence

— al (chﬁa
‘ 1/22 [0 (X)) = da(Xi)]
" 05, (o, Ba
= ‘ n-? M sup Q. (%) — . (X)]
i=1 aq X,ex
= 0,(2),
where the last equality follows froifA.7) and the restriction ofy,. u

A.2. Linear Representation for the First-Step Estimatdiise result presented here
is an extension of the Bahadur-type representation for the local polynomial conditional
quantile estimators given in Lemmal4n Chaudhuri et al(1997). The following lemma
assumes partially linear quantile regression and gives a uniform result in the conditional
variablesX;.

Define thek-order Taylor polynomial

G(X+8,5,%) = D) ¢y (LY (A.10)
UEAL
with the coefficientsc, ,(x) = (u)™*DY(x)8["!, whereu! = u,!. . Let ¢, (x) =

(Cnu(X))uen, denote thes(A,)-dimensional vector of Taylor coefﬂuents i™\.10). In
addition let 4,(X;) = (&,(X),b,(X;)")" denote the(s(Ay) + d,)-dimensional vector
that minimizes(2) and leta,(X;) = (c,(X;)’, B8;)". Moreover let b(,, X; — X, Z;) and
Gnh(X;) be defined in(A.1) and(A.2), respectively
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LEMMA 1. Let Assumptions 1-5, 7, and 8 hold. Then we have

8, (X)) — a,(X) = {N,(X) G, (X))}t

XD b8, X — X, Z)[a — 1Y, = qi(X, %) + Z B}

j=Lj#i

X X — X[ = 8.} + Ry(X)), (A.11)
where the remainder termRX;) satisfies

Té‘}(" R,(X)| = o(n=3@=«d/4[|ogn]¥*) almost surely as r» oo,

provided thats, o« N with 1/(2py + d) < « < 1/d,.

Proof of Lemma 1. We will provide the main ideas and indicate the differences that
result from partially linear quantile regressioffe will split the proof into several steps

Step 1.Step 1 of the proof of Lemma.Z in Chaudhuri et al(1997) can be repeated
without any modification for our purpos8&pecifically we can choose a pair of positive
constants; andc, such that
Pr(liminf E,) = 1,
where
E, = {c;nt*% = N,(X,) = c,nt" % forall X; € X},
provided that 0< «k < 1/d.

Step 2.The rate of the uniform convergence can be derived by using arguments sim-
ilar to those in Chaudhuri et .a{1997. It can be shown that there exists a positive
constantK; such that
Pr(liminf F,) = 1, (A.12)
where
Fo=1{18,(X) — a,(X)| = Kyn=*%/2(logn)¥? forall X; € X},
provided that > 1/(2pq + d,). Under Assumptions 1<%, and § Fact 65 in Chaudhuri
(1991b and Fact 2 in Chaudhuri(19913 can be easily restated for our purpo$hen

(A.12) follows from simple modifications of the arguments used in the proofs of Theo-
rem 32 in Chaudhuri1991h and Theorems.2 and 33 in Chaudhuri19914.
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Step 3.Let §.(x + d,t,X) denote the Taylor polynomial with estimated coefficients
which is (A.10) with ¢,(x). Define

AonX) = [ [ RIG06+ 8,060 — 4,0 + 8,01 + 6,87
11w,

X b(Lt,2) dP,(z|X; + 8,t) g5, (. X)) dt,

Aonx) = [ [ R4+ 8,6%) ~ 0,06 + 3,0
-11% W,

+ 2/ (b, (X;) = Bo) | X + 8,1, 2]
X b(1,t,2) dP(z|X; + 8,t) g5, (t, X;) dt,
and
REP(X) = Hn(8n, %) = Hq(85, X1) = Gn(X &, (X)) — 2, (X))} (A.13)

Using the result in step 2 and the continuous differentiability,¢fi| x, z) with respect
to uin a neighborhood of zerave can show that

RM(X;) = (n~*~7% logn)
almost surely as — oo uniformly in X; € W.

Step 4.For eachX;, define an(s(Ay) + d,)-dimensional random vectoy,(X;) as

XnlX) = lzj#l{b@n, | = X, Z)UY; = 6.(X, %) + Z{ b, (X))}
= Ho (80, XX = %] = 8}
- LZm{bwn, L= X, Z)UY; = i, X) + Z/ Bo)
= Fn (80, X)X — X = 8,).

It follows from arguments similar to those used in the proof of Theore&mr8Chaudhuri
(1991b that

Xn(X) = (N7 [logn]¥*) (A.14)

almost surely as — oo uniformly in X; € W;. To exploit Bernstein’s inequalifyt is
assumed here thatis bounded

Step 5.Write

[N,(X)] 7t 2 b(6n, X — Xi, Zp)[a — Y, = qi (X, X)) + Z BHUIX — X | = 6.}
j=1 i

= [Nn(x| )]71/\/n(xi) + l:|n(5n3 XI) - |:in(sn’ XI) + R§'|2)(xi)5 (Als)
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where on the everf,. As in step 3 of the proof of Theorem3in Chaudhuri1991b,
it can be shown that

R@(X;) = Mn~(-xd) (A.16)

for some constani, which is uniform inX; € X. Finally, the desired result of the
lemma follows by combinindA.13)—(A.16) and the fact thaG,(X;) is invertible as
n — co. |



