
FriendSensing:
Recommending Friends Using Mobile Phones

Daniele Quercia§‡ Licia Capra‡

§MIT SENSEable City Laboratory, Cambridge, USA
‡Dept. of Computer Science, University College London, UK

quercia@mit.edu, l.capra@cs.ucl.ac.uk

ABSTRACT
Social-networking sites, such as Facebook, require members
to manually find and confirm their friends. Finding friends
is tedious for some and may be made less so by automating
the process. We propose to do so by means of a framework
that we call FriendSensing. Using short-range technologies
(e.g., Bluetooth) on their mobile phones, social-networking
users “sense” and keep track of other phones in their prox-
imity. Proximity records are then processed using a variety
of algorithms that are based on social network theories of
geographical proximity and of link prediction. This pro-
cessing can be performed either on the social-networking
website, after records have been uploaded, or locally on the
user’s mobile phone, so that privacy-conscious individuals
do not have to disclose their proximity data to the social-
networking website. The result is a personalized and auto-
matically generated list of people the user may know. We
evaluate the extent to which FriendSensing helps users find
people they know, and we do so against real mobility and
social network data.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications;; H.3.3 [Online Informa-
tion Services]: Web-based services.

General Terms
Algorithms

Keywords
Social matching systems, recommender systems, Web 2.0

1. INTRODUCTION
Social networking services (e.g., MySpace, Facebook,

Last.fm, etc.) enable people who share interests to come
together in online communities, where they can interact in

.

a variety of ways. The effectiveness of these services comes
from the social connections their members make. However,
finding and confirming friends on social-networking web-
sites is a tedious and time-consuming task, so much so that
Facebook has recently launched the tool “People You May
Know”. This tool recommends “friends of friends”: If A

knows B and B knows C, then Facebook tells A: “You May
Know C”. This way of recommending friends is purely based
on social proximity, and is thus unlikely to be of value to
new members, whose direct social relations have yet to be
uncovered.

Alternative ways of recommending friends have been re-
cently proposed and scrutinized (Section 2). Those ways are
based on either social-networking profiles (e.g., they recom-
mend people with shared interests) or audio recordings from
collar devices (e.g., they recommend people with whom one
has had lengthy face-to-face contacts). The former requires
users to create fairly detailed profiles, and is thus nonethe-
less tedious than eliciting friends in the first place; to lighten
the process, profiles are increasingly being defined via user-
defined freely-chosen tags, with a negative impact on the
accuracy of algorithms used to automatically compute pro-
file similarity [9]. The latter has had so far very limited
applicability, as it requires the usage of invasive technology
(i.e., collar devices) for data collection.

However, a less invasive and more widely available form
of data collection exist, which has not been explored by re-
searchers yet, that is, to simply have mobile phones keep
their Bluetooth on to track other phones in proximity. Since
people usually carry their mobile phones [17], this way of col-
lecting data is appealing for its simplicity and consequently
begs an important research question: can proximity data
from Bluetooth be used to recommend friends?

We demonstrate that the answer is ‘Yes’, and we do so by
making two main contributions:

• A framework called FriendSensing that automatically
recommends friends by logging and analysing coloca-
tion data. More precisely, using short-range connec-
tions (e.g., Bluetooth), mobile phones“sense”and record
which other mobile devices are in proximity. Friend-
Sensing then processes those records and suggest to
users people they may know. It does so by using so-
cial network theories of “geographical proximity” and
of “link prediction” (Section 3).

• An evaluation of the effectiveness of FriendSensing on
real mobility and social network data from the Reality
Mining Project [6] (Section 4).



2. EXISTING SOLUTIONS
To automatically discover and recommend friends, exist-

ing approaches mainly vary depending on what information
they process: social-networking profiles, emails, or data from
portable devices.

Social-networking profiles. Chen et al. [10] proposed
four algorithms for suggesting people on Beehive (IBM in-
ternal social-networking website). The algorithms are dif-
ferent combinations of two basic ideas. The first idea is to
match people by common interests - to match, for exam-
ple, those who blog on similar topics or share the same role
within IBM. The second is to match people by social connec-
tions - to match those who are in “social proximity” of each
other by, for example, connecting friends-of-friends. The
two ideas match people by the content of their profiles, and
the researchers conceded that their ways of matching peo-
ple are preliminary and should be improved further. More
promising ways have been then proposed. For example,
Ferne [21] has suggested the use of recommender systems.
Those systems traditionally process user ratings (e.g., prod-
uct reviews) to recommend new products such as movies or
albums, but they could be easily adapted for recommending
people. Toward that adaptation, Terveen and McDonald
took the first step in 2005 [22] - they reviewed social science
literature and then proposed a specific research agenda for
systems that recommend people (which they called “social
matching systems”).

Emails. Karagiannis and Vojnovic gathered the emails ex-
changed by more than 100,000 employees of their company’s
research labs [23]. They represented their data as a graph
whose nodes are employees and whose links are email ex-
changes. Then, to recommend new email addresses for con-
tact lists, they connected “friends-of-friends” relationships.

Portable device data. Wyatt et al. [5] built a framework
with which collar devices capture audio readings and auto-
matically suggest to their users who they may know. Using
their audio sensors, collar devices record face-to-face conver-
sations and, based on conversation length, they infer who is
likely to befriend whom. The inference is made possible by
knowing global properties (e.g., clustering coefficients) of the
users’ social network. Under this assumption, the promise is
that one could accurately reconstruct the whole social net-
work.

There has been no work on recommending friends that
exploits more readily-available information (such as proxim-
ity data from mobile phones) and that requires no a priori
knowledge about a user and its social network.

3. OUR PROPOSAL: FriendSensing
To enable (new) members of social networking websites

automatically discover their friends, we have designed the
FriendSensing framework. FriendSensing automatically cre-
ates personalised recommendations of people a user may
know, by means of the following two steps (Figure 1):

1. Logging Encounters - using short-range radio technolo-
gies ready available on almost all modern mobile phones
(e.g., Bluetooth), each user transparently records en-
counters with colocated people. More precisely, each

1) Logging Encounters 2) Recommending Friends

Figure 1: FriendSensing Framework

phone A keeps track of how many times it has met an-
other phone B and how much time it has spent with
B. Indeed, mobile phones have been recently demon-
strated to be a cheap and viable way of sensing and
logging colocation information [19]. We make here the
assumption that a mobile phone is a personal device,
and that it is not shared among people. Moreover,
we assume it is possible to link devices (e.g., phone’s
Bluetooth ID number) to users’ identities in social-
networking websites. Note that the Cityware project
has already convinced a considerable number of Face-
book users to register their phone’s Bluetooth ID num-
ber on their profiles [13].

2. Recommending Friends - colocation records are pro-
cessed to elicit relevant encounters and to arrange them
into a weighted social network (Section 3.1); this net-
work is then traversed to compute personalised lists of
people each user may know (Section 3.2). Note that
FriendSensing does not prescribe where the processing
of proximity records, and the navigation of the inferred
social network, should occur: both can be performed
by the social networking website, after these records
have been uploaded, or by the mobile device itself, if
such records are considered sensitive and should thus
be maintained private. We now present algorithms
for proximity processing and for network navigation in
general terms, and defer a discussion about the im-
plications of different architectural deployments to the
evaluation (Section 4).

3.1 Processing Encounters
Once colocation logs have been collected, FriendSensing

must filter out irrelevant encounters from relevant ones; that
is, for each user A, it must identify which of A’s encounters
are likely to be A’s friends. FriendSensing does so by com-
puting the probabilities of A befriending other individuals
(A’s friendship probabilities) from proximity data.

Researchers have already suggested ways of computing
these probabilities from geographical proximity. However,
geographical information is not widely available on mobile
phones; should localisation technology like GPS become a
commodity, it would still fail to capture indoor encounters
(e.g., at home, in the office, on the tube, in the pub, etc.).
We thus first review approaches to compute A’s friendship
probabilities from geographical proximity, and then adapt
their formulae to our case of “mobile phone proximity”.

Geographical Proximity. Researchers modeled the prob-
ability of two individuals being friends based on the intuition
that friendship probability increases with geographic prox-
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Figure 2: Friendship Probability changes from (a)
the countryside to (b) central London.

imity - the closer two individuals are, the likelier they are to
befriends. A case in point is Kleinberg [11, 12] who modeled
the probability of A and B being friends as:

p(A → B) ∝

1

dist(A,B)r
(1)

This tells us that the probability of being friends with a
person at a distance d decays as d−r for some power of r.
The best choice for the exponent r has been found to be 2,
and this is best because the resulting network is navigable
and small-world [11]. By navigable we mean that, by only
knowing her own social contacts, a person is able to reach
any other person in the network, and she does so in a limited
number of steps.

When this model was first proposed it was unclear how
accurate it would be in reality. That is why, four years later,
Liben-Nowell et al. [16] collected a half million profiles on the
blogging site LiveJournal, on which people reported their US
locations and lists of friends. The researchers then applied
formula (1) to those profiles, observed a loose fit with the
data, and concluded that the absolute value of geographic
distance alone is insufficient to model friendship.

This finding comes as no surprise if one considers that
two individuals at the same distance may find themselves in
areas with different population densities. To see how, con-
sider that A and B live 500 meter apart. At the same very
distance, A and B would likely be either next-door neigh-
bors in the countryside (Figure 2(a)) or complete strangers
in central London (Figure 2(b)).

This suggests that one also needs to consider population
density. Libel-Nowell et al. [16] did so in a simple way -
they replaced the absolute distance dist(A, B) with a ranked
distance:

p(A → B) ∝

1

rankDistA(B) + 1
(2)

where the denominator is A’s rank of B, which is the number
of people who are closer to A than B is, and it is expressed
as:

rankDistA(B) = |{C : dist(A,C) < dist(A,B)}| + 1.

According to expression (2), the probability of A befriend-
ing B depends on the number of people within distance
dist(A,B) and not on dist(A,B) itself, which accounts for
population density. That is because, geographically, the
more dense the population between A and B, the lower B

ranks. So B ranks far higher in the countryside (it ranks 4th

in Figure 2(a)) than it would do in central London (it ranks
19th in Figure 2(b)). Consequently, at the same distance,
B is more likely to befriend A in the countryside than in
central London.

Using this definition, the researchers fitted the LiveJour-
nal data optimally. Interestingly, they estimated that 66%
of LiveJournal friendships form through geographic process:
that is, geography partly predicts friendship, even in a vir-
tual community such as LiveJournal. This result is rather
promising - it suggests that, by analyzing proximity, we may
well discover a considerable number of friends.

Mobile Phone Proximity. As previously argued, we do
not record geographic distances but rather keep track of:
how many times a user A has met (e.g., it has been within
Bluetooth range of) user B (frequency freq(A,B)), and how
much time it has spent with B (duration dur(A, B)). So we
now need to express the friendship probability as a function
of frequency or duration. A plausible way of doing so is by
considering that the probability of A befriending B increases
with freq(A,B) and with dur(A, B) respectively. That is:

p(A → B) ∝ freq(A,B)r (3)

p(A → B) ∝ dur(A,B)r (4)

However, as with geographical information, we cannot
consider frequency or duration alone to compute friendship
probabilities, because both of them are non-uniformly dis-
tributed. Indeed, individuals do have skewed mobility pat-
terns; this has been shown not only for college students [6]
(against whose movements we will run our evaluation), but
also for conference attendees [2], and for hundreds of thou-
sands of mobile users [7]. As a consequence, frequency or
duration alone bear little meaning. To see why, consider two
individuals who have met four times. Those four times entail
completely different meanings in different situations - for in-
stance, they would reflect either random encounters (if those
individuals are jet setters and go out a lot) or strong friend-
ship (if they are homebodies and rarely go out). Rather than
using absolute frequency and duration values, we have thus
taken their rank. From frequency, the friendship probability
becomes:

p(A → B) ∝

1

rankFreqA(B) + 1
(5)

where:

rankFreqA(B) = |{C : freq(A, C) > freq(A, B)}| + 1.

Consequently, the probability of A befriending B depends
on the number of people who have met A more frequently
than B has done - it does not depend on freq(A,B) itself
but it depends on how A ranks B. That is, if A and B met
four times, the friendship probability p(A → B) does not
only depend on number four but also on how active A is.
If A goes around a lot, then B would rank lower than if A

often stays home.
Similarly, by replacing frequency with duration, the friend-

ship probability becomes:
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Figure 3: Networks of Encounters. Link weights are
(a) friendship probabilities or (b) ranks.

p(A → B) ∝

1

rankDurA(B) + 1
(6)

where:

rankDurA(B) = |{C : dur(A,C) > dur(A, B)}| + 1.

Again, the probability of A befriending B depends not on
freq(A, B) itself but on the number of people who have met
A for longer than B has done. For instance, if A and B have
spent two hours co-located, then the friendship probability
p(A → B) does not depend on 2h itself but on how active
A is (i.e., how many people A has been co-located with for
more than 2h).

Social Network of Encounters. From the proximity logs,
the above friendship probabilities can be computed and used
to infer a weighted social network of encounters: each mobile
device is represented as a node, and a link is added between
any pair of individuals who have met at least twice (this is
to remove encounters caused by chance). Each link A → B

is then weighted using either the row probability of A be-
friending B (computed using either formula 5 or 6 - Figure 3
(a)), or deriving, from such probabilities, the ranking of B

from A’s perspective (Figure 3 (b)). We we explain when to
opt for probabilities and when for ranks next.

3.2 Computing Recommendation Lists
Once the network of encounters has been computed, Friend-

Sensing processes it to compute personalised lists of people
each user may know, that is, to predict which of A’s encoun-
ters are likely to be A’s friends. In the literature of social
networks, this problem is called “link prediction” and differ-
ent methods have been proposed in recent years to tackle
it [15]. These methods assigns a score(A,B) to a pair of
nodes (A,B) following one of two possible strategies:

Shortest Path - The score between a pair of nodes A and
B is the weighted length of the shortest path between
them [20]. The intuition behind it is that social net-
works are “small worlds” (individuals are connected
by short chains [20]) and, as such, if there are short
paths between A and B, then A and B are likely
to befriend each other. The shortest path algorithm
accepts weights on the network that represent capac-
ity constraints - in our case, weights that reflect how
unlikely it is for two nodes to befriend each other.

Rankings reflect just that (the higher rankDurA(B)
or rankFreqA(B), the less likely A befriends B), and
should thus be associated to links in the social net-
work of encounters. The path length is then weighted
in the sense that it is the sum of the weights along
the shortest path. In the network of encounters shown
in Figure 3 (b), A’s rank of B is 3, A’s rank of C

is 1, and C’s rank of D is 1. By computing shortest
path from user A’s perspective, the following scores
are thus computed: score(A, B) = 3, score(A, C) = 1,
and score(A,D) = 2. Such scores are then used to
create A’s personalised friends’ recommendation list
{C(1st), D(2nd), B(3rd)}.

Markov Chain Algorithms - For this class of algorithms,
the score between a pair of nodes A and B is computed
as the fraction of time spent at B by a random walk
in the network originating in A [24]. In this network,
weights reflect connection strength between pairs of
nodes. In our social network of encounters, we thus
use friendship probabilities prob(A → B) (computed
using Formulae 5 or 6) as links’ weights, as shown in
Figure 3(a). After starting at node A (which is called
prior node), the walk may unfold in different ways de-
pending on which of the following three algorithms is
deployed:

• PageRank with prior. At each node, the walk ei-
ther iteratively moves through one of the node’s
outgoing links (whose weights are transition prob-
abilities) or jumps back to the prior node A [8].

• K-MarkovChain. It is similar to PageRank with
prior. The difference is that the walk has now
fixed length K [24].

• HITS with prior. At each node, the walk either
moves through one of the node’s incoming or out-
going links or jumps back to the prior A [24].

Algorithmically, to compute scores, the three algorithms
all convert the network in a first-order Markov chain.
Once scores for a walk originating in A have been com-
puted, they are then used to build A’s recommendation
list.

The shortest path is the simplest algorithm among the
four and yet it has been shown to work best on a number
of social networks [4, 24]. In our evaluation, we will confirm
this literature finding once again (Section 4).

3.3 Summary of FriendSensing Strategies
The FriendSensing framework thus offers eight strategies

for recommending friends, derived from combining a strat-
egy for processing proximity data into friendship probabil-
ities (either frequency or duration), with a link-prediction al-
gorithms (shortest path, PageRank, KMarkovChain or HITS).

4. EVALUATION

4.1 Simulation Setup
The goal of FriendSensing is to recommend to its users

people they may know. To ascertain the effectiveness of
FriendSensing at meeting this goal, our evaluation ought to



Figure 4: Fraction g of predicted ties versus fraction r of recommended community. Three strategies consid-
ered: random, frequency, and duration.

Figure 5: Gain factor versus fraction r of recommended community. Three strategies considered: random,
frequency, and duration.

answer the question of how effectively FriendSensing sug-
gests people one knows.

To do so, we set up a simulation driven by real data. Ide-
ally, we should do so by using empirical evidence about how
people move (mobility traces) and about, among those peo-
ple, who befriends whom (social network). The problem is
that mobility traces do not come with corresponding social
networks - one usually has the mobility traces of some peo-
ple and the social network of others. The only exception
is the Reality Mining project at MIT [6]. The MIT traces
contain colocation information from 96 subjects (staff and
students) at the MIT campus over the course of the 2004-
2005 academic year, to whom Bluetooth-enabled Nokia 6600
phones were given; colocation information was collected via
frequent (5 minute) Bluetooth device discoveries. Note that,
while focusing on these mobility traces, we expect the results
obtained to equally hold in other human mobility scenarios;
in fact, as existing analysis demonstrates [3], such traces
share many unifying features (e.g., node inter-contact time,
formation of cliques, etc.) with other mobility traces (e.g.,
Cambridge and Dartmouth traces 1). Beside providing mo-
bility traces, the MIT dataset also implicitly includes in-
formation about the users’ social network. In fact, it logs
both the text messages sent, and the phone calls made by
each phone in the study. Using this information, we have

1http://crawdad.cs.dartmouth.edu/

extracted a social network whereby a link between user A
and user B is created if A sent a text message or made a
phone call to B.

In our simulations, we used the MIT mobility traces to
log encounters; using these logs, we ran FriendSensing and
computed friends’ recommendations. We then compared
these recommendations with the MIT actual social network
(largest connected component) and computed the fraction of
the social network’s ties correctly predicted by FriendSens-
ing. We refer to this fraction as “good recommendations” g,
and we study how g varies while we increase the percentage
r of community members recommended to each user from 0
to 100%.

4.2 Results
In order to study the effect of the colocation processing

strategy separately from the link prediction strategy, we per-
formed two sets of experiments.

(1) Frequency vs. Duration. In the first set of exper-
iments, we aimed to compare the effectiveness of frequency
as a colocation processing strategy, as opposed to duration
(both described in Section 3.1). We did so by disabling any
link propagation strategy, and using the ranking produced
by the frequency / duration colocation processing strategies
on each node to build recommendations’ lists instead. This
is equivalent to running FriendSensing on people’s mobile



Figure 6: Fraction g of predicted ties versus fraction r of recommended community. Six strategies considered:
random, duration, shortest path, PageRank, HITS, and KMarkovChain.

Figure 7: Gain factor versus fraction r of recommended community. The gain is over random, and it is for
two strategies: shortest path and duration

devices, without reporting they proximity logs to the social
networking website (where the full FriendSensing approach,
including link propagation, could be executed).

Figure 4 plots g (good recommendations) versus r (rec-
ommended community) for these strategies with respect to
a random selection of people to recommend. For the random
strategy, g increases linearly with r - the random strategy
fluctuates around a straight line (dashed in the figure). That
is because the more community members are recommended,
the likelier to get some of them right. At the extreme of
r = 100% (the whole community has been recommended to
each user), g reaches 100% (for all strategies). As for the two
remaining strategies, they both perform significantly better
than random. Note that duration discovers friends faster
than frequency. Interestingly, after each user has been rec-
ommended 60% of the community, duration slows down, and
frequency takes on and is able to discover few other friends.

To see now which strategy performs better over another,
we compare frequency and duration against the random one.
We do so by defining the gain factor over random as:

gainstrategy =
gstrategy

grandom

(7)

where gstrategy is the fraction of good recommendations for
strategy = duration | frequency and grandom is that for ran-
dom. A gain factor of one means the strategy performs no

better than random (no gain). A factor of two means that
the strategy performs twice as better as random.

Figure 5 shows that duration gains more than frequency -
especially so for the first 20% of community members recom-
mended. As one expects, frequency and duration die off up
to a point where both of them flatten toward random (no
gain). That is because, after recommending most friends,
any strategy has left only few friends to recommend, and
those friends are hard to predict.

Duration and “Link Prediction”. The second set of
experiments aimed to compare the different link prediction
strategies presented in Section 3.2 (i.e., shortest path, PageR-
ank, HITS, and KMarkovChain) on the quality of recom-
mendations instead. We did experiments whereby these
strategies where executed on a social network of encounters
built using duration information and frequency information.
Since results obtained with duration were consistently bet-
ter than those obtained with frequency, we report results for
the former case only. This setup corresponds to scenarios
where mobile users have reported their (processed) coloca-
tion information to the social networking website, so that
link prediction can be performed.

Figure 6 plots g versus r for all the four strategies. We also
plot the results obtained with our baseline random strategy,
as well as when using duration without propagation, to high-



light what privacy-conscious users would miss by not upload-
ing their colocation information on the social networking
website.

As shown, PageRank, HITS, and KMarkovChain perform
equally and only show small differences due to confidence
on the results. Those results are similar and come from
the common use of Markov chains by the three algorithms.
Also, one would be better off using only duration rather
than combining it with those three algorithms. That is not
necessarily bad news as it suggests that, by relying only
on her own proximity information, a user both gets quality
recommendations and, while doing so, she retains control
of her own data. In line with the literature, shortest path
performs best. Indeed, Figure 7 shows that it gains more
than duration, and it does so consistently. That is because,
unlike duration, shortest path is able to suggest to a user
A also those friends who belong to the A’s social circle but
have not been met by A yet.

5. DISCUSSION

Privacy Concerns. One of the problems of existing friends-
of-friends approaches is that they expose sensitive informa-
tion. To see why, consider that A has two lovers B and
C. Those approaches would readily match B and C - they
would say to lover B: “You may know C”. A for some reason
may feel uncomfortable about it. This is true not only of
parallel daters such as A but also of dutiful citizens whose
conscientiousness makes their spouses proud. Simply be-
cause of privacy concerns [14], those dutiful citizens may feel
uncomfortable uploading their contact to social-networking
websites. However, they can still run FriendSensing on their
phones if they are willing to resort to the duration strat-
egy. As shown experimentally in the previous section, this
strategy produces quality recommendations and relies only
on proximity information collected by the device on which
FriendSensing runs - it only relies on its user’s private in-
formation. So users have control over what data they are
willing to disclose and, as a pleasant by-product, they also
eliminate their switching costs from one social-networking
website to another; that is because they keep their own data
not on social-networking websites but on their mobile phones
instead. Also, individuals can still use the best recommen-
dation strategy (shortest path) and suffer from little privacy
exposure; they can do so by using security techniques that
verify social ties while exposing minimal information about
those ties [18].

Not Only Proximity Data. To run their experiments,
“mobile computing” researchers need real data, and they of-
ten need to know how people move (mobility traces) and,
among those people, who befriends whom (social network).
Since researchers have mobility traces but do not usually
have the corresponding social networks, for years now, they
have been calling for ways of inferring social networks from
mobility traces. From mobility, FriendSensing infers poten-
tial friends. To go from inferring friends to accurately in-
ferring social networks, FriendSensing still needs to be re-
fined. One promising way of doing so is to consider non-
geographic information. Indeed, research has shown that
friendship does not only depend on geographic factors, but
it also depends on whether individuals have similar occupa-
tion, cultural backgrounds, or roles within a company [1].

Therefore, it is promising for FriendSensing to reason not
only on proximity information but also on non-geographic
information. FriendSensing may do so by adapting existing
work by Adamic and Adar [1] or, more recently, work by
Clauset et al. [4].

6. CONCLUSION
FriendSensing automates the process of finding friends

on social-networking websites. Using their mobile phones,
FriendSensing users profit from a set of recommendation
strategies grounded in the literature of social networks. Us-
ing real mobility and social network data, we have validated
that a strategy that keeps track of how much time people
spend co-located (duration) works better than a strategy
that simply keeps track of how may times people meet each
other (frequency). Plus, we have also demonstrated that, by
arranging duration data in a network and by then running
shortest path on this network, one is able to effectively rank
encounters who happen to be friends.

The effectiveness of FriendSensing strategies may depend
on the type of mobile community. To test whether this is
true and the extent to which it is so, one should gather
mobility patterns and social networks of communities other
than Reality Mining’s. Also, to test whether FriendSensing
users would actually find discovering friends less tedious, one
should run a user study. One such study may have social-
networking members register their phones (MAC addresses)
on their profiles (as already successfully attempted by the
Cityware project [13]); those profiles will then feature “peo-
ple you may know” widgets fed by FriendSensing.
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