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Abstract—Many writers have claimed that research and development
(R&D) has two faces. In addition to the conventional role of stimulating
innovation, R&D enhances technology transfer (absorptive capacity). We
explore this idea empirically using a panel of industries across twelve
OECD countries. We find R&D to be statistically and economically
important in both technological catch-up and innovation. Human capital
also plays an major role in productivity growth, but we only find a small
effect of trade. In failing to take account of R&D-based absorptive
capacity, existing U.S.-based studies may underestimate the return to
R&D.

I. Introduction

This paper provides empirical evidence that there are two
roles, or faces, of research and development (R&D)

activity. The first of these is in stimulating innovation, and
has received most attention in the existing empirical litera-
ture. The second is in facilitating the imitation of others’
discoveries. Some knowledge is tacit, difficult to codify in
manuals and textbooks, and hard to acquire without direct
investigation. By actively engaging in R&D in a particular
intellectual or technological field, one acquires such tacit
knowledge and can more easily understand and assimilate
the discoveries of others. An example, cited by Arrow
(1969), is the jet engine: when plans were supplied by the
British to the Americans during the Second World War, it
took ten months for them to be redrawn to conform to
American usage. The importance of tacit knowledge, or
absorptive capacity, has been a central theme in the litera-
tures on the history and microeconomics of technology. A
large number of theoretical models have been proposed in
which R&D has both an innovative and an imitative role.1

However, there has been almost no rigorous econometric
work assessing the statistical significance and quantitative
importance of the second face of R&D, especially between
countries.2 This paper provides such an analysis, using a

panel of industries across twelve OECD countries since
1970. We find strong evidence that R&D has a second face:
country industries lagging behind the productivity frontier
catch up particularly fast if they invest heavily in R&D.

We present an empirical framework in which innovation
and technology transfer provide two potential sources of
productivity growth for countries behind the technological
frontier. A country’s distance from the technological frontier
is used as a direct measure of the potential for technology
transfer, where the frontier is defined for each industry as
the country with the highest level of total factor productivity
(TFP). We examine whether R&D has a direct effect upon
a country’s rate of TFP growth (innovation), and whether
R&D’s effect on TFP growth depends upon a country’s
distance from the frontier (technology transfer). The further
a country lies behind the technological frontier, the greater
the potential for R&D to increase TFP growth through
technology transfer from more advanced countries.3 We
argue that the return to R&D has generally been underesti-
mated, insofar as most studies have focused on the United
States, which is typically the technological leader in our
data.

The paper relates to two other existing literatures—on the
impact of R&D spillovers, and on the convergence debate.
First, we build on the existing empirical literature examin-
ing the role of R&D in explaining rates of productivity
growth, particularly through knowledge spillovers.4 This
paper extends the conventional specification to allow for a
second face of R&D activity where we employ a direct
measure of distance from the technological frontier based
on relative TFP levels. Secondly, the paper relates to the
literature on the convergence of TFP. Within the neoclassi-
cal Solow-Swan model, income convergence is explained
by capital accumulation, but an older literature, dating back
to Gerschenkron (1952), emphasizes the importance of
technology transfer and the role of “absorptive capacity”,5

and recent years have seen a resurgence of interest in
cross-country differences in aggregate productivity.6

Our results are easy to summarize. We find evidence of
R&D effects on both rates of innovation and technology
transfer across a wide range of specifications. These results
are robust to a number of adjustments to the measurement of
TFP (for example, controlling for cross-country differences
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1 See Cohen and Levinthal (1989), Aghion and Howitt (1997), or Howitt
(2000).

2 There is some firm-level evidence of absorptive capacity. Jaffe (1986)
has results suggesting that high-R&D U.S. firms benefit most, in terms of
productivity, from his spillover pool. Geroski, Machin, and Van Reenen
(1993) found that U.K. firms with a history of innovation were those most
likely to benefit from the innovations of other firms. However, there has
been no systematic analysis of implications for industry productivity
growth and social rates of return to R&D across countries.

3 See Cameron (1996) for an analysis along these lines of Japan and the
United States, and Cameron, Proudman, and Redding (1998) for an
analysis of the United Kingdom and the United States.

4 Important contributions to this literature include Griliches (1980,
1992), Coe and Helpman (1995), and Eaton and Kortum (1999).

5 See also Abramovitz (1986) and Benhabib and Spiegel (1994).
6 See, in particular, Acemoglu and Zillibotti (2001) or Parente and

Prescot (1994).
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in hours, skills levels, and markups of price over marginal
cost) and to controlling for a number of econometric issues.
Human capital has an important effect on rates of both
innovation and technology transfer, whereas international
trade has little robust effect on productivity.

The structure of the paper is as follows. Section II introduces
the theoretical framework. Section III discusses the economet-
ric specification. Section IV introduces the data and undertakes
some data description. Section V presents the econometric
results, quantifies their importance, and examines robustness.
Section VI offers some concluding comments.

II. Theoretical Framework

This section outlines the theoretical framework underly-
ing our modeling strategy.7 Denote countries by i � 1, . . . ,
N, and manufacturing industries by j � 1, . . . , J. Value
added (Y) in each sector at time t is produced with labor (L)
and physical capital (K) according to a standard neoclassi-
cal production technology,

Yijt � Aijt �jt�Lijt,Kijt�, (1)

where A is an index of technical efficiency, or total factor
productivity (TFP), and where �jt( � , � ) is assumed to be
homogeneous of degree 1 and to exhibit diminishing mar-
ginal returns to the accumulation of each factor alone; and
we allow it to vary across sectors and time. We allow TFP
to vary across countries, sectors, and time; and we call the
economy with the highest level of TFP in sector j at time t
the frontier (i � F) and call that TFP AFjt .

The starting point for our analysis is the empirical literature
on R&D and productivity growth at the firm and industry
levels.8 TFP in equation (1) is assumed to be a function of the
R&D knowledge stock (G). Taking logarithms and differenc-
ing with respect to time, the rate of TFP growth depends on the
rate of growth of the R&D knowledge stock,9

� ln Aijt � �� ln Gijt � �Xi j t�1 � uijt, (2)

where � � (dY/dG)(G/Y) is the elasticity of output with
respect to the R&D knowledge stock, u is a stochastic error,
and X is a vector of control variables, which includes human
capital and international trade in the empirical application to
follow. For small rates of depreciation of R&D knowledge,
equation (2) may be expressed as follows.10

� ln Aijt � 	�R

Y�i j t�1

� �Xi j t�1 � uijt, (3)

where 	 � dY/dG is the rate of return to R&D.
The theoretical rationale for this equation is provided by

models of endogenous innovation and growth.11 We aug-
ment the conventional specification in equation (3) in two
ways. First, following the convergence literature, we intro-
duce technology transfer as a source of productivity growth
for countries behind the technological frontier. Second,
there is a theoretical literature that suggests that R&D
activity plays an important role in technology transfer.
Griffith et al. (2000) present a general equilibrium model of
endogenous growth through increasing productivity, follow-
ing Aghion and Howitt (1992, 1997), that incorporates both
of these considerations. The conventional quality ladder
model is augmented to allow the size of innovations (and
hence R&D’s rate of return) to be a function of the distance
behind the technological frontier. An equation for TFP
growth of the following form is derived:

� ln Aijt � 	1�R

Y�i j t�1

� 
1 ln �AF

Ai
�

j t�1

technology transfer
(4)

�
2�R

Y�i j t�1* ln �AF

Ai
�

j t�1

absorptive capacity

��Xi j t�1 � uijt.

The second term on the right-hand side captures technology
transfer. For nonfrontier countries, distance from the tech-
nological frontier [ln (AF/Ai)j t�1] is positive, and a role for
technology transfer in productivity growth implies a posi-
tive estimated coefficient 
1. The third term on the right-
hand side is an interaction term that captures the second face
of R&D. The larger is ln (AF/Ai)j t�1 in absolute magnitude,
the further a country lies behind the frontier, and the greater
the potential for R&D-based technology transfer. The exis-
tence of a second face of R&D thus implies a positive
estimated coefficient 
2. In this augmented specification, the
speed of technology transfer is 
 � 
1 � 
2 (R/Y ) i j t�1,
whereas the rate of return to R&D (from both innovation
and technology transfer) is 	 � 	1 � 
2 ln (AF/Ai) j t�1.12

The expression for TFP growth in the frontier remains
exactly the same as in the conventional specification [when
Ai � AF, equation (4) reduces to (3) where 	 � 	1].
Combining equation (4) for frontier and nonfrontier coun-
tries, we can obtain a first-order difference equation for the
evolution of a nonfrontier country’s distance to the techno-

7 For a complete derivation, see Griffith, Redding, and Van Reenen
(2000).

8 See, in particular, Griliches (1980) and Griliches and Lichtenberg
(1984).

9 The substantive assumption here is separability between R&D and
other factors of production. The alternative approach embracing nonsepa-
rability is followed by authors such as Bernstein and Nadiri (1989) and
Nadiri and Kim (1997).

10 In continuous time, Ġijt � Rijt � �Gijt , where � is the rate of
depreciation of R&D knowledge. If one explicitly assumes an R&D
depreciation rate, equation (2) can be estimated directly. We adopted this
approach as a robustness test, but note the great uncertainty surrounding
the appropriate rate of depreciation for knowledge.

11 See, for example, Romer (1990) and Aghion and Howitt (1992).
12 See also Cameron (1996) and Cameron et al. (1998).

THE REVIEW OF ECONOMICS AND STATISTICS884



logical frontier. In steady-state equilibrium, TFP in a sector
j in all countries i will grow at the same constant rate, equal
to that of TFP growth in the frontier. The model allows for
countries to endogenously switch between being nonfrontier
and frontier countries. In steady-state equilibrium, the fron-
tier country will be whichever of the countries has the
highest rate of TFP growth from innovation alone in sector
j [as a result of R&D activity (R/Y) and the value of the
control variables (X) in equation (4)]. Each nonfrontier
country will lie an equilibrium distance behind the frontier
such that TFP growth from innovation and technology
transfer exactly equals TFP growth from innovation alone in
the frontier.

III. Econometric Specification

Equation (4) provides the starting point for our econo-
metric estimation. There will clearly be unobserved country-
industry characteristics, which affect rates of TFP growth
and are not captured by our model. Moreover, it is likely
that these unobserved country-industry characteristics will
be correlated with the explanatory variables in equation (4).
For example, features of the production technology in par-
ticular sectors of a country may result in a high rate of TFP
growth in precisely the industries characterized by high
R&D intensities. We control for unobserved heterogeneity
that is correlated with the explanatory variables by allowing
the error term (uijt) to include a country-industry specific
fixed effect (Fj). There may also be common macroeco-
nomic shocks that affect rates of TFP growth in all coun-
tries, and we therefore allow the error term (uijt) to include
a full set of time dummies (Tt):

uijt � ij � Tt � εijt,

where εijt is a serially uncorrelated error. Substituting for uijt

in equation (4), we obtain our final econometric specifica-
tion of TFP growth in sector j of a nonfrontier country,

�ln Aijt � 
1 ln �AF

Ai
�

j t�1

� 
2��Ri

Yi
� ln �AF

Ai
��

j t�1

(5)� 	1�R

Y�i j t�1

� �Xi j t�1 � �ij � Tt � εijt.

TFP growth in sector j in the frontier is modeled as in the
conventional specification,

�ln AFjt � 	1�R

Y�F j t�1

� �XF j t�1 � Fj � Tt � εFjt. (6)

The equation for the frontier economy is stacked together
with the equations for the nonfrontier economies with the
cross-equation restrictions on the R&D intensity variable
imposed. We are careful to examine the robustness of the

results to dropping the frontier observations in case the
cross-equation restrictions are invalid.13 Our baseline results
estimate equations (5) and (6) using the within-group esti-
mator.

There are several issues involved with this econometric
strategy relating to endogeneity, measurement error, the
definition of the frontier and the relationship of our ap-
proach to the “convergence” literature. First, there may be a
concern that the effect of R&D on TFP is overestimated in
equations based on (3) because firms will invest heavily in
R&D during periods when TFP is growing more quickly.
This concern should not be overstated, as the ratio of R&D
to value added (unlike TFP) is not generally procyclical.14

Nevertheless, although we uncover a strong correlation
between R&D intensity and productivity growth, we need to
be cautious in interpreting the coefficient on R&D as causal.
The important assumption that we need is

E��R/Y�i j t�1εijt� � 0. (7)

This condition requires lagged R&D to be predetermined in
the TFP equation, but allows current shocks to TFP (εijt) to
feed back to both current and future R&D,15 that is, we
allow E ((R/Y)i j t�s εijt) � 0, s � 0. In samples that have a
long time series component (like ours), the bias on the R&D
coefficient is likely to be small (Nickell, 1981).

Despite its ubiquity, the assumption (7) might still be
violated; for example, firms might be able to correctly
predict future shocks 1 period ahead and immediately adjust
their R&D in the light of these. If this were the case, we
would expect the residuals in the TFP equation to be serially
correlated, which would violate equation (7). In addition to
testing for serial correlation, we also examine the scale of
the potential problem by allowing E ((R/Y)i j t�1εijt) � 0, but
assume the weaker restriction E((R/Y)i j t�sεijt) � 0, s � 2.
Under this assumption, the use of R&D lagged two periods
eliminates any endogeneity bias. We also examine specifi-
cations of this form and find that the results are qualitatively
unchanged. Finally, even if one were convinced that there
was an upward bias on the R&D coefficient 	1, it is not
obvious why there should be an upward bias on the inter-
action term between the TFP gap and R&D, 
2, which is our
main variable of interest. Unfortunately, there are hardly
any papers that have found good external instrumental
variables for R&D to deal with this endogeneity issue.

A second econometric concern is that measurement error
could lead to bias in the estimated coefficients. We in-
vestigate the importance of this bias with an instrumental

13 Griffith et al. (2000) discuss this in more detail.
14 In addition, there is no significant change in the R&D coefficient when

we correct for cyclical biases in the measurement of TFP.
15 The requirement that lagged R&D be predetermined in the TFP

equation is weaker than the assumption often made in the production
function literature, which frequently conditions on the lagged level of
investment. R&D is a much more persistent series than fixed investment
(see, for example, Lach and Schankerman, 1989) and therefore it is less
likely than fixed investment to respond quickly to shocks.
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variables estimator. A complementary approach uses data on
some of the variables suggested as sources of measurement
error in the TFP literature.

Third, the model implies that it is not the identity of the
frontier country that is important [equation (5)], but the
measure of distance from the technological frontier that
captures the potential for technology transfer. Our analysis
does not preclude technological transfer from countries with
levels of productivity higher than one’s own but lower than
the frontier. All we require is that distance from the tech-
nological frontier be correlated with the potential for tech-
nology transfer. We establish the robustness of our results to
the use of alternative measures of the spillover potential,
using for example the average of the countries with the two
highest TFP levels in defining the location of the frontier,
rather than simply the country with the highest relative TFP.
We also demonstrate that our TFPGAP measure is capturing
technological proximity to the leading edge by showing that
we obtain different results if we use own TFP distance to the
median TFP (instead of to the maximum TFP) in the
industry.

Fourth, our analysis is related to the convergence litera-
ture. Consider a first-order au-toregressive distributed lag
[ADL(1,1)] model where own TFP is cointegrated
with frontier TFP: ln Aijt � �1 ln Ai j t�1 � �2 ln AFjt �
�3 ln AF j t�1 � uijt. Under the as sumption of long-run
homogeneity [(�2 � �3)/(1 � �1) � 1], this has the follow-
ing equilibrium correction model (ECM) representation
with many attractive statistical properties.16

� ln Aijt � �2� ln AFjt � �1 � �1� ln �AF

Ai
�

j t�1

� uijt. (8)

Ignoring R&D and the control variables, this is equation
(4) with �2 � 0 and 1 � �1 � 
1. In equation (4), the
specification in equation (8) is augmented with a term for
the R&D intensity, the coefficient on relative TFP (1��1) is
allowed to be a function of R&D intensity, and we include
a vector of control variables. As a robustness test, we also
consider an additional specification to equation (4) where
�2 � 0 for nonfrontier countries, which allows for a more
flexible relationship between frontier and nonfrontier TFP.

Our estimates exploit the time series relationship between
TFP in frontier and nonfrontier countries.17 Nonetheless, the
analysis also has implications for standard measures of
�-convergence and �-convergence.18 For example, depend-
ing on the correlation between the initial and steady-state
distributions of relative TFP, the cross-country within-

industry sample standard deviation of relative TFP may
either rise, decline, or remain constant over time. Although
our sample period is characterized by �-convergence in the
majority of industries, this is a feature of the data and not a
necessary implication of the model.

IV. Data Description: Data Sources and Sample Size

The data used in the empirical application come from a
number of sources. The main one is the OECD International
Sectoral Data Base (ISDB), which provides information at
the two-digit industry level on value added, labor, and
capital stocks. We have combined this with data on R&D
expenditure from the OECD ANBERD data set and infor-
mation from several other sources. For information on
occupational skills we use the UNIDO database; for educa-
tion we use aggregate data from Barro and Lee (1994) and
industry data from Machin and Van Reenen (1998). Trade
data are derived from the OECD Bilateral Trade Database.

Our sample consists of twelve countries over the period
1974–1990. For some of the countries, information is available
for nine two-digit industries (ISIC 31–39); for others, ISIC 38
is additionally broken down into five three-digit industries.
Where the more disaggregated information is available for the
three-digit industries, we use it. At the same time, careful
attention is paid to the robustness of the results to alternative
samples of countries and industries. See the appendix for
details.

We calculate the growth rate of TFP (�TFPijt, the empir-
ical counterpart to � ln Aijt in section II) and the TFP
distance between country i and the frontier [TFPGAPijt, the
empirical counterpart to ln (AF/Ai) jt above]. In each case, we
use the superlative-index-number approach of Caves, Chris-
tensen, and Diewert (1982a,b), which allows for a flexible
specification of the production technology. Our baseline
measures of TFP growth and relative levels of TFP use the
raw data from the ISDB. However, in the literature much
attention is paid to how TFP is measured and in particular
how to correct for differences across countries in hours
worked, skills levels, markups, capacity utilization, and
other factors. To confirm the robustness of our results, we
use a number of different measures that adjust for these
factors. The way in which our baseline measure is calcu-
lated is described here. The way in which the adjusted
measures are calculated is described in the appendix and in
Griffith et al. (2000). Our preferred measure controls for
differences in hours worked and variation in skills across
countries and industries using information on wages and
employment by occupation from the UNIDO database.

TFP growth is measured by a superlative index derived
from the translog production function,19

16 See Hendry (1996).
17 The analysis is, therefore, most closely related to the time series

convergence literature: see Bernard and Durlauf (1995, 1996).
18 In this context, �-convergence refers to the cross-section correlation

between rates of growth and initial levels of relative TFP; �-convergence
refers to the evolution of the sample standard deviation of relative TFP
over time. For further discussion in the context of the cross-country
growth literature, see Barro and Sala-i-Martin (1995). 19 See Caves et al. (1982b).
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�TFPijt � ln � Yijt

Yijt�1
� �

1

2
��ijt � �i j t�1� ln � Lijt

Li j t�1
�

(9)

��1 �
1

2
��ijt � �i j t�1�� ln � Kijt

Ki j t�1
�,

where �ijt is the share of labor in value added, Yijt is the real
value added (converted to US dollars using an economy-
wide PPP), Lijt is the number of workers employed, and Kijt

is the real capital stock (converted to U.S. dollars using a
capital PPP). One problem we face in measuring TFP is that
the share of labor in value added, �ijt, is quite volatile. This
is suggestive of measurement error, and we therefore follow
Harrigan (1997) in exploiting the properties of the translog
production function to smooth the observed labor shares.20

We measure the gap between each country’s TFP and the
level in the frontier using an analogous superlative index
number derived from the translog production function. We
begin by evaluating the level of TFP in each country relative to
a common reference point—the geometric mean of the TFPs of
all other countries. This is done for each industry-year (for
example, we measure TFP in the U.S. chemicals industry in
1980 relative to the geometric mean of the chemical industry
TFPs in all other countries in 1980). This measure of TFP is
given by

MTFPijt � ln �Yijt

Y� jt
� � �̃ijt ln �Lijt

L� jt
� � �1 � �̃ijt� ln �Kijt

K� jt
�,

(10)

where a bar above a variable denotes a geometric mean; that
is, Y� jt, L� jt, K� jt are the geometric means of output, labor, and
capital in industry j at time t, respectively. The variable
�̃ijt � 1

2
(�ijt � �� jt) is the average of the labor share in

country i and the geometric mean labor share, where we
again exploit the properties of the translog production func-
tion to smooth observed labor shares.

We define the frontier as the country with the highest value
of TFP relative to the geometric mean in each industry j at time
t (denoted MTFPFjt). Subtracting MTFPijt from MTFPFjt, we
obtain a superlative-index-number measure of a country’s TFP
distance from the frontier [denoted TFPGAPijt, the empirical
counterpart to ln (AF/Ai) jt in section II],21

TFPGAPijt � MTFPFjt � MTFPijt. (11)

To illustrate our method, figure 1 plots TFP levels in one
industry—paper, printing and publishing (ISIC 34)—using
our preferred measure. To make the figure easier to interpret
visually, we graph the exponent of the negative of the
TFPGAP. This corresponds to each country’s TFP as a
proportion of TFP in the frontier (relative TFP). The United
States was the frontier country throughout our sample pe-
riod except in the final year, when it is pushed into second
place by the Netherlands (not shown in graph). In this
industry most counties have narrowed the gap with the
United States. Japan is notable for starting off as one of the
countries furthest from the United States in 1973 and
closing approximately half of the TFP gap by 1990. Other
countries have not been so successful. Canada and Denmark
have not improved their position relative to the United
States, and Britain did not start catching up until the 1980s.
The picture varies by industry, and table 1 shows which
country has the highest (the frontier) and second highest
level of relative TFP in 1971, 1981, and 1990.

In some industries, the identity of the frontier and the
country with the next highest level of relative TFP remains
constant over time (for example, ISIC 383, and 384); in
other industries we see examples of loss of technological
leadership as one economy leapfrogs another (for example,

20 Under the assumption of a translog production function and standard
market-clearing conditions, �ijt can be expressed as a function of the
capital-labor ratio and a country-industry constant, �ijt � �ji��j ln
(Kijt /Lijt). If actual labor shares deviate from their true values by an i.i.d.
measurement error term, then the parameters of this equation can be
estimated by fixed-effects panel data estimation, where we allow the
coefficient on the capital-labor ratio to vary across industries j. The fitted
values from this equation are then used as the labor cost shares in our
calculation of equation (9) and below.

21 Note that equation (10) may be used to obtain a bilateral measure of
relative TFP in any two countries a and b. Because we begin by measuring
TFP compared to a common reference point (the geometric mean of all
countries), these bilateral measures of relative TFP are transitive.

FIGURE 1.—TFP, ADJUSTED FOR SKILLS AND HOURS, AS PROPORTION OF

FRONTIER TFP: PAPER, PRINTING, AND PUBLISHING (ISIC 34)
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ISIC 35 and 381).22 As discussed earlier, it is not the identity
of the frontier country per se that is important in the
econometric estimation, but the measure of distance from
the technological frontier, which we use to capture the
potential for technology transfer.

Table 1 therefore also reports the sample mean and
standard deviation of relative TFP across countries for each
industry in the years 1971, 1981, and 1990. Relative TFP is
each country’s TFP as a proportion of that in the frontier,
and is equal to 1 for the frontier and less than 1 for
nonfrontier countries. The further away from 1 (the smaller)
that number), the greater a country i’s distance from the
technological frontier. In all industries except one (ISIC 39,
other manufacturing), average levels of relative TFP are
higher in 1990 than 1971, and in all industries except two
(ISIC 32, Textiles and ISIC 36, nonmetallic minerals), the

standard deviation is lower in 1990 than in 1971. This
suggests �-convergence in levels of relative TFP within
OECD manufacturing industries during the sample period.23

V. Results

A. Main Results

Column (1) of table 2 examines the role played by
technology transfer in determining rates of TFP growth,

22 For a discussion of technological leapfrogging in a historical context,
see Brezis, Krugman, and Siddon (1993).

23 This finding of �-convergence within individual manufacturing indus-
tries is consistent with the results of Bernard and Jones (1996a,b). Our
TFP measures are more general than those considered by Bernard and
Jones: we control for cross-country differences in the skill composition of
the workforce and measure TFP using a superlative index number (rather
than assuming a Cobb-Douglas technology). The latter adjustment on its
own is quantitatively important and strengthens findings of productivity
convergence within individual manufacturing industries. Bernard and
Jones are also concerned with aggregate manufacturing and nonmanufac-
turing, and their results are compatible with convergence within individual
manufacturing industries.

TABLE 1.—RELATIVE TFP AND THE IDENTITY OF THE FRONTIER

ISIC TFP 1971 1981 1990

31 First Jap Jap US
Second Can US Ita
Mean exp(RTFP) 0.65 0.69 0.77
SD exp(RTFP) 0.20 0.18 0.17

32 First Fra Dnk Nld
Second Swe Fra Fra
Mean exp(RTFP) 0.72 0.77 0.78
SD exp(RTFP) 0.18 0.17 0.19

33 First US US US
Second Ger Ger Swe
Mean exp(RTFP) 0.79 0.85 0.81
SD exp(RTFP) 0.17 0.15 0.12

34 First US US Nld
Second Fra Fra US
Mean exp(RTFP) 0.62 0.68 0.80
SD exp(RTFP) 0.20 0.18 0.15

35 First Jap Ger Ger
Second Ger Jap Jap
Mean exp(RTFP) 0.55 0.70 0.79
SD exp(RTFP) 0.23 0.20 0.19

36 First Can Can Nld
Second Ger Fra Fra
Mean exp(RTFP) 0.78 0.85 0.86
SD exp(RTFP) 0.14 0.11 0.12

37 First US Jap Jap
Second UK US Ita
Mean exp(RTFP) 0.55 0.66 0.72
SD exp(RTFP) 0.23 0.23 0.14

38 First US US Nld
Second Ger Ger US
Mean exp(RTFP) 0.54 0.71 0.76
SD exp(RTFP) 0.15 0.16 0.16

31: food, beverages and tobacco; 32: textiles; 33: wood; 34: paper; 35: chemicals; 36: nonmetallic minerals; 37: basic metals; 38: fabricated metals; 381: metal products; 382: agricultural and industrial machinery;
383: electrical goods; 384: transport equipment; 385: instruments; 39: other manufacturing; 30: total manufacturing.

Note: “First” is the frontier; “Second” is the second highest TFP country; mean and SD of exp(RTFP) are the sample mean and standard deviation of the exponential of RTFP across countries. A value of the
mean closer to unity corresponds to a higher average level of relative TFP. The measure of TFP used is adjusted for skills and hours worked; see appendix.

ISIC TFP 1971 1981 1990

381 First US Ger Ger
Second Ger US USA
Mean exp(RTFP) 0.78 0.85 0.88
SD exp(RTFP) 0.32 0.17 0.10

382 First Ger Ger US
Second US Ita Fra
Mean exp(RTFP) 0.88 0.90 0.93
SD exp(RTFP) 0.10 0.07 0.05

383 First US US US
Second Fra Fra Fra
Mean exp(RTFP) 0.75 0.88 0.94
SD exp(RTFP) 0.31 0.15 0.06

384 First US US US
Second Ger Ger Ger
Mean exp(RTFP) 0.71 0.88 0.95
SD exp(RTFP) 0.19 0.15 0.04

385 First US Fra Fra
Second Ger US US
Mean exp(RTFP) 0.67 0.82 0.87
SD exp(RTFP) 0.33 0.21 0.09

39 First US Dnk US
Second Dnk US Ger
Mean exp(RTFP) 0.77 0.71 0.68
SD exp(RTFP) 0.24 0.24 0.22

30 First US US Nld
Second Can Nld US
Mean exp(RTFP) 0.68 0.79 0.81
SD exp(RTFP) 0.15 0.14 0.13
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excluding both R&D terms. The relative TFP term enters
positively and is significant at conventional levels, indicat-
ing that within each industry the countries that are further
behind the frontier experience higher rates of productivity
growth. Controlling for unobserved heterogeneity using the
within-groups estimator increases the size of the estimated
coefficient on relative TFP.24

As suggested in the discussion above, we are interested
in exploring the two possible roles played by R&D. We
enter the R&D intensity in levels, to capture an effect on
innovation, as well as interacted with the relative pro-
ductivity term, which will capture an effect on the rate of
technological transfer. In column (2) of table 2, we
introduce the lagged level of R&D intensity, which enters
positively and is statistically significant at conventional
levels. Column (3) considers both the level of R&D and
the interaction between R&D and relative TFP. The
interaction term is expected to have a positive coefficient:
the further a nonfrontier country lies behind the frontier
(the larger TFPGAPi j t�1), the greater the potential for
technologies to be transferred through R&D and the
higher the rates of productivity growth. From column (3),
the estimated coefficient on the interaction term is indeed
positive and statistically significant at the 10% level. The
linear term remains positive and significant.

In columns (4) and (5), we adjust our TFP measure to
take account of cross-country differences in the skill
composition of the workforce and in hours worked.
Column (4) exploits information on the share of produc-
tion and nonproduction workers in employment and the
wage bill in individual industries to control for labor
quality. In column (5), we also control for cross-country
differences in hours worked. The upshot of these results
is that R&D appears to have both a linear effect (R&D

generates innovations) and an interactive effect with
distance to frontier (TFPGAP) (R&D also spurs faster
adoption of new technologies).

Although our baseline specification assumes that R&D is
the critical factor in generating innovation and technology
transfer, many authors have emphasized the roles of human
capital and international trade in the growth process. The
model presented earlier is therefore extended to incorporate
these variables. Equation (5) becomes

�ln Aijt � 
1 ln �AF

Ai
�

j t�1

� �
2�R

Y�
i j t�1

� 
3Hi t�1

� 
4�IMPS�i j t�1] ln �AF

Ai
�

j t�1

(12)

� 	1�R

Y�i j t�1

� 	2Hi t�1 � 	3�IMPS�i j t�1 � uijt.

Our preferred measure of TFP weights the numbers of
production and nonproduction workers in a country-
industry by their respective shares of the wage bill. In so far
as any increased productivity of nonproduction workers is
reflected in their wages (a private rate of return), it will
already be captured in our analysis. In this section, we are
therefore concerned with estimating externalities to human
capital accumulation. The existence of such externalities has
been a frequent concern of the theoretical growth literature,
including work on both technological externalities25 and
pecuniary externalities.26 Because human capital’s effect is
thought to be an externality, we use country-level data on
the percentage of the total population that has attained
higher (tertiary) education from Barro and Lee (1994).27

These data have the advantage of being available for all
countries in our sample. We also investigate the use of24 If we reestimate the specification in column (1) of table 2 dropping the

fixed effects, the estimated coefficients (standard error) on TFPGAP is
0.020 (0.005). With OLS estimation there is evidence of serial correlation
in the residuals (the p-value of the LM test statistic is 0.013). Once we
control for unobserved heterogeneity across country-industries, we find no
evidence of serial correlation, as indicated by the LM test statistics
reported at the bottom of table 2.

25 See Lucas (1988) or Nelson and Phelps (1966).
26 See Acemoglu (1996) and Redding (1996).
27 Higher education is a more appropriate variable than secondary

education for OECD countries.

TABLE 2.—IMPACT OF R&D AND HUMAN CAPITAL ON TFP GROWTH

�TFPijt (1) (2) (3) (4) (5) (6) (7) (8)

TFPGAPi j t�1 
1 0.080 (0.014) 0.085 (0.013) 0.067 (0.015) 0.066 (0.015) 0.059 (0.016) 0.013 (0.021) 0.019 (0.021) 0.002 (0.022)
R/Yi j t�1 	1 — 0.669 (0.165) 0.497 (0.188) 0.461 (0.185) 0.479 (0.177) 0.473 (0.172) 0.502 (0.174) 0.561 (0.186)
(TFPGAP � R/Y)i j t�1 
2 — — 0.596 (0.333) 0.633 (0.328) 1.00 (0.346) 0.815 (0.350) 0.740 (0.351) 0.814 (0.385)
Hi t�1 	2 — — — — — 0.229 (0.124) 0.258 (0.124) 0.267 (0.149)
(TFPGAP � H)i t�1 
3 — — — — — 0.464 (0.137) 0.426 (0.140) 0.559 (0.139)
IMPSi j t�1 	3 — — — — — — 0.001 (0.011) �0.064 (0.035)
(TFPGAP � IMPS)i j t�1 
4 — — — — — — 0.073 (0.035) 0.060 (0.034)
Serial correlation

(p-value) 0.328 0.309 0.311 0.390 0.453 0.388 0.896 0.553
Skills adjustment Yes Yes Yes Yes Yes
Hours adjustment Yes Yes Yes Yes

Notes: Sample contains 1801 observations from 1974–1990; numbers in parentheses are robust standard errors; all regressions include full set of time dummies and full set of country-industry interactions
(within-group estimators); observations are weighted using initial industry shares of total manufacturing employment; �TFP is growth in TFP; RTFP is relative level of TFP; R/Y is R&D intensity; H is human capital;
IMPS is imports from the frontier (normalized on output); serial correlation is the p-value for the LM test for first-order serial correlation, distributed N(0,1) under the null. In column (8), R/Y is lagged t � 2; number
of observations is 1695.
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industry-level educational attainment data from Machin and
Van Reenen (1998), as discussed further below.

Column (6) of table 2 presents the results including R&D
and human capital. The estimated coefficient on the level of
human capital is positive and significant at the 10% level, and
the interaction is positive and significant at the 5% level. This
is consistent with positive externalities from higher educational
attainment in the form of both a higher rate of innovation and
more rapid technology transfer. The conclusions regarding the
effects of R&D remain unchanged.

The role of the aggregate human capital variable is open to
different interpretations.28 For six countries we have industry-
level educational variables, which we used instead of the
aggregate variables. The human capital terms were correctly
signed, but only the linear term was significant at the 10%
level.29 We also interacted the human capital variable with the
R&D variable and find the coefficient is insignificant.30

The role of international trade is stressed in both the cross-
country growth literature and work on international R&D
knowledge spillovers. The theoretical literature suggests a
variety of mechanisms by which trade may affect productivity
growth (for example, spillovers of technology from the reverse
engineering of imported goods, increased product market com-
petition, and larger market size), and there are a number of
ways to introduce international trade into the model. We take a
simple and intuitive approach that, at the same time, is suffi-
ciently general to allow trade to affect both innovation and
technology transfer. The OECD bilateral trade database pro-
vides country-industry-level information on the source of im-
ports from trading partners in the OECD. Using these data, we
construct measures of import penetration for each industry in
each country. Our preferred measure uses imports from the
frontier, although we also experimented with using imports
from the whole world, imports from other OECD countries
excluding the frontier, and imports from non-OECD coun-
tries.31 International trade flows are scaled by output, and we
include both a level and an interaction term for import pene-
tration.

In column (7) of table 2, we include information on R&D,
human capital, and international trade. The magnitude and

statistical significance of the coefficients on the R&D and
human capital terms remain largely unchanged. The import
level term is statistically insignificant. The import interac-
tion term is positively signed and statistically significant at
the 10% level. Thus, increased trade with the frontier tends
to have a (weakly) positive effect on rates of productivity
growth through the speed of technology transfer, but not
through rates of innovation.32

As a check on our assumption of weak exogeneity of R&D,
column (8) of table 2 dates R&D at t � 2. We see that the level
of R&D and its interaction with TFPGAP remain significant.
Alternatively, treating (R/Y)i j t�1 as endogenous and using the
second lags of R&D intensity and its interaction with TFPGAP
as instruments also gives very similar results.33

What about the quantitative importance of the estimated
effects? Because the import interaction term is only weakly
statistically significant, we concentrate on the results with
R&D and human capital [column (6) in table 2], and we
focus on the implications for total manufacturing. The
estimated R&D effect [	̂R � 	̂1 � 
̂2 ln (AF/Ai)j t�1] consists
of two components: one due to innovation (	̂1) and a sec-
ond due to technology transfer or absorptive capacity
[
̂2 ln (AF/Ai)j t�1]. In table 3 we report the total return from
R&D (column 1) and from human capital (column 3), as
well as the percentage of the estimated R&D effect that is
accounted for by technology transfer (column 2), with
analogous figures also reported for human capital (column
4). The relative contribution from technology transfer varies
with a country’s distance to the technological frontier. We see
that for the United States, which is typically the technological
leader, R&D’s contribution to productivity growth is largely
due to innovation. In contrast, in Finland, where the average
relative TFP is around 50% of the level in the frontier (TFP in
the United States is just over twice as high as in Finland), less
than half of the estimated effect is due to innovation—absorp-
tive capacity is quantitatively more important.

Under the assumption that the association between pro-
ductivity growth and R&D is causal, these estimated coef-
ficients may be given a more structural interpretation. As
discussed in the theoretical section above, the estimated
coefficient on R&D corresponds to a social rate of return.
Therefore, one implication of our analysis is that many
existing studies, insofar as they have focused on the United
States (which is typically the technological leader), will
have underestimated R&D’s social rate of return. In nonfron-

28 See Krueger and Lindahl (2001) for a critical discussion and recent
evidence.

29 The specification in column (6) of table 2 was reestimated using the
industry-level education data. The estimated coefficients (standard errors)
on the linear and interaction education were 0.361 (0.203) and 0.439
(0.549), respectively. We also experimented with nonlinearities in human
capital, but none of the terms were significant at conventional levels.

30 In this specification the coefficients (standard errors) are: TFPGAPt �1
0.018 (0.022), (R/Y )t�1 0.689 (0.301), (TFPGAP�R/Y )t�1 0.743 (0.351),
Ht�1 0.270 (0.137), (TFPGAP�H )t�1 0.448 (0.139), (H�R/Y )t�1 0.840
(1.052).

31 The results using imports from the whole world (not shown) are very
similar to those with imports from the frontier, suggesting that it is
openness per se that fosters technology transfer and not whether a country
is directly importing from the most advanced nations. The results are
weakest for imports from non-OECD countries, which does not seem
consistent with the arguments of Wood (1994), who claims that trade with
developing countries has resulted in large amounts of induced innovation
(and so lowered the demand for less skilled workers).

32 In the working paper version, we also show that our results are robust
to including level and interaction terms in investment in fixed capital.

33 The estimated coefficients (standard errors) were: TFPGAPt�1 0.000
(0.022), (R/Y )t�1 0.631 (0.199), and TFPGAPt�1 � (R/Y )t�1 0.897 (0.473).
Similar results are also obtained from treating both lagged R&D and
lagged TFPGAP as endogenous (footnote 40). We also experimented with
using policy changes such as the introduction of an R&D tax credit as
instruments for the R&D intensity (see Bloom, Griffith, & Van Reenen,
2002). Unfortunately, there is only a small sample for which both the
production data used to calculate TFP and the policy variables are
available. The pattern of point estimates was similar, but the small sample
size led to a large loss in precision.
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tier countries, R&D contributes to TFP growth not only
through innovation but also through technology transfer. The
estimated social rate of return to R&D from innovation (	̂1) in
table 2 of around 40% is consistent with existing U.S.-based
studies.34 As shown in table 3, in nonfrontier countries, R&D-
based technology transfer [
̂2 ln (AF/Ai)] may substantially
increase the effect of R&D on productivity.35

B. Robustness of Results

There are a number of potential concerns about the results
presented above. In this subsection we consider the robust-
ness of our results to the following concerns: (i) bias due to
measurement error, (ii) nonlinearities and diminishing re-
turns to R&D, (iii) sensitivity to the definition of the
frontier, (iv) inclusion of contemporaneous frontier TFP
growth as in equation (8), and (v) parameter heterogeneity.36

Measurement Error: Our first concern is with measure-
ment error. If we measure TFP with error, then the weak
exogeneity assumption will not be valid. The left-hand side of
our regression is the measured TFP growth [ln (Aijt /Ai j t�1)],
whereas the right-hand side is the measured relative TFP
[ln (AF j t�1/Ai j t�1)]. If Aijt, Ai j t�1, and AF j t�1 are each subject
to errors of measurement, the OLS estimate of the coefficient

on relative TFP will be biased. To deal with this potential
problem we use IV estimation. In the absence of serial corre-
lation (conditional on the country-industry fixed effect and the
other covariates), longer-lagged values of relative TFP are
valid instruments. In columns (1) to (3) of table 4, we replicate
the results from columns (5) to (7) of table 2 but instrument the
relative TFP term with lags of itself (t � 2 and t � 3). The
results are very similar to those presented in table 2.37

A complementary approach uses data on some of the
variables suggested as sources of measurement error in the
TFP literature. Column (4) presents estimation results using
a measure of relative TFP that controls for cross-country
and cross-industry variation in the degree of imperfect
competition using data on the markup of price over mar-
ginal cost in individual country-industries. In column (5),
we present results using a measure of relative TFP that
controls for both country-industry variation in the degree of
imperfect competition and country-industry-time variation
in capacity utilization.38 In both cases, the conclusions from
the IV estimation are confirmed, and the finding of a second
face of R&D activity is robust. The coefficients on the R&D
level and interaction terms remain of similar magnitude and
statistically significant at the 5% level. The human capital
interaction is positively signed and statistically significant.
Neither the international trade level nor the interaction

34 For example, Sveikauses (1981) estimates a social rate of return to
R&D of 50%, and Griliches and Lichtenberg (1984) estimate a social rate
of return to R&D of 41%–62%. See Jones and Williams (1998) for a
discussion of existing estimates of the social rate of return to R&D and
their relation to the endogenous growth literature.

35 This conclusion receives independent support from Eaton, Gutierrez,
and Kortum (1998), who calibrate a computable general equilibrium
model of endogenous innovation and growth to economy-wide data from
21 OECD countries. With the exception of Portugal, research productivity
in all other OECD countries is found to be higher than in the United
States.

36 We show robustness of the results to other tests (such as interindustry
spillovers) in Griffith et al. (2000).

37 We considered two tests of the validity of the instruments in addition
to the serial correlation tests. First, the Sargan test at the bottom of the
columns is a test of the model’s overidentifying restrictions. We are unable
to reject the null hypothesis that the excluded exogenous variables are
uncorrelated with the second-stage residuals. Second, we consider an
F-test of the excluded instruments in the first-stage equations (IV esti-
mates will be biased toward OLS in finite samples if the instruments are
weakly correlated with the endogenous variables). In fact the excluded
instruments were always highly significant. For example, in column (1) of
table 4 the F-test of the joint significance of RTFPi j t�2, RTFPi j t�3, and
RTFPi j t�2 � R/Yi j t�1, in the reduced form for RTFPi j t�1, is significant at
the 1% level.

38 See the appendix for further details concerning the construction of
these measures.

TABLE 3.—TOTAL R&D AND HUMAN CAPITAL CONTRIBUTIONS TO PRODUCTIVITY GROWTH, TOGETHER WITH THE PERCENTAGE DUE TO TECHNOLOGY TRANSFER,
BASED ON THE AVERAGE TFPGAP IN TOTAL MANUFACTURING

Country

(1)
R&D

Total Effect

(2)
R&D

Technology Transfer (%)

(3)
Human Capital

Total Effect

(4)
Human Capital

Technology Transfer (%)

Canada 0.69 26 0.35 29
Denmark 0.81 35 0.42 38
Finland 1.05 54 0.56 58
France 0.67 25 0.34 28
Germany 0.64 23 0.33 26
Italy 0.88 40 0.46 44
Japan 0.83 36 0.43 39
Norway 0.98 48 0.52 52
Sweden 0.78 35 0.40 38
United Kingdom 0.77 36 0.40 39
United States 0.57 14 0.28 15

Notes: Column (1) shows R&D’s total contribution to productivity growth is 	̂R � 	̂1 � 
̂2 ln (AF/ Ai)i j t�1 using the coefficient estimates from column (6) of table 2 (	̂1 � 0.473, 
̂2 � 0.815). Column (2) reports
the percentage share of technology transfer [
̂2 ln (A� F /Ai)] in R&D’s total contribution (	̂R), based on a country’s time-averaged TFGAP in total manufacturing [ln (A� F /Ai)]. Column (3) shows human capital’s total
contribution to productivity growth, and column (4) reports the analogous percentage share of technology transfer.
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term is statistically significant at conventional critical val-
ues.39

A related concern is that the output Y is subject to errors
of measurement, which will not only affect the measured
TFP but also the R&D intensity (R/Y). To address this
concern, we reestimated the model using instrumental vari-
ables, including the the second and third lags of R&D
intensity, TFPGAP, and their interactions in the instrument
set. As discussed in section V A, (in particular, footnote 33),
a very similar pattern of results was observed.40

Nonlinearities and Diminishing Returns to R&D: We
have interpreted the interaction term between R&D and
relative TFP as indication of technology transfer associated
with R&D. An alternative interpretation, however, is that
there are sharply diminishing returns to R&D and that
countries further behind the frontier have a higher rate of
return simply because they perform less R&D and are
therefore higher up the marginal productivity curve for
R&D. The empirical implication of this alternative story is
that higher-order terms in R&D intensity should be included
in our specifications and this should drive out the interaction
of R&D with relative TFP. We tested for such nonlinearities
in the R&D term and found that these higher-order terms in
R&D were always insignificant. Column (6) shows a rep-
resentative example; we include a squared R&D intensity
term. Although it is negative (suggesting diminishing re-

turns), it is insignificant. The interaction terms with relative
TFP (both of human capital and of R&D) were basically
unchanged by the addition of this variable.

Definition of the Frontier: How sensitive are our results
to the definition of the frontier? In our model what matters
for the regressions is not the identity of the frontier per se,
but the measure of distance from the technological frontier
that we use to capture the potential for technology transfer.
We have already shown that our results are robust to a series
of different adjustments to TFP measures. In column (7) of
table 4 we also report results using the average of the top
two countries as an indicator of the frontier, and the results
are similar to column (6) of table 2. As a further robustness
check we ran the same regression as shown in column (5) of
table 2, but using TFP relative to the median. The idea is
that, if our model is correct, this should not be meaningful,
as it does not contain information about distance to the
technological frontier. Indeed, that is what we see: the
coefficients on distance to the median and the interaction
between R&D and distance to the median were both statis-
tically insignificant.41

Contemporaneous Frontier TFP Growth: Augmenting
the specification for nonfrontier countries with an additional
term in contemporaneous frontier TFP growth allows for a
more flexible relationship between nonfrontier and frontier
TFP within the context of an equilibrium correction model
(ECM) [equation (8)]. The unattractive feature of this spec-
ification is that there is a discontinuity in the TFP growth
process when a country becomes the frontier, in which case
the contemporaneous frontier growth term is set equal to 0.

39 We also experimented with using data on industry-specific purchasing
power parities (PPPs). Once again, the conclusions were essentially
unchanged: see Griffith et al. (2000) for further details.

40 For example, in the specification of column (6) in table 2 we used
(R/Y )t�2, (R/Y )t�3, (TFPGAP)t�2, (TFPGAP)t�3, (TFPGAP � R/Y )t�2,
(TFPGAP � R/Y )t�3, (TFPGAP � H )t�2, and (TFPGAP � H )t�3 as
instruments for (R/Y )t�1, Ht�1, (TFPGAP)t�1, (TFPGAP � R/Y )t�1, and
(TFPGAP � H)t�1. The estimated coefficients (standard errors) on the
key variables in the IV regressions were TFPGAP 0.026 (0.022), (R/Y )
0.693 (0.191), and TFPGAP � (R/Y ) 1.382 (0.473).

41 The coefficients (standard errors) were distance to median �0.012
(0.009), R/Y 0.634 (0.175), and the interaction 0.141 (0.125).

TABLE 4.—ROBUSTNESS OF THE MAIN RESULTS

�TFPijt Estimation
(1)
IV

(2)
IV

(3)
IV

(4)
OLS

(5)
OLS

(6)
OLS

(7)
OLS

(8)
OLS

�TFPFjt — — — — — — — 0.121 (0.030)
RTFPi j t�1 0.061 (0.019) 0.024 (0.024) 0.029 (0.025) 0.006 (0.022) 0.017 (0.020) 0.021 (0.021) 0.017 (0.024) 0.024 (0.021)
R/Yi j t�1 0.432 (0.186) 0.432 (0.182) 0.461 (0.183) 0.495 (0.175) 0.343 (0.153) 0.857 (0.327) 0.394 (0.170) 0.427 (0.174)
(R/Yi j t�1)2 — — — — — �1.582 (1.214) — —
(TFPGAP � R/Y)i j t�1 1.336 (0.406) 1.131 (0.411) 1.046 (0.410) 0.900 (0.346) 0.950 (0.338) 0.682 (0.353) 1.008 (0.384) 0.815 (0.348)
Hi t�1 — 0.241 (0.125) 0.268 (0.125) 0.250 (0.131) 0.200 (0.120) 0.222 (0.124) 0.232 (0.123) 0.225 (0.124)
(TFPGAP � H)i j t�1 — 0.420 (0.175) 0.399 (0.176) 0.409 (0.143) 0.317 (0.140) 0.452 (0.137) 0.546 (0.165) 0.459 (0.136)
IMPSi j t�1 — — 0.003 (0.009) 0.003 (0.027) 0.015 (0.032) — — —
(TFPGAP � IMPS)i j t�1 — — 0.063 (0.034) 0.048 (0.046) 0.041 (0.047) — — —
Serial correlation

(p-value) 0.358 0.881 0.341 0.817 0.633 0.371 0.278 0.356
Sargan (p-value) 0.206 0.126 0.121 — — —
Adjustments to TFP s,h s,h s,h s,h,m s,h,m,c s,h s,h s,h
Definition of frontier One One One One One One Two One

Notes: Sample contains 1801 observations, 1974–1990; numbers in ( ) are robust standard errors; all regressions include full set of time and country-industry dummies (within-group estimator); observations are
weighted using initial industry share of total manufacturing employment; �TFP is growth in TFP; R/Y is R&D divided by value added; H is human capital; IMPS is imports from the frontier; serial correlation is
LM test for first-order serial correlation; Sargan is test for validity of overidentifying restrictions; TFP adjustments are s: skills; h: hours; m: markup; and c: capacity utilization (see appendix for details); instruments
in columns (1) through (3) are TFPGAPi j t�2, TFPGAPi j t�3, R/Yi j t�1, (TFPGAPi j t�2 � R/Yi j t�1); in column (2) we include as extra instruments: Hi j t�1, (TFPGAPi j t�2 � Hi j t�1), (TFPGAPi j t�3 � Hi j t�1); in
column (3) we include IMPSi j t�1, (TFPGAPi j t�2 � IMPSi j t�1), (TFPGAPi j t�3 � IMPSi j t�1); TFPGAP is distance to frontier: One indicates that the potential for technology transfer is measured by TFP relative
to the frontier, Two indicates that it is measured relative to the average of the two countries with the highest TFP levels.
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In column (8) of table 4 we report a specification of this
form and find a very similar pattern of results.

Parameter Heterogeneity: The specification in equation
(12) allows the coefficient on the gap to vary with R&D,
human capital, and international trade. This places a partic-
ular economic structure on parameter heterogeneity. We
now consider the implications of allowing for more general
forms of heterogeneity.42 Table 5 reports the results from
specifications that allow the coefficients to vary across each
of the 106 country-industry cross-section units. We do this
separately for R&D and for human capital.

To provide a benchmark against which to compare the
results of the heterogeneous coefficient estimation, column
(1) of table 5 estimates a regression with TFPGAP, the R&D
level, and the level of human capital. The interaction terms
are excluded, because they already constitute a method of
allowing the coefficients on R&D and human capital to vary
across industries. In the heterogeneous coefficient estima-
tion we wish to allow the coefficients on these variables to
vary across country-industries (as dictated by the data
alone). In columns (2) to (4) we report the median coeffi-
cient when we allow either the coefficient on R&D or
human capital to vary across all 106 industry-country pairs
(holding the other coefficients constant). We report medians
because the means can be sensitive to one or two extreme
estimated values.

From our theoretical model and preferred specification
we expect the impact of R&D and human capital to be
higher in those countries that have lower levels of relative
TFP and are further from the industry-specific technological
frontier. In order to investigate whether this is the case, we
split the sample by the median value of relative TFP into
those country-industries that are far from the frontier (“large
gap”) and those that are closer to the frontier (“small gap”).
As shown in columns (3) and (4), we find that the R&D and
human capital coefficients are more important for those
countries that are far from the industry technological fron-
tier. In summary, this corroborates our qualitative findings
from the more parsimonious models of table 2.

VI. Conclusions

This paper has produced econometric evidence on the
importance of the two faces of R&D by examining the
determinants of productivity growth in a panel of industries
across twelve OECD countries. R&D stimulates growth
directly through innovation and also indirectly through
technology transfer. Thus R&D has played a role in the
convergence of TFP levels within industries across OECD
countries. This result was robust to a variety of tests,
including measuring TFP in a number of different ways. We
also identified a role for human capital in stimulating
innovation and absorptive capacity. By contrast, trade had a
statistically weak effect on productivity. The R&D and
human capital effects were shown to be quantitatively
important as well as statistically significant.

An implication of the results is that the social returns to
investing in R&D and human capital may be underestimated
in studies that focus solely on the U.S. economy, in that the
United States is the technological frontier for a large num-
ber of industries. There is also an important spillover at the
world level from advanced to less advanced countries. As a
result of technology transfer, an increase in R&D at the
frontier raises the steady-state rate of TFP growth of all
countries.

One important question is why nonfrontier countries do
not invest more in R&D if the social return is higher than in
the frontier. As the incentive to invest in R&D is determined
by the private return and not the social return, it may be the
case that R&D is held back in many nonfrontier countries
by underdevelopment of financial markets or inappropriate
government policies. A future research priority should be to
investigate these issues, through using firm-level data across
a number of countries to estimate private and social rates of
return in a framework that allows for the two faces of R&D.

Another avenue for future work would be to extend our
framework to incorporate interindustry technology trans-
fers. Despite the need for these further extensions, we
believe the methods presented here provide a tractable and
intuitive approach to understanding productivity dynamics
across OECD countries and industries. The emphasis on
human capital and R&D in modern growth theory is well
placed.
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APPENDIX

1. Data Sources

Our sample consists of twelve countries over the period 1971–1990.
For some of the countries, information is available for nine two-digit
industries (ISIC 31–39); for others, ISIC 38 is additionally broken down
into five three-digit industries. Where the more disaggregated information
is available for the three-digit industries, we use it. At the same time,
careful attention is paid to the robustness of the results to alternative
samples of countries and industries. After cleaning and deleting missing
values, we have 1801 observations across countries and industries. See
Griffith et al. (2000) for details. Data are used from the following sources:

OECD International Sectoral Database (ISDB): Data on real value
added, real capital stock, employment, hours worked, labor com-
pensation, and real gross output.

OECD ANBERD/ANRSE (Research and Development in Industry:
Expenditure and Researchers, Scientists and Engineers) Database:
Data on business enterprise expenditure on research and develop-
ment (BERD), includes all sources of funding (industry and busi-
ness, domestic and overseas).

OECD Bilateral Trade Database (BTD): Data on the value of each
OECD country’s bilateral imports from all other OECD countries.

United Nations General Industrial Statistics Database (UNISD): Data
on the numbers and wage bills of nonproduction and production
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workers43 available for Canada, Denmark, Finland, Japan, Sweden,
the United Kingdom, and the United States; for all other countries
we use the mean employment and wage bill shares in that industry
across countries.

Industry-specific markups: From Martins, Scarpetta, and Pilat (1996),
reported for 36 three- and four-digit industries, estimated using
Roeger’s (1995) methodology, which builds on Hall (1988); we
aggregate to the two- and three-digit industry level using value-
added shares.

Educational attainment: “Percentage of higher school attained in the
total population” from Barro and Lee (1994); reported for the whole
economy at five-year intervals; we interpolate missing observations;
industry-specific education proportions are from Machin and Van
Reenen (1998), which is aggregated from individual-level data
sources (such as the CPS in the United States). These numbers are
available only for France, Germany, Japan, Sweden, the United
Kingdom, and the United States.

2. TFP Measures

Much attention has been paid to how to measure TFP accurately and
how to obtain comparable numbers across countries. We measure TFP in
a number of ways and test whether our results are robust to the various
corrections. We do four main types of corrections: (a) adjustments to the
measure of labor inputs for differences in hours worked and skill levels,
(b) adjustments to factor shares due to imperfect competition, (c) adjust-
ments to the capital stock for differences in capacity utilization, and (d) the
use of manufacturing-industry-specific rather than economy-wide PPPs.
Our baseline measures are described in section IV, and were constructing
using the data as reported in the ISDB.

2.a Adjusting labor input for differences in hours and skills

Our base measure is numbers employed in industry j of economy i. We
adjust this by average annual hours actually worked per person in

employment (from the ISDB). This is an economy-wide adjustment. We
also control for differences in the quality of labor inputs. Employment in
each country-industry-year is subdivided into the number of production
and nonproduction workers. Aggregate labor input is expressed as an
index of the two types of labor,

Lijt � �hijt�
sijt�uijt�

1�sijt,

where hijt denotes the number of nonproduction workers, uijt the number of
production workers, and sijt the share of nonproduction workers in the
wage bill. In making this adjustment, we use country-industry data on hijt
and sijt where they are available (for Canada, Denmark, Finland, Japan,
Sweden, the United Kingdom, and the United States) and mean values of
hijt and sijt across these countries in each industry where the data are not
available.

2.b Adjusting for markups

We allow for imperfect competition with country-industry-specific
markups. The labor share parameter �ijt in the superlative indices of TFP
growth and relative TFP [equations (9) and (10)] is replaced by

�̃ijt � �ij�ijt,

where �ij is the country-industry-specific markup.

2.c Adjusting capital for capacity utilization

We adjust for the fact that countries may have different economic
cycles, and that during downturns capital may not be fully used, whereas
during booms it may be overused. We construct a measure of capacity
utilization by estimating a smoothed output series, Ŷijt , which is predicted
from a regression

Yijt � 
ij � tt,

where tt is a time trend. Adjusted capital input is then given by

�K � CU�ijt � Kijt�1 �
Yijt � Ŷijt

Ŷijt
� .

43 This is a crude distinction, but is the only one available consistently
across a large range of industries and countries over time. It has been
analyzed extensively by other authors (such as Berman, Bound & Machin,
1998), who have found the occupational split highly correlated with
alternative measures of human capital (such as education).
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