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1 Introduction

Consider two agents who learn the value of an unknown parameter by observing

a sequence ofprivate signals. The signals are independent and identically dis-

tributed across time but not necessarily agents. Does it follow that the agents will

commonlylearn its value, i.e., that the true value of the parameter will become

(approximate) common-knowledge? We show that the answer is affirmative when

each agent’s signal space is finite and show by example that common learning can

fail when observations come from a countably infinite signal space.

This is an important question for a number of reasons. Common learning is

precisely the condition that ensures efficient outcomes in dynamic coordination

problems in which agents learn the appropriate course of action privately over

time. For example, suppose the two agents have the possibility of profitably co-

ordinating on an action, but that the action depends on an unknown parameter. In

every periodt = 0,1, . . . , each agent receives a signal. The agent can then choose

actionA, actionB, or to wait (W) until the next period. Simultaneous choices ofA

when the parameter isθA or B when it isθB bring payoffs of 1 each. Lone choices

of A or B or joint choices that do not match the parameter bring a payoff of−c< 0

and cause the investment opportunity to disappear. Waiting is costless.Figure 1

summarizes these payoffs.

Under what circumstances do there exist nontrivial equilibria of this invest-

ment game, i.e., equilibria in which the agents do not always wait? Choosing

actionA is optimal for an agent in some periodt only if the agent attaches proba-

bility at least c
c+1 ≡ q to the joint event that the parameter isθA and the other agent

choosesA. Now consider the set of historiesA at which both agents chooseA. At

any such history, each agent` must assign probability at leastq to A , that isA

must beq-evident(Monderer and Samet, 1989). Furthermore, at any history inA ,

each agent̀ must assign probability at leastq to the parameterθA. But this pair

of conditions is equivalent to the statement thatθA is common q-belief—the exis-

tence of histories at which there is commonq-belief inθA is a necessary condition

for eventual coordination in this game. Conversely, the possibility of common
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A B W

A 1,1 −c,−c −c,0

B −c,−c −c,−c −c,0

W 0,−c 0,−c 0,0

ParameterθA

A B W

A −c,−c −c,−c −c,0

B −c,−c 1,1 −c,0

W 0,−c 0,−c 0,0

ParameterθB

Figure 1: Payoffs from a potential joint opportunity, with actionsA, B, or wait
(W) available to each agent in each period.

q-belief is sufficient for a nontrivial equilibrium, as it is an equilibrium for each

agent̀ to chooseA on theq-evident event on whichθA is commonq-belief.

Now suppose that various forms of this opportunity arise, characterized by

different values of the miscoordination penaltyc. What does it take to ensure that

all of these opportunities can be exploited? It suffices that the information process

be such that the parameter eventually becomes arbitrarily close to common 1-

belief.

Beyond coordination problems, common learning is a potentially important

tool in the analysis of dynamic games with incomplete information. In the equilib-

ria of these games, players typically learn over time about some unknown parame-

ter. Examples include reputation models such asCripps, Mailath, and Samuelson

(forthcoming), where one player learns the “type” of the other, and experimenta-

tion models such asWiseman(2005), where players are learning about their joint

payoffs in an attempt to coordinate on some (enforceable) target outcome. Char-

acterizing equilibrium in these games requires analyzing not only each player’s

beliefs about payoffs, but also her beliefs about the beliefs of others and how these

higher-order beliefs evolve. Existing studies of these models have imposed strong

assumptions on the information structure in order to keep the analysis tractable.

We view our research as potentially leading to some general tools for studying
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common learning in dynamic games.

In general, the relationship between individual and common learning is subtle.

However, there are two special cases in which individual learning immediately

implies common learning. When the signals are public then beliefs are trivially

common-knowledge. At the opposite extreme, common learning occurs when the

agents’ signal processes are stochastically independent and so (conditional on the

parameter) each learns nothing about the other’s beliefs (Proposition 2).

Apart from these extreme cases, when the signals are private and not indepen-

dent, the following difficulty must be addressed. If the signals are correlated, and

if the realized signal frequencies for agent 1 (say) are sufficiently close to the pop-

ulation frequencies under the parameterθ , then 1 will be confident thatθ is the

value of the parameter. Moreover, he will be reasonably confident that 2 will have

observed a frequency that leads to a similar degree of confidence inθ . However,

if 1’s frequency is “just” close enough to lead to some fixed degree of confidence,

then 1 may not be confident that 2’s realized frequency leads to a similar degree

of confidence: while 2’s frequency may be close to 1’s frequency, it may be on the

“wrong side” of the boundary for the required degree of confidence.

If the set of signals is finite, the distribution of one agent’s signals, conditional

on the other agent’s signal, has a Markov chain interpretation. This allows us

to appeal to a contraction mapping principle in our proof of common learning,

ensuring that if agent 1’s signals are on the “right side” of a confidence boundary

then so must be 1’s beliefs about 2’s signals. In contrast, with a countably infinite

signal space, the corresponding Markov chain interpretation lacks the relevant

contraction mapping structure and common learning may fail.

While we have described the model as one in which the agents begin with

a common prior over the set of parameters, we explain inRemark 3how our

analysis sheds light on agents who initially disagree butconvergeon a common

belief through a process of learning. Indeed, we can allow agents to begin the

process with arbitrary higher-order beliefs over the parameter space. As long

as each agent attaches some minimum probability to each parameter, and this is
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common knowledge, the agents will commonly learn the parameter and hence

approach a common posterior over the distribution of signals.

2 A Model of Multi-Agent Learning

2.1 Individual Learning

Time is discrete and periods are denoted byt = 0,1,2, .... Before period zero,

nature selects a parameterθ from the finite setΘ according to the prior distribution

p.

For notational simplicity, we restrict attention to 2 agents, denoted` = 1 (he)

and 2 (she). Our positive results (Propositions2 and3) hold for arbitrary finite

number of agents (see Remarks2 and4).

Conditional onθ , a stochastic processζ θ ≡{ζ θ
t }∞

t=0 generates a signal profile

zt ≡ (z1t ,z2t) ∈ Z1× Z2 ≡ Z for each periodt, whereZ` is the set of possible

period-t signals for agent̀ = 1,2. For eachθ ∈ Θ, the signal process{ζ θ
t }∞

t=0

is independent and identically distributed acrosst. We letζ θ
` ≡ {ζ`t}∞

t=0 denote

the stochastic process generating agent`’s signals. When convenient, we let{θ}
denote the event{θ}×Z∞ that the parameter value isθ , and we often writeθ

rather than{θ} when the latter appears as an argument of a function.

A state consists of a parameter and a sequence of signal profiles, with the set

of states given byΩ ≡ Θ×Z∞. We useP to denote the measure onΩ induced by

the priorp and the signal processes(ζ θ )θ∈Θ, and useE[ · ] to denote expectations

with respect to this measure. LetPθ denote the measure conditional on a given

parameter andEθ [ · ] expectations with respect to this measure.

A period-t history for agent̀ is denoted byh`t ≡ (z̀ 0, z̀ 1, . . . , z̀ t−1). We let

H`t ≡ (Z`)t denote the space of period-t histories for agent̀ and let{H`t}∞
t=0

denote the filtration induced onΩ by agent̀ ’s histories. The random variables

{P(θ |H`t)}∞
t=0, giving agent̀ ’s beliefs about the parameterθ at the start of each

period, are a bounded martingale with respect to the measureP, for eachθ , and so
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the agents’ beliefs converge almost surely (Billingsley, 1979, Theorem 35.4). For

any stateω, h`t(ω) ∈H`t is the agent̀ period-t history induced byω. As usual,

P(θ |H`t)(ω) is often writtenP(θ | h`t(ω)) or P(θ | h`t) whenω is understood.

For any eventF ⊂ Ω, theH`t-measurable random variableE[1F |H`t ] is the

probability agent̀ attaches toF given her information at timet. We define

Bq
`t(F)≡ {ω ∈Ω : E[1F |H`t ](ω)≥ q}.

Thus,Bq
`t(F) is the set of states where at timet agent̀ attaches at least probability

q to eventF .

Definition 1 (Individual Learning) Agent̀ learnsparameterθ if conditional on

parameterθ , agent̀ ’s posterior onθ converges in probability to1, i.e., if for each

q∈ (0,1) there is T such that for all t> T,

Pθ (Bq
`t(θ)) > q. (1)

Agent` learnsΘ if ` learns eachθ ∈Θ.

Individual learning is equivalent to

lim
t→∞

Pθ (Bq
`t(θ)) = 1, ∀q∈ (0,1). (2)

Remark 1 We have formulated individual learning using convergence in proba-

bility rather than almost sure convergence to facilitate the comparison with com-

mon learning. Convergence in probability is in general a weaker notion than al-

most sure convergence. However, sinceP(θ | H`t) converges almost surely to

some random variable, (2) is equivalent toP(θ |H`t)→ 1 Pθ -a.s.

�

We assume that each agent individually learns the parameter—there is no point

considering common learning if individual learning fails. Our aim is to identify
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the additional conditions that must be imposed to ensure not just that each agent

learns the parameter, but that the agents commonly learn the parameter.

2.2 Common Learning

The event thatF ⊂ Ω is q-believedat timet, denoted byBq
t (F), occurs if each

agent attaches at least probabilityq to F , that is,

Bq
t (F)≡ Bq

1t(F)∩Bq
2t(F).

The event thatF is common q-beliefat datet is

Cq
t (F)≡

⋂
n≥1

[Bq
t ]

n(F).

Hence, onCq
t (F), the eventF is q-believed and this event is itselfq-believed and

so on. We are interested in common belief as a measure of approximate common-

knowledge because, as shown byMonderer and Samet(1989), it is common belief

that ensures continuity of behavior in incomplete-information games.

A related but distinct notion is that ofiterated q-belief. The event thatF is

iteratedq-belief is defined to be

Iq
t (F)≡ Bq

1t(F)∩Bq
2t(F)∩Bq

1tB
q
2t(F)∩Bq

2tB
q
1t(F)∩ . . .

Morris (1999, Lemma 14) shows that iterated belief is (possibly strictly) weaker

than common belief:

Lemma 1 (Morris) Cq
t (F)⊂ Iq

t (F).

SeeMorris (1999, p. 388) for an example showing the inclusion can be strict.

The parameterθ is commonq-belief at timet on the eventCq
t (θ). We say

that the agents commonly learn the parameterθ if, for any probabilityq, there

is a time such that, with high probability when the parameter isθ , it is common
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q-belief at all subsequent times that the parameter isθ :

Definition 2 (Common Learning) The agentscommonly learnparameterθ ∈Θ
if for each q∈ (0,1) there exists a T such that for all t> T,

Pθ (Cq
t (θ)) > q.

The agentscommonly learnΘ if they commonly learn eachθ ∈Θ.

Common learning is equivalent to

lim
t→∞

Pθ (Cq
t (θ)) = 1, ∀q∈ (0,1).

BecauseCq
t (θ) ⊂ Bq

`t(θ), common learning implies individual learning (recall

(2)).

An eventF is q-evidentat timet if it is q-believed when it is true, that is,

F ⊂ Bq
t (F).

Our primary technical tool links commonq-belief andq-evidence.Monderer and

Samet(1989, Definition 1 and Proposition 3) show:

Proposition 1 (Monderer and Samet) F ′ is common q-belief atω ∈Ω and time

t if and only if there exists an event F⊂ Ω such that F is q-evident at time t and

ω ∈ F ⊂ Bq
t (F ′).

Corollary 1 The agents commonly learnΘ if and only if for all θ ∈ Θ and q∈
(0,1), there exists a sequence of events Ft and a period T such that for all t> T,

(i) θ is q-believed on Ft at time t,

(ii) Pθ (Ft) > q, and

(iii) Ft is q-evident at time t.
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2.3 Special Cases: Perfect Correlation and Independence

We are primarily interested in private signals that are independently and identi-

cally distributed over time, but not identically or independently across agents. We

begin, however, with two special cases to introduce some basic ideas.

Suppose first the signals are public, as commonly assumed in the literature.

Then agent̀ knows everything there is to know aboutˆ̀’s beliefs, and we have

P(θ |H1t) = P(θ |H2t) for all θ andt—and hence beliefs are always common.

Individual learning then immediately implies common learning.

At the other extreme, we have independent signals. Here, the fact that agent`

learnsnothingabout agent̀̂’s signals ensures common learning.

Proposition 2 Suppose each agent learnsΘ and that for eachθ ∈Θ, the stochas-

tic processes{ζ θ
1t}∞

t=0 and{ζ θ
2t}∞

t=0 are independent. Then the agents commonly

learn Θ.

Proof. Our task is to show that under a given parameterθ and for anyq <

1, the event thatθ is commonq-belief occurs with at least probabilityq for all

sufficiently larget. We let Ft ≡ {θ} ∩B
√

q
t (θ) and verify thatFt satisfies the

sufficient conditions for common learning provided inCorollary 1

(i) BecauseFt ⊂ B
√

q
t (θ)⊂ Bq

t (θ), parameterθ is q-believed onFt at timet.

(ii) To showPθ (Ft)> q, note that independence impliesPθ (Ft)= ∏` Pθ (B
√

q
`t (θ)).

By (1), we can chooseT sufficiently large thatPθ (B
√

q
`t (θ)) >

√
q for all ` and all

t > T and hencePθ (Ft) > q.

(iii) To show thatFt is q-evident, we must show thatFt ⊂ Bq
`t(Ft) for ` =

1,2. By construction,Ft ⊂ B
√

q
`t (θ). SinceB

√
q

`t (θ) ∈ H`t , on Ft agent̀ attaches

probability 1 to the state being inB
√

q
`t (θ) and we have

Bq
`t(Ft) ={ω : E[1

B
√

q
`t (θ)

1
B
√

q
ˆ̀t

(θ)∩{θ}
|H`t ]≥ q}

={ω : 1
B
√

q
`t (θ)

E[1
B
√

q
ˆ̀t

(θ)∩{θ}
|H`t ]≥ q}

=B
√

q
`t (θ)∩Bq

`t(B
√

q
ˆ̀t

(θ)∩{θ}).
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Thus, it suffices to show that on the setFt , agent̀ attaches at least probabilityq

to the eventB
√

q
ˆ̀t

(θ)∩{θ}, ˆ̀ 6= `. As above, (1) allows us to chooseT sufficiently

large thatPθ (B
√

q
`t (θ)) >

√
q for all ` and allt > T. The conditional independence

of agents’ signals implies that, givenθ , agent̀ ’s history is uninformative about
ˆ̀’s signals, and hencePθ (B

√
q

ˆ̀t
(θ) |H`t) >

√
q.1 But, onFt , we haveP(θ |H`t) >

√
q. Consequently, again onFt

P(B
√

q
ˆ̀t

(θ)∩{θ} |H`t) = Pθ (B
√

q
ˆ̀t

(θ) |H`t)P(θ |H`t) > q, (3)

and we have the desired result.

Remark 2 (Arbitrary finite number of agents) The proof ofProposition 2cov-

ers an arbitrary finite number of agents once we redefineFt as {θ} ∩B
n√q

t (θ),
wheren is the number of agents.

�

The role of independence in this argument is to ensure that agent`’s signals

provide` with no information about̀̂’s signals. Agent̀ thus not only learns the

parameter, but eventually thinks it quite likely thatˆ̀ has also learned the (same)

parameter (having no evidence to the contrary). In addition, we can place a lower

bound, uniform across agent`’s histories, on how confident agent` is that ˆ̀ shares

`’s confidence in the parameter (see (3)). This suffices to establish common learn-

ing.

One would expect common learning to be more likely the more information`

has about̀̂ , so that̀ has a good idea of̀̂’s beliefs. When signals are correlated,

`’s signals will indeed often provide useful information aboutˆ̀’s, accelerating

the rate at which̀ learns about̀̂ and reinforcing common learning. Clearly this

1Since conditional probabilities are only unique forP-almost all states, the setFt depends upon
the choice of version of the relevant conditional probabilities. In the proof, we have selected the

constant functionPθ (B
√

q
ˆ̀t

(θ)) as the version ofPθ (B
√

q
ˆ̀t

(θ) | H`t). For other versions of condi-
tional probabilities, the definition ofFt must be adjusted to exclude appropriate zero probability
subsets.
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is the case for perfect correlation, but perhaps surprisingly, intermediate degrees

of correlation can generate information that may disrupt common learning. The

danger is that agent 1 may have observed signal frequencies “just” close enough

to lead to some fixed degree of confidence in the value of the parameter, but in the

process may have received evidence that 2’s frequencies are on the “wrong side”

of her corresponding boundary, even though quite close to it. We show this by

example inSection 4.

3 Sufficient Conditions for Common Learning

3.1 Common Learning

For our positive result, we assume that the signal sets are finite.

Assumption 1 (Finite Signal Sets)Agents1 and2 have finite signal sets, I and

J respectively.

We useI andJ to also denote the cardinality of setsI andJ, trusting the context

will prevent confusion.

We denote the probability distribution of the agents’ signals conditional onθ

by (πθ (i j ))i∈I , j∈J ∈∆(I×J). Hence,πθ (i j ) is the probability that(z1t ,z2t) = (i, j)
for parameterθ and everyt. For eachθ ∈Θ, let

Iθ ≡ {i ∈ I : ∑ j π
θ (i j ) > 0}

and Jθ ≡ {l ∈ J : ∑i π
θ (i j ) > 0}

be the sets of signals that appear with positive probability under parameterθ .

Denote
(
πθ (i j )

)
i∈Iθ , j∈Jθ by Πθ .

We defineφ θ (i) ≡ ∑ j πθ (i j ) to denote the marginal probability of agent 1’s

signal i and ψθ ( j) = ∑i π
θ (i j ) to denote the marginal probability of agent 2’s

signal j. We letφ θ = (φ θ (i))i∈Iθ andψθ = (ψθ ( j)) j∈Jθ be the row vectors of

expected frequencies of the agents’ signals under parameterθ . Notice that we
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restrict attention to those signals that appear with positive probability under pa-

rameterθ in defining the vectorsφ θ andψθ .

GivenAssumption 1, the following is equivalent to (1).

Assumption 2 (Individual Learning) For every pairθ andθ ′, the marginal dis-

tributions are distinct, i.e.φ θ 6= φ θ ′ andψθ 6= ψθ ′.

Our main result is:

Proposition 3 UnderAssumption 1andAssumption 2, the agents commonly learn

Θ.

Remark 3 (The role of the common prior and agreement onπθ ) Though we have

conserved on notation by presentingProposition 3in terms of a common prior, the

analysis applies with little change to a setting where the two agents have different

but commonly known priors. Indeed, the priors need not be commonly known—it

is enough that there be a commonly known bound on the minimum probability

any parameter receives in each agent’s prior. We can modifyLemma 3to still find

a neighborhood of signals frequencies in which every “type” of agenti will assign

high probability to the true parameter. The rest of the proof is unchanged.

Our model also captures settings in which the agents have different beliefs

about the conditional signal-generating distributions(πθ (i j ))i∈I , j∈J. In particular,

such differences of opinion can be represented as different beliefs about a param-

eter φ θ that determines the signal-generating process givenθ . The model can

then be reformulated as one in which agents are uncertain about the joint parame-

ter(θ ,φ θ ) (but know the signal-generating process conditional on this parameter)

and our analysis applied.

Our work is complementary toAcemoglu, Chernozhukov, and Yildiz(2006),

who consider environments in which even arbitrarily large samples of common

data may not reconcile disagreements in agents’ beliefs.Acemoglu, Chernozhukov,

and Yildiz(2006) stress the possibility that the agents in their model may not know

the signal-generating process(πθ (i j ))i∈I , j∈J, but we have just argued that this is
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not an essential distinction in our context. The key difference is that the signal-

generating processes considered byAcemoglu, Chernozhukov, and Yildiz(2006)

need not suffice for individual learning. In our context, it is unsurprising that

common learning need not hold when individual learning fails.

�

3.2 Outline of the Proof

Let ft(i j ) denote the number of periods in which agent 1 has received the signal

i and agent 2 received the signalj before periodt. Defining f2t( j) ≡ ∑i ft(i j )
and f1t(i)≡ ∑ j ft(i j ), the realized frequencies of the signals are given by the row

vectorsφ̂t ≡ ( f1t(i)/t)i∈I andψ̂t ≡ ( f2t( j)/t) j∈J. Finally, let φ̂ θ
t = ( f1t(i)/t)i∈Iθ

denote the realized frequencies of the signals that appear with positive probability

under parameterθ , with a similar convention for̂ψθ .

The main idea of the proof is to classify histories in terms of the realized

frequencies of signals observed and, for givenq∈ (0,1), to identify events such

asBq
1t(θ) andBq

1t(B
q
2t(θ)) with events exhibiting the appropriate frequencies.

Section3.4 develops the tools required for working with frequencies. The

analysis begins with an open neighborhood of frequencies within which each

agent will assign high probability to parameterθ . Indeed,Lemma 3shows that

there is aδ > 0 so that whenever 1’s observed frequency distributionφ̂t is within a

distanceδ of φ θ , his marginal signal distribution underθ , the posterior probability

he assigns toθ approaches one over time. LetF1t(0) denote thisδ -neighborhood

of φ θ ,

F1t(0)≡
{

ω :
∥∥∥φ̂

θ
t −φ

θ

∥∥∥ < δ

}
.

By the weak law of large numbers, the probability underθ that the realized fre-

quency falls inF1t(0) converges to one (Lemma 4).

Next, we consider the set of frequencies that characterize the event that 1 as-

signs high probability toθ and to 2 assigning high probability toθ . This involves

three steps.
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STEP 1: Since the event we are interested in implies that 1 assigns high prob-

ability to θ , we can approximate 1’s beliefs about 2 by his beliefs conditional on

θ being the true parameter.

STEP 2: We now introduce an object that plays a central role in the proof, the

Iθ × Jθ matrix Mθ
1 whosei j th element isπθ (i j )

φ θ (i) , i.e. the conditional probability

under parameterθ of signal j given signali. At any datet, when agent 1 has

realized frequency distribution̂φt , his estimate (expectation) of the frequencies

observed by agent 2conditional on parameterθ is given by the matrix product

φ̂
θ
t Mθ

1 .

The corresponding matrix for agent two, denotedMθ
2 , is theJθ × Iθ matrix with

ji th elementπ
θ (i j )

ψθ ( j) .

We now make a key observation relatingφ θ , ψθ , Mθ
1 , andMθ

2 . Let Dθ
1 be the

Iθ × Iθ diagonal matrix withith diagonal element(φ θ (i))−1 and lete be a row

vector of 1’s. It is then immediate that

φ
θ Mθ

1 = φ
θ Dθ

1Πθ = eΠθ = ψ
θ . (4)

A similar argument implies

ψ
θ Mθ

2 = φ
θ . (5)

Note that the product̂φ θ
t Mθ

1 Mθ
2 gives agent 1’s expectation of agent 2’s expec-

tation of the frequencies observed by agent 1 (conditional onθ ). Moreover,

Mθ
12 ≡ Mθ

1 Mθ
2 is a Markov transition matrix on the setIθ of signals for agent

1.2 Section3.3collects some useful properties of this Markov process.

From (4), the continuity of the linear mapMθ
1 implies that whenever 1’s fre-

quencies are in a neighborhood ofφ θ , we are assured that 1 expects that 2’s fre-

quencies are in the neighborhood ofψθ , and hence that 2 assigns high probability

to θ . Of course, “expecting” that 2 assigns high probability toθ is not the same as

2This perspective is inspired bySamet(1998).
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assigning high probability to it, and we must account for the error in 1’s estimate

of 2’s frequencies, leading to the third step.

STEP 3: We need to bound the probability of any large error in this estimate.

Lemma 5shows that conditional onθ , there is a timeT after which the probability

that 2’s realized frequencies are more than some givenε away from 1’s estimate

(φ̂ θ
t Mθ

1 ) is less thanε. A crucial detail here is that this bound applies uniformly

across all histories for 1. There is thus a neighborhood ofφ θ such that if 1’s fre-

quencyφ̂ θ
t falls in this neighborhood for sufficiently larget, then agent 1 assigns

high probability to the event that 2 assigns high probability toθ . LetF1t(1) denote

this neighborhood, which we can equivalently think of as a neighborhood ofψθ

into which φ̂ θ
t Mθ

1 must fall, that is,

F1t(1)≡
{

ω :
∥∥∥φ̂

θ
t Mθ

1 −ψ
θ

∥∥∥ < δ − ε

}
,

whereε is small and determined below.

For sufficiently larget, the intersectionF1t(0)∩F1t(1) ≡ F1t is contained in

Bq
1t(B

q
1t(θ)∩Bq

2t(θ)) = Bq
1t(θ)∩Bq

1t(B
q
2t(θ)), providing the first steps toward com-

mon learning. However, in order to showq-common belief, we need to show that

all orders of iterated (joint)q-belief can be obtained on neighborhoods ofφ θ and

ψθ , and common learning requires in addition these neighborhoods have high

probability. Rather than attempting a direct argument, we applyCorollary 1.

Suppose (for the sake of exposition) that every element ofMθ
12 is strictly pos-

itive. In that case,Mθ
12 is a contraction when viewed as a mapping on∆Iθ , a

property critical to our argument. Hence, for somer ∈ (0,1), if 1’s frequencies

are within δ of φ θ , then 1’s prediction of 2’s prediction of 1’s frequencies are

within rδ of φ θ . Consequently, iteratingBq
1t andBq

2t does not lead to “vanishing”

events.

Fix θ and a periodt large. A natural starting point would be to tryF1t ∩
F2t (whereF2t is defined similarly for agent 2 toF1t) as a candidate forFt in

Corollary 1. But since we also needFt to be likely underθ , we intersect these sets

with the event{θ} so thatFt ≡ F1t ∩F2t ∩{θ}.
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Observe that̂φ θ
t ∈ F1t(0) for all ω ∈ Ft by construction. It is also intuitive

(and indeed true) thatθ is q-believed onFt at time t and thatPθ (Ft) > q for

sufficiently larget. It remains to verify that the setFt is q-evident at timet, that is,

Ft ⊂ Bq
t (Ft) = Bq

1t(Ft)∩Bq
2t(Ft). It suffices to argue that

F1t ∩{θ} ⊂ Bq
1t(F1t ∩F2t ∩{θ})

(the argument is symmetric for agent 2).

We first note thatF̀ t ∈H`t (i.e., agent̀ knows the eventF̀ t in periodt). Next,

a straightforward application of the triangle inequality yields

F1t(1)∩ F̂1t(1)⊂ F2t(0),

whereF̂1t(1)≡
{

ω :
∥∥φ̂ θ

t Mθ
1 − ψ̂θ

t

∥∥ < ε
}

is the event that 2’s realized frequencies

are close to 1’s estimate. Note that the eventF̂1t(1) may not be known by either

agent (i.e., we may havêF1t(1) 6∈H`t for ` = 1,2).

SinceMθ
2 is a stochastic matrix, for allω ∈ F̂1t(1), we have

∥∥φ̂ θ
t Mθ

1 Mθ
2 − ψ̂θ Mθ

2

∥∥
< ε. We now setε small enough thatrδ < δ −2ε. SinceMθ

12 is a contraction with

fixed pointφ θ (see (4) and (5)), we have, again from the triangle inequality,

F1t(0)∩ F̂1t(1)⊂ F2t(1).

Hence,F1t ∩ F̂1t(1)⊂ F2t , and so

F1t ∩ F̂1t(1)∩{θ} ⊂ F2t ∩{θ}.

But, fromLemma 5(recall step 3) we know that{θ}⊂Bq
1t(F̂1t(1)∩{θ}) for large

t. Consequently,

F1t ∩{θ} ⊂ Bq
1t(F1t ∩ F̂1t(1)∩{θ})⊂ Bq

1t(F1t ∩F2t ∩{θ}),

and we are done.
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The proof ofProposition 3must account for the possibility that some elements

of Mθ
12 may not be strictly positive. However, as we show inLemma 2, sinceMθ

12

is irreducible when restricted to a recurrence class, some power of this restricted

matrix is a contraction. The proof proceeds as outlined above, with the definition

of F̀ t now taking into account the need to take powers ofMθ
12.

Remark 4 (Arbitrary finite number of agents) The restriction to two agents sim-

plifies the notation, but the result holds for any finite number of agents. We illus-

trate the argument for three agents (and keep the notation as similar to the two

agent case as possible). Denote agent 3’s finite set of signals byK. The joint

probability of the signal profilei jk ∈ I ×J×K underθ is πθ (i jk). In addition to

the marginal distributionsφ θ andψθ for 1 and 2, the marginal distribution for 3

is ϕθ . As before,Mθ
1 is the Iθ × Jθ matrix with i j th element∑k πθ (i jk)/φ θ (i)

(and similarly forM2). For the pair 1−3, we denote byNθ
1 the Iθ ×Kθ matrix

with ikth element∑ j πθ (i jk)/φ θ (i) (and similarly forNθ
3 ). Finally, for the pair

2−3, we have analogous definitions for the matricesQθ
2 andQθ

3 . As before,φ θ is

a stationary distribution ofMθ
1 Mθ

2 , but now also ofNθ
1 Nθ

3 ; similar statements hold

for ψθ and the transitionsMθ
2 Mθ

1 andQθ
2Qθ

3 , as well as forϕθ and the transitions

Nθ
3 Nθ

1 andQθ
3Qθ

2 .

Suppose (as in the outline and again for exposition only) that every element

of the various Markov transition matrices is non-zero, and letr < 1 now be the

upper bound on the modulus of contraction of the various contractions. The argu-

ment of the outline still applies, once we redefineF1t(1)≡ {ω :
∥∥φ̂ θ

t Mθ
1 −ψθ

∥∥ <

δ − ε}∩{ω :
∥∥φ̂ θ

t Nθ
1 −ϕθ

∥∥ < δ − ε} andF̂1t(1) ≡ {ω :
∥∥φ̂ θ

t Mθ
1 − ψ̂θ

∥∥ < ε}∩
{ω :

∥∥φ̂ θ
t Nθ

1 − ϕ̂θ
∥∥ < ε} (with similar definitions for the other two agents).

�

3.3 Preliminary Results: Expectations about Expectations

We summarize here some important properties of the Markov chains induced by

the transition matricesMθ
12 andMθ

21.
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Remark 5 (Markov Chains) From (4) and (5), the vectorφ θ is a stationary dis-

tribution for Mθ
12 and ψθ is a stationary distribution forMθ

21 ≡ Mθ
2 Mθ

1 . More-

over, the matrixMθ
12D

θ
1 = Dθ

1Πθ Dθ
2 [Πθ ]TDθ

1 is obviously symmetric and has a

nonzero diagonal (whereDθ
2 is the diagonal matrix whosejth diagonal element

is (ψθ ( j))−1 for j ∈ Jθ ). This first property implies that the Markov processMθ
12

with initial distributionφ θ is reversible.3 Consequently, the process hasφ θ as a

stationary distribution when run backward as well as forward, and hence (since

φ θ (i) > 0 for all i ∈ Iθ ) has no transient states. The second property implies that

Mθ
12 has a nonzero diagonal and hence is aperiodic.

�

Remark 6 (Recurrent Classes)Two signalsi and i′ belong to the samerecur-

rence classunder the transition matrixMθ
12 if and only if the probability of a tran-

sition from i to i′ (in some finite number of steps) is positive.4 We let(Rθ
1(k))K

k=1

denote the collection of recurrence classes, and we order the elements ofIθ so

that the recurrence classes are grouped together and in the order of their indices.

This is a partition ofIθ because (from Remark5) there are no transient states.

Similarly, the matrixMθ
21 ≡ Mθ

2 Mθ
1 is a Markov transition on the setJθ that we

can partition into recurrence classes(Rθ
2(k))K

k=1.

Define a mappingξ from (Rθ
1(k))K

k=1 to (Rθ
2(k))K

k=1 by letting ξ (Rθ
1(k)) =

Rθ
2(k′) if there exist signalsi ∈Rθ

1(k) and j ∈Rθ
2(k′) with πθ (i j ) > 0. Thenξ is a

bijection (as already reflected in our notation). It is convenient therefore to group

the elements ofJθ by their recurrence classes in the same order as was done with

Iθ . We use the notationRθ (k) to refer to thekth recurrence class in eitherIθ or

Jθ when the context is clear. This choice of notation also reflects the equalities of

3As Mθ
12D

θ
1 is symmetric, the detailed balance equations atφ θ hold, i.e.,

φ
θ (i)Mθ

12(ii
′) = φ

θ (i′)Mθ
12(i

′i)

(Brémaud, 1999, page 81).
4Since the Markov process has no transient states, if the probability of a (finite-step) transition

from i to i′ is positive, then the probability of a (finite-step) transition fromi′ to i is also positive.
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the probabilities ofRθ
1(k) andRθ

2(k) underθ , that is

φ
θ (Rθ

1(k))≡ ∑
i∈Rθ

1 (k)

φ
θ (i) = ∑

j∈Rθ
2 (k)

ψ
θ ( j)≡ ψ

θ (Rθ
2(k)). (6)

Since agent 1 observes a signal inRθ
1(k) under parameterθ if and only if agent

2 observes a signal inRθ
2(k), conditional onθ the realized frequencies of the

recurrence classes also agree.

�

Let γθk denote a probability distribution overIθ that takes positive values

only on thekth recurrence classRθ (k), and denote the set of such distributions by

∆Rθ (k).

Lemma 2 There exist r< 1and a natural number n such that for all k∈{1, . . . ,K}
and for all γθk, γ̃θk in ∆Rθ (k)5

∥∥∥γ
θk(Mθ

12)
n− γ̃

θk(Mθ
12)

n
∥∥∥≤ r

∥∥∥γ
θk− γ̃

θk
∥∥∥ (7)

and similarly for(Mθ
21)

n.

Proof. We have noted thatMθ
12 is aperiodic. By definition, the restriction of

Mθ
12 to any given recurrence class is irreducible and hence ergodic. Thus, because

signals are grouped by their recurrence classes, there exists a natural numbern

such that(Mθ
12)

n has the block-diagonal form with each block containing only

strictly positive entries. The blocks consist of the non-zeron-step transition prob-

abilities between signals within a recurrence class. The product ofγθk with (Mθ
12)

n

is just the product ofγθk restricted toRθ (k) with thekth block of(Mθ
12)

n. Because

it has all non-zero entries, thekth block is a contraction mapping (Stokey and Lu-

cas, 1989, Lemma 11.3). In particular, there exists anr < 1 such that (7) holds.

5For anyx∈ RN, ‖x‖ ≡ ∑N
k=1 |xk| is the variation norm ofx.
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3.4 Preliminary Results: Frequencies are Enough

Let φ̂ θk denote the distribution overIθ obtained by conditioninĝφ on thekth

recurrence classRθ (k) (for those cases in whicĥφ θ (Rθ (k)) > 0), and letφ θk,

ψθk, andψ̂θk
t be analogous.

Our first result shows that if agent 1’s signal frequencies are sufficiently close

to those expected underθ , the posterior probability he attaches to parameterθ

approaches one.

Lemma 3 There existδ ∈ (0,1), β ∈ (0,1), and a sequenceξ : N → [0,1] with

ξ (t)→ 1 such that

P(θ | h1t)≥ ξ (t)

for all θ ∈ Θ and h1t satisfying P(θ | h1t) > 0,
∥∥φ̂ θk

t −φ θk
∥∥ < δ for all k, and

β <
φ̂ θ

t (Rθ (k))
φ θ (Rθ (k)) < β−1 for all k. An analogous result holds for agent2.

Proof. Fix a parameterθ andδ̃ < mini,θ{φ θ (i) : φ θ (i)> 0}. Then
∥∥φ̂ θk

t −φ θk
∥∥

< δ̃ for all k only if φ̂t puts strictly positive probability on every signali ∈ Iθ . For

θ ′ andh1t with P(θ ′ | h1t) > 0, define the ratio

λ
θθ ′
1t ≡ log

P(θ | h1t)
P(θ ′ | h1t)

= log
φ θ (it−1)P(θ | h1t−1)
φ θ ′(it−1)P(θ ′ | h1t−1)

.

We now show thatβ andδ ≤ δ̃ can be chosen so that there existsη > 0 with the

property that

λ
θθ ′
1t ≥ λ

θθ ′
10 + tη ∀θ

′ 6= θ

for all θ ′ ∈Θ and historiesh1t for which
∥∥φ̂ θk

t −φ θk
∥∥ < δ̃ for all k and for which

λ θθ ′
1t is defined. Notice thatλ θθ ′

10 = p(θ)
p(θ ′) is the log-likelihood ratio at time zero,

that is, the ratio of prior probabilities.

Our choice ofδ̃ , implying that every signali ∈ Iθ has appeared in the history

h1t , ensures thatP(θ ′|h1t) > 0 (and henceλ θθ ′
1t is well defined) only ifIθ ⊂ Iθ ′.

This in turn ensures that the following expressions are well defined (in particular,

having nonzero denominators). Because signals are distributed independently and
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identically across periods,λ θθ ′
1t can be written as

λ
θθ ′
1t = λ

θθ ′
10 +

t−1

∑
s=0

log

(
φ θ (is)
φ θ ′(is)

)
.

We find a lower bound for the last term. Let

Hθθ ′ ≡ Eθ

(
log

φ θ (i)
φ θ ′(i)

)
> 0

denote the relative entropy ofφ θ with respect toφ θ ′. Then,∣∣∣∣∣t−1

∑
s=0

log

(
φ θ (is)
φ θ ′(is)

)
− tHθθ ′

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i∈Iθ

f1t(i) log

(
φ θ (i)
φ θ ′(i)

)
− t ∑

i∈Iθ

φ
θ (i) log

(
φ θ (i)
φ θ ′(i)

)∣∣∣∣∣
= t

∣∣∣∣∣ ∑
i∈Iθ

(φ̂ θ
t (i)−φ

θ (i)) log

(
φ θ (i)
φ θ ′(i)

)∣∣∣∣∣
≤ t ∑

i∈Iθ

∣∣∣∣(φ̂ θ
t (i)−φ

θ (i)) log

(
φ θ (i)
φ θ ′(i)

)∣∣∣∣
≤ t logb‖φ̂

θ
t −φ

θ‖

for b = maxi,θ ,θ ′∈Θ

{
φ θ (i)
φ θ ′(i)

: φ θ (i) > 0
}

. By Assumption2, b > 1. Thus,

λ
θθ ′
1t ≥ λ

θθ ′
10 + t

(
Hθθ ′− logb

∥∥∥φ̂
θ
t −φ

θ

∥∥∥)
.

We now argue thatδ ≤ δ̃ andβ can be chosen to ensureHθθ ′− logb
∥∥φ̂ θ

t −φ θ
∥∥ >

η for all θ ,θ ′ and someη > 0. For this, it is enough to observe that the mapping({
φ̂

θ
t (Rθ (k))

}
k
,
{

φ̂
θk
t

}
k

)
7→∑

k
∑
i∈k

∣∣∣φ̂ θ
t (Rθ (k))φ̂ θk

t (i)−φ
θ (i)

∣∣∣ =
∥∥∥φ̂

θ
t −φ

θ

∥∥∥
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is continuous and equals zero if and only ifφ̂ θ
t (Rθ (k)) = φ θ (Rθ (k)) and φ̂ θk

t =
φ θk for all k.

We thus haveδ andβ such that forθ andh1t satisfying the hypotheses of the

lemma andθ ′ with P(θ ′ | h1t) > 0, it must be thatλ θθ ′
1t ≥ λ θθ ′

10 + tη and hence

p(θ ′)
p(θ)

≥ P(θ ′|h1t)
P(θ |h1t)

etη .

Noting that this inequality obviously holds forθ ′ with P(θ ′ | h1t) = 0, we can sum

overθ ′ 6= θ and rearrange to obtain

P(θ | h1t)
1−P(θ | h1t)

≥ p(θ)
1− p(θ)

etη ,

giving the required result.

We next note that with high probability, observed frequencies match their ex-

pected values. Together with Lemma3, this implies that each agent learnsΘ.

Lemma 4 For all ε > 0 andθ , Pθ (
∥∥φ̂ θ

t −φ θ
∥∥ < ε)→ 1 and Pθ (

∥∥ψ̂θ
t −ψθ

∥∥ <

ε)→ 1 as t→ ∞.

Proof. This follows from the Weak Law of Large Numbers (Billingsley, 1979,

p. 86).

We now show that each agent believes that, conditional on any parameterθ ,

his or her expectation of the frequencies of the signals observed by his or her

opponent is likely to be nearly correct. Recall thatφ̂ θ
t Mθ

1 is agent 1’s expectation

of 2’s frequenciesψ̂θ
t and thatψ̂θ

t Mθ
2 is agent 2’s expectation of 1’s frequencies

φ̂ θ
t .

Lemma 5 For any ε1 > 0, ε2 > 0, there exists T such that for all t> T and for

every ht with Pθ (ht) > 0,

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1 | h1t

)
> 1− ε2 (8)
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and

Pθ

(∥∥∥ψ̂
θ
t Mθ

2 − φ̂
θ
t

∥∥∥ < ε1 | h2t

)
> 1− ε2. (9)

Proof. We focus on (8); the argument for (9) is identical. Definingψ̄θ
t ≡

φ̂ θ
t Mθ

1 , the left side of (8) is bounded below:

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

∣∣∣ h1t

)
≥ 1− ∑

j∈Jθ

Pθ

(∣∣∣ψ̄θ
t ( j)− ψ̂

θ
t ( j)

∣∣∣≥ ε1

Jθ

∣∣∣ h1t

)
.

(10)

Conditional onθ andh1t , agent 2’s signals are independently, butnot iden-

tically, distributed across time. In periods, given signalis, agent 2’s signals are

distributed according to the conditional distribution(πθ (is j)/φ θ (is)) j . However,

we can bound the expression on the right side of (10) using a related process ob-

tained by averaging the conditional distributions. The average probability that

agent 2 observes signalj over thet periods{0,1, . . . , t−1}, conditional onh1t is

1
t

t−1

∑
s=0

πθ (is j)
φ θ (is)

= ∑
i

φ̂t(i)
πθ (i j )
φ θ (i)

= ψ̄
θ
t ( j),

agent 1’s expectation of the frequency that 2 observedj.

Consider nowt independent and identically distributed draws of a random

variable distributed onJθ according to the “average” distribution̄ψθ
t ∈ ∆(Jθ ); we

refer to this process as the average process. Denote the frequencies of signals

generated by the average process byηt ∈ ∆(Jθ ). The process generating the fre-

quenciesψ̂t attaches the same average probability to each signalj over periods

0, . . . , t−1 as does the average process, but does not have identical distributions

(as we noted earlier).

We use the average process to bound the terms in the sum in (10). By Hoeffd-

ing (1956, Theorem 4, p. 718), the original process is more concentrated about its
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mean than is the average process, that is,6

P̃
(∣∣∣ψ̄θ

t ( j)−ηt( j)
∣∣∣≥ ε1

Jθ

)
≥ Pθ

(∣∣∣ψ̄θ
t ( j)− ψ̂

θ
t ( j)

∣∣∣≥ ε1

Jθ

∣∣∣ h1t

)
, j ∈ Jθ ,

whereP̃ is the measure associated with the average process. Applying this upper

bound to (10), we have

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

∣∣∣ h1t

)
≥ 1− ∑

j∈Jθ

P̃
(∣∣∣ψ̄θ

t ( j)−ηt( j)
∣∣∣≥ ε1

Jθ

)
. (11)

The event{|ψ̄θ
t ( j)−ηt( j)| > ε1/Jθ} is the event that the realized frequency of

a Bernoulli process is far from its mean. By a large deviation inequality ((42) in

Shiryaev(1996, p. 69)),

P̃
(
|ψ̄θ

t ( j)−ηt( j)|> ε1

Jθ

)
≤ 2e−2tε2

1/(Jθ )2
.

Using this bound in (11), we have

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

∣∣∣ h1t

)
≥ 1−2Jθ e−2tε2

1/(Jθ )2
.

This inequality holds for any historyh1t . We can thus chooset large enough so

that the right-hand side is less thanε2 and the statement of the lemma follows.

3.5 Proof ofProposition 3

We fix an arbitrary parameterθ and define a sequence of eventsFt (suppressing

notation for the dependence ofFt on θ ), and show thatFt has the three requisite

properties fromCorollary 1for sufficiently larget.

6For example, 100 flips of a(p,1− p) coin generates a more dispersed distribution than 100p
flips of a(1,0) coin and 100(1− p) flips of a(0,1) coin.
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The eventFt . Let δ ∈ (0,1) andβ ∈ (0,1) be the constants identified inLemma 3.

Pick ε > 0 such thatrδ < δ −2nε wherer < 1 andn are identified inLemma 2.

For each datet, we define the eventFt as follows.

First, we ask that agent 1’s realized frequency of signals fromIθ and 2’s from

Jθ be close to the frequencies expected underθ . For eachk, define the events

Fk
1t(0)≡

{
ω :

∥∥∥φ̂
θk
t −φ

θk
∥∥∥ < δ

}
(12)

and Fk
2t(0)≡

{
ω :

∥∥∥ψ̂
θk
t −ψ

θk
∥∥∥ < δ

}
. (13)

Lemma 2ensures that
∥∥φ̂ θk

t (Mθ
12)

n−φ θk(Mθ
12)

n
∥∥ will then be smaller thanδ on

Fk
1t(0). We define our event so that the same is true for all powers ofMθ

12 between

0 andn. Hence, for anyl ∈ {1, . . . ,n} and for eachk, let

Fk
1t(2l −1)≡

{
ω :

∥∥∥φ̂
θk
t (Mθ

12)
l−1Mθ

1 −ψ
θk

∥∥∥ < δ − (2l −1)ε
}

(14)

and Fk
1t(2l)≡

{
ω :

∥∥∥φ̂
θk
t (Mθ

12)
l −φ

θk
∥∥∥ < δ −2lε

}
. (15)

Similarly, for agent 2,

Fk
2t(2l −1)≡

{
ω :

∥∥∥ψ̂
θk
t (Mθ

21)
l−1Mθ

2 −φ
θk

∥∥∥ < δ − (2l −1)ε
}

(16)

and Fk
2t(2l)≡

{
ω :

∥∥∥ψ̂
θk
t (Mθ

21)
l −ψ

θk
∥∥∥ < δ −2lε

}
. (17)

Next, define the events

F1t ≡
K⋂

k=1

2n−1⋂
κ=0

Fk
1t(κ)≡

K⋂
k=1

Fk
1t ≡

2n−1⋂
κ=0

F1t(κ),

F2t ≡
K⋂

k=1

2n−1⋂
κ=0

Fk
2t(κ)≡

K⋂
k=1

Fk
2t ≡

2n−1⋂
κ=0

F2t(κ),

[θ ]≡
{

ω ∈ {θ}× (I ×J)∞ : Pθ (h`t) > 0, ` ∈ {1,2}, t = 0,1, . . .
}

,
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and

Gθ
t ≡[θ ]∩

{
β <

φ̂t(Rθ (k))
φ θ (Rθ (k))

< β
−1, ∀k

}
≡ [θ ]∩G1t (18)

=[θ ]∩
{

β <
ψ̂t(Rθ (k))
ψθ (Rθ (k))

< β
−1, ∀k

}
≡ [θ ]∩G2t . (19)

The equality of the two descriptions ofGθ
t follows from Remark 6. Finally, we

define the eventFt ,

Ft ≡ F1t ∩F2t ∩Gθ
t .

In the analysis that follows, we simplify notation by using{‖· ‖ < ε} to denote

the event{ω : ‖· ‖< ε}.

θ is q-believed onFt . By definition Ft ⊂ F1t(0)∩F2t(0)∩Gθ
t . Lemma 3then

implies that for anyq < 1, we haveFt ⊂ Bq
t (θ) for all t sufficiently large.

Ft is likely under θ . If φ̂ t = φ θ andψ̂ t = ψθ , then the inequalities (12)–(19) ap-

pearing in the definitions of the setsF1t , F2t , andGθ
t are strictly satisfied (because

φ θkMθ
1 = ψθk andψθkMθ

2 = φ θk for eachk). The (finite collection of) inequali-

ties (12)–(19) are continuous in̂φ t andψ̂ t and independent oft. Hence, (12)–(19)

are satisfied for anŷφ t andψ̂ t sufficiently close toφ θ andφ θ . We can therefore

chooseε† > 0 sufficiently small such that

{‖φ̂
t −φ

θ‖< ε
†, ‖ψ̂

t −ψ
θ‖< ε

†}∩ [θ ] ⊂ Ft , ∀t.

By Lemma 4, thePθ -probability of the set on the left side approaches one ast

gets large, ensuring that for allq∈ (0,1), Pθ (Ft) > q for all large enought.

Ft is q-evident. We show that for anyq, Ft is q-evident whent is sufficiently

large. Recalling thatε andβ were fixed in definingFt , chooseε1≡ εβ min j∈Jθ ψθ ( j).
Note thatε1/ψ̂θ (Rθ (k)) < ε on the eventsF1t ∩Gθ

t andF2t ∩Gθ
t .
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[STEP 1] The first step is to show that if the realized frequencies of agent 1’s

signals are close to their population frequencies underθ and his expectations of

agent 2’s frequencies are not too far away from agent 2’s realized frequencies,

then (conditional onθ ) the realized frequencies of agent 2’s signals are also close

to their population frequencies underθ . In particular, we show

F1t ∩Gθ
t ∩

{∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

}
⊂ F2t . (20)

First, fix k and note that for eachl = 1, . . . ,n,

Fk
1t(2l)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε}

⊂ Fk
1t(2l)∩{

∥∥∥φ̂
θk
t (Mθ

12)
l − ψ̂

θk
t (Mθ

21)
l−1Mθ

2

∥∥∥ < ε}

= {
∥∥∥φ̂

θk
t (Mθ

12)
l −φ

θk
∥∥∥ < δ −2lε}∩{

∥∥∥φ̂
θk
t (Mθ

12)
l − ψ̂

θk
t (Mθ

21)
l−1Mθ

2

∥∥∥ < ε}

⊂ {
∥∥∥ψ̂

θk
t (Mθ

21)
l−1Mθ

2 −φ
θk

∥∥∥ < δ − (2l −1)ε}

= Fk
2t(2l −1). (21)

The first inclusion uses the fact that(Mθ
21)

l−1Mθ
2 is a stochastic matrix. The equal-

ities use the definitions ofFk
1t(2l) andFk

2t(2l −1). The last inclusion is a conse-

quence of the triangle inequality. Similarly, forl = 1, . . . ,n, we have

Fk
1t(2l −1)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε} ⊂ Fk
2t(2(l −1)).

This suffices to conclude that

2n−1⋂
κ=1

Fk
1t(κ)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε} ⊂
2n−2⋂
κ=0

Fk
2t(κ). (22)

26



We next note that

Fk
1t(0)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε} ⊂ Fk
1t(2n)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε}

⊂ Fk
2t(2n−1), (23)

whereFk
1t(0) ⊂ Fk

1t(2n) is an implication ofφ θk(Mθ
12)

n = φ θk, Lemma 2, and

our choice ofε andn; while the second inclusion follows from (21) (for l = n).

Combining (22)–(23) for k = 1, . . . ,K, we have

F1t ∩
⋂
k

{∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε

}
⊂ F2t . (24)

As the matrixMθ
1 maps recurrence classes to recurrence classes, onGθ

t we

have that

‖φ̂
θ
t Mθ

1 − ψ̂
θ
t ‖ = ∑

k

‖φ̂
θ
t (Rθ (k))φ̂ θk

t Mθ
1 − ψ̂

θ
t (Rθ (k))ψ̂θk

t ‖

> ‖φ̂
θ
t (Rθ (k))φ̂ θk

t Mθ
1 − ψ̂

θ
t (Rθ (k))ψ̂θk

t ‖

= ψ̂
θ
t (Rθ (k))‖φ̂

θk
t Mθ

1 − ψ̂
θk
t ‖,

sinceφ̂ θ
t (Rθ (k)) = ψ̂θ

t (Rθ (k)) on [θ ] (recall Remark 6). Our choice ofε1 then

yields that, onF1t ∩Gθ
t ,∥∥∥φ̂

θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1 ⇒ ε >
ε1

ψ̂θ
t (Rθ (k))

> ‖φ̂
θk
t Mθ

1 − ψ̂
θk
t ‖, ∀k.

Therefore

F1t ∩Gθ
t ∩

{∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

}
⊂ F1t ∩

⋂
k

{∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε

}
,

and by (24) we have proved (20).

[STEP 2] We now conclude the proof ofq-evidence. Pickp∈
(√

q,1
)

and set

ε2 = 1− p in Lemma 5.
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Consider the eventF1t ∩Gθ
t . For t sufficiently large, given any history consis-

tent with a state inF1t∩Gθ
t , agent 1 attaches at least probabilityp to θ (F1t∩Gθ

t ⊂
Bp

1t(θ)) (Lemma3). Conditional onθ we have, byLemma 5, that for larget, agent

1 attaches probability at leastp to
∥∥φ̂ θ

t Mθ
1 − ψ̂θ

t

∥∥ < ε1. Hence

F1t ∩Gθ
t ⊂ Bp2

1t

({∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

}
∩ [θ ]

)
.

SinceF1t ∩G1t is measurable with respect toH1t andGθ
t = [θ ]∩G1t , we have

F1t ∩Gθ
t ⊂ Bp2

1t

(
F1t ∩Gθ

t ∩
{∥∥∥φ̂

θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

})
,

and hence, from (20),

F1t ∩Gθ
t ⊂ Bp2

1t

(
F1t ∩F2t ∩Gθ

t

)
= Bp2

1t (Ft) . (25)

A similar argument for agent 2 givesF2t ∩Gθ
t ⊂ Bp2

2t (Ft) and thusFt ⊂ Bp2

t (Ft)⊂
Bq

t (Ft) for sufficiently larget.

4 A Counterexample to Common Learning

This section presents an example in whichAssumption 1fails and common learn-

ing does not occur, although the agents do privately learn. There are two values

of the parameter,θ ′ andθ ′′, satisfying 0< θ ′ < θ ′′ < 1. Signals are nonnegative

integers. The distribution of signals is displayed inFigure 2.7 If we setθ ′ = 0

andθ ′′ = 1 , then we can view one period of this process as an instance of the

signals inRubinstein’s (1989) electronic mail game, where the signal corresponds

to the number of “messages” received.8 It is immediate that the agents faced with

7It would cost only additional notation to replace the single valueε in Figure2 with heteroge-
neous values, as long as the resulting analogue of (26) is a collection whose values are bounded
away form 0 and 1.

8Rubinstein(1989) is concerned with whether a single signal drawn from this distribution
allows agents to condition their action on the state, while we are concerned with whether an arbi-
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Probability Player-1 signal Player-2 signal
θ 0 0

ε(1−θ) 1 0
(1− ε)ε(1−θ) 1 1

(1− ε)2ε(1−θ) 2 1
(1− ε)3ε(1−θ) 2 2
(1− ε)4ε(1−θ) 3 2
(1− ε)5ε(1−θ) 3 3

...
...

...

Figure 2: The distribution of signals for the counterexample given parameterθ ∈
{θ ′,θ ′′}, whereε ∈ (0,1).

a sequence of independent draws from this distribution learnΘ. We now show

that common learning does not occur.

What goes wrong when trying to establish common learning in this context,

and how does this depend upon the infinite set of signals? Establishing common

q-belief in parameterθ requires showing that if agent 1 has observed signals just

on the boundary of inducing probabilityq that the parameter isθ , then agent 1

nonetheless believes 2 has seen signals inducing a similar belief (and believes that

2 believes 1 has seen such signals, and so on). In the case of finite signals, a

key step in this argument is the demonstration that (an appropriate power of) the

Markov transition matrixMθ
12 is a contraction. In the current case, the correspond-

ing Markov process is not a contraction (though the marginal distribution is still

stationary). As a result, agent` can observe signals on the boundary of inducing

probability q of stateθ while believing that agent̀̂ has observed signals on the

“wrong side” of this boundary.

The first step in our argument is to show that, regardless of what agents have

trarily large number of signals suffices to commonly learn the parameter. Interestingly, repeated
observation of the original Rubinstein process (i.e.,θ ′ = 0 andθ ′′ = 1) leads to common learning.
In particular, consider the eventFt at datet that the state isθ ′ and no messages have ever been re-
ceived. This event isq(t)-evident whereq(t) approaches 1 ast approaches infinity, since 1 assigns
probability 1 and 2 assigns a probability approaching 1 toFt whenever it is true.
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observed,nth-order beliefs attach positive probability to agent 2 having observed

larger and larger (and rarer and rarer) signals, asn gets larger (cf. (27) and (29)

below). We then argue that agents attaching strictly positiventh-order belief to

agent 2 having observed such extraordinarily rare signals will also attach strictly

positiventh order-belief to another rare event—that agent 2 hasneverseen a zero

signal (cf. (31)). Since zero signals are more likely under parameterθ ′′, this

ensures a positiventh-order belief in agent 2’s being being confident the parameter

is θ ′, even when it is not, precluding common learning.

Let

q≡min

{
ε(1−θ ′′)

θ ′′+ ε(1−θ ′′)
,
(1− ε)
(2− ε)

}
. (26)

Note that regardless of the signal observed by agent 1, he always believes with

probability at leastq that 2 has seen the same signal, and regardless of the signal

observed by 2, she always believes with probability at leastq that 1 has seen a

higher signal.

We show that for allt sufficiently large there is (independently of the observed

history) a finite iteratedq-belief thatθ ′ is the true parameter. This implies thatθ ′′

can never be iteratedp-believed for anyp > 1−q, with Lemma 1then implying

that θ ′′ can never be commonp-belief. That is, we will show that fort large

enough,Bq
2t(θ

′) = Ω and soBp
2t(θ

′′) = ∅ for all p > 1−q.

Define for eachk, the event that agent` observes a signal of at leastk before

time t:

D`t(k)≡ {ω : z̀ s≥ k for somes≤ t}.

Note thatD`t(0) is equal toΩ (the event that anyt-length history occurs). For

everyk≥ 0 the definition ofq implies:

D1t(k)⊂ Bq
1t(D2t(k)),

and

D2t(k−1)⊂ Bq
2t(D1t(k)),
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which together imply

D2t(k−1)⊂ Bq
2tB

q
1t(D2t(k)).

By induction, for all 0≤m≤ k,

D2t(m)⊂
(
Bq

2tB
q
1t

)k−m(D2t(k)). (27)

Now, for anyK and any list
(
k1,k2, . . . ,kK

)
, whereks≥ ks−1, define the event

that agent̀ observes distinct signals of at leastks before timet,

D`t
(
k1,k2, . . . ,kK)

≡ {ω : ∃ distinctτs≤ t, s= 1, . . . ,K, s.t. z̀ τs ≥ ks}.

Note that forK ≤ t, D`t(0,k2, . . . ,kK) = D`t(k2, . . . ,kK). Whenever agent 1 ob-

serves a signalk he knows that agent 2 has seen a signal at leastk−1. Hence,

D1t
(
k1,k2, . . . ,kK)

⊂ Bq
1t(D2t(k1,k2−1,k3−1, . . . ,kK −1))

and by similar reasoning

D2t
(
k1,k2, . . . ,kK)

⊂ Bq
2t(D1t(k1 +1,k2,k3, . . . ,kK)),

so that for alln, if 0 ≤ k1 ≤ k2−2n, then

D2t
(
k1,k2, . . . ,kK)

⊂
(
Bq

2tB
q
1t

)n
D2t(k1 +n,k2−n,k3−n, . . . ,kK −n). (28)

From (27),

Ω = D2t(0)⊂
(
Bq

2tB
q
1t

)2t−1

D2t(2t−1) (29)

and, fort ≥ 2, from (28),

D2t(2t−1) = D2t(0,2t−1)⊂
(
Bq

2tB
q
1t

)2t−2

D2t(2t−2,2t−2). (30)
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Inserting (30) in (29) givesΩ ⊂
(
Bq

2tB
q
1t

)2t−1+2t−2

D2t(2t−2,2t−2). Continuing in

this fashion and noting that 2t−1 +2t−2 + . . .+2t−t = 2t −1, we obtain

Ω ⊂
(
Bq

2tB
q
1t

)2t−1
D2t(2t−t ,2t−t , . . . ,2t−t︸ ︷︷ ︸

t times

) =
(
Bq

2tB
q
1t

)2t−1
D2t(1,1, . . . ,1︸ ︷︷ ︸

t times

). (31)

Now chooset large enough so that after at-length history in which signal 0

was never observed, agent 2 assigns probability at leastq to θ ′, i.e.,9

D2t(1,1, . . . ,1︸ ︷︷ ︸
t times

)⊂ Bq
2t(θ

′).

Using (31), we then haveΩ⊂
(
Bq

2tB
q
1t

)2t−1
Bq

2t(θ
′) and hence have shown that for

t large enough, regardless of the history, there cannot be iteratedp-belief inθ ′′ for

any p > 1−q, i.e. I p(θ ′′) = ∅. Now byLemma 1, Cp(θ ′′) = ∅.
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