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1. Introduction

This paper is divided into two parts. In the first part (sections 2 and 3), I will describe
briefly how advances in artificial intelligence (AI) in the 1970s led to the crucial problem
of handling uncertainty, and how attempts to solve this problem led in turn to the
emergence of the new theory of Bayesian networks. I will try to focus in this historical
account on the key ideas and will not give a full account of the technical details. Then, in
the second part (section 4) I will consider the implications of these new results for the
long-standing controversy between Bayesians and non-Bayesians.

2. The breakthrough with expert systems in the 1970s

Research in AI began in the 1950s and many important ideas were developed by
the pioneers. Then in the 1970s a breakthrough was produced by the creation of expert
systems. The lead here was taken by the Stanford heuristic programming group,
particularly Buchanan, Feigenbaum, and Shortliffe. What they discovered was that the
key to success was to extract from an expert the knowledge he or she used to carry out a
specialised task, and then code this knowledge into the computer. In this way they were
able to produce ‘expert systems’ which performed specific tasks at the level of human
experts. One of the most important of these early expert systems (MYCIN) was
concerned with the diagnosis of blood infections. This system will now be briefly
described, and it will then be shown that its implementation led to the problem of how to
handle uncertainty in AI.

MYCIN was developed in the 1970s by Edward Shortliffe and his colleagues in
collaboration with the infectious diseases group at the Stanford medical school. The
medical knowledge in the area was codified into rules of the form: IF such and such
symptoms are observed, THEN likely conclusion is such and such. MYCIN’s knowledge
base comprised over 400 such rules which were obtained from medical experts. An
example of such a rule will be given in a moment, but first it would be as well to present
some evidence of MYCIN’s success.

To test MYCIN’s effectiveness a comparison was made in 1979 of its
performance with that of nine human doctors. The program’s final conclusions on ten
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real cases were compared with those of the human doctors, including the actual therapy
administered. Eight other experts were then asked to rate the ten therapy
recommendations and award a mark, without knowing which, if any, came from a
computer. They were requested to give 1 for a therapy which they regarded as acceptable
and 0 for an unacceptable therapy. Since there were eight experts and ten cases, the
maximum possible mark was 80. The results were as follows:1

MYCIN 52 Actual therapy 46
Faculty-1 50 Faculty-4 44
Faculty-2 48 Resident 36
Inf dis fellow 48 Faculty-5 34
Faculty-3 46 Student 24

So MYCIN came first in the exam, though the difference between it and the top human
experts was not significant.

Let us now examine one of MYCIN’s rules. The following rule is given by
Shortliffe & Buchanan:2

“If: (1) the stain of the organism is gram positive (S1), and
(2) the morphology of the organism is coccus (S2), and
(3) the growth conformation of the organism is chains (S3)

Then: there is suggestive evidence (0.7) that the identity of the organism is streptococcus
(H1)”

In symbols this could be written: If S1 & S2 & S3 , then there is suggestive evidence p
that H1, where p = 0.7. Here S1, S2, S3 are the observations/symptoms, which support
hypothesis H1 to a particular degree. These rules were obtained from the medical experts.
The numbers they contain such as 0.7 look like probabilities, and they too were obtained
from the experts. The expert was in fact asked: “On a scale of 1 to 10, how much
certainty do you affix to this conclusion?” The answer was then divided by 10.

It looks as if Shortliffe & Buchanan are using probability in the subjective sense
to measure the degree of personal belief held by an expert. This at once raises the
question of why subjective probabilities obtained from experts are preferred to objective
probabilities obtained from data. Shortliffe & Buchanan do consider this question, and
they answer3 that in typical medical applications there is not enough data to obtain the
requisite objective probabilities. This in turn is because of the inadequacy of hospital
records, and the changes which are continually occurring in disease categories. It is
interesting to note that only three years previously, another group working on computer
diagnosis had reached exactly the opposite conclusion. This research group, working in
Leeds, was headed by de Dombal. Their results are contained in de Dombal et al.
(1972)4, and Leaper et al. (1972)5. I will consider them in the final section of the paper.

De Dombal’s approach was, however, largely ignored for the next twenty years,
and nearly every researcher in the field made use of subjective probabilities. There are
two possible reasons for this. First of all it may, in many cases, have been difficult to
obtain objective probabilities from data. Secondly the general methodology of expert
systems research, since it involved obtaining knowledge from the experts, may have
encouraged the idea of obtaining probabilities as the degrees of belief of these experts. I
will discuss further the question of objective versus subjective probabilities in the final
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section of the paper. Let us now return to a consideration of MYCIN, and the sample rule
given earlier.

So far we have rather assumed that the figure 0.7 in the rule from MYCIN is an
ordinary probability, but this is not the case, as Shortliffe & Buchanan make clear in the
following passage:6

“… this rule at first seems to say P(H1 | S1 & S2 & S3 ) = 0.7, … . Questioning of the
expert gradually reveals, however, that despite the apparent similarity to a statement
regarding a conditional probability, the number 0.7 differs significantly from a
probability. The expert may well agree that P(H1 | S1 & S2 & S3 ) = 0.7, but he becomes
uneasy when he attempts to follow the logical conclusion that therefore P(not.H1 | S1 &
S2 & S3 ) = 0.3. The three observations are evidence (to degree 0.7) in favor of the
conclusion that the organism is a streptococcus and should not be construed as evidence
(to degree 0.3) against streptococcus.”

Shortliffe & Buchanan used this observation to motivate the introduction of a non-
probabilistic model of evidential strength. Their measure of evidential strength was
called a certainty factor, and certainty factors neither obeyed the standard axioms of
probability theory, the Kolmogorov axioms, nor combined like probabilities.

Certainty factors were criticized by those who favoured a probabilistic approach,
cf. Adams (1976)7 and Heckerman (1986)8, and in fact the next expert system we will
consider (PROSPECTOR) did move more in the direction of standard probability.

PROSPECTOR, an expert system for mineral exploration, was developed in the
second half of the 1970s at the Stanford Research Institute. A good general account of
the system is given by Gaschnig in his 19829. PROSPECTOR’s most important
innovation was to represent knowledge by an inference network (or net). This is
motivated by Duda et al. in their 1976 as follows:10

“A collection of rules about some specific subject area invariably uses the same pieces of
evidence to imply several different hypotheses. It also frequently happens that several
alternative pieces of evidence imply the same hypothesis. Furthermore, there are often
chains of evidences and hypotheses. For these reasons it is natural to represent a
collection of rules as a graph structure or inference net.”

A part of PROSPECTOR’s inference network is shown in figure 1.

Figure 1

H1 = There are massive sulfide deposits.
H2 = There are clay minerals.
H3 = There is a reduction process.
E1 = Barite is overlying sulfide.
E2 = Galena, sphalerite, or chalcopyrite fill cracks in rhyolite or dacite.
E3 = There are bleached rocks.

Evidence E1 is taken as supporting hypothesis H1, and this is indicated by the arrow
joining them in the inference network. Similarly E2 supports hypothesis H1, while E3

supports H3 which supports H2 which supports H1. Note how these rather complicated
relations are simply and elegantly represented by the arrows of the network. Each
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inference arrow has a strength associated with it, and this obtained from the expert as in
the case of MYCIN.

PROSPECTOR, however, differs from MYCIN in using subjective Bayesianism
rather than certainty factors. This subjective Bayesianism is not entirely pure, since, as in
the case of MYCIN, it is combined with the use of fuzzy logic formulae. This use of
fuzzy logic tended to disappear in further developments.

In PROSPECTOR, Bayesianism is formulated using odds rather than
probabilities. The odds on a hypothesis H [O(H)] are defined as follows:

O(H) = P(H)/P(¬H)

Writing down Bayes theorem first for H and then for ¬H, we get

P( H | E) = P(E | H) P( H) / P(E)
P(¬H | E) = P(E | ¬H) P(¬H) / P(E)

So dividing gives

O(H | E) = (E) O(H) (1)

where (E) is the likelihood ratio P(E | H)/P(E | ¬H). (1) is the odds and likelihood form
of Bayes theorem, and it is used in PROSPECTOR to change the prior odds on H to the
posterior odds given evidence E.

Let us now consider the problems which arise if we have several different pieces
of evidence E1, E2, … , En say. We might in practice have to update using any subset of
these pieces of evidence Ei, Ej, … , Ek say, where (i, j, …k) is any subset of (1, 2, … , n).
If we use (1), this would involve having values of  ( Ei & Ej & … & Ek) for all subsets
of (1, 2, …n). When we remember that, on this approach the values of  are obtained
from the domain experts, we can see that obtaining the requisite values of  is scarcely
possible. Clearly some simplifying assumptions are necessary to produce a workable
system, and the designers of PROSPECTOR therefore made the following two
conditional independence assumptions:

P(E1, … , En | H) = P(E1 | H) … P(En | H) (2)

P(E1, … , En | ¬H) = P(E1 | ¬H) … P(En | ¬H) (3)

Given these assumptions, the whole problem of updating with many pieces of evidence
becomes simple, and, in fact,

O(H | E1 & … & En ) =  1  2 … n O(H) where  i =  (Ei)

The only remaining problem was whether the conditional independence assumptions (2)
and (3) are plausible. The search for a justification of these assumptions led, as we shall
see in the next section, to the modification of the concept of inference network, and the
emergence of the concept of Bayesian network.
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3. The emergence of Bayesian networks in the 1980s

The concept of Bayesian network was introduced and developed by Pearl in a
series of papers: Pearl (198215, 1985a17, 1985b11, 198612), Kim & Pearl (1983)16, and a
book: Pearl (1988)18. An important extension of the theory was carried out by Lauritzen
& Spiegelhalter (1988)19, while Neapolitan’s 1990 book31 gave a clear account of these
new ideas and helped to promote the use of Bayesian networks in the AI community. In
what follows, I will comment on a few salient features of Bayesian networks which will
be important when we consider their implications for the Bayesian controversy.

The actual term Bayesian (or Bayes) network was introduced in Pearl’s 1985b
where it is defined as follows:11

“Bayes Networks are directed acyclic graphs in which the nodes represent propositions
(or variables), the arcs signify the existence of direct causal influences between the linked
propositions, and the strengths of these influences are quantified by conditional
probabilities.”

This verbal account is illustrated by a diagram which is reproduced, with different
lettering, in Figure 2.

Figure 2

If we compare the network of figure 2 with that of figure 1, two differences should be
noted immediately. First of all the arrows in the inference network of figure 1 represent a
relation of support holding between e.g. E3 and H3, while the arrows in the Bayesian
network of figure 2 represent causal influences, so that, e.g. the arrow joining A to B
means that A causes B. Secondly, corresponding to the first difference, we can say that,
in a certain sense, the arrows of a Bayesian network run in the opposite direction to those
of an inference network. Pearl puts this point as follows:12

“… in many expert systems (e.g. MYCIN), … rules point from evidence to hypothesis
(e.g. if symptom, then disease), thus denoting a flow of mental inference. By contrast,
the arrows in Bayes’ networks point from causes to effects or from conditions to
consequence, thus denoting a flow of constraints in the physical world.”

This reversal of arrows from inference networks to Bayesian networks is illustrated in
Figure 3, which shows one pair of nodes taken from the portion of PROSPECTOR’s
inference network shown in Figure 1.

Figure 3

Here E3 = There are bleached rocks, while H3 = There is a reduction process. From
the point of view of an inference network (a), we regard the evidence of bleached rocks
as supporting the hypothesis that there is a reduction process, while, from the point of
view of a Bayesian network (b), we regard there being a reduction process as a cause of
there being bleached rocks. In his 199313, Pearl gives an account of his discovery of
Bayesian networks, and says that one factor that led him to the idea was his consideration
of the concept of influence diagrams introduced by Howard and Matheson (1984).14

Pearl decided to limit the influences specifically to causal influences.
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Let us now make a few further points about Bayesian networks. If, in such a
network, an arrow runs from node A to node B, then A is said to be a parent of B, and B a
child of A. If a node has no parents, it is called a root, so that in figure 2, A is a root. In a
Bayesian network, it is possible for a child to have several parents. Thus in figure 2, E
has parents B and C. If, however, every child has at most one parent, the network is
called a tree. As in the earlier case of PROSPECTOR’s inference networks, in order to
make computation feasible, some conditional independence assumptions have to be
made. For a Bayesian network, these are that a node is conditionally independent given
its parents of the rest of the network except its descendants.

From his definition of Bayesian networks, Pearl developed algorithms which
allow Bayesian updating to take place in such networks. If one of the variables which
represents an observation is set to a particular value, the changes brought about by this
new information in all the probabilities throughout the tree can be computed in an
efficient manner. Pearl began in his 198215 by developing an updating algorithm for a
simple form of network, namely a tree. He then extended his algorithm to more
complicated networks. Kim and Pearl (1983)16 generalised from trees to Bayesian
networks which are singly connected, i.e. there exists only one (undirected ) path between
any pair of nodes. Pearl in his 198612 tackled the further extension to Bayesian networks
which are multiply connected. This problem was also investigated by Lauritzen &
Spiegelhalter who in their 198819 solved it using the idea of reducing a multiply
connected network to a tree of cliques. Their algorithm has been generally adopted by
the AI community.

Let us now turn from these powerful mathematical developments to the
consideration of a conceptual point. It will have been noted that two rather different
definitions of Bayesian network have been given. The first definition is in terms of
causes. Thus in figure 2 the arrows are taken as denoting a causal link between the two
nodes which they join. The second definition is by contrast purely probabilistic. In
figure 2 the variables A, B, C, D, E, F are taken to be random variables with a joint
probability distribution, and the network becomes a Bayesian network if the relevant
conditional independence assumptions are satisfied. I will henceforth use the term
‘Bayesian network’ for networks defined purely probabilistically in the manner just
explained, and call the networks defined in terms of causes: ‘causal networks’. Pearl
tends, however, to use the terms ‘Bayesian network’ and ‘causal network’
interchangeably, because he believes the two notions to be closely connected. More
specifically, his idea is that if in a network the parents of every node represent the direct
causes of that node, then the relevant conditional independence assumptions will
automatically be satisfied. As he says:20

“Causal utterances such as ‘X is a direct cause of Y’ were given a probabilistic
interpretation as distinctive patterns of conditional independence relationships that can be
verified empirically.”

A suggested link between causality and conditional independence in fact goes back to
Reichenbach (1956).21 Reichenbach considers two events B and C say which are
correlated. For example, in a travelling troupe of actors, B = the leading lady has a
stomach upset, and C = the leading man has a stomach upset. We can explain such
correlations, according to Reichenbach, by finding a common cause, namely that the
leading lady and the leading man always have dinner together. The common stomach
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upsets occur when the food in the local restaurant has gone off. Denote ‘dining together’
by A. We then have the causal graph shown in figure 4.

Figure 4

Reichenbach then claimed that, conditional on A, B and C were no longer correlated but
independent, i.e. P(B&C | A) = P(B | A) P(C | A). He also expressed this idea by saying
that a common cause A screens one of its effects B off from the other C. Reichenbach’s
causal fork is just a simple case of a Bayesian network. We can indeed apply his term
‘screening off’ to Bayesian networks by saying that in such networks, the parents of a
node screen it off from all the other nodes in the network except its descendants.

We are now in a position to summarise the ingenious way in which Bayesian
networks solved the problem of handling uncertainty in expert systems. In most of the
domains considered, e.g medical diagnosis, a domain expert is very familiar with the
various causal factors operating. It should therefore be an easy matter to get him or her to
provide a causal network. By the addition of probabilities this can be turned into a
Bayesian network. In earlier systems such as MYCIN or PROSPECTOR, conditional
independence assumptions were made for the purely ad hoc and pragmatic reason of
allowing the updating to become possible. For Bayesian networks, however, the causal
information obtained from the expert provides a justification for making a set of
conditional independence assumptions in the manner first suggested by Reichenbach.
Moreover as Pearl, Lauritzen and Spiegelhalter have shown, this set of conditional
independence assumptions is sufficient to allow Bayesian updating to become
computationally feasible. Everything fits together in a most satisfying manner. There is
only one weak link in the chain. It turns out, as we shall see in the next section, that it is
possible to have a bona fide causal network in which the corresponding conditional
independence assumptions are not satisfied.

4. Implications for the Bayesian controversy

The preceding sections have outlined some remarkable developments in AI. Let
us now turn to a consideration of the implications of these developments for the Bayesian
controversy. The Bayesianism versus non-Bayesianism debate has continued among
philosophers of science for the last fifty years with no signs of abating. In the 1950s the
major contenders were Carnap (in favour of Bayesianism) versus Popper (against
Bayesianism). In the late 1980s and 1990s, we have had Howson & Urbach (1989)22 in
favour of Bayesianism, and Miller (1994)23 against, while the most recent developments
in the debate as seen by leading experts in the area are to be found in Corfield and
Williamson, 2001.24 The new results in AI are clearly relevant to this controversy, and
indeed would seem to favour the Bayesian camp, though, as we shall see, this support is
more qualified than might at first appear.

The Bayesian controversy, so I believe, involves two rather different issues. The
first of these issues is the question of whether we should use the standard mathematical
calculus of probability in handling uncertainty, or whether some other calculus might be
appropriate. Here, of course, the Bayesians favour the use of the standard calculus. As
an example of a non-Bayesian position we can take the view of Popper [see his (1934)25,
and, for a discussion, Gillies (1998)26] that the corroboration of universal laws of science
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[C(H, E)] is not a probability function, i.e. does not satisfy the standard axioms of
probability. In symbols the claim is that C(H, E) ≠ P(H | E). 

As we have seen, this debate occurred also in the AI context. MYCIN used a
non-probabilistic measure of evidential strength, and several other non-probabilistic
approaches were proposed and developed by AI workers. [For some details, see Ng &
Abramson (1990).27] However the development of AI has given a relatively unequivocal
verdict. Probabilistic measures have proved much more successful in practice than non-
probabilistic measures, and the latter have tended to disappear. AI has thus supported
Bayesianism in this first sense. It should be added, however, that this does not give a
decisive verdict against Popper’s ideas on corroboration. Popper was considering the
corroboration of hypotheses which were universal scientific laws. Most AI systems,
however, have as hypotheses singular statements, such as ‘this patient’s infection is
caused by streptococci’ or ‘that mountain range contains massive sulfide deposits’. It is
possible that Bayesianism is appropriate for singular statements, while a non-Bayesian
approach is appropriate for universal hypotheses as I have argued in an earlier work.26

Let us now turn to the second and rather different issue involved in the Baysian
controversy. It can be most easily approached by considering the form that the debate
has taken within statistics. Classical statisticians such as Neyman were strongly opposed
to Bayesianism. Yet Neyman never used any formal system other than the standard
mathematical theory of probability. Neyman was clearly not an anti-Bayesian in the
sense we have just considered. In what sense, then, was he against Bayesianism? The
answer is not immediately clear, since, because he accepted standard probability theory,
Neyman a fortiori accepted Bayes theorem. The answer to this conundrum is that the
second issue in the Bayesian controversy is really about the interpretation of probability.
Neyman, following von Mises, regarded the objective interpretation of probability as the
only valid one.28 This meant that some applications of Bayes theorem were illegitimate
in his eyes because they necessitated giving a degree of belief interpretation to some of
the probabilities used. This applied particularly to the case of giving an a priori
distribution to a fixed, but unknown, parameter . Since  is fixed and does not vary
randomly, it does not make sense to assign it an objective probability distribution, but,
since it makes perfect sense for someone to have different degrees of belief in different
possible values of ,  can easily be given a subjective probability distribution. Many
Bayesian analyses involve giving a priori distributions to parameters such as   and so 
become illegitimate to a strict objectivist such as Neyman. To sum up: the second issue
involved in the Bayesian controversy is really about the relative merits of subjective
versus objective interpretations of probability.

What have the AI developments given above shown as regards this controversy?
It is immediately clear that they have lent support to the subjective interpretation of
probability. Pearl has always argued for a subjective degree of belief interpretation of the
probabilities in Bayesian networks, and this remains true of his latest, highly interesting,
paper on the foundations of the subject (Pearl, 2001).29 In this paper he describes
himself as ‘only half-Bayesian’. However his departure from standard Bayesianism
arises because he thinks that prior probability distributions are inadequate to express
background knowledge, and that one needs also to use causal judgements which cannot
be expressed in probabilistic terms. As far as the interpretation of probability is
concerned he remains faithful to the subjective, degree of belief, view which he says he
adopted in 1971 after reading Savage.
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Lauritzen and Spiegelhalter were also working in the tradition of subjective
Bayesianism, but they seem less definitely committed to this view than Pearl. This is
what they say:30

“Our interpretation of probabilities is that of a subjectivist Bayesian …. This seems a
convenient and appropriate view in an area concerned with the rational structuring and
manipulation of opinion, and the subjectivist objectives of a coherent system of
probabilities representing belief in verifiable propositions, successively updated on the
basis of available evidence, appears to fit remarkably the objectives of expert systems
research. However, many of the techniques presented here are appropriate in disciplines
where graphical structures are used and a frequentist interpretation is more appropriate,
such as complex pedigree analysis in genetics.”

So Lauritzen and Spiegelhalter think that, in some cases at least, the probabilities in
Bayesian networks might be given an objective interpretation. Neapolitan (1990)31 is
also favourable to objective probabilities in Bayesian networks. So although Bayesian
networks were created within the tradition of subjective Bayesianism, it might
nonetheless be possible to interpret the probabilities they contain objectively. Arguably
this is likely to be a good strategy in many cases.

A first argument in favour of an objective interpretation is an appeal to the results,
mentioned earlier, of de Dombal’s group at Leeds. De Dombal and his group devised a
computer-based diagnostic system using a straightforward statistical approach. The
probability of a patient’s having a particular condition given a set of symptoms was
calculated using Bayes theorem, where the probabilities employed had been estimated
from a large sample of previous patients. This approach did not attempt to encode any
medical knowledge beyond what was contained in observed frequencies, and so was not
an expert system. As we shall see, however, the system worked very well, and this was
because it was designed for use in the following relatively simple situation.

Patients were admitted to the department of surgery of a Leeds hospital because of
the onset of acute abdominal pain. The problem was to diagnose the cause of their pain,
and, in particular, decide whether an operation was necessary. Leaving aside a small
‘other’ or ‘miscellaneous’ category comprising less than 4% of cases, the patients were
diagnosed as having just one of the following seven conditions: appendicitis (just over a
quarter of the cases), cholecystitis, small bowel obstruction, perforated duodenal ulcer,
pancreatitis, diverticular disease, and, last but not least, non-specific abdominal pain,
which accounted for about half the cases. The last condition is of course not a disease,
but covers those cases where no cause for the pain could be found. This situation is
obviously suitable for statistical treatment because of the limited number of mutually
exclusive possibilities, and also because during the course of the treatment, often an
operation, the cause of the pain could in most cases be definitely established, thereby
establishing the correctness or incorrectness of the initial diagnosis.

The efficiency of de Dombal et al.’s computer system was compared with that of
the hospital clinicians in a sample of 304 patients admitted between 1 January 1971 and 1
December 1971. The overall result32 was that the computer system was correct in 91.8%
of the cases, and the senior member of the clinical team handling the patient in 79.6% of
the cases. Some of the detailed differences are also interesting. One of the most difficult,
but at the same time crucial, problems in this area is to distinguish between appendicitis
and non-specific abdominal pain. If a case of appendicitis is wrongly classified as non-
specific abdominal pain, the result could be a delay in operating which results in the
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appendix perforating or forming an abscess. Conversely, however, if non-specific
abdominal pain is wrongly diagnosed as appendicitis, this could result in the patient
going through an entirely unnecessary operation – known in the business as a ‘negative
laparotomy’.

De Dombal et al. describe the relative performance in this area of the computer
and the humans as follows:33

“… the computer system accurately classified 84 out of a possible 85 patients with acute
appendicitis, … . This contrasts with the clinicians’ performance, where only 75
diagnoses of appendicitis were made, and six patients were originally classified as non-
specific abdominal pain. … Moreover, although the computer erroneously classified six
non-specific abdominal pain patients with the ‘appendicitis’ category, the corresponding
figure for the clinical team was no fewer than 27 patients. … Had we slavishly followed
the computer’s predictions, six negative laparotomies would have been performed, but in
no case of appendicitis would surgery have been delayed. What actually happened was
rather different. Twenty-odd negative laparotomies were performed, and six cases of
appendicitis were ‘observed’ for over eight hours before the decision to operate was
taken.”

These results are very interesting, but the next experiment of the de Dombal group was
perhaps even more interesting (cf. Leaper et al, 1972)5. Once again the trial involved
patients admitted to the professional surgical unit of the Leeds General Infirmary with
abdominal pain of acute onset. The period covered again began on 1 January 1971, but
this time continued longer until 31 May 1972 producing a larger number (472) of
patients. Once again a comparison was made between the diagnoses of the computer
system whose probabilities had been calculated from data obtained from a large number
of previous patients, and the diagnoses of the senior clinician in charge of the patient.
This time, however, a new comparison was introduced. As well as obtaining the
probabilities from data, a variant of the computer system was produced in which the
probabilities were obtained from estimates provided by the clinicians. In fact estimates
were obtained from six clinicians, and the average taken. The general results of this trial
were as follows:34

“In the total series of 472 cases the overall accuracy of diagnoses made ‘on the spot’ by
the clinical team was 79.7%, whereas the accuracy of the computer-aided system using
values based on 600 surveyed cases was considerably higher (91.1%). … the overall
accuracy of the computer-aided system using the clinicians’ estimates was a relatively
unimpressive 82.2%.”

Once again the results in specific disease categories are also interesting:35

“… in some instances (appendicitis, non-specific abdominal pain) the computer using
estimates was more effective than the unaided clinician, but in others (diverticulitis,
pancreatitis) it was much less effective. … the effectiveness of the computer using
estimates seemed to be related to the incidence of the diseases under study. In respect of
acute appendicitis (121 cases in 15 months) and non-specific abdominal pain (230 cases)
the computer using estimates was relatively effective when compared with unaided
clinician. But for other diseases such as diverticulitis (10 cases) and pancreatitis (14
cases) the computer using estimates proved to be less reliable.”
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In effect, the computer system using objective probabilities obtained from data
outperformed the human clinicians by a considerable margin, but if subjective
probabilities obtained from these clinicians were used instead of the objective
probabilities, this gain was wiped out, and in the case of relatively rare diseases the
computer system performed worse than the human clinicians. Human doctors appear to
be bad at estimating probabilities of diseases, and especially bad in the case of diseases
which occur infrequently. It seems hard to avoid the conclusion of the de Dombal group
which was the following:35

“We suspect that the use of clinicians’ estimates of probability may have been a cause of
failure in some previous computer-aided diagnostic systems, and we conclude that in
future computer-aided diagnostic systems there is no alternative to using carefully
collated data from large-scale, real-life surveys rather than clinicians’ estimates.”

These results are very striking, but the issue is not simply one of a choice between
different ways of interpreting probabilities. It should now be pointed out that this choice
carries with it methodological implications. If we are interpreting the probabilities as
objective, then any proposed value of a probability must be seen as a conjecture which
could be right or wrong, and may therefore be in need of testing. Thus objective
probabilities lead to a Popperian methodology of conjectures and refutations in which
testing plays a central role. This is indeed the methodology of classical statistics.

Let us next contrast this with the use of subjective probabilities. Any such
probability expresses the degree of belief of an individual at a particular moment. Further
evidence does not refute the claim that that individual held that degree of belief at that
time. It may however lead the individual to change his or her degree of belief in the light
of the new evidence. In the Bayesian approach, the belief change takes place through
Bayesian conditionalisation or updating, i.e. through the change from a prior probability
P(H) to a posterior probability P(H | E). To sum up then. The use of objective
probabilities goes with the Popperian methodology of statistical testing; while the use of
subjective probabilities goes with the methodology of Bayesian conditionalisation. There
have been examples which show that the use of a testing methodology can be
advantageous in the construction of Bayesian networks.

One such example [see Sucar (1991)36, and Sucar, Gillies, and Gillies (1993)37]
concerned a medical instrument called an ‘endoscope’. This allowed a doctor to put into
the colon of a patient a small camera which transmitted an image of the interior of the
colon to a television screen. In this image an expert could recognise various things in the
interior of the colon. Let us take two such things as examples. One is called the ‘lumen’
which is the opening of the colon. Despite its name, it generally appeared as a large dark
region; but sometimes it was smaller and surrounded by concentric rings. Another is
called a ‘diverticulum’ and is a small malformation in the wall of the colon, which can
cause some illnesses. A diverticulum generally appeared as a dark region, smaller than
the lumen, and often circular. It was a problem then to program a computer to recognise
from the image the lumen or a diverticulum. This is a typical problem of computer
vision. To solve it, an attempt was made to construct a Bayesian network with the help of
an expert in medical endoscopy.

Figure 5 shows only a small part of this network, but it is sufficient to illustrate
the points which are to be made. L stands for the lumen which causes a large, dark,
region region (LDR) to appear on the screen. This in turn produces values for the
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variables S (size of the region), and M and V (mean and variance of the light intensity of
the region).

Figure 5

In every Bayesian network certain assumptions of independence or conditional
independence are made. In this case, S, M, V must be conditionally independent of L and
mutually conditionally independent, given LDR. Using a Popperian testing
methodology, these assumptions were considered as conjectures which needed to be
checked by statistical tests. These tests showed, however, that the conditional
independence assumptions were not satisfied. In fact it turned out that, given LDR, M
and V were strongly correlated rather than independent.

The response to this situation was to eliminate one of the two parameters M and V
on the grounds that, since they were correlated, only one could give almost as much
information as both. The results of this elimination were tested using a random sample of
more than 130 images of the colon. It turned out that the elimination of one of the
parameters gave better results than those obtained using all three parameters. For
example using all three parameters (S, M, V), the system recognised the lumen correctly
in 89% of cases, while, if it was modified by eliminating M, and using only (S, V) it
recognised the lumen correctly in 97% of cases.38 At first sight this seems a paradox,
because these better results were obtained using less information. The explanation is
simple however. Undoubtedly there is more information in all three parameters (S, M, V)
than in only two (S, V). But the greater amount of information in the three parameters
was used with mathematical assumptions of conditional independence which were not
correct. The lesser amount of information in the two parameters S, V was, by contrast,
used with true mathematical assumptions. So less information in a correct model worked
better than more information in a mistaken model. Moreover, since the modified
Bayesian network was simpler, the calculations using it were carried out more quickly.
So, to conclude, the modified Bayesian network was more efficient, and gave better
results. This shows the value of using objective probabilities, and a Popperian
methodology of statistical testing.

The example also shows that it is possible to obtain a causal network from an
expert for which the assumptions of conditional independence are not satisfied. Thus,
although causal networks are useful heuristic guides for the construction of Bayesian
networks, they are not infallible guides.

The conclusion I want to draw is that we might move towards a kind of synthesis
between the Bayesian and non-Bayesian positions. For subjective Bayesians such as De
Finetti, Lindley and Savage, the use of Bayes theorem to update beliefs in the light of
evidence was a natural, indeed central, procedure. In the context of expert systems
research, the adoption of this procedure led through PROSPECTOR and Pearl’s work to
the concept of Bayesian network. It is very unlikely that any of the classical statisticians
who emphasized objective probabilities and statistical testing would have taken this path.
Although such classical statisticians would have accepted Bayes theorem as a
consequence of the Kolmogorov axioms, it would not have been natural for them to think
of using it, even with objective probabilities, for the purpose of updating in the light of
evidence.

Nonetheless once Bayesian networks had emerged from the programme of
subjective Bayesianism, it became clear that such networks could be improved in many
cases by incorporating some ideas from classical statistics. These were (1) the use of
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objective rather than subjective probabilities, and (2) the use of statistical tests to check
the assumptions underlying Bayesian networks. In particular, though causal relations in a
network do suggest that the corresponding conditional independence relations are
satisfied, this may not hold in some cases. Thus it could be worth using statistical tests to
check whether the conditional independence assumptions, considered as conjectures,
really hold. If it turns out that they do not hold, this could lead to modifications and
improvements in the Bayesian network.
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