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ABSTRACT 
 

 

Deletion at ITPR1 underlies a young onset autosomal recessive ataxia in mice and a 

late onset autosomal dominant ataxia (SCA15) in humans. 

 

Data presented show the utility of investigating spontaneous mouse mutations in 

understanding human disease. Through linkage and sequence analysis a novel 

mutation in the gene encoding inositol 1,4,5-triphosphate receptor type 1 was identified 

to underlie a severe movement disorder in mice. The 18bp in frame deletion in Itpr1 

exon 36 was shown to be allelic to that of another model, opisthotonos (Lane 1972). 

The Itpr1Δ18 mutation leads to a decreased to almost total lack in the normally high 

level of ITPR1 expression in cerebellar Purkinje cells. In addition, high density genome 

wide SNP genotype data in humans showed a SUMF1-ITPR1 deletion to segregate 

with spinocerebellar ataxia 15 (SCA15), a late-onset autosomal dominant disorder, 

which was previously mapped to the genomic region containing ITPR1; however, no 

causal mutations had been identified (Knight et al. 2003). With this deletion not 

observed in a control population, decreased ITPR1 protein levels in individuals 

carrying the deletion, and subsequent identification of similar deletions in additional 

spinocerebellar ataxia families, the data provide compelling evidence that 

heterozygous deletion in ITPR1 underlies SCA15. As demonstrated, high density 

genome wide SNP analysis can facilitate rapid detection of structural genomic 

mutations that may underlie disease when standard sequencing approaches are 

insufficient. The data suggest genetic alterations at ITPR1 underlie approximately over 

1% of autosomal dominant SCA type III (ADCA III) cases for which currently no 

genetic cause has been identified. Data described herein add weight to a role for 

aberrant intracellular Ca2+ signaling in Purkinje cells in the pathogenesis of 

spinocerebellar ataxia. 

 

 

 

 

 

 

 

 

 



 6 

ACKNOWLEDGEMENT 
 

 

Many thanks go out to my supervisors. John Hardy, (quote, with a smile) ‘no worries… 

you are a pain in the ass.’ Thank you for having faith in me. Andy Singleton, (quote) 

‘luck is where preparation meets opportunity.’ Thank you for teaching me to believe in 

my own research, especially when the odds seemed against us. Lizzy Fisher, (quote), 

‘buy an enormous packet of biscuits, some nice coffee and give yourself a couple of 

days just to think.’ Thank you for great advice and keeping me sane during thesis 

writing.    

 

Of course a thank you to all the people that very willingly shared their expertise with 

me and so much more. The LNG gang, who taught me more then they will ever 

realize. With special thanks to the illumina team, who adopted me and shared their 

cookies and tree-climbing-crab stories. I will always remain ‘a friend of illumina’. Sonja 

thank you so much for everything; for having me as your roommate, for joining in a 

refusal to understand American logic, running an a.s.a.p. experiment on the weekend, 

or going for a coffee whenever one was needed most. Also many thanks to Jayanth 

without whom there wouldn’t have been a project to begin with, to Melanie (from 

upstairs) for taking an interest in my research and enabling the project to become a 

great story, to Lynne (Russell lab) for always having the door open for experimental 

advise or a wee chat, and to Henry Houlden (UCL), the Huw Morris lab and the Brice 

lab for sharing their samples. 

 

Many, many, many thanks to my family and friends, don’t know how I would have been 

able to accomplish this without your support. Pappa, mamma en pusje, zonder jullie 

had ik dit niet kunnen doen. Dankjewel dat jullie er voor mij zijn elke stap die ik zet, de 

hoogte en de diepte punten, en bij elk avontuur dat ik onderneem, zelfs als ze een 

oceaan ver weg zijn. Ik hou van jullie. To all the people I met along the way and may 

call my friends; you all left your mark in great memories and wisdom (without always 

realizing it) and each in your own way helped me in the right direction. Thank you for 

that. Gerdi, Bob, Karin, Esther, Ian, Dena, Sonja, Sarah, Georgia, Parastoo & Pardis & 

Parviz, Hoon, GM & mrs Roberts & M smittie & the KS family, the cabin-trip-gang, 

Elena & Steve, Karine & Ted. 

 

Thank you. It has been an amazing journey.  

May the odyssey continue. 



 7 

TABLE OF CONTENTS 
 

 

 

ABSTRACT                5 
ACKNOWLEDGEMENT              6 
TABLE OF CONTENTS              7 
ABBREVIATIONS               16 

 

CHAPTER 1 INTRODUCTION            29 
 

1.1 SPINOCEREBELLAR ATAXIA (SCA)          29 
1.1.1 Phenotypic characteristics           30 

1.1.1.1 Epidemiology            30 

1.1.1.2 Diagnosis and pathology          30 

1.1.2 Pathogenesis of spinocerebellar ataxias        36 

1.1.2.1 Expansion of unstable repeats         36 

1.1.2.2 Neuronal signalling dysfunction         41 

1.1.2.3 Altered calcium homeostasis         41 

1.1.2.4 Dysregulation of phosphorylation        42 

1.1.2.5 Transcriptional dysregulation         42 
 

1.2 HUMAN MOLECULAR GENETICS           44 
1.2.1 Linkage mapping and disease gene identification      44 

1.2.2 High density genome wide SNP genotyping       46 
 

1.3 MOUSE MOLECULAR GENETICS           47 
1.3.1 Why mice?              47 

1.3.2 Mouse genetics             49 

1.3.2.1 Forward genetics, a phenotype driven approach      49 

1.3.2.2 Reverse genetics, a genotype driven approach     51 

1.3.2.3 Reverse-forward genetics, a combined approach     52 

1.3.3 Mouse models of ataxic movement disorders       56 

1.3.3.1 Nucleotide repeat expansion models       56 

1.3.3.2 Conventional mutation models         57 
 

1.4 THESIS AIM AND OUTLINE            59 
 

 

 

 



 8 

CHAPTER 2 MATERIALS AND METHODS         60 
 

2.1 MATERIALS               60 
2.1.1 Reagents and prepared solutions          60 

Reagents             60 

Prepared solutions           63 

2.1.2 Software and equipment           66 

Software             66 

Equipment            66 

2.1.3 Databases              68 

2.1.4 Accession numbers            68 
 

2.2 GENERAL METHODS             69 
2.2.1. Sample integrity             69 

2.2.2 DNA protocols             69 

2.2.2.1 Primer design            69 

2.2.2.2 Polymerase chain reaction (PCR)        71 

Polymerase chain reaction         71 

Purification PCR products         71 

2.2.2.3 Agarose gel electrophoresis         72 

2.2.2.4 Sequence analysis, according to Sanger       73 

Sequence reactions          73 

Purification sequence reaction products      73 

Sequence analysis           74 
 

2.3 MOUSE-RELATED METHODS            75 
2.3.1 Generation of transgenic mice          75 

Generation of DJ-1 knockout mice       75 

2.3.2 Breeding and Phenotyping protocols         76 

2.3.2.1 Maintenance mice           76 

2.3.2.2 Genotyping Itpr1Δ18 mice          77 

2.3.2.3 Phenotyping Itpr1Δ18 mice          79 

2.3.2.4 Cross-breeding Itpr1Δ18 x Itpr1opt mice       79 

2.3.3 DNA protocols             80 

2.3.3.1 DNA preparation from mouse tail tissue       80 

TNES buffer protocol          80 

Direct-PCR tail method          80 

2.3.3.2 Linkage analysis            81 

Genotyping single nucleotide polymorphisms (SNPs)    81 

Genotyping microsatellites         81 

Genome wide linkage data analysis using MLINK    82 

 



 9 

2.3.4 Protein protocols             83 

2.3.4.2 Western blot analysis of crude protein extraction     83 

Crude protein extraction from mouse cerebellum     83 

Western blot, crude extracted protein       83 

2.3.4.2 Western blot analysis of fractionated protein extraction    85 

Fractionated protein extraction from mouse cerebellum   85 

Western blot, fractionated protein extraction      86 

2.3.4.3 Immunohistochemistry          88 

Tissue preparation           88 

Immunohistochemistry          88 
 

2.4 HUMAN-RELATED METHODS            90 
2.4.1 Sample collection             90 

Australia (AUS), SCA15 family        90 

London (England), ADCAIII cohort       90 

Cardiff (Wales), ADCAIII cohort        90 

Paris (France), ADCAIII cohort        91 

2.4.2 DNA protocols             92 

2.4.2.1 DNA isolation from lymphoblast cultures (SCA15)     92 

2.4.2.2 High density genome wide SNP genotyping (Illumina, Infinium 550k) 93 

2.4.2.3 Gene dosage analysis          94 

2.4.3 Protein protocols            96 

2.4.3.1 Protein isolation from lymphoblast cultures (SCA15)    96 

2.4.3.2 Western blot analysis           97 

 

CHAPTER 3 MOLECULAR GENETIC CHARACTERIZATION OF AN 
   AUTOSOMAL RECESSIVE MOVEMENT DISORDER IN MICE  99 

 

3.1 CHAPTER AIM               99 
 

3.2 INTRODUCTION              99 
 

3.3 RESULTS                100 
3.3.1 Origin of mice             100 

3.3.2 Mode of inheritance            101 

3.3.3 Phenotype              102 

3.3.4 Genetic mapping and characterization         104 

3.3.4.1 Genetic background           104 

3.3.4.2 Linkage analysis            104 

3.3.4.3 Identification genetic cause         108 

3.3.4.4 Cross-breeding opisthotonos         110 

 



 10 

3.3.5 Molecular characterization           112 

3.3.5.1 ITPR1 protein expression in mouse cerebellum     112 

Immunohistochemistry          112 

Western blot analysis          114 
 

3.4 DISCUSSION               117 
 

3.5 CONCLUSION               121 
 

CHAPTER 4 MOLECULAR GENETIC CHARACTERIZATION  
   OF SCA15 IN HUMANS          122 

 

4.1 CHAPTER AIM               122 
 

4.2 INTRODUCTION              122 
 

4.3 BACKGROUND               123 
4.3.1 Phenotypic characterization SCA15         123 

4.3.2 Genetic characterisation SCA15          125 

4.3.2.1 Linkage analysis SCA15          125 

4.3.2.2 Sequence analysis SCA15         128 
 

4.4 RESULTS                129 
4.4.1 Genetic characterization SCA15          129 

4.4.1.1 Sequence analysis SCA15         130 

4.4.1.2 Genome wide SNP analysis SCA15        132 

4.4.1.3 Analysis SCA15 mutation in control samples      136 

4.4.1.4 Genome wide SNP analysis additional SCA familial cases   139 

Family H27390 (ADCA III cohort, London)      139 

Family H3331 (ADCA III cohort, London)      139 

4.4.1.5 Sequence analysis additional SCA familial cases     143 

4.4.1.6 ITPR1 dosage alteration analysis in a French ADCA III cohort  145 

4.4.2 Molecular characterization SCA15         153 

4.4.2.1 Characterization ITPR1 protein levels SCA15      153 
 

4.5 DISCUSSION               154 
4.5.1 Characterization SCA15           154 

4.5.1.1 Spinocerebellar ataxia type 15 (SCA15)       154 

4.5.1.2 Sulfatase modifying factor 1 (SUMF1)       154 

4.5.1.3 SCA15, SCA16 as described          155 

4.5.1.4 Inositol 1,4,5-triphosphate receptor type 1 (ITPR1)     157 

 

 



 11 

4.5.2 Genetic mutational mechanism underlying SCA15      159 

4.5.2.1 Mechanisms underlying chromosomal rearrangements;  

NAHR, NHEJ            159 

4.5.2.2 Chromosomal rearrangements in SCA15, SCA16      162 
 

4.6 CONCLUSION               164 

 

CHAPTER 5 GENERAL DISCUSSION AND  
   RECOMMENDATION FOR FUTURE WORK      165 

 

5.1 DISCUSSION               165 
5.1.1 On the pathogenesis of a mutation         165 

5.1.2 Aberrant calcium homeostasis in disease        167 

5.1.3 Effect mutation in ITPR1 on calcium homeostasis       168 

5.1.3.1 Role of ITPR1 in calcium signaling        169 

5.1.3.2 Effect ITPR1 mutation on calcium signaling      171 

5.1.4 Therapeutic strategies for ITPR1 deficiency        174 
 

5.2 ONGOING AND FUTURE WORK           176 
 

5.3 CONCLUSIONS               177 
 

REFERENCES               178 
APPENDICES                191 

I Amplification programs            191 

  Primers               192 

II Suplementary video - Severe movement disorder in mice     211 

III Raw data - Length and weight measurements       212 

IV Data - Linkage analysis mice           213 

V Immunohistochemistry - Experimental controls       222 

VI Assay breakpoint AUS1 (T3f, C11r) in controls       224 

VII Data - Gene dosage analysis ITPR1exon10        227 

VIII Genetic elements near breakpoints SCA15        232 

 

 

 

 

 

 

 

 



 12 

FIGURES 
 

1.1 Molecular mechanisms of neurodegeneration in  

SCAs caused by polyglutamine expansion         39 

1.2 Molecular mechanisms of neurodegeneration in  

SCAs caused by conventional mutations         40 

1.3 Phylogenetic tree of vertebrate species         47 

1.4 Mouse genetics; forward genetics, reverse genetics       50 

 

2.1 Mouse pedigree, first generation backcross         76 

2.2 Primer sequence locations, multiplex PCR Itpr1Δ18 genotyping     77 

2.3 Example Itpr1Δ18 genotype data           78 

 

3.1 Mouse pedigree, spontaneous movement disorder       101 

3.2 Abnormal postures observed in affected mice        102 

3.3 Length and weight measurements           103 

3.4 Linkage analysis plot, LOD scores for individual loci       104 

3.5 Schematic of genotyping results across mouse chromosome 6 in  

affected mice               106 

3.6 Mapview of genes comprised in the region of linkage on  

mouse chromosome 6             107 

3.7 Gel image of genotype results for the opisthotonos (opt) mutation    108 

3.8 Genetic cause movement disorder in mice; 18bp in frame deletion Itpr1exon36  109 

3.9 Immunohistochemistry of ITPR1 protein levels in 3wk old mouse cerebellum  112 

3.10 Western blot analysis of ITPR1 protein levels in mouse whole brain    114 

3.11 ITPR1 alternative splice sites; SI, SII, SIII         115 

3.12 Western blot analysis of ITPR1 protein in mouse cerebellum     116 

3.13 Schematic representation of the domain architecture of ITPR1     118 

 

4.1 Pedigree of SCA15 kindred (AUS1)          123 

4.2 Images MRI brain scan of a healthy control and a SCA15 patient    124 

4.3 Multipoint LOD score analysis of SCA15         125 

4.4 Haplotype blocks in pedigree of AUS1 SCA15 kindred      126 

4.5 Genes mapping to the SCA15 locus, human build 30 (hg12) June 2002   127 

4.6 Metrics derived from analysis of DNA from affected family member III5     

using Illumina Infinium HumanHap550 genotyping chips      133 

4.7 Assay to determine the deletion breakpoint of the SCA15 locus in  

the AUS1 family              134 

4.8 Sequence across the deletion breakpoint of the SCA15 locus in  

the AUS1 family              135 



 13 

4.9 Beadstudio metrics for ND-5029 based on DNA from  

lymphocyte cell line or blood            137 

4.10 Beadstudio metrics for Italian control based on DNA from  

lymphocyte cell line             138 

4.11 Family H27390 (London cohort), data showing mutation at SCA15 locus   141 

4.12 Family H3331 (London cohort), data showing mutation at SCA15 locus   142 

4.13 Gene dosage analysis of ITPR1exon10 from a French ADCA III cohort    146 

4.14 Gene dosage analysis; duplication          149 

4.15 Gene dosage analysis; heterozygous deletion        151 

4.16 Western blot analysis of ITPR1 protein levels in EBV immortalized  

lymphocytes from AUS1 family members         153 

4.17 Mechanisms of genomic rearrangements         160 

4.18 Generation of deletion rearrangement by NAHR and NHEJ     161 

 

5.1 Calcium homeostasis regulation in neurons         168 

5.2 ITPR regulated calcium signaling; blips, puffs and waves      170 

5.3 Functional somatotopic organization of the cerebellum      173 

 

V.1 Immunohistochemistry, experimental controls        222 

 

VI.1 NDPT002; gel assay T3f, C11r           224 

VI.2 NDPT006; gel assay T3f, C11r           225 

VI.3 NDPT009; gel assay T3f, C11r           226 

VI.4 Repeat NDPT006 (6H), NDPT009 (6F); gel assay T3f, C11r     226 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

TABLES 
 

1.1 Classification of ADCAs by Harding (1983)         30 

1.2 Autosomal dominant ataxias categorized based on classification by  

Harding (1983)              32 

1.3 Autosomal dominant ataxias; genetics and molecular pathways implicated  34 

1.4 Mouse models of cerebellar dysfunction and degeneration      53 

 

2.1 Accession numbers             68 

2.2 Gene Runner parameters used for primer design PCR and  

sequencing applications             70 

2.3 Cycle settings, PCR program 60-to-50          71 

2.4 Cycle settings, sequence amplification program        73 

2.5 Reaction composition, multiplex PCR Itpr1Δ18 genotyping      77 

2.6 Amplification conditions, multiplex PCR Itpr1Δ18 genotyping     78 

2.7 Cycle settings, microsatellite genotyping         82 

2.8 Molecular weights precision plus protein dual color standard     84 

2.9 Antibodies and dilutions, western blot analysis (crude) in Itpr1Δ18 mice   85 

2.10 Antibodies and dilutions, western blot analysis (fractionated) in Itpr1Δ18 mice  87 

2.11 Antibodies, peptide and dilutions, immunohistochemistry in Itpr1Δ18 mice   89 

2.12 Reaction composition, gene dosage analysis (absolute quantification)   94 

2.13 Cycle settings, gene dosage analysis (absolute quantification)     95 

2.14 Molecular weights, HiMark prestained and SeeBlue plus 2 standards   97 

2.15 Antibodies and dilutions, western blot analysis SCA15 samples     98 

 

3.1 LOD scores for loci on chromosome 6          105 

3.2 Conservation deleted amino acids among species       110 

3.3 Comparison phenotype Itpr1Δ18/Δ18, opisthotonos (opt) and tm1Tno mice   111 

 

4.1 Clinical features as observed in SCA15 kindred during  

neurological examination            124 

4.2 ITPR1 variants identified using DHPLC          128 

4.3 Genes mapping to the SCA15 locus, human build 35 (hg17) May 2004   129 

4.4 ITPR1 variants identified by Sanger-based sequence analysis     130 

4.5 CNTN4 variants identified by Sanger-based sequence analysis     131 

4.6 ITPR1 variants identified in ADCA III cohort (London)       144 

4.7 Genetic alterations found in SCA15 (SCA16) families       156 

4.8 Genetic elements present near breakpoints SCA15 (SCA16)     162 

 

 



 15 

I.1 Primers used for genome wide linkage in mouse        192 

I.2 Primers used for finemapping of mouse chromosome 6      197 

I.3 Primers used for sequencing mouse Itpr1         198 

I.4 Primers used for sequencing human ITPR1 (AUS1 family)      201 

I.5 Primers used for sequencing human CNTN4        203 

I.6 Primers used in assay to determine breakpoint AUS1 family     204 

I.7 Primers used in assay to determine breakpoint H27390 family     206 

I.8 Primers used in assay to determine breakpoint H3331 family     207 

I.9 Primers used for sequencing human ITPR1 (London cohort)     209 

 

III.1 Length and weight measurements (litter A)         212 

III.2 Length and weigth measurements (litter B)         212 

 

VII.1   Gene dosage data; graph A (figure 4.13)         228 

VII.2   Gene dosage data; graph B (figure 4.13)         228 

VII.3   Gene dosage data; graph C (figure 4.13)         229 

VII.4   Gene dosage data; graph D (figure 4.13)         229 

VII.5   Gene dosage data; graph E (figure 4.13)         230 

VII.6   Gene dosage data; graph F (figure 4.13), graph G (figure 4.13)    230 

VII.7   Gene dosage data; figure 4.14 (AAD4-2G, AAD1-6E, AAD1-10D)    231 

VII.8   Gene dosage data; figure 4.15 (AAD1-3A, AAD4-8H)      231 

 

VIII.1 Genetic elements present near breakpoints AUS1 (SCA15) family    232 

VIII.2 Genetic elements present near breakpoints H27390 family     232 

 

 

 

SUPLEMENTARY MATERIAL 
 

CD-rom (attached to the back cover of this thesis)  

Suplementary video - Severe movement disorder in mice 

 

 

 

 

 

 

 

 

 



 16 

ABBREVIATIONS 
 

 

GENERAL 
 

A    adenine (nucleotide) 

A, a    affected 

aa    amino acid 

ABI    Applied Biosystems 

aCHG   array-based comparative genomic hybridization 

ADCA(s)   autosomal dominant cerebellar ataxia(s) 

ADP    adenosine diphosphate 

aff    affected 

ALS    amyotrophic lateral sclerosis 

AM    ante meridiem 

amp    ampere 

ARPKD   autosomal recessive polycystic kidney disease 

ATP    adenosine triphosphate 

AUS1   Australian kindred, original SCA15 kindred (Storey et al. 2001) 

 

BACC2, nucleon nucleon blood and cultured cells 2 

BCA    bicinchoninic acid 

BLAST   basic local alignment search tool 

blastn   nucleotide-nucleotide BLAST 

Β-ME   beta-mercapto ethanol 

bp    base pairs 

BSA    bovine serum albumin 

 

c=(A*e)/b Beer-Lambert’s law: c, nucleic acid concentration in ng/μl; A, absorbance in 

AU (absorbance units); e, wavelength-dependent extinction coefficient in 

ng-cm/μl; b, path length in cm 

°C    degrees Celsius 

C    cytosine (nucleotide) 

C, c    control 

c.    cDNA sequence 

[Ca2+]i   intracellular calcium concentration 

CA    cerebellar atrophy 

CA1    cornu ammonis 1 

(CAG)exp   polyglutamine expansion 

cAMP   cyclic adenosine monophosphate 



 17 

CAPS   N-cyclohexyl-3-aminopropanesulfonic acid 

CCPPRB Comité Consultatif de Protection des Personnes dans la Recherche 

Biomédicale 

cDNA   copy deoxyribonucleic acid 

cGMP   cyclic guanosine monophosphate 

chr    chromosome 

chrom alum  chromium (III) potassium sulfate dodecahydrate 

CICR   calcium-induced calcium release 

CI    cytoplasmic inclusion 

CLP    continental lab products 

cm    centimeter 

cM    centimorgan 

CMCT   central motor conduction time 

CNS    central nervous system 

CNV(s)   copy number variation(s) 

Ct    cycle threshold 

CT    computed tomography 

C-terminus  carboxyl (-COOH) terminal end 

 

D-28K   28 kiloDalton 

DABCO   1,4-diazobicyclo-[2.2.2]-octane 

DAG   diacylglycerol 

dbSNP   database single nucleotide polymorphism, NCBI entrez SNP  

Dec.    December 

dG    free energy 

dG temp.   free energy temperature 

DHPLC   denaturing high performance liquid chromatography 

DIC (objective) differential interference contrast 

DMD   Duchenne muscular dystrophy 

DMSO   dimethyl sulfoxide 

DNA    deoxyribonucleic acid 

DNS    diffuse nuclear staining 

DRPLA   dentatorubral-pallidoluysian atrophy 

DSBs   double strand breaks 

dsDNA   double strand deoxyribonucleic acid 

 

EA2    episodic ataxia type 2 

EBV    Epstein-Barr virus 

EDTA   ethylenediaminetetraacetic acid 

EMPReSS  European Mouse Phenotyping Resource of Standardised Screens 



 18 

ENU    N-ethyl N-nitrosourea 

ER    endoplasmic reticulum 

ES cell(s)   embryonic stem cell(s)     

et al.   et alibi 

EUMORPHIA  European Union Mouse Research for Public Health and  

Industrial Applications 

exp    expanded 

 

F    female 

Fx    filial generation, generation x following the parental generation 

F primer, fwd.  forward primer 

FAM    carboxy-fluorescein 

FHM   familial hemiplegic migraine 

freq.    frequency 

fwd, F primer  forward primer 

 

G=H-TS G calculation: G, energy; H, enthalpy; S, entropy; T, dG temperature; dG, 

free energy 

g    gram 

G    guanine (nucleotide) 

g.    genomic DNA sequence 

xg    times gravity (centrifugal force) 

geno__   prefix, related to genome 

GII    glial intranuclear inclusion 

Glu    glutamate 

Golgi App.  Golgi apparatus 

GT    genotype 

GTP    guanosine triphosphate 

 

HD    Huntington’s disease 

het    heterozygote 

HEX    hexachloro-fluorescein 

hg    human genome assembly 

Hi-Di formamide highly deionized formamide 

HMW   high molecular weight 

ho    hot-foot 

HUGE database Human Unidentified Gene-Encoded database 

HUGO   Human Genome Organization 

Hz    hertz 

 



 19 

ID    identification 

IgG (H+L)  immunoglobulin G (heavy polypeptide chain + light polypeptide chain) 

IHC    immunohistochemistry 

IHGSC   International Human Genome Sequencing Consortium 

IMR    Induced Mutant Research 

IMRC   International Mouse Resource Consortium 

inHg    inches of mercury (unit for pressure) 

IoN    Institute of Neurology 

IP3    inositol 1,4,5-triphosphate 

[IP3]    inositol 1,4,5-triphosphate concentration 

IVS    intronic variants 

 

JAX, TJL   The Jackson Laboratory 

 

kb    kilo base pairs 

kD    kiloDalton 

kg    kilogram 

KOMP   Knockout Mouse Project 

 

l    liter 

L    ladder (DNA size and/or weight standard) 

laser   light amplification by stimulated emission of radiation 

Lc    Lurcher 

LCLs   lymphocyte cell lines 

LCR(s)   low copy repeat(s) 

LCSN   Laboratory of Cellular and Synaptic Neurophysiology 

LDS    lithium dodecyl sulfate 

LINE   long interspersed nuclear element 

LNG    Laboratory of Neurogenetics 

LNO    nonlinear optical (crystal, laser) 

LOD    logarithm of odds 

LREC   local research and ethics committee 

LSM    laser scanning microscope 

LTD    long-term depression 

LTR    long terminal repeat 

 

M    male 

M    molar (mole of solute per liter of solution) 

M    marker (protein size and/or weight standard) 

M, Mb   mega base pairs 



 20 

max    maximum 

Mb, M   mega base pairs 

MD    Maryland 

mg    milligram 

MGB   3’-minor groove binder 

MGI    Mouse Genome Informatics 

milliQ   water obtained from a Millipore water purification system 

min    minimum 

MJD    Machado-Joseph disease 

ml    milliliter 

MLINK   multi-locus linkage analysis 

mm    millimeter 

mM, mMol  millimolar 

mMol, mM  millimolar 

MMRRC   mutant mouse regional resource centers 

MOPS   3-(N-morpholino)propanesulfonic acid 

MRI    magnetic resonance imaging 

mRNA   messenger ribonucleic acid 

MSD   multiple sulfatase deficiency 

mut    mutated allele 

Myr    million years 

 

n    number of subjects, samples 

N    normal 

n/a    not available 

NA (objective)  numerical aperture 

NAHR   non-allelic homologous recombination 

NC    no template control 

NCBI   National Center for Biotechnology Information 

nclf    neuronal ceroid lipofuscinosis 

neo    neomycin 

NF-160, NF-M  neurofilament, medium polypeptide 

NF-M, NF-160  neurofilament, medium polypeptide 

ng    nanogram 

NHEJ   non-homologous end joining 

NHNN   National Hospital for Neurology and Neurosurgery 

NHS    National Health Service 

NIA    National Institute on Aging 

NICHD   National Institute on Child Health and Development 

NIH    National Institutes of Health 
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NII    neuronal intranuclear inclusion 

NINDS   National Institute of Neurological Disorders and Stroke 

nm    nanometer 

NMDA   N-methyl-D-aspartic acid 

nmol   nanomolar 

no.    number 

NP-40   nonyl phenoxylpolyethoxylethanol 

NPCA   non-progressive congenital ataxia 

NSA    NeuroScience Associates 

nt    nucleotide 

NT_    RefSeq accession number of contig assembly produced by NCBI 

N-terminus  amine (-NH2) terminal end 

 

OLAW   Office of Laboratory Animal Welfare 

OMIM   Online Mendelian Inheritance in Man 

OPCA   olivopontocerebellar atrophy 

opt    opisthotonos 

 

p    p-value (probability measure in statistics) 

P    phosphorylation site 

p.    protein sequence 

P9, 10, 14, 15  postnatal day 9, 10, 14, 15 

PBS    phosphate buffered saline 

pcd    Purkinje cell degeneration 

PCR    polymerase chain reaction 

PCR, A   annealing 

PCR, AE   annealing and extension 

PCR, D   denaturation 

PCR, Di   initial denaturation 

PCR, E   extension 

PCR, Ef   final extension 

PC tube   polycarbonate tube 

pH    power of hydrogen 

Pi    inorganic phosphate 

PM    post meridiem 

PMCT   peripheral motor conduction time 

pMol   picomolar 

PNP    peripheral neuropathy 

polyQ   polyglutamine 

PVDF membrane polyvinylidene fluoride membrane 
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QA    quisqualate 

 

R primer, rev.  reverse primer 

rcf.    relative centrifugal force 

refSNP   reference single nucleotide polymorphism 

rep__   prefix, referring to repeat 

rev, R primer  reverse primer 

RFLP(s)   restriction fragment length polymorphism(s) 

RIKEN   Rikagaku Kenkyusho 

RIPA buffer  radio immuno precipitation assay buffer 

RNA    ribonucleic acid 

RNAi   ribonucleic acid interference 

rpm    revolutions per minute 

rs.no., rs#  reference number 

RT    room temperature (21-25 degrees Celsius) 

RT-PCR   reverse transcriptase - polymerase chain reaction 

 

SI, SII, SIII  splicing region I, II, III 

salt con.   salt concentration 

SCA(s)   spinocerebellar ataxia(s) 

SD standard deviation 

SDS sodium dodecyl sulfate 

SDS-page sodium dodecyl sulfate – polyacrylamide gel electrophoresis 

sg staggerer 

SHIRPA SmithKline Beecham, Harwell, Imperial College School of Medicine,  

Royal London Hospital, Phenotype, Assessment 

SINE   short interspersed nuclear element 

SNP(s)   sinlge nucleotide polymorphism(s) 

spdh   synpolydactyly homolog 

SSR(s)   simple sequence repeat(s) 

STS    sequence tagged sites 

sq f    forward primer sequence 

sq r    reverse primer sequence 

 

T    thymine (nucleotide) 

TBE buffer  tris-borate-EDTA 

TBS buffer  tris-buffered saline 

TBS-PI   tris-buffered saline - protease inhibitor 

TBS-SDS  tris-buffered saline - sodium dodecyl sulfate 

TBS-T, TBS-Tx100 tris-buffered saline - triton (tween-20) 
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TE buffer   tris-EDTA buffer 

temp.   temperature 

tg    tottering 

TGS buffer  tris-glycine-SDS 

TJL, JAX   The Jackson Laboratory 

tk    thymidine kinase 

Tm    melting point 

Tm dif.   difference between the primers of a pair 

TNES buffer  tris-NaCl-EDTA-SDS buffer 

tRNA   transfer ribonucleic acid 

 

μg    microgram 

μl    microliter 

μm    micrometer 

μM    micromolar 

U    unaffected 

U    uracil (nucleotide) 

Ub    ubiquitin 

UCL    University College London 

UCSC   University of California Santa Cruz 

UK    United Kingdom 

UPR    unfolded protein response 

USA    United States of America 

UTR(s)   untranslated region(s) 

UV    ultraviolet 

 

V    volt 

v.    version 

VIC    2’-chloro-7’-phenyl-1,4-dichloro-6-carboxy-fluorescein 

vLINCL   variant late infantile neuronal ceroid lipofuscinosis 

VOR   vestibule-ocular reflex 

(v/v)    volume:volume ratio 

VWR   Van Waters and Rogers 

 

wks    weeks 

wt    wild type, wild type allele 

(w/v)   weight:volume ratio 

 

y, yrs.   years of age 

yrs, y.   years of age 
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GENES AND/OR PROTEINS 
 

4.1N    4.1N protein 

483344P13Rik RIKEN cDNA 4833447P13 gene 

 

Agtpbp1   ATP/GTP binding protein 1 

AMPA, AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 

ARL10C, Arl10c ADP-ribosylation factor-like 10C   

ATN1, Atn1  atrophin 1 

ATXN1, Atxn1  ataxin 1 

ATXN2, Atxn2  ataxin 2 

ATXN3, Atxn3  ataxin 3 

ATXN7   ataxin 7 

Atxn8   ataxin 8 

ATXN8OS  ataxin 8, opposite strand 

ATXN10   ataxin 10 

 

BHLHB2, Bhlhb2 basic helix-loop-helix domain containing, class B2 

 

CA    carbonic anhydrase 

CACNA1A, Cacna1a, Ca(v)2.1 voltage-dependent calcium channel, P/Q type, subunit alpha-1A 

Calb1   calbindin D28K 

Calb2   calretinin 

CaM    calmodulin, calcium modulating protein 

CaMKII   calcium/calmodulin-dependent protein kinase II 

CARP   carbonic anhydrase-related protein 

Ca(v)2.1, CACNA1A, Cacna1a voltage-dependent calcium channel, P/Q type, subunit alpha-1A 

CBP    CREB (cAMP response element binding) binding protein 

CHL1   cell adhesion molecule with homology to L1CAM 

Cln6    ceroid-lipofuscinosis, neuronal 6 

CNTN4, Cntn4 contactin 4 

CNTN6   contactin 6 

CRBN, Crbn  cereblon 

CREB   cAMP response element binding 

CytC   cytochrome C 

 

DAGLA   diacyl glycerol lipase, subunit a, alpha 

DJ1 Park7, Parkinson disease (autosomal recessive, early onset) 7 
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EAAT4, SLC1A6 solute carrier family 1 (high affinity aspartate/glutamate transporter), 

member 6 

EDEM1, Edem1 ER degradation enhancer, mannosidase alpha-like 1 

 

FGF14   fibroblast growth factor 14 

FKBP12   FK506-binding protein (12kDa) 

FLJ    Japanese database Full-Length human cDNA clone 

 

Gβ/Rack1  Gβ homologue receptor for activated C kinase-1 

Girk2, Kcnj6  potassium inwardly-rectifying channel, J6 

GPCRs   G-protein-coupled receptors 

Grid2   glutamate receptor, ionotropic, delta 2 

GRM7   glutamate receptor, metabotropic 7 

 

HB    hemoglobin, beta, delta 

Hoxd13   homeo box D13 

 

IL5RA, Il5ra  interleukin 5 receptor, alpha 

IP3R, ITPR, P400 inositol 1,4,5-triphosphate receptor 

IP3R1, ITPR1, Itpr1 inositol 1,4,5-triphosphate receptor, type 1 

ITPR(s), IP3R, P400 inositol 1,4,5-triphosphate receptor(s) 

ITPR1, Itpr1, IP3R1 inositol 1,4,5-triphosphate receptor, type 1 

 

KCNC3   voltage-gated potassium channel, type C, Shaw-related subfamily 

Kcnj6, Girk2  potassium inwardly-rectifying channel, J6 

KIAA   human novel large (>4kb) cDNA identified in the HUGE protein database 

KLHL1, Klhl1  Kelch-like 1 

 

L1CAM   L1 gene family of neural Cell Adhesion Molecules 

LOC    hypothetical protein in which orthologs have not yet been determined 

LOC384471  similar to RIKEN cDNA 2410080P20 

LOC434075  similar to ZGC:56193 

LOC435913  similar to 40S ribosomal protein S8 

LOC545871  similar to DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 

LRRN1, Lrrn1  leucine rich repeat protein 1, neuronal 

 

NMDA, NMDAR N-methyl-D-aspartate receptor 

Nna1   nuclear ATP/GTP-binding protein 

nr    nervous 
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P400, IP3R, ITPR inositol 1,4,5-triphosphate receptor 

PKA    protein kinase A 

PKC    protein kinase C 

PKG    protein kinase G 

PLC    phospholipase C 

PLEKHG4  puratrophin-1 (Purkinje cell atrophy associated protein-1) 

PMCA   plasma membrane calcium ATPase 

PP2A   protein phosphates 2A 

PPP2R2B  protein phosphatase 2, regulatory subunit b, beta 

PRKCG   protein kinase C, gamma 

 

Reln    reelin 

ROCs   receptor-operated channels 

Rora   RAR-related orphan receptor alpha 

RYR, RyR(s)  ryanodine receptor(s) 

 

SERCA sarco-endoplasmatic reticulum calcium ATPase 

SET domain Su(var)3-9, Enhancer-of-zeste, Trithorax (Su(var), suppressor of variation) 

SETMAR, Setmar SET domain and mariner transposase fusion gene 

SLC1A6, EAAT4 solute carrier family 1 (high affinity aspartate/glutamate transporter), 

member 6 

SPTBN2   spectrin, beta, norerythrocytic, 2 

SUMF1, Sumf1 sulfatase modifying factor 1 

 

TAFII130   TAF4 RNA polymerase II; TBP-associated factor, 135kDa    

TBP    TATA box-binding protein 

TrkB    neurotrophic tyrosine kinase receptor, type 2 

TRNT1, Trnt1  tRNA nucleotidyl transferase, CCA-adding, 1 

TTBK1   tau tubulin kinase 1 

TTBK2   tau tubulin kinase 2 

 

VOCCs   voltage-operated calcium channels 
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AMINO ACIDS 
 

A, Ala   alanine 

Ala, A   alanine 

Arg, R   arginine 

Asn, N   asparagine 

Asp, D   aspartic acid 

 

C, Cys   cysteine 

Cys, C   cysteine 

 

D, Asp   aspartic acid 

 

E, Glu   glutamic acid 

 

F, Phe   phenylalanine 

 

G, Gly   glycine 

Gln, Q   glutamine 

Glu, E   glutamic acid 

Gly, G   glycine 

 

H, His   histidine 

His, H   histidine 

 

I, Ile    isoleucine 

Ile, I    isoleucine 

 

K, Lys   lysine 

 

L, Leu   leucine 

Leu, L   leucine 

Lys, K   lysine 

 

M, Met   methionine 

Met, M   methionine 

 

N, Asn   asparagine 
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P, Pro   proline 

Phe, F   phenylalanine 

Pro, P   proline 

 

Q, Gln   glutamine 

 

R, Arg   arginine 

 

S, Ser   serine 

Ser, S   serine 

 

T, Thr   threonine 

Thr, T   threonine 

Trp, W   tryptophan 

Tyr, Y   tyrosine 

 

V, Val   valine 

Val, V   valine 

 

W, Trp   tryptophan 

 

Y, Tyr   tyrosine 

 

 

 

MISCELANEOUS 
 

’    minutes 

’’    seconds 
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CHAPTER 1  INTRODUCTION 
 

 

 

1.1 SPINOCEREBELLAR ATAXIA (SCA) 
 

Autosomal dominant cerebellar ataxias (ADCAs) are hereditary progressive 

neurodegenerative disorders, also known as spinocerebellar ataxias (SCAs). They 

form a complex group of neurological disorders characterized by cerebellar ataxia of 

gait and limbs variably associated with ophthalmoplegia, pyramidal and extrapyramidal 

signs, dementia, pigmentary retinopathy and peripheral neuropathy (Zoghbi 2000). 

Phenotypic heterogeneity leads to ataxias being some of the most poorly understood 

neurological disorders. The finding that expansion of polyglutamine repeats underlies 

pathogenic mechanisms of different SCA subtypes initially provided an explanation for 

many of the clinical phenomena such as anticipation and the variable severity 

observed even within one family (Orr et al. 1993). However, subsequent identification 

of additional ataxia genes has resulted in renewed confusion due to their apparent lack 

of a common pathogenic mechanism: a calcium channel (CACNA1A) is mutated in 

SCA6, implicating altered calcium homeostasis (Zhuchenko et al. 1997), a member of 

the tau tubulin kinase family (TTBK2) is mutated in SCA11 indicating phosphorylation 

dysfunction (Houlden et al. 2007), and fibroblast growth factor (FGF14) is mutated in 

SCA27 suggesting possible involvement of synaptic plasticity in SCA pathogenesis 

(van Swieten et al. 2003). Identification of additional ataxia genes would aid in 

elucidating the pathogenesis of SCAs, important cellular pathways, and development 

of potential therapies. Currently there is no treatment for spinocerebellar ataxias, 

except for supportive care such as physical and speech therapy (H Houlden (IoN/UCL, 

NHNN), personal communication). 
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1.1.1 Phenotypic characteristics 
1.1.1.1 Epidemiology 
Prevalence studies of autosomal dominant ataxias are rare, and those published 

disagree in their estimates. Differences between the studies are due to focus on a 

specific SCA locus or gene, inclusion of all hereditary ataxias (dominant and recessive 

variants) or geographically limited measurements. Epidemiological studies conducted 

in different European regions found prevalence estimates of dominant inherited ataxias 

of less than 6/100,000, mostly ranging from 0.3 to 2.0 per 100,000 inhabitants  

(Koeppen et al. 1977;Schoenberg 1978;Brignolio et al. 1986;Polo et al. 1991;Leone et 

al. 1995;Silva et al. 1997;van de Warrenburg et al. 2002). As more SCA genes are 

identified, the prevalence of autosomal dominant ataxia is expected to be higher than 

previously anticipated and to lie in the range of other neurological disorders such as 

sporadic amyotrophic lateral sclerosis (6.2/100,000) (Traynor et al. 1999) and inherited 

Huntington’s disease (6.4/100,000) (Morrison et al. 1995).  

 

1.1.1.2 Diagnosis and pathology 
Autosomal dominant SCAs are a group of neurodegenerative diseases, clinically and 

genetically heterogeneous, characterized by progressive cerebellar ataxia of gait and 

limbs, variably associated with ophthalmoplegia, pyramidal and extrapyramidal signs, 

dementia, pigmentary and peripheral neuropathy. Disease onset is usually between 30 

and 50 years of age, although early onset (in childhood) and onset in later decades 

(after 60 years) have been reported. The prognosis is variable depending on the 

underlying cause of the SCA subtype (Duenas et al. 2006). In 1983, Harding proposed 

a classification of the SCAs based on clinical symptoms and distinguished three types 

of autosomal dominant cerebellar ataxias; ADCA I, ADCA II and ADCA III (table 1.1).  

 

 

ataxic disorders of unknown etiology 
autosomal dominant cerebellar ataxia, type 
   I.   ophthalmoplegia/ optic atrophy/ dementia/ extrapyramidal features 
   II. pigmentary retinopathy ±ophthalmoplegia/ extrapyramidal features 
   III. ‘pure’ autosomal dominant cerebellar ataxia of later onset 
other progressive dominant disorders 
periodic autosomal dominant cerebellar ataxia 

 

Table 1.1. Classification of ADCAs by Harding (1983) 

Clinical features and classification of autosomal dominant late onset cerebellar ataxias of 

unknown etiology (Harding 1983). 
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ADCA type I (Harding 1993), in early disease stages most frequently presents as a 

progressive ataxia of gait with limb involvement and is invariably associated with 

dysarthria of mixed cerebellar and pseudobulbar type. Additional symptoms have been 

described, including supranuclear ophthalmoplegia with lid retraction, nuclear and 

intranuclear eye movement abnormalities, optic atrophy in some patients (usually not 

associated with visual loss), clinically significant cognitive impairment in about one-

third of patients, extrapyramidal signs such as parkinsonism, chorea and dystonia, and 

peripheral neuropathy presenting as distal wasting and fasciculation of face and 

tongue but not always clinically evident, loss of proprioception and vibration sense, 

and pyramidal weakness. The clinical features in this group of ataxias are caused by a 

combination of degeneration of the cerebellum, basal ganglia, cerebral cortex, optic 

nerve, pontomedullary systems, spinal tracts or peripheral nerves. Disease onset 

ranges from 15 to 65 years, usually in the third or fourth decades of life. The majority 

of patients lose the ability to walk within 20 years of onset and life expectancy is 

shortened due to disability and bulbar dysfunction. An early onset usually predicts a 

rapidly progressive disability.  

 

ADCA type II (Harding 1993) is clinically distinct from ADCA type I because of the 

presence of pigmentary retinopathy. Pigmentary retinal degeneration predominantly 

affects the macula leading to blindness and occasionally extends to the peripheral 

fundus. Visual failure may precede ataxic symptoms by several years. Additional 

clinical features include supranuclear ophthalmoplegia in about half of patients, 

cognitive impairment, extrapyramidal features, pyramidal signs in legs together with 

loss of position and vibration sense. Disease onset ranges between 15 and 25 years, 

early childhood onset predicting a rapidly progressive course. Most patients lose ability 

to walk within 15 years after onset. At autopsy, the majority of ADCA II cases show 

olivopontocerebellar atrophy as well as degeneration in spinal cord and basal ganglia.  

 

ADCA type III (Harding 1993) is a relatively ‘pure’ cerebellar syndrome where the 

degenerative process is limited to the cerebellum, although some affected individuals 

may also manifest mild pyramidal signs and autopsy of one case showed cerebellar 

cortical atrophy with loss of cells in the dentate nuclei. Disease onset is generally late 

adulthood, over 50 years of age.  

 

Other types of autosomal dominant late onset cerebellar ataxia are rare (Harding 

1993): May-White syndrome of deafness, characterized by late onset cerebellar ataxia, 

myoclonus and peripheral neuropathy; dominantly inherited ataxia associated with 



 32 

myoclonus and peripheral neuropathy; dominantly inherited ataxia associated with 

essential tremor, parkinsonism, peripheral neuropathy, cataracts, deafness and 

deposition of cerebrovascular amyloid; Gerstmann-Straussler syndrome with 

prominent ataxia in the early phase of disease with dementia usually more prominent 

at later stages. Autosomal dominant periodic ataxia (Harding 1993) is characterized by 

childhood or adolescent onset of episodes of ataxia, dysarthria, vertigo and 

nystagmus. Duration of the attacks varies from a few hours to several weeks and 

attacks tend to be more severe in childhood. Nystagmus and mild cerebellar signs 

often persist in between the attacks.  

 

The classification of autosomal dominant ataxias by Harding has remained the 

standard for scientists and clinicians in prioritizing genetic testing in SCA families; see 

table 1.2 for Harding based categorization of all SCA subtypes currently assigned by 

the HUGO Gene Nomenclature Committee (HUGO, Human Genome Organization; 

http://www.genenames.org).  

 

 

 
Table 1.2. Autosomal dominant ataxias categorized based on classification by Harding (1983) 

Data are based on tables published in Schols et al. (2004) and Duenas et al. (2006), and have 

been supplemented with findings described in Hellenbroich et al. (2006) (SCA4); Knight et al. 

(2004) (SCA20); Verbeek et al. (2004) (SCA23); Yu et al. (2005) (SCA26); Mariotti et al. (2008) 

(SCA28). Currently, autosomal dominant ataxias comprise 26 SCAs and DRPLA. SCA9 and 24 

have not been annotated; SCA15 and 16 have both been attributed to deletion in ITPR1 (van 

de Leemput et al. 2007;Iwaki et al. 2008); SCA19 and 22 share disease locus and a highly 

similar phenotype (Verbeek et al. 2002;Chung et al. 2003;Chung and Soong 2004;Schelhaas et 

al. 2004).  

*age at onset, mean (range) in years; ADCA, autosomal dominant cerebellar ataxia; SCA, 

spinocerebellar ataxia; CT, computed tomography; MRI,  magnetic resonance imaging; PNP, 

peripheral neuropathy; PMCT, peripheral motor conduction time; CMCT, central motor 

conduction time; OPCA, olivopontocerebellar atrophy; MJD, Machado-Joseph disease; CA, 

cerebellar atrophy; DRPLA, dentatorubral-pallidoluysian atrophy. (table 1.2, on next page) 
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(table 1.2, continued from previous page) 

ADCA I 
phenotype. cerebellar ataxia with ophthalmoplegia, pyramidal signs, extrapyramidal signs, cognitive impairment, and/or 
peripheral neuropathy 
neuropathology. cerebellar atrophy with degeneration of basal ganglia, cerebral cortex, optic nerve, pontomedullary 
systems, spinal tracts, and/or peripheral nerves 
subtype age at 

onset, yrs.* 
phenotype CT/ MRI 

findings 
SCA1 37 (4-74) ataxia, dysarthria, nystagmus, slow saccades, ophthalmoplegia, 

spasticity, PNP, executive dysfunction; increase in PMCT and CMCT 
OPCA 

SCA2 32 (1-65) ataxia, dysarthria, slow saccades, hyporeflexia, titubation, dementia,  
(rarely) parkinsonism 

OPCA + spinal 
atrophy, some 
cortical atrophy 

SCA3  
(MJD) 

36 (5-70) ataxia, dysarthria, nystagmus, lid retraction, diplopia, faciolingual 
fasciculation, dystonia, parkinsonism, restless legs, temperature 
discrimination; onset <35 years with ataxia + spasticity,  
onset >45 years with ataxia + PNP 

OPCA (mild), 4th 
ventricle 
enlarged 

SCA4 ? (19-72) ataxia, dysarthria, sensory axonal neuropathy, pyramidal signs CA + brainstem 
atrophy 

SCA8 40 (1-73) ataxia, dysarthria, nystagmus, tremor CA 
SCA10 36 (26-45) ataxia, dysarthria, nystagmus, epilepsy CA 
SCA12 35 (8-55) ataxia, nystagmus, tremor, bradykinesia, hyperreflexia CA + cerebral 

atrophy 
SCA13 childhood  

(<1-45) 
ataxia, dysarthria, nystagmus, 
hyperreflexia, mental + motor retardation, slow progression 

OPCA 

SCA17 33 (6-48) ataxia, dysarthria, nystagmus with dementia, slow saccades or epilepsy, 
hyperreflexia, akinesia, dystonia, chorea, psychosis, mutism 

CA, some;  
general atrophy 

SCA18 15 (12-25) ataxia, dysarthria, nystagmus, sensory-motor axonal neuropathy, 
Babinski sign 

CA 

SCA19 34 (11-45) mild ataxia, dysarthria, nystagmus, cognitive impairment, myoclonus, 
tremor, hyporeflexia, hyperreflexia 

CA, some; 
cerebral atrophy 

SCA20 47 (19-64) ataxia, dysarthria, (mild/moderate) dysphonia, ballistic overshoot, 
bradykinesia, palatal (some + lips) tremor 

dentate 
calcification + 
panCA (in most) 

SCA21 18 (7-30) ataxia, dysarthria, akinesia, rigidity, postural and rest tremor, 
hyporeflexia, cognitive impairment 

CA 

SCA22 ? (10-46) ataxia, dysarthria, nystagmus, slow progression, hyporeflexia CA 
SCA23 50 (43-56) ‘pure’ ataxia, dysarthria, (mild) disturbance oculomotor control, 

hyperreflexia (Babinski sign in some), slow progression 
CA 

SCA25 ? (1-39) ataxia, dysarthria, nystagmus, sensory neuropathy CA 
SCA27 34 (27-40) ataxia, dysarthria, nystagmus, tremor, psychiatric episodes CA 
SCA28 20 (12-36) ataxia, dysarthria, hyperreflexia (Babinski sign in some), nystagmus, 

ophthalmoparesis; juvenile onset, slow progression 
CA (superior 
vermis) 

DRPLA 30 (0-62) ataxia, onset <20 years with myoclonus, epilepsy; onset >20 years with 
choreoathetosis, dementia, psychosis 

OPCA, cerebral  
white-matter 
lesions 

    

ADCA II 
phenotype. cerebellar ataxia with pigmentary retinopathy 
neuropathology. cerebellar atrophy with pigmentary retinal degeneration 
subtype age at 

onset, yrs.* 
phenotype CT/MRI findings 

SCA7 35 (0-70) ataxia, dysarthria, visual loss owing to pigmentary retinopathy, slow 
saccades, pyramidal signs 

OPCA 

    
ADCA III 
phenotype. ‘pure’ cerebellar ataxia 
neuropathology. cerebellar atrophy 
subtype age at 

onset, yrs.* 
phenotype CT/MRI findings 

SCA5 30 (10-68) ‘pure’ ataxia, dysarthria, normal life expectancy; early onset, bulbar 
signs 

CA 

SCA6 52 (30-71) ‘pure’ ataxia, dysarthria, nystagmus, normal life expectancy, 
(commonly) diplopia, (rare and mild) PNP, pyramidal signs 
negative family history owing to late onset 

CA 

SCA11 25 (25-43) ‘pure’ ataxia, dysarthria, nystagmus, normal life expectancy, (rarely) 
hyperreflexia 

CA 

SCA14 27 (12-42) ataxia (slow progression) ± head tremor or myoclonus (early onset) CA (vermis) 
SCA15 26 (10-50) ‘pure’ ataxia, dysarthria, nystagmus, normal life expectancy; some 

patients with hyperreflexia 
CA (vermis) 

SCA16 40 (20-66) ‘pure’ ataxia, dysarthria, nystagmus, normal life expectancy; some 
patients with head tremor 

CA 

SCA26 42 (26-60) ‘pure’ ataxia, dysarthria, nystagmus, dysmetric saccades CA 
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Table 1.3. Autosomal dominant ataxias; genetics and molecular pathways implicated 

The autosomal dominant ataxias comprise 26 SCA subtypes and DRPLA (SCA9 and 24 have 

not been annotated). a. Japanese SCA4 was initially assigned to SCA4 due to phenotypic 

similarities and linkage assigned to the same locus, however, no puratrophin-1 mutations have 

been found in the original SCA4 families (Hellenbroich et al. 2008) implicating Japanese SCA 

to be of a different subtype. b. Some controversy exists around the pathogenic mechanism of 

SCA8, recent findings suggesting a dual pathogenic mechanism (Moseley et al. 2000;Nemes et 

al. 2000;Worth et al. 2000;Stevanin et al. 2000;Aromolaran et al. 2007). c. SCA15 and 16 have 

both been attributed to deletion in ITPR1 (van de Leemput et al. 2007;Iwaki et al. 2008), and 

therefore can now be regarded as the same condition (SCA15) (Gardner 2008). d. SCA19 and 

22 share disease locus and a highly similar phenotype suggesting they might share an 

underlying genetic cause (Verbeek et al. 2002;Chung et al. 2003;Chung and Soong 

2004;Schelhaas et al. 2004). e. SCA20 locus was assigned to 11p11.2-q13.2. In a recent paper 

Knight and colleagues (2008) described duplication at 11q12.2-12.3 in SCA20 patients, 

narrowing the linkage region, and speculated the disease causing gene within the duplicated 

segment to be DAGLA (diacylglycerol lipase, alpha). Additional families or experimental data 

are critical to confirm these findings. f. Defined loci for SCA18 and 29 are based on data 

provided by the HUGO Gene Nomenclature Committee (HUGO, Human Genome Organization; 

http://www.genenames.org) as no published linkage studies were available. A paper by Devos 

et al. (2001) does provide a phenotypical description of the SCA18 family. SCA, spinocerebellar 

ataxia; (---)n, expanded repeat; MJD, Machado-Joseph disease; UTR, untranslated region; n/a, 

not available; DRPLA, dentatorubral-pallidoluysian atrophy. (table 1.3, on next page) 
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(table 1.3, continued from previous page) 
SCA  locus Gene mutation gene/protein-name function/ process reference 
SCA1 6p23 ATXN1 (CAG)n ataxin 1 unknown Orr et al. (1993) 
SCA2 12q23-24.1 ATXN2 (CAG)n ataxin 2 unknown Pulst et al. (1996), Sanpei et al. (1996), Imbert et al. (1996) 
SCA3 (MJD) 14q21 ATXN3 (CAG)n ataxin 3 unknown Kawaguchi et al. (1994), Haberhausen et al. (1995) 
SCA4a 16q22.1     Flanigan et al. (1996), Hellenbroich et al. (2008) 
Japanese 
SCA4a 

16q22.1 PLEKHG4 substitution 
5’UTR 

puratrophin-1 (Purkinje cell atrophy 
associated protein-1) 

unknown Ishikawa et al. (2005), Ohata et al. (2006) 

SCA5 11q13.2 SPTBN2 deletion, 
missense 

spectrin, beta, nonerythrocytic, 2 glutamate signaling Ikeda et al. (2006) 

SCA6 19p13 CACNA1A (CAG)n voltage-dependent calcium channel, P/Q 
type, subunit alpha-1A  

calcium homeostasis Zhuchenko et al. (1997) 

SCA7 3p21.1-p12 ATXN7 (CAG)n Ataxin 7 unknown David et al. (1997) 
SCA8b 13q21 ATXN8OS (CTG)n 

3’UTR 
ataxin 8, opposite strand (non-protein 
coding); Kelch-like 1 (KLHL1) 

organization actin cytoskeleton Koob et al. (1999), Chen et al. (2008) 

SCA10 22q13 ATXN10 (ATTCT)n 
intron 

ataxin10 unknown Matsuura et al. (2000) 

SCA11 15q15.2 TTBK2 frameshift 
premature 
stop 

tau tubulin kinase 2 microtubule assembly, stability 
cytoskeleton 

Houlden et al. (2007) 

SCA12 5q32 PPP2R2B (CAG)n 
5’UTR 

protein phosphatase 2, regulatory subunit 
b, beta 

cell-cycle progression, tau 
phosphorylation, apoptosis 

Holmes et al. (1999) 

SCA13 19q13.33 KCNC3 missense voltage-gated potassium channel, type C, 
Shaw-related subfamily 

neuronal signaling Waters et al. (2006) 

SCA14 19q13.4 PRKCG missense protein kinase C, gamma cellular signaling, cell 
proliferation and differentiation 

Chen et al. (2003) 

SCA15c 3p26.1 ITPR1 deletion inositol 1,4,5-triphosphate receptor, type 1 calcium homeostasis van de Leemput et al. (2007) 
SCA16c 3p26.1 ITPR1 deletion inositol 1,4,5-triphosphate receptor, type 1 calcium homeostasis Iwaki et al. (2008) 
SCA17 6q27 TBP (CAG)n TATA box-binding protein gene transcription Nakamura et al. (2001) 
SCA18f 7q22-q32     Devos et al. (2001), n/a 
SCA19d 1p21-q21     Verbeek et al. (2002), Schelhaas et al. (2004) 
SCA20e 11p11.2-q13.3 

11q12.2-q12.3 
 
DAGLA 

 
duplication 

 
diacylglycerol lipase, subunit a, alpha 

 
synaptic transmitter release 

Knight et al. (2004) 
Knight et al. (2008) 

SCA21 7p21.3-p15.1     Vuillaume et al. (2002) 
SCA22d 1p21-q23     Chung et al. (2003), Chung and Soong (2004) 
SCA23 20p13-12.3     Verbeek et al. (2004) 
SCA25 2p21-p15     Stevanin et al. (2004) 
SCA26 19p13.3     Yu et al. (2005) 
SCA27 13q34 FGF14 missense fibroblast growth factor 14 axonal function, synaptosomal 

function, or neurotransmission 
van Swieten et al. (2003) 

SCA28 18p11.22-q11.2     Cagnoli et al. (2006) 
SCA29f 3p26     n/a 
DRPLA 12p ATN1 (CAG)n atrophin 1 unknown Koide et al. (1994), Nagafuchi et al. (1994a;1994b) 



 

 36 

1.1.2 Pathogenesis of spinocerebellar ataxias 
The molecular and cellular events that underlie cerebellar atrophy and degeneration of 

additional brain regions in spinocerebellar ataxia are still poorly understood. Although 

numerous ataxia genes have been identified in the past decade, their apparent lack of 

a common pathogenic mechanism has caused confusion. Initially, expansion of 

unstable repeats were found to underlie SCA pathogenesis, however in recent years 

conventional mutations, non-repeat mutations, have been identified in several SCA 

subtypes (table 1.3); for example missense mutation in FGF14 in SCA27 (van Swieten 

et al. 2003), deletion of 2 bases in TTBK2 underlying SCA11 (Houlden et al. 2007), 

deletions ranging from several exons to the entire ITPR1 gene in SCA15 and SCA16 

(van de Leemput et al. 2007;Hara et al. 2008;Iwaki et al. 2008) and linkage in SCA20 

to a duplication on chromosome 11 comprising several genes (Knight et al. 2008). 

Genes implicated in SCA etiology have been shown to be involved in regulation of 

phosphorylation, protein aggregation and clearance, neuronal signaling pathways, and 

calcium homeostasis (figures 1.1, 1.2). 

 

1.1.2.1 Expansion of unstable repeats 
Polyglutamine repeats represent the most common pathogenic mechanism found to 

underlie autosomal dominant inherited ataxia, accounting for more that 50% of 

affected families worldwide (Schols et al. 2004). To date, ten spinocerebellar ataxias 

have been attributed to a CAG-repeat expansion in the coded region of a gene; SCA1, 

2, 3 (also know as Machado-Joseph disease), 6, 7, 17 and DRPLA (dentatorubral-

pallidoluysian atrophy). The function of the affected protein is only known for two of 

these; the α1A-subunit of a P/Q-type calcium channel (CACNA1A) in SCA6 

(Zhuchenko et al. 1997), and the TATA-box binding protein (TBP) in SCA17 

(Nakamura et al. 2001). The polyglutamine (polyQ) repeat expansions form the major 

common characteristic of affected proteins, suggesting pathogenesis is directly linked 

to the expanded polyglutamine stretch. The mechanism by which these polyQ-proteins 

cause neurodegeneration is still unknown. Studies of extended polyglutamine repeats 

in other diseases, such as Huntington’s disease (HD), have shown expanded stretches 

of polyglutamine lead to abnormal protein configuration (β-sheet structures) resulting 

in formation and deposition of fibrillar aggregates in the nucleus (Perutz 1996). Similar 

pathological inclusions have been shown in the nucleus of spinocerebellar ataxias 1, 3, 

7 and 17, whereas in SCA2 inclusions have been found both in the nucleus and 

cytoplasm, and in SCA6 inclusion bodies have been shown exclusively in the 

cytoplasm (Schols et al. 2004). These polyglutamine repeat fragments have been 
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suggested to sequester other proteins into the aggregates, to block cell vesicle 

trafficking, to inhibit proper proteasome function, and to lure chaperones away from the 

rest of the cell by toxic titration (Truant et al. 2008). Early studies defined mutant 

aggregates as static, misfolded, precipitated proteins that rendered cell clearance 

machinery, such as the ubiquitin-dependent proteasome system and autophagy, 

inadequate. Recent studies however, have shown some of the polyglutamine 

expanded proteins in inclusion bodies exchange back to the soluble phase, others 

appear static and sequester soluble protein, whereas some move between inclusions 

(Truant et al. 2008). These findings suggest a much more dynamic system in which a 

polyglutamine expansion effect on protein function would not necessarily be universal 

for all proteins. Aggregation seems to occur through formation of a reservoir of soluble 

intermediates, whose population and stability increases with polyglutamine length. 

Increasing evidence indicates the soluble oligomers to be the toxic species and not the 

protein in aggregates, with protein context defining toxicity possibly through interaction 

with other proteins and small molecules. A more detailed discussion on polyglutamine 

toxicity in neurodegenerative disease can be found in a review by Truant et al. (2008). 

An alternative, or possibly complementary explanation would be that the continual 

presence of mutant polyglutamine protein overloads the cellular pathways for protein 

quality control. This results in accumulation of polyglutamine aggregates as well as 

other misfolded proteins thereby disturbing global protein homeostasis, eventually 

leading to neural cell death (Gidalevitz et al. 2006).   

    

Unstable repeat expansions found in SCA8, 10 and 12, fall outside the protein coding 

region of the respective disease genes: SCA8 has been identified as being partly 

caused by a CTG repeat expansion in the untranslated, endogenous antisense RNA 

that overlaps the Kelch-like 1 (KLHL1) gene (Koob et al. 1999;Chen et al. 2008); an 

expansion of a pentanucleotide (ATTCT) repeat in intron 9 of ATXN10 has been 

identified in SCA10 (Matsuura et al. 2000); expansion of a CAG trinucleotide repeat in 

the 5’UTR of PPP2R2B, encoding the beta regulatory subunit of protein phosphatase 

2, is associated with SCA12 (Holmes et al. 1999). It remains unclear how these non-

coding repeats cause neurodegeneration. One explanation could be a dominant toxic 

mechanism occurring at the RNA level similar to that shown in myotonic dystrophy in 

which expanded RNA repeats sequester RNA-binding proteins, leading to aberrant 

RNA splicing (Osborne and Thornton 2006;Soong and Paulson 2007). However, no 

evidence has been found to support this theory in SCA8, 10 or 12. Alternatively, 

neurodegeneration might be caused by gene specific effects. The SCA8 transcript has 
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been proposed to act as an antisense regulator for KLHL1 (kelch-like 1) based on the 

genomic organisation of both genes (Chen et al. 2008), and the absence of extended 

open reading frames or significant homology to known genes. The trinucleotide (CTG) 

repeat expansion would then abolish KLHL1 regulation, indeed over-expression of the 

SCA8 gene region in mice induced motor deficits, generalized wasting and premature 

death (Yamada et al. 2008). The SCA12 polyglutamine repeat expansion is located in 

the 5’UTR of PPP2R2B (protein phosphatase 2, regulatory subunit beta), a regulator of 

protein phosphatase PP2A activity for specific substrates including vimentin and tau, 

both linked to neuronal cell death (Holmes et al. 1999).   
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Figure 1.1. Molecular mechanisms of neurodegeneration in SCAs caused by polyglutamine expansion 

Polyglutamine aggregates form in the nucleus and/or cytoplasm. Chaperones and proteasomes are recruted to refold or dispose polyglutamine containing 

fragments in order to prevent further aggregation. Small aggregates sequester other proteins and protein complexes including ubiquitin, proteasomes, 

chaperones and transcription factors thereby forming nuclear inclusion bodies. Ca2+, calcium ions; (CAG)exp, polyglutamine expansion; TAFII130, TBP-associated 

factor (135kDa); Ub, ubiquitin; CBP, CREB (cAMP response element binding) binding protein; TBP, TATA box-binding protein. Reproduced from Schols et al. 

(2004). 
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Figure 1.2. Molecular mechanisms of neurodegeneration in SCAs caused by conventional mutations 

1, aggregation; 2, apoptosis; 3, autophagy; 4, Ca2+ homeostasis alterations; 5, disruption of axonal transport and vesicle trafficking; 6, excitotoxicity; 7, 

interference with gene transcription; 8, mitochondrial impairment; 9, oxidative stress; 10, alterations of proteasome degradation; 11, synaptic dysfunction; 12, 

unfolded protein response (UPR); 13, potassium channel dysfunction. Ca2+, calcium ions; ER, endoplasmic reticulum; Glu, glutamate; K+, potassium ions; Na+, 

sodium ions; NMDA, N-methyl-D-aspartic acid; OH, hydroxyl radical; Q, glutamine; Ub, ubiquitin. Adapted from Duenas et al. (2006). 
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1.1.2.2 Neuronal signalling dysfunction 
Several spinocerebellar ataxias have been attributed to disruption of neuronal 

signalling. Mutations in the fibroblast growth factor (FGF)14 gene underlie SCA27 

pathogenesis. FGF14 has been shown to play a role in regulating synaptic plasticity by 

controlling mobilization, trafficking or docking of synaptic vesicles to presynaptic active 

zones (Soong and Paulson 2007). SCA5 is caused by mutations in the spectrin gene. 

Spectrin is a cytoskeletal component and has been associated with Golgi and vesicle 

membranes and shown to bind dynactin, suggesting a possible role in transport. 

Another function of β-spectrin is stabilization of membrane proteins, such as the 

Purkinje cell-specific glutamate transporter EAAT4 (Ikeda et al. 2006). The Kelch-like 1 

(KLHL1) gene has been implicated in SCA8 pathology. KLHL1 protein has been 

suggested to function as an actin-organizing protein thereby modulating neurite 

outgrowth, dynamic properties of dendritic spines and neuronal proteins essential for 

postsynaptic function (Soong and Paulson 2007). A single nucleotide substitution in 

the 5’UTR of the puratrophin-1/ PLEKHG4 (Purkinje cell atrophy associated protein-1) 

gene has been described to underlie Japanese SCA4. Puratrophin-1 protein has been 

suggested to play a role in intracellular signalling and actin dynamics at the Golgi 

apparatus (Duenas et al. 2006). Mutations in the KCNC3 gene, encoding a voltage-

gated potassium channel (Kv3.3), have been shown to cause SCA13. Mutations have 

a dominant-negative effect on the electrophysiological properties of the potassium 

channel, slowing channel closing and thereby changing the output characteristics of 

fast-spiking cerebellar neurons, in which KCNC channels confer capacity for high-

frequency firing (Waters et al. 2006).  

 

1.1.2.3 Altered calcium homeostasis 
Alteration of calcium homeostasis plays a central role in apoptosis, and Ca2+ overload 

or perturbation of intracellular Ca2+ compartmentalization has long been recognized to 

be potentially cytotoxic (Orrenius et al. 2003). Purkinje cell degeneration in SCA6 has 

been associated with polyglutamine expansions in the CACNA1A gene, encoding a 

major pore forming subunit of the Ca(v)2.1 voltage-dependent P/Q-type calcium 

channel (Zhuchenko et al. 1997). P/Q-type calcium channels have been shown to be 

highly expressed in granule cells and Purkinje cells of the cerebellar cortex, and have 

been suggested to play a major role in synaptic transmission (Ishikawa et al. 1999). 

Moreover, KLHL1, the actin-organizing protein associated with SCA8, has been shown 

to interact with and modulate voltage-gated calcium channels, in particular the alpha 

(1A) subunit of P/Q-type channels (Aromolaran et al. 2007). Recently, SCA15 and 
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SCA16 have been attributed to deletions in the ITPR1 (inositol 1,4,5-triphosphate 

receptor, type 1) gene (van de Leemput et al. 2007;Iwaki et al. 2008) (chapter 4). 

ITPR1 encodes an IP3(inositol 1,4,5-triphosphate)-gated calcium-release channel 

located in the endoplasmic reticulum membrane, thereby controlling Ca2+ release from 

the major cellular calcium store and playing a critical role in maintaining intracellular 

calcium homeostasis. Interestingly, mutations in PRKCG have been identified in 

SCA14 pathology. PKC (protein kinase C) is another major player in the IP3-pathway 

(Chen et al. 2003). And PPP2R2B, implicated in SCA12, has been shown to interact 

with PKC (Price and Mumby 1999). These data suggest an important role for aberrant 

calcium homeostasis in the pathogenesis of ataxia.  

 

1.1.2.4 Dysregulation of phosphorylation 
Findings of mutations in several proteins with phosphatase or kinase activity imply a 

role for dysregulation of phosphorylation in SCA etiology. An expanded polyglutamine 

repeat in the 5’UTR of PPP2R2B has been identified in SCA12. PPP2R2B encodes a 

brain specific subunit (B) of a protein serine/threonine phosphatase that regulates 

phosphorylation in a large number of cellular processes, including modulation of cell 

cycle progression, tau phosphorylation and apoptosis (Holmes et al. 1999). Mutations 

in tau tubulin kinase 2 (TTBK2, SCA11) and protein kinase Cγ (PRKCG, SCA14) have 

been shown to underlie SCA pathogenesis. TTBK2 is a casein kinase with tau and 

tubulin among possible substrates, raising the possibility of a disease pathway similar 

to another tau kinase, TTBK1, that has been implicated in Alzheimer’s disease and 

tangle formation (Houlden et al. 2007). PKCγ is a serine/threonine kinase that 

mediates second messenger signalling pathways involved in multiple cellular 

processes, including the IP3 (inositol 1,4,5-triphosphate) calcium-sensitive signalling 

pathway (Chen et al. 2003). 

 

1.1.2.5 Transcriptional dysregulation 
SCA17 is caused by a mutation in the gene encoding TATA box-binding protein (TBP), 

an important general transcription initiation factor (Nakamura et al. 2001). Data 

supporting a role for transcriptional dysregulation in SCA etiology have also come from 

study of the other polyglutamine repeat expansion ataxias. Neuronal inclusions have 

been shown to contain transcription factors and co-activators, in addition to the other 

cellular components like chaperones, ubiquitin protein tags and proteasomes (Everett 

and Wood 2004). Polyglutamine protein sequestering of transcription factors, as well 

as impaired transcription factor functioning due to interaction with polyQ-proteins, 
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could possibly cause transcriptional shutdown and subsequent neuronal degeneration 

(Soong and Paulson 2007). 
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1.2 HUMAN MOLECULAR GENETICS 

 

1.2.1 Linkage mapping and disease gene identification 
In the early 1900s, Bateson and Punnett were studying inheritance in the sweet pea. 

Based on the observation that some genes did not segregate independently at meiosis 

they proposed a more dynamic use of the Mendelian inheritance laws, thereby 

describing gene linkage for the first time and paving the way for eventual mapping of 

phenotypic characteristics to a specific chromosomal location. Linkage mapping within 

families with a proven heritable phenotype is a widely used approach to identify 

disease genes. Defining the phenotype is essential as this allows assignation of 

disease status, unaffected or affected, to each member of the family. A detailed 

pedigree chart is drawn that includes phenotypic information such as disease status 

and age at onset, to allow deduction of inheritance mode of the trait (dominant or 

recessive, autosomal or sex-chromosomal) as well as an estimation of disease 

penetrance and detection of a possible mechanism of anticipation.  

 

Originally markers used for linkage were detectable phenotypes derived from coding 

DNA sequences, like the flower color of the sweet pea in inheritance studies by 

Bateson and Punnett. Currently single nucleotide polymorphisms (SNPs), 

microsatellites and to a lesser extend restriction fragment length polymorphisms 

(RFLPs) are used (Human Genome Project; 

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml). These genetic 

variations are more abundant in non-coding regions although they occur in coding 

genomic sequences as well. SNPs occur every 100 to 500 bases, making up about 

90% of all human genetic variation (Sachidanandam et al. 2001). Microsatellites are 

simple sequence repeats (SSRs) of 1-6 basepairs, repeated 10 to 100 times. Trimers 

and pentamers are found 500-1000bp/Mb, whereas di-, tetra- and hexanucleotide 

repeats occur 2000-3000bp/Mb. Tri- and hexanucleotide repeats appear more 

abundant in exons, the other repeat sequences are more abundant in non-coding 

regions (Subramanian et al. 2003). RFLPs are genetic variations that result in 

formation or alteration of a restriction site which can be detected by enzymatic 

digestion followed by DNA electrophoresis. Most RFLP markers are co-dominant (both 

alleles in the heterozygous sample will be detected) and highly locus specific (Young 

and Tanksley 1989). Genotype data from genome wide linkage markers and pedigree 

data are combined to generate estimates of the recombination frequency (θ); the 

frequency of chromosomal crossover between two loci during meiosis, a 1% 

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml�


 

 45 

recombination frequency being equal to 1cM (centimorgan). Next, LOD (logarithm of 

odds) scores are calculated for each recombination frequency estimate using the 

following function; 

                               

LOD = Z = log10    
 
NR, number of non-recombinant offspring; R number of recombinant offspring; nominator gives 
probability of birth sequence with a given linkage value; denominator give probability of birth 
sequence with no linkage, 0.5 signifies a 50% chance of recombination in completely 
segregated genes.   
 

LOD scores greater than 3.0 are considered evidence for linkage, indicating the 

likelihood of observing the given pedigree in absence of linkage is less than 1 in 1000. 

A LOD score of less than -2.0 is considered evidence to exclude linkage. With 

completion of the Human Genome Project, data on the physical position of markers 

used to define linkage are publicly available (NCBI map viewer, 

http://www.ncbi.nih.gov/mapview; UCSC genome browser, http://genome.ucsc.edu; 

Ensembl, http://www.ensembl.org). The number of candidate genes and unknown 

transcripts found within the critical region, depends on the physical size of the mapped 

linkage region, which is determined by marker density and sample size, and on the 

transcript density of the chromosomal region, for example telomeric and centromeric 

regions tend to be gene poor (Lander et al. 2001). Subsequently, candidate genes are 

prioritized based on literature and database searches, those homologous to a gene 

linked to the phenotype or with functional data from available cell or animal models, or 

with data on associated pathways and gene expression related to the phenotype are 

considered priority candidates. DNA sequencing is used to identify the actual mutation 

in the disease causing gene. Identification of additional families with the same mutant 

gene, as well as functional studies are essential to confirm pathogenicity of the 

candidate gene. The positional gene discovery approach has been proven an effective 

method for identifying disease genes in an unbiased manner, without prior knowledge, 

as has been shown in Huntington’s disease (The Huntington's Disease Collaborative 

Research Group 1993), cystic fibrosis (Riordan et al. 1989), breast cancer (Miki et al. 

1994;Wooster et al. 1995), and many other disorders.  

 

 

 

 

 

(1-θ)NR x θR 

   0.5(NR+R) 

http://www.ncbi.nih.gov/mapview�
http://genome.ucsc.edu/�
http://www.ensembl.org/�
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1.2.2 High density genome wide SNP genotyping 
Recent technical advances enabling high density genome wide SNP genotyping have 

not only increased the power of linkage studies (high throughput, high SNP density, 

genome wide), but also provided a platform for genome wide association studies, even 

applicable to complex diseases (Craddock et al. 2008). Moreover, Log R ratio, a 

surrogate for copy number, and B allele frequency metrics can be derived from 

genome wide SNP genotype data using specialized software, making it possible to 

study structural genomic changes such as deletion, duplication and inversion as well 

as study of haplotypes, copy number variations (CNVs), and homozygosity and 

autozygosity traits in large populations (Simon-Sanchez et al. 2007;Camargos et al. 

2008;Jakobsson et al. 2008).   
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1.3 MOUSE MOLECULAR GENETICS 

 

1.3.1 Why mice? 
Humans and mice are separated by approximately 90Myr (million years) of evolution 

(Bininda-Emonds et al. (2007); figure 1.3); therefore many physiological, anatomical 

and metabolic parallels are found as well as a high similarity at the level of the 

genome. For virtually every gene locus in the human genome a syntenic region can 

readily be identified in the mouse. Approximately 90% of the mouse and human 

genomes can be partitioned into regions of conserved synteny, constituting about 350 

segments, their sizes ranging from 300kb to 65Mb (Guenet 2005). Mutation analysis 

remains one of the most informative experimental approaches to study gene function. 

Because of the human-mouse synteny, the application of reverse genetics, induction 

of genetic mutations in mice to gain insight in gene function by studying phenotypic 

effects, has been proven very successful in providing insight in human disease 

processes and identifying their genetic cause (Baker et al. 2005;Fillon and Kahle 

2005). Exploitation of this principle is evident in the numerous ENU (N-ethyl N-

nitrosourea, an alkylating agent that induces point mutations) (Acevedo-Arozena et al. 

2008) and targeted mutagenesis programs around the world. To date, the international 

mouse resource consortium, IMRC, comprises approximately 8,700 mouse strains as 

well as more than 15,000 ES cell lines (JT Eppig (IMR/TJL), personal communication).  

 

 

 

 

 

 

 

 

 

 
Figure 1.3. Phylogenetic tree of vertebrate species 

Mammals are divided into three groups; Monotremata, Marsupialia and Eutheria. Eutherian 

animals diverged approximately 150 million years (Myr) ago from the marsupial mammals, 

which in turn diverged from the egg-laying monotremes approximately 165 Myr ago. Rodentia 

and primates, both part of the Eutheria, separated about 90 Myr ago (Bininda-Emonds et al. 

2007). Reproduced from Welcome Trust Sanger Institute 

(http://www.sanger.ac.uk/PostGenomics/epicomp). 

http://www.sanger.ac.uk/PostGenomics/epicomp�
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In addition, spontaneous mutations continue to provide valuable models of human 

disease and fundamental research systems for understanding mammalian biology. 

Numerous examples have been described in the literature of spontaneous mouse 

models that have lead to the identification of novel gene mutations underlying human 

disorders; tottering Cacna1atg episodic ataxia type 2 (Fletcher et al. 1996), spdh 

mouse Hoxd13spdh syndactyly type II (Johnson et al. 1998), nclf mouse Cln6nclf variant 

late infantile neuronal ceroid lipofuscinosis (vLINCL) (Gao et al. 2002;Wheeler et al. 

2002), or provided potential models for human inherited disorders with unknown 

genetic cause; Purkinje cell degeneration (pcd) mouse Nna1 (Wang and Morgan 

2007), hot-foot Grid2ho ataxic model (Lalouette et al. 1998;Lalonde and Strazielle 

2007).  
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1.3.2 Mouse genetics 
1.3.2.1 Forward genetics, a phenotype driven approach  
Positional gene discovery in mice is in essence identical to the positional cloning 

approach used in humans, however more power in linkage analysis can be achieved 

through breeding strategies, by generating an increased family size and back crosses 

to narrow down the region of linkage. This phenotype driven approach in mice is also 

known as forward genetics (figure 1.4). Similar to human studies, definition of 

phenotype and generation of a detailed pedigree chart are fundamental in mouse 

genetics.  

 

Identification of a spontaneous mutation in mice is dependent on careful observation of 

breeding colonies to detect any deviating phenotypes. Naturally occurring mutation 

rates are estimated at 10-5 to 10-7 events per gene per generation (Balling 2001). 

Several techniques have been developed to increase the mutation rates in mice up to 

10-fold or more by inducing random mutations, these include treatment with chemicals 

like ENU (point mutations), exposure to gamma radiation (deletions) and genetic 

engineering of DNA insertions (insertional knockouts). In both spontaneous and 

randomly induced mutations, genetic transmission and propagation of the trait needs 

to be confirmed before linkage mapping strategies can be applied. To determine mode 

of inheritance, a phenotypic abnormal mouse is crossed to a wild type mouse. Affected 

F1 progeny suggest dominant or X-linked inheritance, a recessive character will 

reappear in approximately one fourth of the F2 progeny, whereas a semi-dominant 

gene will produce an intermediate phenotype in the F1 progeny and both intermediate 

and original phenotypes in the F2 generation. Once the pattern of inheritance has been 

established, positional candidate gene cloning can be applied to map the genetic 

cause. Genome wide linkage localizes the disease gene to a chromosomal location, 

which subsequently can be fine mapped using additional polymorphic markers or by 

crossing the affected line to a different inbred strain. The F1 generation of this cross 

allows fine mapping of a dominant trait. Intercross of the F1 mice results in an F2 

generation that allows fine mapping of a recessive trait. In both cases, mapping is 

carried out by linking the phenotype to a haplotype based on strain variation. Next, 

genome databases are searched for known and predicted genes in the critical region 

and candidate genes are prioritized based on available literature. Sequence analysis 

and functional studies enable identification and confirm pathogenicity of the candidate 

gene. A paper by Xie et al. (2007) describes application of a forward genetic screen 

leading to identification of the gene underlying the Wobbly mutant. The Wobbly 
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phenotype is characterized by ataxia and shows cerebellar atrophy with focal reduction 

of the molecular layer. The founder Wobbly mouse was detected in an ENU 

mutagenesis dominant behavioral screen. Positional cloning revealed a missense 

mutation in CACNA1A, which encodes a P/Q-type calcium channel implicated in 

several human neurological disorders (Ophoff et al. 1996;Zhuchenko et al. 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.4. Mouse genetics; forward genetics, reverse genetics 

Forward genetics, or positional gene discovery, is a phenotype driven approach using genetics 

to identify the underlying genetic cause (genetic characterization) of the observed phenotype. 

Reverse genetics, on the other hand, is a genotype driven approach based on a hypothesis 

that is tested by observing the effects (phenotypic characterization) of targeted gene 

modification. ENU, N-ethyl N-nitrosourea.    
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1.3.2.2 Reverse genetics, a genotype driven approach 
In reverse genetics, the functional study of a gene starts with a specific genetic 

sequence rather than a deviating phenotype (figure 1.4). Using various methodologies 

the genetic sequence of interest can be changed and its effect on the development or 

behavior of the mouse analyzed. Gene silencing for example, can be accomplished 

using RNA interference (RNAi). RNAi allows for a relatively rapid screening of loss of 

function phenotypes by creating a knockdown of gene function without altering the 

DNA. Gene targeting on the other hand, generates null alleles (knockouts), thereby 

permanently removing all gene function. Gene targeting can also be used to identify 

amino residues essential for protein function by inducing codon changes or to study 

the role of gene promoter regions by creating alterations in regulatory domains. 

Generation of transgenic mice by overexpressing wild type or mutant genes provides 

another way to interfere at the genetic level in order to study gene function. In addition, 

mutagenized populations similar to those in forward genetic screens can be used to 

study the effect of random deletions (gamma radiation), insertions (insertional 

knockouts) and point mutations (application of chemicals like ENU). The mutagenized 

mouse colonies are screened for changes in the genetic sequence under study using 

standard molecular techniques like polymerase chain reaction (PCR) and sequence 

analysis. Mutant animals thus identified are subsequently tested for phenotypic 

abnormalities in development, metabolism, behavior (for example open field, modified 

SHIRPA (SmithKline Beecham, Harwell, Imperial College School of Medicine, Royal 

London Hospital, Phenotype, Assessment) protocol), or motor coordination (for 

example suspended wire, rotarod) (based on the EMPReSS database developed by 

the EUMORPHIA consortium; http://empress.har.mrc.ac.uk; 

http://www.eumorphia.org).  

 

Reverse genetics combined with the complete human and mouse genome sequences 

provides the means to study every gene known (Copeland et al. 1993;Lander et al. 

2001;Venter et al. 2001). In addition to gene function, entire gene families and 

associated pathways can be studied using the mouse as a model organism for human 

disease or studying fundamental biological hypothesis. An elegant example of the 

application of reverse genetics has been described in a paper by Bergami and 

colleagues (2008) where an inducible mouse line (Cre-lox) was used to study the role 

of TrkB (neurotrophic tyrosine kinase receptor, type 2) signaling specifically in adult 

neurogenesis. Finding that specific lack of TrkB signaling in recently generated 

neurons leads to a remarkable increase in anxiety-like behavior in mice carrying the 

http://empress.har.mrc.ac.uk/�
http://www.eumorphia.org/�
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mutation, these data add weight to a role for adult neurogenesis in regulating mood 

related behavior.   

 

1.3.2.3 Reverse-forward genetics, a combined approach 
To study gene function in disease pathogenesis, cellular pathways or for development 

of potential therapies, mutation analysis remains one of the most informative 

experimental approaches. Both forward and reverse genetic approaches eventually 

lead to new hypothesis, and each approach can be extended by generating more 

mutants either through mutagenesis to create new phenotypes or through gene 

targeting (figure 1.4). Reverse genetics provides an important complement to forward 

genetics as currently for most genes no mutant models are available. Which is the 

main reason, the Knockout Mouse Project (KOMP), a trans-National Institutes of 

Health (NIH) initiative, aims to generate a comprehensive and public resource 

comprised of mice containing a null mutation in every gene in the mouse genome 

(http://www.knockoutmouse.org) (Austin et al. 2004).  

 

The pronuclear microinjection technique has been widely used in reverse genetic 

approaches to express exogenous genes in mice to develop transgenic models for 

human disease. However, in some mice the exogenously added DNA integrated into a 

host chromosome and becomes a stably heritable genetic trait (Rijkers et al. 1994). 

Integration of the transgene into the host genome leads to a disruption in the structure 

of the chromosomal DNA at the integration site and causes a special class of 

mutations referred to as insertional mutations (Woychik and Alagramam 1998). It has 

been proposed that about 5-10% of transgenic mice harbor transgene induced 

chromosomal alterations, such as transgene insertions, deletions or translocations 

(Meisler 1992;Rijkers et al. 1994;Woychik and Alagramam 1998). Integration of the 

transgene most often occurs at only one or a limited number of sites in the genome of 

the transgenic founder animal, with each site potentially harboring anywhere from one 

to hundreds of copies of the microinjected fragment typically in a head-to-tail 

configurations. Although multilocus disruption has also been described; this is caused 

by alterations in the gross structure of the chromosome near the transgene integration 

site, resulting in multiple gene inactivation events or multiple integrations of the 

transgene, often noticeable by segregation of the affected chromosomes in successive 

generations (Rijkers et al. 1994;Woychik and Alagramam 1998). In targeted 

mutagenesis random integration of the transgene-construct similar to insertional 

mutations in microinjection experiments have been found, in some cases leading to 

http://www.knockoutmouse.org/�
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non-specific mutagenic effects in the genome resulting in unexpected phenotypes, for 

example the TgN737Rpw transgenic mouse line as a model for autosomal recessive 

polycystic kidney disease (ARPKD) in humans (Woychik and Alagramam 1998). Any 

tags to the transgene might aid in identification of the mutation at the molecular level. 

However, often positional gene discovery/ forward genetic approaches are required to 

characterize the insertional mutation. The mechanism underlying these chromosomal 

structural changes caused by non-specific mutagenic effects, remain unknown.  

 

 

 
Table 1.4. Mouse models of cerebellar dysfunction and degeneration 

Table comprises spontaneous and induced mouse mutations modeling human spinocerebellar 

ataxias as well as a selection of mouse models with unknown human cognate variant that are 

characterized by ataxia, impaired motor dysfunction and neuronal atrophy. *Locus information 

(chromosome, strand, genome coordinates) was obtained from the MGI database (Mouse 

Genome Informatics, The Jackson Laboratory; http://www.informatics.jax.org/) and data were 

based on NCBI build 37; Mb, mega base pairs; n/a, not available; SCA, spinocerebellar ataxia; 

MJD, Machado-Joseph disease; EA2, episodic ataxia type 2; FHM, familial hemiplegic 

migraine; DRPLA, dentatorubral-pallidoluysian atrophy; ENU, N-ethyl N-nitrosourea; NII, 

neuronal intranuclear inclusion; CI, cytoplasmic inclusion; GII, glial intranuclear inclusion; DNS, 

diffuse nuclear staining. (table 1.4, on next page) 
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mouse gene gene name locus* mutation  phenotype  human disorder references 
SCA1 Atxn1 ataxin-1 13 (-)  

45.7-46.1Mb 
(CAG)82, 
(CAG)145 

transgene, 
Purkinje cell 
specific 

ataxia, wasting, 
cognitive deficits 

Purkinje cell loss; 
NII (Purkinje cell/ 
widespread) 

SCA1 Burright et al. 
(1995), Yamada 
et al. (2008) 

          
SCA2 Atxn2 ataxin-2 5 (+) 

122.2-
122.3Mb 

(CAG)58, 
(CAG)75 

transgene, 
Purkinje cell 
specific 

impaired motor 
function 

Purkinje cell loss; 
CI 

SCA2 Yamada et al. 
(2008) 

          
SCA3, MJD Atxn3 ataxin-3 12 (-) 

103.2-
103.2Mb 

(CAG)64-84, 
(CAG)71, 
(CAG)70,148 

transgene 
(Purkinje cell 
specific/ 
endogenous 
promoter/ prion 
promoter) 

ataxia, impaired 
motor function/ 
hypotonia, 
sensory loss, 
premature death/ 
tremor, reduced 
motor and 
exploratory 
activity 

loss of pontine 
nuclei, dentate 
nucleus, Purkinje 
cells; NII (affected 
regions/ 
widespread) 

SCA3, MJD Yamada et al. 
(2008) 

          
tottering, 
leaner, 
Wobbly, 
Ca(v)2.1 
knockout 

Cacna1a voltage-dependent 
P/Q type calcium 
channel, alpha 1A 
subunit 

8 (+) 
86.9-87.2Mb 

missense, 
knockout 

spontaneous,  
ENU, targeted 
knockout 

epilepsy, ataxia/ 
premature death 

cerebellar atrophy SCA6  
(EA2, FHM) 

Doyle et al. 
(1997), Xie et al. 
(2007) 

          
SCA7 Atxn7 ataxin-7 14 (+) 

14.9-14.9Mb 
(CAG)92, 
(CAG)266 

transgene (prion 
promoter) 

retinal 
degeneration, 
ataxia, premature 
death 

retinal loss; NII 
(widespread)/ GII 

SCA7 Yamada et al. 
(2008) 

          
DRPLA Atn1 atrophin-1 6 (-) 

124.7-
124.7Mb 

(CAG)65, 
(CAG)129 

transgene (prion 
promoter) 

ataxia, tremor, 
seizures, 
premature death/ 
myoclonus 

DNS 
(widespread), NII 
(some regions/ 
widespread)/ CI, 
GII 

DRPLA Yamada et al. 
(2008) 

          
SCA8 Klhl1 

(Atxn8)  
ataxin-8, kelch-like 1 
(Drosophila) 

14 (-) 
96.5-96.9Mb 

(CTG)116 transgene 
(endogenous 
promoter) 

impaired motor 
function, 
generalized 
wasting, 
premature death 

NII SCA8 Yamada et al. 
(2008) 

(table 1.4, continued on next page) 
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(table 1.4, continued from previous page) 
mouse gene gene name locus* mutation  phenotype  human disorder references 
tm1Tno, 
opisthotonos, 
m1Asb 

Itpr1 inositol 1,4,5-
triphosphate 
receptor, type 1 

6 (+) 
108.2-
108.5Mb 

knockout, 
deletion 

targeted knock 
out, spontaneous 

ataxia, impaired 
motor function, 
premature death 

 SCA15, SCA16 Matsumoto et al. 
(1996), Ogura et 
al. (2001), Street 
et al. (1997), van 
de Leemput et al. 
(2007) 

          
Lurcher, hot-
foot 

Grid2 glutamate receptor, 
ionotropic, delta 2 

6 (+) 
63.2-64.6Mb 

gain of 
malfunction, 
deletion 

spontaneous ataxia, impaired 
motor function, 
premature death 

Purkinje cell loss, 
granule cell loss 
(deep nuclei)/ 
granule-Purkinje 
synaptic loss 

unknown Lalonde and 
Strazielle (2007) 

          
staggerer Rora RAR-related orphan 

receptor alpha 
9 (+) 
68.5-69.2Mb 

deletion spontaneous ataxia, impaired 
motor function 

Purkinje cell loss, 
granule cell loss 

unknown Lalonde and 
Strazielle (2007) 

          
Purkinje cell 
degeneration 

Agtpbp1 ATP/GTP binding 
protein 1 

13 (-) 
59.6-59.7Mb 

deletion spontaneous impaired motor 
function 

Purkinje cell loss, 
granule cell loss 

unknown Lalonde and 
Strazielle (2007) 

          
nervous nr unknown 8 n/a unknown spontaneous ataxia, agitation, 

impaired motor 
function 

Purkinje cell loss  
(granule cell loss) 

unknown Lalonde and 
Strazielle (2007) 

          
reeler Reln reelin 5 (-) 

21.4-21.9Mb 
deletion, 
frameshift 

spontaneous ataxia, impaired 
motor function 

Purkinje cell loss, 
granule cell loss 

unknown Lalonde and 
Strazielle (2007) 

          
weaver Girk2 

(Kcnj6) 
potassium inwardly-
rectifying channel, J6 

16 (-) 
95.0-95.2Mb 

gain of 
malfunction 

spontaneous ataxia, impaired 
motor function 

granule cell loss, 
Purkinje cell loss 

unknown Lalonde and 
Strazielle (2007) 
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1.3.3 Mouse models of ataxic movement disorders 
Identification of the genetic cause in several spinocerebellar ataxias has led to the 

generation of mouse models by targeted mutagenesis. In addition, spontaneous 

mutation models exist that present with ataxia, deficits in motor coordination and 

cerebellar atrophy. Mouse models of ataxic disorders include models for the human 

polyglutamine spinocerebellar ataxias, spinocerebellar ataxias caused by conventional 

mutations, and models for which a congenic human variant of the disorder is yet 

unknown (table 1.4; for review, see Lalonde and Strazielle (2007) and Yamada et al. 

(2008).  

 

1.3.3.1 Nucleotide repeat expansion models 
Transgenic mouse models have been created for SCA1, 2, 3, 7 and 8, and DRPLA, as 

no naturally occurring repeat expansions have been described in mice. In both 

humans and mice, the polyglutamine disorders are characterized by ataxia and 

impaired motor coordination, associated with neuronal degeneration. Brains of affected 

ataxic animals present with misfolded protein aggregates that were shown to contain 

full length or truncated mutant protein and ubiquitin (Yamada et al. 2008). Aggregates 

are usually present in the nucleus but have also been shown in the cytoplasm of 

affected neurons. Similar inclusion bodies have subsequently been demonstrated in 

human brains affected by different polyglutamine repeat proteins, such as polyQ-ataxin 

1 aggregates in SCA1 brains and polyQ-TBP containing inclusions in SCA17 brains 

(Schols et al. 2004;Yamada et al. 2008). Initially, these inclusions were considered 

toxic and the cause of neural cell death. However, findings in transgenic mice and 

humans have shown the pathologic changes are present beyond the distribution of 

neuronal atrophy, indicating neurons are affected more widely than has been 

recognized previously and raising the possibility that protein aggregates are not the 

toxic species but might even play a protective role (Yamada et al. 2008). Interestingly, 

polyglutamine repeat expansions that cause ataxia in humans are by themselves not 

sufficient for creating the conditions characteristic of each disease in mice, suggesting 

protein context plays an important role in toxicity (Yamada et al. 2008).  

 

Studies in mice overexpressing mutant protein have shown the aberrant protein has to 

enter the nucleus to cause cellular dysfunction; the nuclear localization signal and 

protein modification by interaction with other proteins have been implicated in this 

process (Yamada et al. 2008). Although some differences between mouse and human 

pathology in atrophy distribution and cell types affected remain, data obtained have 



 

 57 

provided evidence that clinical onset is not clearly associated with neuronal cell death 

but depends on intranuclear accumulation of mutant protein in neurons. It has been 

hypothesized that soluble mutant proteins might bind other proteins, for example those 

essential in maintaining cell function, rendering them dysfunctional or sequestering 

them into aggregates, thereby disturbing global protein homeostasis, eventually 

leading to cell death (Gidalevitz et al. 2006).   

 

1.3.3.2 Conventional mutation models 
Spontaneous mutation mouse models with an ataxic phenotype for which no cognate 

disorder in humans has currently been identified, have aided in gaining insight into the 

processes underlying cerebellar disorders. Behavioral studies and motor coordination 

tasks requiring balance and equilibrium (stationary beam, suspended wire, vertical 

grid, and rotarod tests) establish the extent of motor dysfunction in the different mouse 

mutants. The underlying genetic mutations have been identified in most ataxic models 

(table 1.4). Interestingly, findings in these conventional mutation models indicate 

underlying cellular disease processes are remarkably similar to those in polyglutamine 

expansion models. Both have demonstrated there is no clear correlation between 

phenotype (onset and severity of symptoms) and cell atrophy. Striking examples are 

Lurcher mice (Grid2Lc) that despite a total absence of Purkinje cells perform better on 

motor coordination tasks than hot-foot (Grid2ho-Nancy) or staggerer (Rorasg), two other 

spontaneous cerebellar mutants (Lalonde and Strazielle 2007). Neurochemistry and 

pathology studies in the conventional mutation models have shown higher metabolic 

activity in cerebellum and related structures (deep cerebellar and vestibular nuclei, 

primary relays of the cerebellar cortex, and direct afferent or efferent cerebellar 

pathways), indicating Purkinje cell atrophy and subsequent loss of Purkinje cell 

inhibitory functions results in cell hyperexcitability that might be the cause of ataxia and 

diminished motor function (Lalonde and Strazielle 2007).  

 

Other mouse models have provided further evidence of a role for aberrant calcium 

homeostasis in the etiology of ataxic disorders. Mice carrying a spontaneous mutation 

or induced knockout of Itpr1 (inositol 1,4,5-triphosphate receptor, type 1), an IP3 gated 

intracellular calcium channel highly expressed in Purkinje cells, displayed a rapidly 

progressive, severe ataxic phenotype in the absence of neuronal atrophy (Matsumoto 

et al. 1996;Street et al. 1997). Targeted Calb1 (calbindin D28K) and Calb2 (calretinin) 

null mutants of the corresponding cytoplasmic calcium binding proteins with high 

Purkinje cell expression levels, resulted in impaired motor coordination despite 
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absence of ataxia (Lalonde and Strazielle 2007). Study of current and additional 

mouse models of cerebellar movement disorders will aid to elucidate the pathogenic 

mechanism underlying spinocerebellar ataxias, essential for the identification of novel 

pharmacological targets and approaches. The ataxic mouse mutants would provide a 

useful source of potential models to test therapeutic efficacy.  
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1.4 THESIS AIM AND OUTLINE 
 

This thesis tells the scientific story that began with a probable spontaneous mutation in 

a mouse resulting in a severe ataxic movement disorder that, through a combination of 

classical and novel molecular genetic techniques, led to discovery of the genetic cause 

underlying spinocerebellar ataxia type 15 in humans. 

 

Chapter 2 describes the experimental approaches taken and the molecular and 

genetic techniques used to obtain the data that form the foundation of this thesis. 

 

Chapter 3 introduces the spontaneous mouse mutant and describes the use of forward 

genetics; from the phenotypic observations and genome wide linkage making use of 

the variations in genetic background of the mouse strains, to identification of the 

genetic cause and subsequent protein data to confirm pathogenicity.    

 

Chapter 4 starts with an overview of spinocerebellar ataxia (SCA) 15 data previously 

gathered by Knight et al. (2003). Discusses why ITPR1 was reinvestigated as a cause 

for SCA15 after having been previously ruled out. Before describing current findings, 

including how high density genome wide SNP genotyping data enabled identification of 

the genetic cause for SCA15 where a classical sequencing approach was insufficient. 

Concluding with protein data providing further evidence of disease gene pathogenicity.  

 

Chapter 5 considers findings and conclusions from the results chapters (3, 4) in a 

broader context. Implications of the findings are explored and recommendations for 

future work discussed. 

 

 

 

 

 

 

 

 

 

 

 



 

 60 

CHAPTER 2 MATERIALS AND METHODS 

 

 

 

2.1 MATERIALS 
 

2.1.1 Reagents and prepared solutions 
Molecular grade water (Cellgro) was used in most applications, when water from a 

Millipore water purification system (milliQ) or deionized water was used this has been 

indicated. Room temperature denotes a temperature between 21-25 degrees Celsius. 

 

Reagents 
Agarose (GPG/LE)         American Bioanalytical 

Agarose (SeaKem ME)        Cambrex 

Antibody, Alexa Fluor 488 goat anti-mouse IgG (H+L) Invitrogen 

Antibody, Alexa Fluor 555 goat anti-rabbit IgG (H+L)  Invitrogen 

Antibody, donkey anti-mouse IgG (H+L)     Jackson ImmunoResearch 

Antibody, donkey anti-rabbit IgG (H+L)     Jackson ImmunoResearch 

Antibody, mouse anti-(β-actin), monoclonal    Sigma 

Antibody, mouse anti-calbindin D-28K      Sigma 

Antibody, mouse anti-neurofilament 160, monoclonal  Sigma 

Antibody, rabbit anti-IP3R1, polyclonal      Chemicon 

Antibody-peptide, rabbit anti-IP3R1 antibody    Chemicon 

Antigen preserve solution        NeuroScience Associates 

BCA (bicinchoninic acid) protein assay     Pierce 

Beta-mercapto ethanol (B-ME)       American Bioanalytical 

BigDye terminator v3.1; ready reaction mix    Applied Biosystems 

BigDye terminator v1.1, v3.1; 5x sequencing buffer  Applied Biosystems  

Biomax XAR film          Kodak 

Blood and Cell Culture DNA midi kit (Genomic-tip 100/G) Qiagen  

Bromophenol blue sodium salt, 10x      Sigma 

CAPS (N-cyclohexyl-3-aminopropanesulfonic acid)   Sigma 

Chrom alum           Sigma 

 (chromium (III) potassium sulfate dodecahydrate) 

Criterion 4-20% tris-HCl gel (precast)     Biorad 

DABCO (1,4-diazobicyclo-[2.2.2]-octane)    Sigma 
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Direct-PCR lysis reagent, 102-T      Viagen 

DMSO (dimethyl sulfoxide)       Sigma 

ECL plus western blotting detection system    Amersham Biosciences 

EDTA (ethylenediaminetetraacetic acid)      Sigma 

EDTA (ethylenediaminetetraacetic acid)  (0.5M, pH8.0) KD Medical    

Ethanol, ultrapure         American Bioanalytical 

Ethidium bromide solution        American Bioanalytical 

FastStart PCR mastermix        Roche 

Gelatin from porcine skin, type A      Sigma 

GeneRuler 100bp DNA ladder plus      Fermentas 

GeneRuler DNA ladder mix       Fermentas 

Glycerol (density 1.257-1.263g/ml), ultrapure   Invitrogen 

Hi-Di formamide          Applied Biosystems 

HiMark pre-stained HMW protein standard    Invitrogen 

Infinium HumanHap610-Quad SNP genotyping assay Illumina 

Infinium HumanHap550 SNP genotyping assay   Illumina 

Isopropanol, ultrapure         American Bioanalytical 

LIZ genescan          Applied Biosystems 

Magnesium solution         Qiagen 

Methanol           American Bioanalytical 

MOPS (3-(N-morpholino)propanesulfonic acid), 20x  Invitrogen    

Mowiol            Calbiochem 

Non-fat dry milk, instant (Carnation)     Nestle 

Normal bovine serum albumin (BSA)     Celliance  

 probumin universal grade K 

Normal goat serum         Gibco 

NP-40 (nonyl phenoxylpolyethoxylethanol) (10%)  BioVision 

NuPage 4-12% bis-tris gel (precast; pH6.4)    Invitrogen 

NuPage LDS sample preparation buffer (pH8.4), 4x   Invitrogen 

(lithium dodecyl sulfate) 

NuPage reducing agent        Invitrogen 

NuPage transfer buffer, 20x       Invitrogen 

OrangeG sodium salt         Sigma 

Paraformaldehyde (95%)        Sigma 

Phosphate-buffered saline, 1x (PBS buffer)    Gibco 

Precision plus protein dual color standard    Biorad 
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Primers, lyophilized (10nmol scale)      Operon 

Probes, fluorescently labeled (HEX, FAM, VIC; 100μM) Applied Biosystems   

Protease inhibitor cocktail (solution)     Sigma 

Protease inhibitor cocktail, complete mini (tablets)  Roche 

Proteinase K           Qiagen, Viagen 

Protein precipitation solution       Promega 

PVDF membrane, Immobilon-P, 0.45μm    Millipore 

SeeBlue plus 2 prestained standard, 1x     Invitrogen 

Sodium chloride, NaCl (5M)      Cellgro      

Sodium deoxycholate         Sigma 

Sodium-dodecyl-sulfate (SDS)       Quality Biological 

Sodium fluoride          Sigma 

Sodiumhydroxide, NaOH (1N)       American Bioanalytical 

Sodium vanadate          Sigma 

Supersignal west pico chemiluminescent substrate  Pierce 

TaqMan PCR mastermix (no AmpErase UNG)   Applied Biosystems 

Tris (acidic, basic)         Sigma 

Tris (1M, pH7.4)          KD Medical  

Tris-borate-EDTA, 1x (TBE buffer)      Cellgro 

Tris-buffered saline, 1x (TBS buffer, pH7.4)    American Bioanalytical 

Tris-buffered saline, 1x (TBS buffer)     Biorad 

Tris-EDTA, 1x (TE buffer)        Qiagen 

Tris-glycine-SDS, 10x (TGS buffer)      Biorad 

Tris-HCl (2M, pH6.8)         Quality Biological 

Tris-HCl (1M, pH7.4)         Quality Biological 

TritonX-100           Sigma  

True Allele PCR premix        Applied Biosystems 

Tween-20, for electrophoresis       Sigma 
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Prepared solutions 
Agarose gel, 2%(w/v)    3g   agarose (GPG/LE)      

        150ml 1xTBE buffer        

        3.0μl ethidium bromide solution (10mg/ml)  

 

CAPS transfer buffer    10%(v/v) methanol 

        10%(v/v) CAPS (22.13g/l, pH11.0) 

        in deionized water 

 

Gelatin-coated slide    glass slides (Daigger; 3x1inch, 1.2mm thick)  

        were submerged in; 

1g/l pigskin gelatin 

        0.5g/l chrom alum 

        in distilled water 

 

Glycerol, 10%(v/v) in PBS   10%(v/v) glycerol 

        in 1xPBS buffer 

 

IHC, blocking solution    10ml normal goat serum 

        40ml carrier solution 

 

IHC, carrier solution    0.3%(v/v) triton 

        10g/l normal BSA 

        1%(v/v) normal goat serum 

        in 1xPBS buffer 

pH set to 7.32 using NaOH (1M)  

purified using 0.45μM filter (Corning) 
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Mowiol-DABCO     2.4g mowiol 

        6g glycerol 

        in 6ml MilliQ water 

        stirred overnight at room temperature to dissolve 

        12ml tris (0.2M, pH6.8) 

        stirred and heated to 50°C for 10 minutes 

        centrifuged 15 minutes at 5,000xg,  

keep supernatant 

        2.5%(w/v) DABCO 

        under vacuum overnight prior to use 

 

Non-fat milk, 5%(w/v)    2.5g non-fat dry milk, instant 

        50ml TBS-T  

 

OrangeG loading buffer   1%(w/v) orangeG sodium salt     

        30%(v/v) glycerol        

        in molecular grade water   

 

Paraformaldehyde, 4%(w/v)  20g paraformaldehyde 

        in 1xPBS up to 500ml total volume 

10 drops NaOH (10M) to aid paraformaldehyde to 

pass into solution, stirred and heated to 70°C until 

dissolved 

 

RIPA lysis buffer     50mM Tris-HCl (pH7.4) 

1%(v/v) NP-40 

0.25%(w/v) sodium deoxycholate 

150mM NaCl 

1mM EDTA (pH 8.0) 

1mM sodium vanadate 

1mM sodium fluoride 

        in molecular grade water 
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Sample buffer     0.25M Tris-HCl (pH6.8) 

(fractionated protein extraction) 8%(w/v) SDS 

        30%(v/v) glycerol 

        0.02% bromophenol blue 

        10% B-ME (beta-mercapto ethanol) 

        in molecular grade water 

 

TBS-PI (lysis buffer)    5mM EDTA (pH7.4)       

        10μl/ml protease inhibitor cocktail 

        in 1xTBS buffer (American Bioanalytical) 

 

TBS-SDS (lysis buffer)   5%(w/v) SDS 

        in 1xTBS buffer (American Bioanalytical) 

 

 

TBS-T       0.1%(v/v) tween-20 

        in 1xTBS buffer (Biorad)   

 

TBS-Tx100 (lysis buffer)   1%(v/v) tritonX-100 

10μl/ml (or 1 tablet) protease inhibitor cocktail 

        in 1xTBS buffer (American Bionanalytical) 

 

TNES buffer       10mM Tris (pH7.4) 

400mM NaCl 

        100mM EDTA (pH8.0) 

        0.6%(w/v) SDS 

        in molecular grade water 
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2.1.2 Software and equipment 
 

Software 
AlphaEase FC software (version 3.2.1)       Alpha Innotech 

Analyse-it for Microsoft excel, standard edition    Analyse-it software 

BeadScan (version 3.5.49.29917)       Illumina 

BeadStudio/ expression module (v2.3.25)      Illumina 

BeadStudio/ genotyping module (v2.3.25)       Illumina 

BLAST (Basic Local Alignment Search Tool)      Altschul et al. (1990) 

BLAST/ blastn (nucleotide-nucleotide BLAST)      Altschul et al. (1990) 

Excel 2003 (SP3)            Microsoft  

Gene Runner (version 3.05)          Hastings software 

Genotyper (version 3.7 NT), ABI prism      Applied Biosystems 

ImageQuant (version 5.01)          Molecular Dynamics 

LINKAGE/ MLINK (multi-locus linkage analysis, version 5.1) Lathrop et al. (1984) 

LSM image browser (version 3.2.0.115)       Zeiss 

Nanodrop 1000 spectrophotometer software (v3.3.0)    Thermo Scientific 

SDS (sequence detection system) software (version 2.2.2) Applied Biosystems 

Sequencer software (version 4.1.4)        Gene codes corporation 

SoftMax Pro software (v4.0)          Molecular Devices 

 

 

Equipment 

3100/ 3730xl genetic analyzer platform, ABI prism   Applied Biosystems 

ABI Prism 7900HT Sequence Detection System    Applied Biosystems 

 384-well clear optical reaction plate (Applied Biosystems) 

Agencourt AMPure magnetic beads      Beckman Coulter 

Agencourt CleanSEQ magnetic beads      Beckman Coulter 

Alpha imager 2200 imaging device, UV transilluminator  alpha Innotech 

Balance, Scout II, SRA210 (1200x0.1g)      Ohaus 

Balance, AG204 DeltaRange (d=0.1mg/1mg)    Metler Toledo 

BeadStation, scanner Infinium chips      Illumina 

Biomek fx liquid handling system       Beckman Coulter 

Centrifuge 5414D           Eppendorf 

F45-24-11 (max 13,200rpm; max 24x3.75g)   
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Centrifuge 5804/5804R          Eppendorf 

F45-30-11 (max 11,000rpm; max 30x3.75kg) 

A-2-DWP (max 3,700rpm; max 2x1.01kg) 

Centrifuge 5810           Eppendorf 

 A-2-MTP (max 4,000rpm; max 2x1.030kg), plates 

Centrifuge, evolutionRC         Sorvall 

 rotor SS-34 fixed angle (max rcf. 47,800xg; к-factor 752) 

Centrifuge, optima max ultracentrifuge      Beckman Coulter 

   rotor MLA-130 (max rcf. at rmax 1,019,000xg;  

rmax 53.9mm; rmin 29.9mm; к-factor 8.7)   

 polycarbonate tubes (11x34mm; Beckman Coulter)       

Electrophoresis, powerstation 200       CLP 

Electrophoresis, system (perspex gel trays)     CLP 

Hybaid thermocyclers (96-well)        Thermo Scientific 

Microplate reader , SpectraMax Plus      Molecular Devices 

 optical flat bottom 96 deep-well plate (Molecular Devices) 

Microscope, LSM510/LNO META upright two-photon confocal Zeiss 

 plan-apochromat 5x/0.16 NA (Zeiss) 

plan-apochromat 63x 1.4 oil DIC (Zeiss) 

MultisScreen-PCRμ96 filter plates       Millipore 

Minishaker, MS1           IKA 

Ruler (cm, inches)          OriGene 

Sonicator; ultrasonic processor with model CV26 sonicator  Tekmar 

Spectrophotometer, NanoDrop, ND-1000     Thermo Scientific 

Spectrophotometer, Ultrospec 3100 pro UV/Visible   Amersham Biosciences 

Western blot, power supply model 300/ 500     VWR 

X-OMAT 2000A processor, automatic developer    Kodak 
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2.1.3 Databases 
MGI (Mouse Genome Informatics, The Jackson Laboratories) 

 http://www.informatics.jax.org/strains_SNPs.shtml 

NCBI, Entrez SNP (National Center for Biotechnology Information, Single Nucleotide 

Polymorphism)     

 http://www.ncbi.nlm.nih.gov/SNP/MouseSNP.cgi 

 
 
 
2.1.4 Accession numbers 

source, species gene/ protein accession number 
   
Mus musculus   
RefSeq  Itpr1  NM_010585 
genomic Itpr1  NC_000072 
   
Homo sapiens   
RefSeq CNTN4  NM_175607 
 SUMF1  NM_182760 
 ITPR1  NM_001099952.1 
protein ITPR1  NP_001093422 
   
NCBI HomoloGene   
Homo sapiens ITPR1  NP_001093422.1 
Canis lupus familiaris ITPR1  XP_862857.1 
Bos taurus ITPR1  NP_777266.1 
Mus musculus Itpr1  NP_034715.1 
Rattus norvegicus Itpr1  NP_001007236.1 
Gallus gallus ITPR1  XP_414438.2 
Danio rerio LOC100149388  XP_001921194.1 
Drosophila melanogaster Itp-r83A  NP_730941.1 
Anopheles gambiae AgaP_AGAP006475  XP_316515.2 

 
Table 2.1. Accession numbers 

Sources: NCBI RefSeq, reference sequences for the genome, transcripts and proteins, 
http://www.ncbi.nlm.nih.gov/RefSeq; NCBI HomoloGene, gene homologs, 
http://www.ncbi.nlm.nih.gov/homologene.  
 
 
 
 
 
 
 
 
 

http://www.informatics.jax.org/strains_SNPs.shtml�
http://www.ncbi.nlm.nih.gov/SNP/MouseSNP.cgi�
http://www.ncbi.nlm.nih.gov/RefSeq�
http://www.ncbi.nlm.nih.gov/homologene�
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2.2 GENERAL METHODS 

 

2.2.1. Sample integrity 
To determine DNA integrity and quantity, spectral measurements were taken using a 

NanoDrop, ND-1000, spectrophotometer (dynamic range 2-3700ng/μl dsDNA; Thermo 

Scientific). Measurements were taken according to manufacturer’s protocol 

(http://www.nanodrop.com/pdf/NanoDrop 1000-users-manual.pdf). Briefly, the 

spectrophotometer was blanked against sample buffer, either molecular grade water or 

1xTE-buffer, then 1-1.5μl undiluted sample was pipetted onto the pedestal. Operating 

software was used to measure and assess DNA purity based on absorbance ratio at 

260nm/280nm, accepted values 1.7-2.0, and to calculate sample concentration in 

ng/μl based on absorbance at 260nm and the nucleic acid extinction coefficient (50 ng-

cm/μl dsDNA), according to Beer-Lambert’s law (c=(A*e)/b; c, nucleic acid 

concentration in ng/μl; A, absorbance in AU (absorbance units); e, wavelength-

dependent extinction coefficient in ng-cm/μl; b, path length in cm). 

 

2.2.2 DNA protocols 
2.2.2.1 Primer design 
Transcript-specific primers (18-22 bases in length) were designed to be 

complementary to the sequence encoding the genomic fragment of interest. Primers 

were designed using Gene Runner (version 3.05; Hastings software), based on 

GenBank sequence information (http://www.ncbi.nlm.nih.gov/Genbank/index.html), 

using the settings given in table 2.2. Amplicon annealing temperature was set above 

70°C to prevent possible secondary structure formation of the primers. In addition, 

runs of four or more identical nucleotides, especially guanine, were avoided. And the 

‘secondary structure analysis’ function was used to see if unwanted primer-dimer and/ 

or hairpin formation might occur. Finally, all primers designed were tested for regions 

of similarity between biological sequences using the nucleotide-nucleotide BLAST 

(blastn) function of Basic Local Alignment Search Tool (BLAST, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) to ensure specificity (Altschul et al. 1990), with 

exception of the primers used for linkage analysis in mice which were retrieved from a 

paper by Lindblad-Toh et al. (2000). Oligonucleotide primers were custom synthesized 

on a 10nmol scale by Operon Biotechnologies. Primers were shipped lyophilized and 

rehydrated in molecular grade water to a stock concentration of 200pMol, based on the 

supplied optical density readings. Working dilutions were prepared with a 

concentration of 10pMol in molecular grade water. 

http://www.nanodrop.com/pdf/NanoDrop%201000-users-manual.pdf�
http://www.ncbi.nlm.nih.gov/Genbank/index.html�
http://blast.ncbi.nlm.nih.gov/Blast.cgi�
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primer parameters  
primer length (bp) 18-22 
primer Tm (°C) 50.0-65.0  
primer Tm dif. (°C) ≤ 3.0  
primer %GC 35.0-60.0 
3’ nucleotides S 
dG temp. (°C) 25.0 
probe C (pMol) 250.0 
salt con. (mMol) 50.0 
3’ end dG (-9.0)-(-3.0) 
3’ end length (bp) 7 

 

Table 2.2. Gene Runner parameters used for primer design PCR and sequencing applications 

Gene Runner (version 3.05; Hastings software) parameters used to design primers for PCR 

and sequencing applications: primer length (bp), sets the upper and lower limits for primer 

length in base pairs (5’ end additions are not included); primer Tm (°C), sets melting point 

upper and lower limits for primers in degrees Celsius and is calculated using the nearest-

neighbor thermodynamic values method of Breslauer and colleagues, a low Tm may lead to 

inefficient priming whereas a high Tm may permit false priming; Tm dif. (°C) ≤, sets maximum 

difference in Tm’s (degrees Celsius) of a primer pair; primer %GC, sets upper and lower limits 

percentage G (guanine) and C (cytosine) content of the primers, higher %GC results in higher 

primer Tm and increases likelihood of strong secondary structure and false primer (5’ end 

additions are not included in the calculation); 3’ nucleotides, sets 3’ base(s) requirement to S (G 

or C) as a 3’ G or C are more stable than an A (adenine) or T (thymine); dG temp. (°C), is 

required for the calculation of free energy (dG) which affects all G calculations (3’ end dG, 

hairpin loop dG and dimer dG) as well as hairpin loop Tm, default is 25 degrees Celsius; probe 

C (pMol), required for primer Tm calculation, default is 250pMol; salt con. (mMol), required for 

primer Tm and %GC Tm, default is 50mMol, the recommended salt concentration for most 

PCR reactions; 3’ end dG, nearest-neighbor G for the last 7 bases of the 3’ end (3’ end length 

(bp) value), and is calculated by G=H-TS (H, enthalpy; S, entropy; T, dG temp.), lower numbers 

being more stable; 3’ end length (bp), is the number of bases from the 3’ end used for the 3’ 

end stability, default is 7 bases, it is required for 3’ end dG and also used for 3’ end uniqueness 

searches.  
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2.2.2.2 Polymerase chain reaction (PCR) 
Polymerase chain reaction 
Taqman-based PCR was performed on 96-well Hybaid thermocyclers (Thermo 

Scientific), each reaction contained: 10μl FastStart PCR mastermix (Roche), 1.0μl 

transcript-specific primers (10pMol forward, 10pMol reverse), and 1.0μl DNA (10-15ng) 

or molecular grade water for the no-template control. Cycle settings common to many 

of the PCRs in this thesis are given in table 2.3.  

 

60-to-50 
  _____8 cycles_____ ____16 cycles_____ ____16 cycles_____   
phase Di D A E D A E D A E Ef  
temp. 94°C 94°C 60°C 72°C 94°C 60°C 72°C 94°C 50°C 72°C 72°C 4°C 
duration 4’ 20” 20” 30” 20” 20” 1’ 20” 20” 30” 5’ hold 

 

Table 2.3. Cycle settings, PCR program 60-to-50  

Phases; Di, initial denaturation; D, denaturation; A, annealing; E, extension; Ef, final extension. 

Temp, temperature in degrees Celsius. Duration in ’ minutes; ’’ seconds.  

 

If the 60-to-50 program failed to meet the quality and quantity of product required for 

downstream processing, optimisation was achieved by using different cycle settings, 

for example adjusting the annealing temperature, or by adding supplements such as 

magnesium or DMSO. Details on cycle settings, additives and primers used are given 

in appendix I. PCR efficiency, primer specificity and DNA fragment sizes were 

determined by agarose gel electrophoresis (see paragraph 2.2.2.3). Accepted primer 

pairs gave no product in the no template control (NC), for sequence analysis single-

band products were selected to exclude primer-dimer artefacts and multiple products. 

 
Purification PCR products 

Samples were centrifuged at 201xg or 233xg for 30-60 seconds to collect any 

condensation that might have formed during PCR (5810/ 5804(R) respectively; 

Eppendorf). PCR clean-up was accomplished using either MultiScreen-PCRμ96 filter 

plates (Millipore) or Agencourt AMPure magnetic beads (Beckman Coulter). When 

Millipore filter plates were used, molecular grade water was added up to a total of 

100μl and diluted PCRs transferred to the Millipore plate. The filter plate was set under 

vacuum until all fluid was removed, 20-25inHg. Next, 20μl molecular grade water was 

added to each well and the plate put on a shaker for up to 10 minutes (IKA; 63xg, 

room temperature) before transferring the purified PCR products to a clean 96-well 

reaction plate. Plates containing the cleaned product were further processed or stored 

at -20°C until further use. 
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A Biomek fx liquid handling system (Beckman Coulter) fully automated the Agencourt 

AMPure protocol. To each 12μl PCR, 27μl Agencourt AMPure was added and mixed 

by pipetting up and down 10 times. Samples were incubated at RT for 5 minutes to 

allow the PCR products (≥100bp) to bind to magnetic beads. Each plate containing the 

PCR/ bead-mixes was placed on a magnetic plate holder (Agencourt SPRIplate 96-

ring) for 5.5 minutes to separate beads from solution. The reaction plate was left on 

the magnetic block throughout the rest of the procedure. The cleared solution, without 

beads, was aspirated from the reaction plate and discarded. To each well, 100μl 70% 

ethanol was added and samples were incubated at RT for 30 seconds. The ethanol 

was aspirated and discarded. Again, 100μl 70% ethanol was added, samples 

incubated for 30 seconds at RT, and the ethanol aspirated and discarded. The reaction 

plate was left to dry at RT for 5 minutes. To elute, 40μl molecular grade water was 

added to each well, mixed by pipetting and left to incubate at RT for 2 minutes. 

Samples were transferred to a clean 96-well reaction plate and further processed or 

stored at -20°C until further use.   

 

2.2.2.3 Agarose gel electrophoresis 
Two percent (w/v) agarose gels were used to determine PCR efficiency and fragment 

sizes, this percentage (w/v) is commonly used for fragments ranging from 100-600bp 

in length. Agarose (GPG/LE; American Bioanalytical) was added to 1xTBE buffer (tris, 

boric acid, EDTA; Cellgro), to a final concentration of 2% (w/v). The agarose-TBE 

mixture was melted using a commercial microwave oven (60Hz, 120amp; Panasonic, 

NE-1012TI) and ethidium bromide solution added to a final concentration of 0.2μg/ml 

(10mg/ml; American Bioanalytical). Gels were cast in perspex gel trays with 

appropriate combs inserted for loading of samples and marker. Gels were left at room 

temperature for approximately 30 minutes to solidify. PCR products were mixed with 

orangeG loading buffer (1%(w/v) orangeG sodium salt (Sigma), 30%(v/v) glycerol 

(Invitrogen), molecular grade water) to facilitate gel loading. Samples as well as 5μl 

size reference (GeneRuler 100bp DNA ladder plus/ DNA ladder mix; 0.1μg/μl, ready to 

use; Fermentas) were loaded on each sample row. Electrophoresis was carried out at 

110V for approximately 30 minutes under altering amperes (powerstation 200, CLP). 

Following electrophoresis, gels were visualised using a UV transilluminator and 

images obtained with an alpha imager 2200 imaging device (alpha Innotech) using 

alphaEase FC software (alpha Innotech, version 3.2.1).    
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2.2.2.4 Sequence analysis, according to Sanger 
Sequence reactions 
Sequence amplification was accomplished using a Hybaid thermocycler (Thermo 

Scientific). Sequence reactions contained: 0.5μl BigDye terminator v3.1 (Applied 

Biosystems), 2.0μl 5x sequence buffer (BigDye terminator v1.1, v3.1; Applied 

Biosystems), 1.0μl primer (10pMol either forward or reverse, see appendix I for 

details), 6.5μl purified PCR product. Cycle conditions are given in table 2.4.  

 

sequence reaction 
 ______25 cycles______  
phase D A E  
temperature 96°C 50°C 60°C 4 
duration 30” 15” 3’ hold 

 

Table 2.4. Cycle settings, sequence amplification program  

Phases; D, denaturation; A, annealing; E, extension. Temperature in degrees Celsius. Duration 

in ’ minutes; ’’ seconds.  

 

 

Purification sequence reaction products 
Big dye removal was carried out using either MultiScreen-PCRμ96 filter plates 

(Millipore) or Agencourt CleanSEQ magnetic beads (Beckman Coulter). Samples were 

centrifuged at 201xg or 233xg for 30-60 seconds to collect any condensation that 

might have formed during sequence amplification (5810/ 5804(R) respectively; 

Eppendorf). If Millipore filter plates were used 40μl molecular grade water was added 

and diluted amplification products were transferred to the Millipore plate. Filter plate 

was put under vacuum at 20-25inHg until all fluid was removed. Again, 40μl molecular 

grade water was added to samples in filter plate and washed through using vacuum, 

20-25inHg until all fluid was removed. Next, samples were resuspended by adding 

20μl molecular grade water to each well and the plate was put on a shaker for up to 10 

minutes (IKA; 63xg, room temperature). Purified sequence amplification products were 

transferred to a clean 96-well reaction plate and processed for analysis. 

 

A Biomek fx liquid handling system (Beckman Coulter) fully automated the Agencourt 

CleanSEQ protocol. To each 10μl amplification product, 10μl Agencourt CleanSEQ 

and 42μl 85% ethanol were added and mixed by pipetting up and down 7 times. Each 

plate containing the sample/ bead-mixes was placed on a magnetic plate holder 

(Agencourt SPRIplate 96-ring) for 3 minutes to separate beads from solution. The 

reaction plate was left on the magnetic block throughout the rest of the procedure. The 
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cleared solution, without beads, was aspirated from the reaction plate and discarded, 

thereby removing any excess fluorescent dye and contaminants. To each well, 100μl 

85% ethanol was added and samples were incubated at RT for 30 seconds to allow 

the beads to resettle before continuing to the next step. The ethanol was aspirated and 

discarded. Again, 100μl 85% ethanol was added, samples incubated for 30 seconds at 

RT, and the ethanol aspirated and discarded. Reaction plate was left to dry at RT for 5 

minutes.  To elute, 40μl of molecular grade water was added to each well and the 

plate incubated at room temperature for 2 minutes. Samples were transferred to a 

clean 96-well reaction plate and processed for analysis. 

 

Sequence analysis 
Plates with purified sequence amplification products were analysed on an ABI prism 

3100/ 3730xl genetic analyser platform (Applied Biosystems). Sequencer software 

(Gene Codes corporation, version 4.1.4) was used to visualize the electropherograms, 

both for SNP genotyping analysis (linkage application) and mutation detection.  
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2.3 MOUSE-RELATED METHODS 

 

Animal experiments described in this thesis were carried out under the guidance 

issued by the Office of Laboratory Animal Welfare and have been registered under 

animal protocol number 06-038 (OLAW/ Office of Extramural Research/ National 

Institutes of Health, Bethesda (MD), USA), documentation can be found at 

http://grants.nih.gov/grants/olaw/olaw.htm.  

 

2.3.1 Generation of transgenic mice 
Generation of DJ1 (Park7) knockout mice and detection of the DJ1 transgene were 

carried out by Jayanth Chandran, at the time a PhD student in Huaibin Cai’s group at 

the Laboratory of Neurogenetics (NIA/NIH). DJ1-/- mice were generated as a model for 

early-onset familial Parkinson’s disease. This work has been described in Chandran et 

al. (2008). The description of the generation of these transgenic mice has been 

included in this thesis for completion. 

 

Generation of DJ1 knockout mice 
DNA fragments spanning exons 1-7 of DJ1 were isolated from a mouse genomic 

phage library (Stratagene). Targeting vectors were constructed through replacement of 

the second exon of DJ1 with a neomycin resistance gene. The neomycin resistance 

gene was flanked by a 1.7kb EcoRI-BamH1 left arm fragment and a 5.0kb right arm 

consisting of a 2.2kb Nhe1-EcoRI fragment joined to a 1.7kb EcoRI-SacI fragment. 

Linearised targeting vector was transfected by electroporation into mouse ES cells 

derived from the 129x1/SvJ strain (129x1/PJ5). G418-resistant colonies were selected 

and screened by Southern blot for homologous recombination with 5’ and 3’ external 

probes. Positive cells were injected into C57BL/6J blastocysts to generate chimeras 

which were then mated with C57BL/6J wild type mice to confirm germline 

transmission.  

 

 

 

 

 

 

 

 

http://grants.nih.gov/grants/olaw/olaw.htm�


 

 76 

2.3.2 Breeding and phenotyping protocols 
2.3.2.1 Maintenance mice 
Maintenance of the mouse line was carried out by J Chandran (LNG/NIA/NIH) and C 

Xie (LNG/NIA/NIH). The Itpr1∆18 mutation has been maintained on a mixed 129x1B6 

(129x1/SvJ, C57BL/6J) background by intercrossing heterozygous mice, with the 

exception of backcross to a fourth generation C57BL/6J background (figure 2.1) 

carried out after linkage had mapped disease status to the 129x1/SvJ haplotype. Mice 

were housed in a controlled environment at the on-site animal facility (NIH, Bethesda 

(MD), USA), in Techniplast cages on a ventilated rack system (individually ventilated, 

Sealsafe; Techniplast). Before weaning, at three weeks of age, mice were housed with 

their littermates, and either mother or both mother and father present in the cage. 

Animals were kept on a 12 hour light-dark cycle (6.00AM on, 6.00PM off), and with 

continuous access to food pellets (NIH-07, regular chow) and water. 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1. Mouse pedigree, first generation backcross  

Pure C57BL/6J female, wild type (+/+) for mutation, is crossed with a known (based on 

previous crosses) heterozygote 129x1B6 male (obligate carrier). Unaffected F1 females 

(unknown genotype) are crossed with the heterozygote 129x1B6 male (obligate carrier), if 

female heterozygous the phenotype will reappear in the F2 progeny. Next, F2 males (unknown) 

are backcrossed with the pure C57BL/6J female to start a next generation. Fx, filial, generation 

x following the parental generation; circle, female; square, male. 

 

 

 

 

 

 

F0 

F1 

F2 

pure C57BL/6J (+/+) 
129x1B6 (obligate carrier) 
129x1B6 (affected) 
129x1B6 (unknown) 
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2.3.2.2 Genotyping Itpr1∆18mice 
To genotype mice for the Itpr1∆18 mutation in exon 36, a multiplex PCR was designed 

by J Chandran (LNG/NIA/NIH). The forward primers were designed so one primer 

would overlap two nucleotides with the deletion site, whereas the other was shifted two 

nucleotides to the 5’-end thereby lying directly adjacent to the deletion site, both were 

combined with a single reverse primer. This multiplex PCR strategy was used to 

ensure both products, with and without the 18bp deletion in Itpr1, would amplify 

equally. However, as can been seen in figure 2.2, none of the primer sequences 

overlapped with the 18bp deletion in Itpr1 in ataxic mice. Because the multiplex PCR 

design did provide a high throughput way to genotype mice for Itpr1Δ18 it was used 

nonetheless. Primer details and reaction composition are given in table 2.5, 

amplification conditions are given in table 2.6.  

 

 
108801142 CAGTCCCTTTAATACATAGCTCTTTAGGGGATAGTCAACATCTACACCAA 108801191 
108801192 AGCAGACACATTCTGGAATCCAGTCCTTGACCCTTCTGGAATCCTCCCAC 108801241 
108801242 TAAGATGTGGAGGGTTCCAGACAGCCTCTGTTTCTAGCCAGGCCATCTGT 108801291 
108801292 GTTCTGCAGCCTTCTTCACCTCGCCTCTCTCTCTTATAGACCCGCCAGCC 108801341 
108801342 TGTCTTTGTGCAACTCCTGCAAGGCGTGTTCCGAGTTTACCACTGCAACT  108801391 
108801392 GGCTGATGCCGAGCCAAAAAGCCTCGGTGGAGAGCTGCATCCGGGTGCTC  108801441 
108801442 TCTGACGTAGGTAAGGCAGCCAATCCGTCTGGATGTGGCGGGATGAAAAT 108801491 
108801492 GAGTGGCCTGCTGTTTACCGAGCCGAGCCGCAGCTCTCCCAAGGAAGGAA  108801541 
108801542 GCTGCAAAGCCAGACCCAGAGCCGAGCTCTTGACTCCTTGGCCTCTGTCT 108801591 
108801592 TTGCCAAGCCAGCACAGTGAGAAACAGTAAATCCTTGAAAAACAAGATTC  108801641 
 

Figure 2.2. Primer sequence locations, multiplex PCR Itpr1∆18 genotyping 

Sequence Itpr1, exon 36 in blue (NM_010585), flanking genomic sequence in black 

(NC_000072). Deleted nucleotides Itpr1∆18 in bold; F1 primer sequence, grey; F2 primer 

sequence, black; R primer sequence, blue. 

 

 

volume (μl) reagent details 
  10 FastStart PCR mastermix (Roche) 
    1 primer F1  (10pMol) GCCAGCCTGTCTTTGTGC 
    1 primer F2  (10pMol) CCGCCAGCCTGTCTTTGT 
    1 primer R    (10pMol) TGCCTTACCTACGTCAGAGAG 
    1 DNA from tail/ molecular grade water (NC) 
  14   

 

Table 2.5. Reaction composition, multiplex PCR Itpr1∆18 genotyping  

F1, forward primer 1 (sequence, length); F2, forward primer 2 (sequence, length); R, reverse 

primer (sequence, length); primers, Operon Biotechnologies; NC, no template control.  
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ITPR1∆18 genotyping 
  ______35 cycles______  
phase Di D A E Ef  
temperature 95°C 94°C 62°C 72°C 72°C 4°C 
duration 4’ 30” 30” 30” 5” hold 

 

Table 2.6. Amplification conditions, multiplex PCR Itpr1∆18 genotyping  

Phases; Di, initial denaturation; D, denaturation; A, annealing; E, extension; Ef, final extension. 

Temperature in degrees Celsius. Duration in ’ minutes; ’’ seconds.  

 

 

Agarose gel electrophoresis was used to visualize the PCR product and estimate the 

size of the DNA fragments. Each 14μl PCR was mixed with 3μl orangeG loading 

buffer, and samples as well as a size reference (GeneRuler DNA laddermix, 0.1μg/μl; 

Fermentas) were loaded on a 2%(w/v) agarose gel in 1xTBE with ethidium bromide 

(27μg/100ml). Electrophoresis for ≥2 hours at 110V with altering amperes (see 

paragraph 2.2.2.3) enabled size separation, fragments with and without the 18bp 

deletion, of the PCR amplification products (see figure 2.3).   

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3. Example Itpr1∆18 genotype data 

Example image agarose gel for Itpr1∆18 genotyping showing expected product sizes for each 

genotype. Lane 1, single band 125/127bp indicates Itpr1wt/wt; lane 2, band 125/127bp and 

107/109bp indicates Itpr1wt/∆18; lane 3, single band 107/109bp indicates Itpr1∆18/∆18; lane 4, no 

template control; lane 5, GeneRuler DNA laddermix (5μl; Fermentas, 0.1μg/μl). 
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2.3.2.3 Phenotyping Itpr1∆18 mice 
Mice were phenotypically characterized based on observation of animal development 

and home cage behavior. Animal development was assessed by noting developmental 

physical landmarks such as pinnae detachment, eye opening and fur development. In 

addition length (cm; ruler, OriGene), from nose to base of tail, and weight (g; balance, 

Ohaus Scout II (1200x0.1g), SRA210) measurements of 3 week old mice were taken. 

Measurements of length and weight were carried out by L Parisiadou (LNG/NIA/NIH). 

Length and weight data were statistically analyzed using Analyse-it for Microsoft Excel 

(standard edition; Analyse-it software). Observations of locomotor development 

included acquirement of quadruped stance (placement of limbs, trunk support/ pelvis 

of ground) and quadruped locomotion (hindlimb movement).  
 

2.3.2.4 Cross-breeding Itpr1∆18 x Itpr1opt mice 
Female heterozygote Itpr1Δ18 mice (as determined by genotyping, see paragraph 

2.3.2.2) were crossed with a male heterozygote Itpr1opt from JAX labs (B6C3Fe-a/a-
Itpr1opt/J, stock number 000019). F1 offspring were phenotypically characterized (as 

described in paragraph 2.3.2.3) and findings compared to observations in homozygous 

Itpr1∆18 and opisthotonos (Itpr1opt) mice (Street et al. 1997).  Cross-breeding was 

carried out by J Chandran (LNG/NIA/NIH). 
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2.3.3 DNA protocols 
2.3.3.1 DNA preparation from mouse tail tissue  
Initially the TNES buffer protocol was used for tail DNA preparation for all downstream 

applications, however eventually it was replaced by the direct-PCR tail method 

(Viagen). Collection of tail tissue was carried out by J Chandran (LNG/NIA/NIH) and C 

Xie (LNG/NIA/LNG). 

 

TNES buffer protocol 
Mouse tail, 0.5-1.0cm, was removed under isoflurane (gas) anaesthesia. To each tail 

sample, fresh or thawed for several minutes at room temperature after storage (-20°C), 

500μl TNES buffer (10mM Tris (pH7.4; KD Medical), 400mM NaCl (Cellgro), 100mM 

EDTA (pH8.0; KD Medical), 0.6%(w/v) SDS (Quality Biological) in molecular grade 

water) and 10μl proteinase K (20μg/μl; Qiagen) were added. Samples were incubated 

overnight in a 55°C waterbath to allow complete lysis. Next day, samples were allowed 

to cool by incubation at room temperature for 10 minutes. Next, 300μl protein 

precipitation solution (Promega) was added. Samples were mixed by vortexing for 20 

seconds and chilled on ice for 10 minutes, prior to centrifugation at maximum rcf. for 

20 minutes (Eppendorf, centrifuge 5415D; maximum rcf. 16,100xg). Supernatants 

were transferred to clean eppendorf tubes by decanting and 500μl room temperature 

isopropanol was added. Samples were mixed by gentle inversion, incubated at room 

temperature for five minutes and centrifuged at maximum rcf. for 15 minutes 

(Eppendorf, centrifuge 5415D; maximum rcf. 16,100xg), resulting in a small pellet 

containing precipitated DNA. Supernatants were removed and discarded. To wash, 

100μl room temperature 70% ethanol was added and mixed, and samples were 

centrifuged at maximum rcf. for 2 minutes (Eppendorf, centrifuge 5415D; maximum rcf. 

16,100xg). Supernatants were carefully aspirated and discarded, and pellets air-dried 

for several minutes in a heating block at 65°C. Finally, DNA pellets were rehydrated in 

150μl TE buffer by incubation at 55°C for 1 hour. Samples were pulse centrifuged for 

7-10 seconds and stored at 4°C.    

 

Direct-PCR tail method 
Mouse tail, 0.5-1.0cm, was removed under isoflurane (gas) anaesthesia. To each 

sample, 250μl direct-PCR lyses reagent (102–T (tail); Viagen) and 12μl proteinase K 

(genomic PCR grade, 20mg/ml; Viagen) were added, or volumes adjusted according 

to tail length. Samples were incubated in a 55°C waterbath for 16 hours to allow 

complete lysis, followed by 45 minutes at 90°C (heating block) to stop enzyme activity. 
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Tubes were pulse centrifuged for 7-10 seconds and samples stored at 4°C.    

 

2.3.3.2 Linkage analysis 
Mice in this study came from a mixed background of C57BL/6J and 129/Sv strains. 

Genome wide linkage analysis was carried out by genotyping 120 fragments, 

containing 140 SNPs (single nucleotide polymorphisms), which were informative for 

strain differences between the C57BL/6J and 129/Sv mice. Fragments and 

corresponding primer sequences were selected from a publicly available database as 

described in a paper by Lindblad-Toh et al. (2000). For fine mapping additional genetic 

variants, SNPs and microsatellites, were selected from the Mouse Genome Informatics 

(MGI) database (http://www.informatics.jax.org/strains_SNPs.shtml; The Jackson 

Laboratory) and NCBI SNP (http://www.ncbi.nlm.nih.gov/SNP/MouseSNP.cgi; mouse 

build 34.1).  

 

Genotyping single nucleotide polymorphisms (SNPs) 
Single nucleotide polymorphism (SNP) genotypes were obtained by sequence analysis 

of the genomic fragments. DNA fragments from affected and unaffected mice were 

amplified and electropherograms analysed (see paragraph 2.2.2). Genotype data were      

collected in an excel worksheet and formatted for MLINK data entry (multi-locus 

linkage analysis; paragraph 2.3.3.2) (Lathrop et al. 1984).  

 

Genotyping microsatellites 
Genotypes for microsatellites were obtained using the ABI True Allele genotype 

system (Applied Biosystems) that allows multiplex reactions by using different 

fluorescent labels.  A combination of Taqman probes labeled with FAM or HEX was 

used, for details on markers, primers and labels see appendix I. Each reaction 

contained: 6.0μl True Allele PCR premix (Applied Biosystems), 0.67μl primers (5pMol; 

for each primer pair), 1.0μl DNA, and molecular grade water up to 10μl total reaction 

volume. Samples were amplified using a Hybaid thermocycler (Thermo Scientific). 

Cycle conditions for genotype amplification are given in table 2.7. 

 

 

 

 

 

 

http://www.informatics.jax.org/strains_SNPs.shtml�
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genotyping (using microsatellites) 
  _____30 cycles_____  
phase Di D A E Ef  
temperature 95°C 94°C 55°C 72°C 72°C 4°C 
duration 12’ 15” 15” 30” 10’ hold 

 

Table 2.7. Cycle settings, microsatellite genotyping  

Phases; Di, initial denaturation; D, denaturation; A, annealing; E, extension; Ef, final extension. 

Temperature in degrees Celsius. Duration in ’ minutes; ’’ seconds.  

 

Following amplification, 9μl LIZ/Hi-Di (4μl LIZ genescan (Applied Biosystems) with 96μl 

Hi-Di formamide (Applied Biosystems) was added to 1μl product. Samples were 

denatured at 95°C for 5 minutes, followed by immediate incubation on ice for at least 5 

minutes. Genotypes were derived from electropherograms obtained on an ABI prism 

3100 genetic analyzer platform (Applied Biosystems), using genotyper software (ABI 

prism, version 3.7 NT) for analysis. 

 

Genome wide linkage data analysis using MLINK 

To map the location of the disease gene, linkage analysis was carried out using 

MLINK (multi-locus linkage analysis, version 5.1) of the computer package LINKAGE 

(Lathrop et al. 1984), under the assumptions of full autosomal recessive inheritance, a 

disease allele frequency of 0.01, full penetrance, non sex-linked, and equal 

frequencies of all alleles for each marker. MLINK software allowed for maximum 

likelihood estimation of recombination rates, calculation of LOD (logarithm of odds) 

score tables and analysis of genetic risks with two or more loci. MLINK data input 

consisted of pedigree and genotype data, combined with locus description, 

recombination rates and gene order information. MLINK 2-point analysis generated 

LOD scores by comparing each SNP, informative between C57BL/6J and 129/Sv 

background with disease status for linkage (Lindblad-Toh et al. 2000).  
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2.3.4 Protein protocols 
2.3.4.1 Western blot analysis of crude protein extraction 
Crude protein extraction from mouse cerebellum 
Mice (33 day old littermates, 129x1B6, n=4) were anaesthetized using isoflurane (gas) 

and sacrificed by decapitation. Tissue collection was carried out by J Chandran 

(LNG/NIA/NIH). Brains were quickly removed and dissected in two halves along the 

sagittal axis. One half was snap-frozen on dry ice and stored at -80°C for future 

studies, the other half was kept on ice for protein analysis using western blot. Tissue 

was homogenized, using a glass tube and pestle on ice, in 1ml RIPA lysis buffer 

(50mM Tris-HCl (pH7.4; Quality Biological), 1%(v/v) NP-40 (BioVision), 0.25%(w/v) 

sodium deoxycholate (Sigma), 150mM NaCl (Cellgro), 1mM EDTA (pH 8.0; KD 

Medical), 1mM sodium vanadate (Sigma), 1mM sodium fluoride (Sigma), in molecular 

grade water) with 10μl protease inhibitor cocktail (Sigma). Samples were centrifuged 

at 100xg for 10 minutes at 4°C (Eppendorf 5804R, F45-30-11 rotor). Then sonicated 

(Tekmar; ultrasonic processor with CV26 sonicator) on ice using remote settings, 

approximately 10 pulses, to increase homogenization and centrifuged for 10 minutes 

at 100xg and 4°C (Eppendorf 5804R, F45-30-11 rotor). Each supernatant was 

collected in a clean eppendorf tube and stored at -80°C until further processing.  

 

Western blot, crude extracted protein 
Samples (aliquots) were taken from -80°C (storage) and thawed on ice. To 10μl 

sample, 10μl NuPage reducing agent (Invitrogen), 30μl NuPage LDS sample buffer 4x 

(Invitrogen) and 50μl molecular grade water were added, resulting in a 1:10 dilution of 

sample. Samples were heated to 70°C for 15 minutes and put on ice. Samples, 10μl 

each, and 10μl size reference (precision plus protein dual color standard; Biorad) 

(table 2.8) were loaded on a 4-12% bis-tris gel (precast gel, pH6.4, 1.5mm 10-well 

37μl; Invitrogen). Gel was electrophoresed in MOPS running buffer (Invitrogen), for the 

inner chamber 0.5ml NuPage reducing agent (Invitrogen) was added to 200ml MOPS 

buffer (Invitrogen). Electrophoresis was carried out at 125-180V for approximately 2 

hours.  
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band no. precision plus 
1 250 
2 150 
3 100 
4 75 
5 50 
6 37 
7 25 
8 20 
9 15 
10 10 

 

Table 2.8. Molecular weights precision plus protein dual color standard 

Apparent molecular weight (kDa) of protein bands in precision plus protein dual color standard 

on a NuPAGE 4-12% bis-tris gel in MOPS (Invitrogen). Colors used correspond to visual color 

of band on gel or blot.  

 

 

Protein was transferred to PVDF membrane (Immobilon-P, 0.45μm; Millipore) using 

16V constant voltage overnight (transfer system (Biorad); power supply model 300/ 

500 (VWR)), in NuPage transfer buffer (Invitrogen) with 20%(v/v) methanol. The next 

day, the blot was blocked using 5%(w/v) non-fat milk a high level blocker, in TBS-T 

(1xTBS, Biorad; 0.1%(v/v) tween-20, Sigma) a low level blocker, for 30 minutes at 

room temperature under gentle agitation. The blot was incubated with primary antibody 

diluted in 5%(w/v) non-fat milk in TBS-T (see table 2.9 for antibody specific dilutions) 

for 1 hour at RT in a slowly rotating 50ml tube. The membrane was washed in TBS-T 

for 5, 15 and 5 minutes sequentially while shaken at room temperature. Then the blot 

was incubated with secondary antibody diluted in 5%(w/v) non-fat milk in TBS-T (see 

table 2.9 for antibody specific dilutions) for 1 hour at room temperature in a slowly 

rotating 50ml tube. The blot was washed in TBS-T for 5, 15 and 5 minutes sequentially 

at room temperature under gentle shaking. For imaging, supersignal west pico 

chemiluminescent substrate (Pierce) was used according to manufacturer’s protocol 

(http://www.piercenet.com/files/0636dh4.pdf). Blots were exposed to Biomax XAR film 

(Kodak) for visualization of signal, and developed using a Kodak X-OMAT 2000A 

processor (automatic developer). 
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antibody dilution manufacturer 
rabbit anti-IP3R1, polyclonal (0.3mg/ml) 1:1,000 Chemicon  
donkey anti-rabbit IgG (H+L) (0.8mg/ml) 1:5,000 Jackson ImmunoResearch  
mouse anti-(β-actin), monoclonal 1:10,000 Sigma 
mouse anti-neurofilament 160, monoclonal 1:1,000 Sigma 
donkey anti-mouse IgG (H+L) (0.8mg/ml) 1:5,000 Jackson ImmunoResearch 

 

Table 2.9. Antibodies and dilutions, western blot analysis (crude) in Itpr1∆18 mice 

 

 

2.3.4.2 Western blot analysis of fractionated protein extraction 
Fractionated protein extraction from mouse cerebellum 
Mice (22 day old littermates, 129x1B6, n=5) were sacrificed by decapitation, brains 

were quickly removed and snap-frozen using liquid nitrogen and dry ice, and stored at 

-80°C until further processing. Tissue collection was carried out by MR Cookson 

(LNG/NIA/NIH). The cerebellum was dissected and minced on a cold block to keep 

tissue deep-frozen and thereby prevent protein degradation. Tissue samples were kept 

on ice throughout the procedure, except the final SDS-soluble fractions as SDS 

precipitates when cooled. All fractions and 10μl aliquots for the BCA protein assay 

were immediately stored at -80°C when obtained.  

 

Approximately 10 volumes (ml:g), 300μl, TBS-PI were added to each sample (1xTBS 

(pH7.4; American Bioanalytical), 10μl/ml protease inhibitor cocktail (Sigma), 5mM 

EDTA (pH7.4; Sigma)). Each tissue was homogenized in TBS-PI buffer by sonication 

(Tekmar; ultrasonic processor with CV26 sonicator) on ice. Samples were centrifuged 

at 1,000xg for 5 minutes at 4°C to remove debris (Eppendorf 5804R, F45-30-11 rotor). 

Pellets, containing non-homogenized material, were discarded. Each supernatant, 

containing the crude homogenate, was transferred to polycarbonate tubes (11x34mm 

PC tube; Beckman Coulter), balanced carefully using TBS-PI buffer (AG204 

DeltaRange, d=0.1mg/1mg; Metler Toledo) and centrifuged at 100,000xg for 60 

minutes at 4°C using a Beckman Coulter optima max ultracentrifuge (rotor MLA-130 

(max rcf. at rmax 1,019,000xg; rmax 53.9mm; rmin 29.9mm; к-factor 8.7). Supernatants 

were retained as the TBS-soluble fraction (cytoplasmic proteins) and immediately 

stored at -80°C. Pellets were washed twice in 100μl 1xTBS without disturbing the 

pellet, and resuspended by sonication (Tekmar; ultrasonic processor with CV26 

sonicator) on ice in 200μl TBS-Tx100 (1xTBS, 1%(v/v) tritonX-100 (Sigma), 10μl/ml 

protease inhibitor cocktail (Sigma)). Homogenates were transferred to the 

polycarbonate centrifuge tubes, balanced carefully using TBS-Tx100 buffer (AG204 
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DeltaRange, d=0.1mg/1mg; Metler Toledo) and centrifuged at 100,000xg for 60 

minutes at 4°C using the Beckman Coulter optima max ultracentrifuge with MLA-130 

rotor (Beckman Coulter). Supernatants were retained as the triton-soluble fraction 

(membrane-bound, soluble proteins) and immediately stored at -80°C. Pellets were 

carefully washed twice in 100μl 1xTBS and resuspended in approximately 5 volumes, 

100μl, TBS-SDS (1xTBS, 5%(w/v) SDS (Quality Biological) by sonication at room 

temperature (Tekmar; ultrasonic processor with CV26 sonicator). Homogenates were 

retained as SDS-soluble fractions (membrane-bound, insoluble proteins) and 

immediately stored at -80°C.      

 

Sample fractions were diluted 1:10 in 1xTBS (American Bioanalytical). Protein 

concentrations were determined using BCA protein assay (bicinchoninic acid; Pierce) 

carried out according to manufacturer’s protocol 

(http://www.piercenet.com/files/1601325ProteinAssay.pdf). Standards used were 2.0, 

1.5, 1.0, 0.75, 0.5, 0.25, 0.125, 0.025 mg/ml albumin in 0.9% saline and 0.05% sodium 

azide (Pierce), and 1xTBS as blank measurement. Samples were read at 595nm in 

optical flat bottom 96 deep-well plates (Molecular Devices) on a SpectraMax Plus 

microplate reader for colorimetric detection (Molecular Devices), using SoftMax Pro 

software (v4.0; Molecular Devices) to calculate protein concentrations. 

 

Western blot, fractionated protein extraction 
Samples (aliquots) were taken from -80°C storage and thawed on ice. To 10μg 

sample, based on BCA assay, molecular grade water was added up to 10μl total 

volume. Next, 5μl sample buffer (0.25M tris-HCl (pH6.8; Quality Biological), 8%(w/v) 

SDS (Quality Biological), 30%(v/v) glycerol (Invitrogen), 0.02%(w/v) bromophenol blue 

(Sigma), 10%(v/v) B-ME (beta-mercapto ethanol; American Bioanalytical) a reducing 

agent, in molecular grade water) was added, samples were heated to 65°C for 15 

minutes and put on ice. Samples and 10μl size reference (precision plus protein dual 

color standard; Biorad) (table 2.8) were loaded on a 4-20% tris-HCl gel (Biorad, 

Criterion precast gel; 1.0mm 18-comb 30μl). Gel electrophoresis was carried out in 

10xTGS running buffer (25mM tris, 192mM glycine, 0.1%(w/v) SDS, pH8.3; Biorad) at 

160V for at least 2 hours.  

 

Protein was transferred overnight to PVDF membrane (Immobilon-P, 0.45μm; 

Millipore) using 16V constant voltage (transfer system (Biorad); power supply model 

300/ 500 (VWR)) in CAPS transfer buffer (10%(v/v) methanol, 10%(v/v) CAPS 

http://www.piercenet.com/files/1601325ProteinAssay.pdf�
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(22.13g/l, pH11.0), in deionized water). Next day, the blot was blocked using 5%(w/v) 

non-fat milk a high level blocker, in TBS-T (1xTBS, Biorad; 0.1%(v/v) tween-20, 

Sigma) a low level blocker, for 30 minutes at room temperature under gentle agitation. 

The blot was incubated with primary antibody diluted in 5%(w/v) non-fat milk (see table 

2.10 for antibody specific dilutions) for 1 hour at room temperature in a slowly rotating 

50ml tube. Membrane was washed in TBS-T for 5, 15 and 5 minutes sequentially while 

shaken at room temperature. Then the blot was incubated with secondary antibody 

diluted in 5%(w/v) non-fat milk (see table 2.10 for antibody specific dilutions) for 1 hour 

at room temperature in a slowly rotating 50ml tube. Blot was washed in TBS-T for 5, 

15 and 5 minutes sequentially at room temperature under gentle shaking. For imaging, 

supersignal west pico chemiluminescent substrate (Pierce) was used according to 

manufacturer’s protocol (http://www.piercenet.com/files/0636dh4.pdf). Blots were 

exposed to Biomax XAR film (Kodak) for visualization of signal, and developed using a 

Kodak X-OMAT 2000A processor (automatic developer). 

 

 

antibody dilution manufacturer 
rabbit anti-IP3R1, polyclonal (0.3mg/ml) 1:1,000 Chemicon  
donkey anti-rabbit IgG (H+L) (0.8mg/ml) 1:5,000 Jackson ImmunoResearch 
mouse anti-(β-actin), monoclonal 1:10,000 Sigma 
mouse anti-neurofilament 160, monoclonal 1:1,000 Sigma 
donkey anti-mouse IgG (H+L) (0.8mg/ml) 1:5,000 Jackson ImmunoResearch 

 

Table 2.10. Antibodies and dilutions, western blot analysis (fractionated) in Itpr1∆18 mice 
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2.3.4.3 Immunohistochemistry 
Tissue preparation 
Mice (three week old littermates, 129x1B6, n=3; wild type (n=1), heterozygote (n=1) 

and homozygote for Itpr1∆18 (n=1)) were perfused using 4%(w/v) paraformaldehyde 

(20g paraformaldehyde (Sigma), 1xPBS (Gibco) to make up a total volume of 500ml, 

ten drops 1M NaOH (American Bioanalytical) were added to aid the paraformaldehyde 

to pass into solution, the mixture was stirred and heated to 70°C until dissolved). 

Brains were removed and kept in 1xPBS at 4°C for several hours. Then 1xPBS was 

replaced with an ice cold 10%(v/v) glycerol in 1xPBS solution (15ml glycerol 

(Invitrogen), 1xPBS added to a total volume of 150ml), and samples were stored at 

4°C for two days before being shipped to NeuroScience Associates (NSA). A wild type, 

heterozygote and homozygote affected mouse brain were embedded in a single 

gelatin block and 35μM thick sections were cryosectioned along the sagital axis using 

MultiBrain technology (NSA; http://www.neuroscienceassociates.com/). Embedded 

and sectioned tissue was stored at -20°C in the antigen preserve solution as supplied 

by NSA. Perfusion of animals and dissection of the brains were carried out by L 

Holtzclaw (LCSN/NICHD/NIH) and J Chandran (LNG/NIA/NIH). 

 

Immunohistochemistry 
Before use, sections were rinsed thoroughly in 1xPBS to eliminate any carry-over of 

antigen preservation solution. Then, sections were incubated in 6ml blocking solution 

(10ml normal goat serum (Gibco), to match host of secondary antibody, 40ml carrier 

solution (1xPBS, 0.3%(v/v) triton (Sigma), 10g/l normal BSA (Probumin Universal 

Grade (K); Celliance), 1%(v/v) normal goat serum (Gibco); pH was set to 7.4 using 

NaOH (1M; American Bioanalytical) and solution filtered (0.45μM; Corning) to prevent 

overnight growth as the solution contained a high protein concentration) for 1 hour at 

room temperature, under gentle shaking to prevent settling of sections on bottom of 

wells. Sections were transferred to a 12-well plate containing 2ml primary antibody 

diluted in carrier solution in each well. For peptide competition primary antibody and 

peptide were incubated 10:1 (10μg antibody with 1μg peptide as recommended by 

manufacturer (http://www.millipore.com/catalogue/item/ab5882-50ul; Chemicon) in 

500μl carrier solution overnight at 4°C while rotating, prior to section incubation (see 

table 2.11 for antibody specific dilutions). Sections were incubated under gentle 

shaking at 4°C overnight (cold room).  

 

 

http://www.neuroscienceassociates.com/�
http://www.millipore.com/catalogue/item/ab5882-50ul�
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Next day, the sections were washed in 6ml carrier solution for 5, 15 and 5 minutes 

sequentially, while shaken gently at room temperature. Sections were incubated in 2ml 

dilutions of secondary antibody in carrier solution for 1 hour at room temperature under 

gentle shaking (see table 2.11 for antibody specific dilutions). Sections were washed in 

6ml carrier solution for 5, 15 and 5 minutes sequentially while shaken at room 

temperature. One section at a time was transferred to a petridish containing 1xPBS 

and mounted onto a gelatin-coated slide (1g/l gelatin from pigskin (Sigma), 0.5g/l 

chrom alum (Sigma) in distilled water; Daigger, 3x1inch, 1.2mm thick), a soft brush 

was used to smoothen sections. Slides were dried using a 45°C warm plate and once 

dry, 110μl mowiol (6g glycerol (Invitrogen), 2.4g mowiol (Calbiochem), 6ml milliQ water 

were combined and left at room temperature overnight, then 12ml 0.2M tris (pH6.8; 

Sigma) was added, solution heated to 50°C for 10 minutes and centrifuged 15 minutes 

at 5,000xg to pellet insoluble material (Evolution RC, rotor SS-34, Sorvall), and 

2.5%(w/v) 1,4-diazobicyclo-[2.2.2]-octane (DABCO), an anti-bleaching agent, was 

added; the mowiol was left under vacuum overnight prior to use) was pipetted across 

each tissue section and a coverslip (Thomas Scientific, 24x40mm, #1, 0.13-0.16mm 

thick) positioned to cover all tissue. Slides were stored flat and dark overnight before 

analysis, or stored flat at 4°C in the dark long term. Images were captured using an 

LSM 510/LNO META upright two-photon confocal microscope (Zeiss), with plan-

apochromat 5x/0.16 NA (Zeiss) and plan-apochromat 63x 1.4 oil DIC (Zeiss) 

objectives. Microscope parameters (pinhole, detector gain, laser power) were 

optimized for objective and filters used, based on the wild type section, and remained 

unchanged when images for heterozygous and homozygous affected sections of the 

same slide were taken. Images were analyzed using LSM image browser software 

(version 3.2.0.115; Zeiss). 

 

 

antibody dilution manufacturer 
rabbit anti-IP3R1, polyclonal (0.3mg/ml) 1:2,000 Chemicon  
peptide, rabbit anti-IP3R1 1:200 Chemicon 
Alexa Fluor 555  goat anti-rabbit IgG (H+L) (2mg/ml) 1:2,000 Invitrogen 
mouse anti-calbindin D-28K (IgG1 6.7mg/ml) 1:6,000 Sigma  
Alexa Fluor 488 goat anti-mouse IgG (H+L) (2mg/ml) 1:3,000 Invitrogen 

 

Table 2.11. Antibodies, peptide and dilutions, immunohistochemistry in Itpr1∆18 mice 

Dilutions used were based on specificity, signal strength and background when imaging on a 

Zeiss LSM 510 laser scanning microscope. 
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2.4 HUMAN-RELATED METHODS 

 

2.4.1 Sample collection 
Australia, SCA15 family (AUS1) 
A description of the original Australian SCA15 family (AUS1) has been previously 

published (Storey et al. 2001;Knight et al. 2003). Melanie Knight and colleagues were 

kind to share their samples. Regarding sample collection, the project was approved by 

the Women’s and Children’s Hospital Human Ethics Committee (Melbourne, Australia). 

All participants gave their informed consent. Family members were clinically examined 

by a neurologist. Whole blood was collected in lithium heparin and EDTA tubes. 

Genomic DNA was extracted from blood leukocytes of all examined affected 

individuals, some apparently unaffected members, and (where possible) unaffected 

parents, using the Amersham Nucleon BACC2 for Blood and Cultured Cells kit 

(Amersham Pharmacia, Biotech).  

 

London (England), ADCA III cohort 
Henry Houlden and colleagues provided samples of familial ataxia cases collected in 

London (England). Ethical approval was obtained through the National Hospital for 

Neurology and Neurosurgery ethics committee. Patients were diagnosed at the 

National Hospital for Neurology and Neurosurgery based on clinical examination by a 

neurologist. Informed consent was given by all participants. Whole blood was collected 

in EDTA blood collection tubes. Genomic DNA was isolated using phenol/chloroform 

extraction. All samples were previously screened and found negative for SCA 1, 2, 3, 

6, 7, 8, 11, 12 and 17.  

 

Cardiff (Wales), ADCA III cohort 
Samples were provided by Huw Morris at Cardiff University in Wales. Ethical approval 

was given by the South Wales LREC (local research and ethics committee). Patients 

were recruited from different sources, including hospital clinicians, general 

practitioners, geneticists and local health organizations. All patients sampled were 

examined by a clinical neurologist for diagnostic evaluation. Informed consent was 

obtained from all participants. Blood was collected in EDTA tubes, and DNA extracted 

using at the Institute of Medical Genetics using a standardized protocol (National 

Health Service (NHS) accredited). All samples were previously screened and found 

negative for SCA 1, 2, 3, 6, 7, 8, 10, 12 and 17, and DRPLA. 
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 Paris (France), ADCA III cohort 
Samples were made available by Alexis Brice’s group, Fédération de Neurologie, 

Hôpital de la Salpêtrière (Paris, France). These samples were obtained within 

SPATAX, a network of European laboratories to join forces in the clinical and genetic 

analysis of cerebellar ataxias and spastic paraplegias 

(http://clinicaltrials.gov/ct2/show/NCT00140829). Ethical approval was given by the 

French bio-ethic committee, CCPPRB-Paris Necker (Comité Consultatif de Protection 

des Personnes dans la Recherche Biomédicale). Informed consent was obtained from 

all participants. Whole blood was collected in EDTA blood collection tubes. 

Phenol/chloroform extraction method was applied to extract genomic DNA.  
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2.4.2 DNA protocols 
2.4.2.1 DNA isolation from lymphoblast cultures (SCA15) 
Culture of the Epstein-Barr virus (EBV) immortalized lymphocyte cell lines from 

members of the original Australian SCA15 family (Storey et al. 2001) was carried out 

by Melanie Knight, at the time a postdoctoral fellow at the Neurogenetics Branch 

(National Institute of Neurological Disorders and Stroke at the National Institutes of 

Health, Bethesda (MD), USA). Melanie Knight also isolated the DNA from these 

lymphoblast cultures and ascertained DNA sample quantity and integrity.  

 

DNA isolation from lymphoblast cell cultures was carried out using Qiagen, Blood and 

Cell Culture DNA midi kit according to manufacturer’s protocol (Genomic-tip 100/G; 

http://www1.qiagen.com/literature/handbooks/literature.aspx?id=1000034). Briefly, cell 

pellets were thawed on ice and resuspended in 1xPBS (Gibco) to a concentration of 

1x107 cells/ml. Cells were lysed, nuclei pelleted, resuspended and incubated with 

protease at 50°C for an hour.  Genomic DNA was isolated using genomic-tip filters. 

During this stage tubes were centrifuged at 4,000xg, not 5,000xg as the protocol states 

(centrifuge Eppendorf 5804(R); F45-30-11, max 11,000rpm, max 30x3.75kg). Isolated 

DNA was washed and resuspended in 125μl molecular grade water per 1x107 cells 

starting material and left to dissolve overnight while shaken at room temperature.       

 

To determine sample quantity and integrity, 1μl bromophenol blue loading dye 

(bromophenol blue sodium salt; Sigma) was added to 2μl isolated DNA, and samples 

were electrophoresed on a 1%(w/v) agarose gel (SeaKem ME agarose; Cambrex) at 

60V. Optical densities (ODs) were determined for 10μl sample diluted with 490μl 

molecular grade water (dilution factor 50), on an Ultrospec 3100 pro UV/Visible 

spectrophotometer (Amersham Biosciences). 
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2.4.2.2 High density genome wide SNP genotyping (Illumina, Infinium 550k) 
Genotyping was performed using Infinium HumanHap550 (AUS1 SCA15 family, 

London ADCA III cohort, Cardiff ADCA III cohort) or HumanHap610-Quad (Paris 

ADCA III cohort) SNP genotyping chips (Illumina) according to manufacturer’s 

instructions 

(ftp://ftp.illumina.com/Infinium%20II%20documentation/Single%20Sample/Experienced

UserCards/11280765_InfII_SingleSample_Manual_EUC.pdf; 

ftp://ftp.illumina.com/Infinium%20HD%20Documentation/Quad%20BeadChips/Experie

ncedUserCards/Inf_HD_Super_Assay_Manual_EUC_11294817.pdf). Each chip 

assayed 555,352 or 373,397 unique SNPs, respectively. Briefly, 750ng 

(HumanHap550) or 200ng (HumanHap610-Quad) of each DNA sample was 

isothermally amplified in an overnight step. Amplified product was enzymatically 

fragmented, precipitated and resuspended. The resulting product was hybridized to a 

chip overnight, during which the amplified and fragmented DNA annealed to locus-

specific 50-mers; each allele at each locus represented by one of two bead-types fixed 

to the chip. Following hybridization, allelic specificity was conferred by enzymatic 

extension. Products were fluorescently stained and visualization of the resulting signal 

and decoding of SNP position was performed using BeadStation scanner and data 

collection software (BeadScan, version 3.5.49.29917, Illumina). Genotypes were 

produced using the genotyping module of BeadStudio (v2.3.25, Illumina) and call rates 

generated, accepted call rates were >0.96. Log R ratios, surrogates for copy number, 

and B allele frequencies were visualized using the Genome viewer tool within this 

package. A minimum of three consecutive SNPs were required to call a homozygous 

deletion, and ten consecutive SNPs for a heterozygous mutation including duplication. 

 

 

 

 

 

 

 

 

 

 

 

 

ftp://ftp.illumina.com/Infinium II documentation/Single Sample/ExperiencedUserCards/11280765_InfII_SingleSample_Manual_EUC.pdf�
ftp://ftp.illumina.com/Infinium II documentation/Single Sample/ExperiencedUserCards/11280765_InfII_SingleSample_Manual_EUC.pdf�
ftp://ftp.illumina.com/Infinium HD Documentation/Quad BeadChips/ExperiencedUserCards/Inf_HD_Super_Assay_Manual_EUC_11294817.pdf�
ftp://ftp.illumina.com/Infinium HD Documentation/Quad BeadChips/ExperiencedUserCards/Inf_HD_Super_Assay_Manual_EUC_11294817.pdf�
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2.4.2.3 Gene dosage analysis 
To assay for genetic dosage alterations, quantitative duplex PCR of genomic DNA 

samples was carried out. Primers were designed using Gene Runner (version 3.05; 

Hastings software), based on GenBank sequence information 

(http://www.ncbi.nlm.nih.gov/Genbank/index.html), similar to those used for PCR and 

sequence analysis (2.2.2.1). Primer pairs were designed to generate an amplicon 

sized <100bp to ensure equal amplification of probed region and endogenous 

reference (oligonucletide primers; Operon). A TaqMan MGB (3’-minor groove binder) 

probe for ITPR1 exon 10 was 5’ labeled with VIC (Applied Biosystems). The 

hemoglobin gene was co-amplified with ITPR1 as an endogenous reference. The 

TaqMan MGB probe for hemoglobin was 5’ labeled with FAM (Applied Biosystems). 

Primer and probe sequences, and reaction composition are given in table 2.12, for 

amplification conditions see table 2.13. Amplification and detection of fluorescence 

were performed in 384-well clear optical reaction plates (Applied Biosystems) on an 

ABI Prism 7900HT Sequence Detection System (Applied Biosystems). Each 384-well 

plate contained six replicates of each genomic DNA sample, including control DNA 

(H3332 (H3331 family, figure 4.12), III9 (AUS1 family, figure 4.1) unaffected; III5 

(AUS1 family, figure 4.1), III4 (AUS1 family, figure 4.1) affected; status based on high 

density genome wide SNP genotype data, see 4.4.1.2 and 4.4.1.4) and a no template 

(NC) water control.    

 

 

volume (μl) reagent details 
  10.0 Taqman mix 2x (Applied Biosystems) 
    0.9 ITPR1 primer fwd. (20pMol) GAGAAGTTTCTCACCTGTGACG 
    0.9 ITPR1 primer rev. (20pMol) GTGGTTCTCAGGAAGACGTGC 
    0.9 HB primer fwd. (20pMol) TGGGCAACCCTAAGGTGAAG 
    0.9 HB primer rev. (20pMol) GTGAGCCAGGCCATCACTAAA 
    0.5 ITPR1exon10 probe (10pMol) VIC- CACAGGAAGAAGCAGCAC 
    0.5 HB probe (10pMol) FAM-CTCATGGCAAGAAAGTGCTCGGTGC 
    0.4 molecular grade water 
  15.0  
    5.0 genomic DNA/ molecular grade water (NC) 
  20.0  

 

Table 2.12. Reaction composition, gene dosage analysis (absolute quantification)  

ITPR1, inositol 1,4,5-triphosphate receptor, type 1; ITPR1exon10 amplicon, 59bp; HB, 

hemoglobin, beta, delta; hemoglobin amplicon, 68bp; fwd, forward primer (sequence); rev, 

reverse primer (sequence); primers, Operon Biotechnologies; probe, MGB (3’-minor groove 

binder) probe, Applied Biosystems; FAM, VIC, fluorescent labels; NC, no template control. 

 

http://www.ncbi.nlm.nih.gov/Genbank/index.html�
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gene dosage (absolute quantification) 
   __40 cycles__ 
phase  Di D AE 
temperature 50°C 95°C 95°C 60°C 
duration 2’ 10’ 15” 1’ 

 

Table 2.13. Cycle settings, gene dosage analysis (absolute quantification)  

Phases; Di, initial denaturation; D, denaturation; AE, annealing and extension. Temperature in 

degrees Celsius. Duration in ’ minutes; ’’ seconds.  

 

 

Data were analysed using SDS software (Sequence Detection System, version 2.2.2; 

Applied Biosystems). Outliers were removed based on visual inspection of the 

amplification plot for each sample (log scale), based on shape and position of each 

replicate amplification curve compared to the other curves of the sample. The cycle in 

the log phase of PCR amplification at which a significant fluorescence cycle threshold 

(Ct) was reached, was used to quantify each amplimer. The dosage of each amplimer 

relative to hemoglobin (ΔCt) and normalized to control DNA (average ΔCt of 

unaffected controls) was determined using the 2-ΔΔCt method (Microsoft excel 2003). 

Accepted data showed cycle threshold values (Ct) between 23 and 30 for at least four 

of the six replicates (after outliers were removed), with a standard deviation (SD) 

≤0.16. The 2-ΔΔCt value was considered a heterozygous deletion between 0.4 and 0.6, 

normal between 0.8 and 1.2, or duplication at a value greater than or equal to 1.3. 

Genetic dosage alterations were only accepted after data replication in an independent 

experiment. 
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2.4.3 Protein protocols 
2.4.3.1 Protein isolation from lymphoblast cultures (SCA15) 
Culture of the Epstein-Barr virus (EBV) immortalized lymphocyte cell lines from 

members of the original Australian SCA15 family (Storey et al. 2001) was carried out 

by Melanie Knight, at the time a postdoctoral fellow at the Neurogenetics Branch 

(NINDS/NIH).  

 

Lymphoblast cell pellets were lysed by 20 minutes incubation on ice in TBS-Tx100 

(1xTBS (American Bioanalytical), 1%(v/v) tritonX-100 (Sigma), complete mini protease 

inhibitor cocktail tablets, 1 tablet/ml (Roche)). Each lysis-homogenate was sonicated 

three times for 3-4 seconds in an eppendorf tube on ice (Tekmar; ultrasonic processor 

with CV26 sonicator). Tubes were centrifuged at rcf. 16,100xg for 15 minutes at 4°C 

(Eppendorf 5804R, F45-30-11 rotor) and supernatant collected in fresh eppendorfs 

(pre-cooled on ice). Complete lysis was obtained by overnight incubation at -80°C.    

 

Next day, undiluted protein concentrations were determined using BCA protein assay 

(bicinchoninic acid; Pierce) carried out according to manufacturer’s protocol 

(http://www.piercenet.com/files/1601325ProteinAssay.pdf). Standards used were 2.0, 

1.5, 1.0, 0.75, 0.5, 0.25, 0.125, 0.025 mg/ml albumin in 0.9% saline and 0.05% sodium 

azide (Pierce), and 1xTBS as blank measurement. Samples were read at 595nm in 

optical flat bottomed 96 deep-well plates (Molecular Devices) on a SpectraMax Plus 

microplate reader for colorimetric detection (Molecular Devices), using SoftMax Pro 

software (v4.0; Molecular Devices) to calculate protein concentrations. Samples were 

diluted based on calculated concentrations with lysis buffer (1xTBS with 1%(v/v) 

tween-20 and protease inhibitor) to equal 30μl of the lowest sample concentration 

measured based on undiluted sample. 

 

 

 

 

 

 

 

 

 

 

http://www.piercenet.com/files/1601325ProteinAssay.pdf�
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2.4.3.2 Western blot analysis 
For western blot analysis, 10μl sample buffer (8.5μl NuPage LDS sample buffer 

(Invitrogen), 1.5μl B-ME (beta-mercapto ethanol; American Bioanalytical), a reducing 

agent, was added to 30μl of each protein sample (samples were of equal protein 

concentration, for dilutions see paragraph 2.4.3.1). Samples were incubated at 70°C 

for 15 minutes and put on ice.  

 

Samples as well as 10μl of each molecular weight standard, HiMark pre-stained HMW 

protein standard (Invitrogen) or SeeBlue plus 2 prestained standard (Invitrogen) (table 

2.14) were loaded on a NuPAGE 4-12% bis-tris gel (NuPAGE 4-12% bis-tris 1.0, 12-

well). Gel electrophoresis was carried out in MOPS buffer (Invitrogen) at 100-140V for 

at least 2 hours.  

 

 

band no. HiMark SeeBlue 
1 420 191 
2 247 97 
3 214 64 
4 160 51 
5 107 39 
6 64 28 
7 51 19 
8 39 14 
9 28 n/a 
10  n/a 

 

Table 2.14. Molecular weights, HiMark prestained and SeeBlue plus 2 standards  

Apparent molecular weight (kDa) of protein bands in HiMark prestained and SeeBlue plus 2 

standard on a NuPAGE 4-12% bis-tris gel in MOPS. Colors used correspond to visual color of 

band on gel or blot.  

 

 

Protein was transferred to PVDF membrane (Immobilon-P, 0.45μm; Millipore) in 

NuPage 20x transfer buffer (Invitrogen), overnight using 20V constant voltage (transfer 

system (Biorad); power supply model 300/ 500 (VWR)). Next day, the blot was blocked 

using 5%(w/v) non-fat milk a high level blocker, in TBS-T (1xTBS (Biorad), 0.1%(v/v) 

tween-20 (Sigma)) a low level blocker, for 30 minutes at room temperature while gently 

agitating. Blot was incubated with primary antibody diluted in 5%(w/v) non-fat milk (see 

table 2.15 for antibody specific dilutions) for 1 hour at room temperature in a 50ml tube 

while slowly rotating. Membrane was washed at room temperature in TBS-T for 5, 15 

and 5 minutes sequentially, while shaken. Blot was incubated with secondary antibody 
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diluted in 5%(w/v) non-fat milk (see table 2.15 for antibody specific dilutions) for 1 hour 

at room temperature in a slowly rotating 50ml tube. Blot was washed in TBS-T for 5, 

15 and 5 minutes sequentially, at room temperature under gentle shaking. For 

imaging, ECL plus western blotting detection system (Amersham Biosciences) was 

used according to manufacturer’s protocol 

(http://www6.gelifesciences.com/applic/upp00738.nsf/vLookupDoc/160135302-

G350/$file/RPN2132PL_Rev_D_2006_web.pdf). Blots were exposed to Biomax XAR 

film (Kodak) for visualization of signal and developed using a Kodak X-OMAT 2000A 

processor (automatic developer). 

 

 

antibody dilution manufacturer 
rabbit anti-IP3R1, polyclonal (0.3mg/ml) 1:1000 Chemicon  
donkey anti-rabbit IgG (H+L) (0.8mg/ml) 1:5000 Jackson ImmunoResearch  
mouse anti-(β-actin), monoclonal (~2mg/ml) 1:10000 Sigma  
donkey anti-mouse IgG (H+L) (0.8mg/ml) 1:5000 Jackson ImmunoResearch  

 

Table 2.15. Antibodies and dilutions, western blot analysis SCA15 samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www6.gelifesciences.com/applic/upp00738.nsf/vLookupDoc/160135302-G350/$file/RPN2132PL_Rev_D_2006_web.pdf�
http://www6.gelifesciences.com/applic/upp00738.nsf/vLookupDoc/160135302-G350/$file/RPN2132PL_Rev_D_2006_web.pdf�
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CHAPTER 3  MOLECULAR GENETIC 
CHARACTERIZATION OF AN AUTOSOMAL 
RECESSIVE MOVEMENT DISORDER IN 
MICE 

 

 

 

3.1 CHAPTER AIM 
 

To identify the genetic cause of a severe spontaneous movement disorder in mice and 

characterize the disease causing gene(s). 

 

 

 

3.2 INTRODUCTION 
 

A spontaneous mutation resulted in an early onset movement disorder in mice. Initial 

observations suggested affected mice suffered from an apparently paroxysmal 

movement disorder, often induced by touch. The abnormal movements occurred 

predominantly below the cervical level and the disorder appeared progressive. A 

human movement disorder specialist likened the disorder to episodic intermittent 

ataxia or kinesiogenic paroxysmal dystonia and predicted the involvement of an ion 

channel mutation in the etiology (K Gwinn-Hardy (NINDS/NIH), personal 

communication). Affected mice presented at approximately postnatal day 14 after 

which the mice rapidly deteriorated, as evidenced by increased convulsion intensity 

and frequency, survival time without weaning was on average 4 weeks. A positional 

cloning approach was undertaken to identify the underlying genetic cause, findings 

were further characterized at the molecular level. 
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3.3 RESULTS 
 

3.3.1 Origin of mice 
During generation of a line of mice with knockout of the gene DJ1 as a model for early 

onset familial parkinsonism, within the Laboratory of Neurogenetics (NIA/NIH, 

Bethesda (MD) USA), a likely spontaneous mutation resulted in an early onset severe 

movement disorder. DJ1 knockout mice were expected to be hypoactive based on 

previous reports on different DJ1 knockout lines (Chandran et al. 2008), in which no 

changes in basic motor activity had been described. And indeed the younger mice (<1 

year) with targeted deletion of DJ1 (by replacing exon 2 with a neomycin resistance 

gene cassette) were hypoactive and had mild gait abnormalities, however older DJ1-/- 

mice showed decreased body weight and grip strength and more severe gait 

irregularities compared to wild type littermates. No obvious pathological changes in 

either the nigrostriatal system or spinal motor systems and muscles were found. All 

offspring from DJ1 heterozygous mating were viable, fertile and lacked obvious 

developmental abnormalities (Chandran et al. 2008). However, mice affected by the 

spontaneous disorder suffered from an apparently paroxysmal movement disorder, 

often induced by touch. Affected mice presented at approximately postnatal day 14 

after which the mice rapidly deteriorated, noted by increased convulsion intensity and 

frequency, survival time without weaning was on average 4 weeks. The disorder was 

inherited independent of target-vector transmission as was shown using Southern blot 

analysis and vector specific PCR targeting the DJ1 transgene as described in 

Chandran et al. (2008). 
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3.3.2 Mode of inheritance 
Breeding experiments showed the movement disorder was inherited independently of 

target-vector transmission and suggested an autosomal recessive inheritance pattern 

with no evidence of sex bias, see (partial) initial pedigree shown in figure 3.1. Mice 

homozygous for the mutation were unable to reproduce, due to severity of the disorder 

and early death, and therefore were maintained by intercrossing heterozygotes on a 

129x1B6 mixed background (129x1/SvJ, C57BL/6J strains). 

 

 

 

Figure 3.1. Mouse pedigree, spontaneous movement disorder   

Pedigree shows an autosomal recessive inheritance pattern with no evidence of sex bias. 

Recessive inheritance is evident from unaffected (phenotypical indistinguishable from known 

wild type mice) parental mice (F0,F1) that gave birth to litters with affected mice (F1, F2 

respectively) and therefore are obligate carriers of the genetic mutation. The pedigree shows 

no evidence of sex bias as both male and female mice were affected. Mice were maintained on 

a 129x1B6 mixed background (129x1/SvJ, C57BL/6J mice strains). Note this pedigree is 

incomplete and only shows mice included in this study. Fx, filial, generation x following the 

parental generation; circle, female; square, male. 

 

 

 

 

 

 

 

 

 

F1 

F2 

F0 

129x1B6, obligate carrier 
129x1B6, affected 
129x1B6, unknown 
 



 

 102 

3.3.3 Phenotype 
Affected mice displayed developmental delay of locomotor behavior but not of physical 

landmarks. Age of onset was around P14, noticeable by splayed hindlimbs, after which 

the mice rapidly deteriorated. Phenotype was characterized by altered muscle tone, 

dragging of the hind limbs and apparently touch-induced seizures, marked by severe 

truncal, upper and lower limb contractions into unusual, twisting, seemingly painful 

postures (figure 3.2; supplementary video, appendix II). Progressive convulsion 

intensity and frequency were observed, and survival time without weaning was on 

average four weeks. Interestingly, heterozygote mice did not display any of the 

disease features. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2. Abnormal postures observed in affected mice  

Top panels; opisthotonos-like postures. Bottom panels; spastic posture, splayed hind limbs and 

postural weakness (lack of quadruped stance), respectively. 

 

 

Based on initial observation, affected mice appeared to be smaller then their 

littermates (figure 3.3; C, D). To test this observation length and weight measurements 

were obtained from wild type (n=7), heterozygote (n=9) and homozygote (n=3) 

affected mice at three weeks of age1

 

. Measurements were taken by L Parisiadou 

(LNG/NIA/NIH).  

                                                 
1 These measurements were taken after identification of the underlying genetic cause of the movement 
disorder. The genotype of each mouse was determined as to assign a wild type, heterozygote or 
homozygote status for the mutation. Weight and length data are discussed here instead of in 
chronological order to keep the flow of the chapter.  
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Data (appendix III) confirmed affected mice are significantly smaller, in length and 

weight, than their unaffected littermates. No differences were found in length and 

weight data between wild type and heterozygote mice (figure 3.3; A, B). These findings 

should be considered with a note of caution however, as the sample size is small.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3. Length and weight measurements 

Length (cm), nose to base of tail, and weight (g) measurements were taken from 3 week old 

littermates; wild type (n=7), heterozygote (n=9) or homozygote (n=3) for the disease causing 

mutation (raw data is given in appendix III). A. Length in centimeter (cm); average is 

represented by each bar, with standard deviation (SD) indicated. Homozygote mice (mut/mut) 

were significantly smaller in length than wild type (wt/wt) littermates, p=0.03. Difference in 

length between homozygous (mut/mut) and heterozygous (wt/mut) mice did not reach statistical 

significance, p=0.07. No difference was observed between (wt/wt) and (wt/mut) mice. (Mann-

Whitney U test) B. Weight in gram (g); average is represented by each bar, with standard 

deviation (SD) indicated. Homozygote mice (mut/mut) were significantly less in weight 

compared to wild type (wt/wt), p=0.008, and heterozygote mice (wt/mut) , p=0.03. No difference 

was observed between (wt/wt) and (wt/mut) mice. (Mann-Whitney U test) C, D. Three week old 

unaffected mouse (C) and an affected littermate (D); note the small body size and abnormal 

body posture of the affected mouse compared to wild type.  
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3.3.4 Genetic mapping and characterization 
3.3.4.1 Genetic background 
A mutation arose spontaneously while generating transgenic DJ1-/- mice, resulting in a 

severe movement disorder. DJ1 knockout mice were generated as a model for early 

onset familial parkinsonism using 129x1/SvJ ES cells (129x1/PJ5), containing the 

target construct, microinjected into blastocysts of a C57BL/6J background. Nonspecific 

integration of the construct was ruled out as a cause for disease using Southern blot 

analysis and vector specific PCR targeting of the DJ1 transgene as described in 

Chandran et al. (2008). 

 

3.3.4.2 Linkage analysis 

To map the location of the disease causing mutation a crude genome wide linkage 

strategy was applied based on linkage to 120 fragments, each containing one or more 

C57BL/6J-129x1/SvJ strain specific single nucleotide polymorphisms (SNPs) 

(Lindblad-Toh et al. 2000). This effort entailed sequencing of 140 SNPs to obtain the 

genotypes for 18 mice for linkage analysis (unaffected mice, n=7; affected mice, 

n=11). A region of high linkage was assigned to chromosome 6, (+)105.3->146.4Mb, 

on the 129x1/SvJ background (see figure 3.4; appendix IV; table 3.1).  

 

 

Figure 3.4. Linkage analysis plot, LOD scores for individual loci 

X-axis; individual loci used for genotyping, shown in chromosomal and genomic order. Y-axis; 

maximum logarithm of odds (LOD) score for each locus as calculated using MLINK (multi-locus 

linkage analysis). LOD ≥3 considered evidence of linkage. chr, chromosome. Data given in 

appendix IV. 
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Locus theta 
0.01 

theta 
0.05 

theta 
0.10 

theta 
0.20 

theta 
0.30 

theta 
max 

max 
LOD 

score 
28frh10   -11.70 -5.90 -3.50 -1.42 -0.51 0.50 0.00 
84frb9 -2.92 -1.06 -0.41 0.03 0.11 0.29 0.11 
85flg2 4.88 5.10 4.78 3.75 2.49 0.04 5.13 
85flg5   4.26 3.92 3.48 2.53 1.49 0.00 4.34 
25frb12 -11.08 -5.10 -2.80 -0.97 -0.31 0.50 0.00 
27frg11 -12.86 -6.92 -4.01 -1.52 -0.49 0.50 0.00 
94frg12   0.06 0.05 0.04 0.03 0.01 0.00 0.07 
34fld3 -8.26 -3.61 -1.85 -0.51 -0.09 0.44 0.00 

 

Table 3.1. LOD scores for loci on chromosome 6  

LOD ≥3 considered evidence of linkage. In bold; SNPs demonstrating linkage to disease status, 

as measured by LOD scores ≥3. Average LOD score for all SNPs across the entire genome 

was 0.14 ±0.46. Theta denotes recombination fraction, using MLINK (version 5.1) (Lathrop et 

al. 1984). LOD, logarithm of odds; max, maximum. 

 

 

For finemapping, additional SNPs and microsatellites were used (NCBI database, build 

34.1, www.ncbi.nlm.nih.gov/SNP/MouseSNP.cgi). SNP and microsatellite genotype 

data showed recombination events occurred within the initial linkage region, further 

delimiting the locus (figure 3.5). Recombination around marker 

37.MMHAP17FRE10.seq (between markers D6Mit44 and 12.MMHAP34FLD3.seq) 

covered a genetic distance of approximately 14cM, estimated using the chromosome 

wide recombination rate for chromosome 6 of 0.45cM/Mb (Jensen-Seaman et al. 

2004), and indicated this to be a likely event to have occurred over several meioses. 

However, a second recombination event around marker 06.MMHAP84FRB9.seq 

(between markers rs13478950 and rs13478951) only covered a genetic distance of 

approximately 0.2cM, based on the 0.45cM/Mb recombination rate for chromosome 6, 

and suggested this recombination to be less likely to have occurred. Marker 

06.MMHAP84FRB9 was located outside the linkage block. Taken together, finemap 

data revealed linkage to the 129x1/SvJ background and narrowed down the region on 

chromosome 6 to approximately 5Mb between markers D6Mit37 (105531kb) and 

44.MMHAP85FLG5.seq (110464kb) (figure 3.5).  

 

 

 

 

http://www.ncbi.nlm.nih.gov/SNP/MouseSNP.cgi�
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Figure 3.5. Schematic of genotyping results across mouse chromosome 6 in affected mice  

Black squares are indicative of a C57BL/6J homozygous genotype; light grey squares, a 

129x1/SvJ homozygous genotype; grey squares, a 129x1B6 heterozygous genotype; white 

squares, undetermined genotype. The critical region was determined to be between markers 

D6Mit37 and 44.MMHAP85FLG5. Marker locations based on mouse build 36.1. 

 

 

NCBI mapviewer (mouse build 35.1) revealed this to be a gene poor region; 

comprising 11 genes and five unknown transcripts (figure 3.6). Genes were prioritized 

based on literature for information about function and associated pathways and 

findings from database searches for gene expression data, involvement in motoneuron 

pathways and/or expression in (neuro-)muscular tissue were regarded as high priority. 

Lrrn1 (leucine rich repeat protein 1, neuronal), for example, was considered a likely 

candidate based on reported central nervous system expression and implication in 

neural development (Taguchi et al. 1996). On the contrary, Il5ra (interleukin 5 receptor, 

alpha) was considered an unlikely candidate as mice homozygous for disruptions in 

this gene displayed a generally normal phenotype with some immune system 

deficiencies (Mouse Genome Informatics (MGI) database, 

http://www.informatics.jax.org/strains_SNPs.shtml; The Jackson Laboratory). 

M39

M40

M20

M29

M28

M30

M49

M50

M51

M54

M55

06
.M

M
H

A
P

84
FR

B
9.

se
q 

(1
05

38
6k

)

M
H

A
a5

4c
9.

se
q 

(1
03

77
8k

)

rs
62

92
64

2 
(1

04
51

9k
)

rs
13

47
89

48
 (1

04
81

4k
)

rs
13

47
89

49
 (1

05
09

9k
)

rs
13

47
89

50
 (1

05
25

7k
)

rs
13

47
89

51
 (1

05
77

8k
)

rs
63

44
81

2 
(1

05
97

6k
)

X
99

04
3 

(1
06

64
0k

)

rs
42

26
16

5 
(1

06
74

6k
)

rs
13

47
89

58
 (1

08
07

4k
)

rs
13

47
89

59
 (1

08
31

8k
)

rs
13

47
89

61
 (1

08
81

2k
)

rs
13

47
89

63
 (1

09
11

9k
)

12
.M

M
H

A
P

34
FL

D
3.

se
q 

(1
46

43
4k

)

20
.M

M
H

A
P

85
FL

G
2.

se
q 

(1
04

20
5k

)

D
6M

it3
7 

(1
05

53
1k

)

D
6M

it1
92

 (1
06

02
5k

)

44
.M

M
H

A
P

85
FL

G
5.

se
q 

(1
10

46
4k

)

D
6M

it4
4 

(1
15

90
0k

)

37
.M

M
H

A
P

17
FR

E
10

.s
eq

 (1
45

41
5k

)

M39

M40

M20

M29

M28

M30

M49

M50

M51

M54

M55

06
.M

M
H

A
P

84
FR

B
9.

se
q 

(1
05

38
6k

)

M
H

A
a5

4c
9.

se
q 

(1
03

77
8k

)

rs
62

92
64

2 
(1

04
51

9k
)

rs
13

47
89

48
 (1

04
81

4k
)

rs
13

47
89

49
 (1

05
09

9k
)

rs
13

47
89

50
 (1

05
25

7k
)

rs
13

47
89

51
 (1

05
77

8k
)

rs
63

44
81

2 
(1

05
97

6k
)

X
99

04
3 

(1
06

64
0k

)

rs
42

26
16

5 
(1

06
74

6k
)

rs
13

47
89

58
 (1

08
07

4k
)

rs
13

47
89

59
 (1

08
31

8k
)

rs
13

47
89

61
 (1

08
81

2k
)

rs
13

47
89

63
 (1

09
11

9k
)

12
.M

M
H

A
P

34
FL

D
3.

se
q 

(1
46

43
4k

)

20
.M

M
H

A
P

85
FL

G
2.

se
q 

(1
04

20
5k

)

D
6M

it3
7 

(1
05

53
1k

)

D
6M

it1
92

 (1
06

02
5k

)

44
.M

M
H

A
P

85
FL

G
5.

se
q 

(1
10

46
4k

)

D
6M

it4
4 

(1
15

90
0k

)

37
.M

M
H

A
P

17
FR

E
10

.s
eq

 (1
45

41
5k

)

http://www.informatics.jax.org/strains_SNPs.shtml�


 

 107 

 

 

 

Figure 3.6. Mapview of genes comprised in the region of linkage on mouse chromosome 6  

Linkage region (~5Mb) lies between markers D6Mit37 and 44.MMHAP85FLG5.seq, based on 

mouse build 35.1, and comprises 11 genes and five unknown transcripts 

(www.ncbi.nlm.nih.gov/mapview; build 34.1). STS, sequence tagged sites; NT_, RefSeq 

accession number of contig assembly produced by NCBI; M, mega base pairs. 

 

 

 

  

LOC4340 
75   

4833447P 
13Rik   

Cntn4                     contactin 4   
  
  
  Il5ra                    i nterleukin 5 receptor, alpha   
  Trnt1                     tRNA nucleotidyl transferase, CCA-adding, 1   
  Crbn                     cereblon   
  
  
  
LOC384471                similar to RIKEN cDNA 2410080P20   
  Lrrn1                      leucine rich repeat protein 1, neuronal   
  
  
  
Setmar                     SET domain and mariner transposase fusion gene   
  Sumf1                     sulfatase modifying factor 1   
  Itpr1                     inositol 1,4,5 - triphosphate receptor 1   
  LOC545871   simi lar to DEAD (Asp - Glu - Ala - Asp) box polypeptide 18   
  483344P13Rik    RIKEN cDNA 4833447P13 gene   
  Bhlhb2                     basic helix - loop - helix domain containing, class B2 
  Arl10c                     ADP - ribosylation factor - like 10C   
  Edem1                     ER d egradation enhancer, mannosidase alpha-like 1   
  LOC434075   similar to ZGC:56193   
  LOC435913   similar to 40S ribosomal protein S8   

contig         STS                            gene                  orientation,  description   

http://www.ncbi.nlm.nih.gov/mapview�
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3.3.4.3 Identification genetic cause 
The gene with highest priority for candidacy was Itrpr1 encoding inositol 1,4,5-

triphosphate receptor type 1. The phenotype observed in the affected mice was 

strikingly similar to that of another model, opisthotonos (opt) which was first described 

in 1972 (Lane 1972) (table 3.3). The opt phenotype had been attributed to a 

homozygous in frame deletion of both exon 43 and 44 of the Itpr1 gene (Street et al. 

1997). Furthermore, the phenotype was similar, although less severe, to that described 

in a mouse line with targeted deletion of Itpr1, where ataxia was described as a 

prominent feature (Matsumoto et al. 1996) (table 3.3). To rule out the previously 

described mutation in opt mice as disease causing in affected mice of this study, mice 

were genotyped using primer pairs designed to span the full length of exon 43 and 44 

as well as adjacent exon 42 and 45. The latter two were included to ensure DNA 

integrity. Visualisation of PCR products on an agarose gel showed all four exons were 

present and of expected size in affected (n=2) and unaffected (n=2) mice (figure 3.7) 

thereby ruling out the deletion described in opt mice as the cause of the movement 

disorder under study. 

 

  

 

 

 

 

 

 
Figure 3.7. Gel image of genotype results for the opisthotonos (opt) mutation  

Opt mouse phenotype is caused by a deletion of Itpr1 exon 43 and 44. PCR primer pairs were 

designed to span the full length of exon 43 and 44, as well as, adjacent exon 42 and 45 (to 

ensure sample integrity). Primer sequences were as follows; exon 42, 

TTGTTTGTGACTGATGCTGAAG (forward), TCGTAGTTGTGTGGCTGAGG (reverse), 197bp 

product; exon 43, CCTGAATATCCTGTGTATGTGTG (forward), 

AAGCAAAAGCAGACAGCTCC (reverse), 313bp product; exon 44, 

GAGCATTAAAGGTTGGCACTTAG (forward), GTCTCCCTCCTGAGACCAAG (reverse), 

361bp product; exon 45, CAGGCACTAATAAGCAGAATGG (forward), 

CCTGTTGGAACCTGGAAGC (reverse), 393bp product. PCR products were electrophoresed 

on a 2% agarose gel with ethidium bromide in 1xTBE. U, unaffected mouse; A, affected mouse; 

NC, no template control; L, GeneRuler 100bp DNA ladder plus (4μl of 0.1μg/μl; Fermentas). 

 

_ exon42__  _exon43__      _exon44__  _exon45__ 
U U A A NC  U U A A NC L  U U A A NC U U A A NC   



 

 109 

As Itpr1 could still harbor the disease causing mutation, the entire gene was 

sequenced for any changes segregating with disease. Initially samples from a wild 

type (C57BL/6J, 129x1/SvJ), a heterozygote (obligate carrier based on breeding, 

figure 3.1) and an affected mouse were sequenced, when a variation, possible 

mutation, was found additional samples from the mouse pedigree were screened. 

Sequencing of all 62 coding exons and intron-exon boundaries of Itpr1 revealed a 

novel in frame deletion of 18bp within exon 36, resulting in a loss of six amino acids, 

ESCIRV (Glu-Ser-Cys-Ile-Arg-Val) (figure 3.8). The mutation was shown to segregate 

with the disorder based on absence of the deletion in the pure C57BL/6J and 

129x1/SvJ parental strains, and findings of a wild type and a mutated copy of the gene 

in obligate heterozygotes (based on breeding experiments, figure 3.1) whereas all 

affected mice carried two mutated alleles. The affected mice have therefore been 

named Itpr1delta18, and have been made publicly available at the MMRRC (mutant 

mouse regional resource centers; www.mmrrc.org) under strain name B6;129x1- 

Itpr1m1Asb (inositol 1,4,5-triphosphate receptor 1 / mutation 1, Andrew B Singleton) or 

Itpr1delta18 (inositol 1,4,5-triphosphate receptor 1 / delta 18). 

 

 

Figure 3.8. Genetic cause movement disorder in mice; 18bp in frame deletion Itpr1exon36 

Shown are partial sequences obtained for Itpr1 exon 36 of a pure C57BL/6J mouse (Itpr1wt/wt), 

a pure 129x1/SvJ mouse (Itpr1wt/wt), an affected 129x1B6 mouse (Itpr1∆18/∆18), and an 

unaffected 129x1B6 mouse heterozygous for the mutation (Itpr1wt/∆18). The deleted nucleotides 

are bounded by a dark blue box.  

 

 

C57BL/6J 

129x1/SvJ 

129x1B6 (Itpr1∆18/∆18) 

129x1B6 (Itpr1wt/∆18) 

http://www.mmrrc.org/�
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In order to rule out the deletion as a rare polymorphism, sequence data of Itpr1 exon 

36 were obtained from 24 different mouse strains; 129/ola, A, AKR, BALB, C3H, C57, 

CAST, CBA, DBA, FVB, Ju, MAI, MBT, MOLF, NZW, PWK, RIIIS/J, SEG, SJL, SMJ, 

SWR, WLA, WMP and VM. None of the strains carried the mutation (data not shown). 

In addition, conservation among species was determined based on protein sequence 

alignment using NCBI HomoloGene. The six deleted amino acids linked to the 

movement disorder were well conserved (table 3.2).     

 

 
Mus musculus 1508 FVQLLQGVFRVYHCNWLMPSQKASVESCIRVLSDVAKSRAIAIP  1551 
Rattus norvegicus 1509 FVQLLQGVFRVYHCNWLMPSQKASVESCIRVLSDVAKSRAIAIP  1552 
Homo sapiens 1509 FVQLLQGVFRVYHCNWLMPSQKASVESCIRVLSDVAKSRAIAIP  1552 
Canis lupus familiaris 1516 FVQLLQGVFRVYHCNWLMPSQKASVESCIRVLSDVAKSRAIAIP  1559 
Bos taurus 1508 FVQLLQGVFRVYHCNWLMPSQKASVESCIRVLSDVAKSRAIAIP  1551 
Gallus gallus 1493 FVQLLQGVFRVYHCNWLMPSQKASVESCIRVLSDVAKSRAIAIP  1536 
Danio rerio 1485 FVQLLQGVFRVYHCSWLLPSQKGSVESCIKVLSDVAKSRAIAIP 1528 
Drosophila melanogaster 1611 FVQLLQAAHRITQCRWLSLGDRFNVENCIRTLTESAKMRSIALP 1654 
Anopheles gambiae 1557 FVKILQNSFKLTQCKGLTPSQRFNVENCIRTLSEKAKPRGIAIP 1600 
 

Table 3.2. Conservation deleted amino acids among species 

Shown are partial amino acid sequences for ITPR1. Bold; amino acids deleted in exon 36 and 

linked to movement disorder in mice (ESCIRV, Glu-Ser-Cys-Ile-Arg-Val). Grey; amino acids 

different from Mus musculus sequence. Source; NCBI HomoloGene (accession numbers, see 

2.1.3). 

 

 

3.3.4.4 Cross-breeding opisthotonos 
In order to confirm the mutation causing the movement disorder in this study lies on 

the same allele as the mutation for the opisthotonos phenotype, heterozygote Itpr1wt/∆18 

females were crossbred with a heterozygote opt male B6C3Fe-a/a-Itpr1opt/J obtained 

from JAX labs (http://jaxmice.jax.org/findmice/index.html). This resulted in two litters of 

mice with a total of 4 affected Itpr1opt/∆18 pups (from a total of 15) with a phenotype 

indistinguishable from the Itpr1∆18/∆18 and Itpr1opt/opt mice (Street et al. 1997) (paragraph 

3.3.3; table 3.3). These data not only showed unequivocally that Itpr1 mutation 

underlies this movement disorder but also showed that both mutations have a similar 

mode of action.  

 

 

 

 

 

http://jaxmice.jax.org/findmice/index.html�
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 Itpr1∆18/∆18 mouse opt mouse tm1Tno mouse 

mutation spontaneous, deletion 
18bp Itpr1 exon 36, 
recessive 

spontaneous, deletion 
exon 43-44 Itpr1 , 
recessive 

targeted knockout, 
exon1 Itpr1 (homologous 
recombination; neo, tk) 

onset P14 P14 (P9) P15 
phenotype ataxic, loss of balance 

truncal torsions 
tonic/ tonic-clonic 
seizures 

ataxic, loss of balance 
truncal torsions 
tonic/ tonic-clonic 
seizures 

ataxic, loss of balance 
truncal torsions 
tonic/ tonic-clonic 
seizures 

 smaller than littermates smaller than littermates smaller than littermates; 
body mass reduced to 
~50%; overall brain size 
decreased ~40% in 
weight 

 lifespan 3-4 wks lifespan 3-4 wks most tm1Tno pups die in 
utero 
P10; 5.5% of pups  
tm1Tno mice ; die by    
3-4 wks of age 

 gross anatomy 
cerebellum appears 
normal; no loss or overt 
morphological 
abnormalities of Purkinje 
cells 

gross anatomy 
cerebellum appears 
normal; no loss or overt 
morphological 
abnormalities of Purkinje 
cells  

gross anatomy 
cerebellum appears 
normal; no loss or overt 
morphological 
abnormalities of Purkinje 
cells 

 heterozygotes, normal 
phenotype 

heterozygotes, normal 
phenotype 

heterozygotes, normal 
phenotype 

 

Table 3.3. Comparison phenotype Itpr1∆18/∆18, opisthotonos (opt) and tm1Tno mice  

P, postnatal day; wks, weeks; neo, neomycin; tk, thymidine kinase. (Matsumoto et al. 

1996;Street et al. 1997;van de Leemput et al. 2007) 
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3.3.5 Molecular characterization 
3.3.5.1 ITPR1 protein expression in mouse cerebellum 
Immunohistochemistry 
To study the effect of the 18bp Itpr1 deletion at the protein expression level in mouse 

brain, ITPR1 immunohistochemistry data were obtained from three week old 

littermates (129x1B6) with wild type Itpr1, or heterozygous or homozygous Itpr1∆18. 

Experimental control data obtained to determine antibody specificity are given in 

appendix V. Sagittal sections showed lower levels of ITPR1 expression in cortical and 

hippocampal areas, and high expression levels in cerebellum (Plan-Apochromat 

5x/0.16; Carl Zeiss). Cerebellar staining was shown to be exclusive to expression in 

the Purkinje cells (figure 3.9; A,B,C). Immunohistochemistry for ITPR1 revealed a 

diminished and almost complete loss of ITPR1 protein in cerebellar Purkinje cells from 

mice heterozygous and homozygous for the mutation in Itpr1 respectively, compared 

to wild type staining (figure 3.9; A,B,C). It should be noted, the epitope of the ITPR1 

antibody used consisted of the last 20 amino acids at the C-terminal end of the protein 

(Swiss protein number, mouse P11881). Therefore any truncated ITPR1 protein, due 

to the mutation, that might be present would not have been detected with these 

experiments. Unfortunately, no ITPR1 antibody targeted N-terminal of the 18bp 

deletion was commercially available. Staining for calbindin was used to control for 

tissue integrity and demonstrated no overt structural changes or loss of Purkinje cells 

in any of the samples studied (figure 3.9; D,E,F). 

 
 

 
Figure 3.9. Immunohistochemistry of ITPR1 protein levels in 3wk old mouse cerebellum 

Immunohistochemistry of cerebellum from three week old littermates (129x1B6; n=3); wild type 

(A, D), mouse heterozygous for the Itpr1 18bp deletion (B, E) and mouse homozygous for the 

18bp Itpr1 deletion (C, F). A, B, C. Immunohistochemistry using polyclonal ITPR1 anti-rabbit 

antibody (1:2000, Chemicon; secondary antibody, Alexa Fluor 555, 1:2000, Invitrogen). ITPR1 

is shown to be highly expressed in the cerebellar Purkinje cells. Immunoreactivity to ITPR1 is 

clearly decreased in the heterozygous and homozygous mutant mice compared to wild type. D, 

E, F. Immunohistochemistry using monoclonal calbindin anti-mouse antibody (1:6000, Sigma; 

secondary antibody, Alexa Fluor 488, 1:3000, Invitrogen). Tissue integrity and absence of overt 

structural changes is demonstrated by similar calbindin staining in Itpr1wt/wt, Itpr1wt/∆18 and 

Itpr1∆18/∆18 mice. (Plan-Apochromat 5x/0.16; Carl Zeiss) Scale bars denote 100μm. (figure 3.9, 

on next page) 
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(figure 3.9, continued from previous page) 
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Western blot analysis 
Western blot analysis for ITPR1 using whole brain RIPA buffer (1%SDS) protein 

extracts from 33 day old littermates (129x1B6), confirmed immunohistochemistry data 

by showing a decrease and almost total lack of ITPR1 protein in Itpr1wt/∆18 and 

Itpr1∆18/∆18 mice respectively, compared to wild type (figure 3.10). Multiple bands were 

labeled by the ITPR1-specific antibody, one possible explanation could be the 

presence of alternative splice variants of type 1 inositol 1,4,5-triphosphate receptor 

and/ or their effect on post-translational modicification of the protein. ITPR1 has three 

well characterized splice sites; SI, SII, SIII (Nucifora et al. 1995) (figure 3.11). No 

difference was detected in amount of sample loaded as was demonstrated by equal 

expression of beta-actin in all samples (figure 3.10). Immunohistochemistry and 

western blot data corresponded with the decreased levels of ITPR1 expression 

described in Itpr1opt/opt and tm1Tno mice (Matsumoto et al. 1996;Street et al. 1997).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.10. Western blot analysis of ITPR1 protein levels in mouse whole brain 

Western blot performed to examine ITPR1 levels in whole brain RIPA buffer (1%SDS) protein 

extracts from 33 day old mice (129x1B6; n=4): wt, wild type, Itpr1wt/wt; het, heterozygote, 

Itpr1wt/∆18; aff, affected, Itpr1∆18/∆18. Data clearly showed a reduction of ITPR1 in brain tissue 

from Itpr1wt/∆18 mice and almost total absence of ITPR1 in Itpr1∆18/∆18 mice. Top panel, shows 

ITPR1 levels (black arrow; ITPR1 314kD (1:1,000) polyclonal ITPR1 anti-rabbit antibody, 

Chemicon; secondary antibody, donkey anti-rabbit (1:5,000), Jackson ImmunoResearch). The 

asterisk signifies bands that might represent alternative splice variants of ITPR1. The lower 

bands appear to be unspecific. Lower panel, shows beta-actin expression levels, as a control 

for equal sample loading (arrow head; beta-actin 42kD (1:10,000) monoclonal mouse anti-

(beta-actin) antibody, Sigma; secondary antibody, donkey anti-mouse IgG (1:5,000), Jackson 

ImmunoResearch). M, marker, precision plus protein dual color standard (Biorad). 
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Figure 3.11. ITPR1 alternative splice sites; SI, SII, SIII 

SI splicing region is 15 amino acids long and located in the IP3 type 1-binding domain (aa318-

332). SII splicing region is 40 amino acids long and located in the coupling domain between the 

two consensus PKA (protein kinase A) sites (aa1693-1732). SIII splicing region is nine amino 

acids long and located in the coupling domain (aa903-912). N, amine (-NH2) terminus; C, 

carboxyl (-COOH) terminus; P, phosphorylation site; boxes, represent the membrane spanning, 

channel region; aa, amino acid. Adapted from Nucifora et al. (1995).  

 

 

Western blot analysis of fractionated extraction of ITPR1 protein from mouse 

cerebellum was carried out to augment previous protein expression data by taking into 

account differences in extraction that might arise due to possible alterations in folding 

of mutant protein, as well as, focusing on cerebellar tissue as ITPR1 has been shown 

to be mainly expressed in Purkinje cells (Matsumoto et al. 1996) (figure 3.9). TBS 

fractions, containing cytoplasmic proteins, demonstrated no ITPR1 protein expression. 

Whereas both TBS-Tx100, membrane-bound soluble, and TBS-SDS, membrane-

bound insoluble, fractions showed a similar pattern of ITPR1 expression; expression in 

wild type, lower expression levels in heterozygotes (Itpr1wt/∆18) and very low to almost 

non-detectable expression in Itpr1∆18/∆18 mice (figure 3.12). Multiple bands were 

labeled by the ITPR1-specific antibody, one possible explanation could be the 

presence of alternative splice variants of type 1 inositol 1,4,5-triphosphate receptor 

(Nucifora et al. 1995) (figure 3.11). Discrepancy in sample loading was controlled for 

by staining for neurofilament (NF-160). A low level of NF-160 expression can be seen 

in protein extracted using TBS, no expression is seen in TBS-Tx100 extracted protein 

(band in wild type TBS-Tx100 (6) might be due to spillage adjacent lane (5) TBS wild 

type), and high level of expression is shown in protein extracted with TBS-SDS buffer 

(figure 3.12). Neurofilament is known to be mostly present as insoluble protein.   
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Figure 3.12. Western blot analysis of ITPR1 protein in mouse cerebellum 

Three week old littermates (129x1B6; n=5) were used: wt, wild type, Itpr1wt/wt; het, 

heterozygote, Itpr1wt/∆18; aff,  affected, Itpr1∆18/∆18 mice. Top panel, shows ITPR1 levels in the 

different cerebellar fractions (black arrow; ITPR1 314kD (1:1,000) polyclonal ITPR1 anti-rabbit 

antibody, Chemicon; secondary antibody, donkey anti-rabbit (1:5,000), Jackson 

ImmunoResearch). Lower panel, shows anti-neurofilament expression as loading control 

(arrowhead; NF-M, 160kD (1:1,000) monoclonal mouse anti-neurofilament 160, medium 

polypeptide, Sigma; secondary antibody, donkey anti-mouse IgG (1:5,000), Jackson 

ImmunoResearch). TBS (tris-buffered saline), 1xTBS; TBS-Tx100 (tritonX-100), 1xTBS-

1%Triton; TBS-SDS (sodium dodecyl sulfate), 1xTBS-5%SDS; M, precision plus protein dual 

color standard (Biorad). 

 

The expression patterns are different in the crude and fractioned ITPR1 extraction 

western blots (figure 3.10 and 3.12 respectively), this is likely due to different tissue 

samples (crude versus fractionated extraction, whole brain versus cerebellum), 

different ages of the mice (33 versus 21 days) and/or different western blot system 

(MOPS electrophoresis and NuPage transfer buffers versus TGS electrophoresis and 

CAPS transfer buffers) used.  

 

It should be noted, the epitope of the ITPR1 antibody used consisted of the last 20 

amino acids at the C-terminal end of the protein (Swiss protein number, mouse 

P11881). Therefore any truncated ITPR1 protein, due to the mutation, that might be 

present would not have been detected with these experiments. Unfortunately, no 

ITPR1 antibody targeted N-terminal of the 18bp deletion was commercially available.    
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3.4 DISCUSSION 
 

A novel 18bp in frame deletion in exon 36 of the gene encoding inositol 1,4,5-

triphosphate receptor type 1 was identified to underlie a severe young onset 

autosomal recessive movement disorder in mice (Itpr1∆18/∆18). The Itpr1∆18/∆18 

phenotype was found to be indistinguishable from that of opisthotonos mice, which has 

been attributed to an in frame deletion of Itpr1 exon 43 and 44, both are spontaneous 

recessive disorders (Lane 1972;Street et al. 1997). Affected mice never acquire 

normal locomotor activity; early in locomotor development hind limbs often slip or are 

dragged, as development progresses adult-like walking with lifting of hind limbs should 

begin and locomotor speed should increase, however mice with homozygous mutation 

in Itpr1 never reach this stage. Disease onset is around P14, characterized by loss of 

balance, truncal torsions and ataxic-like tonic/ tonic-clonic seizures, disease is 

progressive and lifespan ranges from 3-4 weeks. Interestingly, based on initial 

observation, heterozygotes of either model do not display any of the disease-related 

features. Itpropt/∆18 mice, generated by cross-breeding heterozygote Itprwt/∆18 females 

with a heterozygote male Itprwt/opt, displayed a phenotype indistinguishable from 

homozygous Itpr∆18/∆18 and opt mice as described (Street et al. 1997), indicating 

mutations in Itpr∆18/∆18 and Itpropt/opt mice are allelic. Furthermore, the above phenotype 

is similar, although less severe, to that described in a mouse line with targeted deletion 

of Itpr1, tm1Tno; where most Itpr1-deficient mice die in utero, live pups have severe 

ataxia and tonic/ tonic-clonic seizures and die around weaning time alike opt and 

Itpr∆18/∆18 mice (Matsumoto et al. 1996). 

 
ITPR1, a polypeptide of 2749 residues, contains five functionally distinct regions; an N-

terminal domain which contains a suppressor region (1-225) and is capable of binding 

IP3 (226-576), a transmembrane channel-forming region (2277-2590) and coupling 

domain (2591-2749) both located to the C-terminus, and a regulatory segment 

connecting the two termini (577-2276) (Foskett et al. 2007) (figure 3.13). ITPR1 is 

coupled to Ca2+ channels and facilitates Ca2+ release from the endoplasmic reticulum 

after binding by the intracellular second messenger inositol 1,4,5-triphosphate 

(Matsumoto and Nagata 1999). The central region of ITPR1 is also referred to as the 

transducing domain, for being involved in transferring a signal from the N-terminal 

ligand-binding region to the channel portion at the C-terminus of the receptor, or as the 

modulatory domain, for binding numerous molecules implicated in receptor regulation. 

Small molecules, such as Ca2+ and ATP, as well as, proteins, such as CaM, FKBP12, 

CARP, Gβ/Rack1 and Caspase3, have been suggested to bind to the modulatory and 
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CARP, Gβ/Rack1 and Caspase3, have been suggested to bind to the modulatory and 

transducing domain. Phosphorylation sites for PKA, PKC, PKG, CaMKII have also 

been mapped in this region (Patterson et al. 2004). The Itpr1∆18 mutation (1533-1538) 

is located in the carbonic anhydrase-related protein (CARP)-binding site of ITPR1. 

CARP is a member of the carbonic anhydrase (CA) family, based on its high similarity 

in sequence although it lacks catalytic activity due to absence of a zinc-binding 

domain. The function of CARP remains unknown. Although CARP binding of ITPR1 

has been shown to inhibit IP3-ligand binding, essential for channel activation, 

suggesting CARP to act as an ITPR1 antagonist (Hirota et al. 2003). 

 

  

Figure 3.13. Schematic representation of the domain architecture of ITPR1 

ITPR1 is structurally divided into five functionally distinct segments (Foskett et al. 2007). The N-

terminal domain containing a suppressor region (aa1-225) and IP3-binding site (aa226-576), 

which together with the regulatory domain (aa577-2276) form the cytoplasmic protein structure 

(~80% of full length). The transmembrane channel forming domain (aa2277-2590; ~10% of full 

length protein) is located towards the C-terminus. The coupling region (aa2591-2749) makes 

up the C-terminal tail. In red, the Itpr1Δ18 (Δ18; aa1533-1538) and opisthotonos (opt; aa1732-

1839) mutations. N, amine (-NH2) terminus; C, carboxyl (-COOH) terminus; IP3, inositol 1,4,5-

triphosphate; Ca2+, calcium binding site; P, phosphorylation site; SI, splicing region I (aa318-

332); SII, splicing region II (aa1693-1732); SIII, splicing region III (aa903-912); aa, amino acid 

(numbers given); Gβ/Rack1, Gβ homologue receptor for activated C kinase-1; CARP, carbonic 

anhydrase-related protein; Asp, aspartic acid; CytC, cytochrome c; 4.1N, 4.1N protein; 

FKBP12, FK506-binding protein (12kDa); CaM, calmodulin, calcium modulating protein; ATP, 

adenosine triphosphate. Adapted from Patterson et al. (2004).  
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ITPR1 is the major neuronal member of the ITPR (alias IP3R, P400) family in the CNS, 

and is predominantly enriched in cerebellar Purkinje cells but also concentrated in 

neurons in the hippocampal CA1 region, caudate putamen and cerebral cortex, and 

hence is essential for proper brain function (Nakanishi et al. 1991). As demonstrated 

by immunohistochemistry and western blot analysis, ITPR1 protein levels are 

dramatically decreased resulting in an almost total lack of expression in Itpr1∆18/∆18 

mouse cerebellum compared to Itpr1 wild type mice, with heterozygote Itpr1wt/∆18 mice 

showing intermediate expression. The deletion, even though in frame, might result in 

changes in the tertiary structure of the protein, known to be critical in ITPR functioning. 

Structural data suggest subtle conformational changes are sufficient in regulating 

channel gating (Patterson et al. 2004). Misfolded, dysfunctional protein might be 

subject to clearance by the molecular chaperones, ubiquitin-dependent proteasome 

and/or autophagy pathways (Duenas et al. 2006), subsequently resulting in the 

observed, dramatically reduced protein levels in Itpr1∆18 mice.  

 

Despite clearly reduced ITPR1 protein levels in the cerebellum, electrophysiological 

studies showed a strong calcium response could still be elicited from intracellular 

calcium stores in Purkinje neurons from opt mice, however, calcium response to 

repeated QA (quisqualate, IP3-agonist) application showed less attenuation in 

homozygote opt mice compared to wild type littermates (Street et al. 1997). These 

findings and the observation that Itpr1∆18 and opt mice demonstrated an 

indistinguishable phenotype although caused by different mutations, deletion of amino 

acids 1533-1538 and 1732-1839 of the ITPR1 modulatory domain respectively, 

suggest alterations in the structure of ITPR1 protein to be a less likely explanation for 

the observed phenotype. An alternative explanation would be functional insufficiency 

resulting in a change in the ratio of ITPR1 and RyR (ryanodine receptor) in the 

Purkinje cell membranes, and possibly other proteins that regulate the calcium balance 

across the endoplasmic reticulum membrane, such as the calcium pump, luminal 

calcium-binding molecules and other luminal and cytosolic accessory proteins, thereby 

changing properties of release from IP3-sensitive calcium stores and eventually 

affecting downstream regulations. This concept is consistent with findings by 

Hernandez and colleagues (2007) showing the subcellular distribution of ITPR 

isoforms may critically determine the repertoire of spatial patterns of Ca2+ signals, and 

the observation of clearly diminished ITPR1 expression shown in the cerebellum of 

mice with mutation in Itpr1 by western blot and immunohistochemistry (paragraph 

3.3.5) (Street et al. 1997). Moreover, mice heterozygous for Itrp1 mutation appear to 

littermates even though clearly reduced ITPR1 protein expression levels have           
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be functionally indistinguishable from wild type littermates even though clearly reduced 

ITPR1 protein expression levels have been shown in their cerebellum. Heterozygote 

Itpr1∆18 and opt mice displayed no obvious abnormalities in their motor behavior 

(Street et al. 1997;van de Leemput et al. 2007). Heterozygous tm1Tno mice on the 

other hand, have been described to demonstrate impaired motor coordination on a 

rotating rod at two months of age, although otherwise showing no abnormalities in 

spontaneous motor activity, muscle strength or walking patterns (Ogura et al. 2001).  

 
Studying Itpr∆18 mice in addition to the current models opt and tm1Tno, will aid in 

gaining a deeper understanding of the role of ITPR1 in calcium regulation in the brain, 

which will eventually lead to more insight of calcium dysregulation underlying 

movement disorders.   
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3.5 CONCLUSION 
 

A novel mutation in the gene encoding inositol 1,4,5-triphosphate receptor type 1 

underlies a severe young onset autosomal recessive movement disorder in mice. The 

18bp in frame deletion in Itpr1 exon 36 was shown to be allelic to that of another 

model, opisthotonos (opt) which was first described in 1972 (Lane 1972) and has been 

attributed to an in frame deletion of both exon 43 and 44 in the Itpr1 gene (Street et al. 

1997). The Itpr1∆18 mutation results in a decreased to an almost complete lack of 

ITPR1 protein expression in heterozygote and homozygote mutant mouse cerebellum 

respectively.  
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CHAPTER 4  MOLECULAR GENETIC 
CHARACTERIZATION OF SCA15                
IN HUMANS 

 

 

 

4.1 CHAPTER AIM 
 

To identify the genetic cause of spinocerebellar ataxia (SCA) 15 in humans and 

characterize the disease-causing gene(s). 

 

 

 

4.2 INTRODUCTION 
 

Discovery that a recessive deletion in the gene encoding inositol 1,4,5-triphosphate 

receptor type 1 causes a severe movement disorder in mice led to a search for an 

equivalent disorder in humans. Literature was searched for a calcium-sensitive 

channelopathy associated with human 3p26, the syntenic region to 6(+) 108.2-

108.5Mb of the mouse genome, but where no causal mutation had been identified. 

SCA15, an adult-onset autosomal dominant progressive ataxia had been linked to this 

region, human 3p24.2-3pter (Storey et al. 2001;Knight et al. 2003). Missense mutation 

of ITPR1 had previously been ruled out (Knight et al. 2003), the mode of inheritance 

was inconsistent with that seen in Itpr1∆18/∆18 and opt mice (Street et al. 1997) and 

ataxic mouse models showed no signs of cerebellar atrophy. However, the phenotypic 

presence of ataxia in the mice, and a correlation between mode of inheritance and 

disease progression led to a re-examination of this candidate gene as a possible 

cause of SCA15. This study was undertaken in collaboration with MA Knight and 

colleagues, authors of the paper describing identification of the SCA15 locus (Knight et 

al. 2003). 
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4.3 BACKGROUND 
 

Work described in papers on SCA15 by MA Knight and colleagues has been included 

for completion of this chapter and has been clearly indicated as such (Storey et al. 

2001;Knight et al. 2003).  

 

4.3.1 Phenotypic characterization SCA15 
SCA15, as first described in an Australian kindred (Storey et al. 2001) (figure 4.1), is 

an autosomal dominant cerebellar ataxia type III (ADCA III). Ages of onset range from 

mid-childhood to middle age and a very slow progression of disease has been 

observed. The phenotype is that of a ‘pure’ cerebellar ataxia, characterized by a mild 

degree of gait ataxia, a pattern of gaze-evoked nystagmus ± rebound, and brisk lower 

limb reflexes (table 4.1). MRI brain scans show atrophy of the cerebellar vermis, more 

so superiorly and dorsally, the appearance of the brainstem remaining normal (figure 

4.2).  

 
 

Figure 4.1. Pedigree of SCA15 kindred (AUS1) 

Filled symbols denote affected individuals (based on clinical examination or unequivocal family 

report); open symbols unexamined, unaffected individuals by family report; bullseye symbol 

denotes obligate carrier, reportedly had been asymptomatic; ? if uncertain affected status; N, 

no symptomatology, no signs of cerebellar disease on examination; hatched, anecdotal 

information suggests affected; diagonal line deceased (ages at death shown); y, years of age; 

square, male; circle, female. No offspring are shown of those formally examined and found 

unaffected. None is shown of generation V, being children or young adults, and none 

suspected of being affected, according to family reports. No indicative history is known 

antecedent to I1 and I2. Reproduced from Storey et al. (2001). 
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clinical data no. of affected patients (of 7) 
gait ataxia 5 
limb ataxia 6 
dysarthria 5 
dysphagia 2 (?3) 
nystagmus, gaze-evoked 3 
dysmetric saccades 3 
VOR gain <1 3 
failure to suppress VOR 4 
brisk lower limb reflexes 3 
titubation 2 
postural tremor 1 
age at onset, y, mean (range) 26 (10-50) 
age at current assessment, y, mean (range) 56 (39-69) 
duration of symptoms, y, mean (range) 29 (10-54) 

 

Table 4.1. Clinical features as observed in SCA15 kindred during neurological examination 

Dysarthria, difficulty in articulating words; dysphagia, difficulty in swallowing; nystagmus, a 

rapid, involuntary, oscillatory motion of the eyeball; saccades, a rapid intermittent eye 

movement, as that which occurs when the eyes fix on one point after another in the visual field; 

VOR, vestibulo-ocular reflex, a reflex eye movement that stabilized images on the retina during 

head movement; titubation, a disturbance of body equilibrium in standing or walking, resulting 

in an uncertain gait and trembling. ?, questionable in one subject; no, number; y, years. 

Adapted from Storey et al. (2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2. Images MRI brain scan of a healthy control and a SCA15 patient 

Representation of midline sagittal MRI (magnetic resonance imaging) brain scan. A. Healthy 

control. B. SCA15 patient (age 62 years, subject III15, figure 4.1). The cerebellar atrophy 

disproportionately affects the vermis, more so superiorly and dorsally. The appearance of the 

brainstem is normal. (MA Knight (NINDS/NIH), personal communication). 

A B 
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4.3.2 Genetic characterisation SCA15 
4.3.2.1 Linkage analysis SCA15 
Knight and colleagues (2003) performed a genome wide linkage screen using 383 

microsatellite markers from the ABI prism linkage mapping set (version 2) at a marker 

density of 10cM. Linkage analysis was carried out using MLINK (multi-locus linkage 

analysis of the LINKAGE package, version 5.1; (Lathrop et al. 1984), under the 

assumptions of autosomal dominant transmission of SCA15, 90% penetrance by age 

50, disease allele frequency of 0.00002 with 0% phenocopy rate, equal marker allele 

frequencies, and non sex-linked. Initial genome wide analysis indicated linkage to 

chromosome 3p with a maximum LOD score of 2.95 at a recombination fraction (θ) of 

0.00 obtained at marker D3S1304. 

 

Fine mapping was performed by using 10 additional microsatellite markers on 

chromosome 3p selected through the Genome Database. Multipoint linkage analysis, 

using LINKMAP (LINKAGE package, version 5.1; (Lathrop et al. 1984), supported 

linkage of SCA15 to 3p24.2-3pter, with a maximum LOD score of 3.54 for marker 

D3S1560 (figure 4.3).  

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.3. Multipoint LOD score analysis of SCA15 

Multipoint LOD scores plotted against genetic location, defined as distance in cM from telomere 

of chromosome 3p. A maximum multipoint LOD score of 3.54 was obtained for D3S1560 at 

12.9cM (arrow). Markers used in the multipoint analysis are indicated. Adapted from Knight et 

al. (2003). 
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Figure 4.4. Haplotype blocks in pedigree of AUS1 SCA15 kindred 

Haplotypes for 13 microsatellite markers spanning ~30cM on chromosome 3-24.2-3pter are 

shown. The haplotype segregating with disease is boxed. To preserve the confidentiality of the 

family members, the sex of the individuals was omitted and the data from individuals in 

generation IV have not been published, but were included in the analysis. Adapted from Knight 

et al. (2003). 

 

 

Haplotype analysis showed co-segregation with disease at the linked locus (figure 

4.4). Informative recombination in family members III-2 and III-5 enabled narrowing 

down the candidate region. The distal recombination site lies between D3S3630 and 

D3S1620 as observed in individual III-5. Individual III-2, who at age 71 years showed 

no cerebellar symptoms and was normal based on focussed neurological examination, 

carried part of the disease haplotype with a recombination occurring between 

D3S1560 and D3S1304. Assuming full penetrance of the disease, the candidate 

region was refined to an 11.6cM interval between D3S3630 and D3S1304. The 

11.6cM SCA15 locus on 3p24.2-3pter was found to be extremely gene poor, 

normal 

anecdotally affected according to family report 

affected on clinical examination 

presumed obligate heterozygote (anecdotally unaffected at death at age 40 years) 
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containing only nine known genes based on the June 2002 human genome sequence 

freeze (build 30 (hg12), http://genome.ucsc.edu; figure 4.5).  

 

 

 

 

 

 

 

 

 
 

Figure 4.5. Genes mapping to the SCA15 locus, human build 30 (hg12) June 2002 

Schematic diagram adapted from the UCSC Genome Browser on Human June 2002 Freeze of 

chromosome 3 showing the nine know genes that map to the SCA15 critical region: IL5RA, 

interleukin 5 receptor, alpha; TRNT1, tRNA nucleotidyl transferase, CCA-adding, 1; LOC, 

hypothetical protein in which orthologs have not yet been determined; SETMAR, SET domain 

an mariner transposase fusion gene; SET domain, [Su(var)3-9, Enhancer-of-zeste, Trithorax] 

domain, a protein lysine methyltransferase enzyme; ITPR1, inositol 1,4,5-triphosphate receptor 

1; BHLHB2, basic helix-loop-helix domain containing, class B2; FLJ, Japanese database Full-

Length human cDNA clone; KIAA, human novel large (>4kb) cDNA identified in the Human 

Unidentified Gene-Encoded (HUGE) protein database (http://www.kazusa.or.jp/huge); GRM7, 

glutamate receptor, metabotropic 7. Reproduced from Knight et al. (2003). 
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4.3.2.2 Sequence analysis SCA15 
Knight and colleagues (2003) suggested inositol 1,4,5-triphosphate receptor type 1 

(ITPR1) as a likely candidate gene based on its 3p genetic locus, predominant 

expression in cerebellar Purkinje cells, and the spontaneous Itpr1 deletion 

(opisthotonos) and targeted Itpr1 knockout (tm1Tno) mouse models both described to 

display an ataxic phenotype (Matsumoto et al. 1996;Street et al. 1997).    

 

Knight et al. (2003) detected no aberrant RNA products caused by intron variants 

based on RT-PCR (reverse transcriptase – polymerase chain reaction), no mutations 

resulting in premature termination of protein synthesis as studied by SDS-page 

(sodium dodecyl sulfate - polyacrylamide gel electrophoresis) and no gross 

rearrangements, deletions or insertions were observed in ITPR1 from SCA15 patient 

samples based on genomic Southern blots. In order to screen the promoter and entire 

coding region of the ITPR1 gene for mutations, they used denaturing high performance 

liquid chromatography (DHPLC). Several variations were identified (table 4.2), 

however all were found in unrelated controls as well, suggesting the findings were 

polymorphic variants unrelated to SCA15 etiology. Knight and colleagues concluded 

that ITPR1 was not the causative gene underlying the SCA15 phenotype. 

 

 

ITPR1 exon nucleotide change protein change DHPLC temperature (°C) 
19 2218  A → G Lys → Lys 55 
22 2869  A → C Leu → Leu 57 
29 IVS29-nt57  T → G  55, 57, 59 
48 6784  A → G Thr → Thr 56, 58 
54 7756  G → A Lys → Lys 61, 63 

 

Table 4.2. ITPR1 variants identified using DHPLC  

ITPR1 polymorphisms analysed and detected using Varian-Helix DHPLC equipment. DHPLC, 

denaturing high performance liquid chromatography; °C, degrees Celsius; IVS, intronic 

variants; nt, nucleotide. ITPR1 mRNA RefSeq NM_002222, obtained from GenBank. Adapted 

from Knight et al. (2003). 
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4.4 RESULTS 
 

4.4.1 Genetic characterization SCA15 
At the time the study described in this chapter started, 13 genes and 4 unknown 

transcripts had been assigned to the SCA15 locus (build 35, human May 2004 (hg17), 

http://genome.ucsc.edu; table 4.3).    

 

 

transcript description 
CNTN4 contactin 4 
CHL1 cell adhesion molecule with homology to L1CAM (close homolog of L1) 
LOC402123  
CNTN6 contactin 6 
IL5RA interleukin 5 receptor, alpha 
TRNT1 tRNA nucleotidyl transferase, CCA-adding,1 
CRBN cereblon (previously LOC51185) 
LOC440943  
LRRN1 leucine rich repeat protein 1, neuronal 
SETMAR SET domain and mariner transposase fusion gene 
SUMF1 sulfatase modifying factor 1 
LOC401048  
ITPR1 inositol 1,4,5-triphosphate receptor 1 
BHLHB2 basic helix-loop-helix domain containing, class B2 
LOC442073  
ARL10C ADP-ribosylation factor-like 10C (alias ARL8B, previously FLJ10702) 
EDEM1 ER degradation enhancer, mannosidase alpha-like 1 (previously KIAA0212) 

 

Table 4.3. Genes mapping to the SCA15 locus, human build 35 (hg17) May 2004 

Table with the 13 known genes and 4 unknown transcripts within the SCA15 linkage region as 

defined by (Knight et al. 2003), based on the UCSC genome browser, build 35, human May 

2004 (hg17). L1CAM,  L1 gene family of neural Cell Adhesion Molecules; LOC, hypothetical 

protein in which orthologs have not yet been determined; SET domain, [Su(var)3-9, Enhancer-

of-zeste, Trithorax] domain, a protein lysine methyltransferase enzyme; ADP,  adenosine 

diphosphate; FLJ, Japanese database Full-Length human cDNA clone; ER, endoplasmic 

reticulum; KIAA, human novel large (>4kb) cDNA identified in the Human Unidentified Gene-

Encoded (HUGE) protein database (http://www.kazusa.or.jp/huge). 
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4.4.1.1 Sequence analysis SCA15 
In order to re-examine the ITPR1 candidate gene as a possible cause of SCA15, 

genomic DNA from 3 affected members (III4, III5, IV8, figure 4.1) and 1 member with 

unknown disease status (III9, figure 4.1) from the AUS1 SCA15 kindred were obtained. 

Sanger-based sequence analysis of the 58 coding exons and splice sites of ITPR1 of 

two affected family members and one unrelated control, failed to show any coding 

alterations segregating with disease or any alterations that were inconsistent with 

Mendelian patterns of inheritance within the family. Several known polymorphisms 

were identified (table 4.4), although findings were only partly compliant with those 

reported by Knight et al. (2003) (table 4.2). This might be explained by study of 

different individuals of the SCA15 family in both studies, unfortunately it was not 

possible to back track which samples were used in the original study. 

 

 

nucleotide exon rs.no. variant found GT (c/a/a) population freq. 
      
c.6921A>G 48 rs13079522 p.T2191T AA/ AA/ AG 0.350 ±0.229 
c.7258C>T* 50 rs2291862 p.L2304L CC/ TC/ CC 0.368 ±0.221 
c.7839T>C 54 rs711631 p.T2497T TT/ CT/ CC 0.248 ±0.250 
c.7893G>A 54 rs901854 p.K2515K GG/ GG/ GA 0.469 ±0.120 
      
 exon (UTR)     
      
g.4687413A>G 19[-1] rs2306875 p.R669R AA/ AA/ AG 0.496 ±0.044 
      

 

Table 4.4. ITPR1 variants identified by Sanger-based sequence analysis  

ITPR1 polymorphisms analysed and detected using ABI prism 3100 genetic analyser platform, 

based on ITPR1 RefSeq NM_001099952.1 obtained from GenBank. Detailed information on 

genetic variations from NCBI dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP), including 

ancestral allele, rs-number, variant found at protein level and population frequency. *A/G 

variant in dbSNP, A being the ancestral allele, whereas C/T variant found. rs.no, reference 

number; GT (c/a/a), genotype of variant (control/ affected SCA15/ affected SCA15); population 

freq, average population frequency heterozygote ±standard error; c, cDNA sequence; p, protein 

sequence; g, genomic DNA sequence; in bold, signifies ancestral allele; 19[-1], exon 19 -1 

nucleotide, thus the base pair adjacent to start (5’-end) exon 19. 
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Miura et al. (2006) had just published work suggesting the contactin 4 (CNTN4) gene 

locus at 3p26 as a candidate gene for SCA16, based on a point mutation (4,256C→T) 

in the 3’UTR of the gene which co-segregated with disease but was not detected in 

520 control subjects. Because the SCA16 and SCA15 loci overlap, sequence analysis 

(Sanger-based) of the 24 coding exons and splice sites of CNTN4 was undertaken in 

two affected SCA15 family members and one unrelated control. Several known 

polymorphisms were identified, as well as an unknown non-synonymous variant in 

exon 12 (table 4.5), however this genotypic variant was subsequently found in 

neurologically normal controls (NDPT006, neurologically normal Caucasian control 

panel; Coriell Cell Repositories, http://ccr.coriell.org).   

 

 

nucleotide exon rs.no. variant found GT (c/a/a) population freq. 
      
c.1463A>T 12 n/a p.K487N AA/ AT/ AT n/a 
c.2090T>C 16 rs6790908 p.N623N CT/CT/CC n/a 
c.2132G>A 16 rs6803232 p.P637P GA/GA/AA 0.489 ±0.074 
c.2414A>T 19 rs6802588 p.R731R AT/ (n/a)/ AA 0.485 ±0.085 
      
 exon (UTR)     
      
g.3018840T>C 17[-23] rs9820464 n/a CT/ CC/ CC 0.154 ±0.231 
g.3024653C>T 21[-8] rs6800354 n/a CT/ CC/ CT 0.281 ±0.248 
      

 

Table 4.5. CNTN4 variants identified by Sanger-based sequence analysis  

CNTN4 polymorphisms analysed and detected using ABI prism 3100 genetic analyser platform, 

based on CNTN4 RefSeq NM_175607 obtained from GenBank. Detailed information on genetic 

variations from NCBI dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP), including ancestral 

allele, rs-number, variant found at protein level and population frequency. rs.no, reference 

number; GT (c/a/a), genotype of variant (control/ affected SCA15/ affected SCA15); population 

freq, average population frequency heterozygote ±standard error; c, cDNA sequence; p, protein 

sequence; g, genomic DNA sequence; in bold, signifies ancestral allele; 17[-23], 23 base pairs 

5’ of exon 17; 21[-8], 8 base pairs 5’ of exon 21.   
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4.4.1.2 Genome wide SNP analysis SCA15 
Concurrent with sequence analysis, high density genome wide SNP genotyping 

(Infinium HumanHap550 genotyping chips, Illumina) was carried out. Visualization of 

Log R ratio, a surrogate for copy number, and B allele frequency metrics from the 

genome wide SNP genotyping experiments clearly showed a contiguous region of 

approximately 200kb long with decreased copy number and apparent homozygosity. 

Data were consistent with a heterozygous genomic deletion (Simon-Sanchez et al. 

2007) across the first one third of ITPR1 (inositol 1,4,5-triphosphate receptor, type 1) 

and the first half of a neighboring gene SUMF1 (sulfatase modifying factor 1) (figure 

4.6). This deletion was apparent in all three affected family members studied and 

absent from the family member with unknown disease status (AUS1 family, figure 4.1). 

SNP data showed a deletion between 188kb and 210kb in size; examination of SNPs 

at flanking unknown regions of this deletion allowed to delimit the borders of the 

deletion to 7.5kb on the telomeric side of the deletion (between rs12634249 and 

rs793396) and ~14.4kb on the centromeric side of the deletion (between rs4073665 

and rs17709863). 
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Figure 4.6. Metrics derived from analysis of DNA from affected family member III5 using 

Illumina Infinium HumanHap550 genotyping chips 

The upper and lower plots are Log R ratio and B allele frequency respectively, at an ~800kb 

segment on the p arm of chromosome 3. Log R ratio, ratio of normalized, observed R to 

expected R for each SNP (each SNP is a blue dot) serving as a surrogate of copy number at 

each locus; B allele frequency, a measure of the number of times the A or B alleles are 

detected at each locus (each SNP is denoted by a blue dot). SNPs with a B allele frequency of 

1 are apparent B/B homozygotes, SNPs with a B allele frequency of 0.5 are apparent A/B 

heterozygotes and those with a B allele frequency of 0 are apparent A/A homozygotes. Clearly 

these plots show a contiguous region ~200kb long, with decreased copy number and apparent 

homozygosity (bounded by a grey background). As has been demonstrated previously this is 

indicative of a heterozygous genomic deletion (Simon-Sanchez et al. 2007). Below these plots 

is a schematic of the two known genes affected by this deletion, ITPR1 and SUMF1. 

 

 

In an attempt to fine map the breakpoints of the disease-causing deletion, a series of 

experiments designed to refine the unknown intervals at the edges between definite 

deleted and definite diploid sequences were performed. These data narrowed the 

unknown borders to ~4kb on the telomeric side and ~7kb on the centromeric side. All 

possible combinations of forward orientation primers designed within the newly defined 

telomeric boundary and reverse orientation primers designed within the newly defined 

centromeric boundary were used in PCR assays in an attempt to amplify across the 

deletion in affected family members (figure 4.7). Using PCR primers T3f (telomeric 3 

deletion in affected family members (figure 4.7). Using PCR primers T3f (telomeric 3 
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forward) and C11r (centromeric 11 reverse), which should be >200kb apart, a 

fragment 953bp in size was amplified using DNA from each of the three affected family 

members (III4, III5, IV8) as template. Sequencing of this fragment revealed a deletion 

of 201,509bp stretching between intron 3 of SUMF1 and intron 10 of ITPR1 (figure 

4.8). This mutation removes the first 3 of 9 exons of SUMF1 and the first 10 of 58 

exons of ITPR1. When running the same assay to amplify the deletion specific 

fragment in the family member of unknown affected status, as well as, an unaffected 

member (III3, figure 4.7) no product was obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7. Assay to determine the deletion breakpoint of the SCA15 locus in AUS1 family 

Upper panel. Schematic of primer pairs used to narrow the unknown regions between known 

deleted sequence and known diploid sequence at the SCA15 locus. Nine primer pairs (T1-T9) 

were used to amplify across the unknown region telomeric to the known deleted region; 

nineteen primer pairs (C1-C19) were used to amplify across the unknown region centromeric to 

the known deleted region. All PCRs were carried out in the three affected family members. 

Analysis of these data narrowed the unknown region and ultimately enabled amplification 

across the deletion breakpoint in the three affected family members, using primers T3f 

(telomeric 3 forward) and C11r (centromeric 11 reverse), producing a fragment of 953bp in 

affected individuals. Lower panel. Gel showing amplification product using primer pair T3f and 

C11r from affected pedigree members III4, III5, IV8; in pedigree member III9 with unknown 

disease affected status; in a neurologically normal control (C); and a no template control (NC).  
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4427834 CCATCTAATATGGTTTGGCTGAGTCCCCATCCAAATCTCATCTTGAATTAT 4427884 
4427885 AGCTCCAATAATCCCACCTGTCATGGGAGGGACTCAGTGGGAGGTAACTGA 4427935 
4427936 ATCATGGGAGCAGGTTTTCCTGTGCTGTTGCCATGATAGTAAATAAGTCTC 4427986 
4427987 ACGAGATCTGATGGTTTTATA 4428007 
                                                       \  
4629517                                                             CCACTCTTTTAACATGGATGTTGTAAGAA 4629545 
4629546 TCAAGTTCAGCCGGACATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGG 4629596 
4629597 AGGCCAAGGTGGGTGGATCACCTGAGGTCGGGAGTTTGAAACCAGCCTGAC 4629647 
4629648 CAACATGGAGAAACCCTGTCTCTACTAAAAAATACAAAATTAGCCAAGCGT  4629698 
 

Figure 4.8. Sequence across the deletion breakpoint of the SCA15 locus in AUS1 family 

Sequence of the flanking edges of the deletion underlying SCA15 extending through SUMF1 

and ITPR1. Upper panel. Sequence from the PCR product generated using primers T3f and 

C11r from genomic DNA from an affected family member. Arrow denotes location breakpoint in 

sequence. Lower panel. Sequence flanking deleted region; green font indicates nucleotides 

telomeric to the deletion (SUMF1), blue font indicates nucleotides centromeric to the deletion 

(ITPR1). 
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4.4.1.3 Analysis SCA15 mutation in control samples 
In order to define whether the variation was a benign polymorphism, the assay used to 

determine the deletion breakpoint was applied to 259 neurologically normal controls 

(NDPT002, NDPT006, NDPT009, neurologically normal Caucasian control panel; 

Coriell Cell Repositories, http://ccr.coriell.org). No PCR product was obtained for any 

of the samples, indicating absence of the deletion (appendix VI).  

 

In addition, genome wide SNP data at chromosome 3p26.1, the deletion locus, from 

577 individuals of European descent who were either controls or individuals with an 

unrelated neurological disorder were analyzed (48 Caucasian controls, 269 USA ALS 

cases, 260 Italian controls). Data were generated using Infinium HumanHap550 

genotyping chips or a combination of HumanHap300 with HumanHap240 supplement 

(Illumina) and were part of other studies at the Laboratory of Neurogenetics (NIA/NIH, 

Bethesda (MD), USA). Beadstudio metrics for one individual (ND-5029; Coriell Cell 

Repositories, http://ccr.coriell.org) showed homozygosity with decreased copy number, 

suggesting a heterozygous genomic deletion at the ITPR1 locus (figure 4.9, A). 

However, since the B allele frequency calls were deviating slightly from the expected 

frequencies (1, B/B homozygote; 0.5, A/B heterozygote; 0, A/A homozygote) and it 

was previously shown that EBV (Epstein-Barr virus) immortalized lymphocyte cell lines 

(LCLs) can introduce structural artifacts (Simon-Sanchez et al. 2007), DNA extracted 

directly from blood of individual ND-5029 was analyzed. High density genotype chip 

data obtained from ND-5029 DNA from LCL (HumanHap300, HumanHap240) and 

blood (HumanHap550) were compared to confirm sample identity; genotype calls for 

94 SNPs on chromosome 3 were analysed and all, except one (likely a miss-call), 

were found identical. Log R ratio and B allele frequency showed no evidence of a 

deletion at 3p26.1 in the DNA from the ND-5029 blood sample (figure 4.9, B) 

suggesting an LCL artifact in the initial observation. No deletion affecting the coding 

sequence of either gene, ITPR1 or SUMF1 was found in any of the remaining 

samples; however, a single individual (Italian control, HumanHap550) was identified 

with a possible heterozygous deletion approximately 6kb in size within intron 40-41 of 

ITPR1, at least 5kb away from exon 40 (figure 4.10). Given the location of this 

alteration it is unlikely to effect the expression or splicing of ITPR1. No DNA extracted 

directly from blood was available for this individual. 
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Figure 4.9. Beadstudio metrics for ND_5029 based on DNA from lymphocyte cell line or blood 

The upper and lower plots are Log R ratio and B allele frequency respectively of a segment on the p arm of chromosome 3. Each SNP is denoted by a blue dot. 

A. Log R ratio and B allele frequency for ND-5029 DNA derived from LCL (lymphocyte cell line). These plots show a contiguous region ~140kb long, with 

decreased copy number and apparent homozygosity (bounded by a grey background), indicative of a heterozygous genomic deletion. However, note the B allele 

frequency calls deviation from the expected frequencies (1, B/B homozygote; 0.5, A/B heterozygote; 0, A/A homozygote) indicative of an LCL-induced structural 

artefact (Simon-Sanchez et al. 2007). Below these plots is a schematic of ITPR1, showing the exons/ introns affected by this possible deletion. Metrics generated 

by combining HumanHap300 and HumanHap240s genotype data (Illumina). B. Log R ratio and B allele frequency for ND-5029 DNA isolated from blood. No 

evidence of the deletion seen in DNA from LCL (A.), suggesting it was indeed a cell line induced artefact. Data were generated using HumanHap550 genotyping 

chip (Illumina).    
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Figure 4.10. Beadstudio metrics for Italian control based on DNA from lymphocyte cell line 

The upper and lower plots are Log R ratio and B allele frequency respectively of a segment on 

the p arm of chromosome 3. The plots show a possible heterozygous genomic deletion ~6kb in 

size, with decreased copy number and apparent homozygosity (bounded by a grey 

background). As has been previously shown, EBV immortalized lymphocyte cell lines (LCL) can 

induce structural artefacts (Simon-Sanchez et al. 2007); figure 4.9). No DNA extracted directly 

from blood was available for this individual. However, the schematic of ITPR1 below the plots, 

shows this possible deletion does not affect any of the exons. And given the location of this 

alteration, at least 5kb 3’ of exon 40, it would be unlikely to affect the expression or splicing of 

ITPR1. Data were generated using HumanHap550 genotyping chip (Illumina).    
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4.4.1.4 Genome wide SNP analysis additional SCA familial cases 
To further establish genetic deletion at ITPR1 as the cause of SCA15, high density 

genome wide SNP genotype data (HumanHap550; Illumina) from an ADCA III cohort 

were analysed. DNA was extracted from blood of cases with an inherited cerebellar 

ataxia similar to that described in the AUS1 family, ascertained through neurology 

clinics in London (England; n=43) and Cardiff (Wales; n=19). Genotype data from 

probands of two of these families (H27390, London; H3331, London) showed deletions 

at the SCA15 locus from SUMF1 through ITPR1 (figure 4.11, 4.12). In both families, 

mutation was shown to segregate with disease (figure 4.11, 4.12). High density 

genotype chip data (HumanHap550) obtained from AUS1, H27390 and H3331 family 

members were compared to reveal any relatedness between the families; genotype 

calls for ~200 SNPs were analysed in each region flanking the deletion on 

chromosome 3, these data showed the AUS1, H27390 and H3331 families do not 

share a disease haplotype.     

 

Family H27390 (ADCA III cohort, London) 
A strategy similar to the one outlined above enabled amplification and subsequent 

sequence analysis across the breakpoint in family H27390 (figure 4.11). SNP 

genotype data narrowed the unknown intervals at the edges between definite deleted 

and definite diploid sequences to ~10kb on the telomeric side and ~3kb on the 

centromeric side. All possible combinations of forward orientation, telomeric, primers 

and reverse orientation, centromeric, primers, designed at 500bp intervals, were used 

in PCR assays. Using primers T11f (telomeric 11 forward) and C3r (centromeric 3 

reverse), which should be >340kb apart, a fragment of 366bp in size was amplified 

using DNA from each of the two affected family members (figure 4.11). The deletion 

spans 344,408bp, removing exons 1-3 of SUMF1 and 1-44 of ITPR1.  

 

Family H3331 (ADCA III cohort, London) 
SNP genotype data narrowed the unknown intervals at the edges between definite 

deleted and definite diploid sequences to ~6.5kb on the telomeric side and ~5kb on the 

centromeric side, in individual H3331. Primers were designed at 500bp intervals, and 

all possible combinations of forward orientation, telomeric, primers and reverse 

orientation, centromeric, primiers were used in PCR assays. However, no sequence 

across the breakpoint in family H3331 was obtained (figure 4.12). Therefore, all 

telomeric primer pairs, as well as the centromeric primer pairs were amplified using 

PCR and subsequently sequences were analysed (n=2; H3331 family member 4, 6). 
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Based on heterozygous calls in the sequences thus obtained, the telomeric region was 

narrowed to ~2.5kb and the centromeric region was further narrowed to ~3kb. These 

newly defined regions were used to design a second, and even a third, primer set in an 

attempt to generate sequence data across the breakpoint in family H3331, however 

thus far remaining unsuccessful. Based on the newly defined intervals, the deletion is 

estimated to be approximately 310kb in length, removing exons 1-3 of SUMF1 and 

exons 1-40 of ITPR1 (based on NCBI human build 36).  
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4415589 TGACAGGTCAAGAGATATGTCACCATACATATCCAGAACAAGTGAAAGCAG  4415639 
4415640 GGGTTCGAAGGAAGGACATTCTGATACATACTACAACATGGATGAACCTTG 4415690 
4415691 AGGACGTGATGCTGAGTGAAG 4415711 
                                                       \  
4760119                                                        GATGTCATAGGAAAGGTCATTAGGAAAGA 4760147 
4760148 TGGGAACACAGAAACCTGTGGGAATGGCAGTTATTTTTTCTTTACTATTTA 4760198 
4760199 GAACTGAGAGTCCACACTAACAGTCGATTTGGGTGTGTGGTTTAAATGGAC 4760249 
 

Figure 4.11. Family H27390 (London cohort), data showing mutation at SCA15 locus 

A. Shows family pedigree; numbers indicate family members assayed, all of whom were 

affected and all of whom carried a deletion at this locus. Bold number indicates proband. B. 

Data were generated using HumanHap550 high density genome wide SNP chips (Illumina). 

The upper and lower plots are Log R ratio and B allele frequency respectively, at an ~3.5Mb 

segment on the p arm of chromosome 3 (each SNP is denoted by a blue dot). Closer 

examination of SNP data, genotype calls, enabled narrowing of the unknown intervals at the 

edges between definitive deleted and definitive diploid sequences to ~10kb on the telomeric 

side (between rs17685501 and rs11713682) and ~3kb on the centromeric side (between 

rs17729477 and rs17729525). C. Sequence flanking deleted region. Arrow denotes location 

breakpoint in sequence. Green font indicates nucleotides telomeric to the deletion (SUMF1); 

blue font indicates nucleotides centromeric to the deletion (ITPR1). The deletion is 344,408bp 

in length, removing exons 1-3 of SUMF1 and exons 1-44 of ITPR1. Basepair positions are 

based on NCBI genome build 36 reference assembly. 
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Figure 4.12. Family H3331 (London cohort), data showing mutation at SCA15 locus  

A. Shows family pedigree; numbers indicate family members assayed, all of whom were 

affected carried a deletion at this locus whereas all of whom were unaffected did not carry the 

deletion. Bold number indicates proband. B. Data were generated using HumanHap550 high 

density genome wide SNP chips (Illumina). The upper and lower plots are Log R ratio and B 

allele frequency respectively, at an ~3.5Mb segment on the p arm of chromosome 3 (each SNP 

is denoted by a blue dot). Closer examination of SNP data, genotype calls, enabled narrowing 

of the unknown intervals at the edges between definitive deleted and definitive diploid 

sequences to ~6.5kb on the telomeric side (between rs17516078 and rs12634249) and ~5kb 

on the centromeric side (between rs11714054 and rs4685812). Based on these findings the 

deletion was estimated to be approximately 310kb in length, thereby removing exons 1-3 of 

SUMF1 and exons 1-39/40 of ITPR1 (based on NCBI human build 36 reference assembly). 
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4.4.1.5 Sequence analysis additional SCA familial cases 
In order to get more insight into the genetic mechanism underlying ITPR1 pathology in 

SCA15 and to rule out the possibility that deletion of SUMF1 causes or contributes to 

SCA15, although biologically unlikely, a classical sequencing approach was 

undertaken in a cohort of familial ADCA III cases (n=38; London (UK) cohort) in search 

for distinct ITPR1 mutations. Sanger-based sequence analysis of the 58 coding exons 

and an additional 30bp of each flanking region to include splice sites identified several 

known polymorphisms, as well as an unknown synonymous variation in exon 26 and 

unknown variations in the intronic regions 5’ of exon 38 and 5’ of exon 44, and the 3’ 

intronic region of exon 42 (table 4.6). The variants found in exon 26 and 5’ of exon 38 

were subsequently shown in neurologically normal controls (NDPT020 and NDPT023 

respectively, neurologically normal Caucasian control panel; Coriell Cell Repositories, 

http://ccr.coriell.org). The variations identified in the intronic regions near exon 42 and 

44 in SCA patients were not found in the over 400 neurologically normal controls 

studied (exon 42, n=415; exon 44, n=409; NDPT019, NDPT020, NDPT022, NDPT023, 

NDPT024, neurologically normal Caucasian control panels; Coriell Cell Repositories, 

http://ccr.coriell.org). More controls are needed to be conclusive, however given the 

location of the variations, in the intron and 18bp and 12bp away from the exon (42 and 

44 respectively), they are unlikely to be disease causing.  

 

By the time this thesis was written, Hara et al. (2008) published findings on a 

Japanese family with autosomal dominant SCA. They describe a missense mutation in 

exon 25 of ITPR1 (AAB04947.2), the C8581→T variation resulting in substitution of 

leucine for proline (P1059L). This nucleotide change was absent in 234 normal 

chromosomes in Japanese controls. Unfortunately the control cohort was small and no 

further studies were published to confirm their findings, therefore these results and the 

pathogenicity of this variation should be considered with caution until further 

characterization of the mutation or additional families have been identified. To date, in 

five families with hereditary ataxia, four with SCA15 and one with SCA16, disease has 

been ascribed to deletions in ITPR1 (van de Leemput et al. 2007;Hara et al. 

2008;Iwaki et al. 2008). 
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nucleotide exon rs.no. variant found sample freq. population freq. 
      
c.2574G>A 20 rs41289636 p.A742A  GA1, GG37 n/a 
c.3006A>C 22 rs58408221 p.L886L  AA27, CA9, CC2 n/a 
c.3528C>T 26 n/a p.T1060T CT1, CC37 n/a 
c.4944C>T 35 rs34748547 p.S1532S  CT1, CC37 0.028 ±0.115 
c.5469C>T 39 rs61757111 p.N1707N  CT1, CC37 n/a 
c.6315C>T 43 rs6442905 p.N1989N CT2, CC36 0.031 ±0.120 
c.6900A>G 48 rs34491089 p.K2184K AG1, AA37 0.025 ±0.110 
c.6921A>G 48 rs13079522 p.T2191T  AA22, AG12, GG4 0.350 ±0.229 
c.7258C>T*   50 rs2291862 p.L2304L  CC18, CT16, TT4 0.368 ±0.221 
c.7839C>T 54 rs711631 p.T2497T  CC26, CT5, TT7 0.248 ±0.250 
c.7893A>G 54 rs901854 p.K2515K  AA18, AG12, GG8 0.469 ±0.120 
      
 exon (UTR)     
      
g.4687413A>G 19[-1] rs2306875 p.R669R  AA16, AG19, GG3 0.496 ±0.044 
g.4700239G>A 26[+4] rs2306878 n/a GA1, GG37 n/a 
n/a, C>T 38[-21] n/a n/a CT1, CC37 n/a 
n/a, G>A 42[+18] n/a n/a GA1, GG37 n/a 
n/a, G>T 44[-12] n/a n/a GT1, GG37 n/a 
      

 

Table 4.6. ITPR1 variants identified in ADCA III cohort (London) 

ITPR1 polymorphisms analysed and detected in an ADCA III cohort (London, UK; n=38) using 

the ABI prism 3730 genetic analyser platform. Data based on ITPR1 RefSeq NM_001099952.1, 

NP_001093422, obtained from GenBank. Detailed information on genetic variations from NCBI 

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP), including ancestral allele, rs-number, 

variant found at protein level and population frequency. *A/G variant in dbSNP, A being the 

ancestral allele, whereas C/T variant found. Nucleotide, in bold signifies ancestral allele; rs.no, 

reference number; sample frequency, genotype with in subscript number of samples in which 

genotype found; population freq, average population frequency heterozygote ±standard error; 

c, cDNA; p, protein; g, genomic DNA. 
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4.4.1.6 ITPR1 dosage alteration analysis in a French ADCA III cohort 
To study the prevalence of genetic dosage alteration of ITPR1 in spinocerebellar 

ataxia, quantitative duplex PCR was carried out for ITPR1exon10 (figure 4.13; appendix 

VII). Genomic DNA from samples of the Paris (French) ADCA III cohort (n=267) were 

used. Dosage data for control samples III5 and III4 (AUS1 family, figure 4.1), known to 

carry a deletion in ITPR1 including exon 10 (figure 4.7), indicated heterozygous 

deletion of ITPR1exon10 (2-ΔΔCt between 0.4 and 0.6) as expected. Whereas samples 

H3332 (H3331 family, figure 4.12) and III9 (AUS1 family, figure 4.1), known to have 

two full length copies of ITPR1, showed dosage values within the normal range (2-ΔΔCt 

between 0.8 and 1.2). The no template control (NC) resulted in absence of a signal for 

both the hemoglobin and the ITPR1 probe. Measurements for three of the samples 

failed to meet the quality requirements; signal was obtained for both hemoglobin and 

ITPR1 suggesting the quality of the DNA was insufficient.  

 

Dosage data for three samples suggested duplication of ITPR1exon10 (2-ΔΔCt greater 

than or equal to 1.3; AAD4-2G, AAD1-6E, AAD1-10D; figure 4.14; appendix VII). High 

density genome wide SNP data (HumanHap610-Quad) for two of these samples 

showed no evidence for dosage alteration in ITPR1 (figure 4.14). However, the high 

density assay SNP might miss smaller deletions, even several exons in size, due to 

insufficient resolution (SNP density). Indeed the 610-Quad high density SNP chip 

used, did not contain SNPs within exon 10 of ITPR1 (ITPR1exon10 chromosome position 

4662265-4662412: nearest 610-Quad SNPs: rs4594601 (intron 8) position 4661814, 

rs4685793 (intron 10) position 4668087). The quantity of the third sample was 

insufficient to carry out the assay. The ITPR1 dosage data for these samples remain 

inconclusive based on the data presented. Southern blot analysis would be an 

alternative technique to estimate gene dosage levels and thus validate the data. Gene 

dosage data for two of the samples indicated heterozygous deletion of ITPR1 exon 10 

(2-ΔΔCt between 0.4 and 0.6; AAD1-3A, AAD4-8H; figure 4.13; appendix VII). Findings 

in both samples were subsequently confirmed by high density genome wide SNP data 

(HumanHap610-Quad). Log R ratio and B allele frequency plots for both samples 

showed decreased copy number and apparent homozygosity, indicative of a 

heterozygous genomic deletion (figure 4.15). Based on the BeadStudio metrics the 

entire ITPR1 gene appears to be deleted in AAD1-3A, whereas in AAD4-8H ITPR1 

and SUMF1 both seem to be partly deleted including the first exons. Taken together 

the ITPR1exon10 dosage data suggest <1% (2/263) of spinocerebellar ataxia cases are 

caused by deletion at ITPR1. 
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Figure 4.13. Gene dosage analysis of ITPR1exon10 from a French ADCA III cohort 

Each bar denotes the mean of six replicates (unless indicated otherwise; •, 5 replicates; ••, 4 

replicates) for one sample, expressed as 2-ΔΔCt ±SD (standard deviation). A, B, C, D, E, F, G. 

Each graph displays data for all samples assayed on the sample 384-well plate, for which Ct 

(cycle threshold) 23-30, with SD ≤0.16 of dosage relative to hemoglobin (ΔCt), and normalized 

to control DNA (average ΔCt of unaffected controls). Samples French ADCA III cohort in light 

grey (↑, gene dosage indicates deletion); affected controls (a. III5, c. III4 AUS1 family, figure 

4.1) in blue; unaffected controls (b. H3332, H3331 family, figure 4.12; d. III9, AUS1 family, 

figure 4.1) in dark grey; no template control (e. water). The 2-ΔΔCt value was considered a 

heterozygous deletion between 0.4 and 0.6, normal between 0.8 and 1.2, and duplication at a 

value greater than or equal to 1.3. Assays were carried out on an ABI Prism 7900HT Sequence 

Detection System (Applied Biosystems) and data were analyzed using SDS software 

(Sequence Detection System, version 2.2.2; Applied Biosystems) and excel (2003; Microsoft). 

(figure 4.13, on next page) 
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(figure 4.13, continued on next page) 
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(figure 4.13, continued from previous page) 
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Figure 4.14. Gene dosage analysis; duplication  

Gene dosage assay data for ITPR1exon10 are shown for samples that repeatedly showed 

increased dosage (AAD4-2G (A.), AAD1-6E (B, C.), AAD1-10D (D, E.); appendix VII). 

Corresponding structural genome analysis data (HumanHap610-Quad) demonstrated no 

evidence for genetic dosage alteration in ITPR1. A, B, D. gene dosage assay Data 

representative for the three assay repeats, carried out independently, are shown; sample data 

with corresponding controls. Each bar denotes the mean of six replicates (unless indicated 

otherwise; ••, 4 replicates) for one sample, expressed as 2-ΔΔCt ±SD (2-ΔΔCt, ITPR1exon10 dosage 

relative to hemoglobin and normalized to control DNA; SD, standard deviation). Accepted data 

displayed Ct (cycle threshold) values between 23 and 30, SDΔCt ≤0.16 (ΔCt, dosage relative to 

hemoglobin). Sample in light grey (s); affected controls in blue (a. III5, c. III4 AUS1 family, 

figure 4.1); unaffected controls in dark grey (b. H3332, H3331 family, figure 4.12; d. III9, AUS1 

family, figure 4.1); no template control (e. water). The 2-ΔΔCt value was considered a 

heterozygous deletion between 0.4 and 0.6, normal between 0.8 and 1.2, and duplication at a 

value greater than or equal to 1.3. Assays were carried out on an ABI Prism 7900HT Sequence 

Detection System (Applied Biosystems) and data were analyzed using SDS software 

(Sequence Detection System, version 2.2.2; Applied Biosystems) and excel (2003; Microsoft). 

C, E. HumanHap610-Quad BeadStudio metrics derived from analysis of genomic DNA using 

Illumina Infinium HumanHap610-Quad high density whole genome SNP genotyping chips. The 

upper and lower plots are Log R ratio and B allele frequency respectively, at an ~10Mb 

segment on the p arm of chromosome 3 that contains ITPR1. Log R ratio, ratio of normalized, 

observed R to expected R for each SNP (each SNP is a blue dot) serving as a surrogate of 

copy number at each locus; B allele frequency, a measure of the number of times the A or B 

alleles are detected at each locus (each SNP is denoted by a blue dot). SNPs with a B allele 

frequency of 1 are apparent B/B homozygotes, SNPs with a B allele frequency of 0.5 are 

apparent A/B heterozygotes and those with a B allele frequency of 0 are apparent A/A 

homozygotes. Assays were carried out on the Illumina Infinium platform (Illumina) and data 

were analyzed using BeadStudio software (genotyping module, v2.3.25; Illumina). (figure 4.14, 

on next page) 
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(figure 4.14, continued from previous page) 
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Figure 4.15. Gene dosage analysis; heterozygous deletion 

Gene dosage assay data for ITPR1exon10 are shown for samples that repeatedly showed 

decreased dosage (AAD1-3A (A, B.), AAD4-8H (C, D.); appendix VII), with corresponding 

structural genome analysis data (HumanHap610-Quad) confirming heterozygous deletion in 

ITPR1. A, C. gene dosage assay Data representative for both the assay repeats, carried out 

independently, are shown; sample data with corresponding controls. Each bar denotes the 

mean of six replicates for one sample, expressed as 2-ΔΔCt ±SD (2-ΔΔCt, ITPR1exon10 dosage 

relative to hemoglobin and normalized to control DNA; SD, standard deviation). Accepted data 

displayed Ct (cycle threshold) values between 23 and 30, SDΔCt ≤0.16 (ΔCt, dosage relative to 

hemoglobin). Sample in light grey (s); affected controls in blue (a. III5, c. III4 AUS1 family, 

figure 4.1); unaffected controls in dark grey (b. H3332, H3331 family, figure 4.12; d. III9, AUS1 

family, figure 4.1); no template control (e. water). The 2-ΔΔCt value was considered a 

heterozygous deletion between 0.4 and 0.6, normal between 0.8 and 1.2, and duplication at a 

value greater than or equal to 1.3. Assays were carried out on an ABI Prism 7900HT Sequence 

Detection System (Applied Biosystems) and data were analyzed using SDS software 

(Sequence Detection System, version 2.2.2; Applied Biosystems) and excel (2003; Microsoft). 

B, D. HumanHap610-Quad BeadStudio metrics derived from analysis of genomic DNA using 

Illumina Infinium HumanHap610-Quad high density whole genome SNP genotyping chips. The 

upper and lower plots are Log R ratio and B allele frequency respectively, at an ~10Mb 

segment on the p arm of chromosome 3 that contains ITPR1. Log R ratio, ratio of normalized, 

observed R to expected R for each SNP (each SNP is a blue dot) serving as a surrogate of 

copy number at each locus; B allele frequency, a measure of the number of times the A or B 

alleles are detected at each locus (each SNP is denoted by a blue dot). SNPs with a B allele 

frequency of 1 are apparent B/B homozygotes, SNPs with a B allele frequency of 0.5 are 

apparent A/B heterozygotes and those with a B allele frequency of 0 are apparent A/A 

homozygotes. A contiguous region with decreased copy number and apparent homozygosity 

(bounded by a grey background), is indicative of a heterozygous genomic deletion (Simon-

Sanchez et al. 2007). Assays were carried out on the Illumina Infinium platform (Illumina) and 

data were analyzed using BeadStudio software (genotyping module, v2.3.25; Illumina). (figure 

4.15, on next page) 
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(figure 4.15, continued from previous page) 
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4.4.2 Molecular characterization SCA15 
4.4.2.1 Characterization ITPR1 protein levels SCA15 
To study the effects of the ITPR1 deletion on protein expression, western blot analysis 

was undertaken. In further support of a major role for ITPR1 in SCA15 etiology, study 

of protein levels of ITPR1 in Epstein-Barr virus (EBV) immortalized lymphocytes from 

affected and unaffected AUS1 family members revealed that all affected members 

showed a dramatic decrease in ITPR1 levels when compared with the family member 

without the deletion (figure 4.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.16. Western blot analysis of ITPR1 protein levels in EBV immortalized lymphocytes 

from AUS1 family members  

Western blot performed to examine ITPR1 levels in EBV immortalized lymphocytes from AUS1 

affected family members carrying the ITPR1 deletion and from an AUS1 family member of 

unknown disease status who does not carry the deletion. Notably the samples from patients 

with ITPR1 deletion show a dramatic decrease in ITPR1 levels (arrow; ITPR1, 314kD). To 

demonstrate equal loading, samples were diluted one in five and western blot was repeated 

using an antibody against beta-actin (arrowhead; beta-actin, 42kD). 
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4.5 DISCUSSION 
 

4.5.1 Characterization SCA15 
4.5.1.1 Spinocerebellar ataxia type 15 (SCA15) 
Spinocerebellar ataxia (SCA) 15 was first described in an Australian family, AUS1 

(Storey et al. 2001). Clinical presentation was an autosomal dominantly inherited ‘pure’ 

cerebellar ataxia, onset ranged from mid-childhood to middle age, characterized by 

slow progression, mild degree of gait ataxia, dysarthria, gaze evoked nystagmus with ± 

rebound and brisk lower limb reflexes, in some patients head and/or action tremor 

were noted. MRI showed prominent cerebellar atrophy with sparing of the brainstem 

(Storey et al. 2001). The SCA15 locus had been previously mapped to 3p24.2-3pter 

(Knight et al. 2003). Data presented in this thesis show deletions in the gene encoding 

inositol 1,4,5-triphosphate receptor type 1, ITPR1, to underlie SCA15 in humans (van 

de Leemput et al. 2007). Initially, a deletion was identified at the p arm of chromosome 

3 in the original SCA15 family (AUS1) that comprised ITPR1 exons 1-10 of 58 and 

SUMF1 (sulfatase modifying factor 1) exons 1-3 of 9, as was shown by structural 

analysis based on high density genome wide genotyping (Illumina). Pathogenicity of 

the genetic deletion at ITPR1 as the cause of the ataxic phenotype in SCA15 was 

further established by findings in two additional families with inherited cerebellar 

ataxia, phenotypically highly similar to that described in AUS1; deletion of exons 1-44 

of ITPR1 and 1-3 of SUMF1 in family H27390, and deletion of exons 1-40 of ITPR1 

and 1-3 of SUMF1 in family H3331. No structural changes were found in ITPR1 and/or 

SUMF1 studied in 836 control subjects (paragraph 4.4.1.3), except a single individual 

with a possible heterozygous deletion within intron 40 of ITPR1, at least 5kb away from 

the nearest exon, exon 40 (figure 4.10). In further support, western blot analysis of 

ITPR1 protein levels in EBV immortalized lymphocytes showed a dramatic decrease in 

ITPR1 levels in affected AUS1 individuals compared to a family member without the 

deletion.   

 

4.5.1.2 Sulfatase modifying factor 1 (SUMF1) 
Although the possibility that deletion of SUMF1, encoding sulfatase modifying factor 1, 

causes or contributes to SCA15 can not be ruled out based on these results, 

biologically this seems unlikely. Homozygous mutation of SUMF1 results in autosomal 

recessive multiple sulfatase deficiency (MSD; OMIM ID 607939), a metabolic disorder 

characterized by hepatosplenomegaly, deafness and developmental delay (Cosma et 

al. 2003;Dierks et al. 2003;Cosma et al. 2004). To date no dominant MSD cases, 

heterozygous mutation in SUMF1, have been described in the literature. Northern blot 
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heterozygous mutation in SUMF1, have been described in the literature. Northern blot 

analysis has demonstrated SUMF1 mRNA expression in several bodily tissues, with 

higher abundance in kidney and liver whereas expression in brain tissue was very low 

(Cosma et al. 2003). Contrary, analysis of Sumf1-/- mice tissue sections demonstrated 

massive and generalized cell vacuolization, particularly in macrophages suggesting 

the presence of active phagocytosis, with microglia becoming the predominant cell 

type in the Purkinje cell layer (Settembre et al. 2007). However, no co-occurrence of 

ataxia has been described in parents of patients with multiple sulfatase deficiency.  

 

4.5.1.3 SCA15, SCA16 as described  
Since publication of these data (van de Leemput et al. 2007), additional families have 

been described in which ITPR1 mutations were shown to segregate with an ataxic 

phenotype similar to SCA15 (table 4.7). SCA16 was first described in a Japanese 

family as an autosomal dominant cerebellar ataxia. Characterized by slow progression, 

initial symptom is nystagmus, followed by ataxic gait and/or dysarthria, some patients 

presented with head tremor. Interestingly, mild mental dysfunction was described in 

two patients. MRI showed cerebellar atrophy without brainstem involvement (Miyoshi 

et al. 2001). SCA16 was recently mapped to 3p26.2-pter, partly overlapping the 

SCA15 locus (Miura et al. 2006).  Based on quantitative real time PCR data of a 

SCA16 patient and his unaffected brother, heterozygous deletion of exons 1-48 of 

ITPR1, but not SUMF1, was identified as the genetic cause of SCA16. Deletion 

specific PCR showed the deletion was present in all affected SCA16 individuals but 

not unaffected family members studied (Iwaki et al. 2008).  

 

Two additional Japanese SCA families presented with a slow progressive, autosomal 

dominant cerebellar ataxia in which postural and action tremor were more prominent 

than described in AUS1, SCA15 (Gardner et al. 2005) and SCA16 families (Miyoshi et 

al. 2001). Initial presentation in family A was ataxic gait, dysarthria and nystagmus, in 

some cases tremor of neck and/or hand was noted. In family B, tremor of trunk and 

upper extremities preceded ataxic symptoms, no nystagmus was described in any of 

the patients. In both families cerebellar atrophy without brainstem involvement was 

found (Hara et al. 2004). Linkage was found on chromosomal region 3p26.1-25.3, a 

locus overlapping with SCA15. It should be noted family A mainly contributed to this 

result, the multipoint LOD score obtained from family B did not reach significance 

(Hara et al. 2004). In family A, deletion of the entire ITPR1 gene and exon 1 of SUMF1 

was initially detected based on decreased log2 R ratios obtained by high density 

oligonucleotide array-based comparative genomic hybridization (aCGH), and 
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oligonucleotide array-based comparative genomic hybridization (aCGH), and 

confirmed using quantitative real time PCR which showed gene expression levels of 

ITPR1 and SUMF1 exons studied were reduced by half in affected individuals 

compared to unaffected family members. In addition, mRNA expression analysis 

showed SUMF1 and ITPR1 levels were reduced by half in an affected family member 

compared to the normal control levels (Hara et al. 2008). In family B, a missense 

mutation in exon 25 of ITPR1 (AAB04947.2) was found in affected, but not unaffected, 

individuals using sequence analysis. The C8581→T variation results in substitution of 

leucine for proline (P1059L). This nucleotide change was absent in 234 normal 

chromosomes in Japanese controls (Hara et al. 2008). Unfortunately the control cohort 

was small (n=234) and no further studies, such as protein expression analysis, were 

published to confirm their findings, therefore these results and the pathogenicity of this 

variation should be considered with caution until further characterization of the 

mutation or additional families have been identified.  

 

 

SCA families SUMF1 (9) ITPR1 (58) references 
AUS1, SCA15 1-3 1-10 van de Leemput et al. (2007) 
H27390 1-3 1-44 van de Leemput et al. (2007) 
H3331 1-3 1-40 van de Leemput et al. (2007) 
SCA16  1-48 Iwaki et al. (2008) 
Japanese A 1 1-58 Hara et al. (2008) 
Japanese B*  25; C8581T Hara et al. (2008) 

 

Table 4.7. Genetic alterations found in SCA15 (SCA16) families  

Genetic alteration found in spinocerebellar ataxia type 15 (16) published to data; the original 

SCA15 family (AUS1) and two London (UK) SCA families (H27390, H3331) from this study, 

and three Japanese families as described in literature (SCA16, Japanese A, Japanese B 

families). For both genes, SUMF1 and ITPR1, the exons within the deleted region are given as 

described for each family, as well as the missense mutation in ITPR1 exon 25 found in 

Japanese family B. *, note NCBI accession number AAB04947.2 (Homo sapiens, ITPR1) was 

given as source in the paper by (Hara et al. 2008), however in this thesis ITPR1 accession 

number NM_001099952.1 (Homo sapiens; RefSeq) has been used throughout which would 

place the missense mutation in family Japanese B in exon 26 of ITPR1. SCA, spinocerebellar 

ataxia; SUMF1 (9), sulfatase modifying factor 1 (9 exons); ITPR1 (58), inositol 1,4,5-

triphosphate receptor type 1 (58 exons). 
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4.5.1.4 Inositol 1,4,5-triphosphate receptor type 1 (ITPR1) 
The data provide compelling evidence that deletion in the gene encoding inositol 1,4,5-

triphosphate receptor type 1, ITPR1, underlies SCA15 and SCA16 in humans; raising 

the question whether the SCA16 family should be regarded as having SCA15 

(Gardner 2008). Mutation at ITPR1 is biologically plausible as a cause of ataxia since 

the protein is highly expressed in Purkinje cells, mice with mutation at this locus 

present with ataxia (chapter 3), and perturbed Ca2+ signaling has previously been 

implicated in the etiology of ataxia, notably in episodic ataxia type 2 and SCA6 

(Zhuchenko et al. 1997). Given that autosomal dominant congenital non-progressive 

ataxia (NPCA) has been mapped to the chromosome 3pter region thereby overlapping 

the SCA15 locus (Dudding et al. 2004), ITPR1 is clearly a gene of importance for 

screening in these families.  

 

Haploinsufficiency at ITPR1 would be the potential pathogenic mechanism underlying 

SCA15. This concept is consistent with the observation that heterozygous deletion 

leads to a later onset disorder in humans, whereas homozygous deletion in mice leads 

to an early onset disorder, able to be expressed within the much shorter life span of 

the mouse (chapter 3). The alternative, existence of an alternate start site for ITPR1 

that may result in a pathogenic gain of function, seems unlikely as the deletions in 

ITPR1 described in Japanese families with an ataxic movement disorder phenotypic 

similar to SCA15, have different deletion breakpoints compared to those found in this 

study (table 4.7) (Hara et al. 2008;Iwaki et al. 2008).     

 

Following the finding of a genetic deletion at ITPR1 as the cause of SCA15, a total of 

325 additional cases with an inherited cerebellar ataxia similar to that described in the 

AUS1 family were screened for alterations in ITPR1 (HumanHap550, London cohort 

(n=43), Cardiff cohort (n=19); gene dosage assay, French cohort (n=263)). High 

density genome wide SNP genotype data (HumanHap550) resulted in de identification 

of two families with deletion at the SCA15 locus from SUMF1 through ITPR1 

(paragraph 4.3.2.5), in addition, the assay for genetic dosage alteration in ITPR1exon10 

lead to the identification of two cases with heterozygous deletion in ITPR1 (paragraph 

4.4.1.6). Taken together these data suggest genetic alterations at ITPR1 underlie 

approximately over 1% of autosomal dominant SCA type III (ADCA III) cases for which 

currently no genetic cause has been identified. Hara et al. (2008) screened 54 

autosomal dominant SCA families in addition to Japanese A and Japanese B, although 

no deviating gene copy numbers were found. Regarding the small number of samples 

screened thus far, this estimate has to be considered with caution. Further studies 
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screened thus far, this estimate has to be considered with caution. Further studies 

based on larger cohorts are required, not only looking at ITPR1 gene dosage levels 

but also screening for missense mutations.  
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4.5.2 Genetic mutational mechanism underlying SCA15 
4.5.2.1 Mechanisms underlying chromosomal rearrangements; NAHR, NHEJ 
Genomic disorders have been defined as disorders in which the clinical phenotype is 

caused by abnormal dosage of a gene or genes located within a rearranged segment 

of the genome. These rearrangements include deletions, duplications, inversions and 

translocations. Whereas the point mutations in conventional Mendelian disease usually 

result from DNA replication or repair errors, the rearrangements in genomic disorders 

are initiated by double strand breaks (DSBs) and occur via recombination 

mechanisms. Two competing repair processes target DSBs; non-allelic homologous 

recombination (NAHR) and non-homologous end joining (NHEJ) (figure 4.17; 4.18). 

 

Non-allelic homologous recombination (NAHR) is the most common mechanism 

underlying disease-associated genome rearrangements. NAHR uses a sister 

chromatid or homologue to connect the two strands and repair the genomic break, 

often using LCRs (low copy repeats) as substrates. LCRs, also known as segemental 

duplications or duplicons, are usually 10-500kb in size and >95% identical (Shaw and 

Lupski 2004). They are the product of segmental duplications of the genome and may 

represent genes, pseudogenes, gene fragments, repeat gene clusters and other 

chromosomal segments. The genome wide frequency of LCRs has been estimated at 

5-10%, and although they are distributed unevenly with clustering in pericentromeric 

and subtelomeric areas, LCR mediated NAHR results in a clustering of rearrangement 

breakpoints (Shaw and Lupski 2004). NAHR between LCRs in direct orientation on the 

same chromosome results in reciprocal deletions and duplications, whereas NAHR 

between LCRs in inverted orientation on the same chromosome results in inversions. 

NAHR can also occur between LCRs located on different chromosomes, resulting in 

reciprocal translocations (Shaw and Lupski 2004).  

 

Non-homologous end joining (NHEJ) is another repair mechanism underlying 

chromosomal rearrangements. Presence of LINE (long interspersed nuclear element) 

sequences, increased density of Alu elements (SINE, short interspersed nuclear 

element), and AT-rich palindromes have been observed at some of the NHEJ 

breakpoints but not all, suggesting that genome architecture (presence of abundant 

repetitive elements) may stimulate although not necessarily mediate these non-

recurrent rearrangements (J Duckworth (LNG/NIA/NIH), personal communication). 

NHEJ is less accurate than NAHR because it simply joins DNA ends together, often 

resulting in a scattering of breakpoints (Shaw and Lupski 2004). Despite the 

inaccuracy of NHEJ, it is still a widely used repair mechanism in mammals, possibly 
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inaccuracy of NHEJ, it is still a widely used repair mechanism in mammals, possibly 

explained by the many repeat sequences present in their genomes complicating 

sequence alignment, a requirement for NAHR (Shaw and Lupski 2004). Several 

genomic disorders have been associated with NHEJ with rearrangement breakpoints 

located within apparently unique sequence, such as the deletion formation in the 

dystrophin gene associated with Duchenne muscular dystrophy (DMD) (Shaw and 

Lupski 2004). 

 

Regardless of recombination mechanism, NAHR or NHEJ, genomic architectural 

features have been associated with many rearrangement breakpoints. This suggests 

that chromosomal rearrangements are not random events, but result from 

predisposition to rearrangement due to the existence of complex genomic architecture 

that may create instability in the genome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.17. Mechanisms of genomic rearrangements 

Features associated with each of the two major recombination mechanisms are shown; NAHR, 

non-allelic homologous recombination (blue), and NHEJ, non-homologous end joining (red). 

LCR, low copy repeat, also known as segmental duplication or duplicon; Alu element, short 

DNA sequence originally characterized by the action of the Alu restriction endonuclease, and at 

about 300bp in length it is classified as a short interspersed nuclear element (SINE); LINE, long 

interspersed nuclear element, a retrotransposon (transposon via RNA intermediates), a genetic 

element that moves by copying itself. Reproduced from Shaw and Lupski (2004). 
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Figure 4.18. Generation of deletion rearrangement by NAHR and NHEJ 

The substrates and products of recombination are shown. Left. NAHR utilizes two non-allelic 

LCRs (A and B) as substrates for recombination. The LCRs are depicted as blue rectangles 

due to high homology, but are different shades of blue signifying the few cis-morphisms or 

paralogous sequence variants that distinguish them. LCRs A and B, directly oriented (shown by 

arrows) misalign and subsequent homologous recombination results in a deletion with a single 

recombinant LCR, shown as a two-tone blue rectangle. Restriction enzyme consensus 

sequences (cut sites) are depicted as vertical lines on either side of the recombinant LCR with 

deletion of the consensus sequence between the two substrate LCRs. Digestion using this 

enzyme results in the isolation of a recombination-specific junction fragment, shown below. 

Right. NHEJ utilizes two non-homologous sequences as substrates for recombination; red 

rectangle (A), and green oval (B). The two sequences are joined via NHEJ, with deletion of the 

intervening fragment. Additional bases (NN…NN) are added at the deletion junction. 

Reproduced from Shaw and Lupski (2004). 
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4.5.2.2 Chromosomal rearrangements in SCA15, SCA16  
Chromosome rearrangement breakpoints have been located throughout the genome. 

However, they predominate in the pericentromeric and subtelomeric regions, 

particularly in intervals containing complex genomic architecture such as low copy 

repeats (LCRs) or AT-rich palindromes (Shaw and Lupski 2004). Indeed, the SCA15 

locus is located in the telomeric region of the short arm (p arm) of chromosome 3 

(figure 4.6) (Knight et al. 2003).  

 

For NAHR, two large, highly homologous repeats, albeit low copy repeats (LCRs) or 

common repeats (like AT-rich palindromes), have to be present at the breakpoints for 

recombination to occur often leading to a clustering of breakpoints across families. 

Using PipMaker, Hara et al. (2008) compared the 1Mb genomic sequence surrounding 

SUMF1 and ITPR1 against itself. Sequence analysis of the breakpoint junction of all 

reported SCA15 (SCA16) cases showed that distal breakpoints were scattered within a 

~65kb region and proximal breakpoints within  a ~223kb region. Moreover, in none of 

the SCA15 (SCA16) families described to date has significant homology been 

observed when comparing the reference sequence at the distal and proximal 

breakpoints. However overlap of two to five nucleotides between distal and proximal 

junction sequences have been identified in each family (table 4.8).    

 

 

SCA families breakpoint architectural feature(s) 
 sequence distal proximal 
AUS1, SCA15 TA L1/LINE, LTR within L1/LINE, followed by AluSp 
H27390 TGAAG L1/LINE no repeats within ±200bp window 
H3331 n/a n/a n/a 
SCA16 TA AT-rich region AT-rich region, end of SINE repeat at -90bp  
Japanese A AT within AT-repeat near AluSx 

 

Table 4.8. Genetic elements present near breakpoints SCA15 (SCA16) 

LINE, long interspersed nuclear element, a retrotransposon (transposon via RNA 

intermediates), a genetic element that moves by copying itself; Alu element, short DNA 

sequence originally characterized by the action of the Alu restriction endonuclease, and at 

about 300bp in length it is classified as a short interspersed nuclear element (SINE); LTR, long 

terminal repeat, retrotransposons (genetic elements transposed by reverse transcription of 

RNA) with direct LTRs that range from ~100bp to over 5kb in size. Data based on Human 

assembly March 2006 (NCBI build 36.1 (hg18)) (J Duckworth (LNG/NIA/NIH), personal 

communication; Hara et al. 2008;Iwaki et al. 2008). 
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NHEJ usually involves tandem repeats, such as (AT)n, and often at least one 

breakpoint is situated near or in a repeat (SINE, LINE) (J Duckworth (LNG/NIA/NIH), 

personal communication). Even though, breakpoints are scattered, sequence analysis 

has shown breakpoints in all families are near or in AT-rich regions or 

retrotransposons (LINE, SINE; table 4.8). Both distal and proximal breakpoints in the 

AUS1 family were found to be near or in a LINE retrotransposon (table 4.8; appendix 

VIII). In the H27390 family, the distal breakpoint is in proximity of a LINE 

retrotransposon, whereas sequence searches failed to identify any genomic elements 

that might have mediated the proximal breakpoint (table 4.8; appendix VIII). Iwaki et al. 

(2008) described both telomeric and centromeric breakpoints in the SCA16 family are 

located within AT-rich regions without presence of any repetitive elements (although J 

Duckworth (LNG/NIA/NIH) did identify a SINE repeat near the proximal breakpoint). 

Hara et al. (2008) used RepeatMasker software to identify any genomic elements, and 

found the distal breakpoint was embedded within an AT-dinucleotide repeat and the 

proximal breakpoint to be located just before an AluSx element.   

                           

Although no predictors of NHEJ are currently known, the presence of AT-repeats and 

LINE and SINE (Alu) genetic elements together with scattered breakpoints, suggest 

NHEJ to be the mechanism underlying the structural chromosome rearrangements 

found in SCA15 (SCA16).  
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4.6 CONCLUSION 
 

Data presented, show the utility of investigating spontaneous mouse mutations in 

understanding human disease. Itpr1∆18 mice are of interest as a potential model of 

SCA15, and have not only aided in getting insight in disease etiology but also in 

discovery of the genetic cause. With three spinocerebellar ataxia families segregating 

a SUMF1-ITPR1 deletion, two additional families identified, and this deletion not 

observed in a control population, the data provide compelling evidence that the 

association is causal and that heterozygous deletion in ITPR1 is indeed the genetic 

basis of the disease, with SCA15 the diagnosis in the two British and two French 

families as well as the original Australian family (AUS1). Standard sequencing 

approaches alone can be insufficient to confidently rule out a candidate disease gene 

as was shown, a comprehensive gene dosage approach is also required. As 

demonstrated, high density genome wide SNP analysis can facilitate rapid detection of 

these structural genomic mutations that may underlie disease. Data add weight to a 

role for aberrant intracellular Ca2+ signaling in Purkinje cells in the pathogenesis of 

spinocerebellar ataxia. 
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CHAPTER 5  GENERAL DISCUSSION AND 
RECOMMENDATION FOR FUTURE WORK 

 

 

 

5.1 DISCUSSION 

 

5.1.1 On the pathogenesis of a mutation 
The positional gene discovery approach has proven an effective method for identifying 

disease genes in an unbiased manner, evident from research in Huntington’s disease 

(The Huntington's Disease Collaborative Research Group 1993), cystic fibrosis 

(Riordan et al. 1989), breast cancer (Miki et al. 1994;Wooster et al. 1995) and many 

other disorders. Not every variant found is causative, so how does one determine 

whether a newly found variant is indeed the underlying genetic cause of the disease.  

 

Confidence in the pathogenicity of a novel variant increases based on findings of 

segregation in the family; i.e. presence of the mutation in affected members and 

absence in unaffected family members. It should be noted that interpretation of 

pedigree data for evidence of segregation might be complicated by incomplete 

penetrance, age-dependent penetrance and/or phenotypic variation within the family. 

In addition, absence of the variant in a large cohort (n ≥1000) of matched controls 

known to be normal in reference to the disease under investigation, without family 

history and with matched ethnicity compared to the original family would suggest the 

finding not to be a rare polymorphism. An additional gold standard for proving 

pathogenicity is identification of additional families with a highly similar phenotype, 

symptoms and disease progression, with segregation of an independent mutation in 

the gene under investigation. A single nucleotide change resulting in a premature stop 

increases likelihood of pathogenicity as this leads to truncation of the protein and may 

effectively result in a null-allele. Functional studies, for example RNA and protein data, 

from cell and/or animal models are also of great value by providing insight into the 

effect of the mutation at the molecular level, for example by studying expression and 

interactions. 

 

Data presented in this thesis, show how a forward genetics approach led to the 

identification of an 18bp deletion at Itpr1 to underlie a severe spontaneous movement 

disorder in mice. The Itpr1∆18 mice enabled the subsequent finding of deletion at ITPR1 
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to be the underlying genetic cause of SCA15 in humans. Five spinocerebellar ataxia 

families are described, segregating a SUMF1-ITPR1 deletion, resulting in dramatically 

reduced protein expression. Deletions in ITPR1 were not observed in a large control 

population (n=836). Western blot and immunohistochemistry data of Itpr1∆18 mice brain 

or cerebellar tissue show an almost complete lack of ITPR1 protein expression in 

homozygote mutant mice compared to wild type littermates, with heterozygote mice 

showing intermediate ITPR1 expression levels (figures 3.9, 3.10 and 3.12). Similar, 

western blot data in Epstein-Barr virus (EBV) immortalized lymphocytes from affected 

and unaffected AUS1 family members revealed that all affected members showed a 

dramatic decrease in ITPR1 levels when compared with the family member without the 

deletion (figure 4.16). Interestingly, the decrease in ITPR1 protein expression in 

heterozygote humans seems more pronounced than that observed in heterozygote 

Itpr1∆18 mice. This might be due to brain or cerebellar tissue studied in mice versus the 

lymphocytes studied in human. Unfortunately, the search for brain tissue from SCA15 

patients has so far been unsuccessful. Another explanation might be a dominant 

negative effect of the mutation on ITPR1 protein expression, present and observed in 

humans but not in the mice possibly caused by interspecies differences (such as 

protein expression, distribution, interactions, modifications). Nonetheless, in addition to 

aiding in disease gene discovery, Itpr1∆18 mice are of great interest as a potential 

model for SCA15 in future studies. Taken together, the data provide compelling 

evidence that the association is causal and that heterozygous deletion in ITPR1 is 

indeed the genetic basis of the disease, with SCA15 the diagnosis in the two British 

and two French families as well as the original Australian family (AUS1).         
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5.1.2 Aberrant calcium homeostasis in disease 
A study of current literature revealed several different disorders in humans associated 

with various calcium-sensitive channelopathies. Changes in calcium homeostasis have 

been widely implicated in the pathophysiology of epilepsies, and calcium channels are 

one of the major targets of antiepileptic drugs (Trasande and Ramirez 2007;Landmark 

2007). Paroxysmal dyskinesias, increasingly recognized to coexist with epilepsy, have 

also been associated with alterations in calcium regulation (Du et al. 2005). Changes 

in mitochondrial calcium transport, resulting in oxidative stress, are a major cause of a 

wide variety of cardiovascular conditions including hypoxia and arrhythmias (Shimoda 

et al. 2006;Sobie et al. 2006). Perturbed calcium signalling has previously been 

implicated in the etiology of ataxia, notably in episodic ataxia type 2 and several 

spinocerebellar ataxias, changes in calcium levels in the brain resulted either directly 

from channel mutation, or indirectly by alteration of calcium modulators (Zhuchenko et 

al. 1997;Zecevic et al. 1999;Lin et al. 2000). 

 

Purkinje cell degeneration in SCA6 has been associated with polyglutamine 

expansions in the CACNA1A gene, encoding a major pore forming subunit of the 

Ca(v)2.1 voltage-dependent P/Q-type calcium channel (Zhuchenko et al. 1997). P/Q-

type calcium channels have been shown to be highly expressed in granule cells and 

Purkinje cells of the cerebellar cortex, and have been suggested to play a major role in 

synaptic transmission (Ishikawa et al. 1999). Missense mutation in CACNA1A leads to 

episodic ataxia type 2 (EA2) (Zhuchenko et al. 1997). Moreover, KLHL1, the actin-

organizing protein associated with SCA8, has been shown to interact with and 

modulate voltage-gated calcium channels, in particular the alpha (1A) subunit of P/Q-

type channels (Aromolaran et al. 2007). Recently, SCA15 and SCA16 have been 

attributed to deletions in the ITPR1 (inositol 1,4,5-triphosphate receptor, type 1) gene 

(van de Leemput et al. 2007;Iwaki et al. 2008). ITPR1 encodes an IP3(inositol 1,4,5-

triphosphate)-gated calcium-release channel located in the endoplasmic reticulum 

membrane, thereby controlling Ca2+ release from the major cellular calcium store and 

playing a critical role in maintaining intracellular calcium homeostasis. Interestingly, 

mutations in PRKCG have been identified in SCA14 pathology. PKC (protein kinase C) 

is another major player in the IP3-pathway (Chen et al. 2003). PPP2R2B, implicated in 

SCA12, has been shown to interact with PKC (Holmes et al. 1999;Price and Mumby 

1999). These findings suggest a role for aberrant calcium signaling in the 

pathogenesis of spinocerebellar ataxia.  
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5.1.3 Effect mutation in ITPR1 on calcium homeostasis  
A detailed description of the complex dynamics of calcium homeostasis and signaling 

is beyond the scope of this thesis; a comprehensive review has been published by 

Berridge and colleagues (2003). Based on relevance to data presented, the role of 

inositol 1,4,5-triphosphate receptors (ITPRs) in calcium processes will be the focus of 

this discussion.  

 

Figure 5.1 Calcium homeostasis regulation in neurons 

In healthy neurons, calcium (Ca2+) signals in the cytoplasm are induced by the calcium influx 

from the outside or by the calcium mobilization from the intracellular calcium stores such as the 

endoplasmic reticulum (ER) or the Golgi apparatus. Calcium enters the neuron through voltage-

operated calcium channels (VOCCs), and through some glutamate (glu)-activated receptor-

operated channels (ROCs); the N-methyl-D-aspartate (NMDA) receptors and some α-amino-3-

hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. Activation of some G-protein-

coupled receptors (GPCRs) mobilizes calcium from the ER via inositol 1,4,5-triphosphate (IP3) 

receptors (ITPRs) and calcium-activated ryanodine receptors (RyRs). Calcium signals are 

transmitted to cellular effectors by calcium-binding protein sensors. Some of the calcium 

signals affect gene transcription in the nucleus. Calcium clearance mechanisms restoring its 

basal level during the recovery phase comprise calcium-binding protein buffers, plasma 

membrane calcium ATPase (PMCA), Na+/Ca2+-exchanger, and sarco-endoplasmatic reticulum 

calcium ATPase (SERCA). During the recovery, mitochondria sequester calcium through a 

uniporter. The calcium concentration in the nucleus is also controlled. [Ca2+]i, calcium 

concentration in the cytoplasm. Ca2+, calcium ions; DAG, diacylglycerol; Golgi app, Golgi 

apparatus; M, molar (mole of solute per liter of solution); Na+, sodium ions; Pi, inorganic 

phosphate; PLC, phospholipase C. Adapted from Wojda et al. (2008). 
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5.1.3.1 Role of ITPR1 in calcium signaling 
Calcium homeostasis, is maintained by a highly complex network thereby providing a 

precise way to control the intracellular calcium concentration ([Ca2+]i). Tight regulation 

of calcium homeostasis allows generation of a variety of calcium signals, presented as 

repetitive intracellular calcium rises, which can be distinguished by distinct spatial 

dimensions (from nano-domains up to gradients in the whole cell body), temporal 

dimension, amplitude, frequency of oscillations, and localization in the neuron (Wojda 

et al. 2008). These properties allow various calcium transients to regulate a diverse 

range of essential generic (cell survival; proliferation, differentiation, apoptosis and 

gene transcription) and cell type specific (in neurons calcium regulates plasticity and 

synaptic transmission) processes, even within one cell (Wojda et al. 2008). The 

essential role of calcium signaling in cell regulation and survival, suggests any major 

changes to the complex calcium balance would not be compatible with life. 

 

Calcium ions needed to control the activity of the cell can be supplied to the cytosol 

from the extracellular space or from intracellular calcium stores (figure 5.1). To 

maintain equilibrium the influx of extracellular calcium must be balanced by calcium 

extrusion, at the same time intracellular calcium stores must reaccumulate the same 

amount of calcium as they release (Missiaen et al. 2000). ITPRs and ryanodine 

receptors (RyRs) form the Ca2+-release channels responsible for the calcium flow from 

the endoplasmic reticulum, the major intracellular calcium store in neuronal cells, into 

the cytoplasm (Bardo et al. 2006). IP3, released into the cytoplasm when cells are 

activated by external stimuli, activates the ITPR. Released calcium then exerts a 

positive feedback on its own release, known as the calcium-induced calcium release 

(CICR). Subsequent inhibition of calcium release is then caused by the decreasing 

luminal calcium concentration and by the increase in the concentration of the 

cytoplasmic Ca2+/calmodulin-complex (Missiaen et al. 2000).  

 

Calcium homeostasis does not refer to a cell acting as a uniform excitable medium. In 

order to decode extracellular stimuli into repetitive changes in [Ca2+]i, calcium 

compartmentalization is essential. A hierarchical organization of discontinuous calcium 

release events allows [Ca2+]i increases to remain highly localized through involvement 

of single channels (‘blips’), to recruit multiple neighboring Ca2+-permeable channels 

clustered in functional units (‘puffs’), or to generate a global [Ca2+]i rise that propagates 

through the rest of the cell as a calcium wave (Parker et al. 1996) (figure 5.2).  
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Figure 5.2 ITPR regulated calcium signaling; blips, puffs and waves 

Schematic illustrating putative activity of inositol 1,4,5-triphosphate (IP3) receptor/channels in 

the presence of increasing concentrations of IP3. ITPRs are shown arranged in clusters that 

form discrete release sites within the continuous endoplasmic reticulum (ER). A. At low [IP3] 

during weak agonist stimulation, few receptors (in green) bind IP3. Others (in yellow) are not 

IP3 ligand-bound and therefore not activated. Consequently, highly localized small calcium 

(Ca2+) signals (‘blips’) are generated by calcium released through a single or few ITPR 

channels rising cytoplasmic calcium concentration (shown in red). B. At higher levels of [IP3], 

coordinated opening of several channels (IP3 ligand-bound) within a cluster is triggered by 

calcium release from one channel acting as an activating ligand to stimulate gating of nearby 

channels (‘puffs’) through a process of Ca2+-induced Ca2+ release (CICR). C. Even higher [IP3] 

evokes global propagating calcium signals (waves). Calcium released at one cluster can trigger 

calcium release at adjacent clusters by CICR, leading to the generation of calcium waves that 

propagate by successive cycles of calcium release, diffusion, and CICR. Adapted from Foskett 

et al. (2007). 

 

 

The characteristics of calcium wave propagation, even whether a wave can propagate 

at all, depend upon spatial factors including the separation between release sites and 

the diffusivity of Ca2+ ions, as well as on the properties of the IP3 receptors 

themselves. The significance of absolute channel density and the spatial distribution of 

the channels have been shown by a near lack of correlation between ‘puffs’ arising 

from sites spaced several micrometers (μm) apart, indicating that different sites can 

Low [IP3] 

Intermediate [IP3] 

High [IP3] 

A 

B 
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function autonomously. Occurrence of puffs at more closely adjacent sites can be 

highly correlated, although the distances between sites are sufficiently great to 

preclude this happening in most instances (Parker et al. 1996). Moreover, although 

Ca2+ ions diffusing from a ‘puff’ are able to trigger calcium release from a closely 

adjacent site (1-2μm distance) this often results in only small calcium activity, 

suggesting more than passive diffusion is required for signal propagation (Parker et al. 

1996). An explanation would be the complexity of ITPR regulation. Gating of the ITPR 

channel involves channel activation, inhibition, inactivation, stochastic attrition and 

sequestration. These processes in turn are complex functions of ligand (Ca2+, IP3, 

ATP) sensitivities and concentration, interactions with proteins, phosphorylation state, 

and more. The processes and interactions are further complicated by the context of 

complex cellular machinery, such as pumps and buffers, which participate in regulating 

cytoplasmic calcium concentration (Foskett et al. 2007) (figure 5.1).  

 

5.1.3.2 Effect ITPR1 mutation on calcium signaling 
As described, calcium homeostasis and signaling are highly complex processes. Even 

at the level of a single receptor/channel, like ITPR1, many pathways are in place to 

regulate channel functioning. Subtle changes lead to different signaling messages. 

Data shown demonstrate deletion in ITPR1 in SCA15 patients leads to dramatically 

decreased ITPR1 protein levels (van de Leemput et al. 2007) (figure 4.16). In normal 

cells, activation of G-protein-coupled receptors (GPCRs) by external stimuli, binding of 

presynaptic neurotransmitters, induces calcium release from the endoplasmic 

reticulum via ITPR1. The decreased ITPR1 levels found in SCA15 might result in 

reduced intracellular calcium release. This would not necessarily lessen the intensity of 

the calcium signal, but likely alter its features, such as propagation and shape. Highly 

simplified; in normal neurons IP3 ligand-binding regulates signal propagation whereas 

CICR (calcium-induced calcium release) modifies its shape (oscillation) (Wojda et al. 

2008) (figure 5.1). In neurons with reduced ITPR1 levels, relatively more IP3 ligand 

would be available to switch the receptor/channels to their active state in favor of 

signal propagation. On the other hand, this effect would likely be counteracted by the 

increased distance between clusters and decreased channel density within each 

cluster, as channels would be expected to be more dispersed across the membrane 

resulting from decreased ITPR1 expression. The alterations in ITPR1 cluster patterns 

might evoke irregular abortive calcium waves or transient calcium puffs which remain 

localized, within a μm of their origin.  
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In this hypothesis calcium signaling could still be induced, possibly by being partly 

restored by other calcium signaling modulators (for example ryanodine receptors 

which are functionally similar to ITPR), however signaling characteristics would be 

altered and information on localization of the intracellular calcium rise and/or spatial 

properties might subsequently be misinterpreted at the molecular level. This, in turn 

would lead to changes in downstream signaling, such as changes in the amount of 

neurotransmitters released in transduction of the signals to neighboring cells (also a 

calcium-dependent process) or which genes to transcribe for normal cell functioning. 

This hypothesis is supported by electrophysiological studies in cerebellar slice 

preparations from Itpr1-deficient and Itpr1opt mice that have shown that calcium 

signaling in Purkinje cells is not severely impaired in these models, although 

attenuation following (repeated) stimulation is decreased due to absence of long-term 

depression (LTD) (Matsumoto et al. 1996;Street et al. 1997;Inoue et al. 1998;Tu et al. 

2002).  

 

SCA15 is a slowly progressive disease; the slow progression might be explained by a 

process similar to the aging hypothesis describing how subtle changes in calcium 

homeostasis might control cognitive decline in normal aging (Toescu and Verkhratsky 

2007). Dysregulation of calcium homeostasis, observed in physiological aging, is 

suggested to not be just a global excess of calcium ions in the neuron but a complex 

spatiotemporal dynamic process, gradually impairing neuronal mitochondria, the 

endoplasmic reticulum, the plasma membrane and signal transduction processes. 

Disease progression in SCA15 brains might be explained by similar processes of 

gradual impairment although more pronounced, possibly altering a more generalized 

response than in normal aging, and with the important difference of eventually leading 

to neuronal cell death. The already impaired calcium homeostasis and signaling 

systems in SCA15 neurons are no longer able to provide significant compensatory 

potential to protect neurons against persistent cellular stress conditions, calcium 

toxicity, associated with normal aging. Alteration of calcium homeostasis plays a 

central role in apoptosis, and perturbation of intracellular calcium compartmentalization 

has long been recognized to be potentially cytotoxic (Orrenius et al. 2003). The aging 

hypothesis also points to the interplay between calcium homeostasis, signaling and 

other signal transduction networks. Diversity of molecules involved in calcium 

homeostasis and signaling appears to underlie distinct responses in various neurons 

to the same stimuli, which might explain the impairment of only one specific type of 

neuron or region of the brain in physiological aging or neurodegeneration. For 

differences in molecular networks and therefore in the effect of deletion in ITPR1 on 
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example, the Purkinje cell specific neurodegeneration observed in SCA15. Subtle 

differences in molecular networks and therefore in the effect of deletion in ITPR1 on 

these networks, combined with the functional somatotopic organization of the 

cerebellar vermis (figure 5.3), the region most affected by neuronal atrophy in SCA15 

brains, might explain the differences in phenotype observed between the different 

SCA15 (SCA16) families (van de Leemput et al. 2007;Hara et al. 2008;Iwaki et al. 

2008) (chapter 4.5.1). 
   

All of the SCA cases with a mutation in ITPR1 currently identified show a dominant 

inheritance pattern (van de Leemput et al. 2007;Hara et al. 2008;Iwaki et al. 2008). 

Regarding the essential role of calcium signaling in cell regulation and survival, it is 

likely any major changes to the complex calcium balance would not be compatible with 

life, suggesting homozygosity for deletion at ITPR1 in humans might result in prenatal 

lethality. This concept is supported by the observation that most Itpr1-deficient mice, 

tm1Tno, die in utero (Matsumoto et al. 1996). Itpr1-deficient mice that survive birth 

display severe ataxia and tonic or tonic-clonic seizures, and die at weaning time at 

three weeks of age.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3 Functional somatotopic organization of the cerebellum 

Sketched representation of the human body on an unfolded view of the cerebellar cortex. 

Cerebellar coding of motor behavior of different body parts is more complex than simple topic 

representation, containing local, modular repeats of small segments of receptor locations, with 

a global topography that includes splits, disproportions and other transformations. In general, 

neuroimaging studies have confirmed the classical view of representation in the cerebellum, 

characterized by the existence of two homunculi, one in the anterior lobe and one in the 

posterior lobe. I-X, denote the different hemispherical lobules of the cerebellum; I-V, anterior 

lobe; VI-IX, posterior lobe; X, flocculonodular lobe. Adapted from Manni and Petrosini (2004). 
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5.1.4 Therapeutic strategies for ITPR1 deficiency  
Data presented herein suggest that therapeutic approaches that stabilize neuronal 

calcium homeostasis may be able to slow down or possibly even prevent cerebellar 

degeneration thereby relieving associated symptoms. SCA15 is characterized by a 

dramatic decrease in ITPR1 protein expression (figure 4.16) (van de Leemput et al. 

2007) which has been suggested to result in a decrease in calcium release, leading to 

altered calcium homeostasis and ultimately resulting in dysfunctional calcium 

signaling. Evidence for this hypothesis comes from a study of treatment of Itpr1-

deficient mice with calcium-antagonists, anticonvulsants such as pentobarbital or 

diazepam; when tm1Tno mice were treated with either one of these drugs ataxic 

movements became more prominent (Matsumoto et al. 1996). Even though a strong 

calcium release from intracellular calcium stores can still be elicited in Purkinje 

neurons from opt mice, the calcium response to repeated QA (quisqualate, IP3-

agonist) application shows less attenuation in homozygote opt mice compared to wild 

type littermates (Street et al. 1997). These data suggest therapeutic strategies aimed 

at enhancing endogenous calcium release and buffering mechanisms might be 

beneficial in the treatment of SCA15.  

 

Acetazolamide (Diamox), has several pharmacological characteristics that might be 

potentially beneficial in the treatment of SCA15. The major pharmacological action of 

acetazolamide is noncompetitive, reversible, inhibition of carbonic anhydrase. Even 

though carbonic anhydrase is found in many sites throughout the body, its 

anticonvulsant effect is specifically related to inhibition of the enzyme in the CNS 

(Rogawski and Porter 1990). Interestingly, Carbonic anhydrase-related protein (CARP) 

is highly concentrated in cerebellar Purkinje cells. CARP is a member of the carbonic 

anhydrase family based on its high similarity in sequence, although it lacks catalytic 

activity due to absence of a zinc-binding domain, and has been shown to bind the 

ITPR modulatory domain thereby inhibiting IP3 binding, an ITPR ligand essential for 

channel activation (Patterson et al. 2004). Inhibition of CARP by acetazolamide would 

facilitate IP3-ligand binding to ITPR1, thereby inducing ITPR1 channel activation (open 

state), increasing channel function and possibly restoring ITPR1 calcium signaling 

function in SCA15 patients. Acetazolamide has previously been shown to be effective 

against various types of seizure, including generalize tonic-clonic, myoclonic and 

atonic seizures, attributed to its inhibitory effect on carbonic anhydrase (Rogawski and 

Porter 1990). Initial trials in SCA6 and episodic ataxia type 2 have suggested 

acetazolamide can temporarily reduce the severity of symptoms (Melberg et al. 

function in SCA15 patients. Acetazolamide has previously been shown to be effective 
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1997;Yabe et al. 2001;Strupp et al. 2007). Despite high initial efficacy, acetazolamide 

has been found to have limited usefulness in chronic treatment due to rapid 

development of tolerance, possibly caused by an increase in carbonic anhydrase 

activity by activation of existing enzyme molecules and de novo synthesis of the 

enzyme (Rogawski and Porter 1990). Development of tolerance may be delayed or 

prevented by using acetazolamide as an adjunct to other (antiepileptic) drugs.   

 

Any potential drug should meet several criteria, including specificity for the disease 

target within the complexity of calcium homeostasis regulatory pathways and 

effectiveness across the blood-brain barrier. Target specificity is of great importance 

not only to reduce side effects, but also because ITPR subtypes play major roles in 

calcium signaling in several tissues and cells types, and as such are also essential in 

functioning of the heart (Kockskamper et al. 2008). Therefore efficacy at 

neuroprotective concentrations without severe side effects will have to be 

unequivocally demonstrated in animal models before any compound can be qualified 

for clinical trials. The current existing heterozygous ITPR1 mouse models (>1 year of 

age) would be beneficial in these initial studies (Matsumoto et al. 1996;Street et al. 

1997;van de Leemput et al. 2007). Although the underlying cellular and molecular 

mechanisms are unclear, implementation of preventative changes in diet (reduction in 

dietary energy intake; coffee consumption, as caffeine is a phosphodiesterase inhibitor 

thereby preventing inactivation of the intracellular second messengers cAMP and 

cGMP) and lifestyle (exercise and cognitive stimulation) might enhance the ability of 

neurons to control calcium fluxes over time.  

  

The search for treatment of cerebellar symptoms is encouraged by the high degree of 

plasticity in the cerebellum. As has been shown over the decades, symptoms of 

cerebellar disease in younger individuals, for example following tumor resection, tend 

to improve gradually with time if the underlying disease process does not itself 

progress (Konczak et al. 2005). It has been suggested that affected cerebellar 

functions are possibly compensated for by other parts of the brain. The lesion site has 

been shown to be critical for any motor recovery, as lesions affecting the deep 

cerebellar nuclei are not well compensated (Konczak et al. 2005). As described in the 

original Australian SCA15 family, MRI scans show cerebellar atrophy of the vermis, 

more so superiorly and dorsally, with substantial sparing of the tonsils and 

hemispheres (Storey et al. 2001), suggesting that if a treatment is to be found that 

would stop disease progression, cerebellar function might recover to some extent, 

especially in younger onset cases.      
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5.2 ONGOING AND FUTURE WORK 

 

Data presented implicate a major role for aberrant calcium homeostasis in SCA 

etiology. To gain insight into the effect of SCA15 ITPR1 mutation at the molecular 

level, electron microscopy studies of the spatial distribution of ITPR channels would be 

of great value as changes in the distribution of individual channels and channel density 

in clusters are expected to affect calcium signal propagation. In addition 

electrophysiology, studying the mechanisms underlying neuronal calcium signaling 

directly, would provide insight in the effects of ITPR1 mutation on signal propagation 

and would reveal any subtle changes. Despite a dramatic reduction in ITPR1 protein 

levels in Purkinje cells of SCA15 patients the disease phenotype is relatively mild, 

suggesting other proteins involved in maintaining calcium homeostasis and signaling 

might, partially, avert the effects of ITPR1 deficiency. Therefore it would be interesting 

to study changes in expression levels of other calcium modulators in SCA15. 

Unfortunately, the search for brain tissue of SCA15 patients has so far been 

unsuccessful. Findings suggest mutation in ITPR1 (SCA15) to be a relatively common 

cause of autosomal dominant SCA in families of European descent, further studies are 

needed to confirm these initial findings and to determine whether this holds true for 

populations worldwide. Identification of non-deletion mutations, such as a point 

mutation or duplication, would provide insight into SCA15 and genotype-phenotype 

causation. In addition, it would be interesting to search for ITPR1 mutations in other 

diseases, for example epilepsy, as different mutations might lead to an alternate 

phenotype or disease, similar to mutations described in CACNA1A, which have been 

associated with SCA6, EA2 and migraine (Ophoff et al. 1996;Zhuchenko et al. 1997).        

 

Screening for mutations in ryanodine receptors (RyRs), specifically RyR type 3 the 

subtype mostly expressed in the brain, in autosomal dominant spinocerebellar ataxia 

cases might be insightful into SCA etiology based on functional similarities with ITPRs, 

both function as intracellular calcium release channels activated by many different 

extracellular stimuli (Bardo et al. 2006). Ongoing studies include efforts to identify 

novel ataxia disease genes by structural analysis based on high density genome wide 

SNP data (Infinium, Illumina) obtained from familial SCA cohorts, similar to the 

approach taken in this project. A promising example of which is association of 

duplication at chromosome 11q12.2-11q12.3 with SCA20 (Knight et al. 2008). Future 

plans include study of copy number variation (CNV), autozygosity and homozygosity in 

a large cohort of spinocerebellar ataxia cases, using high density genome wide SNP 

data.  
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5.3 CONCLUSIONS 

 

A novel mutation in the gene encoding inositol 1,4,5-triphosphate receptor type 1 

underlies a severe young onset autosomal recessive movement disorder in mice.  

 

Data presented, show the utility of investigating spontaneous mouse mutations in 

understanding human disease. Itpr1∆18 mice are of interest as a potential model of 

SCA15, and have not only aided in getting insight in disease etiology but also in 

discovery of the genetic cause.  

 

Data provide compelling evidence heterozygous deletion in ITPR1 is the genetic basis 

of SCA15. 

 

Standard sequencing approaches alone can be insufficient to confidently rule out a 

candidate disease gene as was shown, a comprehensive gene dosage approach is 

also required. As demonstrated, high density genome wide SNP analysis can facilitate 

rapid detection of these structural genomic mutations that may underlie disease.  

 

Data add weight to a role for aberrant intracellular Ca2+ signaling in Purkinje cells in the 

pathogenesis of spinocerebellar ataxia.  
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APPENDIX I. 
 

 

AMPLIFICATION PROGRAMS 
Phases; Di, initial denaturation; D, denaturation; A, annealing; E, extension; Ef, final extension.  

Temp, temperature in degrees Celsius. Duration in ’ minutes; ’’ seconds.  

 
PCR amplification 

57-to-52 
  ____15 cycles_____ ____16 cycles_____ ____14 cycles_____   

phase Di D A E D A E D A E Ef  
temp. 94°C 94°C 57°C 72°C 94°C 57°C 72°C 94°C 52°C 72°C 72°C 4°C 
duration 3’ 30” 30” 30” 30” 30” 30” 30” 30” 30” 5’ hold 
 

65-to-55 
  _____8 cycles_____ ____16 cycles_____ ____16 cycles_____   

phase Di D A E D A E D A E Ef  
temp. 94°C 94°C 65°C 72°C 94°C 65°C 72°C 94°C 55°C 72°C 72°C 4°C 
duration 3’ 20” 20” 30” 20” 20” 1’ 30” 20” 30” 5’ hold 
 

60-to-50 
  _____8 cycles_____ ____16 cycles_____ ____16 cycles_____   

phase Di D A E D A E D A E Ef  
temp. 94°C 94°C 60°C 72°C 94°C 60°C 72°C 94°C 50°C 72°C 72°C 4°C 
duration 4’ 20” 20” 30” 20” 20” 1’ 20” 20” 30” 5’ hold 
 

62-to-52 
  _____8 cycles_____ ____16 cycles_____ ____16 cycles_____   

phase Di D A E D A E D A E Ef  
temp. 94°C 94°C 62°C 72°C 94°C 62°C 72°C 94°C 52°C 72°C 72°C 4°C 
duration 4’ 20” 20” 30” 20” 20” 1’ 20” 20” 30” 5’ hold 
 

Sequence amplification 

sequencing (mouse) 
 ____25 cycles_____  

phase D A E  
temp. 96°C 50°C 60°C 4°C 
duration 30” 15” 3’ hold 
 

sequencing (human) 
  ____30 cycles_____  

phase Di D A E  
temp. 96°C 96°C 50°C 60°C 4°C 
duration 1’ 10” 5” 4’ hold 
 

Genotype amplification 

genotyping (using microsatellites) 
  ____30 cycles_____   

phase Di D A E Ef  
temp. 95°C 94°C 55°C 72°C 72°C 4°C 
duration 12’ 15” 15” 30” 10’ hold 
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PRIMERS 
Sq f, forward primer sequence; sq r, reverse primer sequence; amplicon (bp), lengt in base pairs of amplicon; pcr, polymerase chain reaction.  

Mg2+, magnesium (25mM); DMSO, dimethyl sulfoxide. 

 
Table I.1 Primers used for genome wide linkage in mouse 

exon primer sq f sq r amplicon (bp) pcr program  

1 MHAP35FRA8 TGTAGCTGAACCAGTGTGCC CATCCATGTTTCCGTGTGAG 163 57-to-52  
1 MHAP61FRC7 TGTCAAGGAGGATGTTTGGA GGACCTAATTGGTTTGAATGGA 171 57-to-52  
1 MHAP84FLD1 TTTTACTTGGGCTCCACACC TTTCCACCTTGATCCAAAAA 157 57-to-52  
1 MHAP31FLD3 TCCCCATCTCCACAGAAACT ATAGGAGACCAGGGAGCCAT 163 57-to-52  
1 MHAP37FRD9 AGCATTGCTGAAACAGCTCC TAATTGGTGTGTGTGTGGGG 168 57-to-52  
1 MHAP84FRF7 TGTTTTTGTTTTGGCTTGGA ACCATCAGGCTGGTGAGAAT 168 57-to-52  
1 MHAP46FRF9 CCAATCGTCACAAGTCAGTGAT AAGAGATCATTGCCATACAGGAA 104 57-to-52  
1 MHAP29FRH9 TCTGCCTTGTTGATGCTTTG TCTCCATTCCTTGAGGGTCA 194 57-to-52  
1 MHAP87FRH9 GAGCACCAAGCACACACG CTCAGGTCATCCTCAGCCTT 172 57-to-52  
1 MHAP86FRB10 AGGCTGAGCTTCAAAGTTGG TGTCAAGGGCATCAAGAAGTC 158 57-to-52  
1 MHAP15FLB5 TTCTCCACTGTGGCTGTTTG GAGCCTGTTTGTAGACTGGAAGA 156 57-to-52  
1 MHAP17FRC10 TCACTTGGTTCATCAGTTCAGG GCCAGGGATTTATCAGAGCTT 195 57-to-52  
1 MHAP57FLC4 CACTCTGGGATACCCTGCAT TTCACAGGGGGAATCTTCTG 172 57-to-52  
1 MHAP26FRG10 CCGGTGGAGATGTTCCTTTA ATCTGCTGGATCCTCACAGG 175 57-to-52  
1 MHAP82FLH4 TGGTTCTTGACTGTTGACGC GGTCTTCCAGAACCTGACCA 158 57-to-52  

2 MHAP87FRD8 TAAGTCTTCTCCCATTGCCC CAGATAACATCTGAGGCCTTG 152 57-to-52  
2 MHAP61FRE7 TTCATTTCTAAAACCCAGTTTTTCT AATCAGGGGCCCAGTTTG 154 57-to-52  
2 MHAP71FRF8 CCTGAGGACAACTCTGGAGC AGCTGCAGAAGCATAGAGGG 163 57-to-52  
2 MHAP59FLA6 CTTCCCCCACACCTGACTAC GGATTTTGGGAAGGAGAGGT 181 57-to-52  
2 MHAP64FRC10 GGGGGACACACACCATGT TTCCTGTACAACTGGTTGCTTG 151 57-to-52  
2 MHAP4FLC5 CCCTGGACCCCTTTTCTCTA AGCCTGGGTACTCACCACAC 195 57-to-52  
2 MHAP46FRD10 TGCTCTGCATTTTGATTTGG GACTGCATGTGGGGAGAGAT 194 57-to-52  
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2 MHAP33FRE11 GAGCCACCCATAGCTGAGAG CACTCCGTCCAGTCAATGC 151 57-to-52  
2 MHAP45FRF11 CCAGATGGATTTCCATGGTC AGGGCTTGCTCTCACAGGTA 174 57-to-52  
2 MHAP59FLH4 CCCTGAGTTACATCCCCAAG CAGGACAAACAGCACTTCCA 280 57-to-52  

3 MHAP11FLD2 CAGGAAACCATTTCTTTCTGGA TTTGAATGTGCCAACTCTTTTT 189 57-to-52  
3 MHAP9FLH3 CTCAGGGTCCTTAGCACTGG CACACAGGCGACTTCGTTTA 161 57-to-52  
3 MHAP59FLD5 TTCATGGGTGAACAAGAGCA ACAATCAAAGCTGGCTCCAT 151 57-to-52  

4 MHAP71FRA7 TAGAAAATCTGGGCTGGGAA CTTTCAAGTCAGGGCAAAGC 186 57-to-52  
4 MHAP37FRC9 AGCGGTTCTCAACCTTGTGT TTGCTCACATTGTGGTGACA 177 60-to-50  
4 MHAP91FLF2 GGGGTAGGGAGTGGGTACAT GTACCCAGGGTCCAGCATAA 158 57-to-52  
4 MHAP82FLF3 GTAGTGTGGGGGAGGTGCTA ACGGGATCTTGCCATGTAAC 155 57-to-52  
4 MHAP7FRA12 GCAAACATTTCCATTCTCAGC CACATTCACGCTTATTCATACACC 107 57-to-52  
4 MHAP11FLC5 ATGTGGTCTTGTTGGGGATG TCCAGCCTTTATCTGACCAGT 170 57-to-52  
4 MHAP33FRE10 ATGGTAGAGCCACTGCCAAG GGTTAGGTGCTTTTGGTTGC 151 57-to-52  
4 MHAP88FRE10 CTGACAAGCTGACAATGACGA TTTTCTAATGGCAGGGATGG 160 57-to-52  
4 MHAP34FLE5 TGTGGAAAGCTGATCGTGAA TTGGTTGGGTTTTTGTCTTTG 185 60-to-50 Mg2+ 

5 MHAP95FRA9 CATGATGAGCCCAGGAAGAT CCAACCATTTGGAAGCCTTA 186 57-to-52  
5 MHAP59FRC8 ACCAACAGACAAAACTGCCC AGTGATGACCCTGTGGTGTG 165 57-to-52  
5 MHAP20FRD8 GCAAGCCCCAAAGAATTGTA AAGAACAGCACGTTGGGTTT 174 57-to-52  
5 MHAP36FRF7 CCAAACTGTTGCAAGGACAA GACATAGACACAGACACCCCC 168 57-to-52  
5 MHAP91FLH1 TGAGGTCTGTGTTTCCACCA CCTTGCCCTTTACACTCAGC 151 57-to-52  
5 MHAP35FLB5 CTCAGAGGCAATGGGAAGAG AGCTGATGTTGGCTAAGGTTG 177 57-to-52  

6 MHAP84FRB9 TTCTCGGGGCATAATAGTGG GCCAGCAAGAAACACACTCA 193 57-to-52  
6 MHAP34FLD3 TTACCTGATGTCCTTGTGCG GGGGAAACTGGAAGTTCCTT 168 57-to-52  
6 MHAP67FLF1 TGAGTGATCACGTGGACAGG CCTTCTATTGCCTATCCCAGC 152 57-to-52  
6 MHAP85FLG2 GGATCCTTATTCTCCTCACTGC ACATGGGGTGGTGTTCTGTT 161 57-to-52  
6 MHAP25FRB12 CCAAACTGGAAAAAGGCATC CTGAGACCTGTGGGTGGTTT 187 57-to-52  
6 MHAP17FRE10 CCAGAGATTCCGCTGTCTGT TTGAGGTGCTTCGTGTTAAAAA 178 57-to-52  
6 MHAP27FRG11 GAAAAACCCTGCCAGAATCA AGCTGCCTGACATGGGTACT 159 57-to-52  
6 MHAP85FLG5 TGGATTATAGTAAGGTCTCTTTGGA GCCAAAAAGAATGCCTGATT 166 57-to-52  
6 MHAP94FRG12 CTCTGTTGTTTTGGAAGCACA TTTGCTTGTTAAATGCCCCT 153 57-to-52  
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6 MHAP28FRH10 CCAGTCCCTCTGAAGATGCT CAGACCTAGGGACACCCTGA 158 57-to-52  

7 MHAP71FRB7 TCTGGAACTGACCTGAAGGC GTGAATGCCAACACTGCATC 176 57-to-52  
7 MHAP85FRC7 CTAACAGGGAACAGGCAAGG GCTGTAGCCTGGTTCAAGGT 174 57-to-52  
7 MHAP22FRE8 GAAGTCAGAGTGGCCTCACC TGACCCACAAAGCCTCTTTT 155 57-to-52  
7 MHAP34FLE3 TTTTTGAGGCGGAGTCTAGC TGGCTAAAGTTGCCAATCAA 155 57-to-52  
7 MHAP44FLF2 ACTCTGGGGTCAGTGAGAGG TTATTCCGGGCTACAGATGG 155 57-to-52  
7 MHAP4FRG8 GCAGAAGGGAAGACAGTTGC AGCCGTGAAGAGAGGCATAA 154 57-to-52  
7 MHAP7FLG2 AGCTGGGCTTCACCTGAGTA CTCATGGCTTGACTCTGGAAG 157 57-to-52  
7 MHAP6FLG3 GCTGGGCTTTCACTGATTTC CGCAGGGGCAAATATAGAAG 162 57-to-52  
7 MHAP64FLH2 ATGGGAGTTTCCATGCAGTT TATGCAGCAGACTGGGTAGC 177 57-to-52  
7 MHAP57FLA5 AGCAAGACAAAAAGGTCCCC TGGCTTAAAATTGCATCATCA 155 57-to-52  
7 MHAP26FRC10 CGGGTGTCCTGGATGTTTAG CACTAGGCTTTCTTGCCAGC 182 57-to-52  
7 MHAP27FRC12 TTGGCAGAGTAGTCCAAGCA ACCGTCACTCTCATCGGAAC 156 57-to-52  
7 MHAP5FLC6 GGTCTTCCTGTGTAATTTTGGG TTTGGGGCTAGTTGTCATCA 170 57-to-52  
7 MHAP70FLD6 ATGTGCACACACACCAGACA CCTCCAGACAAGGTCTCCTG 153 57-to-52  
7 MHAP64FLF5 TCCCCCTGGATCTTCTCTTT GGGATGTGGACTCTGAAGAAA 165 57-to-52  
7 MHAP57FLH4 TGGAGCATTTACACCTGCTG TTTCCAGCCTTTCCTCTGAA 185 57-to-52  

8 MHAP58FLA1 CACGGTTGTGACATTTGAGG GAAGGCACATAAACGGATGG 193 57-to-52  
8 MHAP87FLD2 CAATGCACAAGTCAGCATCA GATGAGGCCTGACAAAGCTC 108 57-to-52  
8 MHAP80FLE1 TAAAGCCCACACTCACCACA GAGGGAAAAATGGGGTCTTC 196 57-to-52  
8 MHAP27FRE8 AGCTGAACCCTGAAAACAGC GCCCAGACATTCCCATGTTA 188 57-to-52  
8 MHAP82FLE3 GGCAGCCTCACACTAGGAAG TCCTGTTGACCTGTGGTTCC 178 57-to-52  
8 MHAP88FRG8 CCCTCCACAATGAAGGCTAC GGGCAATCTGTGAAGGTTTT 186 57-to-52  
8 MHAP27FRH8 TGGAGGGAGACATTGAGAGG GGTCCTTGGGAGGTGCTTAT 177 57-to-52  
8 MHAP34FLH3 AATGAATCAGAAGCCGGCTG TTCTGGTGGCAGATAATGTC 203 65-to-55  
8 MHAP45FLB4 TTTCTTTGAGTCATTTTTGTTGTTG GGTTTCCTCTCCCTCAGTCTC 170 60-to-50 Mg2+ 
8 MHAP86FLD4 GGGAACAGGCTCACAAAGTC CCCAAGGCACAGCTTAGTTC 182 57-to-52  
8 MHAP16FLE5 CCTGGTTGGCAAAATGAGTT CCCTCAGTGTTTTTGGATGT 198 57-to-52  
8 MHAP30FLG5 TTTGAGTTGCAGGGTTTTCC AATGCTAATGAGCCAGGCAG 154 60-to-50  

9 MHAP84FRA11 GATGACGCTGGTGGAGACTT AGTGAGCCGTCTAGCACCAT 200 57-to-52  
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9 MHAP56FRB10 TACCTGACCTAGGGTTCGGA TGGTGGAGGCTGATTTTCTT 180 57-to-52  
9 MHAP63FLC5 TTGGTGTGCATGGGAACTTA TGCTGTTGGACACACCATTT 175 57-to-52  
9 MHAP28FLG6 GAAAGCGTTCATTAGCAGGC AGGTAGGTGGTCACAGACGC 161 57-to-52  

10 MHAP61FLE2 GAGGCTAGTCGGCAACTGAC TCATGTACCAACTCCCACCA 194 57-to-52  
10 MHAP91FLG3 CCCAAGTGGTGAAAGCAAAG CCATGCCTTGAGGTTTTGAT 188 57-to-52  
10 MHAP15FLB4 GGAAACAGCAGTAAGGAGAACG TGAGTTCTTCCTCCCCTGAA 200 57-to-52  
10 MHAP61FRF11 AAAAACAGAAAAAGGCAGTGACA AACAGGGCACCATAGAAACAA 151 57-to-52  
10 MHAP61FRG10 GCATGTGAGAGGGCTGAAAT CCCAGCTTTTCTGCAGTGAT 152 57-to-52  
10 MHAP7FRH11 ATTGGCAGTGATGTGGCATA ATTGCATCTAACAGGGAGCG 183 57-to-52  

11 MHAP90FLA2 CTCTGTGCCCTTTTGACCTT AGAGACAGACGCCTCTGGAA 155 57-to-52  
11 MHAP28FRA9 TCACAGTAACATGGGAGCCA TGTGATACAAAGCCAGCCAG 151 57-to-52  
11 MHAP89FLE3 TCCAGAGTCACACCAAGATCA TATCTGTGCTGGGACCATCC 189 57-to-52  
11 MHAP86FRF9 CAGTGAGATGGGAGAGACGTG CCTGATTCCTTGAAGTAAGGC 152 60-to-50  
11 MHAP66FLG3 CCTCCTGTCTAAATGAGAAGGTGTA AGGTGTCCCCTGTCATTGTC 160 57-to-52  
11 MHAP12FRH7 TAGGGAACTGTCCCTGCCTA ACTCCTGTTCCCTTCTGGCT 159 57-to-52  
11 MHAP48FLH3 TAGGAGGAAGTCTCCACCCC ATCCCATCAAGCACAGCTTC 152 57-to-52  
11 MHAP26FRC11 CCAAGGACCCTGCAATTCTA ATCGCAGCTGGCTAAAATGT 178 60-to-50  
11 MHAP9FLC5 TTGATGACTTCTTGGAGCTGAA CCTTTGAGGGGACTCCAGTA 178 57-to-52  

12 MHAP34FLD1 ACAGCTTCGTGTGAGCTGTG GGCAGAACCTGACCTTAGCA 165 57-to-52  
12 MHAP91FLD3 CGACACCCCCACTCTTAATG ATTCAAGGAATGCTGCCACT 168 57-to-52  
12 MHAP22FRE7 ATGCTGTCAGGCTTGTGTTG CGCATTCCTGAGCTGAATTT 174 57-to-52  
12 MHAP86FLE2 CCACTATAATATCCATGCTGTGTT CAGACAGGGAAGGAGGGAG 173 57-to-52  
12 MHAP46FRF7 GGAGCCTGGTGTTCACTGAT AATGCCTGGCAAAGAAACAC 174 57-to-52  
12 MHAP42FLF3 GTAAGACGCTTGGGCAAAAA GAAGCCTTCTCACCTTCCCT 181 57-to-52  
12 MHAP70FRD12 CTAGAACTTACCTTGCCCTGGA TCCGAAGACACTCGTAGGCT 151 57-to-52  
12 MHAP28FLH4 TAAGGGGACCCTCAGTTGAA TTGCCACAATGCTTTGGATA 163 57-to-52  
12 MHAP44FLH5 TGGGTATCTCACAACCAAACC TCAAGCTAAAGTCTCCACTCCA 155 57-to-52  

13 MHAP22FRG8 CCATGAGCCTTGAAGAAGGA TGTACACATGAGACTCCGGC 168 57-to-52  
13 MHAP70FLA5 CCAGCCTAGGATGTGTTCAA TACCCTTCACCACCACACAA 179 57-to-52  
13 MHAP28FLB6 AACTGACAGGGTGGTTGGTC CATTTTGGAAATGTCGGCTT 170 57-to-52  
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13 MHAP76FRC10 TGGGAACAGGGCAAGAATTA GGATCACACTGACTGCCTGA 194 57-to-52  
13 MHAP35FRD10 GGTAACCAACAGCATCAGCA TTACCTTATATCAGCATGGCAA 153 57-to-52  
13 MHAP5FRG12 TGCAGTGAAAGCATGAGGAC TTCACTGGTCTGGAACTCTCC 160 57-to-52  

14 MHAP59FLB3 CCTCTGAATGCCTAAGCAGG TGCTTGACACAAGGCTATGC 187 57-to-52  
14 MHAP88FRB12 GGGAGACACACACACACAGG ATGTTCCTCCAAGCATCAGG 187 65-to-55  
14 MHAP64FLE4 AAAATGGTTGGGCAAAAATG GAGCTATGGTCCCAAATAGCC 151 57-to-52  
14 MHAP31FLF5 TCACTCTGGGAAGCCATTTC TCTGAATACAAAGCAGCCCC 159 57-to-52  

15 MHAP64FRA8 CCAGGGCTTGAGTTTGGATA CCCCACACACTGTGACAATC 157 57-to-52  
15 MHAP86FRA8 AGCCTCTCCTGCTGTTTCC TCTGCATCACTGTTAAGTTC 217 60-to-50  
15 MHAP94FLA2 TTGCAGGTGTCTTTTATCTTCC GACAGAGACTTTGGGGATGC 181 60-to-50  
15 MHAP35FRA9 GATTTGTCCCAGTTGTGCCT CCTCACAGGGTCTCCTCTTG 152 57-to-52  
15 MHAP9FLB1 CCGTGATTACATCCCTTGGT TGACTTCACAGCAACATGGA 162 57-to-52  
15 MHAP30FLD1 GTGGCTAGTGCCTCTCACAA TACTGGGTGAGTCTGTGGGC 169 60-to-50  
15 MHAP75FRD10 TTTCCATTCAATCAACACCATC TTTCCAGTGTTGCTCAGATTG 161 57-to-52 Mg2+ 
15 MHAP59FLF6 CACTGTTGCGAACTGCTCAT GCACAGTCTGAGAACTCCCC 159 57-to-52 DMSO 
15 MHAP33FLG6 CACTACCGGTGTGTGTCACC TGTTGGGTTGATGACTGGAA 167 57-to-52  

16 MHAP44FLE5 GGGGTCTGTTCGTCTCAAAA ATAGAGTCAAAGGGGTGGGG 195 57-to-52  

17 MHAP54FLE3 CCATGCTGTCCTCAAACTCA GCAGAAAGAGGGGAACTGTG 191 57-to-52  
17 MHAP66FLB6 CATGTGGTGCTCTTGTTTGG TGGTTCATTAGAGGAGCCTTTT 165 57-to-52  

18 MHAP9FRE8 TTTGATTACCCTCCGGAACA ATTTCCCACTCAGCAGCCTA 153 57-to-52  
18 MHAP54FLG3 CCAAAAGCTTTGAGGGGAAT GAAATCAGAATGCTGGAGGC 155 57-to-52  
18 MHAP7FRB10 TTCGGTTACCACACACCATT AGCCATGCTGGTATTTCCTG 166 57-to-52  
18 MHAP11FRF10 CCTCTGGACACATTCTTCTCG CCCAGTCTCCACTGTAAAGCA 151 57-to-52  

19 MHAP17FRC8 CCCTAAACCCTAGCCCTGAC GAAATTGATGGGTGGCATCT 187 57-to-52  
19 MHAP5FLH5 CGTAGAACCAGGCGCTTTAG GCAGCACATGGCATAGAGAA 158 57-to-52  

x 12_5_11_6 GATGGCTAATTCCAGGCCTAC CAACAGCAGAGCTGTACCCA 152 57-to-52  
x MHAP94FLC5 CATGGTCACCTGGCAACA TCTGGTGCAATTCTACAACCC 154 57-to-52  
x MHAP28FLD4 GGAATGGGAAAAGAATGCAA TGAGGTGCGTACCAAAAGAA 193 57-to-52  

MHAP35FLE5, MHAP45FLB4 4 mg Mg2+; MHAP75FRD10 3 mg Mg2+; MHAP59FLF6 2% DMSO.  

Primer sequences obtained from Lindblad-Toh et al. (2000). 
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Table I.2 Primers used for finemapping of mouse chromosome 6 

uniSTS primer sq f sq r amplicon (bp) pcr program  

186271 MHAP58FLC3 CCCTGGAGAAATCTGAAACC CTAATGGTTGCATTTTGGGG 174 57-to-52  
125213 MHAa54c9 AGATTCCAGGCAGACAGCAT GCAAACCACCTCCAAACCTA 155 57-to-52  
125903 X99043 CTGAGAAGCCATTAGCCCAG GGTGGCAACACAAGGAAAAG 198 57-to-52  
n/a D6Mit337.3 TGTCTGTCTATCATCTGTCTGTCTG TCAAGTTGACAGCATTAACTACCAC 111 57-to-52  
130759 D6Mit214 TGTAGGCAGTCCGTGTACATG AATTAGAGATATAGAGAGGGGTTTTGA 303-332 60-to-50  
130777 D6Mit230 TTCAGGTTCAGTGACAGACCC TTCAGGTACCTACCCATGAATG 124-139 57-to-52  
130734 D6Mit192 TTTATCCCAAATCATTTCTGCA TTTGCATTTTATAAACTTTTGGAGG 192-221 57-to-52  
130950 D6Mit44 CCCGTGTCCAGGGTACTG GCATGGTACCCCAGCTTCTA 143-148 57-to-52  
130648 D6Mit104 CTCCAAATGCATGTGGACAC CATCCCTCATGCCTCTGC 144-152 57-to-52  
       
130950 D6Mit44 [6~FAM]CCCGTGTCCAGGGTACTG GCATGGTACCCCAGCTTCTA 143-148 GT  
130924 D6Mit37 [5HEX]AAAGAATTGCACATCCACTGG TGCCCAGGATGTTTAAGAGG 250 GT  
130833 D6Mit286 [6~FAM]GCCTCCACAAGCACCACTAT TGCTATTACAGTGTCTTTAAAAAAAAA 118 GT  
130900 D6Mit35 [5HEX]AATGCAACTCTGATCAATCGG ATCTGGATTCATTGTAGACACCTG 222 GT  
       
6292642 rs6292642 CAGGGAATGTAGTAAAGTTAAC GGGAAGATTTAACTACATTG 192 57-to-52  
13478948 rs13478948 ACAACCAAGAACATCACAGGAC GAATGAATGGCCACGGAG 207 57-to-52  
13478949 rs13478949 ATTCATTTGTCTTAGTCTGC CTTCAGGGAGCAGTATTAG 137 57-to-52 Mg2+ 
13478950 rs13478950 AATGTAGCAGAAGGTTGGTC GATAATATAAGGGAAGCCATTG 279 57-to-52  
13478951 rs13478951 GAAACAAATCACATACCACAAG TTCAGGAGTTTCATGTATTGTG 194 57-to-52  
6344812 rs6344812 AATTTAACCCTGTAGCAAGTGC CTCAGTGGCTCAGACATCCC 271 57-to-52  
4226165 rs4226165 TTGTGCTGAGACTCTTGCC ATTTACTGACCTGGGTGAAG 248 57-to-52 Mg2+ 
13478958 rs13478958 GCTCCTCTTGGCTGTCAGTC AGCCAAGGGTTCCAGGATC 169 57-to-52  
13478959 rs13478959 CCGCTCATATCTCATTCTCTTG CTTTCCAGGGTCAGCTCTAC 217 57-to-52  
13478961 rs13478961 TGCAAGTAGTATTTAGCCACAG TTAGAACTCAGGTCCTTGTATG 257 57-to-52  
13478963 rs13478963 TTGCAGGCTGTGGATTCTC AGGACAATCAGGAAAGAAGGAC 158 57-to-52 Mg2+ 

n/a, not available; GT, genotype amplification for microsatellites; uniSTS, refSNP; source rs#, NCBI SNP (www.ncbi.nlm.nih.gov/SNP/MouseSNP.cgi),  

build 34.1. 

http://www.ncbi.nlm.nih.gov/SNP/MouseSNP.cgi�
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Table I.3 Primers used for sequencing mouse Itpr1 

exon primer sq f sq r amplicon (bp) pcr program  
1 m_ITPR1 exon1 ACTACATTGCCCAGGGAGC AGAACTCCCGGTGATCAGG 402 57-to-52  
2 ITPR1 exon2 AGATCCCTCCGACTTAGCTG GCCATGCTTCACTTCTGAG 416 57-to-52  
3 itpr1exon3 TGCAGATGTCCTCACTTGGC GAAGTGACTAACGCAGGATTTG 423 57-to-52  
4 ITPR1 exon4 TGGGTTACGATTATTTCACTCC TCACAGGCACAGCAACACC 337 57-to-52  
5 m_ITPR1 exon5 AACACCTTAGTAAAACTGGAAAGC CACCGTCAGCCACCATTC 278 57-to-52  
6 itpr1exon6 GCCCTGAAAGCTGAGTCCAAG GACCCAATAGCATGACCAAGTG 447 57-to-52  
7 m_ITPR1 exon7  TTTACTTGACAAAGAGAGCTATGG GGCTTCAATTCTAAACCTTTCC 323 57-to-52  
8 ITPR1 exon8 CAGAACCGTGGAGCAGTACC CCAACCCTCACCCATATACC 203 57-to-52  
9+10 itpr1exon9.10 TCCACCTCAATGCCTTTCACTC ACGGTGTGCTTGCTTCCCTG 824 57-to-52  
11 ITPR1 exon11 CAGTTCAGTGGCATTTCATTG AGAAGGGCAGACGAGGAAG 297 57-to-52  
12 m_ITPR1 exon12 GGATGACTGCAGGTATTGACG TTTCTTAAATGCGGCTCCAG 215 57-to-52  
13 m_ITPR1 exon13 TCCTGTGGACTGGACAGATG GCTTCGGTTAAAGTCCATGC 316 57-to-52  
14 itpr1exon14 GAGCCACTGATTCCCAAG GCTTCACCCAGATCCTCAG 368 57-to-52  
15 m_ITPR1 exon15 TGCCCAATATCCTGTAAAGAAAG CTGCCCCTCTCGCACAC 331 57-to-52  
16 ITPR1 exon16 CGGGCAGCTTCAATTTATG ATCCCACAGGCTTCTCACAG 411 57-to-52  
17 itpr1exon17 TGGTGCACGCCTTTGATTC CAGCACGTCATAGCCAATCTG 516 57-to-52  
18 ITPR1 exon18 TGCTCCTTTCAGACATATTTGC CACCAGGGACAGCTACAGTTC 433 60-to-50  
19 m_ITPR1 exon19 CTTGTGTACTTGAGGAAGTCAGG GAGGAGCTAGGTTTATTCCCC 285 57-to-52  
20 m_ITPR1 exon20 TTCTGTGTGTCTCTGGGCTG CACTAATGCCTTAGAGTGACCAAC 356 57-to-52  
21 ITPR1 exon21 GCTGACCCTTACTCTGGCATAC CCTATGTGGCTTCTCTGCG 534 57-to-52  
22 m_ITPR1 exon22 GTCTTTGCAGGCTAAGCAGC TTCAAAACGATAGCATTGTGATAC 335 60-to-50  
23 itpr1exon23 GGTGGGTGTGCAAGCTTTC AGAACGGACGAGGACAGGAC 489 57-to-52  
24 ITPR1 exon24 CTTTCTGGGTTCCTTGGGTC GGAAAGGTAGGAGATGGC 502 57-to-52  
25 m_ITPR1 exon25 GGCTTGGCAAAGTGTTAAAG TGAAATCTTCTCTCTTTGAGCC 292 57-to-52  
26 m_ITPR1 exon26 TGCTTTTGAAGCAGATTAGGC AAACCCTGGGCAAATTACAG 220 57-to-52  
27 m_ITPR1 exon27 AATTGTCGTTCAGCTCTGCC GAGAGAGACATAATCCTTTCATTGC 332 57-to-52  
28 ITPR1 exon28 GGTCCTTCAGGCCTTCAAAC AGCAACCATCCTATCATCTACG 451 57-to-52  
29 ITPR1 exon29 GTGAACATCTTGGGCTGCCTG TGTGCCTTCAACTCGTCGATC 268 60-to-50 Mg2+ 
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30 itpr1exon30 AGTACACTGGCCATTGAAAC ACGTGGACTTGCTTTAGG 448 57-to-52  
31 m_ITPR1 exon31 TCCCACCTTAGTAGAGGGTATTAGC TTCTAACAAGGTCAAGAATACACAAC 293 57-to-52  
32 ITPR1 exon32 AGGACTTTGCTGGCTAATGG TGCCAGATCACACAGAGAAGAC 436 57-to-52  
33 ITPR1 exon33 AGAAAGTGTGGTTGGTCAGTCC AAGGGCCTGAAATCTGCG 493 57-to-52  
34 ITPR1 exon34 TCTTGCCAACAGGAACAGTG GTGGTTGCTTGTGTAAATCTCC 348 57-to-52  
35 ITPR1 exon35 TCTTTACTTCTGTCCCGTGAGG ACAGGTACTATGGGCAACTTCC 384 57-to-52  
36 ITPR1 exon36 TTGACCCTTCTGGAATCCTC  GTTTCTCACTGTGCTGGCTTG 399 57-to-52  
37 m_ITPR1 exon37 CTAGTGGGCCATGAGGATTC CCTCTTCTGTGTAGCGGAGC 349 57-to-52  
38 ITPR1 exon38 GGATTGGGAGGCGATGCTTC CGGAGCGGGAAGTGTCAGTAAC 531 60-to-50  
39 m_ITPR1 exon39 GACTAGTTAGATCAGAATACTTGTGGC TAAGGGGCTTCCACACACTC 270 57-to-52  
40 m_ITPR1 exon40 CAACTTTCTAACATTTACACTCTTGTG CCAGAGAACACGGTACAAGG 202 57-to-52  
41 ITPR1 exon41 TGTCAACAGCCCAGTCCCATG CAAAGCAGCAGCAGATCAGTCC 352 60-to-50  
42 m_ITPR1 exon42 TTGTTTGTGACTGATGCTGAAG TCGTAGTTGTGTGGCTGAGG 197 57-to-52  
43 m_ITPR1 exon43 CCTGAATATCCTGTGTATGTGTG AAGCAAAAGCAGACAGCTCC 313 60-to-50  
44 m_ITPR1 exon44 GAGCATTAAAGGTTGGCACTTAG GTCTCCCTCCTGAGACCAAG 361 60-to-50 Mg2+ 
45 itpr1exon45 CAGGCACTAATAAGCAGAATGG CCTGTTGGAACCTGGAAGC 393 57-to-52  
46 itpr1exon46 GCAAGGCTGGGCTCTACATTC TCCTGGAGGTCTCTGGGTTC 590 57-to-52  
47 ITPR1 exon47 CAAAGTAGCAGCATGGATGACC AAGTGGCACGGAAATGTCTC 413 60-to-50  
48 m_ITPR1 exon48 CCTGTTAGCCTTTGACGTCTG TGTCACATGCCAGGTAAAGC 256 57-to-52  
49 ITPR1 exon49 CCTCTGTCCGTATGCTTCTAAG AGTTCCGTGGTGCTCCTGTC 288 57-to-52  
50 m_ITPR1 exon50 TGTCTAAGCTATAGATGCCAGTCC AGTCAGTCTCAGGGTGCCTC 270 57-to-52  
51 m_ITPR1 exon51 CATGAGAAAGAAAGAAACCTGG AACATGCCAACCCTGGTATAG 274 57-to-52  
52 m_ITPR1 exon52 AGTTCACTGCCAATAGCAAAG GTGCACGCACTCCCCTG 351 57-to-52  
53 itpr1exon53 ATGAGTTCTCCAATGACCTG ATGACAGCAATAGAAACCATAG 486 57-to-52  
54 m_ITPR1 exon54 CATTAGACCTGTCTTACTCTGTCACC TTGAAAACCAAAGTCAAGATGC 345 57-to-52  
55 itpr1exon55 ACTCGGTGCTAAGGCTCCTC AAGATCGGATGCAGTTGGAG 373 57-to-52  
56 m_ITPR1 exon56 GTTTCCAAGAGAGTAAATGATGC AGACACAGTTGCCTGCTAAGG 360 57-to-52  
57 m_ITPR1 exon57 ATCAGCCGTGAACTAGGGAC CTTCCAATACCACCTGCCTC 252 57-to-52  
58 ITPR1 exon58 CACATATCTGACTCGTAACGGC TCCCAGCTCATGTTCCAGAC 396 60-to-50  
59 itpr1exon59 AGGAGACTTGGTTGGGAG TACCCACTCCATTGCCAC 392 57-to-52  



 

 

200 

60 ITPR1 exon60 GCCCTCCTACCATGATGAAAG TGAACCAGGAAGGCAGAGC 363 60-to-50  
61 itpr1exon61 TTTGGGCCAGTCAGTAGTACC CATTACCGCAGCGTGAGTG 442 57-to-52  

62 itpr1exon62 TGACGCACAGGAAGTGTC TCACCATGCCAACAGAGC 339 57-to-52   

  

Mg2+, 1μl MgCl (25mM)/10μl reaction. 
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Table I.4 Primers used for sequencing human ITPR1 (AUS1 family) 

primer sq f sq r amplicon (bp) pcr program  

hIP3R1_1* TAACCATGTGGATGTGCTGCTG CTGCCCGCAGTAAAGGAACC 395 57-to-52  
hIP3R1_2 GTTAGAGCTCATCTTCCGCG  ACTCATTATTGACTACAGCA 172 60-to-50  
hIP3R1_3 CTAAGCCAACTCTTAGTGACTT  TAAGCTGATGTTATGATGTC 249 60-to-50  
hIP3R1_4 TCATACACTTGACAGAGCAT  TTCAAGTGAGTCAAGGTGAC 155 60-to-50  
hIP3R1_5 TCTCTATACACCCTCAATGGC  CACCATTACACCCAGATACC 219 60-to-50  
hIP3R1_6 GTATGAACTGGCGACATTTG  CCTCAGCTGCATTCTTTGTAAC 237 60-to-50  
hIP3R1_7 GTATGATTGAGAGAAGGAATG  CATGCTTGGAAGCATGGCACG 286 57-to-52  
hIP3R1_8 CAGTGGTCAATCCGCAGTCC  CAGACCCGCTCCTGCAGGATAAC 216 60-to-50  
hIP3R1_9* TTCCAAACTCTGCCAGCAGG CCACGTCACCCTGACAGTCAAC 387 57-to-52  
hIP3R1_10* TCTGTGTTTCAGGTCAATTCCG GGCTGATATCCTCTAAACCCAG 402 57-to-52  
hIP3R1_11 CTCCTGAACTATGACTTGTG GGCTACAGGCGAATGAGGAA 222 60-to-50 Mg2+ 
hIP3R1_12 TGTAGAAAGTGAAGGCTTTGGC  CTACACCAGGCCTGATTCTT  261 60-to-50  
hIP3R1_13 GCTATAGAGTAAACCTCAAT  GATCTGTCCTCAAAGGAGCCCT 230 60-to-50  
hIP3R1_14 GTTTGATTAAAGTCTTATCCTTC  CATGGATGTCAGAAACTCTCAG 288 60-to-50  
hIP3R1_15* ATTCGTCCAGAAGGCTTCCAAG GCTCACTGCAACCTCCATTTCC 371 57-to-52 DMSO 
hIP3R1_16 TTGAAGCCCTAAGTGATTGC  CTCAGGAGGAAAGTTCACAA 277 60-to-50  
hIP3R1_17 CTACGCTTAACCATATTGTC  CTGCATCTTACAGGCAGAGAC 288 60-to-50 Mg2+ 
hIP3R1_18 GTATGTTGGACCTGTGCACT  CCTCATGAGCACCAACACTG 279 60-to-50  
hIP3R1_19 AGTGTCTTTCCATGTGTCTT  CAAATTCCTAAGTGCCACTG 355 57-to-52  
hIP3R1_20 CATTCATCCTGAATGATTTCT  CTACTGCCGCACAGAATAATG 360 57-to-52  
hIP3R1_21 GACCCAGGAAGACCTCTCTG  ATGACCACTGAGAGGCAGAT 259 60-to-50 Mg2+ 
hIP3R1_22 CATCAAATGGAATTGAAGGG  GGGCATCTCTCAGATGTATG 288 57-to-52  
hIP3R1_23 TGACATATGCCTCTGAGCAT  ATCTGAATGGCGCCTCTGTG 309 60-to-50  
hIP3R1_24 GCAGAGTCAAGATGGTATGT  ATTTTCCTTAGAGCCAGGTC 257 60-to-50  
hIP3R1_25 GCAGACCTTCCTGCATCTGA  CTCTGAGAGCTCTGGAAGAG 157 60-to-50  
hIP3R1_26-27* AGGCATTTGTCATTCATTTGGC GTTTCGAGAAGCCCATCCATCC 513 57-to-52  
hIP3R1_28 CTGACAGTAGCCCAAGAGTT  AGCTCCTTAGAGAATTCATA 176 60-to-50  
hIP3R1_29 CGCCACCACCCTCTGCAATC  CAATATCCAGATGTGAAGAGT 296 60-to-50 Mg2+ 
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hIP3R1_30 TGGCCCAGGAATCAGTGCTT AGCCAAAGAACAAGCTGTTC 248 60-to-50  
hIP3R1_31 TTAATCTGTTCTGTCAGCTT  TTCTACAGAACACCAGATGG 309 57-to-52  
hIP3R1_32 CCTGCAAGCTTGTAATCTAA  ACAGCACACACCACATAGCA 348 60-to-50 Mg2+ 
hIP3R1_33 CAGCTAATGAGTTCCATACA  CACTCTCCAACTCTGCCTCC 227 60-to-50  
hIP3R1_34 GAGTCGCAGATTTCTTAATG  GGTGTATCGTGAACATTCTG 240 60-to-50  
hIP3R1_35 GGATCATCAGTAGTCTACAA  GCAGCCTTACTACTGTCAGAC 249 60-to-50  
hIP3R1_36 GTTGTAGGCTCACGACTCAT  CTGTGTGTGGCAATCACGTG 281 60-to-50  
hIP3R1_37 GTCAGCGTCTGCCTGAGCCG  CAAGGTTCTGGCAAATGAAC 240 60-to-50  
hIP3R1_38 AATTAGCTTCAAGGAAGTAA TCAGTAATGCCTGAGCTAAG 248 60-to-50 Mg2+ 
hIP3R1_39 CCTCGGTGATGCATTAAATG  CACTTGATTCACACACGAAG 229 60-to-50  
hIP3R1_40 CATTAGCTGTTCTGATTGTG  GACTCTCCTCCTGCTCAGCA 296 60-to-50  
hIP3R1_41 GTCAGTTACAGTGTTCACAA  TAACAAGGACTCTTCTGGTG 280 60-to-50  
hIP3R1_42 CATGAGGACTCTGCAGCCTT  CTGAACCATCAGAGGAAGGCA 373 57-to-52  
hIP3R1_43 GCTATCAGAATGGCAGGATG  TGAACTAGTCTCTATCAACAT 354 57-to-52  
hIP3R1_44 CTGTTGGCCTTTGACGTCTG  CCATGTGCATGTGCCAAGGCA 255 60-to-50  
hIP3R1_45 CAGTTGGCACCTGCATTCAG  ATATCGTCGCAATGCTCCTTG 223 60-to-50  
hIP3R1_46 GCTGTCCATCCAGTCCTGTGT  GACCTGTAGGGAGGCAGCATC 238 60-to-50  
hIP3R1_47 TCTGTGTTCCTGTTGTTGTTGTGAAGAG  TGCACACTAATGGCCTCAACA 217 60-to-50 Mg2+ 
hIP3R1_48 CAGTAGCAAATAGTCTTAGT  CCAGAACTGTGTCTCTCTGTG 308 60-to-50  
hIP3R1_49 CCACATTGCATTCCTGGCGT  CTAGCCTTCCTGCTGCTTCTA 244 60-to-50  
hIP3R1_50 CTGTACTCAGTGAAGGCACA  AGGCATTCCTATTAATCTGCA 285 60-to-50  
hIP3R1_51 GCTCTCATGAAGAGTTTGGCA  GAGAGAGGACATAGGACACTC 291 60-to-50  
hIP3R1_52 TGTACATCTAACATCAAGGC  GGAGATATCTGCATTACTAA 346 57-to-52  
hIP3R1_53 CATATGCTGCCAGATTGTTCA  GCATCAGCTAAGCCTCTGGAG 203 60-to-50  
hIP3R1_54 CTCACGTTTTCTCTCTGTTGT  TACACTCAACACCGCTGCATG 262 60-to-50  
hIP3R1_55 CAGGCTCCGCAGACCAAAGGG  CCACATGCCTCTGCCACGCTG 290 60-to-50  
hIP3R1_56 CTACTGACAGTTCTGTTATTG  CTGTTGTGCAGCTCCCCGATG 335 60-to-50  
hIP3R1_57 TACCTCTAGAAGTGACTCAGT  CTAGATGAAGCACTACTGAT 327 57-to-52  

hIP3R1_58 TGACGTACAGGAAGTATCTGG  ATCAGAACTCATTAGCCATAC 211 60-to-50   

Primer sequences were obtained from Knight et al. (2003). * exons 1, 9, 10, 15 and 26-27 were designed using Gene Runner (v3.05; Hastings software). 
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Table I.5 Primers used for sequencing human CNTN4 

primer sq f sq r amplicon (bp) pcr program  

hCNTN4_1 GTTGCCTATGAGCAGGTCC TGATCCTTAGCAATCTTACCTACTCC 264 65-to-55 

hCNTN4_2 TGATTTAATTTTAGACCGGGAAG TCTGTAAGGGAAGGTTTTCAATG 259 65-to-55 

hCNTN4_3 CCCTCCAATGGTACTTTCCC GCGATTTTATCATTGCCGTC 361 65-to-55 

hCNTN4_4(a) ACAAAAGGGATACGGGAAGC TATGCATGGAAACACATGCT 504 62-to-52 

hCNTN4_4(b) ACAGCCATCCACAATGACAG TATGCATGGAAACACATGCT 528 62-to-52 

hCNTN4_5 GATGTCACCATTGCTGGGTAG AAAATCTAGTCTCTAAAATGAAACTGC 439 65-to-55 

hCNTN4_6 GTGCTACCAACGCAGTTTTG AAATGACACTGTGCACTCAGC 308 65-to-55 

hCNTN4_7 GATTACTTCCTATCTGTATTTAGTGGG ACAACAAAGCTTCATGTGCC 437 65-to-55 

hCNTN4_8 GAGCCACAATTCATGACTGC AGGGGCAGAATCCAAGATG 424 65-to-55 

hCNTN4_9 AGTTTGCAAAACACCCAACC CACCATCTCTCCCAAAATGC 399 65-to-55 

hCNTN4_10 CTGAATGTCTCCCCAGTCTTG AACAATTCACCATTCTCCCG 376 65-to-55 

hCNTN4_11 ATGATGGCTGTTTTCTTCCC TTTCTTGGATTGAACATTTATGC 337 65-to-55 

hCNTN4_12 AGCCAAGATTGCACCACTG CATCCTTCCAAAGCTTCTGTTC 426 60-to-50 

hCNTN4_13 AATGTAGCAATGATTTATGGTTTG GATGAATTAATTTAGCAATACAGTGG 364 65-to-55 

hCNTN4_14 TTAGTATTTCATCCTGCTCTTGG GAGCAGGAATTAACCAAGAGTTTC 402 65-to-55 

hCNTN4_15 AATGCTTTCATCAGCCAGTG CAATGTTCAGCTTCTGCCTG 359 65-to-55 

hCNTN4_16(i) TGGCTCCTTTACTTGGGTG TTAGACGTTCCTTGCCACAG 300 62-to-52 

hCNTN4_17 TGAGGATGGATGGATGTTCC TAACACAGAGCCGCATGAGC 350 65-to-55 

hCNTN4_18 CAATGCTGTTGCTGATCTCC AGAGGAGGAAACTTCCCAGC 306 65-to-55 

hCNTN4_19 AACGCCAAATAAGATGGGTG TGTACCATGCGAAATTGATTG 449 65-to-55 

hCNTN4_20 TCTGCAAAATGAGGGTTTGG GTGGGAATGTGGGTCTCTTC 350 65-to-55 

hCNTN4_21 AACTCCATCATAAGAATCTGCG GCTGAGGGAAATTTGAATCC 413 65-to-55 

hCNTN4_22 TAGCCCATTAAATTGCCTCC ACCAGGGAAACTGACAATGC 319 65-to-55 

hCNTN4_23 GGCAGCCAGACAACCTCTAC GCTTTTGCAGGCTGAATGTC 390 65-to-55 

hCNTN4_24 ATCCATGCAGTTCTGCTGTTTC TGTCTTCAGTGCATTGCAGAG 418 60-to-50 
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Table I.6 Primers used in assay to determine breakpoint AUS1 family 

forward sq f reverse sq r 

itpr1 fr1 2f CAATGGTCAGCTTTCTAGTTGTG itpr1 fr1 2r CATTGTTGCAGGTCATACAGG 
itpr1 fr1 3f TGAATGCTCAATTTTCCAGC itpr1 fr1 3r ATTTTGCTGAATGCCCTGTC 
itpr1 fr1 4f CTCATGGGGAAAGAACCCAC itpr1 fr1 4r GAAAGAAAGACCTGAATCTTGC 
itpr1 fr1 5f GACACTTCCAAGGCCTCTTC itpr1 fr1 5r TTCACAGCTTTCTTTGCTCC 
itpr1 fr1 6f CAAGCTGCTGGCTAATCAAC itpr1 fr1 6r AAATGGAGGTGGTGAACTGG 
itpr1 fr1 7f CCACCGTTTGTTTCCATGTC itpr1 fr1 7r TTTCTGAGTCCTCTGGGAAGTC 
itpr1 fr1 8f TCTCAGCCTATAAGGAAGGTAGG itpr1 fr1 8r CAGACTCCTTGACCTCACCC 
itpr1 fr1 9f AGTGGCTCTCAGGCTTTGTG itpr1 fr1 9r CCACCTCAAGAACTTGGC 
itpr1 fr1 10f CAAGAATGAGAAGGAGCCAAC itpr1 fr1 10r TAAGCAGAATTTGGGGCATC 

itpr1 fr2 2f TGTTGAGTTGGGAAGCCTTG itpr1 fr2 2r GCTGGTGAAGCCAGAGAATC 
itpr1 fr2 3f ACATCCATCTTGTCCAAGGC itpr1 fr2 3r CGACACAGCAACAAATGAGG 
itpr1 fr2 4f GTCCCTGTCATTCCAGATCC itpr1 fr2 4r CCAAAGGATGTGCTGAAAATG 
itpr1 fr2 5f CCAAAAGTGTTGGATTTATTGAATG itpr1 fr2 5r TCTGTGCTGAAGAAGGCAAG 
itpr1 fr2 6f AGCCTTGTAAACATGACCC itpr1 fr2 6r CCCACATCTATCCCACTGAAG 
itpr1 fr2 7f CCTGCAAGAGTGATAGCTTG itpr1 fr2 7r CATGAAAAGGACTATTTTCCAGC 
itpr1 fr2 8f TGGATGACACAGTTGTTGTGAG itpr1 fr2 8r CACCTGGTTAAATATTGTTGTGATAG 
itpr1 fr2 9f GCAGAAGGAAAGAATAAGTACTTTGG itpr1 fr2 9r TGCTGCAATTACACAGAAAGG 
itpr1 fr2 10f TGCAGGACAAAGAAGGAAATG itpr1 fr2 10r GAATATATACCATGCCATACCATACC 
itpr1 fr2 11f GAGTTGTTCCCAACTTCTGG itpr1 fr2 11r GGGAAAATGGATAGAGGGTG 
itpr1 fr2 12f AGGTTGTGGTAAGCCGAGAG itpr1 fr2 12r GCACAGTCAATGCAAATTTAGAG 
itpr1 fr2 13f GCTTTCCAGCTTGGGTGAC itpr1 fr2 13r TCAGCACTGGCAAATCTACAG 
itpr1 fr2 14f TGTCTGTAGCTTATTGATCACCC itpr1 fr2 14r CCAGAAGTCTGCTCCCAAG 
itpr1 fr2 15f TGTTTTCACATTTTGGCTCC itpr1 fr2 15r CAAAGGGATCCACAGGTCAC 
itpr1 fr2 16f TGCGTTCATGGGTCACG itpr1 fr2 16r GTTGGTGCCATAAACAATTAGAC 
itpr1 fr2 17f TGTGAACACAGTTGTTTGGG itpr1 fr2 17r AGGAGGAAAAGCAAGGTGAC 
itpr1 fr2 18f GCATTACTTGGCAGCAGAGG itpr1 fr2 18r CCTCCTGTCCTTCAGCATTG 
itpr1 fr2 19f CTTGGGAGGGTGAAGCAG itpr1 fr2 19r GCATGCCACGACAATGATAC 
itpr1 fr2 20f AGTGAATTCATTGTCTTCCTCTG itpr1 fr2 20r AAGCCTATTTCTGACCTTGCAG 
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(table I.6, continued from previous page) 

 

Primers were run using both 60-to-50 and 65-to-55 programs. In bold, telomeric forward (T3f) and centromeric reverse (C11r) primers  

which were used in the PCR-based assay for detection of the SCA15 deletion in ITPR1 in the AUS1 family. 
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Table I.7 Primers used in assay to determine breakpoint H27390 family 

forward sq f reverse sq r 

 H27390 frag1 1F CATCCAAACTCACTAGACG  H27390 frag1 1R TACTACAAGTCTGGTTATGTCC 
 H27390 frag1 2F GCAAAGACATGTTTCCCACC  H27390 frag1 2R TGTCACATTGCTTTCAAGATAGG 
 H27390 frag1 3F AGGAGTGGAAATTCTAGGCAG  H27390 frag1 3R TTCAATGTAAAATTAAGTCTTAGCTCC 
 H27390 frag1 4F AATCCTCCCAACTCAGCCTC  H27390 frag1 4R GTGTGTGGGAGAATTTCCTG 
 H27390 frag1 5F TCCACTTAGGTTCCTTACATTGC  H27390 frag1 5R TTGAGTAACCCAGTGCTTTCC 
 H27390 frag1 6F CCAGGAAAATAACCCACGG  H27390 frag1 6R GACACTATAGAGGGGATGCTTTTAG 
 H27390 frag1 7F AGTAAGGCAGGGCAGGAGTG  H27390 frag1 7R CTTGCCCCACCTTGGTC 
 H27390 frag1 8F TGAGACAAGAGCTTGGGACC  H27390 frag1 8R GGGTCAGGGTTAGGTTGGAG 
 H27390 frag1 9F CAAAACCCCATACAGAACCAG  H27390 frag1 9R TTTGAAATACCTGTTTAATGTGACC 
 H27390 frag1 10F CATCCCTCAGCATGACTCTC  H27390 frag1 10R AAGTGGAATCCTTGTCCTTTTG 
 H27390 frag1 11F GACCTCAAGAAGGCATGAATAC  H27390 frag1 11R AAATCAACCTGGTTAGGAACAGAC 
 H27390 frag1 12F TCTTTGTAACAGCTCTATGGGG  H27390 frag1 12R TGGGGTTTCTTGAGATTCTTG 
 H27390 frag1 13F AAGGTCTAACATTTATGCAC  H27390 frag1 13R CTGCTGGGATTATCGATG 

 H27390 frag2 1F GGCCCTTCATTCAGAGGAG  H27390 frag2 1R ATCAGGGCTGTGATGATGTC 
 H27390 frag2 2F ACTGGGAGTGGTAAGCATTG  H27390 frag2 2R ACACAATACAGAGAAACTCAGCAG 
 H27390 frag2 3F AAGGGCCGGTTGAAGAATAG  H27390 frag2 3R ATGGTGGCCAGGTACACAAG 
 H27390 frag2 4F CATTAGGAAAGATGGGAACACAG  H27390 frag2 4R ACGTGGGTGCTTACGGATAC 

 

Primers were run using 60-to-50 program. In bold, telomeric forward (T11f) and centromeric reverse (C3r) primers  

which were used in the PCR-based assay for detection of the H27390 family deletion in ITPR1. 
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Table I.8 Primers used in assay to determine breakpoint H3331 family 

Table I.8(a) 

forward sq f reverse sq r 

 H3331 frag1 1F AGCTCATCTCTGCATTGTC  H3331 frag1 1R ATTTGGTCCTGAGATCTAAC 
 H3331 frag1 2F TCATAAGGGCCACATTCTCTG  H3331 frag1 2R GCAACACCATCTTGAAAACTTC 
 H3331 frag1 3F GATGAGCTTTCAGTATGTCTCAAAC  H3331 frag1 3R CCTTGACAAATGAGAGGAGTAGG 
 H3331 frag1 4F CGGGTCAGACTGCATTATTC  H3331 frag1 4R TTTCCTCGGATGTGGGG 
 H3331 frag1 5F GGGATCTGGGTTGCTGG  H3331 frag1 5R GTGTTGGGCGCCTGTAGTC 
 H3331 frag1 6F TGACAACAGTAGCTCACACTGG  H3331 frag1 6R GACAGGGTTTTGTCATGTTGC 
 H3331 frag1 7F CCTTATGAATAACAAATGCAGTCAG  H3331 frag1 7R GGGTAGAAGCTTTCAATATCTAGTTTC 
 H3331 frag1 8F GTGTGACACAGCAAGACC  H3331 frag1 8R TCCCAGGTTACATACACAG 

 H3331 frag2 1F GCAGGGAAGTCAGGAATGAGTC  H3331 frag2 1R TGGGATGAGTGAGGTGGAC 
 H3331 frag2 2F TTCTGTGGTGTGGGTACAGC  H3331 frag2 2R AATCCTCAAGGACTCCTGTTC 
 H3331 frag2 3F TTGTGGTTTGAAGTGCTCCC  H3331 frag2 3R CTGGAGCTCAAGACCAGC 
 H3331 frag2 4F TCACTATGTCACCCAAGCTG  H3331 frag2 4R AAAATTGCCATACCAGGGG 
 H3331 frag2 5F GTTTACCATTTGGCCCTTTG  H3331 frag2 5R GGAAAACGTTTGTAGGAGGC 
 H3331 frag2 6F GACAAAGCAGGACATTCCTTAG  H3331 frag2 6R TGAGGGTTCCATTTGGGG 
 H3331 frag2 7F GCAGCGGTTTGAAACTAG  H3331 frag2 7R TTTGGATGAGCTGTTACG 

 

None of the initial primer combinations (table I.8(a)) allowed to obtain sequence across the breakpoint in the H3331 family. However, sequences acquired 

with fragment 1 (SUMF1) primer pair 6 and fragment 2 (ITPR1) primer pair 4 showed heterozygous calls within the sequence thereby narrowing the 

breakpoint region. Based on this newly defined region new sets of primers was designed, see table I.8(b) and I.8(c). Although, the exact breakpoint in the 

H3331 family remains unknown as no sequence across the breakpoint has been obtained.   
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Table I.8(b) 

forward sq f reverse sq r 

H3331_frag1new_1F CTGGATTTCTTCCCCTCCTC H3331_frag1new_1R CCTGTGAAAAGGAAAATCCC 
H3331_frag1new_2F CTCCACCTACTGGGCTCAAG H3331_frag1new_2R TCCAGAATAGAGCCTCACACC 
H3331_frag1new_3F AAGTGATGCTCCCACCTCAG H3331_frag1new_3R AGCAACATGACAAAACCCTG 
H3331_frag1new_4F TGGATATGAAATCTTTGGTTCAC H3331_frag1new_4R AGCCTGGGCAAAATAGTGAG 
H3331_frag1new_5F CTTCCACAGCAGGAATACTGG H3331_frag1new_5R AAATCGTTGGGTATTCAGGC 

H3331_frag2new_1F CCCACTGAATCCTCAACAGG H3331_frag2new_1R CCTGTTTCCCTGAATTCCC 
H3331_frag2new_2F TTTGTTTGTTTGTTTGAGACGG H3331_frag2new_2R AGGCATCTCACACTCGGAAG 
H3331_frag2new_3F AAGATGGCAGTTCCCACAAC H3331_frag2new_3R GGGCACCTGTAGTCCCAG 
H3331_frag2new_4F TGGGAAATTTCATTGCCTTG H3331_frag2new_4R TCTTGCAGTAATTTCTTGCCC 
H3331_frag2new_5F ATAGGATGGTGACGGTTCCC H3331_frag2new_5R GCTTCATCCCAGAATGTCTCTC 
H3331_frag2new_6F CTCCTTTGAGAAATGGTGGC H3331_frag2new_6R CTCAGCAACATAGCAAGACCC 
H3331_frag2new_7F GACACGTTGGTTGGGCTATC H3331_frag2new_7R GACAAACCCCAAGGTCACTG 

 
Table I.8(c) 

forward sq f reverse sq r 

H3331(F)F1c AAAGCAACAGGAAATCAGACC H3331(F)R1c CTTGGTGTGAGGCTCTATTCTG 
H3331(F)F2b TCTCCTGACCTCGTGATCCG H3331(F)R2b ACCTACTGGGCTCAAGCAATTC 
H3331(F)F3b AGACCAGTCTGAGCAACATGAC H3331(F)R3b TGCTGTGTCACACTGGCTG 
H3331(F)F4a AAAGAAGAGGCCAGGCATG H3331(F)R4a AGTGGCCATGGGAACAATATG 
H3331(F)F5a AAATCGTTGGGTATTCAGGC H3331(F)R5a TCCCAGGTTACATACACAGTGG 

H3331(R)F1a TTCTGGTCTAGCAAGAGGTCTG H3331(R)R1a CCCTGAATTCCCATTTATTAGC 
H3331(R)F2a TGTCACCCAAGCTGGAGTG H3331(R)R2a CAGGAAAGCAGTTAGGACAATC 
H3331(R)F3a TAGCGCAGCTCTCTGAGTGACG H3331(R)R3a ACCAGCCTGGCCAACATGTAG 
H3331(R)F4a AATTGACCCAAGTCCTTCTGAC H3331(R)R4a TGAATGATGCTGACAAGTCTTG 
H3331(R)F5a AACATGAGGGTAAAGTGTGTGG H3331(R)R5a GCTTCATCCCAGAATGTCTCTC 
H3331(R)F6a AATGGAAGGCCAGTTTGTGAG H3331(R)R6a GAGTCCTGAGGTGGGCATATAG 
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Table I.9 Primers used for sequencing human ITPR1 (London cohort) 

primer sq f sq r amplicon (bp) pcr program 

h.ITPR1 1 TAACCATGTGGATGTGCTGCTG CTGCCCGCAGTAAAGGAACC 395 60-to-50 
h.ITPR1 2 TTGTAATTTGGAGCATTTCTGTTAG CCTCCTTGGCGGTTTAGATAG 238 60-to-50 
h.ITPR1 3 TAAGGCGCTTTGGAAAATTG AGCCAAGTAAAACGGTGACG 317 60-to-50 
hITPR1_4 CATGCATAGGAAGCCTCTAGTG CACACCAACAACACACTTCAAG 298 60-to-50 
hITPR1_5 AGCTCTGCTACCAAGTGGTTC CACCATTACACCCAGATACCAC 430 60-to-50 
h.ITPR1 6 CATTTGTTCTGCGTCACTGC TCCAAACCCTGTCTTAGGTG 250 60-to-50 
h.ITPR1 7 GGTATGATTGAGAGAAGGAATGG TCCAACTTTCAACGTCTCCTCC 327 60-to-50 
h.ITPR1 8 ACTGCCCAGTGGTCAATCC AAGTCACTCTCAGCACACGC 258 60-to-50 
h.ITPR1 9.10 CTAGGCTGCGGTGAGAAGTC AAGGTGGGTATAAGTACTTGTTTGTG 629 60-to-50 
h.ITPR1 11 CCCTCCTGAACTATGACTTGTG TACAGGCGAATGAGGAAAGG 258 60-to-50 
h.ITPR1 12 TTTCTTCTCCGTTCCTGTGG GGATTCCAAGAAACCTGGTC 321 60-to-50 
h.ITPR1 13 TGCAGTAGGAAACCACTTTGC AAAGCAACAAATCTCCACGC 319 60-to-50 
h.ITPR1 14 TTGGGATCAGCCAGTGTCTC ACTCCACCCCATGGATGTC 328 60-to-50 
hITPR1_15 CTGTTTAACTGGCTCATTCGTC ACTGCAACCTCCATTTCCTG 382 60-to-50 
h.ITPR1 16 ATGTAATCCAGCCACCCTTG CACTGAACTATTCTGCATCCATTC 379 60-to-50 
h.ITPR1 17 GGAAACATTGCTGCTTTCTTTAG AAGCACCAGCTAAGTCCCTG 329 60-to-50 
h.ITPR1 18 AAGGAAGAATTGGGGTCCAG AAATGATAGGGCTAGGTTTTATTCC 281 60-to-50 
h.ITPR1 19 TGTGTCTTTATGCTGAAAGTAAAGC AAACGAGCAACAAATTCCTAAG 353 60-to-50 
h.ITPR1 20 CCCAGACGACCCTTCATTC TGAGACCATATGGGGCTATC 393 60-to-50 
h.ITPR1 21 CTTTTGAAGCTGAGTGACCC TCACATATTTTCTATTTGCCCC 304 60-to-50 
h.ITPR1 22 CAAGTCTGTCATTTCTAAACTGGTC AAGGCTGGAGGGCATCTC 324 60-to-50 
h.ITPR1 23 TTTCTCTCAAAGAGCCCCTG CATCAGAACAGAGGGACTGG 354 60-to-50 
h.ITPR1 24 CAGTGTGTGGTGGCTTGG TGTTTGCTCTCCCCATTTTC 288 60-to-50 
h.ITPR1_25 ACTCAACAGCTTTACCCTGC CAAAACAACCTAAGCCCAGAG 265 62-to-52 
h.ITPR1 26.27 TAGGTTAGGTGCATCTGGGC ACCAGAAGAGGATGCTCCC 571 60-to-50 
h.ITPR1 28 CCCTTTCTTTCCTAAAGGTCG GCTCAAATGTGTGTACCTTCAAC 255 60-to-50 
h.ITPR1 29 CCACCACCCTCTGCAATC GTGAAGAGTTTGGGGAAACC 282 60-to-50 
h.ITPR1 30 ACGTTAGCAGGAGGTGTTGG AACAAGCTGTTCCTCCTCCC 281 60-to-50 
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h.ITPR1 31 CATGGGTTTAAATGCTTCCC CCTGAAGAGGGTGCAAGTTC 416 60-to-50 
h.ITPR1 32 GAACCTCTCTCTTCCTCTGTGAATAG ACCACCATGTCTCCCAGTG 422 60-to-50 
h.ITPR1 33 TTGCTGTGAAGTTGAGGCAG TGCAGCTGTTTTCTTCATGTG 321 60-to-50 
h.ITPR1_33p ATAGAAGTAAGACTTGGCAGTG ACTCTGCCTCCTCAGTTC 286 60-to-50 
h.ITPR1 34 AGGAGGGAGTCGCAGATTTC TCCCAAATTCACATCAAGCC 277 60-to-50 
h.ITPR1 35 ATCTGGGGTCCAGTGGTTC GCTCAATAAATGGCAGCCTTAC 304 60-to-50 
h.ITPR1 36 CTAGGGCATTACGTCCATCTG AGATGCTCTGTGGCTCAAGG 349 60-to-50 
h.ITPR1 37 GGGCAGAAATCAATGTCCTC GACAACGTCTCCTTCTTCGG 314 60-to-50 
h.ITPR1 38 TGCCCTGAAGTATCTTTAACCTG AGGTGGGTTTTGAAAGGTCC 326 60-to-50 
h.ITPR1 39 CTGAGTACCCCTGTGTGTTTTG TGTTAGGAGGAAACATGCAGC 294 60-to-50 
h.ITPR1 40 GTGCATAAAGTGTTGGTGCG CCCAGACATCTGGCTCCC 358 60-to-50 
h.ITPR1 41 GTTTTGGTGTCATGAGTGGG TGAAAACAATGAAGGATAACAAGG 328 60-to-50 
h.ITPR1 42 GAGTGTCACCTTTGGAGTGG GCTGAACCATCAGAGGAAGG 405 60-to-50 
h.ITPR1 43 TGGCAGGATGAATAACGTTTC CACAGGCTTCGTGATTTCTG 362 60-to-50 
h.ITPR1 44 TAGCAGTTCAGCCTGTTGGC ATGTGCCAAGGCAAAACAC 259 60-to-50 
h.ITPR1 45 GTCTGTTTAGCCGGGATGC AAGCTCCAGGAAGCAGATCC 288 60-to-50 
h.ITPR1 46 CATGCTGTCCATCCAGTCC AAGGAAAAGCAAGACTGGGG 284 60-to-50 
h.ITPR1 47 AATACCCAACATGAGAAAGGAG TGAATGAATGCACGCCAG 275 60-to-50 
h.ITPR1 48 ACCACCGAGTCTACCACCAG AAATGAACGCACCATCAAGC 361 60-to-50 
h.ITPR1 49 GAAGGGCCACATTGCATTC ACTGCACCAATACATCCAGG 292 60-to-50 
h.ITPR1 50 TGCATGTTTTAGGTCTGTCCC AAAGCACAGGCCAGGATTC 341 60-to-50 
h.ITPR1 51 GTGTGAGATGCTCTCGTTGC AGGGTCTGTGATGAGAGAGAGG 323 60-to-50 
h.ITPR1 52 AAACCAAGTTTGCATTATGGG CGTGTTAGGGAGATACAATGGG 395 60-to-50 
h.ITPR1 53 TTAATCAGCCGTGAATTGGG TCTTCTTCCAACATCACCTGC 260 60-to-50 
h.ITPR1 54 GATGGCATTCAGGAAACAGG CTGCATGGTGCTCCCAC 296 60-to-50 
h.ITPR1 55 GTCTCACTTGAGCTGTGCCC ATCACACCCTCGCAGTATCC 328 60-to-50 
h.ITPR1 56 ACAGGAGTGAAACCACAGCC ATCCGTGAGAAGGGCTCAG 401 60-to-50 
itpr1_57_Txii AGATCAGAGCAGCAGTGGCAG CCTGATCCTTTAATTCCGACAG 465 62-to-52 
ITPR1_57(a) AGGAAACATGGCACGGTAAG AGCACCATGGCTTTATCCTG 467 62-to-52 
hITPR1_58 ATGGTTCAGTATGCGATTTGAC GCACAAATGAAATGTCATCATG 368 62-to-52 
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APPENDIX II. 
 

 

SUPLEMENTARY VIDEO - SEVERE MOVEMENT DISORDER IN MICE 
A CD-rom containing a video of affected and unaffected mice has been attached to the back 

cover of this thesis.    

A, B. Affected mice (first two mice shown). Phenotype is characterized by altered muscle tone, 

splayed hindlimbs, dragging of the hind limbs and apparently touch-induced seizures, marked 

by severe truncal, upper and lower limb contractions into unusual, twisting postures.  

C. Unaffected littermate (third mouse shown).  
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APPENDIX III. 
 

 

RAW DATA - LENGTH AND WEIGHT MEASUREMENTS 
Length and weight measurements of the mice were carried out by L Parisiadou (LNG/NIA/NIH). 

Length, (cm; ruler, Origene), from nose to base of tail, and weight (g; balance, Ohaus Scout II 

1200x0.1g), SRA210) measurements of 3 week old mice were taken.  

 

cage 556404 (♀F119x♂F116)  
pups born 10 Dec.2007 
measurements taken 30 Dec.2007 
 sex genotype length (cm) weight (g) 

1 M wt 5.5 7.7 
2 M wt 5.3 5.9 
3 M het 5.6 7.7 
4 M wt 4.5-5.0* 5.6 
5 F wt 5.4 7.7 
6 F het 5.0 7.3 
7 M het 5.1 6.8 
8 F het 4.7 5.8 
9 M het 4.5 4.0 

10 M homo 4.7 (4.5-<5.0)** 4.8 
11 M homo 4.5 5.3 

Table III.1 Length and weight measurements (litter A) 

* 4.8 was used for statistical analysis; ** 4.7 was used for statistical analysis. 

 

cage 556394 (♀F114x♂F116) 
pups born 11 Dec.2007 
measurements taken 30 Dec.2007 
 sex genotype length (cm) weight (g) 

1 M het 5.5 10.5 
2 F het 5.5 8.5 
3 F wt 5.5 8.3 
4 F wt 5.0 6.2 
5 F wt 5.5 9.1 
6 F het 5.4 9.1 
7 M het 5.4 8.4 
8 M homo 5.0 4.9 

Table III.2 Length and weight measurements (litter B) 

 
Dec, December; cm, centimeter; g, gram; M, male; F, female; wt, wild type; het, heterozygote 

for Itpr1Δ18; homo, homozygote, for Itpr1Δ18. 
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APPENDIX IV. 
 

 

DATA - LINKAGE ANALYSIS MICE 
A crude genome wide linkage strategy was carried out to map the location of the genetic cause 

of the severe movement disorder in mice (paragraph 3.3.3). Genotypes of 18 mice (unaffected 

mice, n=7; affected mice n=11) were obtained for 120 fragments, each containing one or more 

C57BL/6J-129x1/SvJ strain specific SNPs (Lindblad-Toh et al. 2000). LOD (logarithm of odds) 

scores for each SNP were determined using MLINK (version 5.1) (Lathrop et al. 1984). A 

region of high linkage was assigned to chromosome 6, (+)108.2-108.5Mb, on the 129x1/SvJ 

background. Theta denotes the recombination fraction; max, maximum.  
 

 

Chromosome 1 

    Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05   0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
35fra8(1) -4.61   -1.99   -1.02   -0.26   -0.01    0.38    0.03 
35fra8(4) -4.61   -1.99   -1.02   -0.26   -0.01    0.38    0.03 
61frc7(1) -4.60   -1.97   -0.97   -0.21    0.03     0.35    0.05 
84fld1(1) -4.90   -2.23   -1.20   -0.37   -0.07    0.41    0.01 
31fld3(2) -3.01   -3.00   -2.15   -0.94   -0.37    0.50    0.00 
37frd9(1) -0.92    0.27    0.60    0.63    0.39     0.15    0.67 
37frd9(3) -0.62    0.55    0.85    0.81    0.50     0.14    0.89 
37frd9(4) -1.80   -0.52   -0.08    0.18    0.17     0.24    0.20 
46frf9(1) -3.88   -1.87   -1.07   -0.39   -0.11    0.49    0.00 
29frh9(1) 0.06    0.05    0.04    0.03    0.01     0.00    0.07 
86frb10(2) -5.71   -2.43   -1.20   -0.26    0.02     0.36    0.05 
15flb5(1) -5.71   -2.43   -1.20   -0.26    0.02     0.36    0.05 
17frc10(1) -3.26   -1.33   -0.62   -0.10    0.03     0.34    0.04 
17frc10(2) -4.61   -1.99   -1.02   -0.26   -0.01    0.38    0.03 
57flc4(1) -0.62    0.55    0.85    0.81    0.50     0.14    0.89 
82flh4(2) -7.35   -3.82   -2.22   -0.85   -0.27    0.50    0.00 
 
Processed on Tue May 24 09:23:08 2005 
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Chromosome 2 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max    LOD Score 
---------------------------------------------------------------------------------------------- 
87frd8(1) -3.85   -1.30   -0.42    0.08    0.08     0.24    0.11 
61fre7(1)    -3.50   -1.53   -0.79   -0.22   -0.03    0.41    0.01 
71frf8(1)    -0.99   -0.36   -0.15   -0.01    0.01     0.30    0.01 
71frf8(2)     0.06    0.05    0.04    0.03    0.01     0.00    0.07 
71frf8(3)     0.00    0.00    0.00    0.00    0.00     0.50    0.00 
71frf8(4)     0.00    0.00    0.00    0.00    0.00     0.50    0.00 
59fla6(1)    -6.42   -3.06   -1.73   -0.62   -0.17    0.47    0.00 
59fla6(2)    -6.42   -3.06   -1.73   -0.62   -0.17    0.47    0.00 
64frc10(1)   0.06    0.05    0.04    0.03    0.01     0.00    0.07 
4flc5(1)    -5.20   -2.53   -1.48   -0.60   -0.22    0.50    0.00 
46frd10(1)  -6.42   -3.06   -1.74   -0.64   -0.20    0.50    0.00 
33fre11(1)  -4.44   -1.86   -0.92   -0.26   -0.07    0.50    0.00 
45frf11(1)  -5.20   -2.53   -1.48   -0.60   -0.22    0.50    0.00 
59flh4(2)   -3.85   -1.30   -0.42   0.08    0.08     0.24    0.11 
 
Processed on Tue May 24 09:29:45 2005 
 

 

Chromosome 3 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
11fld2(1)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
9flh3(1)    -2.62   -0.73   -0.11    0.21    0.16     0.22    0.22 
59fld5(2)    -4.60   -1.97   -0.98   -0.22    0.01     0.35    0.03 
 
Processed on Tue May 24 09:34:24 2005 
 

 

Chromosome 4 

No data available. 
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Chromosome 5 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
95fra9(1)   -11.61  -5.85   -3.45   -1.39   -0.49    0.50    0.00 
59frc8(1)    -7.10   -2.60   -0.97    0.18    0.41     0.29    0.41 
20frd8(1)    -7.52   -2.99   -1.32   -0.08    0.23     0.32    0.23 
36frf7(1)    -1.81   -0.57   -0.16   0.06    0.06     0.24    0.07 
36frf7(2)    -2.01   -0.13    0.48    0.71    0.49     0.18    0.71 
91flh1(1)   -12.99  -6.34   -3.72   -1.46   -0.49    0.50    0.00 
35flb5(3)    -3.89   -1.33   -0.42    0.16    0.20     0.27    0.22 
 
Processed on Thu Jun  2 12:09:27 2005 
 

 

Chromosome 6 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
84frb9(1)    -2.92   -1.06   -0.41    0.03    0.11     0.29    0.11 
34fld3 (1)   -8.26   -3.61   -1.85   -0.51   -0.09    0.44    0.00 
85flg2(3)    4.88    5.10    4.78    3.75    2.49     0.04    5.13 
25frb12(1)  -6.28   -2.39   -0.98   -0.02   0.14     0.29    0.14 
25frb12(2)  -11.08  -5.10   -2.80   -0.97   -0.31    0.50    0.00 
27frg11(1)  -12.86  -6.92   -4.01   -1.52   -0.49    0.50    0.00 
85flg5(1)    4.26    3.92    3.48    2.53    1.49     0.00    4.34 
85flg5(2)    4.26    3.92    3.48    2.53    1.49     0.00    4.34 
94frg12(1)  0.06    0.05    0.04    0.03    0.01     0.00    0.07 
94frg12(2)  0.06    0.05    0.04    0.03    0.01     0.00    0.07 
94frg12(3)  0.06    0.05    0.04    0.03    0.01     0.00    0.07 
28frh10(2)  -11.70  -5.90   -3.50   -1.42   -0.51    0.50   0.00 
 
Processed on Tue May 31 10:51:52 2005 
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Chromosome 7 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
71frb7(2)   0.06    0.05    0.04    0.03    0.01     0.00    0.07 
71frb7(3)    0.06    0.05    0.04    0.03    0.01    0.00    0.07 
71frb7(4)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
85frc7(1)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
85frc7(2)   -11.59  -5.99   -3.56   -1.44   -0.50    0.50    0.00 
22fre8(2)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
34fle3(1)    -0.88   -0.30   -0.14   -0.07   -0.04    0.50    0.00 
34fle3(2)    -4.47   -1.81   -0.80   -0.03   0.17     0.32    0.17 
34fle3(3)    -3.49   -1.49   -0.71   -0.11    0.06     0.34    0.07 
44flf2(1)    -7.42   -3.45   -1.94   -0.73   -0.27    0.50    0.00 
44flf2(3)    -9.61   -4.51   -2.50   -0.90   -0.31    0.50    0.00 
4frg8(1)     0.06    0.05    0.04    0.03    0.01     0.00    0.07 
4frg8(3)     0.06    0.05    0.04    0.03    0.01     0.00    0.07 
4frg8(4)     0.06    0.05    0.04    0.03    0.01     0.00    0.07 
7flg2(1)     0.06    0.05    0.04    0.03    0.01     0.00    0.07 
6flg3(1)   -11.46  -6.44   -3.83   -1.56   -0.57    0.50    0.00 
64flh2(1)  0.06    0.05    0.04    0.03    0.01     0.00    0.07 
64flh2(5)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
57fla5(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
26frc10(1)  -9.61   -4.51   -2.50   -0.90   -0.31    0.50    0.00 
26frc10(2)  -9.61   -4.51   -2.50   -0.90   -0.31    0.50    0.00 
27frc12(1)  -6.39   -4.55   -3.11   -1.19   -0.38    0.50    0.00 
5flc6(1)    -8.64   -4.95   -2.85   -1.06   -0.32    0.50    0.00 
70fld6(1)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
70fld6(2)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
64flf5(1)   -6.40   -2.51   -1.10   -0.12   0.07     0.30    0.07 
64flf5(2)   -8.40   -3.79   -2.05   -0.71   -0.23    0.50    0.00 
57flh4(1)    -9.75   -5.21   -2.94   -1.09   -0.39    0.50    0.00 
57flh4(2)    -9.75   -5.21   -2.94   -1.09   -0.39    0.50    0.00 
 
Processed on Thu Jun  2 12:11:28 2005 
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Chromosome 8 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
58fla1(1)   -11.37  -5.39   -3.07   -1.16   -0.41    0.50    0.00 
87fld2(1)    -8.50   -4.42   -2.59   -1.04   -0.38    0.50    0.00 
80fle1(1)    -7.56   -4.11   -2.50   -1.07   -0.41    0.50    0.00 
27fre8(1)    -7.50   -2.91   -1.20   0.07    0.38    0.31    0.39 
27fre8(2)    -7.50   -2.91   -1.20    0.07    0.38     0.31    0.39 
27fre8(4)    -7.50   -2.91   -1.20    0.07    0.38     0.31    0.39 
27fre8(5)    -7.50   -2.91   -1.20    0.07    0.38     0.31    0.39 
82fle3(1)    -6.23   -3.78   -2.25   -0.94   -0.36    0.50    0.00 
88frg8(2)    -8.66   -5.93   -3.97   -1.74   -0.67    0.50    0.00 
88frg8(3)    -7.26   -5.10   -3.28   -1.41   -0.54    0.50    0.00 
88frg8(4)    -5.86   -4.49   -3.08   -1.35   -0.52    0.50    0.00 
27frh8(1)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
27frh8(2)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
34flh3(1)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
45flb4(1)    -3.88   -1.90   -1.11   -0.44   -0.16    0.50    0.00 
45flb4(2)    -3.88   -1.90   -1.11   -0.44   -0.16    0.50    0.00 
86fld4(1)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
16fle5(1)    -4.25   -2.20   -1.36   -0.60   -0.24    0.50    0.00 
30flg5(1)    -4.73   -2.09   -1.10   -0.34   -0.10    0.50    0.00 
30flg5(2)    -4.73   -2.09   -1.10   -0.34   -0.10    0.50    0.00 
30flg5(3)    -4.73   -2.09   -1.10   -0.34   -0.10    0.50    0.00 
 
Processed on Thu Jun  2 12:13:22 2005 
 

 

Chromosome 9 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
84fra11(1)  -8.37   -5.74   -3.96   -1.68   -0.64    0.50    0.00 
84fra11(2)  -6.96   -4.52   -2.62   -0.97   -0.34    0.50    0.00 
56frb10(2)  -7.64   -3.13   -1.45   -0.24   0.06     0.33    0.07 
56frb10(3)  -8.33   -4.10   -2.11   -0.57   -0.08    0.40    0.01 
63flc5(2)    -7.97   -3.35   -1.59   -0.23    0.18     0.34    0.20 
28flg6(1)    -7.24   -3.93   -2.18   -0.78   -0.26   0.50    0.00 
 
Processed on Thu Jun  2 12:14:51 2005 
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Chromosome 10 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
61fle2(1)    -5.39   -2.71   -1.65   -0.70   -0.25    0.50    0.00 
91flg3(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
15flb4(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
61frf11(1)  -7.45   -3.42   -1.84   -0.54   -0.07    0.40    0.04 
61frg10(2)  0.06    0.05    0.04    0.03    0.01     0.00    0.07 
7frh11(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
 
Processed on Thu Jun  2 12:15:51 2005 
 

 

Chromosome 11 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
90fla2(1)    -9.24   -5.51   -3.36   -1.44   -0.55    0.50    0.00 
90fla2(2)    -9.07   -5.59   -3.44   -1.48   -0.57    0.50    0.00 
28fra9(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
89fle3(1)   -10.67  -5.10   -2.81   -0.97   -0.29    0.50    0.00 
86frf9(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
66flg3(1)   -10.67  -5.10   -2.81   -0.97   -0.29    0.50    0.00 
12frh7(1)    -9.48   -6.28   -4.64   -2.05   -0.78    0.50    0.00 
48flh3(1)   -10.88  -6.24   -3.64   -1.35   -0.39    0.47    0.00 
48flh3(2)   -11.05 -5.59   -3.20   -1.16   -0.32    0.45    0.01 
26frc11(1)  -4.61   -2.61   -1.55   -0.63   -0.23    0.50    0.00 
9flc5(1)   -11.70 -5.92   -3.53   -1.47   -0.56    0.50    0.00 
9flc5(2)   -10.36 -5.27   -3.12   -1.26   -0.44    0.50    0.00 
9flc5(3)   -11.70 -5.92   -3.53   -1.47   -0.56   0.50    0.00 
 
Processed on Thu Jun  2 12:17:01 2005 
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Chromosome 12 

              Theta Theta Theta Theta Theta Theta Max 
Locus     0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
34fld1(1)    -6.52   -2.59   -1.12   -0.05    0.18     0.30    0.18 
91fld3(1)    -6.38   -4.55   -3.36   -1.36   -0.46    0.50    0.00 
22fre7(1)    -5.71   -2.40   -1.14   -0.17   0.11     0.34    0.12 
22fre7(2)    -7.29   -3.32   -1.80   -0.58   -0.15    0.50    0.00 
86fle2(1)    -9.96   -4.65   -2.58   -0.90   -0.25    0.50    0.00 
46frf7(1)    -5.49   -2.78   -1.69   -0.72   -0.27    0.50    0.00 
46frf7(2)    -8.91   -3.66   -1.69   -0.23   0.14     0.32    0.15 
46frf7(3)    -8.91   -3.66   -1.69   -0.23    0.14     0.32    0.15 
46frf7(4)    -4.61   -1.98   -0.99   -0.25   -0.02    0.38    0.01 
42flf3(1)     0.00    0.00    0.00    0.00    0.00     0.50    0.00 
70frd12(5)  -7.21   -2.65   -0.97   0.21    0.41     0.28    0.42 
28flh4(1)    0.00    0.00    0.00    0.00    0.00     0.50    0.00 
44flh5(1)    -8.90   -3.64   -1.65   -0.17   0.20     0.32    0.21 
44flh5(2)    -9.19   -4.19   -2.16   -0.58   -0.07    0.39    0.01 
 
Processed on Thu Jun  2 12:22:13 2005 
 

 

Chromosome 13 

              Theta Theta Theta Theta Theta Theta Max 
Locus     0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
22frg8(1)   -10.49  -4.55   -2.31   -0.60   -0.10    0.50    0.00 
22frg8(2)   -10.49  -4.55   -2.31   -0.60   -0.10    0.50    0.00 
70fla5(1)   -11.47  -6.68   -4.04   -1.70   -0.65    0.50    0.00 
28flb6(1)   -13.15  -7.28   -4.32   -1.74   -0.61    0.50    0.00 
76frc10(3)  -6.31   -2.41   -0.99   0.00    0.20     0.30    0.20 
35frd10(2)  -14.21  -7.07   -4.14   -1.63   -0.56    0.50    0.00 
5frg12(1)    -4.33   -1.73   -0.78   -0.11    0.05     0.33    0.05 
 
Processed on Thu Jun  2 12:19:05 2005 
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Chromosome 14 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
59flb3(1)    -6.57   -3.23   -1.89   -0.74   -0.25    0.50    0.00 
88frb12(1)  -6.00   -3.28   -1.96   -0.81   -0.30    0.50    0.00 
64fle4(1)    -6.01   -3.33   -1.99   -0.82   -0.31    0.50    0.00 
64fle4(2)    -6.01   -3.33   -1.99   -0.82   -0.31    0.50    0.00 
31flf5(1)     0.00    0.00    0.00    0.00    0.00     0.50    0.00 
31flf5(2)     0.00    0.00    0.00    0.00    0.00    0.50    0.00 
31flf5(3)     0.00    0.00    0.00  0.00    0.00     0.50    0.00 
 
Processed on Tue May 24 09:44:51 2005 
 

 

Chromosome 15 
No data available. 

 

 

Chromosome 16 

      Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
44fle5(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
44fle5(2)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
44fle5(3)     0.06    0.05    0.04    0.03    0.01     0.00    0.07 
 
Processed on Wed May 11 09:54:02 2005 
 

 

Chromosome 17 

           Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
54fle3(2)  -4.61   -2.61   -1.55   -0.63   -0.23    0.50    0.00 
66flb6(3)  -2.47   -1.20   -0.72   -0.32   -0.13    0.50    0.00 
 
Processed on Wed May 11 10:01:25 2005 
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Chromosome 18 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30    Max     LOD Score 
---------------------------------------------------------------------------------------------- 
9fre8(1)     0.00    0.00    0.00    0.00    0.00     0.50    0.00 
9fre8(2)     0.00    0.00    0.00    0.00    0.00    0.50    0.00 
9fre8(3)     0.00    0.00    0.00    0.00    0.00     0.50    0.00 
9fre8(4)     0.00    0.00    0.00    0.00    0.00     0.50    0.00 
9fre8(5)     0.06    0.05    0.04    0.03    0.01     0.00    0.07 
54flg3(1)    0.06    0.05    0.04    0.03    0.01     0.00    0.07 
7frb10(1)    -2.62   -0.73   -0.11   0.21    0.16     0.22    0.22 
11frf10(1)   0.06    0.05    0.04    0.03    0.01     0.00    0.07 
 
Processed on Tue May 24 10:50:46 2005 
 

 

Chromosome 19 

              Theta Theta Theta Theta Theta Theta Max 
Locus      0.01    0.05    0.10    0.20    0.30     Max     LOD Score 
---------------------------------------------------------------------------------------------- 
17frc8(1)    -6.01   -3.25   -1.88   -0.71   -0.23    0.50    0.00 
5flh5(1)    -4.61   -1.99   -1.02   -0.26   -0.01    0.38    0.03 
 
Processed on Wed May 11 13:10:51 2005 
 

 

Chromosome X 

               Theta Theta Theta Theta Theta Theta Max 
Locus       0.01    0.05    0.10    0.20    0.30    Max     LOD Score 
--------------------------------------------------------------------------------------------------- 
12_5_11_6(1)  -1.34   -0.14   0.21    0.34    0.23     0.18    0.34 
94flc5(1)     -4.61   -2.61   -1.56   -0.64   -0.23    0.50    0.00 
28fld4(1)      0.00    0.00    0.00    0.00    0.00     0.50    0.00 
 
Processed on Tue May 24 13:41:40 2005 
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APPENDIX V. 
 

 

IMMUNOHISTOCHEMISTRY - EXPERIMENTAL CONTROLS 
To determine antibody specificity and levels of background fluorescence, experimental control 

data were obtained based on the wild type tissue (129x1B6, wild type for the Itpr1 18bp 

deletion, three weeks of age). Antibody dilutions used are the same as in the data presented in 

figure 3.9. Detailed description of the methods has been given in section 2.3.4.3. 

 

Secondary controls were used to determine secondary antibody specificity by incubation of the 

tissue without primary antibody. For both secondary controls (Alexa Fluor 555, Alexa Fluor 488) 

no signal was obtained. Images are undistinguishable from the blank control, in which no 

primary or secondary antibodies were used, that shows only autofluorescence. The secondary 

antibodies demonstrate specific binding at the concentrations used. In addition, peptide 

competition was carried out to study the specificity of the ITPR1 primary antibody. Prior to 

section incubation, anti-ITPR1 primary and corresponding peptide (10:1) were incubated 

overnight. In images thus obtained, ITPR1 staining of the dendrites was reduced to background 

levels (similar to secondary and blank controls), whereas signal intensity of the Purkinje cell 

bodies was clearly reduced. Indicating ITPR1 antibody binding was specific for the Purkinje 

cells in the cerebellum.        
 

 

 
Figure V.1 Immunohistochemistry, experimental controls 

Immunohistochemmistry of cerebellum from three week old (129x1B6) animal, wild type for the 

Itpr1 18bp deletion. Experimental controls for polyclonal ITPR1 anti-rabbit (A, B, C, D) and 

monoclonal calbindin anti-mouse (E, F, G) antibodies. Images show Purkinje cells of the 

cerebellum. A. Primary ITPR1 antibody (1:2000, Chemicon), secondary Alexa Fluor 555 

antibody (1:2000, Invitrogen). B. Secondary control; no primary antibody, secondary Alexa 

Fluor 555 antibody (1:2000, Invitrogen). C. Blank; no primary antibody, no secondary antibody. 

D. Peptide competition; Primary ITPR1 antibody (1:2000, Chemicon) pre-incubated with 

peptide (ITPR1 antigen, 1:20,000, Chemicon), secondary Alexa Fluor 555 antibody (1:2000, 

Invitrogen). E. Primary calbindin antibody (1:6000, Sigma), secondary Alexa Fluor 488 antibody 

(1:3000, Invitrogen). F. Secondary control; no primary antibody, secondary Alexa Fluor 488 

antibody (1:3000, Invitrogen). G. Blank; no primary antibody, no secondary antibody. 

(Achroplan 63x/0.9 W; Carl Zeiss) Scale bars denote 20μm. (figure V.1, on next page) 
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(figure V.1, continued from previous page) 
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APPENDIX VI. 
 

 

ASSAY BREAKPOINT AUS1 (T3F, C11R) IN CONTROLS 
The T3f and C11r primers, from the assay used to define the deletion breakpoint spanning 

SUMF1 and ITPR1 in the AUS1 (SCA15) kindred, were used to screen 259 neurologically 

normal controls for the deletion. Controls were obtained from Coriell Cell Repositories 

(neurologically normal Caucasian controls panel; NDPT002, NDPT006, NDPT009; 

http://ccr.coriell.org).  
 
PCR based assay was carried out as described in paragraph 4.4.1.2 using the 60-to-50 

amplification program (appendix I). Each control plate included a positive control (affected 

individual III5 of the AUS1 kindred (figure 4.1), 953bp band (figure 4.7)) and a no template 

control (NC). Either 6μl PCR product with 3μl orangeG or 5μl size reference (L; GeneRuler 

100bp DNA ladder plus (0.1μg/μl, ready to use), Fermentas) were loaded on a 2% agarose gel 

in 1xTBE with ethidium bromide, at 120V for approximately 45 minutes. 

 

 

 

Figure VI.1 NDPT002; gel assay T3f, C11r 

No PCR product was obtained for any of the NDPT002 samples (n=75), indicating absence of 

the deletion. Positive control (III5) gave 953bp product; NC, no product; x, empty lanes.  
 

IIIV L 

L 

NC 
NDPT002 

x x x x 

x x x x x x x x x x 

http://ccr.coriell.org/�
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Figure VI.2 NDPT006; gel assay T3f, C11r 

With the exception of well 6H, no PCR product was obtained for any of the NDPT006 samples 

(n=92), indicating absence of the deletion. Assay for NDPT006, 6H was repeated, see figure 

VI.4 for results. Positive control (III5) gave 953bp product; NC, no product; x, empty lanes. 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

IIIV  L 

L 6H 

NC 

NDPT006 
x x 

x x 
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Figure VI.3 NDPT009; gel assay T3f, C11r 

With the exception of well 6F, no PCR product was obtained for any of the NDPT009 samples 

(n=92), indicating absence of the deletion. Assay for NDPT009, 6F was repeated, see figure 

VI.4 for results. Positive control (III5) gave 953bp product; NC, no product; x, empty lanes. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure VI.4 Repeat NDPT006 (6H), NDPT009 (6F); gel assay T3f, C11r 

Samples were amplified in duplicates. No PCR product was obtained for either NDPT006 (6H) 

or NDPT009 (6F) samples, indicating absence of the deletion. Positive control (III5) gave 953bp 

product; NC, no product. 

L III5 NC III5 NC 006 009 006 009 

IIIV L 

L 6F 

NC 

NDPT009 

x 

x 

x 

x 
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APPENDIX VII. 
 

 

DATA - GENE DOSAGE ANALYSIS ITPR1EXON10 
Study of ITPR1 gene dosage was carried out by quantitative duplex PCR. Samples were 

assayed on an ABI Prism 7900HT Sequence Detection System (Applied Biosystems) and data 

were analyzed using the 2-ΔΔCt method (SDS software (Sequence Detection System, version 

2.2.2; Applied Biosystems) and excel (2003; Microsoft)).  

 

ΔCt = CtITPR1exon10 – Cthemoglobin 

SD = SD ΔCt 

2-ΔΔCt = 2^-(avg.ΔCt - avg.ΔCtcontrols) 

 

Accepted sample data required 4-6 replicates, Ct (23-30), SD ≤0.16 . Gene dosage, 2-ΔΔCt 

values (0.4-0.6) indicated heterozygous deletion; 2-ΔΔCt (0.8-1.2) indicated normal dosage; 2-ΔΔCt 

≥1.3 was considered a duplication. Ct, cycle threshold; SD, standard deviation; controls, normal 

dosage (H3332 (H3331 family), figure 4.12; III9 (AUS1 family), figure 4.1). In addition, deletion 

controls (III5, III4 (AUS1 family), figure 4.1) and a no template control (water) were included on 

each assay. Genomic DNA from samples of a French ADCA III cohort (n=267) were assayed. 

Data given in this appendix are the 2-ΔΔCt and SD, used to generate the graphs in paragraph 

4.4.1.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 228 

VII.1 Gene dosage data; graph A (figure 4.13) 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.07 1.04 1A    0.09 0.48 3A 0.06 1.02 4A 
0.05 1.00 1B 0.10 0.98 2B 0.07 1.02 3B 0.04 0.98 4B 
0.11 0.97 1C    0.14 0.95 3C 0.05 0.95 4C 
0.05 1.03 1D 0.04 1.11 2D 0.07 1.03 3D 0.04 0.98 4D 
0.06 1.08 1E 0.10 1.11 2E 0.06 1.04 3E 0.05 0.95 4E 
0.02 1.05 1F 0.05 1.07 2F 0.04 1.01 3F 0.07 0.96 4F 
0.08 0.99 1G 0.04 0.98 2G 0.04 0.95 3G 0.04 0.91 4G 
0.05 1.01 1H 0.07 0.95 2H 0.04 0.94 3H 0.02 0.92 4H 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.06 1.00 5A 0.06 0.98 6A 0.05 0.91 7A 0.06 0.94 8A 
0.06 1.04 5B 0.04 1.01 6B 0.03 1.00 7B 0.04 0.99 8B 
0.04 1.02 5C 0.04 1.13 6C 0.04 1.05 7C 0.05 0.97 8C 
0.04 1.06 5D 0.04 1.09 6D 0.05 1.05 7D 0.04 0.40 III5 - 8D 
0.03 1.06 5E    0.06 1.00 7E 0.04 1.03 H3332 - 8E 
0.04 1.11 5F 0.08 1.05 6F 0.11 1.00 7F 0.09 0.50 III4 - 8F 
0.07 1.03 5G 0.03 1.05 6G 0.09 1.08 7G 0.11 0.98 III9 - 8G 
0.08 1.02 5H 0.06 1.00 6H 0.05 0.97 7H #VALUE! #VALUE! NC 8H 

 

 
VII.2 Gene dosage data; graph B (figure 4.13) 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.04 1.10 1A 0.05 1.00 2A    0.05 0.96 4A 
0.07 1.06 1B 0.06 1.02 2B 0.03 0.98 3B 0.04 0.99 4B 
0.07 1.00 1C 0.07 0.99 2C 0.07 0.95 3C 0.06 0.96 4C 
0.02 1.05 1D 0.05 1.05 2D 0.07 0.99 3D 0.07 0.99 4D 
0.11 1.06 1E 0.09 1.07 2E 0.06 1.03 3E 0.08 1.00 4E 
0.05 1.06 1F       0.08 0.93 4F 
0.05 1.01 1G 0.03 1.08 2G 0.09 0.90 3G 0.09 0.95 4G 
0.06 1.08 1H 0.05 1.02 2H 0.05 0.94 3H 0.07 1.04 4H 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.06 0.96 5A 0.07 0.96 6A 0.05 0.94 7A 0.05 0.97 8A 
0.06 1.07 5B 0.04 1.00 6B 0.07 1.03 7B 0.09 1.00 8B 
0.07 1.06 5C 0.05 1.04 6C 0.09 1.00 7C 0.06 1.03 8C 
0.09 1.02 5D 0.03 1.06 6D 0.02 1.03 7D 0.11 0.39 III5 - 8D 
0.04 1.06 5E 0.06 1.05 6E 0.06 1.03 7E 0.09 1.02 H3332 - 8E 
0.07 1.05 5F 0.07 1.11 6F 0.07 1.05 7F 0.08 0.47 III4 - 8F 
   0.06 1.19 6G 0.07 0.97 7G 0.09 0.98 III9 - 8G 
0.08 0.99 5H 0.05 1.09 6H 0.06 0.98 7H #VALUE! #VALUE! NC 8H 
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VII.3 Gene dosage data; graph C (figure 4.13) 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.11 1.01 1A 0.03 1.00 2A 0.05 1.01 3A 0.05 1.03 4A 
0.06 1.09 1B 0.02 1.06 2B 0.05 1.03 3B 0.03 1.01 4B 
0.08 1.03 1C 0.05 1.03 2C 0.03 1.01 3C 0.06 0.94 4C 
0.07 1.06 1D 0.04 1.04 2D 0.06 1.00 3D 0.06 0.97 4D 
0.02 1.08 1E 0.04 1.07 2E 0.05 1.02 3E 0.05 1.05 4E 
0.05 1.03 1F 0.06 1.03 2F 0.04 1.03 3F 0.08 1.04 4F 
0.08 1.06 1G 0.05 1.02 2G 0.05 0.98 3G 0.05 0.92 4G 
0.07 1.07 1H 0.05 0.98 2H 0.08 0.96 3H 0.05 0.93 4H 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.04 1.02 5A 0.05 1.01 6A 0.04 0.97 7A 0.07 0.98 8A 
0.02 1.06 5B 0.06 1.03 6B 0.03 1.03 7B 0.09 1.03 8B 
0.05 1.05 5C 0.02 1.02 6C 0.05 0.98 7C 0.03 0.96 8C 
   0.07 1.06 6D 0.02 1.00 7D 0.05 0.41 III5 - 8D 
   0.04 1.06 6E 0.08 1.00 7E 0.05 1.01 H3332 - 8E 
0.05 1.04 5F 0.06 1.04 6F 0.04 0.99 7F 0.05 0.50 III4 - 8F 
0.06 1.09 5G 0.05 1.02 6G 0.10 0.99 7G 0.07 0.99 III9 - 8G 
0.08 1.07 5H 0.07 0.96 6H 0.04 0.93 7H #VALUE! #VALUE! NC 8H 

 

 
VII.4 Gene dosage data; graph D (figure 4.13) 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.07 1.06 1A 0.03 1.03 2A 0.07 1.02 3A 0.09 0.98 4A 
0.07 1.09 1B 0.09 1.05 2B 0.04 1.09 3B 0.04 1.08 4B 
0.05 1.06 1C 0.03 1.02 2C 0.07 1.07 3C 0.04 0.96 4C 
0.04 1.05 1D 0.03 1.08 2D 0.05 1.04 3D    
0.06 1.07 1E 0.06 1.09 2E 0.04 1.05 3E 0.03 1.00 4E 
0.07 1.04 1F 0.04 1.07 2F 0.06 0.99 3F    
0.07 1.05 1G 0.05 1.04 2G 0.06 0.98 3G 0.07 0.90 4G 
0.07 1.06 1H 0.07 1.02 2H 0.06 0.99 3H 0.06 0.95 4H 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.08 1.01 5A 0.04 0.99 6A 0.06 1.02 7A 0.05 0.96 8A 
0.04 1.06 5B 0.02 1.08 6B 0.07 1.06 7B 0.06 1.07 8B 
0.03 1.04 5C 0.07 1.10 6C    0.05 1.03 8C 
0.04 1.08 5D 0.04 1.07 6D    0.09 0.42 III5 - 8D 
0.05 1.01 5E 0.04 1.05 6E    0.10 1.01 H3332 - 8E 
   0.05 1.07 6F 0.07 1.06 7F 0.04 0.50 III4 - 8F 
   0.06 1.05 6G 0.10 1.01 7G 0.07 0.99 III9 - 8G 
0.08 1.01 5H 0.04 0.98 6H 0.03 0.97 7H #VALUE! #VALUE! NC 8H 
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VII.5 Gene dosage data; graph E (figure 4.13) 

SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  SD 2-ΔΔCt  

0.10 0.99 1A 0.03 0.97 2A 0.07 0.89 3A 0.09 0.95 4A 
0.08 0.99 1B 0.05 1.00 2B 0.06 0.93 3B 0.14 0.92 4B 
0.06 0.95 1C 0.05 0.93 2C 0.05 0.85 3C 0.05 0.86 4C 
0.07 0.98 1D 0.03 0.94 2D 0.10 0.91 3D 0.03 0.95 4D 
0.04 0.97 1E    0.05 0.92 3E    
0.08 0.96 1F 0.06 0.92 2F 0.06 0.84 3F 0.02 0.88 4F 
0.06 0.93 1G 0.04 0.41 2G 0.06 0.85 3G 0.06 0.80 4G 
0.06 0.96 1H 0.07 0.85 2H 0.08 0.85 3H 0.05 0.86 4H 

         SD 2-ΔΔCt  

         0.08 0.40 III5 - 8D 
         0.09 0.99 H3332 - 8E 
         0.05 0.52 III4 - 8F 
         0.03 1.01 III9 - 8G 
         #VALUE! #VALUE! NC 8H 

 

 

 
VII.6 Gene dosage data; graph F (figure 4.13), graph G (figure 4.13) 

graph F    graph G   

SD 2-ΔΔCt   SD 2-ΔΔCt  

0.04 0.97 2A  0.02 1.09 1B 
0.08 0.92 2H  0.07 1.15 2C 
0.04 0.82 4C  0.03 1.14 2E 
0.06 1.16 4F  0.05 1.13 2G 
0.06 1.12 4G  0.04 1.04 3C 

SD 2-ΔΔCt   0.07 1.22 3H 

0.06 0.46 III5 - 8D  SD 2-ΔΔCt  

0.08 1.02 H3332 - 8E  0.05 0.43 III5 - 8D 
0.05 0.56 III4 - 8F  0.02 0.97 H3332 - 8E 
0.04 0.98 III9 - 8G  0.03 0.56 III4 - 8F 
#VALUE! #VALUE! NC 8H  0.05 1.03 III9 - 8G 

    #VALUE! #VALUE! NC 8H 
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VII.7 Gene dosage data; figure 4.14 (AAD4-2G, AAD1-6E, AAD1-10D) 

AAD4-2G  AAD1-6E  AAD1-10D 

SD 2-ΔΔCt   SD 2-ΔΔCt   SD 2-ΔΔCt  

0.05 1.63 4D-E  0.05 3.46 6E-B  0.06 2.07 3A-C 
0.09 0.42 III5 - 8D  0.04 0.40 III5 - 8D  0.11 0.39 III5 - 8D 
0.10 1.01 H3332 - 8E 0.04 1.03 H3332 - 8E 0.09 1.02 H3332 - 8E 
0.04 0.50 III4 - 8F  0.09 0.50 III4 - 8F  0.08 0.47 III4 - 8F 
0.07 0.99 III9 - 8G  0.11 0.98 III9 - 8G  0.09 0.98 III9 - 8G 
#VALUE! #VALUE! NC 8H  #VALUE! #VALUE! NC 8H  #VALUE! #VALUE NC 8H 

SD 2-ΔΔCt   SD 2-ΔΔCt   SD 2-ΔΔCt  

0.07 1.46 3G-r1  0.08 1.85 1G-r1  0.02 1.82 2C-r1 
0.06 0.46 III5 - 8D  0.06 0.46 III5 - 8D  0.06 0.46 III5 - 8D 
0.08 1.02 H3332 - 8E 0.08 1.02 H3332 - 8E 0.08 1.02 H3332 - 8E 
0.05 0.56 III4 - 8F  0.05 0.56 III4 - 8F  0.05 0.56 III4 - 8F 
0.04 0.98 III9 - 8G  0.04 0.98 III9 - 8G  0.04 0.98 III9 - 8G 
#VALUE! #VALUE! NC 8H  #VALUE! #VALUE! NC 8H  #VALUE! #VALUE! NC 8H 

SD 2-ΔΔCt   SD 2-ΔΔCt   SD 2-ΔΔCt  

0.07 1.36 3A-r2  0.06 2.12 1F-r2  0.08 2.18 2B-r2 
0.05 0.43 III5 - 8D  0.05 0.43 III5 - 8D  0.05 0.43 III5 - 8D 
0.02 0.97 H3332 - 8E 0.02 0.97 H3332 - 8E 0.02 0.97 H3332 - 8E 
0.03 0.56 III4 - 8F  0.03 0.56 III4 - 8F  0.03 0.56 III4 - 8F 
0.05 1.03 III9 - 8G  0.05 1.03 III9 - 8G  0.05 1.03 III9 - 8G 
#VALUE! #VALUE! NC 8H  #VALUE! #VALUE! NC 8H  #VALUE! #VALUE! NC 8H 

 

 

 
VII.8 Gene dosage data; figure 4.15 (AAD1-3A, AAD4-8H) 

AAD1-3A  AAD4-8H 

SD 2-ΔΔCt   SD 2-ΔΔCt  

0.09 0.48 B-3A  0.04 0.41 F-2G 
0.04 0.40 III5 - 8D  0.08 0.40 III5 - 8D 
0.04 1.03 H3332 - 8E  0.09 0.99 H3332 - 8E 
0.09 0.50 III4 - 8F  0.05 0.52 III4 - 8F 
0.11 0.98 III9 - 8G  0.03 1.01 III9 - 8G 
#VALUE! #VALUE! NC 8H  #VALUE! #VALUE! NC 8H 

SD 2-ΔΔCt   SD 2-ΔΔCt  

0.04 0.53 1B  0.07 0.49 5E 
0.06 0.46 III5 - 8D  0.06 0.46 III5 - 8D 
0.08 1.02 H3332 - 8E  0.08 1.02 H3332 - 8E 
0.05 0.56 III4 - 8F  0.05 0.56 III4 - 8F 
0.04 0.98 III9 - 8G  0.04 0.98 III9 - 8G 
#VALUE! #VALUE! NC 8H  #VALUE! #VALUE! NC 8H 
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APPENDIX VIII. 
 

 

GENETIC ELEMENTS NEAR BREAKPOINTS SCA15 
Analysis of genetic elements near the deletion breakpoint in the AUS1 and H27390 families 

(SCA15) were carried out by J Duckworth (LNG/NIA/NIH). At least 200bp 5’ and 3p flanking the 

breakpoint were studied using RepeatMasker and Simple Repeats functions from the UCSC 

Genome Browser (http://genome.ucsc.edu). Data based on Human assembly March 2006 

(NCBI build 36.1 (hg18)). 

 

 

AUS1, SCA15 
 
distal breakpoint (SUMF1) 
#genoName genoStart genoEnd strand repName repClass repFamily 
chr3 4462647 4462838 + L1MC5 LINE L1 
chr3 4462838 4463201 + THE1B LTR MaLR 
chr3 4463201 4463583 + L1MC5 LINE L1 
       
proximal breakpoint (ITPR1) 
#genoName genoStart genoEnd strand repName repClass repFamily 
chr3 4664175 4664546 - L1ME1 LINE L1 
chr3 4664553 4664847 + AluSp SINE Alu 
       

Table VIII.1 Genetic elements present near breakpoints AUS1 (SCA15) family 

 
H27390 (London) 
 
distal breakpoint (SUMF1) 
#genoName genoStart genoEnd strand repName repClass repFamily 
chr3 4450646 4450979 + L1MB4 LINE L1 
       
proximal breakpoint (ITPR1) 
#genoName genoStart genoEnd strand repName repClass repFamily 
none       
       

Table VIII.2 Genetic elements present near breakpoints H27390 family 

 
AUS1, Australian kindred, original SCA15 family (Storey et al. 2001); H27390, family of the 

London ADCAIII cohort; SUMF1, sulfatase modifying factor 1; ITPR1, inositol 1,4,5-

triphosphate receptor, type 1; geno__, prefix, related to genome; chr, chromosome; rep__, 

prefix, referring to repeat; LINE, long interspersed nuclear element, a retrotransposon 

(transposon via RNA intermediates), a genetic element that moves by copying itself; Alu 

element, short DNA sequence originally characterized by the action of the Alu restriction 

endonuclease, and at about 300bp in length it is classified as a short interspersed nuclear 

element (SINE); LTR, long terminal repeat, retrotransposons (genetic elements transposed by 

reverse transcription of RNA) with direct LTRs that range from ~100bp to over 5kb in size.  

http://genome.ucsc.edu/�
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YES, THAT SEQUENCE OF WORDS I SAID MADE PERFECT SENSE. 
 
-- THE PROFESSOR, FUTURAMA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


